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Languages and Designs for Probability
Judgment∗

Glenn Shafer and Amos Tversky

Abstract. Theories of subjective probability are viewed as formal languages for
analyzing evidence and expressing degrees of belief. This article focuses on two
probability language, the Bayesian language and the language of belief functions
[19]. We describe and compare the semantics (i.e., the meaning of the scale) and the
syntax (i.e., the formal calculus) of these languages. We also investigate some of the
designs for probability judgment afforded by the two languages.

Introduction

The weighing of evidence may be viewed as a mental experiment in which the
human mind is used to assess probability much as a pan balance is used to
measure weight. As in the measurement of physical quantities, the design of
the experiment affects the quality of the result.

Often one design for a mental experiment is superior to another because
the questions it asks can be answered with greater confidence and precision.
Suppose we want to estimate, on the basis of evidence readily at hand, the
number of eggs produced daily in the U.S. One design might ask us to guess
the number of chickens in the U.S. and the average number of eggs laid by
each chicken each day. Another design might ask us to guess the number of
people in the U.S., the average number of eggs eaten by each person, and
some inflation factor to cover waste and export. For most of us, the second
design is manifestly superior, for we can make a reasonable effort to answer
the questions it asks.
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of Jonathan Baron, Morris DeGroot, Persi Diaconis and David Krantz. Amos
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As this example illustrates, the confidence and precision with which we
can answer a question posed in a mental experiment depends on how our
knowledge is organized and stored, first in our mind and secondarily in other
sources of information available to us.

The quality of the design of a mental experiment also depends on how
effectively the answers to the individual questions it asks can be combined to
yield an accurate overall picture or accurate answers to questions of central
interest. An analogy with surveying may be helpful. There are usually many
different ways of making a land survey—many different angles and lengths we
may measure. When we design the survey we consider not only the accuracy
and precision with which these individual measurements can be made but also
how they can be combined to give an accurate plot of the area surveyed [13].
Singer shows how a mental experiment may be designed to give a convincing
estimate of the total value of property stolen by heroin addicts in New York
City [24]. Other examples of effective designs for mental experiments are given
by Raiffa [15].

One way to evaluate competing designs for physical measurement is to
apply them to instances where the truth is known. But such empirical evalua-
tion of final results is not always possible in the case of a mental experiment,
especially when the experiment is designed to produce only probability judg-
ments. It is true that probability judgments can be interpreted as frequencies.
But as we argue below, this interpretation amounts only to a comparison with
a repeatable physical experiment where frequencies are known. How the com-
parison is made—what kind of repetitions are envisaged—is itself one of the
choices we make in designing a mental experiment. There may not be a single
set of repetitions to which the design must be referred for empirical validation.

Since empirical validation of a design for probability judgment is prob-
lematic, the result of carrying out the mental experiment must be scrutinized
in other ways. The result of the whole experiment must be regarded as an
argument, which, like all other arguments, is open to criticism and counter-
arguments.

Understanding and evaluating a design for probability judgment is also
complicated by problems of meaning. When we are simply guessing the answer
to a question of fact, such as the number of eggs produced daily in the U.S.,
the meaning of the question seems to be independent of our design. But when
we undertake to make probability judgments, we find that we need a theory
of subjective probability to give meaning to these judgments.

In the first place, we need a numerical scale or at least a qualitative scale
(practically certain, very probable, fairly probable, etc.) from which to choose
degrees of probability. We also need canonical examples for each degree of
probability on this scale—examples where it is agreed what degree of proba-
bility is appropriate. Finally, we need a calculus—a set of rules for combining
simple judgments to obtain complex ones.

Using a theory of subjective probability means comparing the evidence
in a problem with the theory’s scale of canonical examples and picking out
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the canonical example that matches it best. Our design helps us make this
comparison. It specifies how to break the problem into smaller problems that
can be more easily compared with the scale of canonical examples and how
to combine the judgments resulting from these separate comparisons.

Thought of in this way, a theory of subjective probability is very much
like a formal language. It has a vocabulary—a scale of degrees of probability.
Attached to this vocabulary is a semantics—a scale of canonical examples that
show how the vocabulary is to be interpreted and psychological devices for
making the interpretation effective. Elements of the vocabulary are combined
according to a syntax—the theory’s calculus.

Proponents of different theories of subjective probability have often
debated which theory best describes human inductive competence. We believe
that none of these theories provide an adequate account of people’s intuitive
judgments of probability. On the other hand, most of these theories can be
learned and used effectively. Consequently, we regard these theories as formal
languages for expressing probability judgments rather than as psychological
models, however idealized.

The usefulness of one of these formal languages for a specific problem may
depend both on the problem and on the skill of the user. There may not be a
single probability language that is normative for all people and all problems.
A person may find one language better for one problem and another language
better for another. Furthermore, individual probability judgments made in
one language may not be directly translatable into another.

This article studies the semantics and syntax of two probability languages,
the traditional Bayesian language and the language of belief functions, and it
uses these languages to analyze several concrete examples. This exercise can
be regarded as a first step toward the general study of design for probability
judgment. It illustrates the variety of designs that may be feasible for a given
problem, and it yields a classification of Bayesian designs that clarifies the
role of Bayesian conditioning. Our treatment is incomplete, however, because
it does not provide formal criteria or lay out general empirical procedures for
evaluating designs. The choice of design is left to the ingenuity of the user.

1 Examples

With the help of some simple examples we illustrate several designs for prob-
ability judgments. We will return to these examples in Sects. 3 and 4.

1.1 The Free-Style Race

We are watching one of the last men’s swim meets of the season at Holsum
University. We have followed the Holsum team for several seasons, so we watch
with intense interest as Curt Langley, one of Holsum’s leading free-stylers,
gets off to a fast start in the 1650-yard race. As Curt completes his first
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1000 yards, he is swimming at a much faster pace than we have seen him
swim before. His time for the first 1000 yards is 9 min and 25 s. His best
previous times for 1650 yards have been around 16 min and 25 s, a time that
translates into about 9 min and 57 s at 1000 yards. The only swimmer within
striking distance of him is a member of the visiting team named Cowan, whom
we know only by name. Cowan is about half a lap (about 12 yards or 7 s)
behind Curt.

Will Curt Win the Race? The first question we ask ourselves is whether
he can keep up his pace. Curt is known to us as a very steady swimmer—
one who knows what he is capable of and seldom, if ever, begins at a
pace much faster than he can keep up through a race. It is true that his
pace is much faster than we have seen before—much faster than he was
swimming only a few weeks ago. It is possible that there has been no
real improvement in his capacity to swim—that he has simply started fast
and will slow down before the race is over. But our knowledge of Curt’s
character and situation encourages us to think that he must have trained
hard and greatly increased his endurance. This is his senior year, and the
championships are near. And he must have been provoked to go all out
by Jones, the freshman on the team, who has lately overshadowed him in
the long-distance races. We are inclined to think that Curt will keep up
his pace.

If Curt does keep up his pace, then it seems very unlikely that Cowan could
have enough energy in reserve to catch him. But what if Curt cannot keep up
his pace? Here our vision becomes more murky. Has Curt deliberately put his
best energy into the first part of the race? Or has he actually misjudged what
pace he can keep up? In the first case, it seems likely he will soon slow down,
but not to a disastrously slow pace; it seems to be a toss-up whether Cowan
will catch him. On the other hand, if he has misjudged what pace he can keep
up, then surely he has not misjudged it by far, and so we would expect him to
keep it up almost to the end and, as usually happens in such cases, “collapse”
with exhaustion to a very slow pace. There is no telling what would happen
then—whether Cowan would be close enough or see the collapse soon enough
to take advantage of the situation.

There are many different designs that we might use to assess numeri-
cally the probability of Curt’s winning. There is even more than one possible
Bayesian design. The Bayesian design suggested by our qualitative discussion
assesses the probabilities that Curt will keep up the pace, slow down, or col-
lapse and the conditional probabilities that he will win under each of these
hypotheses and then combines these probabilities and conditional probabili-
ties to obtain his overall probability of winning. We call this a total-evidence
design because each probability and conditional probability is based on the
total evidence. In sect. 3 we will formalize and carry out this total-evidence
design. We will also carry out a somewhat different Bayesian total-evidence
design for the problem. In sect. 4 we will carry out a belief-function design for
the problem.
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1.2 The Hominids of East Turkana

In the August, 1978, issue of Scientific American, Alan Walker and Richard E.
T. Leakey [27] discuss the hominid fossils that have recently been discovered in
the region east of Lake Turkana in Kenya. These fossils, between a million and
two million years of age, show considerable variety, and Walker and Leakey
are interested in deciding how many distinct species they represent.

In Walker and Leakey’s judgment, the relatively complete cranium spec-
imens discovered in the upper member of the Koobi Fora Formation in East
Turkana are of three forms: (I) A “robust” form with large cheek teeth and
massive jaws. These fossils show wide-fanning cheekbones, very large molar
and premolar teeth, and smaller incisors and canines. The brain case has an
average capacity of about 500 cubic centimeters, and there is often a bony
crest running fore and aft across its top, which presumably provided greater
area for the attachment of the cheek muscles. Fossils of this form have also
been found in South Africa and East Asia, and it is generally agreed that they
should all be classified as members of the species Australopithecus robustus.
(II) A smaller and slenderer (more “gracile”) form that lacks the wide-flaring
cheekbones of I, but has similar cranial capacity and only slightly less mas-
sive molar and premolar teeth. (III) A large-brained (c. 850 cubic cm) and
small-jawed form that can be confidently identified with the Homo erectus
specimens found in Java and northern China.

The placement of the three forms in the geological strata in East Turkana
shows that they were contemporaneous with each other. How many distinct
species do they represent? Walker and Leakey admit five hypotheses:

1. I, II, and III are all forms of a single, extremely variable species.
2. There are two distinct species: one, Australopithecus robustus, has I as its

male form and II as its female form; the other, Homo erectus, is represented
by III.

3. There are two distinct species: one, Australopithecus robustus, is repre-
sented by I; the other has III, the so-called Homo erectus form, as its
male form, and II as its female form.

4. There are two distinct species: one is represented by the gracile form II;
the other, which is highly variable, consists of I and III.

5. The three forms represent three distinct species.

Here are the items of evidence, or arguments, that Walker and Leakey use
in their qualitative assessment of the probabilities of these five hypotheses:

(i). Hypothesis 1 is supported by general theoretical arguments to the effect
that distinct hominid species cannot coexist after one of them has
acquired culture.

(ii). Hypotheses 1 and 4 are doubtful because they postulate extremely dif-
ferent adaptations within the same species: The brain seems to over-
whelm the chewing apparatus in III, while the opposite is true in I.
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(iii). There are difficulties in accepting the degree of sexual dimorphism pos-
tulated by hypotheses 2 and 3. Sexual dimorphism exists among living
anthropoids, and there is evidence from elsewhere that hints that den-
tal dimorphism of the magnitude postulated by hypothesis 2 might have
existed in extinct hominids. The dimorphism postulated by hypothesis
3, which involves females having roughly half the cranial capacity of
males, is less plausible.

(iv). Hypotheses 1 and 4 are also impugned by the fact that specimens of
type I have not been found in Java and China, where specimens of type
III are abundant.

(v). Hypotheses 1 and 3 are similarly impugned by the absence of specimens
of type II in Java and China.

Before specimens of type III were found in the Koobi Fora Formation, Walker
and Leakey thought it likely that the I and II specimens constituted a single
species. Now on the basis of the total evidence, they consider hypothesis 5 the
most probable.

What Bayesian design might we use to analyze this evidence? A total
evidence design may be possible, but it is natural to consider instead a design
in which some of the evidence is treated as an “observation” and used to
“condition” probabilities based on the rest of the evidence. We might, for
example, first construct a probability distribution that includes probabilities
for whether specimens of Type I and II should occur in Java and China and
then condition this distribution on their absence there. It is natural to call
this a conditioning design. It is not a total-evidence design, because the initial
(or “prior”) probabilities for whether the specimens occur in Java and China
will be based on only part of the evidence.

Later in Sect. 3, we will work this conditioning design out in detail. In
Sect. 4 we will apply a belief-function design to the same problem.

2 Two Probability Languages

In order to make numerical probability judgments, we need a numerical scale.
We need, in other words, a scale of canonical examples in which numerical
degrees of belief are agreed upon. Where can we find such a scale?

The obvious place to look is in the picture of chance. In this picture, we
imagine a game which can be played repeatedly and for which we know the
chances. These chances, we imagine, are facts about the world: they are long-
run frequencies, they can be thought of as propensities, and they also define
fair betting rates—rates at which a bettor would break even in the long run.

There are several ways the picture of chance can be related to practical
problems, and this means we can use the picture to construct different kinds of
canonical examples and thus different theories or probability languages. In this
essay, we shall consider two such languages: the Bayesian language, and the
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language of belief functions. The Bayesian language uses a scale of canonical
examples in which the truth is generated by chance and our evidence consists
of complete knowledge of the chances. The language of belief functions uses a
scale of canonical examples in which our evidence consists of a message whose
meaning depends on known chances.

We emphasize the Bayesian language because it is familiar to most readers.
We study the language of belief functions as well in order to emphasize that
our constructive view of probability, while not implying that all probability
languages have equal normative claims, leaves open the possibility that no
single language has a preemptively normative status.

2.1 The Bayesian Language

As we see it, a user of the Bayesian probability language makes probability
judgments in a particular problem by comparing the problem to a scale of
examples in which the truth is generated according to known chances and
deciding which of these examples is most like the problem. The probability
judgment P (A) = p, in this language, is a judgment that the evidence provides
support for A comparable to what would be provided by knowledge that the
truth is generated by a chance setup that produces a result in A exactly p of
the time. This is not to say that one judges the evidence to be just like such
knowledge in all respects, nor that the truth is, in fact, generated by chance.
It is just that one is measuring the strength of the evidence by comparing it
to a scale of chance setups.

The idea that Bayesian probability judgment involves comparisons with
examples where the truth is generated by chance is hardly novel. It can be
found, for example, in Bertrand [2] and in Box [3]. Box states that the adoption
of given Bayesian probability distribution means that “current belief . . . would
be calibrated with adequate approximation by a physical stimulation involving
random sampling” (p. 385) from the distribution. The Bayesian literature has
not, however, adequately addressed the question of how this comparison can be
carried out. One reason for this neglect may be the emphasis that twentieth-
century Bayesians have put on betting. When “personal probabilities” are
defined in terms of a person’s preferences among bets, we are tempted to think
that the determination of probabilities is a matter of introspection rather than
a matter of examining evidence, but see Diaconis and Zabell [4].

Bayesian Semantics. The task of Bayesian semantics is to render the com-
parison of our evidence to the Bayesian scale of canonical examples effective—
to find ways of making the scale of chances and the affinity of our evidence
to it vivid enough to our imagination that we can meaningfully locate the
evidence on the scale.

By concentrating on different aspects of the rich imagery of games of
chance, we can isolate different ways of making the Bayesian scale of chances
vivid, and each of these ways can be thought of as a distinct semantics for
the Bayesian probability language. Three such semantics come immediately



352 G. Shafer and A. Tversky

to mind: a frequency semantics, a propensity semantics, and a betting seman-
tics. The frequency semantics compares our evidence to the scale of chances
by asking how often, in situations like the one at hand, the truth would turn
out in various ways. The propensity semantics makes the comparison by first
interpreting the evidence in terms of a causal model and then asking about the
model’s propensity to produce various results. The betting semantics makes
the comparison by assessing our willingness to bet in light of the evidence: at
what odds is our attitude towards a given bet most like our attitude towards
a fair bet in a game of chance?

It is traditional, of course, to argue about whether probability should be
given a frequency, a propensity, or a betting interpretation. But from our
perspective these “interpretations” are merely devices to help us make what
may ultimately be an imperfect fit of our evidence to a scale of chances.
Which of these devices is most helpful will depend on the particular problem.
We do not insist that there exists, prior to our deliberation, some particular
frequency or numerical propensity in nature or some betting rate in our mind
that should be called the probability of the proposition we are considering.

Which of these three Bayesian semantics tends to be most helpful in fit-
ting our evidence to the scale of chances? We believe that the frequency and
propensity semantics are central to the successful use of the Bayesian proba-
bility language, and that the betting semantics is less useful. Good Bayesian
designs ask us to make probability judgments that can be translated into
well-founded judgments about frequencies or about causal structures.

Since we readily think in terms of causal models, the propensity semantics
often seems more attractive than the frequency semantics. But this attraction
has its danger; the vividness of causal pictures can blind us to doubts about
their validity. A simple design based on frequency semantics can sometimes be
superior to a more complex design based on propensity semantics. We may,
for example, obtain a better idea about how long it will take to complete
a complex project by taking an “outside view” based on how long similar
projects have taken in the past than by taking an “inside view” that attempts
to assess the strength of the forces that could delay the completion of the
project [10].

The betting semantics has a generality that the frequency and propensity
semantics lack. We can always ask ourselves about our attitude towards a bet,
quite irrespective of the structure of our evidence. But this lack of connection
with the evidence is also a weakness of the betting semantics.

In evaluating the betting semantics, one must distinguish logical from psy-
chological and practical considerations. Ramsey [16], Savage [18], and their
followers have made an important contribution to the logical analysis of sub-
jective probability by showing that it can be derived from coherent preferences
between bets. This logical argument, however, does not imply psychological
precedence. Introspection suggests that people typically act on the basis of
their beliefs, rather than form beliefs on the basis of their acts. The gam-
bler bets on Team A rather than on Team B because he believes that A is
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more likely to win. He does not usually infer such a belief from his betting
preferences.

It is sometimes argued that the prospect of monetary loss tends to con-
centrate the mind and thus permits a more honest and acute assessment of
the strength of evidence than that obtained by thinking about that evidence
directly. There is very little empirical evidence to support this claim. Although
incentives can sometimes reduce careless responses, monetary payoffs are nei-
ther necessary nor sufficient for careful judgment. In fact, there is evidence
showing that people are sometimes willing to incur monetary losses in order
to report what they believe [12]. Personally, we find that questions about bet-
ting do not help us think about the evidence; instead they divert our minds to
extraneous questions: our attitudes towards the monetary and social conse-
quences of winning or losing a bet, our assessment of the ability and knowledge
of our opponent, etc.

Bayesian Syntax. It follows from our understanding of the canonical
examples of the Bayesian language that this language’s syntax is the tra-
ditional probability calculus. A proposition that a person knows to be false
is assigned probability zero. A proposition that a person knows to be true
is assigned probability one. And in general probabilities add: if A and B are
incompatible propositions, then P (A or B) = P (A) + P (B).

The conditional probability of A given B is, by definition,

P (A | B) =
P (A and B)

P (B)
. (1)

If B1, . . . , B2 are incompatible propositions, one of which must be true, then
the rule of total probability says that

P (A) =
n∑

j=1

P (Bj)P (A | Bj), (2)

and Bayes’s theorem says that

P (Bi | A) =
P (Bi)P (A | Bi)
n∑
j=1

P (Bj)P (A | Bj)
. (3)

As we shall see in Sect. 3, both total-evidence and conditioning designs can use
the concept of conditional probability. Total-evidence designs often use (2),
while conditioning designs use (I). Some conditioning designs can be described
in terms of (3).

2.2 The Language of Belief Functions

The language of belief functions uses the calculus of mathematical probability,
but in a different way than the Bayesian language does. Whereas the Bayesian
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language asks, in effect, that we think in terms of a chance model for the facts
in which we are interested, the belief-function language asks that we think in
terms of a chance model for, the reliability and meaning of our evidence.

This can be put more precisely by saying that the belief-function language
compares evidence to canonical examples of the following sort. We know a
chance experiment has been carried out. We know that the possible outcomes
of the experiment are o1, . . . , on. and that the chance of oi is pi We are not
told the actual outcome but we receive a message concerning another topic
that can be fully interpreted only with knowledge of the actual outcome. For
each i there is a proposition Ai, say, such that if we knew the actual outcome
was oi then we would see that the meaning of the message is Ai, We have
no other evidence about the truth or falsehood of the Ai and so no reason to
change the probabilities pi.

What degrees of belief are called for in an example of this sort? How
strongly should be believe a particular proposition of A?

For each proposition A, set m(A) =
∑
{pi | Ai = A}. This number is

the total of the chances for outcomes that would show the message to mean
A; we can think of it as the total chance that the message means A. Now
let Bel(A) denote the total chance that the message implies A; in symbols,
Bel(A) =

∑
{m(B) | B implies A}. It is natural to call Bel(A) our degree of

belief in A.
We call a function Bel a belief function if it is given by the above equation

for some choice of m(A). By varying the pi and the Ai in our story of the
uncertain message, we can obtain any such values for the m(A), and so the
story provides canonical examples for every belief function.

We call the propositions A for which m(A) > 0 the focal elements of
the belief function Bel. Often the most economical way of specifying a belief
function is to specify its focal elements and their “m-values.”

Semantics for Belief Functions. We have based our canonical examples for
belief functions on a fairly vague story: We receive a message and we see,
somehow, that if oi were the true outcome of the random experiment, then
the message would mean Ai. One task of semantics for belief functions is to
flesh out the story in ways that help us compare real problems to it. Here
we shall give three ways of fleshing out the story. The first leads to canoni-
cal examples for a small class of belief functions, called simple support func-
tions. The second leads to canonical examples for a larger class, the consonant
support functions. The third leads to canonical examples for arbitrary belief
functions.

(i) A Sometimes Reliable Truth Machine. Imagine a machine that has two
modes of operation. We know that in the first mode it broadcasts truths. But
we are completely unable to predict what it will do when it is in the Second
mode. We also know that the choice of which mode the machine will operate
in on a particular occasion is made by chance: There is a chance s that it will
operate in the first mode and a chance 1− s that it will operate in the second
mode.
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It is natural to say of a message broadcast by such a machine on a particu-
lar occasion that it has a chance s of meaning what it says and a chance 1− s
of meaning nothing at all. So if the machine broadcasts the message that E is
true, then we are in the setting of our general story: The two modes of opera-
tion for the machine are the two outcomes o1 and o2 of a random experiment;
their chances are p1 = s and p2 = 1 − s; if o1 happened then the message
means A1 = E, while if o2 happened the message means nothing beyond what
we already know, i.e., it means A2 = Θ, where Θ denotes the proposition that
asserts the facts we already know. So we obtain a belief function with focal
elements E and θ; m(E) = s and m(Θ) = 1− s.

We call such a belief function a simple support function. Notice its non-
additivity: the two complementary propositions E and not E have degrees of
belief Bel(E) = s < 1 and Bel(not E) = 0.

It is natural to use simple support functions in cases where the message of
the evidence is clear but where the reliability of this message is in question.
The testimony of a witness, for example, may be unambiguous, and yet we
may have some doubt about the witness’s reliability. We can express this
doubt by comparing the witness to a truth machine that is less than certain
to operate correctly.

(ii) A Two-Stage Truth Machine. Consider a sometimes reliable truth
machine that broadcasts two messages in succession and can slip into its
untrustworthy mode before either message. It remains in the untrustworthy
mode once it has slipped into it. As before, we know nothing about whether or
how often it will be truthful when it is in this mode. We know the chances that
it will slip into its untrustworthy mode: r1 is the chance it will be in untrust-
worthy mode with the initial message, and r2 is the chance it will slip into
untrustworthy mode after the first message, given that it was in trustworthy
mode then.

Suppose the messages received are E1 and E2. and suppose these messages
are consistent with each other. Then there is a chance (1−r1)(1−r2) that the
message “E1 and E2” is reliable, a chance (1 − r1)r2 that the message “E1”
alone is reliable, and a chance r1 that neither of the messages is reliable. If
we set

p1 = (1− r1)(1− r2), A1 = E1&E2,

p2 = (1− r1)r2, A2 = E1,

p3 = r1, A3 = Θ,

then we are in the setting of our general story: there is a chance pi that the
messages mean Ai.

Notice that A1, A2, and A3 are “nested”: A1 implies A2, and A2 implies A3.
In general, we call a belief function with nested focal elements a consonant
support function. It is natural to use consonant support functions in cases
where our evidence consists of an argument with several steps; each step leads
to a more specific conclusion but involves a new chance of error.
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(iii) A Randomly Coded Message. Suppose someone chooses a code at
random from a list of codes, uses the chosen code to encode a message, and
then sends us the results. We know the list of codes and the chance of each
code being chosen—say the list is o1,. . . , on, and the chance of oi being chosen
is pi. We decode the message using each of the codes and we find that this
always produces an intelligible message. Let Ai denote the message we get
when we decode using oi. Then we have the ingredients for a belief function:
a message that has the chance pi of meaning Ai.

Since the randomly coded message is more abstract than the sometimes
reliable truth machine, it lends itself less readily to comparison with real
evidence. But it provides a readily understandable canonical example for an
arbitrary belief function. (For other scales of canonical examples for belief
functions, see [11] and [28].)

Syntax for Belief Functions. Our task, when we assess evidence in the
language of belief functions, is to compare that evidence to examples where
the meaning of a message depends on chance and to single out from these
examples the one that best matches it in weight and significance. How do
we do this? In complicated problems we cannot simply look at our evi-
dence holistically and write down the best values for the m(A). The the-
ory of belief functions provides, therefore, a set of rules for constructing
complicated belief functions from more elementary judgments. These rules,
which ultimately derive from the traditional probability calculus, consti-
tute the syntax of the language of belief functions. They include rules
for combination, conditioning, extension, conditional embedding, and
discounting.

The most important of these rules is Dempster’s rule of combination. This
is a formal rule for combining a belief function constructed on the basis of one
item of evidence with a belief function constructed on the basis of another,
intuitively independent item of evidence so as to obtain a belief function rep-
resenting the total evidence. It permits us to break down the task of judgment
by decomposing the evidence.

Dempster’s rule is obtained by thinking of the chances that affect the
meaning or reliability of the messages provided by different sources of evi-
dence as independent. Consider, for example, two independent witnesses who
are compared to sometimes reliable truth machines with reliabilities s1 and
s2 respectively. If the chances affecting their testimonies are independent,
then there is a chance s1s2 that both will give trustworthy testimony, and
a chance s1 + s2 − s1s2 that at least one will. If both testify to the truth
of A, then we can take s1 + s2 − s1s2 as our degree of belief in A. If,
on the other hand, the first witness testifies for A and the second testifies
against A, then we know that not both witnesses are trustworthy, and so
we consider the conditional chance that the first witness is trustworthy given
that not both are: s1(1 − s2)/(1 − s1s2), and we take this as our degree
of belief in A. For further information on the rules for belief functions, see
Shafer [19, 22].
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3 Bayesian Design

We have already distinguished two kinds of Bayesian designs: total-evidence
designs, in which all one’s probability judgments are based on the total evi-
dence, and conditioning designs, in which some of the evidence is taken into
account by conditioning. In this Sect. we will study these broad categories
and consider some other possibilities for Bayesian design.

3.1 Total-Evidence Designs

There are many kinds of probability judgments a total-evidence design might
use, for there are many mathematical conditions that can help determine
a probability distribution. We can specify quantities such as probabilities,
conditional probabilities and expectations, and we can impose conditions such
as independence, exchangeability, and partial exchangeability. Spetzler and
Stael von Holstein [25], Alpert and Raiffa [1], and Goldstein [8] discuss total-
evidence designs for the construction of probability distributions for unknown
quantities. Here we discuss total-evidence designs for a few simple problems.

Two Total-Evidence Designs for the Free-Style Race. The Bayesian design
for the free-style race suggested by our discussion in Sect. 1.2 above is an exam-
ple of a total-evidence design based on a causal model. This design involves
six possibilities:

A1 = Curt maintains the pace and wins.
A2 = Curt maintains the pace but loses.
A3 = Curt soon slows down but still wins.
A4 = Curt soon slows down and loses.
A5 = Curt collapses at the end but still wins.
A6 = Curt collapses at the end and loses.

The person who made the analysis (the story was reconstructed from actual
experience) was primarily interested in the proposition

A = {A1 or A3 or A5} = Curt wins,

but her insight into the matter was based on her understanding of the causal
structure of the swim race. In order to make the probability judgment P (A),
she first made the judgments P (Bi) and P (A | Bi), where

B1 = {A1 or A2} = Curt maintains his pace,
B2 = {A3 or A4} = Curt soon slows down,
B3 = {A5 or A6} = Curt collapses near the end,

and she then calculated P (A) using the rule of total probability—in this case,
the formula
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P (A) = P (B1)P (A | B1) + P (B2)P (A | B2) + P (B3)P (A | B3). (4)

She did this qualitatively at the time, but she offers, in retrospect, the quan-
titative judgments indicated in Table 1. These numbers yield P (A) = .87
by (4).

This example brings out the fact that the value of a design depends on the
experience and understanding of the person carrying out the mental exper-
iment. For someone who lacked our analyst’s experience in swimming and
her familiarity with Curt Langley’s record, the design (4) would be worthless.
Such a person might find some other Bayesian design useful, or he/she might
find all Bayesian designs difficult to apply.

Though it is correct to call the design we have just studied a total-evidence
design, there is a sense in which its effectiveness does depend on the fact that
it allows us to decompose our evidence. The question of what the next event
in a causal sequence is likely to be is often relatively easy to answer precisely
because only a small part of our evidence bears on it. When we try to decide
whether Curt will still win if he slows down, i.e., when we assess P (A | B2)—
we are able to leave aside our evidence about Curt and focus on how likely
Cowan is to maintain his own pace.

Here is another total-evidence design for the free-style race, one which
combines the causal model with a more explicit judgment that Cowan’s abil-
ity is independent of Curt’s behavior and ability. We assess probabilities for
whether Curt will (a) maintain his pace, (b) slow down, but less than 3%,
(c) slow down more than 3%, or (d) collapse. (Whether Curt slows down
3% is significant because this is how much he would have to slow down for
Cowan to catch him without speeding up.) We assess probabilities for whether
Cowan (a) can speed up significantly, (b) can only maintain his pace, (c) can-
not maintain his pace. We judge that these two questions are independent.
And finally, we assess the probability that Curt will win under each of the
4× 3 = 12 hypotheses about what Curt will do and what Cowan can do.

Table 2 shows the results of carrying out this design. The numbers in
the vertical margin are our probability judgments about Curt, those in the
horizontal margin are our probability judgments about Cowan, and those in
the cells are our assessments of the conditional probability that Curt will win.
These numbers lead to an overall probability of (.85× .10× .5) + (.85× .70×
1.0) + · · · ≈ .88 that Curt will win.

Our judgments about Cowan are based on our general knowledge about
swimmers in the league. The numbers .10, .70, and .20 reflect our impression
that perhaps 20% of these swimmers are forced to slow down in the second

Table 1. Component judgments for the first total-evidence design

P (B1) = .8 P (A | B1) = .95
P (B2) = .15 P (A | B2) = .5
P (B3) = .05 P (A | B3) = .7
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Table 2. Component judgments for the second total-evidence design

Cowan

Can speed up Can only main- Cannot main-
significantly tain pace tain pace
.10 .70 .20

Curt
Maintains pace .85 0.5 1.0 1.0
Slows less than 3% .03 0.2 1.0 1.0
Slows 3% or more .07 0.0 0.0 0.5
Collapses .05 0.2 0.7 0.8

half of a 1650-yard race and that only 10% would have the reserves of energy
needed to speed up. We are, in effect, thinking of Cowan as having been chosen
at random from this population. We are also judging that Curt’s training and
strategy are independent of this random choice. Curt’s training has probably
been influenced mainly by the prospect of the championships. We doubt that
Cowan’s ability and personality are well enough known to Curt to have caused
him to choose a fast start as a strategy in this particular race.

When we compare the design and analysis of Table 2 with the design we
carried out earlier, we see that we have profited from the new design’s focus
on our evidence about Cowan. We feel that the force and significance of this
evidence is now more clearly defined for us. On the other hand, we are less
comfortable with the conditional probability judgments in the cells of Table 2;
some of these seem to be pure speculation rather than assessments of evidence.

Total-Evidence Designs Based on Frequency Semantics. In the two designs
we have just considered the breakdown into probabilities and conditional prob-
abilities was partly determined by a causal model. In designs that depend more
heavily on frequency semantics, this breakdown depends more on the way our
knowledge of past instances is organized.

Consider, for example, the problem of deciding what is wrong when an
automobile fails to start. If a mechanic were asked to consider the possible
causes for this failure, he might first list the major systems that could be at
fault (fuel system, ignition system, etc.), and then list more specific possible
defects within each system. This would result in a “fault tree” that could
be used to construct probabilities. The steps in the tree would not have a
causal interpretation, but the tree would correspond, presumably, to the way
the mechanic’s memory of the frequencies of similar problems is organized.
Fischhoff, Slovic, and Lichtenstein [7] have studied the problem of designing
fault trees so as to make them as effective and unbiased as possible.

Here is another simple example based on an anecdote reported by Kah-
neman and Tversky [10]. An expert undertakes to estimate how long it will
take to complete a certain project. He does this by comparing the project
to similar past projects. And he organizes his effort to remember relevant
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information about these past projects into two steps: First he asks how often
such projects were completed, and then he asks how long the ones that were
completed tended to take. If he focuses on a particular probability judgment—
“the probability that our project will be finished within 7 years” say—then he
asks first how frequently such projects are completed and then how frequently
projects that are completed take less than 7 years.

Why does the expert use this two-step design? Presumably because it
facilitates his mental sampling of past instances. It is easier for the expert to
thoroughly sample past projects he has been familiar with if he limits himself
to asking as he goes only whether they were completed. He can then come back
to the completed projects and attack the more difficult task of remembering
how long they took.

The emphasis in this example is on personal memory. The lesson of the
example applies, however, even when we are aided by written or electronic
records. In any case, the excellence of a design depends in part on how the
information accessible to us is organized.

3.2 Conditioning Designs

Bayesian conditioning designs can be divided into two classes: observational
designs and partitioning designs. In observational designs, the evidence to be
taken into account by conditioning is deliberately obtained after probabilities
are constructed. In partitioning designs, we begin our process of probability
judgment with all our evidence in hand, but we partition this evidence into
“old evidence” and “new evidence,” assess probabilities on the basis of the
old evidence alone; and then condition on the new evidence.

It should be stressed that a conditioning design always involves two steps:
constructing a probability distribution and conditioning it. The name “condi-
tioning design” focuses our attention on the second step, but the first is more
difficult. An essential part of any conditioning design is a subsidiary design
specifying how the distribution to be conditioned is to be constructed. This
subsidiary design may well be a total-evidence design.

Likelihood-Based Conditioning Designs. Bayesian authors often emphasize
the use of Bayes’s theorem. Bayes’s theorem, we recall, says that if B1, ..., Bn
are incompatible propositions, one of which must be true, then

P (Bi | A) =
P (Bi)P (A | Bi)
n∑
j=i

P (Bj)P (A | Bj)
. (5)

If A represents evidence we want to take into account, and if we are able to
make the probability judgments on the right hand side of (5) while leaving
this evidence out of account, then we can use (5) to calculate a probability
for Bi.

When we use Bayes’s theorem in this simple way, we are carrying out a
conditioning design. Leaving aside the “new evidence” A, we use the “old
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evidence” to make probability judgments P (Bi) and P (A | Bi). Making these
judgments amounts to constructing a probability distribution. We then condi-
tion this distribution on A. Formula (5) is simply a convenient way to calculate
the resulting conditional probability of Bi.

This is a particular kind of conditioning design. The subsidiary design that
we are using to construct the probability distribution to be conditioned is a
total-evidence design that just happens to focus on the probabilities P (Bi) and
P (A | Bi), where A is the new evidence and the Bi are the propositions whose
final probabilities interest us. Since the conditional probabilities P (A | Bi) are
called “likelihoods,” we may call this kind of conditioning design a likelihood-
based conditioning design.

Both observational and partitioning designs may be likelihood-based.
Bayesian theory has traditionally emphasized likelihood-based conditioning
designs, and they will also be emphasized in this section. At the end of the
section, however, we will give an example of a conditioning design that is not
likelihood-based.

A Likelihood-Based Observational Design: The Search for Scorpion. The
successful search for the remains of the submarine Scorpion, as reported by
Richardson and Stone [17], provides an excellent sample of a likelihood-based
observational design. The search was conducted from June to October, 1968,
in an area about 20 miles square located 400 miles southwest of the Azores.
The submarine was found on October 28.

Naval experts began their probability calculations by using a causal model
to construct a probability distribution for the location of the lost subma-
rine. They developed nine scenarios for the events attending the disaster and
assigned probabilities to those scenarios. They then combined these probabil-
ities with conditional probabilities representing uncertainties in the subma-
rine’s course, speed, and initial position to produce a probability distribution
for its final location on the ocean floor. They did not attempt to construct
this probability distribution for the final location in continuous form. Instead,
they imposed a grid over the search area with cells about one square mile
in size and used their probabilities and conditional probabilities in a Monte
Carlo simulation to estimate the probability of Scorpion being in each of
these approximately 400 cells. They then used these probabilities to plan the
search: The cells with the greatest probability of containing Scorpion were to
be searched first.

Searching a cell meant towing through the cell near the ocean bottom
a platform upon which were mounted cameras, magnetometers, and sonars.
The naval experts assessed the probability that this equipment would detect
Scorpion if Scorpion were in the cell searched. So when they searched a cell
and conditioned on the fact that Scorpion was not found there, they were, in
effect, using a likelihood-based conditioning design to assess new probabilities
for its location.

This example is typical of likelihood-based observational designs. The
probabilities required by the design were subjective judgments, not known
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objective probabilities. (The assessed likelihood of detecting Scorpion when
searching the cell where it was located turned out, for example, to be over
optimistic.) But these judgments were made before the observation on which
the experts conditioned was made. In fact, these judgments were the basis
of deciding which of several possible observations to make, i.e., which cell to
search.

A Likelihood-Based Partitioning Design: The Hominids of East Turkana.
Let us now turn back to Walker and Leakey’s discussion of the number of
species of hominids in East Turkana one and a half million years ago. They
begin, we recall, by taking for granted a classification of the hominids into
three types: the “robust” type I, the “gracile” type II, and Homo erectus,
type III. They were interested in five hypotheses as to how many distinct
species these three types represent:

B1 = One species.
B2 = Two species, one composed of I (male) and II (female).
B3 = Two species, one composed of III (male) and II (female).
B4 = Two species, one composed of I and III.
B5 = Three species.

We summarized the evidence they brought to bear on the problem under five
headings:

(i). A theoretical argument for B1.
(ii). Skepticism about such disparate types as I and III being variants of the

same species.
(iii). Skepticism about the degree of sexual dimorphism postulated by B2

and B3.
(iv). Absence of type I specimens among the type III specimens in the Far

East.
(v). Absence of type II specimens among the type III specimens in the Far

East.

How might we assess this evidence in the Bayesian language?
Partitioning design seems to hold more promise in this problem than total-

evidence design. Except for items (i) and possibly (ii), the evidence cannot be
interpreted as an understanding of causes that generate the truth, and hence
there is little prospect for a total-evidence design using propensity semantics.
We also lack the experience with similar problems that would be required for
a successful total-evidence design using frequency semantics. And since it is
the diversity of the evidence that complicates probability judgments in the
problem, a design that decomposes the evidence seems attractive.

Which of the items of evidence shall we classify as old evidence and
which as new? The obvious move is to classify (i) as old evidence and to
treat (ii)–(v), taken together, as our new evidence A. This means we will
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need to assess probabilities, P (B1), ..., P (B5) and conditional probabilities,
P (A | B1), ..., P (A | B5) and calculate P (Bi | A), by (5). The apparent com-
plexity of (5) is lessened if we divide it by the corresponding expression for
Bj , obtaining

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

P (A | Bi)
P (A | Bj)

(6)

or
P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

L(A | Bi : Bj), (7)

where L(A | Bi : Bj) = P (A | Bi)/P (A | Bj) is called the likelihood ratio
favoring Bi over Bj .

Expression (7) represents a real simplification of the design. Since the
probabilities P (B1 | A), ..., P (B5 | A) must add to one, they are completely
determined by their ratios, P (Bi | A)/P (Bj | A). Therefore, (7) tells us that
it is not necessary to assess the likelihoods, P (A | Bi) and P (A | Bj). It is
sufficient to assess their ratios, L(A | Bi : Bj) [6].

One further elaboration of this design seems useful. Our new evidence A
can be thought of as a conjunction: A = A1 and A2, where A1 is the event
that types I, II and III should be so disparate (items of evidence (ii) and (iii))
and A2 is the event that specimens of types I and II should not be found along
with the type III specimens in the Far East (items of evidence (iv) and (v)).
The two events A1 and A2 seem to involve independent uncertainties, and
this can be expressed in Bayesian terms by saying that they are independent
events conditional on any one of the five hypotheses:

P (A | Bi) = P (A1 | Bi)P (A2 | Bi).

Substituting this into (6), we obtain

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

P (A1 | Bi)P (A2 | Bi)
P (A1 | Bj)P (A2 | Bj)

or

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

L(A1 | Bi : Bj)L(A2 | Bi : Bj).

We are not, of course, qualified to make the probability judgments called
for by this design; it is a design for experts like Walker and Leakey, not a
design for laymen. (If we ourselves had to make probability judgments about
the validity of Walker and Leakey’s opinions, we would need a design that
analyzes our own evidence. This consists of their article itself, which provides
internal evidence as to the integrity and the cogency of their thought, our
knowledge of the standards of Scientific American, etc.) It will be instructive,
nonetheless, to put ourselves in the shoes of Walker and Leakey and to carry
out the design on the basis of the qualitative judgments they make in their
article. As we shall see, there are several difficulties.
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The first difficulty is in determining the prior probabilities P (Bi) on the
basis of the evidence (i) alone. This evidence is an argument for B1 and
so evaluation of it can justify a probability P (B1), say P (B1) = .75. But
how do we divide the remaining .25 among the other Bi? This is a typical
problem in Bayesian design. In the absence of relevant evidence, we are forced
to depend on symmetries, even though the available symmetries may seem
artificial and conflicting. In this case, one symmetry suggests equal division
among B2, B3, B4, B5 while another symmetry suggest equal division between
the hypothesis of two species (B2, B3, B4) and the hypothesis of three species
(B5). The P (Bi) given in Table 3 represent a compromise.

Now consider A1, the argument that the different types must represent
three distinct species because of their diversity. Our design asks us, in effect,
to assess how much less likely this diversity would be under the one-species
hypothesis and under the various two-species hypotheses. Answers to these
questions are given in the column of Table 3 labeled “L(A1 | Bi : B5).” These
numbers reflect the great implausibility of the intraspecies diversity postulated
by B1 and B4, the marginal acceptability of the degree of sexual dimorphism
postulated by B2, and the implausibility, especially in the putative ancestor
of Homo sapiens, of the sexual dimorphism postulated by B3. Notice how
fortunate it is that we are required to assess only the likelihood ratios, L(A1 |
Bi : B5) = P (A1 | Bi)/P (A1 | B5) and not, say, the absolute likelihood
P (A1 | B5). We can think about how much less likely the observed disparity
among the three groups would be if they represented fewer than three species,
but we would be totally at sea if asked to assess the unconditional chance of
this degree of disparity among three extinct hominid species.

Finally, consider A2, the absence of specimens of type I or II among the
abundant specimens of type III in the Far East. This absence would seem
much less likely if I or II were forms of the same species as III than if they
were not, say 100 times less likely. This is the figure used in Table 3. Notice
again that we are spared the well-nigh meaningless task of assessing absolute
likelihoods.

As the last column of Table 3 shows, the total evidence gives a fairly high
degree of support to B5, the hypothesis that there are three distinct species.
This is Walker and Leakey’s conclusion.

How good an analysis is this? There seems to be two problems with it.
First, we lack good grounds for some of the prior probability judgments.

Table 3. Component judgments for the likelihood-based partitioning design

P (Bj) L(A1 | Bj : B5) L(A2 | Bj : B5) P (Bj | A)

B1 .70 .01 .01 .00060
B2 .05 .50 1.00 .19983
B3 .05 .05 .01 .00020
B4 .05 .01 .01 .00004
B5 .10 1.00 1.00 .79933
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Second, the interpretation of the likelihoods seems strained. Are we really
judging that the observed difference between I and III is 100 times more likely
if they are separate species than if they are variants of the same species? Or
are we getting this measure of the strength of this argument for separate
species in some other way?

We should remark that it is a general feature of likelihood-based parti-
tioning designs that only likelihood ratios need be assessed. In likelihood-
based observational designs, on the other hand, we do usually need to assess
absolute likelihoods. This is because in an observational design we must be
prepared to condition on any of the possible observations. If, for example,
the possible observations are A and not A, then we need to have in hand
both L(A | Bi : Bj) = P (A | Bi)/P (A | Bj) and L(not A | Bi : Bj) =
P (not A | Bi)/P (not A | Bj). Since P (A | Bi) + P (not A | Bi) = P (A |
Bj) + P (not A | Bj) = 1, these likelihood ratios fully determine the absolute
likelihoods P (A | Bi) and P (A | Bj).

The Choice of New Evidence. Traditionally, Bayesian statistical theory
has been concerned with what we have called likelihood-based observational
designs. This is because the theory has been based on the idea of a statistical
experiment. It is assumed that one knows in advance an “observation space”—
the set of possible outcomes of the experiment—and a “parameter space”—
the set of possible answers to certain questions of substantive interest. One
assesses in advance both prior probabilities for the parameters and likelihoods
for the observations.

Many statistical problems do conform to this picture. The search for Scor-
pion, discussed earlier, is one example. But Bayesians and other statisticians
have gradually extended their concerns from the realm of planned experi-
ments, where parameter and observation spaces are clearly defined before
observations are made, to the broader field of “data analysis.” In data anal-
ysis, the examination of data often precedes the framing of hypotheses and
“observations.” This means that the Bayesian data analyst will often use par-
titioning designs rather than genuine observational designs.

We believe that Bayesian statistical theory will better meet the needs of
statistical practice if it will go beyond observational designs and deal explic-
itly with partitioning designs. In particular, we need more discussion of prin-
ciples for the selection of evidence that is to be treated as new evidence.
In the example of the hominids, we treated certain arguments as new evi-
dence because we could find better grounds for probability judgment when
thinking of the likelihood of their arising than when thinking about them
as conditions affecting the likelihood of other events. In other cases, we may
single out evidence because its psychological salience can give it excessive
weight in total-evidence judgments. By putting such salient evidence in the
role of new evidence in a partitioning design, we gain an opportunity to make
probability judgments based on the other evidence alone. (Cf. [25], p. 346
and [14], Chap. 3.) We need more discussion of such principles, and more
examples.
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A Partitioning Design that is not Likelihood-Based. Here is a problem that
suggests a partitioning design that is not likelihood-based. Gracchus is accused
of murdering Maevius. Maevius’s death brought him a great and sorely needed
financial gain, but it appears that Maevius and Gracchus were good friends,
and our assessment of Gracchus’s character suggests only a slight possibility
that the prospect of gain would have been sufficient motive for him to murder
Maevius. On the other hand, some evidence has come to light to suggest that
beneath the apparent friendship Gracchus actually felt a simmering hatred for
Maevius, and Gracchus is known to be capable of violent behavior towards
people he feels have wronged him. The means to commit the murder is not at
issue: Gracchus or anyone else could have easily committed it. But we think
it very unlikely that anyone else had reason to kill Maevius.

Our partitioning design uses the fact of Maevius’s murder as the new
evidence. We consider the propositions:

H = Gracchus hated Maevius,
GI = Gracchus intended to kill Maevius,
SI = Someone else intended to kill Maevius,

GM = Gracchus murdered Maevius,
SM = Someone else murdered Maevius,
NM = No one murdered Maevius.

Using the old evidence alone, we make the following probability judgments:
P (H) = .2, P (GI | H) = .2, P (GI | not H) = .01;
P (SI) = .001, SI is independent of GI ;
P (GM |GI & SI) = .4, P (SM | GI & SI)= .4, P (NM |GI & SI) = .2;
P (GM |GI & not SI)= .8, P (NM |GI & not SI) = .2;
P (SM |SI & not GI)= .8, P (NM |SI & not GI) = .2;

P (NM | not GI & not SI) = 1.

Combining these judgments, we obtain

P (GI) = P (GI | H)P (H) + P (GI | not H)P (not H)
= (.2)(.2) + (.8)(.01) = .048

P (GM) = P (GM | not GI)P (not GI) + P (GM | GI & SI)P (GI)P (SI)
+ P (GM | GI & not SI)P (GI)P (not SI)

= (0)(.952) + (.4)(.048)(.001) + (.8)(.048)(.999) = .03838.

Similarly,
P (SM) = .00078 and P (NM) = .96084.

Finally we bring in the new evidence—the fact that Maevius was murdered.
We find a probability

P (GM | not NM) =
.03838

.03838 + .00078
= .98

that Gracchus did it.
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One interesting aspect of this example is the fact that the “new evidence”—
the fact that Maevius was murdered—is actually obtained before much of the
other evidence. Only after Maevius’s death would we have gathered the evi-
dence against Gracchus.

3.3 Other Bayesian Designs

What other Bayesian designs are possible in addition to total-evidence and
conditioning design?

A large class of possible designs is suggested by the following general idea.
Suppose one part of our evidence lends itself to a certain design d, while the
remainder of our evidence does not fit this design, but seems instead relevant
to some of the judgments specified by a different design d′. Then we might
first construct a distribution Po using d and considering only the first part of
the evidence, and then switch to d′, using the total evidence to make those
judgments for which the second part of the evidence is relevant and obtaining
the other judgments from Po.

An interesting special case occurs when the total evidence is used only
to construct probabilities p1, ..., pn for a set of mutually incompatible and
collectively exhaustive propositions A1, ..., An, and the final distribution P is
determined by setting P (Ai) = pi and P (B | Ai) = Po(B | Ai) for all B. Since
such designs were considered by Jeffrey [9], we may call them Jeffrey designs.

Here is an example of a Jeffrey design. Gracchus is accused of murdering
Maevius and the evidence against him is the same as in the preceding example,
except that it is not certain that Maevius has been murdered. Perhaps Maevius
has disappeared after having been seen walking along a sea cliff. We partition
our evidence into two bodies of evidence—the evidence that was used in the
probability analysis above, and the other evidence that suggests Maevius may
have been murdered. We use the first body of evidence to make the analysis
of the preceding section, obtaining the probabilities obtained there: a proba-
bility of .03838 that Gracchus murdered Maevius, a probability of .00078 that
someone else did, and a probability of .96084 that no one did. We label this
probability distribution Po. Then we use the total evidence to assess directly
whether we think Maevius has been murdered or not. Say we assess the proba-
bility of Maevius’s having been murdered at .95. We then obtain a conditional
probability from Po : Po(Graccus did it|Maevius was murdered) ≈ .98. The
final result is a probability of .95 × .98 ≈ .93 for the event that Gracchus
murdered Maevius. For further examples of Jeffrey designs, see [21] and [4].

4 Belief-Function Design

Belief-function design differs from Bayesian design in that it puts more explicit
emphasis on the decomposition of evidence. As we have seen, total-evidence
designs are basic to the Bayesian language. (Even conditioning and Jeffrey
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designs must have subsidiary designs for the construction of initial distribu-
tions, and these subsidiary designs are usually total-evidence designs.) These
total-evidence designs break down the task of judgment by asking us to answer
several different questions. It is a contingent matter whether different items
of evidence bear on these different questions, though this seems to be the case
with the most effective total-evidence designs. The belief-function language,
on the other hand, since it directly models the meaning and reliability of evi-
dence, breaks down the task of judgment by considering different items of
evidence. It is a contingent matter whether these different items of evidence
bear on relatively separate and restricted aspects of the questions that interest
us, but again, as we shall see, this seems to be the case with the most effective
belief-function designs.

Here we shall explore the possibilities for belief-function design for Curt’s
swim race and Walker and Leakey’s hominids. For further examples of belief-
function design, see [20, 21, 23, 22].

4.1 The Free-Style Race

The second of the two Bayesian total-evidence designs that we gave for the
free-style race (Sect. 3.1) was based on independent judgments about Curt
and Cowan. We gave Curt an 85% chance of maintaining his pace, a 3%
chance of slowing less than 3%, a 7% chance of slowing more than 3%, and a
5% chance of collapsing. And we gave Cowan a 10% chance of being able to
speed up, a 70% chance of only being able to maintain his pace, and a 20%
chance of being unable to maintain his pace. Since we were using the Bayesian
language, we compared our evidence to knowledge that the evolution of the
race actually was governed by these chances. It is equally convincing, however,
to interpret these numbers within the language of belief functions. We compare
our knowledge about Curt to a message that has an 85% chance of meaning
that he will maintain his pace, etc., and we compare our knowledge about
Cowan to a message that has a 70% chance of meaning that he can only
maintain his pace, etc.

Formally, we have a belief function Bel1 that assigns degrees of belief .85,
.03, .07, and .05 to the four hypotheses about Curt, and a second belief func-
tion Bel2 that assigns degrees of belief .10, .70, and .20 to the three hypotheses
about Cowan. Judging that our evidence about Curt is independent of our
evidence about Cowan, we combine these by Dempster’s rule. If no further
evidence is added to the analysis, then our resulting degree of belief that Curt
will win will be our degree of belief that Curt will maintain his pace or slow
less than 3% while Cowan is unable to speed up: (.85+ .03)(.70+ .20) = .792.
And our degree of belief that Cowan will win will be our degree of belief that
Curt will slow 3% or more and Cowan will be able to at least maintain his
pace: (.07)(.10 + .70) = .056.

These conclusions are weaker than the conclusions of the Bayesian analysis.
This is principally due to the fact that we are not claiming to have evidence
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about what will happen in the cases where our descriptions of Curt’s and
Cowan’s behavior do not determine the outcome of the race. If we did feel we
had such evidence, it could be introduced into the belief-function analysis.

We can also relax the additivity of the degrees of belief about Curt and
Cowan that go into the belief-function analysis. Suppose, for example, that
we feel our evidence about Curt justifies only an 85% degree of belief that he
will maintain his pace, but we do not feel we have any positive reason to think
he will slow down or collapse. In this case, we can replace the additive degrees
of belief .85, .03, .07, and .05 with a simple support function that assigns only
degree of belief .85 to the proposition that Curt will maintain his pace. If we
retain the additive degrees of belief .10, .70, and .20 for Cowan’s behavior,
this leads to a degree of belief (.85)(.70 + .20) = .765 that Curt will win and
a degree of belief zero that Cowan will win.

As this example illustrates, a belief-function design can be based on a
causal structure like those used in Bayesian total-evidence designs. The belief-
function design must, however, go beyond this causal structure to an explicit
specification of the evidence that bears on its different parts.

4.2 The Hominids of East Turkana

Recall that Walker and Leakey considered five hypotheses:

B1 = One species.
B2 = Two species, one composed of I (male) and II (female).
B3 = Two species, one composed of III (male) and II (female).
B4 = Two species, one composed of I and III.
B5 = Three species.

In our Bayesian analysis in Sect. 3.2, we partitioned the evidence into three
intuitively independent arguments:

1. A theoretical argument for B1.
2. An argument that the three types are too diverse not to be distinct species.

This argument bears most strongly against B1 and B4, but also carries
considerable weight against B3 and some weight against B2.

3. The fact that neither I nor II specimens have been found among the III
specimens in the Far East. This provides evidence against hypotheses B1,
B3, and B4.

Let us represent each of these arguments by a belief function. Making roughly
the same judgments as in the Bayesian analysis, we have

1. Bel1, with m1(B1) = .75 and m1(Θ) = .25,
2. Bel2, with m2(B5) = .5, m2(B2 or B5) = .45, m2(B2 or B3 or B4) = .04,

and m2(Θ) = .01, and
3. Bel3, with m3(B2 or B5) = .99 and m3(Θ) = .01.
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Combining these by Dempster’s rule, we obtain a belief function Bel with
m(B5) = .4998, m(B2 or B5) = .4994, m(B2 or B4 or B5) = .0004, m(B1) =
.0003, and m(Θ) = .0001. This belief function gives fair support to B5 and
overwhelming support to B2 or B5: Bel(B5) = .4998 and Bel(B2 or B5) =
.9992.

These belief-function results can be compared to the Bayesian results of
Sect. 3.2, where we obtained P (B5) = .7993 and P (B2 or B5) = .9992. The
different results for B5 can be attributed to the different treatments of the first
item of evidence, the argument against coexistence of hominid species. In the
belief-function analysis, we treated this argument simply by giving B1 a 75%
degree of support. In the Bayesian analysis, we had to go farther and divide the
remaining 25% among the other four hypotheses. The belief-function analysis,
while it reaches basically the same conclusion as the Bayesian argument, can
be regarded as a stronger argument, since it is based on slightly more modest
assumptions.

5 The Nature of Probability Judgment

We have suggested that probability judgment is a kind of mental experiment.
Sometimes it is like a statistician’s thought experiment, as when we search,
in our mind or on a bookshelf, for examples on which to base a frequency
judgment. Sometimes it is more like a physicist’s thought experiment, as when
we try to trace the consequences of an imagined situation.

Probability judgment is a process of construction rather than elicitation.
People may begin a task of probability judgment with some beliefs already for-
mulated. But the process of judgment, when successful, gives greater content
and structure to these beliefs and tends to render initial beliefs obsolete. It is
useful, in this respect, to draw an analogy between probability and affective
notions such as love and loyalty. A declaration of love is not simply a report
on a person’s emotions. It is also part of a process whereby an intellectual and
emotional commitment is created; so too with probability.

A probability judgment depends not just on the evidence on which it is
based, but also on the process of exploring that evidence. The act of design-
ing a probability analysis usually involves reflection about what evidence is
available and a sharpening of our definition of that evidence. And the imple-
mentation of a design involves many contingencies. The probability judgments
we make may depend on just what examples we sampled from our memory
or other records, or just what details we happen to focus on as we examine
the possibility of various scenarios [26].

It may be helpful to point out that we do not use the word “evidence” as
many philosophers do—to refer to a proposition in a formal language. Instead,
we use it in a way that is much closer to ordinary English usage. We refer to
“our evidence about Cowan’s abilities,” to “our memory as to how frequently
similar projects are completed,” or to “the argument that distinct hominid
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species cannot coexist.” The references are, as it were, ostensive definitions of
bodies of evidence. They point to the evidence in question without translating
it into statements of fact in some language. This seems appropriate, for in all
these cases the evidence involves arguments and claims that would fall short
of being accepted as statements of fact.

Evidence, as we use the word, is the raw material from which judgments,
both of probability and of fact, are made. Evidence can be distinguished in
this respect from information. Information can be thought of as answers to
questions already asked, and hence we can speak of the quantity of informa-
tion, which is measured by the number of these questions that are answered.
Evidence, in contrast, refers to a potential for answering questions. We can
speak of the weight of evidence as it bears on a particular question, but it
does not seem useful to speak of the quantity of evidence.

Though we have directed attention to the notion of mental experimen-
tation, we want also to emphasize that when an individual undertakes to
make a probability judgment that individual is not necessarily limited to the
resources of memory and imagination. He or she may also use paper, pencils,
books, files, and computers. And an individual need not necessarily limit his
or her sampling experiments to haphazard search of memory and personal
bookshelves. The individual may wish to extend sampling to a large-scale
survey, conducted with the aid of randomization techniques.

There is sometimes a tendency to define human probability judgment
narrowly—to focus on judgments people make without external aids. But
it may not be sensible to try to draw a line between internal and external
resources. Psychologists who wish to offer a comprehensible analysis of human
judgment should, as Ward Edwards [5] has argued, take into account the
fact that humans are tool-using creatures. Moreover, statisticians and other
practical users of probability need to recognize the continuity between appar-
ently subjective judgments and supposedly objective statistical techniques.
The concept of design that we have developed in this paper is meant to apply
both to probability analyses that use sophisticated technical aids and to those
that are made wholly in our heads. We believe that the selection of a good
design for a particular question is a researchable problem with both technical
and judgmental aspects. The design and analysis of mental experiments for
probability judgment therefore represents a challenge to both statisticians and
psychologists.
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