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Classic Works of the Dempster-Shafer Theory
of Belief Functions: An Introduction∗

Liping Liu and Ronald R. Yager

Abstract. In this chapter, we review the basic concepts of the theory of belief
functions and sketch a brief history of its conceptual development. We then pro-
vide an overview of the classic works and examine how they established a body of
knowledge on belief functions, transformed the theory into a computational tool for
evidential reasoning in artificial intelligence, opened up new avenues for applications,
and became authoritative resources for anyone who is interested in gaining further
insight into and understanding of belief functions.

1 Introduction

The Dempster-Shafer theory of belief functions was due to the seminal work
of Glenn Shafer and its conceptual forerunner—lower and upper probabili-
ties by Arthur P. Dempster. This year marks respectively the 30th and 40th
anniversaries of these two important publications. In the last 30 years, belief
functions have penetrated into many scientific areas, technological projects,
and educational enterprises. By bridging fuzzy logic and probabilistic rea-
soning, the theory of belief functions has become a primary tool for knowl-
edge representation and uncertain reasoning in expert systems. Thanks to the
availability of powerful computers and user-friendly software, belief functions
have been widely applied to business, engineering, and medical problems. The
applications include auditing, process engineering, quality control, decision
support, electronic commerce, financial asset evaluation, information fusion,
information retrieval, knowledge management, medical diagnosis, mobile ser-
vices, natural resource detection, network security, object classification, risk
management, software engineering, target tracking, etc.

To celebrate the anniversaries, to showcase the achievements, and to assess
the current state of knowledge, the editors bring together a volume of 29 classic
papers on the theory of belief functions and its applications. The collection was

∗ The authors would like to thank Glenn Shafer for his invaluable comments on
earlier versions of this chapter.
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created from a pool of over 100 nominated contributions, which are regarded
as classics with a high prospect to continue to influence the future development
of the field.

In this chapter, we introduce the Dempster-Shafer theory and present its
basic concepts and major results. The goal is to summarize Glenn Shafer’s
classic book [34] in a concise, comprehensive, and accessible manner so that
the reader will gain sufficient conceptual background to pursue further read-
ings. Then we sketch a brief history of the earlier conceptual development,
from Ronald A. Fisher’s fiducial arguments to Arthur P. Dempster’s general-
ized Bayesian inference, and from Jakob Bernoulli’s notion of pure evidence
to Glenn Shafer’s mathematical theory of evidence. The goal is to expose the
origin of the concepts so that the reader will gain a broad perspective for
understanding further development. Then we provide an overview of the clas-
sic works and point out their unique contributions in terms of how they estab-
lished a body of knowledge on belief functions, transformed the theory into
a computational tool for evidential reasoning in artificial intelligence, opened
up new avenues for applications in business, engineering, and medicine, and
became authoritative resources for anyone who is interested in gaining fur-
ther insight into and understanding of the theory. Finally, we briefly discuss
famous critiques by Lotfi A. Zadeh and Judea Pearl and point out a few open
problems that need to be solved in future research.

2 Basic Concepts

The concept of belief functions may be formalized in various ways. In this
section, we adopt the approach by Glenn Shafer in his seminal work—A Math-
ematical Theory of Evidence [34]—for exposition since its terminologies and
notations are the standard in the literature.

Given a question of interest, let Θ be a finite set of possible answers to the
question, called a frame of discernment, and 2Θ be the set of all subsets of Θ:

2Θ = {A | A ⊆ Θ}.
The subset A includes as special cases the empty set φ and the full set Θ. It
represents a statement or proposition that the truth lies in A. A real function
over the subsets Bel : 2Θ → [0, 1] is called a belief function if and only if it
satisfies the following three axioms:

Axiom 1 Bel(φ) = 0.

Axiom 2 Bel(Θ) = 1.

Axiom 3 For any whole number n and subsets A1, A2, .., An ⊂ Θ,

Bel(
n⋃

i=1

Ai) ≥
∑

I⊂{1,2,...,n}
I �=φ

(−1)|I|+1Bel(
⋂

i∈I
Ai).
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In the case where n = 2 and A1 ∩ A2 = φ, Axiom 3 reduces to Bel(A1 ∪
A2) ≥ Bel(A1)+Bel(A2). The student of probability theory may immediately
recognize that these axioms are similar to those for a probability function
with the inequality of Axiom 3 substituting for equality. When equality holds,
Bel(A1∪A2) = Bel(A1)+Bel(A2) if A1∩A2 = φ. Thus, a probability function
is additive whereas a belief function is generally not. The generalized axioms,
however, indicate that belief functions include probability functions as special
cases and may be equally or better used to express degrees of belief.

Additive probabilities are common sense. Are there any non-additive
beliefs to justify an extension? The answer is affirmative. A modern exam-
ple is from Bayesian statistics on how to represent ignorance, where the truth
is in Θ but there is no information, probabilistic or logical, to justify the
whereabouts of the truth. Thus, Bel(Θ) = 1 but Bel(A) = 0 for any proper
subset A of Θ. Clearly, this function fails to be additive. An ancient exam-
ple was due to Jakob Bernoulli in his book Ars Conjectandi. Suppose a man
was stabbed with a sword in a milling crowd and Gracchus was interrogated
and turned pale. Since the sign of pallor betokens a finite number of reasons:
melancholy, fear, cold, anger, amorous passion, etc., it proves Gracchus guilty
if it arises from a guilty conscience, but does not prove his innocence if it
arises from other reasons. Thus, Bel({guilty}) < 1 and Bel({innocent}) = 0,
but Bel(Θ) = 1. Again, this belief function is non additive.

The key to the concept of belief functions is limited division of belief.
Whereas probability functions assume belief is apportioned to the points in the
frame Θ, belief functions allow basic probability numbers (or mass numbers),
to be assigned to whole sets of points in Θ without further subdivision. The
basic idea is that a whole belief is divided into one or more basic probability
numbers m(A) and allocated to one or more subsets A, called focal elements,
such that:

∑
{m(A) | A ⊆ Θ} = 1. (1)

The basic probability number m(A) allocated to a focal element A is not
further divided into smaller chunks allocated to proper subsets of A.

This suggests an alternative approach to the definition of a belief function.
Given basic probability numbers m(A), the belief Bel(A) is defined by:

Bel(A) =
∑
{m(B) | B ⊆ A}. (2)

Logically, a portion of belief committed to one proposition is committed to
any other proposition it implies. Thus, the total belief committed to a subset
A is the sum of those that are committed to proper subsets of A and those to
A itself.

Adding the boundary condition m(φ) = 0 to (1), Shafer showed that the
two definitions are equivalent, i.e., a function satisfies the three axioms if and
only if it can be represented as the sum of basic probability numbers over
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focal elements. In fact, given a belief function, one may construct such a
basic probability number for each A ⊆ Θ using a Möbius transformation:

m(A) =
∑
{(−1)|A−B|Bel(B) | B ⊆ A}, (3)

where |A−B| is the cardinality of A−B, or a recursive deduction:

m(φ) = 0,m(A) = Bel(A)−
∑
{m(B) | B ⊂ A}.

Despite the equivalence, however, one should note that the axiomatic def-
inition allows the establishment of the theory of belief functions with no ref-
erence to probabilities.

Due to the limited divisibility, belief not committed to A, the negation of
A, is not automatically committed to A. But it does make A more credible
or plausible. Thus, it is intuitive to define a plausibility function Pl(A) as the
sum of beliefs not committed to A:

Pl(A) = 1−Bel(A). (4)

Through (2), it is easy to see the interplay between basic probability numbers
and plausibility numbers as follows:

Pl(A) =
∑
{m(B) | A ∩B 	= φ}. (5)

For any proposition, its plausibility is no less than its committed belief,
i.e., Bel(A) ≤ Pl(A). Thus, in his earlier works [8, 9, 10], Dempster called
these functions respectively lower and upper probabilities. The terminology
had caused some confusion and was abandoned by Shafer.

Belief functions are meant to be a representation of subjective beliefs.
Unlike other alternative formalisms, however, belief functions represent the
beliefs grounded on or supported by evidence. In fact, the idea of limited
divisibility makes intuitive sense if one interprets a basic probability number
m(A) as a measure of evidential support to A. Given two subsets A and B
in a frame of discernment, if B is a proper subset of A, then B represents
a stronger proposition than A and requires stronger evidence to support it.
Therefore, the evidence that supports A does not automatically support B
and the belief m(A) committed to A does not necessitate the commitment of
a smaller number m(B) to B.

Given a distinct piece of evidence, its support may be encoded as a list of
mass numbers assigned to the corresponding focal elements. It may also be
summarized as a belief or plausibility function over the frame of discernment.

When there exist multiple items of evidence, of course, it is necessary to
combine them together. Dempster’s rule of combination serves this purpose.
In his original framework of a multivalued mapping that carries a probability
measure into a system of upper and lower probabilities (see below), Demp-
ster derived this rule of combining upper and lower probabilities based on
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the assumption that two probability measures were independent [9]. In the
axiomatic framework, Shafer adopted the rule as a definition for combining
distinct or independent bodies of evidence. Let m1 and m2 be the mass func-
tions for two independent bodies of evidence. The combination via Dempster’s
rule follows a simple three-step process: intersection of focal elements, multipli-
cation of corresponding basic probability numbers m1m2, and normalization
in accordance with (1). Each intersection, if it is not empty, becomes a new
focal element of the combined belief function. The corresponding product of
basic probability numbers contributes to the support to the new focal element.
An empty intersection indicates a disagreement or conflict and is excluded
from further consideration. Its corresponding product of basic probability
numbers is subtracted from the whole belief mass for normalization. Mathe-
matically, the new mass function over new focal elements is defined as follows:

m(A) =
∑
{m1(B)m2(C) | B ∩ C = A}∑
{m1(B)m2(C) | B ∩ C 	= φ} . (6)

Since empty intersection indicates a conflict,
∑
{m1(B)m2(C) | B ∩ C = φ}

measures the total amount of conflict. Formally, we call the logarithm of the
renormalization constant the weight of conflict :

W = log(
1∑

{m1(B)m2(C) | B ∩ C 	= φ} ). (7)

Of course, two belief functions are combinable if and only if their weight of
conflict is finite.

Example 1. Suppose, among three suspects, Tony (T), Smith (S), and Dick (D),
we want to find out who committed a bank burglary. In the investigation, we
questioned Mrs. Johnson, a witness who was living close to the bank. She said
that she saw a big person near the bank around the time when the crime was
committed. Assume Mrs. Johnson’s testimony was 60% reliable based on her
eyesight. If her testimonywas reliable, the evidence pointed toTony orDick since
they had big bodies. Thus,m1({T,D}) = 0.6. However, if she was not reliable,
the testimony carried no information, i.e., m1({T, S,D}) = 0.4. Although the
criminal wore a mask, a video camera recorded a fuzzy picture of the person’s
eyes, which were 4 times more likely to be black than to be gray.The second item
of evidence suggested m2({S}) = 0.8 and m2({T,D}) = 0.2 since Smith had
black eyes. To combine the two pieces of evidence, we can use a tabular form as
in Table (1). For each cell, take the corresponding focal elements from each item
of evidence, intersect them and multiply their corresponding basic probabilities.
The weight of conflict between the two items of evidence is log( 1

1−0.48 ) = 0.28.
In the combined evidence, there are two focal elements: {S} and {T, D}. The
combined mass function is calculated as follows:

m({S}) =
0.32

1− 0.48
= 0.615,

m({T,D}) =
0.12 + 0.08
1− 0.48

= 0.385.
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Table 1. An illustration of combination

m2({S}) = 0.8 m2({T, D}) = 0.2

m1({T, D}) = 0.6 φ → 0.48 {T, D} → 0.12
m1({T, S, D}) = 0.4 {S} → 0.32 {T, D} → 0.08

Thus Smith appeared to be more suspicious according to the combined
evidence.

The combined belief and plausibility function may be symbolically
expressed as Bel1 ⊕ Bel2 and Pl1 ⊕ Pl2, respectively. Unfortunately, there
is no simple analytical expression for the orthogonal sum ⊕. To put the com-
bination rule into multiplicative form as in the case for probability functions,
Dempster introduced another function Q(A), which Shafer called the com-
monality function, as follows:

Q(A) =
∑
{m(B) | B ⊇ A}. (8)

Let Q1 and Q2 be respectively the commonality functions for two independent
items of evidence. Then the commonality function for the combined evidence
is as follows:

Q(A) =
Q1(A)Q2(A)∑

{(−1)|A|+1Q1(A)Q2(A) | A 	= φ} . (9)

Here the denominator is identical to that in (6).
Unlike belief and plausibility functions, a commonality function is not intu-

itive but Shafer interpreted Q(A) as the total belief that is free to move to
every element of A. According to (8) and (3), it is clear that the definition of
a commonality function is opposite to that of a belief function in the sense
that a belief for A sums all basic probability numbers committed to A and its
proper subsets whereas a commonality number sums those that are commit-
ted to A and its proper supersets. Consequently, commonality functions are
decreasing while belief (and plausibility) functions are increasing: for any two
propositions A and B, if A ⊃ B, then Q(A) ≤ Q(B) but Bel(A) ≥ Bel(B)
and Pl(A) ≥ Pl(B).

The four representations of evidence, namely, belief functions Bel(A),
mass functions m(A), plausibility functions Pl(A), and commonality func-
tions Q(A), are interrelated. Some of the relationships are shown below: for
any non-empty set A,

Bel(A) =
∑
{(−1)|B|Q(B) | B ⊆ A},

Q(A) =
∑
{(−1)|B|Bel(B) | B ⊆ A},

P l(A) =
∑
{(−1)|B|+1Q(B) | φ 	= B ⊆ A},

Q(A) =
∑
{(−1)|B|+1Pl(B) | B ⊆ A}.
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From any representation one can obtain another one through a series of
additions and/or Möbius transformations. In this sense, all the representations
are equivalent. Thus, one may start with any one model to encode evidence
and end up with other representations for decision making or probable rea-
soning. The choice is purely based on convenience. Mass functions are often
a more natural and superior device for encoding evidence, whereas belief and
plausibility functions are a more intuitive summary of the impact of the evi-
dence on propositions. After all, evidence often arises in the form of knowledge
in a related domain that provides insights on or connections to propositions in
the domain of interest. If the knowledge is probabilistic, it can then be carried
over to the propositions of interest as basic probability numbers. For example
[19], suppose I find a scrap of newspaper predicting a blizzard, which I regard
as infallible. Also, suppose I am 75% certain that the newspaper is today’s.
Here the knowledge about the newspaper maps to tomorrow’s weather as
follows: if the newspaper is today’s, then a blizzard is sure to come; if the
newspaper is not today’s, however, it provides no information on tomorrow’s
weather. Thus, we transfer 75% as a basic probability number to the focal ele-
ment {blizzard}, i.e., m({blizzard}) = 0.75, and 25% to Θ, i.e., m(Θ) = 0.25.
Of course, there are occasions when belief or plausibility functions become
more convenient. For example, Srivastava and Shafer [40] interpret audit risks
as the plausibility that a financial statement is not fairly stated or an audit
objective is not met. Thus it is more convenient to use plausibility functions
to encode audit evidence.

To illustrate the equivalence of the four representations, Table 2 shows the
respective representations of three special cases of belief functions, namely
vacuous belief functions, Bayesian belief functions, and simple support func-
tions. A vacuous belief function represents full ignorance, i.e., evidence does
not provide any support to or information on any specific proposition, i.e., any
proper subset of a frame of discernment. Thus, Θ is the only focal element.
A Bayesian belief function represents probabilistic knowledge that assigns a
probability to each element of Θ. In other words, all focal elements are single-
tons. A simple support function represents a piece of homogeneous evidence
that provides support to one and only one proposition that is a proper subset
of Θ. In other words, there are two focal elements: S and Θ with S ⊂ Θ.

Despite their simplicity, the three special cases play important roles in the
theory of belief functions in the sense that: 1) they are the building blocks
for more complex belief functions; and 2) they justify the superiority of belief
functions to probability theory. Vacuous belief functions provide a simple solu-
tion to the problem of representing ignorance. Note that Bayesian statistics
would represent full ignorance as a uniform distribution, which essentially
mixes lack of belief with disbelief. For example, what is my belief that a coin
will land a head? It is 50% if and only if I know the coin is fair. If I am
ignorant, the most I can say is Bel(Θ) = 1. However, Bayesian statistics will
assign 50% as a prior probability regardless.
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Table 2. Three special cases

Mass function Belief function

Vacuous belief
functions

m(Θ) = 1 Bel(A) =

{
0 ∀A ⊂ Θ
1 A = Θ

Bayesian belief
functions

|A| = 1 for each focal element A Bel(A) is additive

Simple support
functions

m(A) =

⎧
⎨

⎩

s A = S
1 − s A = Θ

0 else
Bel(A) =

⎧
⎨

⎩

s A ⊇ S
1 A = Θ
0 else

Plausibility function Commonality function

Vacuous belief
functions

P l(A) = 1 ∀A �= φ Q(A) = 1 ∀A

Bayesian belief
functions

P l(A) is additive Q(A) = 0 if |A| > 1

Simple support
functions

P l(A) =

{
1 A ∩ S �= φ

1 − s A ∩ S = φ
Q(A) =

{
1 A ⊆ S

1 − s else

Bayesian belief functions are regular probabilities. They are the only case
where beliefs and plausibilities are identical, i.e., Bel(A) = Pl(A) for any
A ⊆ Θ, and additive as well, i.e., Bel(A1 ∪ A2) = Bel(A1) + Bel(A2) if
A1 ∩A2 = φ. Thus, belief functions include probability functions as a special
case. It is also the only case that we have zero commonality number for any
subset of cardinality 2 or larger.

The concept of simple support functions is the most important extension
to Dempster’s work on generalized Bayesian inference. It acts as the basis for
defining the weight of evidence, by which Bernoulli meant probative force for
a probability judgment. For a simple support function with m(S) = s and
m(Θ) = 1 − s, the weight of evidence w is a nonnegative number in [0,∞)
that maps to the support s in such a way that the sum of two weights maps to
the combined support of the two items of evidence via Dempster’s rule. This
along with the following boundary condition:

s =
{

0 w = 0
1 w →∞

leads to an analytical expression of the weight of evidence:

w = − log(1 − s).

Since a simple support function uniquely determines a weight of evidence,
it is tempting to decompose a general belief function into one or more sim-
ple support functions and then derive the weight of evidence underlying it.
Toward this goal, Shafer defined the concept of a separable support function
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to be the orthogonal sum of one or more simple support functions. Unlike a
simple support function, a separable support function may support multiple
propositions that are proper subsets of Θ. Unlike a general belief function, it
is distinct in that, for any two focal element A and B, if A ∩ B 	= φ, then
A ∩B is also a focal element.

As an example of special importance, consonant support functions are
separable support functions. A belief function is called consonant if its focal
elements are nested, i.e., for any two focal elements A and B, either A ⊂ B
or B ⊂ A. Thus, all focal elements may be arranged in an order of increasing
precision, pointing in a single direction. A consonant support function Bel
has the following distinct features:

Bel(A ∩B) = min(Bel(A), Bel(B)) ∀A,B ⊆ Θ,

P l(A ∪B) = max(Pl(A), P l(B)) ∀A,B ⊆ Θ,

Q(A) = min{Q(θ) | θ ∈ A} ∀A 	= φ.

Those familiar with fuzzy logic may recognize that the possibility and necessity
functions introduced by Zadeh [42] are the same as consonant plausibility and
support functions. A function f is a consonant support function if and only
if it satisfies: f(φ) = 0, f(Θ) = 1, and f(A ∩ B) = min(f(A), f(B)) for any
A,B ⊆ Θ. These are the axioms used for developing the theory of possibility.

There is no unique way to decompose a separable support function into
simple support functions. For example, one simple support function may be
further represented as the orthogonal sum of two or more simple support
functions that support the same proposition. If no component has infinite
weight of evidence, however, this non-uniqueness does not cause any trouble
because the total weight of evidence focused on each subset will be the same
no matter which decomposition is used. Let Si be the proposition supported
by the ith component and wi be the corresponding weight of evidence. If wi
is finite for all i, then the total weight of evidence focused on any non-empty
proper subset A of Θ is

w(A) =
∑
{wi | Si = A},

with w(φ) = 0 and w(Θ) = ∞.
Through a weight function w(A), one may define two related concepts:

the impingement function v(A) and the weight of internal conflict W . The
impingement function v(A) is defined as the sum of the weights of evidence
focused on the propositions not containing A:

v(A) =
∑
{w(B) | A ∩B 	= φ}. (10)

Each weight w(B) impugns all propositions not in its focus B. Thus v(A) is
the total weight of evidence not favoring A. Given an impingement function,
one may recover the weight function using a Möbius transformation, i.e., for
each non-empty proper subset A of Θ,
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w(A) =
∑
{(−1)|B−A|v(B) | A ⊆ B}.

The internal conflict of a separable support function refers to the con-
flict among the simple support functions that make up the separable support
function. Its weight can be defined as in (7) with a straightforward exten-
sion to multiple belief functions. Since decomposition may not be unique, the
weight of conflict in general varies from decomposition to decomposition. The
weight of internal conflict is actually defined as the minimum of the weights
of conflict for all possible decompositions. The weight of internal conflict can
be expressed in terms of the impingement function v(A) or the commonality
function Q(A):

W = − log(
∑
{(−1)|A|+1 exp(−v(A)) | A 	= φ},

W = −
∑
{(−1)|A| logQ(A) | A ⊆ Θ}.

The above equations give another way to express the commonality function
Q(A) for a separable support function as follows:

logQ(A) = W − v(A). (11)

The total weight of evidence determines the impingement function, which in
turn determines the weight of internal conflict. Thus, it determines a common-
ality function, from which one can recover a mass function, a belief function,
and a plausibility function. Therefore, for separable support functions, the
total weight of evidence provides a sufficient assessment of evidence.

Equation (11) shows an intuitive association of smaller commonality num-
bers with greater degrees of impingement. Formally, suppose v1 and v2 are
two impingement functions and Q1 and Q2 are the corresponding common-
ality functions. If Q1(A) ≤ Q2(A) for all A ⊆ Θ, then v1(A) ≥ v2(A) for
all A ⊆ Θ. This association can easily be derived from the following still
unproven weight-of-conflict conjecture: if Q1 and Q2 are the commonality
functions for two separable support functions and W1 and W2 are their cor-
responding weights of internal conflicts, then

Q1(A) ≤ Q2(A) ∀A ⊆ Θ =⇒ W1 ≥W2. (12)

In the axiomatic approach, any function that satisfies Axioms 1–3 is a
belief function. A whole body of mathematical theory of belief functions could
have been built based on these axioms. However, Shafer was interested in
building a theory of evidence as a science of probable reasoning. Thus, his
central theme was to investigate which subclasses of belief functions could be
useful for the representation of evidence. As we have seen, both simple and
separable support functions were proposed for such a purpose; they are or can
be decomposed into components each of which precisely and homogeneously
supports a given proposition.
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Toward the same goal, the concept of support functions was proposed. A
support function is a belief function that can be derived from the marginal-
ization of a separable support function to a coarser framer of discernment.
Unlike a sample space in probability theory, a frame of discernment is epis-
temic in nature and is constructed for probable reasoning. It can be refined
or coarsened as needed. For example, suppose we are interested in whether
tomorrow’s weather will be raining (r), snowing (s), or normal (n). The frame
of discernment is Θ = {r, s, n}. This frame may be coarsened into Θ′ = {n, n}
if we just want to know whether the weather is normal or not. The coarsen-
ing combines fine elements r and s into a coarse element n. Thus, we call Θ′

a coarsening of Θ or Θ a refinement of Θ′. A more refined frame is able to
represent more details than its coarsenings and so a proposition discerned by
a coarsening is also discerned by a refinement. The converse is not true.

Each coarse element in a coarse frame maps to a subset of fine elements in
a refined frame. If a belief function Bel is defined on a refined frame Θ, it can
be carried over to a coarse frame Θ′ as a marginal belief function as follows. A
focal element of the marginal is a set of coarse elements that map to subsets,
all of which intersect with the same set of focal elements of Bel. The basic
probability number is the sum of the corresponding basic probability numbers
of the intersecting focal elements. On the other hand, if a belief function Bel′

is defined on a coarse frame Θ′, it can also be carried over to a refined frame
Θ by using the same probability numbers but replacing each focal element by
the union of corresponding mapped subsets. The resulting belief function is
called a vacuous extension.

Both vacuous extension and marginalization can be easily expressed in
the special case when a refined frame is the Cartesian product of two or more
independent frames [22]. Suppose Θ1, Θ2, ... are independent frames. Let I be
a set of indices. Then Θ(I) =

∏
{Θi | i ∈ I} will be a refinement for all Θi

(i ∈ I) so that each element θi ∈ Θi maps to subset {θi} × Θ(I − {i}) in Θ.
Given any belief function on Θ(I) with a mass function m(A), its marginal on
Θ(J), J ⊂ I, is a belief function with mass function m↓J : for any B ⊆ Θ(J),

m↓J(B) =
∑
{m(A) | A ∩ (B ×Θ(I − J) 	= φ}. (13)

On the other hand, if a belief function with mass function m(A) is defined on
Θ(J), its vacuous extension to Θ(I) (I ⊃ J) is a belief function with mass
function m↑I : for any B ⊆ Θ(J),

m↑I(B ×Θ(I − J)) = m(B). (14)

It is easy to see that if a belief function Bel is a separable support function,
its vacuous extension will also be separable. However, the converse is not true,
i.e., the marginal of a separable support function may not be separable. For
this reason, Shafer calls such a marginal belief function a support function.
So a belief function is a support function if it can be extended to a separable
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support function. Since any frame is a refinement of itself, a separable support
function is itself a support function. Thus, we have four nested classes of belief
functions:

⎧
⎨

⎩

simple
support

functions

⎫
⎬

⎭ ⊂

⎧
⎨

⎩

separable
support

functions

⎫
⎬

⎭ ⊂
{

support
functions

}
⊂

{
belief

functions

}
.

As it turns out, a belief function is a support function if and only if the union
of all of its focal elements is also a focal element. Thus, not all belief functions
are support functions. Moreover, not all support functions are separable. For
example, assume m({r, n}) = 0.2, m({s, n}) = 0.5, and m(Θ) = 0.3. This is
a support function since {r, n} ∪ {s, n} ∪Θ = Θ is a focal element. However,
this is not a separable support function since {r, n} ∩ {s, n} = {n} is not a
focal element.

3 A Brief History of Concepts

Einstein once said [14], “...creating a new theory is not like destroying an
old barn and erecting a skyscraper in its place. It it rather like climbing a
mountain, gaining new and wider views, discovering unexpected connections
between our starting point and its rich environment.” The theory of belief
functions arose first from Dempster’s attempt in understanding and perfect-
ing Fisher’s fiducial approach to probability inference and then from Shafer’s
elaboration of Dempster’s work toward a general theory of reasoning based
on evidence.

In the 1960s, due to the work of Leonard J. Savage [32], Bayesian statistics
was showing renewed vigor and gaining popularity but, at the same time, was
in growing conflict with a school of thought led by Ronald A. Fisher and,
increasingly, Jerzy Neyman.

The general statistical inference problem is that, given a sample obser-
vation x from a parametric distribution f(x, θ) with parameter θ, how one
could obtain a probability distribution of θ. When reduced to its mathematical
essentials, Bayesian inference means starting with a prior probability distribu-
tion p(θ), observing the value x, and computing the conditional distribution
of θ given x using Bayes theorem:

p(θ | x) =
p(θ)f(x, θ)∫
p(θ)f(x, θ)dθ

. (15)

In theory, there is nothing wrong with this formulation. In practice, how-
ever, one often finds the conception of prior probabilities vague, arbitrary, or
controversial, lacking the spirit of objectivity required by a scientific method.

To overcome the difficulty with prior probabilities, Fisher announced
the possibility of obtaining posterior distributions with no need for priors
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(see [17]), and called his method the fiducial argument to emphasize its dif-
ferences from the Bayesian argument. In the nutshell, assume F (x, θ) is a
parametric cumulative distribution. Besides x and θ, the fiducial method intro-
duces a so-called pivotal variable u, which is assumed to follow the uniform
distribution U(0, 1), so that

u = F (x, θ). (16)

Suppose, for each value x, F (x, θ) is monotonic in θ. Equation 16 will admit
a unique solution

θ = θ(u, x) (17)

for each u ∈ (0, 1). Assuming no prior probabilities, Fisher defined the fiducial
distribution of θ, given the observed value x, as the distribution of θ implied
by (17) when x is regarded as fixed and u is uniformly distributed.

The fiducial method was poorly understood and often led to inconsisten-
cies [6]. The concept of pivotal variables was highly confusing, restrictive, and
controversial [7]. Dempster devoted much of his early research career at Har-
vard to clarifying, extending, and perfecting the method. For example, he once
proposed the concept of direct probabilities as his interpretation of the fiducial
argument [5]. First, to make the derivation of fiducial probabilities explicit, he
introduced an arbitrary function v = V (x) so that it along with (16) implied
a smooth one-to-one function from x and θ to u and v, and therefore ensured
the existence of the following Jacobian:

∣∣∣∣
∂(u, v)
∂(x, θ)

∣∣∣∣ . (18)

Second, in addition to Fisher’s assumption that u is uniform in (0, 1), he
assumed that v follows an arbitrary distribution p(v) and u is independent of
x (and so of v) so that the joint density function of u and v is p(v). Finally,
according to the Jacobian formula, the joint density function of x and θ is
p(V (x)) multiplied by the Jacobian in (18). From this joint distribution, of
course, one can compute the conditional probability distribution of θ given x,
which is the fiducial (or direct) probability distribution.

Like Bayesian priors, functions V (x) and P (v) are arbitrary and meant
to compose a joint distribution, from which a conditional distribution can be
obtained. Although P (v) does not enter the final result, a fiducial distribution
is generally not free from the choice of V (x). In fact, as Dempster showed, it is
independent of V (x) if and only if F (x, θ) can be transformed into a location
parameter family.

The direct probability method did not fully demystify the fiducial argu-
ment. Although it explicated the process of deriving fiducial probabilities, it
left the concept of pivotal variables unexplained. Some regard the uniform
distribution U(0, 1) as analogous to a Bayesian prior. Most importantly, like
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the fiducial argument, the method works only if there exists a smooth one-to-
one mapping Γ: u → θ so that a probability measure for u can be carried to
θ by the familiar Jacobian formula.

A breakthrough led to a new theory that unified Bayesian and fiducial
arguments. It was first exposited in a paper published in 1966 [8] and repub-
lished here as Chap. 2. In this paper, Dempster abandoned Fisher’s controver-
sial pivotal variable and replaced it with the concept of a population. Instead
of considering u as a pivotal variable, uniformly distributed in (0, 1), he con-
strued u to be a sample individual randomly drawn from a population with
probability measure m governing the random sampling operation. Here, m is
not necessarily a uniform distribution as in the case of the fiducial argument.
Second, instead of (16), Dempster proposed a new model for constructing the
mapping from u to θ as follows. Assume each sample individual u corresponds
to an observable characteristic x. Assume further that the probability mea-
sure m for u induces a probability distribution f(x, θ) for x with an unknown
parameter θ. Thus, one may construct a mapping u→ x×θ. When the obser-
vation x is fixed, it determines a conditional mapping Γ: u→ θ, from which m
induces a probability distribution for θ. Interestingly, when Γ is multivalued,
the induced distribution for θ is no longer unique. Instead, Γ carries a unique
probability measure m to a system of upper and lower probabilities for θ.

Chapter 2 was a milestone, representing not only an advancement of the
fiducial argument but also the inception of the idea for a new theory of belief
functions. At this point, the basic concepts had already emerged, including
the basic probability assignment m, the multivalued mapping Γ, and a device
for deriving upper and lower probabilities from m. In Chap. 3, first published
in 1967 [9], Dempster abstracted these concepts from the fiducial argument,
envisioning a fundamental method of reasoning with imprecise probabilities,
based on the idea of obtaining a degree of belief for one event from proba-
bilities for related events. He proposed a general model (S,m,Γ, T ) for such
reasoning, where S is a source space, m is a probability measure over S, T is a
target space, and Γ is a mapping from S to T . If Γ is a one-to-one or many-to-
one mapping, it is well known that the probability measure m carries over to
T as p(t) =

∑
{m(s) | t = Γ(s)}. In mathematical essence, Chap. 3 extended

the familiar result to the case when Γ is a one-to-many or many-to-many map-
ping and derived a system of upper and lower probabilities for T based on a
probability measure m. Its real thrust, of course, is to view a probability mea-
sure as defining degrees of belief, which quantifies a state of partial knowledge
arising from a source of imprecise information. Since information is imprecise,
it does not always pinpoint a unique value of the variable of interest. Thus, a
multivalued mapping is a necessary representation for imprecise information.
Since there may be multiple independent sources of information, a mechanism
for combining such sources becomes a necessity for a general calculus oriented
toward statistical inference and probabilistic reasoning. Therefore, besides the
formal definitions of upper and lower probabilities, distributions, and expec-
tations, Chap. 3 presented a rule for deriving upper and lower conditional
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probabilities and further generalized it into a rule of combining independent
sources of information, which was later called Dempster’s rule of combination
by Shafer [34].

The concept of upper and lower probabilities can be traced back to Boole
[2]. Before Dempster, there were already other approaches to the concept
[16, 18, 38, 39]. Dempster’s multivalued mappings provides a rigorous device
for generating these probabilities. As Chap. 3 showed, however, Dempster’s
concept is not the same as alternative ones. For example, the set of probabili-
ties compatible with Dempster’s upper and lower probabilities is smaller than
alternatives. The unique feature of Dempster’s concept is to map upper and
lower probabilities to a single probability measure, allowing for a more rigorous
logic for defining conditioning. The resulting upper and lower conditionals are,
of course, not same as upper and lower bonds of conditionals. Using standard
notations, let Bel(A) and Pl(A) be Dempster’s lower and upper probabilities.
Then, given a subset E with Pl(E) > 0, Dempster’s conditional is

Bel(A | E) =
Bel(A ∪E)−Bel(E)

1−Bel(E)
. (19)

In contrast, let P be the set of probability measures compatible with Bel:
P = {P | P (A) ≥ Bel(A)}. Given E with P (E) > 0, we can take Bayesian
conditioning of P in P: PE(A) = P (A)/P (E). Let PE be the set of resulting
conditionals: PE = {PE | P ∈ P}. Then, the lower envelope of PE exists
when Bel(E) > 0: ∀A ⊂ E,

P (A | E) =
Bel(A)

Bel(A) + 1−Bel(A ∪ E)
. (20)

In general, we have Bel(A | E) ≥ P (A | E). Therefore, Chap. 3 not only
established the mathematical foundation for the theory of belief functions
but also clarified many confusions that later arose in the literature [29]. In
fact, to avoid these confusions, Shafer [34] renamed Dempster’s upper and
lower probabilities into respectively plausibility and belief functions.

Being a statistician, Dempster first explicitly applied his rule of combina-
tion to statistical inference. He did this in Chap. 4, first published in 1968 [10].
Although Chap. 4 derived upper and lower probabilities for the same param-
eters, it did so without explicitly invoking the rule of combination. Chap. 4
framed the inference problem using a formal model (S,m,Γ, T ), where S is
a population, m is a probability measure governing how each individual may
be sampled from the population, and T = X ×Θ is the product of the set of
all possible observations x and the set of all possible parameter values θ. A
multivalued mapping Γ : S → T was then used to derive a restricted mapping
Γθ : S → X when the parameter θ is fixed or Γx : S → Θ when an observation
x is made. Thus, one could obtain two restricted models: (S,m,Γθ, X) and
(S,m,Γx, Θ). The former may be used to derive upper and lower probability
for future observations x, and the latter to derive the same for the param-
eter θ. When there are multiple independent observations, one can produce
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one restricted model for each observation and then combine these models
using Dempster’s rule to derive combined upper and lower probabilities for θ.
When a prior distribution p(θ) is available, it can be regarded as yet another
restricted model (Θ, p, I, Θ), where I is the identity mapping, which can be
also combined with the restricted models based on sample observations. There-
fore, Chap. 4 consolidated the fiducial arguments and Bayesian inference and
brought them under the same umbrella of belief functions. It not only showed
the feasibility of probabilistic inference without priors but also re-expressed
Bayesian inference as the combination of independent sources of information,
including priors and sample observations.

As side products of its application of belief functions, Chap. 4 made addi-
tional theoretical contributions. The first was the concept of total ignorance
and its representation via upper and lower probabilities. This provided a sim-
ple resolution to the old controversy about the representation of ignorance via
a probability distribution, and led to the concept of vacuous belief function
[34] that showcased the superiority of belief functions for subjective judg-
ments. The second was the idea of viewing prior knowledge as a source of
information similar to other sources such as sample observations to be com-
bined via Dempster’s rule. This idea led to the concept of Bayesian belief
functions [34] and embraced Bayesian probabilities as a special case of belief
functions. The third was the idea of viewing a multivalued mapping as a ran-
dom set. This idea led not only to an alternative formalization of the theory
of belief functions but also to an alternative perspective on belief functions
as the extension of probability distributions over random variables. It also
allowed for a rigorous mathematical foundation for belief functions.

Chapters 2–4 established most of the basic ideas and concepts for a new
theory of probable reasoning. Without extensions, refinements, and reinter-
pretations by Glenn Shafer, however, these elements would still have been in
the narrow statistical confines of random sampling. While studying for his
Ph.D. at Harvard, Shafer got acquainted with Dempster’s work. Later he was
asked to make a presentation on Dempster’s upper and lower probabilities at
Princeton. His book—A Mathematical Theory of Evidence [34]—was a result
of his ensuing effort. Characterized by Shafer’s intellectual boldness, the book
announced the establishment of a new mathematical theory for probable rea-
soning as a genuine generalization of or superior alternative to subjective
Bayesian theory. To distinguish the theory from theories of imprecise prob-
ability, the book renamed Dempster’s lower and upper probabilities respec-
tively as belief and plausibility functions. Whereas Dempster had empha-
sized the derivation of lower and upper probabilities from S, m and Γ, Shafer
regarded belief functions as a fundamental concept—an alternative to subjec-
tive probabilities. Following Andrei Kolmogorov, who built probability theory
on three mathematical axioms, Shafer built his theory of belief functions on
three similar axioms, with the additivity of probabilities being replaced by
the super-additivity of belief functions. He showed that a belief function sat-
isfied the three axioms if and only if it was as derived from a basic probability
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assignmentm(2). It was this connection that allowed Shafer to simplify Demp-
ster’s four-element model (S,m,Γ, T ) into a two element model (m,T ), which
assigned probabilitiesm directly to subsets of the target space T while keeping
S and Γ implicit. It was also this connection that allowed belief functions to
express partial beliefs for probable reasoning using the two basic ideas due to
Arthur Dempster: the idea of obtaining degrees of belief for one question from
subjective probabilities for a related question (evidence), and Dempster’s rule
for combining degrees of belief when they were based on independent items
of evidence.

Besides providing new terminologies, notations, and the axiomatization,
Shafer also greatly extended Dempster’s mathematical results. Most notable
are the concepts of support functions and weights of evidence. These concepts
served two purposes. First, they showed how weights of evidence might be
converted into degrees of belief and combined using Dempster’s rule, and
thus showed how the theory of belief functions could be rebuilt and applied
around these concepts. Second, they justified the theory of belief functions
from works of Jakob Bernoulli and other ancient scholars on probabilities. It
was probably from these works Shafer generated his idea of re-interpreting
Dempster’s work as a theory of probable reasoning through the combination
of evidence.

The notion of weights of evidence can be traced back to Jakob (James,
Jacques) Bernoulli in his book Ars Conjectandi. Jakob Bernoulli died in 1705.
His book was given to the printer by his nephew Nicholas Bernoulli, under the
pressure of mathematicians. After it was published in 1713 by the Thurney-
sen Brothers Press in Basel, Ars Conjectandi became the founding document
of mathematical probability, replacing Calculating in Games of Chance by
Christian Huygens, which was the first ever printed book on probability and
served as the standard text for over 50 years after 1657. Ars Conjectandi
consisted of four parts. Part 1 was an improved version of Huygens’ book on
games of chance with annotations. This part made many well-known contri-
butions in elementary probability theory. For example, the notion of Bernoulli
trials, the multiplication rule for independent events, and the Bernoulli dis-
tribution were all presented in this part. Part 2 offered a thorough treatment
of the mathematics of combinations and permutations, including the numbers
known as “Bernoulli numbers.” Part 3 solved some complicated problems of
games of chance using combinatorics. The final part manifested Bernoulli’s
crowning achievement in mathematical probability. For example, he proved
what we now know as the weak law of large numbers. A complete English
translation of the book was done only recently by Edith Dudley Sylla [1].
Part 4 was translated into English by Bing Sung [41] with a preface by
Arthur Dempster.

Part 4 of Ars Conjectandi envisioned the application of probability the-
ory to economics, morality, and politics. Bernoulli did not in fact make such
practical applications. But he did succeed in formulating a concept of mathe-
matical probability that went beyond the application to games of chance. He
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characterized probability as a degree of certainty that differs from absolute
certainty as a part differs from a whole. The art of conjecture was to measure
as exactly as possible the probabilities of things. With respect to games of
chance, the symmetry of physical devices suggested we could calculate the
probability of a specified outcome as the number of favorable cases divided by
the total number of cases. In many other situations, however, such symmetry
could not be relied upon and the classical procedure could not be applied.
Thus, probability was a measure of imperfect knowledge and was personal in
the sense that it varied from person to person according to his knowledge. This
statement has credited Bernoulli today as the father of subjective probability
theory. Nevertheless, it is instructive to compare Bernoulli’s notion with sev-
eral distinct modern ones of subjective probability. In the personalist theory
of Bruno de Finetti, Frank P. Ramsey, and Leonard J. Savage, probabilities
may be unknown only insofar as one “fails to know one’s own mind” and are
measured by the betting ratio at which the person in question is willing to bet
on the truth of the statement. In the logical theory of John M. Keynes and
Harold Jeffreys, probabilities may be unknown by failure to do logic but no
experiment will help check up on logical probability. In the subjective theory
of Werner Heisenberg, probability contains the objective element of tendency
and the subjective element of incomplete knowledge. An observation cannot
predict a result with certainty; what can be predicted is the probability of a
certain result, and this probability can be checked by repeating the experiment
many times. In contrast, Bernoulli believed that everything was governed by
God and causal mechanism. As long as we knew the causes, what could seem
to be to one person at one time an uncertain event might be at another time
to another person (indeed, to the very same person) a deterministic event.
From this comparison, Hacking [19] concluded that Bernoulli’s subjectivism
was less like the personalist or logical point of view, and more like that of the
physicists.

Because he wanted to measure probabilities, Bernoulli was concerned with
how to combine evidence of different sorts. He stated that probabilities are
estimated by the number of cases and the weight of evidence.1 His first scheme
of combination followed the Port Royal logic of Pascal and distinguished inter-
nal versus external evidence. Internal evidence arises from the topics—cause,
effect, subject, sign, circumstance, or anything that directly connected to
the question of interest. External evidence appeals to human authority or
testimony. His second scheme descended from Gottfried Wilhelm Leibniz’s
notion of pure and mixed evidence. Pure evidence proves a thing with a cer-
tain probability without giving a positive probability to the opposite thing,
whereas mixed evidence proves a thing with a certain probability and proved
the opposite with the complementary probability. That Gracchus turned pale

1 Bernoulli used argumentum instead of evidence. This Latin word has a broad
sense emcompassing the meanings of the modern English words “evidence” and
“argument.”
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when interrogated is an example of pure evidence. To assess the probability
of a thing, one can list all pieces of evidence. If all pieces are mixed, then the
probability is the number of favorable cases divided by the total number of
cases. The resulting probabilities are additive and complementary. However,
if all or some pieces of evidence are pure, Bernoulli formulated a rule of com-
bination, which Shafer [34] showed was a special case of Dempster’s rule. The
resulting probabilities may not be additive and complementary.

Clearly, Bernoulli’s notion of non-additive probabilities was the ancestor of
what we now call belief functions. This explains why Shafer reinterpreted lower
probabilities as epistemic probabilities or degrees of belief while abandoning
the term of lower probability, which can arise as lower bounds over classes
of Bayesian probabilities. It was also clearly Bernoulli’s idea of probability
assessment through combining weights of evidence that motivated Shafer to
recast Dempster’s theory of random sampling into a theory of evidence and
to represent evidence using support functions.

4 Classic Works

Although they are presented chronologically, the classic contributions in this
volume can be grouped, at least roughly, by their content and emphasis into
seven categories: conceptual foundations, philosophical perspectives, theoret-
ical extensions, alternative interpretations, and applications to artificial intel-
ligence, decision making, and statistical inference.

4.1 Conceptual Foundations

Four chapters may be said to have established the conceptual foundation of
belief functions presented in Shafer’s book [34]: Chaps. 2–4 by Dempster and
Chap. 7 by Shafer.

The previous section has given a detailed account of Chaps. 2–4. In brief,
Chap. 2 proposed the multivalued mapping approach to deriving upper and
lower probabilities to replace posterior distributions in the absence of Bayesian
priors. It was the first belief-function treatment of Fisher’s fiducial method.
Chapter 3 envisioned the problem of obtaining degrees of belief for one ques-
tion from a probability measure of a related question through a multivalued
mapping. It introduced Dempster’s role of combination and a corresponding
notion of commonality functions. Chapter 4 explicitly applied Dempster’s rule
to statistical inference and marked the birth of generalized Bayesian theory
or a theory of belief functions.

Chapter 7 extended the concept of belief functions defined in [34] to con-
tinuous frames of discernment. Following the approach by Gustave Choquet
[4], the chapter considered a subset in a continuous frame as the limit of
a sequence of finite subsets, and proposed the concepts of continuity and
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condensability. Continuity was defined in the same way as the continuity of a
Lebesgue measure. Condensability was a key assumption for the extension: a
belief function is condensable if its plausibility function Pl satisfies

Pl(A) = sup{Pl(B) | B ⊂ A and B is finite}.

The chapter then showed how to extend a continuous or condensable belief
function on an algebra of (finite) subsets of Θ—a set of subsets that is closed
under both set union and complement operations—to a continuous or con-
densable belief function on the power set 2Θ. The main tool used for such
an extension was Choquet’s integral representation theorem, which implies
that every belief function can be represented by an allocation of probability.
Technically, for every belief function Bel on an algebra of subsets of Θ, there
exists a homomorphic mapping ρ into a probability algebra with a positive
and additive probability measure m such that ρ(A ∩ B) = ρ(A) ∩ ρ(B) and
Bel(A) =

∫
ρ(A)dm(ρ).

4.2 Philosophical Perspectives

We place in this group Chaps. 6 and 9 by Glenn Shafer, Chap. 13 by Glenn
Shafer and Amos Tversky, and Chap. 30 by Arthur P. Dempster. All these
chapters justify the theory of belief functions from broader perspectives.

Chapter 6 provided a historical account of non-additive probabilities as
well as rules of combining evidence. It focused on the work of Jakob Bernoulli
and its extension by Johann Heinrich Lambert, a 18th century scholar. It
related these ancient concepts of non-additive probabilities to the modern
concept of belief functions and showed that both Bernoulli and Lambert’s
rules of combination are special cases of Dempster’s rule.

Chapter 9 systematically examined the critiques by Bayesian or imprecise
probability theorists. Both Bayesian and lower probability theories can appeal
to the betting interpretation or the Dutch-Book argument for the semantics
of its degrees of belief. What is the semantics of belief for a belief function?
In the literature, some authors appeal to the probability of provability [28,
31, 37] or the support of arguments [23, 21]. Nevertheless, Chap. 9 argued
that Bayesian, imprecise probability, and belief functions are all constructive
theories for probability judgment. They need not rely for their meaning and
justification on any behavioral interpretation. Instead, the degree of belief is
the result of comparing evidence to knowledge about chances governing the
truth. The chapter proposed the randomly coded message as a scale for such
a comparison: suppose someone chose a code at random from a list of codes
and we knew the probability of each code being chosen. Then m(A) is the
sum of probabilities of codes, by which the decoded message is A.

Furthering the idea of constructive probability, Chap. 13 dealt with human
judgments of probabilities and belief functions. It illustrated that both
Bayesian theory and the theory of belief functions were formal languages for
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one to analyze evidence and express his degrees of belief; they had the usual
components of a language, including vocabularies, semantics, and syntax. It
suggested that making a probability judgment was a process of conducting a
mental experiment and hence the quality of the experimental design affected
the quality of the judgment. The chapter offered some alternative designs for
using the languages of Bayesian probabilities and belief functions. For exam-
ple, the total-evidence design often used with Bayesian theory is distinguished
from the belief function that emphasizes the decomposition of evidence. The
chapter emphasized that theories of subjective probability (including belief
functions) were not psychological models, either normative or descriptive,
for making judgments. An experimental design for using such a theory (or
its semantics and syntax) must guide the process of making probabilistic
judgments.

Chapter 30 is a new contribution based on the 1998 R.A. Fisher Memo-
rial Lecture.2 The theory of belief functions arose from the need for a new
scientific method unifying various statistical methods, including fiducial and
Bayesian methods. As opposed to Bayesian, Fisherian, or frequentist statis-
tics, Dempster proposed logicist statistics as a unified way to study principled
and explicit reasoning about uncertainty. The key concept was formal sub-
jective probability, which interprets each numerical probability as a degree
of certainty reflecting specific formalized evidence and information within a
formal mathematical model. Dempster showed that this concept encompasses
both modern Bayesian and traditional Fisherian thinking, and he interpreted
frequentist theory in a way that gives appropriate weights to both science and
mathematics, and to both subjective and objective elements. He also sug-
gested that the Dempster-Shafer theory embodies a more suitable paradigm
for logicist statistical inference than Bayesian inference and is logicist in a
fundamental way because it integrates nonprobabilistic “propositional” logic
with probabilistic reasoning.

4.3 Theoretical Extensions

This group contains Chap. 5 by Hung T. Nguyen, Chap. 11 by Ronald
R. Yager, Chap. 15 by Nevin L. Zhang, Chap. 19 by Alain Chateauneuf and
Jean-Yves Jaffray, and Chap. 21 by John Yen. These five chapters extended
the theory of belief functions in various ways.

Chapter 5, by Nguyen, was the first research work on belief functions
published by someone other than Dempster and Shafer. It carried out the
idea in Chap. 3 by Dempster that a multivalued mapping might be consid-
ered a random set and established the connection between belief functions
and random sets. It showed that, in finite cases, the probability distribution

2 The Fisher Lectureship and Award was established in 1963 by the Committee
of Presidents of Statistical Societies to recognize the importance of statistical
methods for scientific investigations.
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of a random set is a basic probability assignment and a belief function is
deduced from the probability distribution of the random set. It characterized
the condensability of belief functions of Chap. 7 using the notion of regularity
of probability measures. It showed that a plausibility function is condensable
if and only if the corresponding probability distribution of a random set is
regular.

In probability theory, entropy is a measure of the disorder and randomness
present in a distribution. In fuzzy logic, specificity is an overall measure of
how much a possibility distribution points to one and only one element as
the manifestation of a fuzzy variable. A belief function has both randomness
and non-specificity components. Thus, Chap. 11, by Yager, developed similar
concepts for belief functions. For a belief function with mass function m and
plausibility function Pl, its entropy is

E = −
∑
{m(A) log(Pl(A)) | A ⊆ Θ}.

This formula reduces to Shannon entropy for Bayesian belief functions. It
attains zero entropy for consonant belief functions and the maximum entropy
when focal elements are disjoint and when the belief mass is equally dis-
tributed among all focal elements. The specificity of a belief function with
mass function m is defined as

S =
∑
{m(A)
|A| | φ 	= A ⊆ Θ}.

This measure reduces to the specificity of a fuzzy variable for a consonant
belief function. It reaches the minimum value for a vacuous belief function
and the maximum value for Bayesian belief functions. Chapter 11 led to
many studies on the measurement of total uncertainty encompassing both
randomness and nonspecificity. One noteworthy contribution [27] uses a set
of reasonable axioms to derive measures such as

H =
∑
{m(A) log(

|A|
m(A)

) | φ 	= A ⊆ Θ}.

This measure has many desirable features, including additivity for indepen-
dent belief functions and reduced computational complexity.

Chapter 15, by Zhang, was one of few contributions that directly improved
the classic book by Shafer [34]. Note that the weight of evidence provides a
full assessment of evidence for simple and separable support functions. Can a
similar concept be extended to support functions that may not be separable?
Shafer [34] approached the problem indirectly through notions of internal
conflict and impingement. For any separable support function T, let WT and
vT be respectively its weight of internal conflict and impingement function.
For any support function S over Θ, let εS be the set of all its extensions
that are separable support functions over some refinements of Θ. Then the
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weight of internal conflict for S was defined as the minimum weight of internal
conflict among all separable support functions in εS :

W = inf{WT | T ∈ εS}. (21)

Similarly, the impingement function of S was derived from those of all its
separable extensions: for any subset A ⊂ Θ,

v(A) = inf{vT (ω(A)) | T ∈ εS , ω is a refinement mapping}. (22)

Since a separable support function itself is a support function, the definitions
in (21) and (22) should also apply to separable support functions and the
result should be consistent, i.e., if S is a separable support function, then
W = WS and v = vS . Shafer [34] proved the consistency by assuming the
weight-of-conflict conjecture, which has not been proved to be true yet. This
chapter proved the consistency without the conjecture.

As we see in Chaps. 5 and 7, a belief function is a monotone capacity of
infinite order whereas a mass function is the Möbius inversion of the capacity.
Chapter 19, by Chateauneuf and Jaffray, studied the properties of capaci-
ties of all orders, whose relationship is that, for any K ≥ 2, if a capacity is
K-monotone, then it is also L-monotone for K ≥ L ≥ 2 and 1-monotone (or
monotonic in usual sense) if f(θ) ≥ 0 for any θ ∈ Θ. A capacity is defined as
∞-monotone if it is K-monotone for any K ≥ 2. The chapter obtained some
useful results characterizing the capacities through Möbius transformations.
For example, it showed that, capacity f is K-monotone (K ≥ 2) if and only
if, for any A and C ⊂ Θ with 2 ≤ |C| ≤ K, its Möbius inversion m satisfies:

∑

C⊂B⊂A
m(B) ≥ 0.

The chapter also characterized probability distributions that dominate (or
“are compatible with” in terms of Chap. 2) a belief function. It showed that
if the probability distribution P satisfies P (A) ≥ f(A) for any A, then P is
the weighted average of the Möbius inversions of f :

P (x) =
∑

x∈B
λ(B, x)m(B).

It generalized a result in Chap. 3 by Dempster and showed f is∞-monotone if
and only if every probability distribution dominating f is the weighted average
of Möbius inversions.

Many scholars in the area of fuzzy logic consider Chap. 21, by Yen, an
outstanding paper. It is a favorite reference on the fuzzification of belief
functions. It studied the computation of beliefs and plausibilities for fuzzy
sets and extended Dempster’s rule to fuzzy logic. It significantly improved
other approaches by Zadeh, Ishizuka, Yager, and Ogawa while maintaining
the semantics of the Dempster-Shafer theory of belief functions as well as
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possibility theory. It brought together belief functions and fuzzy logic into
a hybrid approach to reasoning under various kinds of uncertainty in intel-
ligent systems. The chapter started with a novel viewpoint, from which the
computation of Bel(A) was formulated as a linear programming problem:

min
∑

x∈A

∑

B

m(x,B)

s.t. m(x,B) ≥ 0;m(x,B) = 0 ∀x /∈ B;
∑

x

m(x,B) = m(B),

here m(x,B) denoted the probability mass allocated to x from m(B). Then,
when A was a fuzzy set, the chapter proposed to extend the problem into one
of minimizing the extended objective function:

∑

x∈A

∑

B

m(x,B)μA(x),

here μA(x) denoted the membership of x in A. If all focal elements were crisp
(non-fuzzy), then the solution to the generalized problem is

Bel(A) =
∑

m(B) inf
x∈B

μA(x).

If any focal element B is fuzzy, it will be broken into one or more crisp focal
elements, each of which is an α− cut of B:

Bα = {x | x ∈ B, μB(x) ≥ α},

with a basic probability mass

m(Bα) = (αi − αi−1)m(B),

here α0, α1, α2, ..., αn is a series of membership degrees of increasing order with
α0 = 0 and αn = 1. For example, if focal element B = {(yound, 0.4), (old,
0.7)} with m(B) = 0.8, then we get two α–cuts as follows:B0.4 = {yound, old}
and B0.7 = {old} with basic probability masses m(B0.4) = (0.4−0)×m(B) =
0.32 and m(B0.7) = (0.7 − 0.4)×m(B) = 0.24. Then, Bel(A), for any fuzzy
set A, is

Bel(A) =
∑

B

m(B)
∑

i

(αi − αi−1) inf
x∈Aαi

μA(x).

The approach to extending Dempster’s rule was also novel. It considered a
multivalued mapping S → T as a compatibility relation S × T and general-
ized it to a fuzzy relation C : 2S×T → [0, 1], which is a joint possibility dis-
tribution. It considered Dempster’s rule as the combination of compatibility
relations and generalized it as the combination of fuzzy relations, which in turn
is equivalent to the multiplication of noninteractive possibility distributions.
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This led to the generalized rule for combining fuzzy belief functions. Let m1

and m2 be two fuzzy mass functions. Then,

m1 ⊕m2(C) =
∑

A∩B=C maxx μA∩B(x)m1(A)m2(B)
1−

∑
A,B(1 −maxx μA∩B(x))m1(A)m2(B)

.

4.4 Artificial Intelligence

Five chapters apply belief functions to uncertain reasoning in artificial intel-
ligence. Chapter 8 by Jeffrey Barnett was the first paper dealing with com-
putational issues in implementing Dempster’s rule of combination. It pro-
posed an algorithm based on the very strong assumption that each piece
of evidence either confirms or denies a single proposition, i.e., all focal ele-
ments are singletons or their negations. Chapter 12 by Jean Gordon and
Edward Shortliffe proposed an improved algorithm capable of handling hier-
archical evidence, where focal elements and their negations could be arranged
in a tree-like structure. To avoid the exponential explosion in computations,
the algorithm employed approximation to combine evidence. The approxima-
tion was usually reasonable but did give unsatisfactory results in the case of
highly conflicting evidence. In addition, the approach did not produce the
degrees of belief for all focal elements involved in the computation except
for those in the tree. Chapter 18 by Glenn Shafer and Roger Logan pre-
sented a further improvement that is at least equally efficient while remov-
ing all the above limitations. These chapters built upon each other techni-
cally but are all included here because they made the history in distinct
ways. Chapter 8 coined the name “Dempster-Shafer theory” and introduced
it to the AI community. It was clearly one of the initial sources that led
Edward Shortliffe to realize the relevance and applicability of belief functions
to the issues addressed by the certainty factor model implemented in the
medical advising program MYCIN. Because of their role in MYCIN, Gor-
don and Shortliffe were probably the most influential of the authors who
made belief functions widely known as “the Dempster-Shafer theory” to AI
researchers.

Chapter 16 by John D. Lowrence, Thomas D. Garvey, and Thomas M.
Strat proposed a formal framework based on belief functions for knowledge
representation and uncertainty reasoning in expert systems, setting belief
functions up as an alternative to rules, frames, and semantic networks. It
introduced the new term “evidential reasoning” for the framework and demon-
strated its application in the Gister project at SRI International. Stem-
ming from the application of belief functions to Navy intelligence problems,
Chap. 16 was very practical in nature. Its approach to knowledge represen-
tation, i.e., modeling compatibility relations, provided a perfect example to
illustrate the applicability of belief functions to real problems.

In the framework of Chap. 16, each piece of knowledge is represented by
a belief function. Making inferences boils down to combining all component
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belief functions and marginalizing the joint belief function into a subframe
of discernment (see definition in (13)). Of course, such a straightforward
approach would be very inefficient, if not infeasible, when the size of the joint
frame is large. A creative solution to the problem is so-called local computa-
tion that computes marginals without computing the joint. The basic idea is
to arrange all the frames of discernment into a tree-structured graph, called a
join-tree or Markov tree, and propagate knowledge by sending and absorbing
messages step-by-step in the tree. Each step involves sending a message from
a node to a neighbor and thus involves only a small number of frames that
are near each other in the join-tree.

Scholars in belief functions, including Glenn Shafer, Prakash P. Shenoy,
Augustine Kong, and Khaled Mellouli, pioneered the local computation
method. Later they demonstrated the applicability of this method to other cal-
culi, including Bayesian probabilities and fuzzy logics. Chapter 20, by Shenoy
and Shafer, presented an abstract framework that covered diverse local com-
putation models as special cases. It characterized many types of computational
problems as one of applying two operators: combination and marginalization,
where combination corresponds to the integration of two or more factors into
a joint model and marginalization corresponds to the projection of a model to
a subset of variables. The chapter showed that local computation was appli-
cable to such problems if the two operators satisfied four axioms. For belief
functions, for example, these axioms can be represented as follows:

Axiom 4 Combination operator ⊕ is commutative: for any Bel1 and Bel2,

Bel1 ⊕Bel2 = Bel2 ⊕Bel1.

Axiom 5 Combination operator ⊕ is associative: for any Bel1, Bel2, and
Bel3,

Bel1 ⊕ (Bel2 ⊕Bel3) = (Bel1 ⊕Bel2)⊕Bel3.

Axiom 6 Marginalization is consonant: for any Bel on the frame Θ(I) and
K ⊂ J ⊂ I. Then

(Bel↓J)↓K = Bel↓K .

Axiom 7 Marginalization is distributive over combination: for any Bel1 and
Bel2 and I,

(Bel1 ⊕Bel2)↓I = (Bel1)↓I ⊕ (Bel2)↓I .

Chapter 20 also presented the Shenoy-Shafer architecture for carrying
out local computation over a Markov tree, and demonstrated the algorithm
using an example of probability propagation. Compared with other simi-
lar approaches (e.g., [24]), this architecture gains some efficiency by avoid-
ing divisions, which are required by other methods for obtaining conditional
probabilities.
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4.5 Decision Making

The theory of belief functions is not meant to be a normative or descriptive
theory for decision making. Thus, it does not provide normative axioms or
behavioral predictions on how to make decisions and judgments. Because of
its expressive power in encoding evidence or modeling uncertainty, however, it
has exceptional prescriptive value as a decision support tool. Here we review
four chapters demonstrating creative use of belief functions for the purpose,
including Chap. 23 by Rajendra P. Srivastava and Glenn Shafer, Chap. 24
by Ronald R. Yager, Chap. 27 by Galina Rogova, and Chap. 29 by Thierry
Denoeux.

Chapter 23, by Srivastava and Shafer, applied belief functions to audit
decision-making. The chapter derived analytical expressions of the audit risk
at three levels: the financial statement level, the account level, and the audit
objective level. It made a distinct contribution to the field by showing how
to interpret and use plausibility numbers to encode accounting evidence. It
also proposed a hierarchical network for evidential reasoning and dealt with
belief propagation through the “AND” gates, which were inherent in business
decision problems.

There have been numerous attempts to incorporate belief functions into
expected utility theory to take advantage of their flexibility in uncertainty
modeling. Chapter 24, by Yager, showcased such attempts. It is included
here because it is theoretically sound and computationally feasible. Whereas
other work reduced Dempster-Shafer degrees of belief to probabilities for use
as decision weights, this chapter proposed deriving decision weights from a
mathematical programming model. Once we set a pessimism level—a neces-
sary concept for decision making under uncertainty—entropy maximization
problem gives weights to be assigned to each outcome within a focal element.
The weights then determine the weighted average value of outcomes in the
focal element, which along with the corresponding basic probability numbers
determine an overall value for each choice. It is shown that the formalism
unifies several common decision models for decision-making under risk, uncer-
tainty, and ignorance. Its ordered weighting mechanism is also consistent with
psychological findings that have led decision theorists to generalize expected
utility theory to so-called rank-dependent utility [25, 26, 30].

Chapter 27, by Rogova, is a real application with real results. The topic is
very timely. In machine learning, the idea of boosting, i.e., combining simple
poor learners to form an ensemble that outperforms individual single ensem-
ble members while avoiding overfitting, is gaining a lot of interest in the last
decade. In theory, it is known that learners, each performing only slightly
better than random, can be combined to form an arbitrarily good ensem-
ble hypothesis [20]. Schapire [33] was the first to provide a provably polyno-
mial time boosting algorithm. He and his colleagues [13] applied boosting to
a real-world optical character recognition by using neural networks as base
learners. Chapter 26 demonstrated the application of Dempster’s rule to the
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same problem. Interestingly, it also used neural networks as base learners. It
showed that the proposed approach allowed 15–30% reduction of misclassi-
fication error compared to the best individual classifier. The method made
Eastman Kodak one of the small group of the leaders in an industrial compe-
tition for the best optical recognition algorithm.

Chapter 29, by Denoeux, is considered an outstanding application of belief
functions to decision making. It proposed a new approach to pattern classifi-
cation that considered each of the k-nearest neighbors as an item of evidence
and used Dempster’s rule of combination to pool all evidence together to form
a judgment concerning the class membership of a new incoming pattern. Sim-
ulation results showed that the proposed approach outperformed the classic
voting k-nearest neighbor approach as well as its distance-weighted variant.

4.6 Statistical Inference

Parametric statistical inference is not only the source of motivation for the the-
ory of belief functions but also one of its most important application domains.
Chapter 4 demonstrated the potential of belief functions for unifying the tra-
ditional fiducial argument and modern Bayesian inference. Here we review
three additional chapters revisiting the problem of parametric inference using
belief functions, including Chap. 10 by Glenn Shafer, Chap. 22 by Jean-Yves
Jaffray, and Chap. 25 by Philippe Smets.

In his book [34], Shafer suggested translating each observation into a con-
sonant belief function on a parameter based on the normalized likelihood. He
recognized that this approach does not possess the desirable property that
the result using a set of n independent observations be equal to the combi-
nation of the n belief functions obtained from the individual observations.
Chapter 10, by Shafer, discussed three alternative approaches, including the
fiducial argument, the generalized Bayesian method of Chap. 4, and the con-
ditional embedding method of Chap. 25 (see below). It showed that these
methods produce coherent results when the nature of the evidence establish-
ing the parametric model is taken into account.

Chapter 22, by Jaffray, studied the effect of Bayesian conditioning when a
belief function is (mis)understood as the lower envelope of compatible prob-
ability measures. It obtained two important results. First, it reproved the
result by Fagin and Halpern [15] that the lower envelope of all Bayesian con-
ditionals is still a belief function, and going beyond Fagin and Halpern, it
developed an explicit expression for the mass function for the lower enve-
lope. Second, it showed that the resulting lower envelope does not charac-
terize the set of all conditionals. Let QE be the set of Bayesian conditionals
that dominate P (A | E) (see (20)). Then, PE ⊂ QE if and only if there
exist subsets A and B such that Bel(A ∩ B) > 0, Bel(A ∪ B) < 1, and
Bel(A ∪ B) > Bel(A) + Bel(B) − Bel(A ∩ B) (see Sect. 3 for the definition
of PE). Also, PE ⊂ QE if and only if there exist E and F with F ⊂ E and
Bel(F ) > 0 such that the lower envelopes of Bayesian conditionals do not
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satisfy P ((A | E) | F ) = P (A | F ), which is observed by both Bayesian and
Dempster’s conditioning.

A belief function Bel(A) may be re-expressed in a conditional form as
Bel(A | E) given evidence E. Then Dempster’s rule may be called the con-
junctive rule of combination, because Bel1(A | E1)⊕Bel2(A | E2) is the com-
bined belief function when both E1 and E2 are true. Chapter 25, by Smets,
proposed the disjunctive rule of combination that allows the combination of
two belief functions induced by two pieces of evidence, of which only one can
be true. The disjunctive rule is intuitive when applied to parametric inference
problems. Suppose B is a set of possible parameter values, one of which is
true. For each θ ∈ B, let us assume there is a belief function Bel(A | θ) repre-
senting the likelihood that the true value of X is in A when the parameter is
θ. Then the combination of these belief functions follow the disjunctive rule
as

Bel(A | B) =
∏

θ∈B Bel(A | θ).

The disjunctive rule corresponds the multiplication of belief functions whereas
the conjunctive rule corresponds to the multiplication of commonality func-
tions. Based on the disjunctive rule, the chapter derived the generalized
Bayesian theorem, where conditional probabilities are replaced by belief func-
tions and prior probabilities by vacuous belief functions. Let B be a set of
possible parameter values and A be a set of observations. Let Bel(A | θ)
be the likelihood that X is in A given parameter θ. Then, the generalized
Bayesian formula represents the posterior belief of B given A as follows:

Bel(B | A) =
∏

θ∈B Bel(A | θ)−
∏

θ∈Θ Bel(A | θ).

Some results in Chap. 25 were initially developed in an unpublished dis-
sertation [36]. The generalized Bayesian theorem permits the induction of
a belief function for parameters from an observation, leading to a new statis-
tical method, called conditional embedding, which was extensively discussed
in Chap. 10. Here the author represented them in his framework of transfer-
able belief functions (see below) and attempted to develop a new approach
for belief function propagation in a directed belief network.

4.7 Alternative Interpretations

Besides theoretical foundations, perspectives, advances, and applications,
there have been tens of studies targeting alternative formalisms and interpre-
tations of belief functions. Here we review four representative ones: Chap. 14
by Didier Dubois and Henri Prade, Chap. 17 by Enrique H. Ruspini, Chap. 26
by Jürg Kohlas and Paul-André Monney, and Chap. 28 by Philippe Smets and
Robert Kennes.

There are many connections between fuzzy logic and belief functions. As
we have seen earlier, possibility and necessity functions are consonant plausi-
bility and support functions that have nested focal elements. Chapter 14, by
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Dubois and Prade, exposed another connection between bodies of evidence
and fuzzy sets. The classic concept of a set is simply a collection of elements,
e.g., A = {x, y, z}. The concept of a fuzzy set extends it to include a member-
ship function m → [0, 1] describing a graded assessment of the membership
of elements in relation to a set. For example, A = {(x, 0.3), (y, 0.7), (z, 1)}
is a fuzzy set consisting of elements x, y, and z with membership grades
0.3, 0.7, and 1. Chapter 14 viewed a belief function as a further generaliza-
tion of fuzzy logic and interpreted a body of evidence to be an extended
fuzzy set, where an element was replaced by a focal element and a mem-
bership grade was replaced by a basic probability number. For example,
A = {({x, y}, 0.2), ({z}, 0.5), {x, y, z}, 0.3)} is a body of evidence representing
a belief function with m({x, y}) = 0.2, m({z}) = 0.5, and m({x, y, z}) = 0.3.
Chapter 14 studied belief functions using this formalism and introduced the
notions of extended set operations such as union, intersection, and comple-
mentation to bodies of evidence. It discussed and compared four alternative
definitions of set inclusion on bodies of evidence. Since it was easier to deal
with consonant plausibility and support functions, the chapter applied the
notions of inclusion, and pioneered the research on possibilistic approximation
of bodies of evidence.

Recall that Chap. 9, by Shafer, interpreted belief functions as a construc-
tive theory for probability judgment, and proposed the randomly coded mes-
sage as the metaphor for understanding the semantics of belief functions.
There was another popular interpretation that understood a degree of belief
as the probability of provability [37, 29]. Formally, suppose we are given a set
of logical theories, each logical theory is characterized by a set of axioms,
and each theory is assigned a probability such that the probabilities add up
to 1. The belief in a proposition A is then the sum of the probabilities of
the theories from which A follows as a logical consequence. Chapter 17, by
Ruspini, presented a similar interpretation based on the probabilities of a
modal proposition toward developing a formal theoretical foundation for evi-
dential reasoning as proposed by Lowrance, Garvey, and Strat in Chap. 16.
In particular, it extended Carnap’s notion of the epistemic universe [3] by
including all possible combined descriptions of not only the state of the real
world but also the state of knowledge that certain rational agents have about
it. It showed that the probabilities defined over a sigma algebra of subsets of
the epistemic universe have the properties of belief and mass functions and
can represent the effect of evidence on the state of knowledge of the rational
agents. The epistemic probabilities also induces lower and upper probabili-
ties in the truth algebra that are identical to the interval bounds derived in
Chap. 3. Finally, the chapter applied the epistemic logic approach to the prob-
lem of knowledge integration and obtained an additive combination formula
for integrating a wide variety of knowledge of both dependent and independent
sources. Under the assumptions of probabilistic independence, the formula is
reduced to Dempster’s rule of combination.
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Chapter 26, by Kohlas and Monney, presented the theory of hints, another
interpretation or formalism of the Dempster-Shafer theory of belief functions
based on multivalued mapping Γ from a probability space (Ω) to another
space of interest (Θ). As we explained earlier, Dempster’s original model was
(Ω, P,Γ, Θ), which in fact was exactly the same as the model of hints. The
difference lies at the interpretation of Ω, which Fisher called the sample space
of a pivotal variable, Dempster called the population of sample individuals,
but here Kohlas and Monney called the space of arguments. Note that in his
axiomatic approach, Shafer made the elements Ω and Γ implicit and assigned
basic probability numbers directly to subsets of Θ. Chapter 26 argued that
the model of a hint contains more information than its derived belief function
does, and allows for a straightforward and logical derivation of Dempster’s
rule for combining independent and dependent bodies of information.

Chapter 28, by Smets and Kennes, presented the transferable belief model
(TBM), a subjectivist and non probabilistic view of the Dempster-Shafer the-
ory of evidence. In response to the need for integrating belief functions into
a normative decision theory such as expected utility theory, the TBM dis-
tinguished clearly the credal level, where beliefs are entertained, from the
decision level where standard utility theory applies, the belief functions being
converted into probabilities using the pignistic transformation. Another main
idea underlying the TBM is the notion of unnormalized belief function and
unnormalized conjunctive rule of combination, and the interpretation of the
mass m(∅) assigned to the empty set, under the open-world assumption, as a
degree of belief in the event that the frame of discernment does not contain
the true value of the variable of interest.

5 Conclusion

In this chapter, we reviewed the basic concepts and major results presented in
Glenn Shafer’s book, provided a brief history of the conceptual development,
and summarized the major contributions of the selected classic works.

In this volume we deliberately did not include any papers that involve mis-
understandings of basic concepts. This includes well known papers by Lotfi
A. Zadeh [43] and Judea Pearl [29]. Zadeh criticized the normalization pro-
cedure in Dempster’s rule of combination. He used an example to show that,
in the case of combining two highly conflicting pieces of evidence, the result
is not intuitive, although Shafer thought otherwise [35]. Because of this crit-
icism, many authors introduced the “open world” hypothesis and assigned
a non-zero basic probability number m(∅) to the empty set (see Chap. 27).
Judea Pearl [29] was mainly concerned with the inability of belief functions
to represent imprecise probabilities. This concern was addressed 40 years ago
by Dempster (see Chap. 2). A belief function was never meant to replace or
represent an imprecise probability, which involves a larger set of compatible
probability functions than a belief function does. Instead, it is meant to be
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a faithful representation of knowledge based on evidence and to combine the
knowledge obtained from multiple independent pieces of evidence for making
provable probable inferences.

With respect to future research on belief functions, Dempster [11] called for
more realistic applications of belief functions to complex systems. He stressed
the critical need for credible and tractable models to represent the details of
complex systems where quantified uncertainties cannot be obtainable through
more traditional routes. He suggested the development of Fisher pivotals and
efficient inference algorithms, in particular two-stage MC and MCMC meth-
ods, in conjunction with simplification from local computation with graphical
structures. In order to improve public awareness of belief functions, Demp-
ster [12] recently suggested a new semantics whereby every proposition A is
associated with a triple (p, q, r), where p is the probability “for” A, i.e.,
Bel(A), q is the probability “against” A, i.e., Bel(A), and r is the probabil-
ity of “don’t know”, i.e., Pl(A)−Bel(A). He showed how this semantics can
coherently interpret the notion of p-value, which is often misconstrued as a
Bayesian probability “for” the null hypothesis. Theoretically, open problems
still remain. For example, in earlier chapters Dempster left some questions
on asymptotic properties of the combined belief function when the number of
pieces of evidence approaches infinity. In this chapter, we reviewed Shafer’s the
weight-of-conflict conjecture that is still unsolved, although Chap. 14 showed
that it was not needed for justifying the concepts of weight of internal con-
flict and impingement for a support function. Another problem is posed by
Bayesians who seek behavioral justifications of belief functions. Formally, is
there a set of behavioral axioms that justifies the existence of a belief function?
In other words, are there any necessary and sufficient conditions in terms of
how people make choices or judgments in the face of uncertainty underlying a
class of belief functions appropriate for the representation of the uncertainty?
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