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Entropy and Specificity in a Mathematical
Theory of Evidence

Ronald R. Yager

Abstract. We review Shafer’s theory of evidence. We then introduce the concepts
of entropy and specificity in the framework of Shafer’s theory. These become com-
plementary aspects in the indication of the quality of evidence.

Key words: Entropy, Fuzzy sets, Specificity, Belief, Plausibility.

1 Introduction

In [1] Shafer presents a comprehensive theory of evidence. The problem of
concern to Shafer is the location of some special element in a set X , called
the frame of discernment or base set. In Shafer’s framework he is provided
with evidence as to the identity of this special element in terms of a mapping
from the power set of X (set of all subsets of X) into the unit interval. This
mapping which Shafer calls the basic assignment, associates with each subset
A of X , the degree of belief that the special element is located in the set A
with the understanding that he can’t make any more precise statement with
regards to the location of the element.

A significant aspect of Shafer’s structure is the ability to represent in this
common framework various different types of uncertainty, i.e. probabilistic
uncertainty and possibilistic uncertainty. Our purpose here is to take some
concepts developed in these individual frameworks and generalize them to
the comprehensive framework of Shafer. In particular we shall generalize the
idea of entropy from the probabilistic framework and specificity from the
possibilistic framework. We shall find that these two measures of uncertainty
provided complementary measures of the quality of a piece of evidence.

2 Shafer’s Theory of Evidence

In Ref. 1 Shafer presents a comprehensive theory of evidence based on the
concept of belief. The theory begins with the idea of using a number between
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zero and one to indicate the degree of support a body of evidence provides
for a proposition. The fundamental concept in Shafer’s theory is the basic
assignment.1

Definition 1. Assume m is a set mapping from subsets of the finite set X
into the unit interval

m : 2X → [0, 1]

such that

1) m(∅) = 0
2)

∑
A⊂X

m(A) = 1

m is then called a basic assignment.

The interpretation of m consistent with Shafer’s theory is that there exists
in the base set X some special unknown element u and m(A) is the degree
of belief that this element lies in the set A and nothing smaller than A. In
order to help in the understanding of this concept I quote several attempts at
clarification from Shafer [1].

“m(A) is the belief that the smallest set that the outcome is in is A.”
“m(A) measures the total portion of belief that is confined to A yet none

of which is confined to any proper subset of A.”
“m(A) measures the belief mass that is confined to A but can move to

every point of A.”2

Note — The formulation of m leads us to the following observations:

1) m(X) is not necessarily one.
2) A ⊂ B does not necessarily imply m(A) � m(B).
3) It allows that belief not be committed to either A or not A.

Having introduced the idea of the basic assignment Shafer next introduces
the concept of a belief function.

Definition 2. Given a basic assignment m we can define a belief function

Bel : 2X → [0, 1]

such that for any A ⊂ X

Bel(A) =
∑

B⊆A
m(B).

1 I have chosen to use the term basic assignment where Shafer uses the term basic
probability assignment. I feel that the use of the word probability conjures up
certain preconceived notions in the reader which I want to avoid.

2 If the special element u is the age of some person, then m(A) may measure the
degree to which we believe that u is contained in the set young, where A = young
is defined as a subset of X.
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Bel(A) measures the belief that the special element is a member of A. Whereas
m(A) measures the amount of belief that one commits exactly to A alone,
Bel(A) measures the total belief that the special element is in A.

A subset A of X is called a focal element of a belief function Bel
if m(A) > 0.

Shafer shows that Bel(∅) = 0, Bel(X) = 1 and that for every collection
A1, A2, . . . , An of subsets of X

Bel(A1 ∪A2 . . . ∪An)

�
∑

I ⊂ {1, 2, . . . , n}
I 	= ∅

(−1)|I|+1Bel

(
⋂

i∈I
Ai

)
,

where |I| denotes the cardinality of the set I.
Shafer also shows that a belief function uniquely determines an underlying

basic assignment,
m(A) =

∑

B⊂A
(−1)|A−B|Bel(B),

|A−B| indicates the cardinality of the elements in A not in B.
Shafer next defines the plausibility associated with A.

Definition 3. Given a belief function Bel : 2X → [0, 1] we define a plausibility
function Pl as,

Pl : 2X → [0, 1]

such that for any A ⊂ X

Pl(A) = 1− Bel(Ā).

Note — The following observations can be made with respect to P1:

1) Pl(A) measures the degree to which one fails to doubt A, where
dou (A) = Bel(Ā)

2) Pl(A) measures the total belief mass that can move into A, whereas Bel(A)
measures the total belief mass that is constrained to A.

3) Pl(A) =
∑
B∩A �=∅

m(B)
4) Bel(A) � Pl(A)

An important aspect of Shafer’s theory involves the combination of belief
functions to form a resulting belief function, that is, the combining of various
sources of evidence. Shafer accomplishes this by use of Dempster’s Rule of
Combination. Zadeh [2] has raised some questions as to the appropriateness
of this rule. Prade [3] has shown the relationship between Dempster’s rule
and the intersection of fuzzy sets. Smets [4] has used Shafer belief functions
in medical diagnosis. Nguyen [5] has discussed the relationship between belief
functions and random sets.
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While we shall not in this paper be concerned with the question of the
combination of evidence, we shall use a concept developed by Shafer in his
approach to combining evidence.

Definition 4. Assume Bel1 and Bel2 are two belief functions over 2X with
their associated basic assignments m1 and m2. The weight of conflict between
Bel1 and Bel2, denoted Con(Bel1,Bel2), is defined as

Con (Bel1,Bel2) = − ln(1− k)

where
k =

∑

i, j
Ai ∩Bj = ∅

m1(A1) ·m2(Bj).

The situation of no conflict occurs when k = 0 and hence Con(Bel1,Bel2) =
0. If Bel1 and Bel2 are flatly contradictory k = 1 and Con(Bel1,Bel2) = ∞.
Thus con(Bel1,Bel2) � 0 and increases with increasing conflict.

3 Types of Belief Functions

Shafer introduces various classes of belief functions. We shall discuss some of
these in the following.

Definition 5. A belief function over 2X is called a vacuous belief function if

Bel(X) = 1 and Bel(A) = 0 for A 	= X.

Note

1) If Bel is a vacuous belief function, then m(X) = 1 and m(A) = 0 for
A 	= X .

2) Vacuous belief functions are used in situations where there is no evidence.

Definition 6. A belief function is called a simple support function focused at
A if

Bel(B) =

⎧
⎪⎨

⎪⎩

0 if A 	⊂ B

1 if B = X for 0 < s < 1
s if A ⊂ B,B 	= X.

Note If Bel is a simple support function focussed at A, then its basic
assignment function m is:

m(A) = Bel(A) = s

m(X) = 1− Bel(A) = 1− s

m(B) = 0 for all others.

The simple support function focused at A is used to indicate the situation
that we think the special outcome is in A with belief s.
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We shall call the simple support function focused at A with m(A) = 1 the
certain support function focused at A.

Definition 7. A belief function on 2X is said to be a Bayesian belief func-
tion if

Pl(A) = Bel(A) for all A ⊂ X.

Note The following are two equivalent formulations of a Bayesian belief
function.

I) Bel(∅) = 0
Bel(X) = 1
Bel(A ∪B) = Bel(A) + Bel(B), whenever A ∩B = ∅

II) Bel(A) + Bel(Ā) = 1

Theorem 1. If Bel is a Bayesian belief function, then the basic assignment
m is such that m takes non-zero values for only subsets of X that are single-
tons. Hence ∑

x∈X
m({x}) = 1

The Bayesian structure implies that none of the evidence mass has freedom
of movement.

The Bayesian structure forms the prototype in Shafer’s theory for proba-
bilistic uncertainty in which the basic assignment function m plays the role of
the probability distribution function p. That is, every probability distribution
p : 2X → [0, 1] can be associated with a Bayesian belief function in which
p(x) = m({x}).

We note that a Bayesian structure is fully defined by a point function of
X equal to m({x}).

Since
Bel(A) =

∑

B⊆A
m(B) =

∑

x∈A
m ({x}) ,

and since Pl(A) = Bel(A) for Bayesian belief structure,

Pl(A) =
∑

x∈A
m ({x}) .

Furthermore,
Bel ({x}) = Pl ({x}) = m ({x}) .

Hence
Bel(A) =

∑

x∈A
Bel ({x}) = Pl(A) =

∑

x∈A
Pl ({x}) .

Definition 8. A belief function Bel: 2X → [0, 1] is said to be consonant if

1) Bel(∅) = 0
2) Bel(X) = 1
3) Bel(A ∩B) = Min(Bel(A), Bel(B)) for all A, B ⊂ C
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Note — The following are two equivalent formulations of a consonant belief
function:

1) Pl(A ∪B) = Max(Pl(A), Pl(B))
2) Pl(A) = Maxx∈A[Pl({x})] for all A 	= ∅

Note — Every simple support function is consonant.
Note — If Bel is a consonant belief function, then for all A ⊂ X either

Bel(A) = 0 or Bel(Ā) = 0.
The characterization of a consonant belief function is expressed by the

following theorem (Shafer).

Theorem 2. A belief function is consonant if the focal elements of its basic
assignment function m are nested. That is, if there exists a family of subsets
of X, Ai, i = 1, 2, . . . , n, such that Ai ⊂ Aj for i < j and Σim(Ai) = 1.

Note — A consonant belief structure is completely determined by a point
function

f : X → [0, 1]

such that f(x) = Pl({x}). At least one element x ∈ X , has f(x) = 1.
This follows since for any A ⊂ X, Pl(A) = Maxx∈A[Pl(x)]. Hence Pl is
completely determined by Pl defined over the point set X . Since Bel(A) =
1 − Pl(Ā), Bel(A) is also uniquely determined. Since Bel(A) uniquely deter-
mines m we have completely defined the structure from this mapping.

This relationship can be made even clearer with the following construction
suggested by Prade [2].

Assume we have a consonant belief structure. We can always build a nested
sequence of sets

{x1} ⊂ {x1, x2} ⊂ {x1, x2, x3} ⊂ . . . ⊂ X,

indicating these sets as A1 ⊂ A2 ⊂ A3 . . . ⊂ An = X such that Σni=1m(Ai) =
1. Hence all the belief mass lies in this nested sequence. (Some of the elements
in the sequence may have zero basic assignment but any subset not in the
sequence definitely has zero basic assignment.)

Since

Pl(B) =
∑

B∩A �=∅

m(A),

Pl ({x}) =
∑

{x}∩A �=∅

m(A) =
∑

i
{x} ∩Ai�=∅

m(Ai) =
∑

i
such that
x ∈ Ai

m(Al).

Therefore

Pl ({x1}) = m (A1) +m (A2) + . . .m(An−1) +m(X)
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Pl ({x2}) = m (A2) + m (An−1) +m(X)

Pl ({xn}) = m (X)
...

...
...

Conversely

m(Ai) = Pl ({x})− Pl ({xi+1})
m(X) = Pl ({xn})

m(A) = 0 for all else.

The consonant belief structure forms the prototype for the possibilistic
type of uncertainty introduced by Zadeh [6] in which the plausibility measure
in Shafer’s theory plays the role of the possibility measure π in Zadeh’s theory.
Furthermore, since Bel(A) = 1 − Pl(Ā), the belief function is analagous to
Zadeh’s measure of certainty [6].

The representations of both these common types of uncertainty in a similar
format allows for a comparison of the two types of uncertainty. We see that
in a certain respect possibilistic and probabilistic (consonant and Bayesian)
uncertainty are opposite extremes. Whereas possibilistic uncertainty assigns
its beliefs massm to a nested sequence of sets, probabilistic uncertainty assigns
its belief mass to a collection of disjoint sets. There exists only one type of
belief structure which satisfies both structures.

Theorem 3. The certain support function focused at {x}, i.e., such that
m({x}) = 1 for some x ∈ X is the only belief function that is both a Bayesian
and a consonant belief function.

Note — This structure is a certainty structure in that we know that the
special element is x.

4 Entropy Like Measure

An important concept in the theory of probability is Shannon’s measure of
entropy for a probability distribution. This is a measure of the discordance
associated with a probability distribution. We shall introduce here a measure
of entropy associated with a basic assignment function m.

Definition 9. Assume that m is a basic assignment over 2X with associated
belief function Bel.

We define the entropy of m as

Em =
∑

A⊂X
m(A) ·Con (Bel, BelA)

where BelA is the certain support function focused at A. The next theorem
justifies our use of the term entropy.
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Theorem 4. Assume that m is a Bayesian structure. Then

Em = −
∑

x∈X
m(x) · lnm(x).

Proof.
Em =

∑

A⊂X
m(A) · con (Bel, BelA) .

Since for a Bayesian structure m(A) = 0 for all non-singletons,

Em =
∑

x∈X
m({x}) · con (Bel, BelA) .

We shall denote the basic assignment function associated with the certain
support function at {x}, by gx. Then

gx ({x}) = 1

gx(B) = 0 for all other B ⊂ X , and Con (Bel, Bel{x}) = − ln(1−k), where

k =
∑

i, j
for Ai ∩Bj = ∅

m(Ai) · gx (Bj) .

Since gx(B) = 0 for B 	= {x} and elsewhere equals 1,

k =
∑

i
for Ai ∩ {x} = ∅

m(Ai)

Since m is Bayesian,

k =
∑

i
{xi} ∩ {x} = ∅

m ({xi}) =
∑

i
for xi 	= x

m ({xi}) = 1−m ({x}) .

Thus

Con(Bel,Bel{x}) = − ln (1− (1−m ({x})))
= − ln (m ({x})) ,

hence
Em = −

∑

x∈X
m ({x}) . lnm ({x}) .

Thus this definition reduces to the Shannon entropy when the belief struc-
ture is Bayesian.
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As a simplification for our further work we note that

Con(Bel, BelA) = − ln (1− k)

and k =
∑

i, j
for Ai ∩Bj = ∅

m(Ai) ·mA (Bj) .

But since mA is such that mA(A) = 1 and elsewhere it is zero,

k =
∑

i
Ai ∩A = ∅

m(Ai).

However, since

1 =
∑

Ai⊂A
m(Ai) =

∑

Ai∩A=∅

m(Ai) +
∑

Ai∩A �=∅

m(Ai)

and since ∑

Ai∩A �=∅

m (Ai) = Pl (A)

it follows that
1− k = Pl (A) ,

where Pl(A) is the plausibility function associated with A under m. Thus

Con(Bel, BelA) = − ln (Pl(A)) .

Hence

Em = −
∑

A⊂X
m(A) · ln (Pl(A))−

∑

A⊂X
ln (Pl (A))m(A)

Thus we have proved the following.

Theorem 5. For a belief structure with basic assignment m and plausibility
Pl the entropy of this structure is

Em = −
∑

A⊂X
ln

(
Pl(A)m(A)

)
= −

∑

A⊂X
m (A) · ln Pl (A) :

Corollary 1.
eEm =

∏

A⊂X

(
Pl (A)−m(A)

)
.

Proof.

eEm = e−(ΣPl(A)m(A)) =
∏

A⊂X
e− ln(Pl(A)m(A))

=
∏

A⊂X

(
Pl (A)−m(A)

)
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Since Pl(A) ∈ [0, 1] for all A ⊂ X then ln Pl(A) � 0 and since m(A) ∈
[0, 1] then

Em = −
∑

A⊂X
m(A) · ln (Pl (A)) � 0.

Thus Em assumes as its minimal value the value zero.
Let us look at the belief structures which take this minimal value for Em.

Theorem 6. For any simple support belief structure Em = 0.

Proof. Assume our simple support structure is focused at B, with m(B) = b.
Then since

Em = −
∑

A⊂X
m(A) · ln Pl (A) ,

and since for this type of belief function m(B) = b, m(X) = 1− b and for all
sets A not equal to B or X, m(A) = 0, it then follows that

Em = − (b · ln Pl (B)) + ((1− b) · ln Pl (X)) .

Since

Pl(A) = 1− Bel(Ā) we have
Pl(X) = 1− Bel(∅) = 1− 0 = 1
Pl(B) = 1− Bel(B̄) = 1− 0 = 1

from which we get Em = −(b ln 1 + (1− b) ln 1) = 0.
A more general classification of belief structures with zero entropy can be

obtained.

Lemma 1. Any belief structure for which the plausibility is one at all focal
elements has Em = 0.

Proof. This follows directly from

Em = −
∑

A⊂X
m(A) · ln Pl (A)

and the fact that ln 1 = 0.

Lemma 2. In a consonant belief structure the plausibility function is one at
focal elements.

Proof. Because of the nested nature of the focal elements of this structure
there exists at least one x ∈ X contained in all the focal elements, denote
this x∗.



11 Entropy and Specificity 301

From the definition of plausibility it follows that

Pl ({x∗}) =
∑

A∩{x∗}�=∅

m (A)

Since x∗ is contained in all focal elements then Pl{x∗} =
∑

im(Ai) = 1, where
Ai are all the focal elements.

We note that for any A ⊂ X

Pl (A) = Max
x∈A

[Pl {x}] .

Hence if Ai is a focal element of m, then x∗ ∈ Ai and hence Pl(Ai) = 1.
Thus we have shown the following theorem.

Theorem 7. For every consonant believe structure Em = 0.

Since consonant belief structures are isomorphic to possibility distributions
and normalized fuzzy subsets, the concept of Shannon like entropy proves to
be a meaningless or empty concept in a theory dealing with only normal
fuzzy sets.

While it would be nice if only consonant belief structures had zero entropy
this is not the case as seen from the following example [10].

Example 1. X = {x1, x2, x3}
Let

A = {x1, x2} B = {x2, x3}
Assume

m(A) = 1/2 m (B) = 1/2

Since neither A ⊂ B nor B ⊂ A, this is not a consonant belief structure.
Our definition for entropy implies for this situation

Em = − [m (A) · ln Pl (A) +m (B) · ln Pl (B)] .

But
Pl (A) =

∑

D
D ∩A 	= ∅

m (D) = m (A) +m (B) = 1

and
Pl (B) =

∑

D
∩B 	= ∅

m (A) = m (A) +m (B) = 1

Hence Em = 0.
Actually the class of zero entropic belief structures can be classified as

follows.
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From our definition of Em, in order that Em = 0, any A where m(A) 	= 0
requires that ln Pl(A) = 0, which requires Pl(A) = 1. Since

Pl (A) =
∑

B
B ∩A 	= ∅

m (B)

this means that every pair of focal elements must have at least one element
in common. Thus we have proved the following.

Theorem 8. A belief structure has zero entropy if Ai ∩Aj 	= ∅ for each pair
of focal elements.

Thus we can see that this measure of entropy is related in some way
to the disjointedness of the sets containing the evidence mass. We note
that disjointedness in the focal elements is related to the discordance in the
evidence.

We further note that Bayesian structures, while not the only ones, are
prototypical examples of disjoint belief structures.

We now turn to belief structures which produce maximal type values for
the entropy.

Theorem 9. Em is finite.

Proof. From our definition of Em and the fact that for non focal elements
m(A) = 0, we get

Em = −
∑

Ai

m (Ai) · ln Pl (Ai) ,

where Ai are the focal elements.

Since there are at most a finite number of focal elements, Em = ∞ iff
ln Pl(Ai) = −∞, for some i, hence Pl(Ai) = 0 for some i. However, since
Ai ∩Ai 	= ∅ ·m(Ai) > 0 implies that Pl(Ai) > 0.

Theorem 10. Assume we have k focal elements with the values m(Ai) = ai.
Then Em is maximal if the focal sets Ai are disjoint, i.e., if Ai ∩Aj = ∅ for
all i 	= j.

Proof.

Em = −
K∑

i=1

m (Ai) · Pl (Ai)

Pl (Ai) =
∑

j
for Ai ∩Aj 	= ∅

m (Aj) = m (Ai)
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+
∑

Aj
for Ai ∩Aj 	= ∅

i = j

m (Aj) = ai + di

Em = −
K∑

i=1

ai ln (ai + di) .

As di increases ln(ai+di) increases and −
∑K

i=1 ai ln(ai+di) decreases hence
Em is maximal when di = 0 for all i. This occurs when all the Aj are disjoint.

Theorem 11. Assume we have k disjoint focal elements. Then Em is maximal
if m(Ai) = 1/K for all elements and in this case

Em = −
K∑

i=1

1
K

ln
1
K

= ln K

Proof.

Em = −
K∑

i=1

ai ln ai,

where
n∑

i=1

ai = 1, a1 � 0

A proof that this well known situation produces a maximal Em when
ai = 1/k can be found in Ref. 7.

Assume that we have a belief structure defined over the set X with car-
dinality N . The maximal number of disjoint subsets of X consist of the N
disjoint sets of singletons and this has a value of ln N when the belief mass is
equally divided. It appears that this situation induces the largest entropy for
a situation where the cardinality of X is N . We say “it appears” since to be
certain that this is so, we must prove that there is no non-disjoint collection
of RN focal elements which have more entropy than the best situation with N
disjoint focal elements. We are not ready at this time to prove this theorem.

5 Specificity Like Measure

Yager[8, 9] has introduced a measure of specificity associated with a possibility
distribution.

If Π : X → [0, 1] is a possibility distribution over the finite set X , then
Yager[8, 9] has defined the measure of specificity associated with Π as

S (Π) =

αmax∫

0

1
card Πα

dα.
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Πα = {x|Π(x) � α, x ∈ X} is a crisp set called the α level set of Π, card
Πα is the number of elements in Πα and αmax = Maxx∈XΠ(x).

Yager[8, 9] has shown S(Π) to have the following properties:

1) 0 � S(Π) � 1.
2) S(Π) = 1 iff there exists one and only one x ∈ X such that Π(x) = 1 and

Π(y) = 0 for all y 	= x.
3) if Π and Π∗ are such that Maxx∈XΠ(X) = 1 and Π(x) � Π∗(x) for all

x ∈ X , when
S (Π) � S (Π∗) .

This measure is an indication of the specificity of a possibility distribution
in the sense that it indicates the degree to which Π points to one and only
one element as its manifestation.

Example 2. Let X = {a, b, c, d} and let

Π(a) = 1
Π(b) = 0.7
Π(c) = 0.5
Π(d) = 0.2

0 � α � 0.2 Πα = {a, b, c, d} card πα = 4
0.2 < α � 0.5 Πα = {a, b, c} card πα = 3
0.5 < α � 0.7 Πα = {a, b} card πα = 2
0.7 < α � 1 Πα = {a} card πα = 1

S(Π) =

1∫

0

1
card Πα

dα

S(Π) =

0.2∫

0

1
4
dα+

0.5∫

0.2

1
3
dα+

0.7∫

0.5

1
2
dα +

1∫

0.7

dα

S(Π) = (0.2)
1
4

+ (0.3)
1
3

+ (0.2)
1
2

+ 0.3 (1) = 0.55.

We now generalize this measure from possibilistic belief structures to any
belief structure.

Definition 10. Assume m is a belief structure defined over the set X the
generalized specificity measure, denoted Sm, is defined as

Sm =
∑

A ⊂ X
A 	= ∅

m(A)
nA

.

nA is the number of elements in the set A, i.e., nA = Card A = |A|.
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First we show that this generalized measure reduces to the particular mea-
sure suggested by Yager for possibility distributions, i.e., for consonant belief
structures.

Assume that X has n elements with membership grades

an � an−1 � an−2 . . . � a1 = 1

Then

S(Π) =

an∫

0

1
n
dα+

an−1∫

an

1
n− 1

dα

+

an−2∫

an−1

1
n− 2

dα+ . . .

a1=1∫

a2

∣∣∣∣∣∣
1dα

hence

S(Π) =
1
n
an +

1
n− 1

(an−1 − an) +
1

n− 2
(an − an−1)

+ . . . (a1 − a2)

More generally

S(Π) =
n∑

i=1

1
i
(ai − ai+1),

with an+1 = 0 by definition.
Now assume that m is a consonant belief structure.
As Prade [3] has shown, if m is consonant, then there exists a nested family

of subsets Ai ⊂ X such that card Ai = i and
∑n
i=1 m(Ai) = 1, where n is the

cardinality of X .
Thus

Sm =
∑

A ⊂ X
A 	= ∅

m(A)
nA

=
n∑

i=1

m(Ai)
i

Furthermore, it was shown by Prade [3] that if an � an−1 � · · · � a1 are
the plausibilities of the singletons, the possibilities of the individual elements,
then m(Ai) = ai − ai+1. Thus

Sm =
n∑

i=1

ai − ai+1

i

in the consonant case. This shows that our generalized definition captures the
original case.
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Theorem 12. Assume that m is a belief structure over X, where the cardi-
nality of X is n. Then

1
n

� Sm � 1.

Proof. (1) For any A, nA � n, hence

Sm � 1
n

∑

A

m(A)

and since
∑
m(A) = 1, then Sm � 1/n.

2) For any A 	= ∅, nA � 1, hence

Sm �
∑

A⊂X
m (A) � 1

Let us look at the situations which attain these extremal values for Sm

Theorem 13. Sm assumes its minimal value for a given X iff m is a vacuous
belief structure. This minimal value is 1/n where n is the cardinality of X.

Proof. (1) If m is vacuous m(X) = 1 hence Sm = 1/n
2) If m is not vacuous then there exists some A, such that m(A) > 0 and

nA < n hence

Sm � 1
n
.

Theorem 14. Sm assumes its maximal value of 1 iff m is a Bayesian belief
structure.

Proof. (1) Assume that m is Bayesian. Then the sets having m(A) > 0 are
only the singletons. Thus

Sm =
n∑

i=1

m[{xi}] = 1

2) Assume that m is not Bayesian. Then there exists some A such that
m(A) > 0 and nA > 1 hence Sm < 1.

Thus whereas the entropy measure is minimized for consonant belief struc-
tures the specificity is maximized for Bayesian belief structures.

To get further insight into this measure we consider its evaluation on simple
support structures.

Theorem 15. Assume that m is a simple support structure focused at B, with
m(B) = b. Then

Sm =
b

nB
+

1− b

n
.
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Proof. For a simple support structure

m(B) = b

m(X) = 1− b

Sm =
b

nB
+

1− b

n
.

If b increases Sm increases. Furthermore as nB decreases, without becom-
ing vacuous, Sm increases.

Let us now examine the workings of this measure on consonant belief
structures.

Theorem 16. Assume that m1 and m2 are consonant belief structures gen-
erating plausibility measures Pl1 and Pl2 such that, for each x ∈ X,

Pl1 (x) � Pl2 (x)

Then.
Sm1 � Sm2 .

Proof. For consonant belief structures

Sm =

1∫

0

1
Card Πα

dα

Since Pl2(x) > Pl1(x), card
∏

2α
� card

∏
1α

.

As a special case of this situation consider two consonant belief structures
m1 and m2 defined over the same nested sets A1 ⊆ A2 ⊂ · · · ⊂ An where

Pl1 (x) � Pl2 (x)
m2 (An) = Pl2 (xn) > Pl1 (xn) = m1 (An)

so m2(An) � m1(An).
In the same manner for all j > 1,

m2 (An) +m2 (An−1) + . . .m2 (Aj) > m1 (Aj) + . . .m1 (An) .

But
n∑

i=1

m2 (Ai) =
n∑

i=1

m1 (Ai) ,

hence m1(A1) � m2(A1) and m2(An) � m1(An).
Thus the higher the specificity the more of the evidence mass lies in the

one element set and the less in the set X .
The meaning of the measure Sm appears to relate to the degree to which

the evidence is pointing to a one element realization. When one considers that
the total amount of plausibility assigned to the elements in X is
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∑

xi∈X
Pl (Xi) =

∑

A⊂X
nA ·m (A)

it appears that Sm is a measure of the reduction of excess plausibility. We
can also see that as the total plausibility value, which is always greater than
the belief, gets closer to the belief value than Sm increases. Hence Sm appears
inversely related to excess of plausibility over belief. In bringing the plausibility
in a structure closer to the belief ascertained in the structure we are getting
more specific in our allocation of evidence. This interpretation is reinforced by
the fact that for Bayesian structures in which the plausibility always equals
the belief, the value of Sm is maximum.

Since obtaining evidence involves a process of reducing possibilities, speci-
ficity thus seems to be measuring the effect of the evidence in that direction.

6 Using Both Measures

We feel that the two measures developed herein provide a complementary
approach to measuring the certainty with which a belief structure is pointing
to a unique outcome.

As noted, the entropy measure provides a measure of the dissonance of
the evidence. This is illustrated by the fact that consonant belief structures
have lowest entropic measures, while the highly dissonant type of Bayesian
structures have high entropic measures.

The specificity measure provides an indication of the dispersion of the
belief. We note that in this situation the Bayesian structure gets the highest
grades, while the vacuous case gets the lowest.

As we noted earlier the only structure that is Bayesian, specific and conso-
nant is the structure which m(x) = 1 for some x ∈ X . However this structure
corresponds to the certain situation where the evidence points precisely to x
as the special element.

Thus we see the following: the lower the Em, the more consistent the
evidence; and the higher Sm, the less diverse. Ideally we want low Em and
high Sm for certainty. Thus by using a combination of the two measures we
feel that we can have a good indication of the quality of a belief structure
with respect to suggesting one element as the outcome.

In particular the measure Em indicates the success of the structure in
reducing plausibilities, which is a desired quality in a belief structure up to a
point. This point will be that where the reduction is so great that everything
appears not possible, which implies an inconsistency in the evidence. The
entropy measure thus indicates the success of the belief structure in being
consistent. On the other hand, consistency is also desirable up to a point, this
being where we leave everything as possible in order to obtain this consistency.
The success with which we are able to satisfy both these criteria therefore
provides a good procedure for judging the quality of evidence.
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We here suggest as a measure of quality of a belief structure the two tuple
(Sm, Em). As we have noted, the ideal situation, certain knowledge, occurs
only when (Sm, Em) = (1, 0). The closer a belief structure is to this point, the
better quality of evidence it is supplying.

7 Conclusion

We have extended Shafer’s theory of evidence to include a measure of entropy
and specificity to be associated with a belief structure. These measures taken
together provide an indication of the quality of the evidence supplied by a
belief structure.
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