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Foreword

This volume is a welcome addition to the literature on the Dempster-Shafer
theory. It may help turn the theory, which now enjoys a lively but fragmented
existence, into a more coherent and better understood set of tools for proba-
bilistic thinking in science and technology.

The volume’s title suggests that the theory had a classical period extending
from the 1960s through the 1980s. In its first two decades, it consisted of
theoretical writings by the two of us: Dempster’s work on upper and lower
probabilities in the 1960s and Shafer’s work on belief functions in the 1970s.
Then interest in applications suddenly flowered. After Jeff Barnett introduced
the name “Dempster-Shafer” in 1981 [1], the theory quickly acquired textbook
status in artificial intelligence. By the end of the classical period, around 1990,
the theory had acquired powerful computational tools, remarkably diverse
applications, and the attention of many researchers interested in variations
and generalizations.

By many measures, the theory continues to flourish in the 21st century.
Internet searches for “Dempster-Shafer” produce ever more hits. The theory
is used in many branches of technology, only a few of which are represented in
this volume. Articles on the theory and its applications appear in a remarkable
number of journals and recurring conferences. Books on the theory continue
to appear.

In other important respects, however, the theory has not been moving
forward. We still hear questions that were asked in the 1980s: How do we tell if
bodies of evidence are independent? What do we do if they are dependent? We
still encounter confusion and disagreement about how to interpret the theory.
And we still find little acceptance of the theory in mathematical statistics,
where it first began 40 years ago.

We have come to believe that three things are needed to move the theory
forward.

• A richer understanding of the uses of probability. Some authors,
including our departed friend Philippe Smets [6], have tried to distance the
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Dempster-Shafer theory from the notion of probability. But we have long
believed that the theory is best regarded as a way of using probability
[2, 4, 5]. Understanding of this point is blocked by superficial but well
entrenched dogmas that still need to be overcome.

• A richer understanding of statistical modeling. Mathematical statis-
ticians and research workers in many other communities have become
accustomed to beginning an analysis by specifying probabilities that are
supposed known except for certain parameters. Dempster-Shafer modeling
uses a different formal starting point, which may often be equally or more
legitimate as a representation of actual knowledge [3].

• Good examples. The elementary introductions to the Dempster-Shafer
theory that one finds in so many different domains are inadequate guides
for dealing with the complications that arise in real problems. We need
in-depth examples of sensible Dempster-Shafer analyses of a variety of
problems of real scientific and technological importance.

Although neither of us has made the Dempster-Shafer theory our top priority
in the last two decades, we plan to address these three challenges in the next
few years. We hope that the current volume, by putting earlier contributions
to the theory in some order, will encourage others, as it has encouraged us,
to take stock of the theory’s current state and think about how to address its
current challenges.
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Preface

This year marks the 40th anniversary of the seminal publication by Arthur
P. Dempster on upper and lower probabilities and the 30th anniversary of
the classic monograph by Glenn Shafer. These pioneering works established
a new theory for probabilistic reasoning based on a generalization of classic
probability. Central to this theory is its ability to model imprecision as well as
randomness. This capability often makes it superior to Bayesian approaches
in modeling knowledge of uncertainty profiles. In the last 30 years, the con-
cept of belief functions has penetrated into many scientific areas and been
applied in many projects. The aim of this book is to bring together a col-
lection of classic papers showcasing important theoretical advances and pio-
neering applications. The book intends to become an authoritative reference
for those working in the field of evidential reasoning as well as an important
archival reference for those working in a wide range of areas such as infor-
mation fusion, reasoning under uncertainty, artificial intelligence and decision
making in economics, engineering, and management.

The selection of these classic papers was made with the aid of many experts
from this field. While the editors did not have a specific definition of what
constitutes a classic paper they felt that the following three features should
be present in a classic paper. First, the paper should have been published
in highly regarded journal, collection, or conference proceedings. Second, the
paper must be often recommended by professors to their graduate students as
reading materials for research seminars or projects. Finally the paper initiated
a stream of research that other scholars have followed leading to an impact
on existing research and with a high prospect to continue to make an impact
on the future development of the field.

The paper selection process roughly consisted of four stages:
Classic Paper Nominations: The editors elicited nominations through two

channels. They first distributed a call for nominations in the academic news
lists for Uncertainty in Artificial Intelligence, Operations Research, Associ-
ation for Information Systems, and American Accounting Association, etc.
They then wrote to a dozen prominent scholars in the field to request
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comments on specific references. They concluded the nomination period with
over 100 nominations from over 50 researchers around the world.

Nomination Review: The editors carefully reviewed each nomination to
assess its merit. Nominations by senior, well-known scholars were given careful
consideration. As a result, the editors created a short list of 69 papers for
further review.

Paper Review: The editors reviewed each paper in the short list to assess
its overall contribution to the field. This reduces the number of papers under
consideration to 40.

Citation Analysis: We made extensive citation analyses to ensure that
all papers were influential ones in the field. In addition to eliminating
some papers, this process brought two papers not previously nominated into
the pool.

Eventually, the editors jointly selected 29 papers, each of which fall into at
least one of the following categories: 1) major conceptual innovations that lead
to the development of belief functions, establish a mathematical or semantic
foundation, build connections with other scientific areas such as fuzzy logic
and probabilistic reasoning, and extend the theory of evidence in significant
ways; 2) major methodological developments that use belief functions as a
tool for scientific research and general problem solving; 3) major computa-
tional developments that propose new algorithms or theories, or improve the
efficiency of computation involving belief functions; and 4) groundbreaking
applications that demonstrate the creative use of belief functions and con-
tribute to the applied area in significant ways.

There is a large body of literature on belief functions and there are many
truly outstanding publications that deserve recognition. We could not include
all the publications we would like to include, particularly newer ones. Some
notable streams of research include those on bridging belief functions to fuzzy
logic and imprecise probabilities, those on learning belief functions from data,
those on fast or approximate computations, those on belief functions in infinite
or continuous frames of discernment, those on adapting Dempster’s rule for
integrating dependent or highly conflicting sources of information, and those
on applying belief functions to a wide range of real problems.

The papers in this volume are in chronological order.

Ronald R. Yager, New York, NY
Liping Liu, Akron, Ohio
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Classic Works of the Dempster-Shafer Theory
of Belief Functions: An Introduction∗

Liping Liu and Ronald R. Yager

Abstract. In this chapter, we review the basic concepts of the theory of belief
functions and sketch a brief history of its conceptual development. We then pro-
vide an overview of the classic works and examine how they established a body of
knowledge on belief functions, transformed the theory into a computational tool for
evidential reasoning in artificial intelligence, opened up new avenues for applications,
and became authoritative resources for anyone who is interested in gaining further
insight into and understanding of belief functions.

1 Introduction

The Dempster-Shafer theory of belief functions was due to the seminal work
of Glenn Shafer and its conceptual forerunner—lower and upper probabili-
ties by Arthur P. Dempster. This year marks respectively the 30th and 40th
anniversaries of these two important publications. In the last 30 years, belief
functions have penetrated into many scientific areas, technological projects,
and educational enterprises. By bridging fuzzy logic and probabilistic rea-
soning, the theory of belief functions has become a primary tool for knowl-
edge representation and uncertain reasoning in expert systems. Thanks to the
availability of powerful computers and user-friendly software, belief functions
have been widely applied to business, engineering, and medical problems. The
applications include auditing, process engineering, quality control, decision
support, electronic commerce, financial asset evaluation, information fusion,
information retrieval, knowledge management, medical diagnosis, mobile ser-
vices, natural resource detection, network security, object classification, risk
management, software engineering, target tracking, etc.

To celebrate the anniversaries, to showcase the achievements, and to assess
the current state of knowledge, the editors bring together a volume of 29 classic
papers on the theory of belief functions and its applications. The collection was

∗ The authors would like to thank Glenn Shafer for his invaluable comments on
earlier versions of this chapter.



2 L. Liu and R. R. Yager

created from a pool of over 100 nominated contributions, which are regarded
as classics with a high prospect to continue to influence the future development
of the field.

In this chapter, we introduce the Dempster-Shafer theory and present its
basic concepts and major results. The goal is to summarize Glenn Shafer’s
classic book [34] in a concise, comprehensive, and accessible manner so that
the reader will gain sufficient conceptual background to pursue further read-
ings. Then we sketch a brief history of the earlier conceptual development,
from Ronald A. Fisher’s fiducial arguments to Arthur P. Dempster’s general-
ized Bayesian inference, and from Jakob Bernoulli’s notion of pure evidence
to Glenn Shafer’s mathematical theory of evidence. The goal is to expose the
origin of the concepts so that the reader will gain a broad perspective for
understanding further development. Then we provide an overview of the clas-
sic works and point out their unique contributions in terms of how they estab-
lished a body of knowledge on belief functions, transformed the theory into
a computational tool for evidential reasoning in artificial intelligence, opened
up new avenues for applications in business, engineering, and medicine, and
became authoritative resources for anyone who is interested in gaining fur-
ther insight into and understanding of the theory. Finally, we briefly discuss
famous critiques by Lotfi A. Zadeh and Judea Pearl and point out a few open
problems that need to be solved in future research.

2 Basic Concepts

The concept of belief functions may be formalized in various ways. In this
section, we adopt the approach by Glenn Shafer in his seminal work—A Math-
ematical Theory of Evidence [34]—for exposition since its terminologies and
notations are the standard in the literature.

Given a question of interest, let Θ be a finite set of possible answers to the
question, called a frame of discernment, and 2Θ be the set of all subsets of Θ:

2Θ = {A | A ⊆ Θ}.
The subset A includes as special cases the empty set φ and the full set Θ. It
represents a statement or proposition that the truth lies in A. A real function
over the subsets Bel : 2Θ → [0, 1] is called a belief function if and only if it
satisfies the following three axioms:

Axiom 1 Bel(φ) = 0.

Axiom 2 Bel(Θ) = 1.

Axiom 3 For any whole number n and subsets A1, A2, .., An ⊂ Θ,

Bel(
n⋃

i=1

Ai) ≥
∑

I⊂{1,2,...,n}
I �=φ

(−1)|I|+1Bel(
⋂

i∈I
Ai).
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In the case where n = 2 and A1 ∩ A2 = φ, Axiom 3 reduces to Bel(A1 ∪
A2) ≥ Bel(A1)+Bel(A2). The student of probability theory may immediately
recognize that these axioms are similar to those for a probability function
with the inequality of Axiom 3 substituting for equality. When equality holds,
Bel(A1∪A2) = Bel(A1)+Bel(A2) if A1∩A2 = φ. Thus, a probability function
is additive whereas a belief function is generally not. The generalized axioms,
however, indicate that belief functions include probability functions as special
cases and may be equally or better used to express degrees of belief.

Additive probabilities are common sense. Are there any non-additive
beliefs to justify an extension? The answer is affirmative. A modern exam-
ple is from Bayesian statistics on how to represent ignorance, where the truth
is in Θ but there is no information, probabilistic or logical, to justify the
whereabouts of the truth. Thus, Bel(Θ) = 1 but Bel(A) = 0 for any proper
subset A of Θ. Clearly, this function fails to be additive. An ancient exam-
ple was due to Jakob Bernoulli in his book Ars Conjectandi. Suppose a man
was stabbed with a sword in a milling crowd and Gracchus was interrogated
and turned pale. Since the sign of pallor betokens a finite number of reasons:
melancholy, fear, cold, anger, amorous passion, etc., it proves Gracchus guilty
if it arises from a guilty conscience, but does not prove his innocence if it
arises from other reasons. Thus, Bel({guilty}) < 1 and Bel({innocent}) = 0,
but Bel(Θ) = 1. Again, this belief function is non additive.

The key to the concept of belief functions is limited division of belief.
Whereas probability functions assume belief is apportioned to the points in the
frame Θ, belief functions allow basic probability numbers (or mass numbers),
to be assigned to whole sets of points in Θ without further subdivision. The
basic idea is that a whole belief is divided into one or more basic probability
numbers m(A) and allocated to one or more subsets A, called focal elements,
such that:

∑
{m(A) | A ⊆ Θ} = 1. (1)

The basic probability number m(A) allocated to a focal element A is not
further divided into smaller chunks allocated to proper subsets of A.

This suggests an alternative approach to the definition of a belief function.
Given basic probability numbers m(A), the belief Bel(A) is defined by:

Bel(A) =
∑
{m(B) | B ⊆ A}. (2)

Logically, a portion of belief committed to one proposition is committed to
any other proposition it implies. Thus, the total belief committed to a subset
A is the sum of those that are committed to proper subsets of A and those to
A itself.

Adding the boundary condition m(φ) = 0 to (1), Shafer showed that the
two definitions are equivalent, i.e., a function satisfies the three axioms if and
only if it can be represented as the sum of basic probability numbers over
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focal elements. In fact, given a belief function, one may construct such a
basic probability number for each A ⊆ Θ using a Möbius transformation:

m(A) =
∑
{(−1)|A−B|Bel(B) | B ⊆ A}, (3)

where |A−B| is the cardinality of A−B, or a recursive deduction:

m(φ) = 0,m(A) = Bel(A)−
∑
{m(B) | B ⊂ A}.

Despite the equivalence, however, one should note that the axiomatic def-
inition allows the establishment of the theory of belief functions with no ref-
erence to probabilities.

Due to the limited divisibility, belief not committed to A, the negation of
A, is not automatically committed to A. But it does make A more credible
or plausible. Thus, it is intuitive to define a plausibility function Pl(A) as the
sum of beliefs not committed to A:

Pl(A) = 1−Bel(A). (4)

Through (2), it is easy to see the interplay between basic probability numbers
and plausibility numbers as follows:

Pl(A) =
∑
{m(B) | A ∩B 	= φ}. (5)

For any proposition, its plausibility is no less than its committed belief,
i.e., Bel(A) ≤ Pl(A). Thus, in his earlier works [8, 9, 10], Dempster called
these functions respectively lower and upper probabilities. The terminology
had caused some confusion and was abandoned by Shafer.

Belief functions are meant to be a representation of subjective beliefs.
Unlike other alternative formalisms, however, belief functions represent the
beliefs grounded on or supported by evidence. In fact, the idea of limited
divisibility makes intuitive sense if one interprets a basic probability number
m(A) as a measure of evidential support to A. Given two subsets A and B
in a frame of discernment, if B is a proper subset of A, then B represents
a stronger proposition than A and requires stronger evidence to support it.
Therefore, the evidence that supports A does not automatically support B
and the belief m(A) committed to A does not necessitate the commitment of
a smaller number m(B) to B.

Given a distinct piece of evidence, its support may be encoded as a list of
mass numbers assigned to the corresponding focal elements. It may also be
summarized as a belief or plausibility function over the frame of discernment.

When there exist multiple items of evidence, of course, it is necessary to
combine them together. Dempster’s rule of combination serves this purpose.
In his original framework of a multivalued mapping that carries a probability
measure into a system of upper and lower probabilities (see below), Demp-
ster derived this rule of combining upper and lower probabilities based on
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the assumption that two probability measures were independent [9]. In the
axiomatic framework, Shafer adopted the rule as a definition for combining
distinct or independent bodies of evidence. Let m1 and m2 be the mass func-
tions for two independent bodies of evidence. The combination via Dempster’s
rule follows a simple three-step process: intersection of focal elements, multipli-
cation of corresponding basic probability numbers m1m2, and normalization
in accordance with (1). Each intersection, if it is not empty, becomes a new
focal element of the combined belief function. The corresponding product of
basic probability numbers contributes to the support to the new focal element.
An empty intersection indicates a disagreement or conflict and is excluded
from further consideration. Its corresponding product of basic probability
numbers is subtracted from the whole belief mass for normalization. Mathe-
matically, the new mass function over new focal elements is defined as follows:

m(A) =
∑
{m1(B)m2(C) | B ∩ C = A}∑
{m1(B)m2(C) | B ∩ C 	= φ} . (6)

Since empty intersection indicates a conflict,
∑
{m1(B)m2(C) | B ∩ C = φ}

measures the total amount of conflict. Formally, we call the logarithm of the
renormalization constant the weight of conflict :

W = log(
1∑

{m1(B)m2(C) | B ∩ C 	= φ} ). (7)

Of course, two belief functions are combinable if and only if their weight of
conflict is finite.

Example 1. Suppose, among three suspects, Tony (T), Smith (S), and Dick (D),
we want to find out who committed a bank burglary. In the investigation, we
questioned Mrs. Johnson, a witness who was living close to the bank. She said
that she saw a big person near the bank around the time when the crime was
committed. Assume Mrs. Johnson’s testimony was 60% reliable based on her
eyesight. If her testimonywas reliable, the evidence pointed toTony orDick since
they had big bodies. Thus,m1({T,D}) = 0.6. However, if she was not reliable,
the testimony carried no information, i.e., m1({T, S,D}) = 0.4. Although the
criminal wore a mask, a video camera recorded a fuzzy picture of the person’s
eyes, which were 4 times more likely to be black than to be gray.The second item
of evidence suggested m2({S}) = 0.8 and m2({T,D}) = 0.2 since Smith had
black eyes. To combine the two pieces of evidence, we can use a tabular form as
in Table (1). For each cell, take the corresponding focal elements from each item
of evidence, intersect them and multiply their corresponding basic probabilities.
The weight of conflict between the two items of evidence is log( 1

1−0.48 ) = 0.28.
In the combined evidence, there are two focal elements: {S} and {T, D}. The
combined mass function is calculated as follows:

m({S}) =
0.32

1− 0.48
= 0.615,

m({T,D}) =
0.12 + 0.08
1− 0.48

= 0.385.
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Table 1. An illustration of combination

m2({S}) = 0.8 m2({T, D}) = 0.2

m1({T, D}) = 0.6 φ → 0.48 {T, D} → 0.12
m1({T, S, D}) = 0.4 {S} → 0.32 {T, D} → 0.08

Thus Smith appeared to be more suspicious according to the combined
evidence.

The combined belief and plausibility function may be symbolically
expressed as Bel1 ⊕ Bel2 and Pl1 ⊕ Pl2, respectively. Unfortunately, there
is no simple analytical expression for the orthogonal sum ⊕. To put the com-
bination rule into multiplicative form as in the case for probability functions,
Dempster introduced another function Q(A), which Shafer called the com-
monality function, as follows:

Q(A) =
∑
{m(B) | B ⊇ A}. (8)

Let Q1 and Q2 be respectively the commonality functions for two independent
items of evidence. Then the commonality function for the combined evidence
is as follows:

Q(A) =
Q1(A)Q2(A)∑

{(−1)|A|+1Q1(A)Q2(A) | A 	= φ} . (9)

Here the denominator is identical to that in (6).
Unlike belief and plausibility functions, a commonality function is not intu-

itive but Shafer interpreted Q(A) as the total belief that is free to move to
every element of A. According to (8) and (3), it is clear that the definition of
a commonality function is opposite to that of a belief function in the sense
that a belief for A sums all basic probability numbers committed to A and its
proper subsets whereas a commonality number sums those that are commit-
ted to A and its proper supersets. Consequently, commonality functions are
decreasing while belief (and plausibility) functions are increasing: for any two
propositions A and B, if A ⊃ B, then Q(A) ≤ Q(B) but Bel(A) ≥ Bel(B)
and Pl(A) ≥ Pl(B).

The four representations of evidence, namely, belief functions Bel(A),
mass functions m(A), plausibility functions Pl(A), and commonality func-
tions Q(A), are interrelated. Some of the relationships are shown below: for
any non-empty set A,

Bel(A) =
∑
{(−1)|B|Q(B) | B ⊆ A},

Q(A) =
∑
{(−1)|B|Bel(B) | B ⊆ A},

P l(A) =
∑
{(−1)|B|+1Q(B) | φ 	= B ⊆ A},

Q(A) =
∑
{(−1)|B|+1Pl(B) | B ⊆ A}.
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From any representation one can obtain another one through a series of
additions and/or Möbius transformations. In this sense, all the representations
are equivalent. Thus, one may start with any one model to encode evidence
and end up with other representations for decision making or probable rea-
soning. The choice is purely based on convenience. Mass functions are often
a more natural and superior device for encoding evidence, whereas belief and
plausibility functions are a more intuitive summary of the impact of the evi-
dence on propositions. After all, evidence often arises in the form of knowledge
in a related domain that provides insights on or connections to propositions in
the domain of interest. If the knowledge is probabilistic, it can then be carried
over to the propositions of interest as basic probability numbers. For example
[19], suppose I find a scrap of newspaper predicting a blizzard, which I regard
as infallible. Also, suppose I am 75% certain that the newspaper is today’s.
Here the knowledge about the newspaper maps to tomorrow’s weather as
follows: if the newspaper is today’s, then a blizzard is sure to come; if the
newspaper is not today’s, however, it provides no information on tomorrow’s
weather. Thus, we transfer 75% as a basic probability number to the focal ele-
ment {blizzard}, i.e., m({blizzard}) = 0.75, and 25% to Θ, i.e., m(Θ) = 0.25.
Of course, there are occasions when belief or plausibility functions become
more convenient. For example, Srivastava and Shafer [40] interpret audit risks
as the plausibility that a financial statement is not fairly stated or an audit
objective is not met. Thus it is more convenient to use plausibility functions
to encode audit evidence.

To illustrate the equivalence of the four representations, Table 2 shows the
respective representations of three special cases of belief functions, namely
vacuous belief functions, Bayesian belief functions, and simple support func-
tions. A vacuous belief function represents full ignorance, i.e., evidence does
not provide any support to or information on any specific proposition, i.e., any
proper subset of a frame of discernment. Thus, Θ is the only focal element.
A Bayesian belief function represents probabilistic knowledge that assigns a
probability to each element of Θ. In other words, all focal elements are single-
tons. A simple support function represents a piece of homogeneous evidence
that provides support to one and only one proposition that is a proper subset
of Θ. In other words, there are two focal elements: S and Θ with S ⊂ Θ.

Despite their simplicity, the three special cases play important roles in the
theory of belief functions in the sense that: 1) they are the building blocks
for more complex belief functions; and 2) they justify the superiority of belief
functions to probability theory. Vacuous belief functions provide a simple solu-
tion to the problem of representing ignorance. Note that Bayesian statistics
would represent full ignorance as a uniform distribution, which essentially
mixes lack of belief with disbelief. For example, what is my belief that a coin
will land a head? It is 50% if and only if I know the coin is fair. If I am
ignorant, the most I can say is Bel(Θ) = 1. However, Bayesian statistics will
assign 50% as a prior probability regardless.
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Table 2. Three special cases

Mass function Belief function

Vacuous belief
functions

m(Θ) = 1 Bel(A) =

{
0 ∀A ⊂ Θ
1 A = Θ

Bayesian belief
functions

|A| = 1 for each focal element A Bel(A) is additive

Simple support
functions

m(A) =

⎧
⎨

⎩

s A = S
1 − s A = Θ

0 else
Bel(A) =

⎧
⎨

⎩

s A ⊇ S
1 A = Θ
0 else

Plausibility function Commonality function

Vacuous belief
functions

P l(A) = 1 ∀A �= φ Q(A) = 1 ∀A

Bayesian belief
functions

P l(A) is additive Q(A) = 0 if |A| > 1

Simple support
functions

P l(A) =

{
1 A ∩ S �= φ

1 − s A ∩ S = φ
Q(A) =

{
1 A ⊆ S

1 − s else

Bayesian belief functions are regular probabilities. They are the only case
where beliefs and plausibilities are identical, i.e., Bel(A) = Pl(A) for any
A ⊆ Θ, and additive as well, i.e., Bel(A1 ∪ A2) = Bel(A1) + Bel(A2) if
A1 ∩A2 = φ. Thus, belief functions include probability functions as a special
case. It is also the only case that we have zero commonality number for any
subset of cardinality 2 or larger.

The concept of simple support functions is the most important extension
to Dempster’s work on generalized Bayesian inference. It acts as the basis for
defining the weight of evidence, by which Bernoulli meant probative force for
a probability judgment. For a simple support function with m(S) = s and
m(Θ) = 1 − s, the weight of evidence w is a nonnegative number in [0,∞)
that maps to the support s in such a way that the sum of two weights maps to
the combined support of the two items of evidence via Dempster’s rule. This
along with the following boundary condition:

s =
{

0 w = 0
1 w →∞

leads to an analytical expression of the weight of evidence:

w = − log(1 − s).

Since a simple support function uniquely determines a weight of evidence,
it is tempting to decompose a general belief function into one or more sim-
ple support functions and then derive the weight of evidence underlying it.
Toward this goal, Shafer defined the concept of a separable support function
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to be the orthogonal sum of one or more simple support functions. Unlike a
simple support function, a separable support function may support multiple
propositions that are proper subsets of Θ. Unlike a general belief function, it
is distinct in that, for any two focal element A and B, if A ∩ B 	= φ, then
A ∩B is also a focal element.

As an example of special importance, consonant support functions are
separable support functions. A belief function is called consonant if its focal
elements are nested, i.e., for any two focal elements A and B, either A ⊂ B
or B ⊂ A. Thus, all focal elements may be arranged in an order of increasing
precision, pointing in a single direction. A consonant support function Bel
has the following distinct features:

Bel(A ∩B) = min(Bel(A), Bel(B)) ∀A,B ⊆ Θ,

P l(A ∪B) = max(Pl(A), P l(B)) ∀A,B ⊆ Θ,

Q(A) = min{Q(θ) | θ ∈ A} ∀A 	= φ.

Those familiar with fuzzy logic may recognize that the possibility and necessity
functions introduced by Zadeh [42] are the same as consonant plausibility and
support functions. A function f is a consonant support function if and only
if it satisfies: f(φ) = 0, f(Θ) = 1, and f(A ∩ B) = min(f(A), f(B)) for any
A,B ⊆ Θ. These are the axioms used for developing the theory of possibility.

There is no unique way to decompose a separable support function into
simple support functions. For example, one simple support function may be
further represented as the orthogonal sum of two or more simple support
functions that support the same proposition. If no component has infinite
weight of evidence, however, this non-uniqueness does not cause any trouble
because the total weight of evidence focused on each subset will be the same
no matter which decomposition is used. Let Si be the proposition supported
by the ith component and wi be the corresponding weight of evidence. If wi
is finite for all i, then the total weight of evidence focused on any non-empty
proper subset A of Θ is

w(A) =
∑
{wi | Si = A},

with w(φ) = 0 and w(Θ) = ∞.
Through a weight function w(A), one may define two related concepts:

the impingement function v(A) and the weight of internal conflict W . The
impingement function v(A) is defined as the sum of the weights of evidence
focused on the propositions not containing A:

v(A) =
∑
{w(B) | A ∩B 	= φ}. (10)

Each weight w(B) impugns all propositions not in its focus B. Thus v(A) is
the total weight of evidence not favoring A. Given an impingement function,
one may recover the weight function using a Möbius transformation, i.e., for
each non-empty proper subset A of Θ,
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w(A) =
∑
{(−1)|B−A|v(B) | A ⊆ B}.

The internal conflict of a separable support function refers to the con-
flict among the simple support functions that make up the separable support
function. Its weight can be defined as in (7) with a straightforward exten-
sion to multiple belief functions. Since decomposition may not be unique, the
weight of conflict in general varies from decomposition to decomposition. The
weight of internal conflict is actually defined as the minimum of the weights
of conflict for all possible decompositions. The weight of internal conflict can
be expressed in terms of the impingement function v(A) or the commonality
function Q(A):

W = − log(
∑
{(−1)|A|+1 exp(−v(A)) | A 	= φ},

W = −
∑
{(−1)|A| logQ(A) | A ⊆ Θ}.

The above equations give another way to express the commonality function
Q(A) for a separable support function as follows:

logQ(A) = W − v(A). (11)

The total weight of evidence determines the impingement function, which in
turn determines the weight of internal conflict. Thus, it determines a common-
ality function, from which one can recover a mass function, a belief function,
and a plausibility function. Therefore, for separable support functions, the
total weight of evidence provides a sufficient assessment of evidence.

Equation (11) shows an intuitive association of smaller commonality num-
bers with greater degrees of impingement. Formally, suppose v1 and v2 are
two impingement functions and Q1 and Q2 are the corresponding common-
ality functions. If Q1(A) ≤ Q2(A) for all A ⊆ Θ, then v1(A) ≥ v2(A) for
all A ⊆ Θ. This association can easily be derived from the following still
unproven weight-of-conflict conjecture: if Q1 and Q2 are the commonality
functions for two separable support functions and W1 and W2 are their cor-
responding weights of internal conflicts, then

Q1(A) ≤ Q2(A) ∀A ⊆ Θ =⇒ W1 ≥W2. (12)

In the axiomatic approach, any function that satisfies Axioms 1–3 is a
belief function. A whole body of mathematical theory of belief functions could
have been built based on these axioms. However, Shafer was interested in
building a theory of evidence as a science of probable reasoning. Thus, his
central theme was to investigate which subclasses of belief functions could be
useful for the representation of evidence. As we have seen, both simple and
separable support functions were proposed for such a purpose; they are or can
be decomposed into components each of which precisely and homogeneously
supports a given proposition.
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Toward the same goal, the concept of support functions was proposed. A
support function is a belief function that can be derived from the marginal-
ization of a separable support function to a coarser framer of discernment.
Unlike a sample space in probability theory, a frame of discernment is epis-
temic in nature and is constructed for probable reasoning. It can be refined
or coarsened as needed. For example, suppose we are interested in whether
tomorrow’s weather will be raining (r), snowing (s), or normal (n). The frame
of discernment is Θ = {r, s, n}. This frame may be coarsened into Θ′ = {n, n}
if we just want to know whether the weather is normal or not. The coarsen-
ing combines fine elements r and s into a coarse element n. Thus, we call Θ′

a coarsening of Θ or Θ a refinement of Θ′. A more refined frame is able to
represent more details than its coarsenings and so a proposition discerned by
a coarsening is also discerned by a refinement. The converse is not true.

Each coarse element in a coarse frame maps to a subset of fine elements in
a refined frame. If a belief function Bel is defined on a refined frame Θ, it can
be carried over to a coarse frame Θ′ as a marginal belief function as follows. A
focal element of the marginal is a set of coarse elements that map to subsets,
all of which intersect with the same set of focal elements of Bel. The basic
probability number is the sum of the corresponding basic probability numbers
of the intersecting focal elements. On the other hand, if a belief function Bel′

is defined on a coarse frame Θ′, it can also be carried over to a refined frame
Θ by using the same probability numbers but replacing each focal element by
the union of corresponding mapped subsets. The resulting belief function is
called a vacuous extension.

Both vacuous extension and marginalization can be easily expressed in
the special case when a refined frame is the Cartesian product of two or more
independent frames [22]. Suppose Θ1, Θ2, ... are independent frames. Let I be
a set of indices. Then Θ(I) =

∏
{Θi | i ∈ I} will be a refinement for all Θi

(i ∈ I) so that each element θi ∈ Θi maps to subset {θi} × Θ(I − {i}) in Θ.
Given any belief function on Θ(I) with a mass function m(A), its marginal on
Θ(J), J ⊂ I, is a belief function with mass function m↓J : for any B ⊆ Θ(J),

m↓J(B) =
∑
{m(A) | A ∩ (B ×Θ(I − J) 	= φ}. (13)

On the other hand, if a belief function with mass function m(A) is defined on
Θ(J), its vacuous extension to Θ(I) (I ⊃ J) is a belief function with mass
function m↑I : for any B ⊆ Θ(J),

m↑I(B ×Θ(I − J)) = m(B). (14)

It is easy to see that if a belief function Bel is a separable support function,
its vacuous extension will also be separable. However, the converse is not true,
i.e., the marginal of a separable support function may not be separable. For
this reason, Shafer calls such a marginal belief function a support function.
So a belief function is a support function if it can be extended to a separable
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support function. Since any frame is a refinement of itself, a separable support
function is itself a support function. Thus, we have four nested classes of belief
functions:

⎧
⎨

⎩

simple
support

functions

⎫
⎬

⎭ ⊂

⎧
⎨

⎩

separable
support

functions

⎫
⎬

⎭ ⊂
{

support
functions

}
⊂

{
belief

functions

}
.

As it turns out, a belief function is a support function if and only if the union
of all of its focal elements is also a focal element. Thus, not all belief functions
are support functions. Moreover, not all support functions are separable. For
example, assume m({r, n}) = 0.2, m({s, n}) = 0.5, and m(Θ) = 0.3. This is
a support function since {r, n} ∪ {s, n} ∪Θ = Θ is a focal element. However,
this is not a separable support function since {r, n} ∩ {s, n} = {n} is not a
focal element.

3 A Brief History of Concepts

Einstein once said [14], “...creating a new theory is not like destroying an
old barn and erecting a skyscraper in its place. It it rather like climbing a
mountain, gaining new and wider views, discovering unexpected connections
between our starting point and its rich environment.” The theory of belief
functions arose first from Dempster’s attempt in understanding and perfect-
ing Fisher’s fiducial approach to probability inference and then from Shafer’s
elaboration of Dempster’s work toward a general theory of reasoning based
on evidence.

In the 1960s, due to the work of Leonard J. Savage [32], Bayesian statistics
was showing renewed vigor and gaining popularity but, at the same time, was
in growing conflict with a school of thought led by Ronald A. Fisher and,
increasingly, Jerzy Neyman.

The general statistical inference problem is that, given a sample obser-
vation x from a parametric distribution f(x, θ) with parameter θ, how one
could obtain a probability distribution of θ. When reduced to its mathematical
essentials, Bayesian inference means starting with a prior probability distribu-
tion p(θ), observing the value x, and computing the conditional distribution
of θ given x using Bayes theorem:

p(θ | x) =
p(θ)f(x, θ)∫
p(θ)f(x, θ)dθ

. (15)

In theory, there is nothing wrong with this formulation. In practice, how-
ever, one often finds the conception of prior probabilities vague, arbitrary, or
controversial, lacking the spirit of objectivity required by a scientific method.

To overcome the difficulty with prior probabilities, Fisher announced
the possibility of obtaining posterior distributions with no need for priors
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(see [17]), and called his method the fiducial argument to emphasize its dif-
ferences from the Bayesian argument. In the nutshell, assume F (x, θ) is a
parametric cumulative distribution. Besides x and θ, the fiducial method intro-
duces a so-called pivotal variable u, which is assumed to follow the uniform
distribution U(0, 1), so that

u = F (x, θ). (16)

Suppose, for each value x, F (x, θ) is monotonic in θ. Equation 16 will admit
a unique solution

θ = θ(u, x) (17)

for each u ∈ (0, 1). Assuming no prior probabilities, Fisher defined the fiducial
distribution of θ, given the observed value x, as the distribution of θ implied
by (17) when x is regarded as fixed and u is uniformly distributed.

The fiducial method was poorly understood and often led to inconsisten-
cies [6]. The concept of pivotal variables was highly confusing, restrictive, and
controversial [7]. Dempster devoted much of his early research career at Har-
vard to clarifying, extending, and perfecting the method. For example, he once
proposed the concept of direct probabilities as his interpretation of the fiducial
argument [5]. First, to make the derivation of fiducial probabilities explicit, he
introduced an arbitrary function v = V (x) so that it along with (16) implied
a smooth one-to-one function from x and θ to u and v, and therefore ensured
the existence of the following Jacobian:

∣∣∣∣
∂(u, v)
∂(x, θ)

∣∣∣∣ . (18)

Second, in addition to Fisher’s assumption that u is uniform in (0, 1), he
assumed that v follows an arbitrary distribution p(v) and u is independent of
x (and so of v) so that the joint density function of u and v is p(v). Finally,
according to the Jacobian formula, the joint density function of x and θ is
p(V (x)) multiplied by the Jacobian in (18). From this joint distribution, of
course, one can compute the conditional probability distribution of θ given x,
which is the fiducial (or direct) probability distribution.

Like Bayesian priors, functions V (x) and P (v) are arbitrary and meant
to compose a joint distribution, from which a conditional distribution can be
obtained. Although P (v) does not enter the final result, a fiducial distribution
is generally not free from the choice of V (x). In fact, as Dempster showed, it is
independent of V (x) if and only if F (x, θ) can be transformed into a location
parameter family.

The direct probability method did not fully demystify the fiducial argu-
ment. Although it explicated the process of deriving fiducial probabilities, it
left the concept of pivotal variables unexplained. Some regard the uniform
distribution U(0, 1) as analogous to a Bayesian prior. Most importantly, like
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the fiducial argument, the method works only if there exists a smooth one-to-
one mapping Γ: u → θ so that a probability measure for u can be carried to
θ by the familiar Jacobian formula.

A breakthrough led to a new theory that unified Bayesian and fiducial
arguments. It was first exposited in a paper published in 1966 [8] and repub-
lished here as Chap. 2. In this paper, Dempster abandoned Fisher’s controver-
sial pivotal variable and replaced it with the concept of a population. Instead
of considering u as a pivotal variable, uniformly distributed in (0, 1), he con-
strued u to be a sample individual randomly drawn from a population with
probability measure m governing the random sampling operation. Here, m is
not necessarily a uniform distribution as in the case of the fiducial argument.
Second, instead of (16), Dempster proposed a new model for constructing the
mapping from u to θ as follows. Assume each sample individual u corresponds
to an observable characteristic x. Assume further that the probability mea-
sure m for u induces a probability distribution f(x, θ) for x with an unknown
parameter θ. Thus, one may construct a mapping u→ x×θ. When the obser-
vation x is fixed, it determines a conditional mapping Γ: u→ θ, from which m
induces a probability distribution for θ. Interestingly, when Γ is multivalued,
the induced distribution for θ is no longer unique. Instead, Γ carries a unique
probability measure m to a system of upper and lower probabilities for θ.

Chapter 2 was a milestone, representing not only an advancement of the
fiducial argument but also the inception of the idea for a new theory of belief
functions. At this point, the basic concepts had already emerged, including
the basic probability assignment m, the multivalued mapping Γ, and a device
for deriving upper and lower probabilities from m. In Chap. 3, first published
in 1967 [9], Dempster abstracted these concepts from the fiducial argument,
envisioning a fundamental method of reasoning with imprecise probabilities,
based on the idea of obtaining a degree of belief for one event from proba-
bilities for related events. He proposed a general model (S,m,Γ, T ) for such
reasoning, where S is a source space, m is a probability measure over S, T is a
target space, and Γ is a mapping from S to T . If Γ is a one-to-one or many-to-
one mapping, it is well known that the probability measure m carries over to
T as p(t) =

∑
{m(s) | t = Γ(s)}. In mathematical essence, Chap. 3 extended

the familiar result to the case when Γ is a one-to-many or many-to-many map-
ping and derived a system of upper and lower probabilities for T based on a
probability measure m. Its real thrust, of course, is to view a probability mea-
sure as defining degrees of belief, which quantifies a state of partial knowledge
arising from a source of imprecise information. Since information is imprecise,
it does not always pinpoint a unique value of the variable of interest. Thus, a
multivalued mapping is a necessary representation for imprecise information.
Since there may be multiple independent sources of information, a mechanism
for combining such sources becomes a necessity for a general calculus oriented
toward statistical inference and probabilistic reasoning. Therefore, besides the
formal definitions of upper and lower probabilities, distributions, and expec-
tations, Chap. 3 presented a rule for deriving upper and lower conditional
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probabilities and further generalized it into a rule of combining independent
sources of information, which was later called Dempster’s rule of combination
by Shafer [34].

The concept of upper and lower probabilities can be traced back to Boole
[2]. Before Dempster, there were already other approaches to the concept
[16, 18, 38, 39]. Dempster’s multivalued mappings provides a rigorous device
for generating these probabilities. As Chap. 3 showed, however, Dempster’s
concept is not the same as alternative ones. For example, the set of probabili-
ties compatible with Dempster’s upper and lower probabilities is smaller than
alternatives. The unique feature of Dempster’s concept is to map upper and
lower probabilities to a single probability measure, allowing for a more rigorous
logic for defining conditioning. The resulting upper and lower conditionals are,
of course, not same as upper and lower bonds of conditionals. Using standard
notations, let Bel(A) and Pl(A) be Dempster’s lower and upper probabilities.
Then, given a subset E with Pl(E) > 0, Dempster’s conditional is

Bel(A | E) =
Bel(A ∪E)−Bel(E)

1−Bel(E)
. (19)

In contrast, let P be the set of probability measures compatible with Bel:
P = {P | P (A) ≥ Bel(A)}. Given E with P (E) > 0, we can take Bayesian
conditioning of P in P: PE(A) = P (A)/P (E). Let PE be the set of resulting
conditionals: PE = {PE | P ∈ P}. Then, the lower envelope of PE exists
when Bel(E) > 0: ∀A ⊂ E,

P (A | E) =
Bel(A)

Bel(A) + 1−Bel(A ∪ E)
. (20)

In general, we have Bel(A | E) ≥ P (A | E). Therefore, Chap. 3 not only
established the mathematical foundation for the theory of belief functions
but also clarified many confusions that later arose in the literature [29]. In
fact, to avoid these confusions, Shafer [34] renamed Dempster’s upper and
lower probabilities into respectively plausibility and belief functions.

Being a statistician, Dempster first explicitly applied his rule of combina-
tion to statistical inference. He did this in Chap. 4, first published in 1968 [10].
Although Chap. 4 derived upper and lower probabilities for the same param-
eters, it did so without explicitly invoking the rule of combination. Chap. 4
framed the inference problem using a formal model (S,m,Γ, T ), where S is
a population, m is a probability measure governing how each individual may
be sampled from the population, and T = X ×Θ is the product of the set of
all possible observations x and the set of all possible parameter values θ. A
multivalued mapping Γ : S → T was then used to derive a restricted mapping
Γθ : S → X when the parameter θ is fixed or Γx : S → Θ when an observation
x is made. Thus, one could obtain two restricted models: (S,m,Γθ, X) and
(S,m,Γx, Θ). The former may be used to derive upper and lower probability
for future observations x, and the latter to derive the same for the param-
eter θ. When there are multiple independent observations, one can produce
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one restricted model for each observation and then combine these models
using Dempster’s rule to derive combined upper and lower probabilities for θ.
When a prior distribution p(θ) is available, it can be regarded as yet another
restricted model (Θ, p, I, Θ), where I is the identity mapping, which can be
also combined with the restricted models based on sample observations. There-
fore, Chap. 4 consolidated the fiducial arguments and Bayesian inference and
brought them under the same umbrella of belief functions. It not only showed
the feasibility of probabilistic inference without priors but also re-expressed
Bayesian inference as the combination of independent sources of information,
including priors and sample observations.

As side products of its application of belief functions, Chap. 4 made addi-
tional theoretical contributions. The first was the concept of total ignorance
and its representation via upper and lower probabilities. This provided a sim-
ple resolution to the old controversy about the representation of ignorance via
a probability distribution, and led to the concept of vacuous belief function
[34] that showcased the superiority of belief functions for subjective judg-
ments. The second was the idea of viewing prior knowledge as a source of
information similar to other sources such as sample observations to be com-
bined via Dempster’s rule. This idea led to the concept of Bayesian belief
functions [34] and embraced Bayesian probabilities as a special case of belief
functions. The third was the idea of viewing a multivalued mapping as a ran-
dom set. This idea led not only to an alternative formalization of the theory
of belief functions but also to an alternative perspective on belief functions
as the extension of probability distributions over random variables. It also
allowed for a rigorous mathematical foundation for belief functions.

Chapters 2–4 established most of the basic ideas and concepts for a new
theory of probable reasoning. Without extensions, refinements, and reinter-
pretations by Glenn Shafer, however, these elements would still have been in
the narrow statistical confines of random sampling. While studying for his
Ph.D. at Harvard, Shafer got acquainted with Dempster’s work. Later he was
asked to make a presentation on Dempster’s upper and lower probabilities at
Princeton. His book—A Mathematical Theory of Evidence [34]—was a result
of his ensuing effort. Characterized by Shafer’s intellectual boldness, the book
announced the establishment of a new mathematical theory for probable rea-
soning as a genuine generalization of or superior alternative to subjective
Bayesian theory. To distinguish the theory from theories of imprecise prob-
ability, the book renamed Dempster’s lower and upper probabilities respec-
tively as belief and plausibility functions. Whereas Dempster had empha-
sized the derivation of lower and upper probabilities from S, m and Γ, Shafer
regarded belief functions as a fundamental concept—an alternative to subjec-
tive probabilities. Following Andrei Kolmogorov, who built probability theory
on three mathematical axioms, Shafer built his theory of belief functions on
three similar axioms, with the additivity of probabilities being replaced by
the super-additivity of belief functions. He showed that a belief function sat-
isfied the three axioms if and only if it was as derived from a basic probability
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assignmentm(2). It was this connection that allowed Shafer to simplify Demp-
ster’s four-element model (S,m,Γ, T ) into a two element model (m,T ), which
assigned probabilitiesm directly to subsets of the target space T while keeping
S and Γ implicit. It was also this connection that allowed belief functions to
express partial beliefs for probable reasoning using the two basic ideas due to
Arthur Dempster: the idea of obtaining degrees of belief for one question from
subjective probabilities for a related question (evidence), and Dempster’s rule
for combining degrees of belief when they were based on independent items
of evidence.

Besides providing new terminologies, notations, and the axiomatization,
Shafer also greatly extended Dempster’s mathematical results. Most notable
are the concepts of support functions and weights of evidence. These concepts
served two purposes. First, they showed how weights of evidence might be
converted into degrees of belief and combined using Dempster’s rule, and
thus showed how the theory of belief functions could be rebuilt and applied
around these concepts. Second, they justified the theory of belief functions
from works of Jakob Bernoulli and other ancient scholars on probabilities. It
was probably from these works Shafer generated his idea of re-interpreting
Dempster’s work as a theory of probable reasoning through the combination
of evidence.

The notion of weights of evidence can be traced back to Jakob (James,
Jacques) Bernoulli in his book Ars Conjectandi. Jakob Bernoulli died in 1705.
His book was given to the printer by his nephew Nicholas Bernoulli, under the
pressure of mathematicians. After it was published in 1713 by the Thurney-
sen Brothers Press in Basel, Ars Conjectandi became the founding document
of mathematical probability, replacing Calculating in Games of Chance by
Christian Huygens, which was the first ever printed book on probability and
served as the standard text for over 50 years after 1657. Ars Conjectandi
consisted of four parts. Part 1 was an improved version of Huygens’ book on
games of chance with annotations. This part made many well-known contri-
butions in elementary probability theory. For example, the notion of Bernoulli
trials, the multiplication rule for independent events, and the Bernoulli dis-
tribution were all presented in this part. Part 2 offered a thorough treatment
of the mathematics of combinations and permutations, including the numbers
known as “Bernoulli numbers.” Part 3 solved some complicated problems of
games of chance using combinatorics. The final part manifested Bernoulli’s
crowning achievement in mathematical probability. For example, he proved
what we now know as the weak law of large numbers. A complete English
translation of the book was done only recently by Edith Dudley Sylla [1].
Part 4 was translated into English by Bing Sung [41] with a preface by
Arthur Dempster.

Part 4 of Ars Conjectandi envisioned the application of probability the-
ory to economics, morality, and politics. Bernoulli did not in fact make such
practical applications. But he did succeed in formulating a concept of mathe-
matical probability that went beyond the application to games of chance. He
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characterized probability as a degree of certainty that differs from absolute
certainty as a part differs from a whole. The art of conjecture was to measure
as exactly as possible the probabilities of things. With respect to games of
chance, the symmetry of physical devices suggested we could calculate the
probability of a specified outcome as the number of favorable cases divided by
the total number of cases. In many other situations, however, such symmetry
could not be relied upon and the classical procedure could not be applied.
Thus, probability was a measure of imperfect knowledge and was personal in
the sense that it varied from person to person according to his knowledge. This
statement has credited Bernoulli today as the father of subjective probability
theory. Nevertheless, it is instructive to compare Bernoulli’s notion with sev-
eral distinct modern ones of subjective probability. In the personalist theory
of Bruno de Finetti, Frank P. Ramsey, and Leonard J. Savage, probabilities
may be unknown only insofar as one “fails to know one’s own mind” and are
measured by the betting ratio at which the person in question is willing to bet
on the truth of the statement. In the logical theory of John M. Keynes and
Harold Jeffreys, probabilities may be unknown by failure to do logic but no
experiment will help check up on logical probability. In the subjective theory
of Werner Heisenberg, probability contains the objective element of tendency
and the subjective element of incomplete knowledge. An observation cannot
predict a result with certainty; what can be predicted is the probability of a
certain result, and this probability can be checked by repeating the experiment
many times. In contrast, Bernoulli believed that everything was governed by
God and causal mechanism. As long as we knew the causes, what could seem
to be to one person at one time an uncertain event might be at another time
to another person (indeed, to the very same person) a deterministic event.
From this comparison, Hacking [19] concluded that Bernoulli’s subjectivism
was less like the personalist or logical point of view, and more like that of the
physicists.

Because he wanted to measure probabilities, Bernoulli was concerned with
how to combine evidence of different sorts. He stated that probabilities are
estimated by the number of cases and the weight of evidence.1 His first scheme
of combination followed the Port Royal logic of Pascal and distinguished inter-
nal versus external evidence. Internal evidence arises from the topics—cause,
effect, subject, sign, circumstance, or anything that directly connected to
the question of interest. External evidence appeals to human authority or
testimony. His second scheme descended from Gottfried Wilhelm Leibniz’s
notion of pure and mixed evidence. Pure evidence proves a thing with a cer-
tain probability without giving a positive probability to the opposite thing,
whereas mixed evidence proves a thing with a certain probability and proved
the opposite with the complementary probability. That Gracchus turned pale

1 Bernoulli used argumentum instead of evidence. This Latin word has a broad
sense emcompassing the meanings of the modern English words “evidence” and
“argument.”



1 Classic Works of the Dempster-Shafer Theory of Belief Functions 19

when interrogated is an example of pure evidence. To assess the probability
of a thing, one can list all pieces of evidence. If all pieces are mixed, then the
probability is the number of favorable cases divided by the total number of
cases. The resulting probabilities are additive and complementary. However,
if all or some pieces of evidence are pure, Bernoulli formulated a rule of com-
bination, which Shafer [34] showed was a special case of Dempster’s rule. The
resulting probabilities may not be additive and complementary.

Clearly, Bernoulli’s notion of non-additive probabilities was the ancestor of
what we now call belief functions. This explains why Shafer reinterpreted lower
probabilities as epistemic probabilities or degrees of belief while abandoning
the term of lower probability, which can arise as lower bounds over classes
of Bayesian probabilities. It was also clearly Bernoulli’s idea of probability
assessment through combining weights of evidence that motivated Shafer to
recast Dempster’s theory of random sampling into a theory of evidence and
to represent evidence using support functions.

4 Classic Works

Although they are presented chronologically, the classic contributions in this
volume can be grouped, at least roughly, by their content and emphasis into
seven categories: conceptual foundations, philosophical perspectives, theoret-
ical extensions, alternative interpretations, and applications to artificial intel-
ligence, decision making, and statistical inference.

4.1 Conceptual Foundations

Four chapters may be said to have established the conceptual foundation of
belief functions presented in Shafer’s book [34]: Chaps. 2–4 by Dempster and
Chap. 7 by Shafer.

The previous section has given a detailed account of Chaps. 2–4. In brief,
Chap. 2 proposed the multivalued mapping approach to deriving upper and
lower probabilities to replace posterior distributions in the absence of Bayesian
priors. It was the first belief-function treatment of Fisher’s fiducial method.
Chapter 3 envisioned the problem of obtaining degrees of belief for one ques-
tion from a probability measure of a related question through a multivalued
mapping. It introduced Dempster’s role of combination and a corresponding
notion of commonality functions. Chapter 4 explicitly applied Dempster’s rule
to statistical inference and marked the birth of generalized Bayesian theory
or a theory of belief functions.

Chapter 7 extended the concept of belief functions defined in [34] to con-
tinuous frames of discernment. Following the approach by Gustave Choquet
[4], the chapter considered a subset in a continuous frame as the limit of
a sequence of finite subsets, and proposed the concepts of continuity and
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condensability. Continuity was defined in the same way as the continuity of a
Lebesgue measure. Condensability was a key assumption for the extension: a
belief function is condensable if its plausibility function Pl satisfies

Pl(A) = sup{Pl(B) | B ⊂ A and B is finite}.

The chapter then showed how to extend a continuous or condensable belief
function on an algebra of (finite) subsets of Θ—a set of subsets that is closed
under both set union and complement operations—to a continuous or con-
densable belief function on the power set 2Θ. The main tool used for such
an extension was Choquet’s integral representation theorem, which implies
that every belief function can be represented by an allocation of probability.
Technically, for every belief function Bel on an algebra of subsets of Θ, there
exists a homomorphic mapping ρ into a probability algebra with a positive
and additive probability measure m such that ρ(A ∩ B) = ρ(A) ∩ ρ(B) and
Bel(A) =

∫
ρ(A)dm(ρ).

4.2 Philosophical Perspectives

We place in this group Chaps. 6 and 9 by Glenn Shafer, Chap. 13 by Glenn
Shafer and Amos Tversky, and Chap. 30 by Arthur P. Dempster. All these
chapters justify the theory of belief functions from broader perspectives.

Chapter 6 provided a historical account of non-additive probabilities as
well as rules of combining evidence. It focused on the work of Jakob Bernoulli
and its extension by Johann Heinrich Lambert, a 18th century scholar. It
related these ancient concepts of non-additive probabilities to the modern
concept of belief functions and showed that both Bernoulli and Lambert’s
rules of combination are special cases of Dempster’s rule.

Chapter 9 systematically examined the critiques by Bayesian or imprecise
probability theorists. Both Bayesian and lower probability theories can appeal
to the betting interpretation or the Dutch-Book argument for the semantics
of its degrees of belief. What is the semantics of belief for a belief function?
In the literature, some authors appeal to the probability of provability [28,
31, 37] or the support of arguments [23, 21]. Nevertheless, Chap. 9 argued
that Bayesian, imprecise probability, and belief functions are all constructive
theories for probability judgment. They need not rely for their meaning and
justification on any behavioral interpretation. Instead, the degree of belief is
the result of comparing evidence to knowledge about chances governing the
truth. The chapter proposed the randomly coded message as a scale for such
a comparison: suppose someone chose a code at random from a list of codes
and we knew the probability of each code being chosen. Then m(A) is the
sum of probabilities of codes, by which the decoded message is A.

Furthering the idea of constructive probability, Chap. 13 dealt with human
judgments of probabilities and belief functions. It illustrated that both
Bayesian theory and the theory of belief functions were formal languages for
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one to analyze evidence and express his degrees of belief; they had the usual
components of a language, including vocabularies, semantics, and syntax. It
suggested that making a probability judgment was a process of conducting a
mental experiment and hence the quality of the experimental design affected
the quality of the judgment. The chapter offered some alternative designs for
using the languages of Bayesian probabilities and belief functions. For exam-
ple, the total-evidence design often used with Bayesian theory is distinguished
from the belief function that emphasizes the decomposition of evidence. The
chapter emphasized that theories of subjective probability (including belief
functions) were not psychological models, either normative or descriptive,
for making judgments. An experimental design for using such a theory (or
its semantics and syntax) must guide the process of making probabilistic
judgments.

Chapter 30 is a new contribution based on the 1998 R.A. Fisher Memo-
rial Lecture.2 The theory of belief functions arose from the need for a new
scientific method unifying various statistical methods, including fiducial and
Bayesian methods. As opposed to Bayesian, Fisherian, or frequentist statis-
tics, Dempster proposed logicist statistics as a unified way to study principled
and explicit reasoning about uncertainty. The key concept was formal sub-
jective probability, which interprets each numerical probability as a degree
of certainty reflecting specific formalized evidence and information within a
formal mathematical model. Dempster showed that this concept encompasses
both modern Bayesian and traditional Fisherian thinking, and he interpreted
frequentist theory in a way that gives appropriate weights to both science and
mathematics, and to both subjective and objective elements. He also sug-
gested that the Dempster-Shafer theory embodies a more suitable paradigm
for logicist statistical inference than Bayesian inference and is logicist in a
fundamental way because it integrates nonprobabilistic “propositional” logic
with probabilistic reasoning.

4.3 Theoretical Extensions

This group contains Chap. 5 by Hung T. Nguyen, Chap. 11 by Ronald
R. Yager, Chap. 15 by Nevin L. Zhang, Chap. 19 by Alain Chateauneuf and
Jean-Yves Jaffray, and Chap. 21 by John Yen. These five chapters extended
the theory of belief functions in various ways.

Chapter 5, by Nguyen, was the first research work on belief functions
published by someone other than Dempster and Shafer. It carried out the
idea in Chap. 3 by Dempster that a multivalued mapping might be consid-
ered a random set and established the connection between belief functions
and random sets. It showed that, in finite cases, the probability distribution

2 The Fisher Lectureship and Award was established in 1963 by the Committee
of Presidents of Statistical Societies to recognize the importance of statistical
methods for scientific investigations.
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of a random set is a basic probability assignment and a belief function is
deduced from the probability distribution of the random set. It characterized
the condensability of belief functions of Chap. 7 using the notion of regularity
of probability measures. It showed that a plausibility function is condensable
if and only if the corresponding probability distribution of a random set is
regular.

In probability theory, entropy is a measure of the disorder and randomness
present in a distribution. In fuzzy logic, specificity is an overall measure of
how much a possibility distribution points to one and only one element as
the manifestation of a fuzzy variable. A belief function has both randomness
and non-specificity components. Thus, Chap. 11, by Yager, developed similar
concepts for belief functions. For a belief function with mass function m and
plausibility function Pl, its entropy is

E = −
∑
{m(A) log(Pl(A)) | A ⊆ Θ}.

This formula reduces to Shannon entropy for Bayesian belief functions. It
attains zero entropy for consonant belief functions and the maximum entropy
when focal elements are disjoint and when the belief mass is equally dis-
tributed among all focal elements. The specificity of a belief function with
mass function m is defined as

S =
∑
{m(A)
|A| | φ 	= A ⊆ Θ}.

This measure reduces to the specificity of a fuzzy variable for a consonant
belief function. It reaches the minimum value for a vacuous belief function
and the maximum value for Bayesian belief functions. Chapter 11 led to
many studies on the measurement of total uncertainty encompassing both
randomness and nonspecificity. One noteworthy contribution [27] uses a set
of reasonable axioms to derive measures such as

H =
∑
{m(A) log(

|A|
m(A)

) | φ 	= A ⊆ Θ}.

This measure has many desirable features, including additivity for indepen-
dent belief functions and reduced computational complexity.

Chapter 15, by Zhang, was one of few contributions that directly improved
the classic book by Shafer [34]. Note that the weight of evidence provides a
full assessment of evidence for simple and separable support functions. Can a
similar concept be extended to support functions that may not be separable?
Shafer [34] approached the problem indirectly through notions of internal
conflict and impingement. For any separable support function T, let WT and
vT be respectively its weight of internal conflict and impingement function.
For any support function S over Θ, let εS be the set of all its extensions
that are separable support functions over some refinements of Θ. Then the
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weight of internal conflict for S was defined as the minimum weight of internal
conflict among all separable support functions in εS :

W = inf{WT | T ∈ εS}. (21)

Similarly, the impingement function of S was derived from those of all its
separable extensions: for any subset A ⊂ Θ,

v(A) = inf{vT (ω(A)) | T ∈ εS , ω is a refinement mapping}. (22)

Since a separable support function itself is a support function, the definitions
in (21) and (22) should also apply to separable support functions and the
result should be consistent, i.e., if S is a separable support function, then
W = WS and v = vS . Shafer [34] proved the consistency by assuming the
weight-of-conflict conjecture, which has not been proved to be true yet. This
chapter proved the consistency without the conjecture.

As we see in Chaps. 5 and 7, a belief function is a monotone capacity of
infinite order whereas a mass function is the Möbius inversion of the capacity.
Chapter 19, by Chateauneuf and Jaffray, studied the properties of capaci-
ties of all orders, whose relationship is that, for any K ≥ 2, if a capacity is
K-monotone, then it is also L-monotone for K ≥ L ≥ 2 and 1-monotone (or
monotonic in usual sense) if f(θ) ≥ 0 for any θ ∈ Θ. A capacity is defined as
∞-monotone if it is K-monotone for any K ≥ 2. The chapter obtained some
useful results characterizing the capacities through Möbius transformations.
For example, it showed that, capacity f is K-monotone (K ≥ 2) if and only
if, for any A and C ⊂ Θ with 2 ≤ |C| ≤ K, its Möbius inversion m satisfies:

∑

C⊂B⊂A
m(B) ≥ 0.

The chapter also characterized probability distributions that dominate (or
“are compatible with” in terms of Chap. 2) a belief function. It showed that
if the probability distribution P satisfies P (A) ≥ f(A) for any A, then P is
the weighted average of the Möbius inversions of f :

P (x) =
∑

x∈B
λ(B, x)m(B).

It generalized a result in Chap. 3 by Dempster and showed f is∞-monotone if
and only if every probability distribution dominating f is the weighted average
of Möbius inversions.

Many scholars in the area of fuzzy logic consider Chap. 21, by Yen, an
outstanding paper. It is a favorite reference on the fuzzification of belief
functions. It studied the computation of beliefs and plausibilities for fuzzy
sets and extended Dempster’s rule to fuzzy logic. It significantly improved
other approaches by Zadeh, Ishizuka, Yager, and Ogawa while maintaining
the semantics of the Dempster-Shafer theory of belief functions as well as
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possibility theory. It brought together belief functions and fuzzy logic into
a hybrid approach to reasoning under various kinds of uncertainty in intel-
ligent systems. The chapter started with a novel viewpoint, from which the
computation of Bel(A) was formulated as a linear programming problem:

min
∑

x∈A

∑

B

m(x,B)

s.t. m(x,B) ≥ 0;m(x,B) = 0 ∀x /∈ B;
∑

x

m(x,B) = m(B),

here m(x,B) denoted the probability mass allocated to x from m(B). Then,
when A was a fuzzy set, the chapter proposed to extend the problem into one
of minimizing the extended objective function:

∑

x∈A

∑

B

m(x,B)μA(x),

here μA(x) denoted the membership of x in A. If all focal elements were crisp
(non-fuzzy), then the solution to the generalized problem is

Bel(A) =
∑

m(B) inf
x∈B

μA(x).

If any focal element B is fuzzy, it will be broken into one or more crisp focal
elements, each of which is an α− cut of B:

Bα = {x | x ∈ B, μB(x) ≥ α},

with a basic probability mass

m(Bα) = (αi − αi−1)m(B),

here α0, α1, α2, ..., αn is a series of membership degrees of increasing order with
α0 = 0 and αn = 1. For example, if focal element B = {(yound, 0.4), (old,
0.7)} with m(B) = 0.8, then we get two α–cuts as follows:B0.4 = {yound, old}
and B0.7 = {old} with basic probability masses m(B0.4) = (0.4−0)×m(B) =
0.32 and m(B0.7) = (0.7 − 0.4)×m(B) = 0.24. Then, Bel(A), for any fuzzy
set A, is

Bel(A) =
∑

B

m(B)
∑

i

(αi − αi−1) inf
x∈Aαi

μA(x).

The approach to extending Dempster’s rule was also novel. It considered a
multivalued mapping S → T as a compatibility relation S × T and general-
ized it to a fuzzy relation C : 2S×T → [0, 1], which is a joint possibility dis-
tribution. It considered Dempster’s rule as the combination of compatibility
relations and generalized it as the combination of fuzzy relations, which in turn
is equivalent to the multiplication of noninteractive possibility distributions.
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This led to the generalized rule for combining fuzzy belief functions. Let m1

and m2 be two fuzzy mass functions. Then,

m1 ⊕m2(C) =
∑

A∩B=C maxx μA∩B(x)m1(A)m2(B)
1−

∑
A,B(1 −maxx μA∩B(x))m1(A)m2(B)

.

4.4 Artificial Intelligence

Five chapters apply belief functions to uncertain reasoning in artificial intel-
ligence. Chapter 8 by Jeffrey Barnett was the first paper dealing with com-
putational issues in implementing Dempster’s rule of combination. It pro-
posed an algorithm based on the very strong assumption that each piece
of evidence either confirms or denies a single proposition, i.e., all focal ele-
ments are singletons or their negations. Chapter 12 by Jean Gordon and
Edward Shortliffe proposed an improved algorithm capable of handling hier-
archical evidence, where focal elements and their negations could be arranged
in a tree-like structure. To avoid the exponential explosion in computations,
the algorithm employed approximation to combine evidence. The approxima-
tion was usually reasonable but did give unsatisfactory results in the case of
highly conflicting evidence. In addition, the approach did not produce the
degrees of belief for all focal elements involved in the computation except
for those in the tree. Chapter 18 by Glenn Shafer and Roger Logan pre-
sented a further improvement that is at least equally efficient while remov-
ing all the above limitations. These chapters built upon each other techni-
cally but are all included here because they made the history in distinct
ways. Chapter 8 coined the name “Dempster-Shafer theory” and introduced
it to the AI community. It was clearly one of the initial sources that led
Edward Shortliffe to realize the relevance and applicability of belief functions
to the issues addressed by the certainty factor model implemented in the
medical advising program MYCIN. Because of their role in MYCIN, Gor-
don and Shortliffe were probably the most influential of the authors who
made belief functions widely known as “the Dempster-Shafer theory” to AI
researchers.

Chapter 16 by John D. Lowrence, Thomas D. Garvey, and Thomas M.
Strat proposed a formal framework based on belief functions for knowledge
representation and uncertainty reasoning in expert systems, setting belief
functions up as an alternative to rules, frames, and semantic networks. It
introduced the new term “evidential reasoning” for the framework and demon-
strated its application in the Gister project at SRI International. Stem-
ming from the application of belief functions to Navy intelligence problems,
Chap. 16 was very practical in nature. Its approach to knowledge represen-
tation, i.e., modeling compatibility relations, provided a perfect example to
illustrate the applicability of belief functions to real problems.

In the framework of Chap. 16, each piece of knowledge is represented by
a belief function. Making inferences boils down to combining all component
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belief functions and marginalizing the joint belief function into a subframe
of discernment (see definition in (13)). Of course, such a straightforward
approach would be very inefficient, if not infeasible, when the size of the joint
frame is large. A creative solution to the problem is so-called local computa-
tion that computes marginals without computing the joint. The basic idea is
to arrange all the frames of discernment into a tree-structured graph, called a
join-tree or Markov tree, and propagate knowledge by sending and absorbing
messages step-by-step in the tree. Each step involves sending a message from
a node to a neighbor and thus involves only a small number of frames that
are near each other in the join-tree.

Scholars in belief functions, including Glenn Shafer, Prakash P. Shenoy,
Augustine Kong, and Khaled Mellouli, pioneered the local computation
method. Later they demonstrated the applicability of this method to other cal-
culi, including Bayesian probabilities and fuzzy logics. Chapter 20, by Shenoy
and Shafer, presented an abstract framework that covered diverse local com-
putation models as special cases. It characterized many types of computational
problems as one of applying two operators: combination and marginalization,
where combination corresponds to the integration of two or more factors into
a joint model and marginalization corresponds to the projection of a model to
a subset of variables. The chapter showed that local computation was appli-
cable to such problems if the two operators satisfied four axioms. For belief
functions, for example, these axioms can be represented as follows:

Axiom 4 Combination operator ⊕ is commutative: for any Bel1 and Bel2,

Bel1 ⊕Bel2 = Bel2 ⊕Bel1.

Axiom 5 Combination operator ⊕ is associative: for any Bel1, Bel2, and
Bel3,

Bel1 ⊕ (Bel2 ⊕Bel3) = (Bel1 ⊕Bel2)⊕Bel3.

Axiom 6 Marginalization is consonant: for any Bel on the frame Θ(I) and
K ⊂ J ⊂ I. Then

(Bel↓J)↓K = Bel↓K .

Axiom 7 Marginalization is distributive over combination: for any Bel1 and
Bel2 and I,

(Bel1 ⊕Bel2)↓I = (Bel1)↓I ⊕ (Bel2)↓I .

Chapter 20 also presented the Shenoy-Shafer architecture for carrying
out local computation over a Markov tree, and demonstrated the algorithm
using an example of probability propagation. Compared with other simi-
lar approaches (e.g., [24]), this architecture gains some efficiency by avoid-
ing divisions, which are required by other methods for obtaining conditional
probabilities.
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4.5 Decision Making

The theory of belief functions is not meant to be a normative or descriptive
theory for decision making. Thus, it does not provide normative axioms or
behavioral predictions on how to make decisions and judgments. Because of
its expressive power in encoding evidence or modeling uncertainty, however, it
has exceptional prescriptive value as a decision support tool. Here we review
four chapters demonstrating creative use of belief functions for the purpose,
including Chap. 23 by Rajendra P. Srivastava and Glenn Shafer, Chap. 24
by Ronald R. Yager, Chap. 27 by Galina Rogova, and Chap. 29 by Thierry
Denoeux.

Chapter 23, by Srivastava and Shafer, applied belief functions to audit
decision-making. The chapter derived analytical expressions of the audit risk
at three levels: the financial statement level, the account level, and the audit
objective level. It made a distinct contribution to the field by showing how
to interpret and use plausibility numbers to encode accounting evidence. It
also proposed a hierarchical network for evidential reasoning and dealt with
belief propagation through the “AND” gates, which were inherent in business
decision problems.

There have been numerous attempts to incorporate belief functions into
expected utility theory to take advantage of their flexibility in uncertainty
modeling. Chapter 24, by Yager, showcased such attempts. It is included
here because it is theoretically sound and computationally feasible. Whereas
other work reduced Dempster-Shafer degrees of belief to probabilities for use
as decision weights, this chapter proposed deriving decision weights from a
mathematical programming model. Once we set a pessimism level—a neces-
sary concept for decision making under uncertainty—entropy maximization
problem gives weights to be assigned to each outcome within a focal element.
The weights then determine the weighted average value of outcomes in the
focal element, which along with the corresponding basic probability numbers
determine an overall value for each choice. It is shown that the formalism
unifies several common decision models for decision-making under risk, uncer-
tainty, and ignorance. Its ordered weighting mechanism is also consistent with
psychological findings that have led decision theorists to generalize expected
utility theory to so-called rank-dependent utility [25, 26, 30].

Chapter 27, by Rogova, is a real application with real results. The topic is
very timely. In machine learning, the idea of boosting, i.e., combining simple
poor learners to form an ensemble that outperforms individual single ensem-
ble members while avoiding overfitting, is gaining a lot of interest in the last
decade. In theory, it is known that learners, each performing only slightly
better than random, can be combined to form an arbitrarily good ensem-
ble hypothesis [20]. Schapire [33] was the first to provide a provably polyno-
mial time boosting algorithm. He and his colleagues [13] applied boosting to
a real-world optical character recognition by using neural networks as base
learners. Chapter 26 demonstrated the application of Dempster’s rule to the
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same problem. Interestingly, it also used neural networks as base learners. It
showed that the proposed approach allowed 15–30% reduction of misclassi-
fication error compared to the best individual classifier. The method made
Eastman Kodak one of the small group of the leaders in an industrial compe-
tition for the best optical recognition algorithm.

Chapter 29, by Denoeux, is considered an outstanding application of belief
functions to decision making. It proposed a new approach to pattern classifi-
cation that considered each of the k-nearest neighbors as an item of evidence
and used Dempster’s rule of combination to pool all evidence together to form
a judgment concerning the class membership of a new incoming pattern. Sim-
ulation results showed that the proposed approach outperformed the classic
voting k-nearest neighbor approach as well as its distance-weighted variant.

4.6 Statistical Inference

Parametric statistical inference is not only the source of motivation for the the-
ory of belief functions but also one of its most important application domains.
Chapter 4 demonstrated the potential of belief functions for unifying the tra-
ditional fiducial argument and modern Bayesian inference. Here we review
three additional chapters revisiting the problem of parametric inference using
belief functions, including Chap. 10 by Glenn Shafer, Chap. 22 by Jean-Yves
Jaffray, and Chap. 25 by Philippe Smets.

In his book [34], Shafer suggested translating each observation into a con-
sonant belief function on a parameter based on the normalized likelihood. He
recognized that this approach does not possess the desirable property that
the result using a set of n independent observations be equal to the combi-
nation of the n belief functions obtained from the individual observations.
Chapter 10, by Shafer, discussed three alternative approaches, including the
fiducial argument, the generalized Bayesian method of Chap. 4, and the con-
ditional embedding method of Chap. 25 (see below). It showed that these
methods produce coherent results when the nature of the evidence establish-
ing the parametric model is taken into account.

Chapter 22, by Jaffray, studied the effect of Bayesian conditioning when a
belief function is (mis)understood as the lower envelope of compatible prob-
ability measures. It obtained two important results. First, it reproved the
result by Fagin and Halpern [15] that the lower envelope of all Bayesian con-
ditionals is still a belief function, and going beyond Fagin and Halpern, it
developed an explicit expression for the mass function for the lower enve-
lope. Second, it showed that the resulting lower envelope does not charac-
terize the set of all conditionals. Let QE be the set of Bayesian conditionals
that dominate P (A | E) (see (20)). Then, PE ⊂ QE if and only if there
exist subsets A and B such that Bel(A ∩ B) > 0, Bel(A ∪ B) < 1, and
Bel(A ∪ B) > Bel(A) + Bel(B) − Bel(A ∩ B) (see Sect. 3 for the definition
of PE). Also, PE ⊂ QE if and only if there exist E and F with F ⊂ E and
Bel(F ) > 0 such that the lower envelopes of Bayesian conditionals do not
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satisfy P ((A | E) | F ) = P (A | F ), which is observed by both Bayesian and
Dempster’s conditioning.

A belief function Bel(A) may be re-expressed in a conditional form as
Bel(A | E) given evidence E. Then Dempster’s rule may be called the con-
junctive rule of combination, because Bel1(A | E1)⊕Bel2(A | E2) is the com-
bined belief function when both E1 and E2 are true. Chapter 25, by Smets,
proposed the disjunctive rule of combination that allows the combination of
two belief functions induced by two pieces of evidence, of which only one can
be true. The disjunctive rule is intuitive when applied to parametric inference
problems. Suppose B is a set of possible parameter values, one of which is
true. For each θ ∈ B, let us assume there is a belief function Bel(A | θ) repre-
senting the likelihood that the true value of X is in A when the parameter is
θ. Then the combination of these belief functions follow the disjunctive rule
as

Bel(A | B) =
∏

θ∈B Bel(A | θ).

The disjunctive rule corresponds the multiplication of belief functions whereas
the conjunctive rule corresponds to the multiplication of commonality func-
tions. Based on the disjunctive rule, the chapter derived the generalized
Bayesian theorem, where conditional probabilities are replaced by belief func-
tions and prior probabilities by vacuous belief functions. Let B be a set of
possible parameter values and A be a set of observations. Let Bel(A | θ)
be the likelihood that X is in A given parameter θ. Then, the generalized
Bayesian formula represents the posterior belief of B given A as follows:

Bel(B | A) =
∏

θ∈B Bel(A | θ)−
∏

θ∈Θ Bel(A | θ).

Some results in Chap. 25 were initially developed in an unpublished dis-
sertation [36]. The generalized Bayesian theorem permits the induction of
a belief function for parameters from an observation, leading to a new statis-
tical method, called conditional embedding, which was extensively discussed
in Chap. 10. Here the author represented them in his framework of transfer-
able belief functions (see below) and attempted to develop a new approach
for belief function propagation in a directed belief network.

4.7 Alternative Interpretations

Besides theoretical foundations, perspectives, advances, and applications,
there have been tens of studies targeting alternative formalisms and interpre-
tations of belief functions. Here we review four representative ones: Chap. 14
by Didier Dubois and Henri Prade, Chap. 17 by Enrique H. Ruspini, Chap. 26
by Jürg Kohlas and Paul-André Monney, and Chap. 28 by Philippe Smets and
Robert Kennes.

There are many connections between fuzzy logic and belief functions. As
we have seen earlier, possibility and necessity functions are consonant plausi-
bility and support functions that have nested focal elements. Chapter 14, by
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Dubois and Prade, exposed another connection between bodies of evidence
and fuzzy sets. The classic concept of a set is simply a collection of elements,
e.g., A = {x, y, z}. The concept of a fuzzy set extends it to include a member-
ship function m → [0, 1] describing a graded assessment of the membership
of elements in relation to a set. For example, A = {(x, 0.3), (y, 0.7), (z, 1)}
is a fuzzy set consisting of elements x, y, and z with membership grades
0.3, 0.7, and 1. Chapter 14 viewed a belief function as a further generaliza-
tion of fuzzy logic and interpreted a body of evidence to be an extended
fuzzy set, where an element was replaced by a focal element and a mem-
bership grade was replaced by a basic probability number. For example,
A = {({x, y}, 0.2), ({z}, 0.5), {x, y, z}, 0.3)} is a body of evidence representing
a belief function with m({x, y}) = 0.2, m({z}) = 0.5, and m({x, y, z}) = 0.3.
Chapter 14 studied belief functions using this formalism and introduced the
notions of extended set operations such as union, intersection, and comple-
mentation to bodies of evidence. It discussed and compared four alternative
definitions of set inclusion on bodies of evidence. Since it was easier to deal
with consonant plausibility and support functions, the chapter applied the
notions of inclusion, and pioneered the research on possibilistic approximation
of bodies of evidence.

Recall that Chap. 9, by Shafer, interpreted belief functions as a construc-
tive theory for probability judgment, and proposed the randomly coded mes-
sage as the metaphor for understanding the semantics of belief functions.
There was another popular interpretation that understood a degree of belief
as the probability of provability [37, 29]. Formally, suppose we are given a set
of logical theories, each logical theory is characterized by a set of axioms,
and each theory is assigned a probability such that the probabilities add up
to 1. The belief in a proposition A is then the sum of the probabilities of
the theories from which A follows as a logical consequence. Chapter 17, by
Ruspini, presented a similar interpretation based on the probabilities of a
modal proposition toward developing a formal theoretical foundation for evi-
dential reasoning as proposed by Lowrance, Garvey, and Strat in Chap. 16.
In particular, it extended Carnap’s notion of the epistemic universe [3] by
including all possible combined descriptions of not only the state of the real
world but also the state of knowledge that certain rational agents have about
it. It showed that the probabilities defined over a sigma algebra of subsets of
the epistemic universe have the properties of belief and mass functions and
can represent the effect of evidence on the state of knowledge of the rational
agents. The epistemic probabilities also induces lower and upper probabili-
ties in the truth algebra that are identical to the interval bounds derived in
Chap. 3. Finally, the chapter applied the epistemic logic approach to the prob-
lem of knowledge integration and obtained an additive combination formula
for integrating a wide variety of knowledge of both dependent and independent
sources. Under the assumptions of probabilistic independence, the formula is
reduced to Dempster’s rule of combination.
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Chapter 26, by Kohlas and Monney, presented the theory of hints, another
interpretation or formalism of the Dempster-Shafer theory of belief functions
based on multivalued mapping Γ from a probability space (Ω) to another
space of interest (Θ). As we explained earlier, Dempster’s original model was
(Ω, P,Γ, Θ), which in fact was exactly the same as the model of hints. The
difference lies at the interpretation of Ω, which Fisher called the sample space
of a pivotal variable, Dempster called the population of sample individuals,
but here Kohlas and Monney called the space of arguments. Note that in his
axiomatic approach, Shafer made the elements Ω and Γ implicit and assigned
basic probability numbers directly to subsets of Θ. Chapter 26 argued that
the model of a hint contains more information than its derived belief function
does, and allows for a straightforward and logical derivation of Dempster’s
rule for combining independent and dependent bodies of information.

Chapter 28, by Smets and Kennes, presented the transferable belief model
(TBM), a subjectivist and non probabilistic view of the Dempster-Shafer the-
ory of evidence. In response to the need for integrating belief functions into
a normative decision theory such as expected utility theory, the TBM dis-
tinguished clearly the credal level, where beliefs are entertained, from the
decision level where standard utility theory applies, the belief functions being
converted into probabilities using the pignistic transformation. Another main
idea underlying the TBM is the notion of unnormalized belief function and
unnormalized conjunctive rule of combination, and the interpretation of the
mass m(∅) assigned to the empty set, under the open-world assumption, as a
degree of belief in the event that the frame of discernment does not contain
the true value of the variable of interest.

5 Conclusion

In this chapter, we reviewed the basic concepts and major results presented in
Glenn Shafer’s book, provided a brief history of the conceptual development,
and summarized the major contributions of the selected classic works.

In this volume we deliberately did not include any papers that involve mis-
understandings of basic concepts. This includes well known papers by Lotfi
A. Zadeh [43] and Judea Pearl [29]. Zadeh criticized the normalization pro-
cedure in Dempster’s rule of combination. He used an example to show that,
in the case of combining two highly conflicting pieces of evidence, the result
is not intuitive, although Shafer thought otherwise [35]. Because of this crit-
icism, many authors introduced the “open world” hypothesis and assigned
a non-zero basic probability number m(∅) to the empty set (see Chap. 27).
Judea Pearl [29] was mainly concerned with the inability of belief functions
to represent imprecise probabilities. This concern was addressed 40 years ago
by Dempster (see Chap. 2). A belief function was never meant to replace or
represent an imprecise probability, which involves a larger set of compatible
probability functions than a belief function does. Instead, it is meant to be
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a faithful representation of knowledge based on evidence and to combine the
knowledge obtained from multiple independent pieces of evidence for making
provable probable inferences.

With respect to future research on belief functions, Dempster [11] called for
more realistic applications of belief functions to complex systems. He stressed
the critical need for credible and tractable models to represent the details of
complex systems where quantified uncertainties cannot be obtainable through
more traditional routes. He suggested the development of Fisher pivotals and
efficient inference algorithms, in particular two-stage MC and MCMC meth-
ods, in conjunction with simplification from local computation with graphical
structures. In order to improve public awareness of belief functions, Demp-
ster [12] recently suggested a new semantics whereby every proposition A is
associated with a triple (p, q, r), where p is the probability “for” A, i.e.,
Bel(A), q is the probability “against” A, i.e., Bel(A), and r is the probabil-
ity of “don’t know”, i.e., Pl(A)−Bel(A). He showed how this semantics can
coherently interpret the notion of p-value, which is often misconstrued as a
Bayesian probability “for” the null hypothesis. Theoretically, open problems
still remain. For example, in earlier chapters Dempster left some questions
on asymptotic properties of the combined belief function when the number of
pieces of evidence approaches infinity. In this chapter, we reviewed Shafer’s the
weight-of-conflict conjecture that is still unsolved, although Chap. 14 showed
that it was not needed for justifying the concepts of weight of internal con-
flict and impingement for a support function. Another problem is posed by
Bayesians who seek behavioral justifications of belief functions. Formally, is
there a set of behavioral axioms that justifies the existence of a belief function?
In other words, are there any necessary and sufficient conditions in terms of
how people make choices or judgments in the face of uncertainty underlying a
class of belief functions appropriate for the representation of the uncertainty?
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New Methods for Reasoning Towards Posterior
Distributions Based on Sample Data∗

Arthur P. Dempster

Abstract. This paper redefines the concept of sampling from a population with a
given parametric form, and thus leads up to some proposed alternatives to the exist-
ing Bayesian and fiducial arguments for deriving posterior distributions. Section 2
spells out the basic assumptions of the suggested class of sampling models, and
Sect. 3 suggests a mode of inference appropriate to the sampling models adopted.
A novel property of these inferences is that they generally assign upper and lower
probabilities to events concerning unknowns rather than precise probabilities as
given by Bayesian or fiducial arguments. Sections 4 and 5 present details of the new
arguments for binomial sampling with a continuous parameter p and for general
multinomial sampling with a finite number of contemplated hypotheses. Among the
concluding remarks, it is pointed out that the methods of Sect. 5 include as limiting
cases situations with discrete or continuous observables and continuously ranging
parameters.

1 Introduction

Consider an observable x, a parameter θ, and a specified family of distribu-
tious Fθ over x-space. A conventional way of thinking about sample observa-
tions x1, x2, · · · , xn from an unknown member of the family of distributions
Fθ is roughly as follows. First, a specific θ is determined by a process which
need not be specified. Then, using this θ, the observations x1, x2, · · · , xn are
drawn independently at random each with the distribution Fθ. I believe that
this attitude is held almost universally, where the schools of Fisher and Ney-
man usually think rather vaguely about θ as “chosen by Nature,” while the
Bayesian school specifies a prior distribution governing the random choice of
θ. Some Bayesians prefer to think of θ as not fixed at all while x1, x2, · · · , xn
are governed by their joint marginal distribution. I do not see any operational
importance in this distinction, since I assume that a parameter value may be

∗ Research supported in part by the Office of Naval Research through Contract
Nonr 1866(37).
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fixed and still legitimately be assigned a probability distribution, as long as
the fixed value remains unknown.

The inference methods of this paper rest on a weaker definition of sample
than that of the conventional model. The revised model gives up the idea
that x1, x2, · · · , xn are independently distributed according to Fθ for fixed
θ while retaining the feature that any observed sample x1, x2, · · · , xn shall
appear consistent with a distribution Fθ for some θ regardless of the size n of
the sample. Thus, a single observed sample can never be used to distinguish
between the more relaxed model and the conventional model.

A trivial example will serve here to illustrate the new approach, the gen-
eral theory being defined in Sect. 2. Suppose that x and θ take values on the
real line. Suppose that Fθ is the normal distribution N(θ, 1) with mean θ
and variance unity. In contrast to the conventional approach of fixing θ and
drawing x1, x2, · · · , xn independently from the corresponding fixed N(θ, 1)
distribution, an example of the new model is provided by asserting that
x1 − θ, x2 − θ, · · · , xn − θ are governed by the law of n independent N(0, 1)
random variables, but asserting no further laws whether deterministic or prob-
abilistic about the variables x1, x2, · · · , xn, θ. Such an assumption no doubt
appears artifical as stated here, but the discussion of Sect. 2 will provide a
general foundation for it. The immediate purpose is to remark that, however
one may think of determining θ, whether from a known process or from a black
box, and whether dependent on x1, x2, · · · , xn or not, the observed sample
should in no way look unlike repeated drawings from some normal distribu-
tion with variance unity. In the absence of further empirical data involving
repeated choices of θ, I do not see why the conventional model should be
preferred over the new model.

The new model was first introduced in Dempster (1963), but with a
further assumption. In the earlier paper it would have been assumed, for
example, that θ, x1, x2, · · · , xn were jointly distributed random variables, i.e.,
that there existed a probability law simultaneously governing all of the vari-
ables θ, x1, x2, · · · , xn. This joint distribution would have been specified only
to the extent that x1 − θ, x2 − θ, · · · , xn − θ were asserted to be inde-
pendently N(0, 1) distributed while the conditional distribution of θ given
x1 − θ, x2 − θ, · · · , xn − θ was not specified in any way. I now find it more
satisfying to avoid extraneous complications due to assuming the existence of
unknown laws. According to the present approach, it is correct to regard vari-
ables, such as parameters or yet-to-be-observed sample variables, as having
existing but unknown real-world values. But it is seen as intellectually wasteful
and possibly deceptive to assume the existence of probability laws governing
such variables, unless these laws may be specified. This change has in turn
suggested the more satisfying methods of defining posterior probabilities given
in this paper.

An underlying motivation for this work is to be found in the need to break
the serious deadlock between those statisticians who prefer Bayesian formu-
lations and those who prefer formulations relying on the repeated sampling
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aspects of probability laws. These two traditions have a longer history of con-
flict than is generally realized. Todhunter, writing circa 1865, traced what
would now be called a confidence or fiducial argument about binomial p
to J. Bernoulli circa 1700. In correspondence, Leibniz questioned Bernoulli’s
method. Of more interest here is the fact that Laplace circa 1813 used both
the Bernoullian and Bayesian approaches to estimate p and presented slightly
discrepant normal approximations without comment. Poisson in 1830 also
used both methods but achieved normal approximations which were in agree-
ment. De Morgan in 1837 drew attention to the differences in logical processes
used and queried Poisson’s results. Todhunter himself believed Poisson to have
been correct. Unfortunately, the question of the differences in Bernoullian and
Bayesian approaches was confounded with the question of accuracy of normal
approximations and was destined to remain obscure for around 100 years. See
Todhunter (1865) pp. 57, 73, 554–558, for discussion and references.

At present, the Bayesian school is showing renewed vigor and is increas-
ingly in conflict with what I have called above the Bernoullian school. Within
the latter school there are disagreements between the many who generally fol-
low Neyman and the few who prefer R.A. Fisher. The following two statements
summarize a previously given (Dempster (1964)) attitude to the Neyman-
Fisher differences: (i) Neyman’s methods while often available and useful are
not fully satisfying, and (ii) Fisher, while extraordinarily inventive and mostly
on the right track, was unable to give coherence to his system and in particular
failed to perfect his fiducial argument.

I believe that the methods of this paper are close to Fisher’s viewpoint.
The arguments given here resemble the fiducial argument in that they pro-
duce posterior probabilities using the sampling hypothesis and parametric
hypotheses but no prior distribution. I believe also that the basic reasoning
principle described in Sect. 3 is essentially what Fisher relied on in his fiducial
argument.

At the same time the new methods of this paper can be viewed as belong-
ing under a common umbrella with the Bayesian methods. This umbrella
is described in a later paper (Dempster (1965)). There the logic underlying
upper and lower probability systems is given more generally. Rules are given
for combining independent sources of information. The methods of this paper
implicitly apply these rules to the combination of information from individual
sample observations. If a prior distribution is available, it may be combined
with the sample information according to the same rules, and the result is the
standard Bayesian answer (Dempster (1965)).

2 Construction of the Sampling Model

Throughout the following discussion measure-theoretic details are not sup-
plied, mostly because they are obvious in the range of examples of present
interest.
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The basic components of the theory are a pair of spaces A and X . A
represents the population being sampled, and each population individual aεA
has a corresponding observable characteristic xεX . The mapping a→ x thus
assumed to exist is regarded as unknown but subject to certain restrictions
posed below. The statement that a population individual a comes under obser-
vation as part of a sample is construed to mean that the x corresponding to
a becomes known to the observer. The observer is not allowed, however, to
identify a.

A unique probability measure μ over A is assumed given. This plays the
role of the law governing the random sampling operation. A finite population
of size N is represented by a set of N elements, and the natural measure μ
governing random sampling is the measure assigning probability 1/N to each
of the N elements. The reader may supply the obvious definitions of a random
sample a1, a2, · · · , an from A, sampling either with replacement or without
replacement as desired. When an infinite population is postulated, an appro-
priate choice of A and μ is less clear, and, to the extent that various choices
may be transformed into one another, the choice is more or less arbitrary. A
convenient representation for the infinite population structures used in this
paper takes A to be a simplex and μ to be the uniform distribution over
the simplex. A random sample a1, a2, · · · , an from an infinite population A is
defined, as one would expect, to be a drawing from the product measure μn

over the product space An.
Besides A,X and μ, the user of the theory must specify in each instance

(i) a class of contemplated mappings a → x, and (ii) a family of probability
measures over X whose typical member may be denoted by Fθ where θ ranges
over a space Θ. The family of measures Fθ is used in the theory to define two
postulates restricting the class of contemplated mappings a→ x, namely

(P1) the probability measure over X induced by the measure μ over A under
any contemplated mapping a→ x must be Fθ for some θεΘ, and

(P2) exactly one mapping in the class of contemplated mappings a→ x leads
to the induced measure Fθ over X for each θεΘ.

(P1) and (P2) together imply a one-one correspondence between the class of
contemplated mappings a → x and the family of measures Fθ. The two
postulates are kept separate in the exposition because (P1) is easier to
swallow than (P2). A discussion of (P2) will be given shortly.

In any application of the theory, a random sample a1, a2, · · · , an is drawn
from A as specified above. The observer identifies the corresponding x1,
x2, · · · , xn under the true mapping a→ x. He is then asked to draw inferences
concerning which member of the class of contemplated mappings is the true
member or, equivalently, concerning which θ in Θ is the true θ. The suggested
mode of inference is given in Sect. 3.

The N(θ, 1) example of Sect. 1 may be used as a first illustration of the
theory. Take A to be the whole real line and take μ to be the N(0, 1) distribu-
tion over A. Take X to be the whole real line, and take Fθ to be the N(θ, 1)
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distribution, where the range space Θ of θ is also the whole real line. Finally,
define the class of contemplated mappings a→ x to be

a→ x = θ + a, (1)

where the dual interpretation of θ as a parameter for the class of mappings
and as a parameter for the class of distributions Fθ defines the one-one corre-
spondence satisfying (P1) and (P2). The essential feature of this illustration
is the preservation of the natural orderings on A and X under the whole class
of mappings from A to X . The particular representation of A and μ is not
essential, and any monotone one-one transformation, for example carrying μ
on A into a uniform distribution on (0, 1), could be used to obtain an alterna-
tive representation. This example will be termed a structure of the first kind
in the later discussion of this section. Note that, as remarked in Sect. 1, the
only probability law operating is the law of n independent N(0, 1) random
variables applied to a1, a2, · · · , an.

The sampling model proposed above differs from the conventional for-
mulation of mathematical statistics in that the population being sampled is
explicitly represented by a mathematical space, namely the space A of popu-
lation individuals. The presence of this space makes it possible to ask certain
questions within the framework of the model which were only dimly conceiv-
able under the old formulation. Specifically, the old formulation provided a
mathematical representation of a population distribution such as Fθ for an
observable characteristic, but it did not describe how each population indi-
vidual contributed to the overall distribution. In real life, however, it is legiti-
mate to ask at least what each individual’s x might be under a contemplated
hypothesis Fθ. In other words, what mapping or mappings a → x should be
regarded as permissible for a given θ within the limits specified by (P1)?

One answer to this question is to allow any set of mappings consistent
with (P1). This is tantamount to refusing to be interested in the question.
Postulate (P2) goes to the other end of the spectrum and requires that only
one mapping shall be allowed for each given θ. An underlying motivation for
this directive is the general principle that parsimony is a good thing in model-
building. Of course, (P2) goes only part way to answering the question, since
it does not say which mapping a → x shall be the only one allowed for a
given θ. Two classes of specific answers, hence specific instances of the theory,
will shortly be given. (P2) itself provides a guideline, adopted in a speculative
spirit by this investigation in order to examine the statistical methodology
which follows naturally from it.

Another consequence of explicitly introducing the population space A is
the insertion of the random sampling hypothesis into the model where it
naturally belongs. In the conventional formulation, a distinct law based on
independent and identically distributed random variables is assumed to govern
x1, x2, · · · , xn for each distinct θ. In the present formulation, the collection of
distinct laws is replaced by a single law μn which is overtly meant to describe
the operation of sampling from A. Note especially that in the new approach
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the Fθ are not regarded as probability laws in the ordinary sense, i.e., a
random variable x governed by the law Fθ is nowhere postulated. The Fθ
play the roles not of sampling distributions but rather of deterministic laws
describing the contemplated population distributions of x.

The remainder of this section describes two classes of completely speci-
fied sampling models of the proposed kind. These will be called the class of
structures of the first kind and the class of structures of the second kind. The
first class, which has been illustrated above, assumes A and X to be ordered.
Unfortunately such an ordering of X restricts consideration essentially to a
univariate characteristic. The second class is designed to remove this restric-
tion so that either multivariate or univariate x may be handled. To keep the
discussion simple, X will be assumed finite of size k where k � 2. In other
words the observable characteristic is multinomial, assuming values in one
of k categories which constitute X . In this multinomial context the use of a
structure of the first kind presupposes that the k categories possess a natural
order, while the use of a structure of the second kind poses no such restriction
and treats all k categories symmetrically.

Motivation and definition will now be given for the class of structures
of the first kind. When the observable characteristic is assumed to classify
the population individuals into k ordered categories, it is not implausible to
suppose that the population individuals possess an ordering consistent with
the partial ordering induced by the mapping a → x, with the same basic
ordering of A holding whatever mapping a → x is contemplated. It is then
but a short step to suppose that the population individuals are distributed
over a real line and a further short step to regard this distribution as being
monotonely transformable and thence transformed into a uniform distribution
over the interval (0, 1). Such a uniform distribution over (0, 1) induces a given
Fθ over X under a mapping a→ x such that a on the intervals (0, p1), (p1, p1+
p2), · · · , (p1 +p2 + · · ·+pk−1, 1) map respectively into categories 1, 2, · · · , k of
X , where pi defines the probability of category i under Fθ for i = 1, 2, · · · , k.
This mapping is illustrated in Fig. 1. Except for its indeterminacy at a finite
set of points of A, this is the only mapping a → x which satisfies (P1) for
a given Fθ and which preserves the ordering on A and X . Any resolution
of the indeterminacy for each Fθ yields a class of contemplated mappings in

Category 1

0 p1 p1 + p2

p1 + p2 + 
... pk–1

Category 2

Category k

1

Fig. 1. The interval (0, 1) of population individuals and their corresponding multi-
nomial categories for a given (p1, p2, · · · , pk) in a structure of the first kind
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the desired one-one correspondence with the class of all distributions over X .
To complete the definition of a structure of the first kind it remains only to
specify a family of distributions Fθ, and this may be done arbitrarily.

Consider now the class of structures of the second kind. Here, the k
multinomial categories are to be treated without regard to order. A natu-
ral means to this end is to increase the dimension of the proposed A so it may
have the capability to reflect a multivariate observable characteristic. The
following simple scheme is proposed: Suppose that A consists of the points
of a (k − 1)-dimensional simplex. Using barycentric coordinates, the general
point of such a simplex may be represented by a k-tuple of real numbers
(α1, α2, · · · , αk) where

αj � 0 for j = 1, 2, · · · , k, and
∑k

j=1
αj = 1. (2)

The vertices I1, I2, · · · , Ik of the simplex are represented by the k-tuples
(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1). Suppose that μ is defined to be
the uniform probability measure over the simplex A. Specifying a mapping
a → x is equivalent to specifying a partition of A into π1, π2, · · · , πk where
aεπi maps into category iεX , for i = 1, 2, · · · , k. The mapping a → x corre-
sponding to a given Fθ under (P1) and (P2) must have an associated partition
satisfying

μ(πi) = pi, (3)

where pi is the probability of category i under Fθ, for i = 1, 2, · · · , k. Such
a partition is defined by considering the point P in A with coordinates
(p1, p2, · · · , pk) and defining πi for i = 1, 2, · · · , k to be the simplex with
vertices P and Ij for 1 � j � k, j 	= i. (Points on the common boundaries of
the πi may be arbitrarily assigned.) A set of mappings of this type, in one-
one correspondence with a specified family of distributions Fθ, will be said to
define a structure of the second kind.

The case k = 3 is illustrated in Fig. 2.

I2 : (0, 1, 0)

I1 : (1, 0, 0)

π3
π2

π1

P : (p1, p2, p3)

I3 : (0, 0, 1)

Fig. 2. The triangle of population individuals associated with a structure of the
second kind when k = 3
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There are many other structures satisfying postulates (P1) and (P2). The
two special classes of structures proposed above were selected because of their
mathematical simplicity. I have been unable to find any others with compara-
bly clean properties. The idea behind the class of structures of the first kind,
namely the idea of monotonely transforming the distribution of an observable
into a uniform distribution on (0,1), is a familiar one in statistical theory, and
some of the resulting inferences resemble those coming from confidence and
fiducial arguments. The idea behind the class of structures of the second kind
is unfamiliar, but, I think, not drastically different from the idea behind the
first class and worth developing so that its potential may be understood.

3 Inference Methods for the Proposed Sampling Model

The first task here is to define inferences about an unknown parameter θ,
given an observed sample x1, x2, · · · , xn, when a model of the type defined
in Sect. 2 is assumed. Later in the section the discussion will be broadened
to include inferences made jointly about θ and a future sample y1, y2, · · · , ym
from the same population.

As conceived here, the aim of inference is to assign a probability distribu-
tion to θ. Any probability deduced from such a distribution is intended for
interpretation in the usual prospective way as long as θ remains unknown. For
example, if the statement Pr (θ > 5.1) = .035 should be made about a real
parameter θ, this statement would be intended to convey the same type of
information as the statement that the probability is .035 of drawing a white
ball from an urn containing 35 white balls and 965 black balls.

It turns out that the reasoning developed here leads in general not to
precise probability statements but to bounded probability statements about
any event determined by θ and y1, y2, · · · , ym. For example, in place of a
statement such as Pr (θ > 5.1) = .035, a statement such as .010 � Pr (θ >
5.1) � .063 might be found. The aim of inference and the interpretation
of probability remains as before. The difference is simply that the logical
apparatus carried by the statistician is able to produce only bounds for the
desired posterior probabilities.

The central idea follows. Throughout this section an infinite population is
assumed, so that the sample is represented by a point drawn at random from
the space An according to the measure μn. That is, before the sample is drawn,
prospective probability judgments concerning which sample a1, a2, · · · , an will
appear are governed by the measure μn over An. After the sample is drawn,
this law is generally not appropriate for prospective probability judgments
because the observations x1, x2, · · · , xn typically rule out many of the points
of An as possible samples. It is proposed here to consider the subspace of An
which does represent the range of samples still possible after x1, x2, · · · , xn
become known, to restrict the measure μn to this subspace, and to use the
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restricted measure for prospective probability judgments after x1, x2, · · · , xn
are known.

Accordingly, define Rn to be the subspace of An consisting of points
a1, a2, · · · , an such that

a1 → x1, a2 → x2, · · · , an → xn, (4)

under some mapping a → x in the class of contemplated mappings, i.e., Rn
consists of the set of samples which could have produced the observed data
x1, x2, · · · , xn. Define the measure νn over Rn from

νn(A) = μn(A)/μn(Rn), (5)

for A ⊂ Rn. This is just the familiar device of conditioning by Rn. The
restricted measure νn over Rn is regarded here as appropriate for prospective
probability judgments about a1, a2, · · · , an after x1, x2, · · · , xn are known.

It is assumed in (5) that μn(Rn) > 0. This assumption is essentially met
by the structures of the first and second kinds as defined in Sect. 2 when X is
finite. For these structures, either μn(Rn) > 0 or an observation xi has fallen
in a category of X assigned zero measure by all Fθ, and the latter possibility
means that the data contradict the model with certainty. The extension of
the theory to cover continuous observables is touched on in Sect. 6.

A sample a1, a2, · · · , an will be called consistent with the data x1, x2, · · · , xn
and with θ in Θ if (4) holds for the mapping a→ x corresponding to θ. After
the data are fixed, this consistency concept defines a mapping from Rn to
Θ. If the mapping should be one-one, then the measure νn over Rn induces
a measure over Θ which may be used for prospective probability judgments
about the unknown θ. In general, however, this mapping from Rn to Θ is
one-many, with the consequence that νn induces a system of upper and lower
probability judgments about θ rather than a single measure.

This system of upper and lower probabilities is defined as follows. Given
any event Σ determined by θ, i.e., any subset Σ of Θ belonging to an appro-
priate class of subsets, define R̄n(Σ) to be the set of points of Rn which are
consistent with the data for at least one θ in Θ, and define Rn(Σ) to be the set
of points of Rn which are consistent with the data for no θ not in Σ. Thence
define the upper probability P̄ (Σ) of Σ and the lower probability P (Σ) of Σ
to be

P̄ (Σ) = νn(R̄n(Σ)) and P
¯
(Σ) = νn(R

¯n
(Σ)). (6)

The rationale behind the definitions (6) is that P̄ (Σ) includes “as much” of
the measure νn as can be transferred from Rn to Θ under the various one-one
mappings consistent with the one-many consistency mapping from Rn to Θ
prescribed above. Similarly, P (Σ) includes “as little” of the measure as can
be transferred under the same circumstances. Thus, prospective probability
judgments based on νn transfer naturally into a system of upper and lower
probability judgments applied to events Σ ⊂ Θ.
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The calculus of these upper and lower probability judgments is developed
more fully in a later paper (Dempster (1965)), but a few obvious properties
are included here.

Since Rn ⊃ R̄n(Σ) ⊃ Rn(Σ) it follows that

0 � P
¯
(Σ) � P̄ (Σ) � 1. (7)

Also it is easily checked that R̄n(Σ) and Rn(Θ−Σ) form a disjoint pair with
union Rn so that

P̄ (Σ) = 1− P
¯
(Θ− Σ). (8)

Finally, since Rn = R̄n(Θ) = Rn(Θ), it follows that

P̄ (Θ) = P
¯
(Θ) = 1. (9)

For any real parameter φ determined by θ, upper and lower cumulative
distribution functions may be defined as

H̄(Z) = P̄ (φ) � Z), and H
¯
(Z) = P

¯
(φ � Z). (10)

Corresponding upper and lower expectations of φ may then be defined as

Ē(φ) =
∫ ∞

−∞
Z dH

¯
(Z) and E

¯
(φ) =

∫ ∞

−∞
Z dH̄(Z). (11)

The behavior of these operators under linear transformations is governed by

Ē(a+ bφ) = a+ bĒ(φ), if b > 0,
= a+ bE

¯
(φ), if b < 0, (12)

where a and b are real constants. The expectations (11) are suggested as guides
for betting or decision procedures whose loss functions are linear in φ.

Inferences about further sample observations y1, y2, · · · , ym may be defined
using ideas very similar to those above. The observed sample a1, a2, · · · , an
and a future sample b1, b2, · · · , bm are governed prior to any sampling by the
law μn+m over An+m.

The observations are x1, x2, · · · , xn as before, but the unknowns are now
θ, y1, y2, · · · , ym in the space Θ × Xm. The space Rn,m of samples possible
after observation consists of those a1, a2, · · · , an, b1, b2, · · · , bm satisfying

a1 → x1, a2 → x2, · · · , an → xn,

b1 → y1, b2 → y2, · · · , bm → ym (13)

for some mapping a→ x in the class of contemplated mappings and for some
θ, y1, y2, · · · , ym. The initial measure μn+m over An+m leads to a measure
νn,m appropriate for postsample judgments. Given any event Σ∗ determined
by θ, y1, y2, · · · , ym the subsets R̄n,m(Σ∗) and Rn,m(Σ∗) of Rn,m are defined
analogously to R̄n(Σ) and Rn(Σ) above, i.e., R̄n,m(Σ∗) is the set of points in
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Rn,m which could have given rise to x1, x2, · · · , xn for some θ, y1, y2, · · · , ym
in Σ∗ and Rn,m(Σ∗) is the set of points in Rn,m which could have given rise
to x1, x2, · · · , xn for no θ, y1, y2, · · · , ym not in Σ∗. Thence

P̄ (Σ∗) = νn,m(R̄n,m(Σ∗)) and P
¯
(Σ∗) = νn,m(R

¯n,m
(Σ∗)). (14)

Any event determined by θ alone has upper and lower probabilities deriv-
able by (14) or by (6). It is clear, however, that the two sets of inferences
concur, as would be desired.

The following two sections are intended to illustrate the foregoing defini-
tions in a pair of non-trivial situations. Section 4 deals with finite X of size
k = 2 (binomial sampling), the family Fθ consisting of all possible distribu-
tions over the two categories of X . A structure of the first kind is assumed,
but this is also trivially a structure of the second kind when k = 2. The illus-
tration of Sect. 5 assumes a structure of the second kind with general k but
finite Θ.

4 Binomial Sampling

Illustrative inferences are worked out here for the structure of the first kind
defined by setting k = 2 and allowing Fθ to range over all distributions on the
two categories of X . As is usually done with binomial sampling, the param-
eter p on 0 � p � 1 will be used for the distributions over X , where p
denotes the probability of category 1 and 1 − p denotes the probability of
category 2. The population individuals are supposed uniformly distributed on
the interval (0, 1) under this structure of the first kind. (The corresponding
structure of the second kind would differ only in the nonessential way that the
population individuals would be uniformly distributed over the line segment
(one-dimensional simplex) joining the points with coordinates (0, 1) and
(1,0).) The mapping a→ x corresponding to a given p is ambiguous at a = p.
This ambiguity does not affect the resulting inference, but for definiteness
a = p will be assumed to map into category 1.

The population individuals a1, a2, · · · , an, b1, b2, · · · bm representing the
observed sample of size n and a future sample of size m are supposed drawn
at random according to a uniform distribution over An+m which is here a
unit cube in n + m dimensions. The sample data x1, x2, · · · , xn marks each
individual of the observed sample as belonging to category 1 or category
2. The observation vector x1, x2, · · · , xn will be replaced here by the single
quantity T defined to be the total number of sample observations in category
1. To assume that only T is observed, rather than the actual configuration
x1, x2, · · · , xn, has no effect on the resulting inferences because the spaces Rn

and Rn,m corresponding to each of the
(
n
T

)
configurations with given T are

disjoint and isomorphic. Consequently, the only effect on (5) is to multiply



46 A. P. Dempster

both numerator and denominator of the right side by
(
n
T

)
. It is a theorem,

not proved here, that the inferences based on multinomial data, represented
by either a structure of the first kind or a structure of the second kind, are
not affected if the individual sample observations x1, x2, · · · , xn are thrown
away and only T1, T2, · · · , Tk retained, where Ti denotes the number of sample
observations in category i.

Upper and lower probabilities will be computed for the events

Σ = {α � p � β} (15)

and
Σ∗ = {r � S � t} , (16)

where S is the number of category 1 observations in a future sample of size
m. These upper and lower probabilities depend of course on the observed T .

Consider first (15). A point a1, a2, · · · , an in An is consistent with the
observed T and the parameter value p if and only if

a(T ) � p < a(T+1) (17)

where a(1) � a(2) � · · · � a(n) denote the ordered random variables
a1, a2, · · · , an and where a(0) = 0 and a(n+1) = 1. It follows that R̄n(Σ)
is the subset of An such that the intersection of the intervals [a(T ), a(T+1))
and [α, β] is nonempty. Rn is the special case of R̄n(Σ) when α = 0 and β = 1
so that Rn = An.

Since the measures ν̇n and μn coincide here, the definition (6), reduces to

P̄ (Σ) = μn(R̄n(Σ)). (18)

To calculate this it is convenient to write

R̄n(Σ) =
{
α < a(T ) � β

}
∪
{
a(T ) � α < a(T+1)

}
(19)

which is a union of disjoint sets. Thus

P̄ (Σ) = T

(
n
T

)∫ β

α

pT−1(1− p)n−Tdp

+
(
n
T

)
αT (1− α)n−T , if 1 � T � n,

= (1− α)n, if T = 0.
(20)

An alternative to (19) is

R̄n(Σ) =
{
α < a(T+1) � β

}
∪
{
a(T ) � β < a(T+1)

}
(21)

which leads to an alternative to (20), namely
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P̄ (Σ) = (n− T )
(
n
T

)∫ β

α

pT (1 − p)n−T−1dp

+
(
n
T

)
βT (1− β)n−T , if 0 � T � n− 1,

= βn, if T = n.
(22)

Another alternative may be found by replacing the beta integrals in (20)
or (22) by binomial sums, yielding

P̄ (Σ) =
∑T

i=0

(
n
i

)
αi(1− α)n−i +

∑n

i=T

(
n
i

)
βi (1− β)n−i − 1. (23)

A similar variety of forms is possible for P (Σ). Rn(Σ) is the event that
the interval [a(T ), a(T+1)) is contained in the interval [α, β]. Writing

R
¯n

(Σ) =
{
α � a(T ) � β

}
−

{
α � a(T ) � β, a(T+1) > β

}
(24)

and

{α � a(T ) � β, a(T+1) > β}
=

{
a(T ) � β < a(T+1)

}
−

{
a(T ) < α, a(T+1) > β

}
,

(25)

it is seen that

P
¯
(Σ) = T

(
n
T

)∫ β

α

pT−1(1− p)n−T dp−
(
n
T

)
[βT − αT ](1− β)n−T , (26)

at least if 1 � T � n − 1. Special interpretations are needed if T = 0 and
T = n, and these may be handled by checking directly that

P
¯
(Σ) = 0,

= 1− (1− β)n,
= 0,
= 1− αn,

if T = 0, α > 0,
if T = 0, α = 0,
if T = n, β < 1,
if T = n, β = 1.

(27)

Just as (20) may be replaced by (22) and (23), (26) may be replaced by

P
¯
(Σ) = (n− T )

(
n
T

)∫ β

α

pT (1−p)n−T−1dp

−
(
n
T

)
αT [(1 − α)n−T − (1− β)n−T ], (28)

or, replacing the integrals by sums,

P̄ (Σ) =
∑T−1

i=0

(
n
i

)
αi(1 − α)n−i

+
(
n
T

)
αT (1 − β)n−T +

∑n

i=T+1

(
n
T

)
βi(1− β)n−i − 1.

(29)
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Note that

P̄ (Σ)−P
¯
(Σ) =

(
n
T

)
[αT (1− α)n−T + βT (1− β)n−T − αT (1− β)n−T ]. (30)

Also, in the special case α = β,

P̄ (p = α) =
(
n
T

)
αT (1 − α)n−T and P

¯
(p = α) = 0. (31)

Several general features of the above inferences are worthy of remark.
The small upper probability (31) assigned to any particular value p = α is
proportional to the conventional likelihood at p = α. This likelihood is the
probability content of the region R̄n(p = α) in An, and such regions sweep
out the region Rn as α ranges over 0 � α � 1. If the regions R̄n(p = α)
had not overlapped for different α, then all upper and lower probabilities
would have coincided and both would have been derivable from a posterior
density proportional to likelihood. It will next be shown that the overlapping
decreases as n increases in the sense that the upper and lower probabilities
tend towards agreement with a distribution whose density is proportional to
likelihood.

Large sample behavior may be studied by supposing that n → ∞ and
T → ∞ in such a way that T/n → ρ. By considering the limiting normal
behavior of binomial distributions, it becomes clear that

P̄ (Σ)− P
¯
(Σ) = O(1/n

1
2 ) (32)

uniformly in α and β, and consequently that either P̄ (Σ) or P (Σ) may be
approximated by

P̄ (Σ) ∼ P
¯
(Σ) ∼ Φ(β∗)− Φ(α∗) (33)

where Φ denotes the cdf of the N(0, 1) distribution,

β∗ = (β − T/n)/[n(T/n)(1− T/n)]
1
2 , (34)

and
α∗ = (α − T/n)/[n(T/n)(1− T/n)]

1
2 . (35)

(The symbols ∼ in (33) mean that the ratios tend to unity as n → ∞.) The
normal approximation (33) extends to show that, if the arguments α∗ and β∗

tend to constants as n→∞, the posterior inferences may be computed from
a normal density function whose ratio to the likelihood tends to a constant.
The limiting posterior inference considered here is also that reached by a
Bayesian argument with any well-behaved prior density and the same limiting
conditions. That is, in a circumstance where the Bayesian would say that the
choice of a prior distribution does not matter, the present theory yields the
same answer.
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Consider next how to find P̄ (Σ∗) and P (Σ∗) where Σ∗ was defined in (16).
This requires consideration of the sample space An+m from which the pair of
samples is drawn. For Σ∗ to hold it is necessary and sufficient that

b(r) � p < b(t+1) (36)

where b(1) � b(2) � · · · � b(m) denote the ordered random variables
b1, b2, · · · , bm with the additional conventions that b(0) = 0 and b(m+1) = 1.
On the other hand, (17) must hold if p is to be consistent with the observation
T . Thus R̄n,m(Σ∗) is the subset of An+m such that the intervals [b(r), b(t+1))
and [a(T ), a(T+1)) are not disjoint. Writing

R̄n,m (Σ∗) =
{
b(r) � a(T ) < b(t+1)

}
∪ {a(T ) < b(r) < a(T+1)}, (37)

it is seen that finding P̄ (Σ∗) is reducible to a combinatorial problem concern-

ing the
(
n+m
n

)
equally likely relative orderings of the samples a1, a2, · · · , an

and b1, b2, · · · , bm.
For example, the event {a(T ) � b(r) < a(T+1)} may be expressed as the

event that b(r) has rank r+T in the combined samples. Under this event, the
first r + T − 1 members of the combined sample consist of T of the ai and
r − 1 of the bj , and the last m+ n− r − T members of the combined sample
consist of n− T of the ai and m− r of the bj. Thus

μn+m(a(T ) � b(r) < a(T+1)) =
(
r + T − 1

T

)(
m+ n− r − T

n− T

)/(
m+ n
n

)
.

(38)
This and subsequent formulas apply generally when 0 � r � t � m and

0 � T � n provided that
(
x
y

)
is regarded as zero when x < y.

By reasoning similar to that producing (38), one finds from (37) that

P̄ (Σ∗) =
∑t

i=r

(
i+ T − 1

i

)(
m+ n− i− T

m− i

)/(
m+ n
n

)

+
(
r + T − 1

T

)(
m+ n− r − T

n− T

)/(
m+ n
n

)
. (39)

Similarly Rn,m(Σ∗) may be expressed as the event that the interval
[a(T ), a(T+1)) is contained in the interval [b(r), b(t)), so that Rn,m(Σ∗) may
be written

{
b(r) � a(T ) < b(t+1)

}
−

{
b(r) � a(T ) < b(t+1) < a(T+1)

}
(40)

while the second event on the right side of (40) may be written
{
a(T ) < b(t+1) < a(T+1)

}
−

{
a(T ) < b(r), b(t+1) < a(T+1)

}
. (41)
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From (40) and (41) one has

P
¯
(Σ∗) =

∑t

i=r

(
i+ T − 1

i

)(
m+ n− i− T

m− i

)/(
m+ n
n

)

−
[(

t+ T
T

)
+

(
r + T − 1

T

)](
m+ n− T − t− 1

n− T

)/(
m+ n
n

)
.

(42)

From (39) and (42) it follows that

P̄(Σ∗)− P
¯
(Σ∗) =

[(
t+ T − 1

T

)(
m+ n− r − T

n− T

)

+
(
t+ T
T

)(
m+ n− T − t− 1

n− T

)
−

(
r + T − 1

T

)

(
m+ n− T − t− 1

n− T

)]/(
m+ n
n

)
. (43)

There is an obvious analogy between the set of formulas (15), (19), (20),
(24), (25), (26), (30) and (16), (37), (39), (40), (41), (42), (43), respectively.
This analogy has an important statistical consequence. As m → ∞, r → ∞
and t→∞ in such a way that r/m→ α and t/m→ β, one might conjecture
that P̄ (Σ∗) → P̄ (Σ) and P (Σ∗) → P (Σ), i.e., that inferences about p should
be the same as inferences about the proportion of category 1 observations in a
subsequent infinite sample. The validity of these limiting properties is evident
from the fact that b(r) and b(t+1) converge in probability to α and β together
with the fact that the events governing P̄ (Σ) and P (Σ) depend on the interval
(α, β) in precisely the same way that the events governing P̄ (Σ∗) and P (Σ∗)
depend on the interval (b(r), b(t+1)). Thus P̄ (Σ∗) and P (Σ∗) actually cover
P̄ (Σ) and P (Σ) as limiting cases.

Finally, to present a simple result, suppose that P̄1 and P 1 denote upper
and lower probabilities that the next sample individual will be observed in
category 1 given that T of the first n sample individuals were observed in
category 1. From (39) and (40) with m = 1 and r = t = 1,

P̄1 = (T + 1)/(n+ 1) and P
¯1 = T/(n+ 1). (44)

5 Structures of the Second Kind with Finite Θ

Let X be a set of k observable categories. Let

Θ = {1, 2, · · · , q} . (45)

index a set of q specified distributions over X , say F1,F2, · · · ,Fq. Let Σ be
any subset of Θ. The aim here is to develop formulas for P̄ (Σ) and P (Σ)
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based on sample observations x1, x2, · · · , xn where the sampling model is a
structure of the second kind as defined in Sect. 2.

According to these definitions, A is represented by a (k − 1)-dimensional
simplex with vertices I1, I2, · · · , Ik and μ is the uniform probability measure
over A. Each distribution Fi determines a point

Pi = (pi1, pi2, · · · , pik) (46)

of A where, for i = 1, 2, · · · , q and j = 1, 2, · · · , k, the probability of category j
under Fi is denoted by pij . Each Pi determines a partition of A into simplexes
πi1, πi2, · · · , πik where πij denotes the simplex with the same vertices as A
except that Ij is replaced by Pi. The mapping a→ x corresponding to θ = i
is the mapping which sends a επij into category j (with some rule to make
the mapping specific on the boundaries of the πij). In accordance with the
postulate (P1)

μ(πij) = pij , (47)

for i = 1, 2, · · · , q and j = 1, 2, · · · , k (c.f., (3)).
Consider first inferences based on a sample of size n = 1 when the sample

observation x1 falls in category j of X . The regions R1, R̄1(Σ) and R1(Σ)
whose measures determine P̄ (Σ) and P (Σ) are given by

R1 = ∪iεΘπij , (48)
R̄1(Σ) = ∪iεΣπij , (49)

and
R
¯ 1(Σ) = R1 − R̄1(Θ− Σ). (50)

It turns out to be simpler to characterize intersections of the πij for given
j rather than unions. The intersections are also important for understanding
the passage from n = 1 to general n. The approach therefore will be to express
the probabilities of the unions (48) and (49) in terms of the probabilities of
intersections.

A simplex with the same vertices as A except that the vertex Ij of A is
replaced by a general point ofA will be called for short a simplex of type j. The
vertex which replaces Ij will be called the free vertex. For convenience, the
simplex of type j with free vertex P will be denoted by πj(P ). For example,
πij above may also be denoted by πj(Pi).

Using obvious vector space operations of addition and multiplication by a
scalar, a general point Q of the simplex πj(P ) may be characterized as

Q = rjP +
∑k

l=1,l �=j rlIl (51)

where rl � 0 for l = 1, 2, · · · , k and
∑k

1 rl = 1. The following two lemmas will
be deduced from (51).

Lemma 1. If Q lies in πj(P ) then πj(Q) ⊂ πj(P ), and conversely.
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Lemma 2. Suppose that P =
∑k

1 plIl and Q =
∑k

1 qlIl where pl � 0 and
ql � 0 for l = 1, 2, · · · , k and

∑k
1 pl =

∑k
1 ql = 1. Then Q lies in πj(P ) if and

only if
ql/qj � pl/pj (52)

for l = 1, 2, · · · , k.

The converse part of Lemma 1 is immediate and the direct part requires
only a simple application of the definitions of πj(Q) and πj(P ), and so is
omitted.

To prove Lemma 2, note that the comparison of (51) with Q =
∑k

1 qlIl
yields

qj = rjpj , and ql = rl + rjpl for l 	= j. (53)

If Q lies in πj(P ) then (53) holds with rl � 0 and rj = qj/pj, so that (52)
follows. Conversely, starting from (52) and defining r1, r2, · · · , rk from (53) it
follows that rl � 0 for l = 1, 2, · · · , k and

∑k

l=1
rl = rj +

∑k

l=1,l �=j(ql − rjpl)

= rj +
∑k

l=1
(ql − rjpl)

= rj + 1− rj · 1
= 1, (54)

as required.
The basic result about intersections, which is stated in Theorem 1, asserts

that the intersection of a finite set of simplexes of type j is again a simplex
of type j.

Theorem 1. Suppose that Pi is defined by (46) for i in a subset Σ of the
integers 1, 2, · · · , q. Suppose that Q =

∑k
i qlIl is defined by

ql = maxiεΣ {pil/pij} /
∑k

u=1
maxiεΣ {piu/pij} (55)

for l = 1, 2, · · · , k. Then

πj(Q) =
⋂

iεΣπj(Pi). (56)

To prove Theorem 1, consider finding a point Q lying in the desired inter-
section and having maximum coordinate qj . From (52) it follows that

ql/qj � pil/pij (57)

for i in Σ and hence that

ql/qj � maxiεΣ {pil/pij} (58)
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for l = 1, 2, · · · , k. Summing and using
∑k

1 ql = 1 gives

qj � [
∑k

l=1
maxiεΣ {pil/pij}]−1. (59)

Moreover, if (59) is changed to an equality, it is easily seen that Q defined by
(55) is the only point consistent with (58) and

∑k
1 ql = 1, i.e., Q is the unique

point in the desired intersection with maximum coordinate qj . This explains
where (55) came from.

That
πj(Q) ⊂

⋂
iεΣ

πj(Pi) (60)

follows from Lemma 1. That

πj(Q) ⊃
⋂

iεΣ
πj(Pi) (61)

follows by applying Lemma 2 to a general point in the intersection and showing
that it satisfies the requirement of the converse application of Lemma 2 to
πj(Q). Thus Theorem 1 is proved.

Returning now to inference from a sample of size n = 1 with x1 in category
j, and reverting to the notation πij in place πj(Pi), the important consequence
of Theorem 1 is that

μ(
⋂

iεΣ
πij) = [

∑k

u=1
maxiεΣ {piu/pij}]−1. (62)

This follows from (3), which shows that μ(πj(Q)) = qj , and from (55) with
l = j. Note that the numerator of (55) is unity when l = j.

Since R̄1(Σ) is a union of simplexes of type j as in (49), μ(R̄1(Σ)) may
be expressed in terms of the quantities defined by (62) applied to all subsets
of Σ. Specifically, suppose that Σ1a for a = 1, 2, · · · denote the single element
subsets of Σ, that Σ2b for b = 1, 2, · · · denote the two-element subsets of
Σ, that Σ3c for c = 1, 2, · · · denote the three-element subsets of Σ, and so
on. Then

μ(R̄1(Σ)) =
∑

a
μ(

⋂
iεΣ1a

πij)−
∑

b
μ(

⋂
iεΣ2b

πij)

+
∑

c
μ(

⋂
iεΣ3c

πij)− · · · . (63)

Formula (63) may also be applied when Σ is replaced successively by Θ and
by Θ− Σ to determine μ(R1) and μ(R̄1(Θ−Σ)) = μ(R1)− μ(R1(Σ)). These
along with μ(R̄1(Σ)) determine P̄ (Σ) and P (Σ).

Consideration of the simplest case q = 2 may help to illuminate the fore-
going. Here Θ consists of two elements and there are two non-trivial subsets
namely Σ1 consisting of i = 1 and Σ2 consisting of i = 2. Thus only three
numbers are required to determine all upper and lower probabilities, namely
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μ(R̄1(Σ1)) = p1j ;
μ(R̄1(Σ2)) = p2j ;

μ(R̄(Σ1) ∩ R̄(Σ2)) = [
∑k

u=1
max {p1u/p1j , p2u/p2j}]−1. (64)

Denoting μ(R̄(Σ1) ∩ R̄(Σ2)) by p12j for short, it follows that

μ(R1) = p1j + p2j − p12j (65)

and hence that

P̄ (Σ1) = p1j/(p1j + p2j − p12j) and
P
¯
(Σ1) = (p1j − p12j)/(p1j + p2j − p12j). (66)

For samples of general size n, consideration must be directed to regions
in the product space An. If the observations x1, x2, · · · , xn fall in categories
c1, c2, · · · , cn, respectively, and if Σi ⊂ Θ is the subset consisting of i only, then

R̄n(Σi) = πic1 × πic2 × · · · × πicn (67)

for i = 1, 2, · · · , q. For general Σ, unions of regions like (67) are needed. As
already mentioned it is easier to first find intersections. In fact, for general Σ,

⋂
iεΣ

R̄n(Σi) = (
⋂

iεΣ
πiε1)× (

⋂
iεΣ

πiε2)× · · · × (
⋂

ieΣ
πiεn) (68)

and thence
μn(

⋂
iεΣ

R̄n(Σi)) = Πn
m=1μ(

⋂
iεΣ πicm

). (69)

Each term in the product on the right side of (69) is of the form (62) for
different j. Formula (63) must be generalized by replacing the terms on the
right side by products of n terms as in (69). Then the computation of upper
and lower probabilities proceeds as before.

The task of determining inferences for a sample of size n may therefore be
summarized as follows. For the mth sample individual with observation xm
in category cm, compute the vector of 2q − 1 quantities (62) with j = cm and
Σ ranging over the 2q − 1 non-empty subsets of {1, 2, · · · , q}. Having such a
vector for each sample individual, combine these n vectors into a single vector
by multiplying the corresponding elements as indicated by (69). From this
sample vector compute μ(R̄n(Σ)) for any Σ as in the generalization of (63)
and thence determine upper and lower probabilities as required.

Again the case q = 2 is especially simple because the vector of 2q − 1
quantities required for each individual reduces to three quantities as in (64).
Thus for each sample individual s there is a triple (p1j(s), p2j(s), p12j(s)) for s =
1, 2, · · · , n where j(s) denotes the observational category into which individual
s falls. The inferences (66) are modified by replacing (p1j , p2j , p12j) with

(Πn
s=1p1j(s),Πn

s=1p2j(s),Πn
s=1p12j(s)). (70)
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6 Concluding Remarks

The following discussion of qualitative aspects of the proposed inference meth-
ods may help the reader to evaluate these methods.

Unlike the fiducial argument which Fisher limited to continuous observ-
ables only, the present methods have been developed above in detail only for
finite X . Interestingly enough, the extension to continuous observables poses
greater difficulty in the case of structures of the first kind than in the case of
structures of the second kind.

Pick up again the N(θ, 1) example of Sect. 2 which illustrates a structure
of the first kind extended in the obvious way to cover real x. If the procedures
of Sect. 3 are applied to the N(θ, 1) example, it is found for n = 1 that
R1 = A and that ν1 is the N(0, 1) distribution overA which, from (1), induces
a N(x1, 1) distribution for θ. In other words, Fisher’s fiducial argument is
reproduced in this simple case. For general sample sizes, Rn becomes the
line in n-space consisting of samples a1, a2, · · · , an satisfying xi = ai + θ for
i = 1, 2, · · · , n. Unfortunately μn(Rn) is now zero and (5) cannot be used. This
breakdown is not fatal because the observable x may be approximated by a
multinomial observable specifying which of a large set of k mutually exclusive
and exhaustive intervals contains x. In this way Rn is approximated by a
cylinder with μn(Rn) > 0. As k →∞ in an appropriate way, the cross-section
of the cylinder shrinks to the vanishing point and the posterior distribution
induced on θ approaches the N(x̄, 1/n) distribution. This answer is the same
as that given by the fiducial argument, but the reasoning is quite different: the
present method conditions by Rn while the fiducial argument uses sufficiency
to reduce consideration to x̄.

It thus appears that multinomial approximation may be used to extend
the reasoning of Sect. 3 to continuous observables. At this point a snag arises
in connection with structures of the first kind but not, remarkably enough,
in connection with structures of the second kind. The snag is that different
multinomial approximations may lead in the limit to different inferences. This
does not happen for location parameter situations, such as the N(θ, 1) exam-
ple, but a little analysis shows that it does happen for general families Fθ with
sampling represented by a structure of the first kind. On the other hand, for
structures of the second kind, the fundamental quantity (62) does approach
a common limit under a wide range of approximating conditions, i.e.,

[
∑k

u=1
maxiεΣ {piu/pij}]−1 → [∫ maxiεΣ {fi(x)/fi(x1)} dx]−1 (71)

where (pi1, pi2, · · · , pik) approximates a continuous distribution with density
fi(x). This remarkable property means that the structures of the second kind
extend in an unambiguous way to yield inferences for general univariate or
multivariate observables. For example, inferences about all the parameters
of a multivariate normal distribution from a sample of any size are uniquely
defined using a structure of the second kind.

This uniqueness property together with the ability to handle multivariate
observables make the inferences based on the structures of the second kind
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appear very attractive to the author. These inferences have the property that
upper and lower probabilities differ even with continuous observables, which
is also plausible in small samples.

The new methods pay for the absence of a prior distribution by being able
to specify only upper and lower posterior probabilities. If two hypotheses Σ1

and Σ2 are “close” in the sense that R̄n(Σ1) and R̄n(Σ2) overlap considerably,
then it becomes difficult to decide between such hypotheses because both
P̄ (Σ1) and P̄ (Σ2) are close to P̄ (Σ1∪Σ2) and there is no unambiguous division
of posterior probability between them. Consider an extreme case where Σ1 =
{θ1},Σ2 = {θ2} and Fθ1 ≡ Fθ2 . Here the hypotheses might fairly be judged
indistinguishable, and the present methods react by finding P̄ (Σ1 ∪ Σ2) =
P̄ (Σ1) = P̄ (Σ2) and P (Σ1) = P (Σ2) = 0. (The Bayesian would, of course,
distinguish between such Σ1 and Σ2 on the basis of his prior distribution
alone.) As illustrated in Sect. 4, it typically happens that the overlapping of
R̄n(Σ1) and R̄n(Σ2) becomes less serious as n increases, i.e., large samples
have high resolving power.

As in other theories of inference, the concept of likelihood plays a promi-
nent role, but the interpretation of likelihood is radically changed. Here,
the standard likelihood function L(θ) is proportional to μn(R̄n({θ})) or to
νn(R̄n({θ})) = P̄ ({θ}). While L(θ) for each θ is the measure of a set, the
sets corresponding to different θ overlap in an important way which is not
defined by the function L(θ) itself. Thus, all the relevant information is not
contained in L(θ). In large samples, however, “nearly” all the relevant infor-
mation resides in L(θ), as illustrated in Sect. 4.

Noting that the sampling model specifies a measure μ over A in addition
to a family of distributions Fθ, a reader might jump to the conclusion that μ
is playing a role analogous to the prior distribution adopted by a Bayesian.
Such an analogy would be specious. The measure μ simply idealizes the asser-
tion that all samples are equally likely. As such it belongs to the category of
assumption which is usually regarded as objective, in contrast to the Bayesian
prior distribution which is often frankly subjective. It is not the assumption
of μ which gives the present methods their distinctiveness, but rather the pos-
tulate (P2), or, more precisely, the classes of structures of the first and second
kind which translate (P2) into precise models.
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Upper and Lower Probabilities Induced
by a Multivalued Mapping∗

Arthur P. Dempster

Abstract. A multivalued mapping from a space X to a space S carries a probability
measure defined over subsets of X into a system of upper and lower probabilities over
subsets of S. Some basic properties of such systems are explored in Sects. 1 and 2.
Other approaches to upper and lower probabilities are possible and some of these
are related to the present approach in Sect. 3. A distinctive feature of the present
approach is a rule for conditioning, or more generally, a rule for combining sources
of information, as discussed in Sects. 4 and 5. Finally, the context in statistical
inference from which the present theory arose is sketched briefly in Sect. 6.

1 Introduction

Consider a pair of spaces X and S together with a multivalued mapping Γ
which assigns a subset Γx ⊂ S to every x εX . Suppose that μ is a probability
measure which assigns probabilities to the members of a class F of subsets of
X . If μ is acceptable for probability judgments about an uncertain outcome
x εX , and if this uncertain outcome x is known to correspond to an uncertain
outcome s εΓx, what probability judgments may be made about the uncertain
outcome s εS? The answer to this question would be a familiar one if Γ were
single-valued, for under wide conditions a single-valued Γ would carry the
measure μ over subsets of X into a unique probability measure over subsets
of S. For multivalued Γ, however, one is led to consider upper and lower
probabilities defined as follows over subsets of S.

For any T ⊂ S define

T ∗ = {x εX,Γx ∩ T 	= ∅} (1)

and

∗ This research was supported by the Office of Naval Research. Reproduction in
whole or in part is permitted by the U. S. Government. Distribution of the doc-
ument is unlimited.
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T∗ = {x εX,Γx 	= ∅,Γx ⊂ T } . (2)

In particular, S∗ = S∗ is the domain of Γ. Define E to be the class of
subsets T of S such that T ∗ and T∗ belong to F . Suppose that S ε E . Finally,
define the upper probability of TεE to be

P ∗(T ) = μ(T ∗)/μ(S∗) (3)

and the lower probability of TεE to be

P∗(T ) = μ(T∗)/μ(S∗). (4)

P ∗(T ) and P∗(T ) are defined only if μ(S∗) 	= 0.
Since T ∗ consists of those x εX which can possibly correspond under Γ to

an s ε T , one may naturally regard μ(T ∗) to be the largest possible amount of
probability from the measure μ which can be transferred to outcomes s ε T .
Similarly T∗ consists of those x εX which must lead to an s ε T , so that μ(T∗)
represents the minimal amount of probability which can be transferred to
outcomes s ε T . The denominator μ(S∗) in (3) and (4) is a renormalizing fac-
tor necessitated by the fact that the model permits, in general, outcomes in
X which do not map into a meaningful subset of S. The offending subset
{x εX,Γx = ∅} must be removed from X and the measure of the remaining
set S∗ renormalized to unity. It would have been possible to restrict the for-
mulation so that μ(S∗) = 1, but it will be convenient in Sects. 4 and 5 to have
the general model.

The case of finite S = {s1, s2, · · · , sm} will now be developed somewhat
further. Suppose that Sδ1δ2···δm denotes the subset of S which contains si if
δi = 1 and excludes si if δi = 0, for i = 1, 2, · · · ,m. The 2m subsets of S so
defined are the possible Γx, and they determine a partition of X into

X =
⋃

δ1δ2···δm

Xδ1δ2···δm
(5)

where
Xδ1δ2···δm = {x εX,Γx = Sδ1δ2···δm} . (6)

For any T ⊂ S, the subsets T ∗ and T∗ are unions of subsets of the form
Xδ1δ2···δm

and hence P ∗(T ) and P∗(T ) are uniquely determined by the 2m

quantities
pδ1δ2···δm = μ (Xδ1δ2···δm) . (7)

It is assumed, of course, that each Xδ1δ2···δm
is in F . Note that any set of

2m non-negative numbers pδ1δ2···δm
with sum unity determines a possible set

of upper and lower probabilities for all T ⊂ S = {s1, s2, · · · , sm}.
Table 1 displays formulas for all possible upper and lower probabilities

when m = 3. For example, if T = S110 = {s1, s2}, then T ∗ = X100 ∪X010 ∪
X110 ∪X101 ∪X011 ∪X111 and T∗ = X100 ∪X010 ∪X110, and therefore

μ(T ∗) = p100 + p010 + p110 + p101 + p011 + p111 (8)
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Table 1. Upper and lower probabilities when S = {s1, s2, s3}

T P ∗(T ) P∗(T )

∅ 0 0
{s1} (p100 + p110 + p101 + p111)/(1 − p000) p100/(1 − p000)
{s2} (p010 + p110 + p011 + p111)/(1 − p000) p010/(1 − p000)
{s3} (p001 + p101 + p011 + p111)/(1 − p000) p001/(1 − p000)
{s1, s2} (p100 + p010 + p110 + p101 +

p011 + p111)/(1 − p000)
(p100 + p010 + p110)/(1 − p000)

{s1, s3} (p100 + p001 + p110 + p101 +
p011 + p111)/(1 − p000)

(p100 + p001 + p101)/(1 − p000)

{s2, s3} (p010 + p001 + p110 + p101 +
p011 + p111)/(1 − p000)

(p010 + p001 + p011)/(1 − p000)

S 1 1

and
μ(T∗) = p100 + p010 + p110. (9)

These need only be divided by

μ(S∗) = 1− p000 (10)

to become upper and lower probabilities as defined in (3) and (4). Similar
arguments yield the rest of Table 1.

This section closes with several more definitions. The term variate will
be used for a real-valued function defined over S. Subject to measurability
requirements, any variate V has an upper distribution function F ∗(v) and a
lower distribution function F∗(v) defined by

F ∗(v) = P ∗(V � v), (11)
F ∗(v) = P∗(V � v),

for −∞ < v <∞. The corresponding upper and lower expected values E∗(V )
and E∗(V ) are defined by

E∗(V ) =
∫ ∞

−∞
v dF∗(v)

E∗(V ) =
∫ ∞

−∞
v dF ∗(v). (12)

(The interchange of upper and lower stars is necessary here in order to have
both F∗(v) � F ∗(v) and E∗(V ) � E∗(V ).)

The concepts of upper expected value and lower expected value generalize
the concepts of upper probability and lower probability, respectively. For, if
the variate Z is defined to be the indicator function of T ⊂ S, i.e., if
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Z(s) = 1 for sεT,
= 0 otherwise, (13)

then it follows from (12) that

E∗(Z) = P ∗(T )
E∗(Z) = P∗(T ). (14)

2 The Class of Compatible Measures Over S

Given a system of upper and lower probabilities for the subsets E of S deter-
mined as above from (X,F , μ) and Γ, it is natural to ask for the class C of
probability measures P such that

P∗(T ) � P (T ) � P ∗(T ) (15)

for all T ε E . Clearly C is the same as the class of probability measures P
such that

E∗(V ) � E(V ) � E∗(V ) (16)

for all variates V for which E∗(V ) and E∗(V ) are defined and finite, and
where E(· · · ) refers to expectation with respect to P . The class C1 will be
called the class of measures compatible with the given system of upper and
lower probabilities.

It is convenient to begin with a constructive definition of a class C1 of
measures P and to prove ultimately that C = C1. A general member of the class
C1 is defined by specifying a probability measure γΓx over each possible Γx ⊂ S
and taking P (T ) =

∫
γΓx(T ∩ Γx) dμ(x). To avoid topological complexities

only the case of finite S will be considered in detail. Consider, therefore,
the following method of constructing a probability measure P over the finite
sample space S = {s1, s2, · · · , sm} given the 2m quantities pδ1δ2···δm

defined
in (7).

Suppose that each pδ1δ2···δm
other than p00···0 is partitioned into a sum of

m non-negative pieces

pδ1δ2···δm
=

∑m

i=1
p
(i)
δ1δ2...δm

(17)

where p(i)
δ1δ2···δm

= 0 unless δi = 1. Define the measure P from

P {si} =
∑

δ1δ2···δm

p
(i)
δ1δ2···δm

/(1− p00...0) (18)

for i = 1, 2, · · · ,m. The motivation behind this definition of P is that in the
logic of the situation pδ1δ2···δm

is a piece of probability that may attach to any
si for which δi = 1. The partition (17) specifies the subpieces to be attached to
each eligible si and (18) collects the appropriate subpieces from all pδ1δ2···δm

.
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For example, when m = 3, one needs the decompositions

p110 = p
(1)
110 + p

(2)
110;

p101 = p
(1)
101 + p

(3)
101; (19)

p011 = p
(2)
011 + p

(3)
011;

p111 = p
(1)
111 + p

(2)
111 + p

(3)
111;

and the corresponding measure P is defined from

P{s1} =
(
p100 + p

(1)
110 + p

(1)
101 + p

(1)
111/(1− p000)

)
,

P{s2} =
(
p010 + p

(2)
110 + p

(2)
011 + p

(2)
111/(1− p000)

)
, (20)

P{s3} =
(
p001 + p

(3)
101 + p

(3)
011 + p

(3)
111/(1− p000)

)
.

The class of all measures P determined by such partition schemes will be
denoted by C1. These measures are compatible in the sense of (15); indeed,

P∗(T ) = minPεC1 P (T ),
P ∗(T ) = maxPεC1 P (T ) (21)

for each T ⊂ S. More generally,

E∗(V ) = minPεC1 E(V ),
E∗(V ) = maxPεC1 E(V ) (22)

for any variate V .
Before proving (22), it is convenient to introduce a finite subclass of C1

with several important properties, including the property that the extremes
in (21) and (22) are all attained within this finite subclass. Suppose that
π(1), π(2), · · · , π(m) is a permutation of 1, 2, · · · ,m. The partition (17) may
be determined in such a way that pδ1δ2···δm = p

(i)
δ1δ2···δm

for that i which
appears first in the permutation π(1), π(2), · · · , π(m) subject, of course, to
the restriction δi = 1. Determining this partition for each δ1, δ2, · · · , δm deter-
mines a specific member of C1 associated with the permutation π(1), π(2), · · · ,
π(m). The m! members of C1 which are determined in this way are not nec-
essarily distinct. They will be called the extremal members of C1 for reasons
to become evident.

Given any variate V there is at least one permutation π(1), π(2), · · · , π(m)
such that

V (sπ(1)) � V (sπ(2)) � · · · � V (sπ(m)). (23)

It will now be shown that minPεC1 E∗(V ) is achieved when P is the extremal
measure associated with any such π(1), π(2), · · · , π(m). Note first that for any
measure P and any permutation satisfying (23)
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E(V ) = V (sπ(1)) +
∑m

j=2
[V (sπ(j))− V (sπ(j−1))]

· P{sπ(j), sπ(j+1), · · · , sπ(m)}. (24)

Second, it is claimed that the (m − 1) terms in the sum on the right side of
(24) are simultaneously minimized by choosing P to be the extremal measure
associated with any permutation satisfying (23). Indeed, P{sπ(j), sπ(j+1), · · · ,
sπ(m)} is minimized by requiring that the partition (17) concentrate as much
as possible on p(i)

δ1δ2···δm
with i = π(1), π(2), · · · , π(j− 1). The partition defin-

ing the extremal measure corresponding to π(1), π(2), · · · , π(m) is clearly
one means of assuring such a concentration. Furthermore, the definition of
lower probability implies that this minimum of P{sπ(j), sπ(j+1), · · · , sπ(m)} is
P∗{sπ(j), sπ(j+1), · · · , sπ(m)}. The first half of (22) is thus proved; the other
half follows similarly using the reverse permutation π(m), π(m−1), · · · , π(1).

Defining C2 to be the class of measures P formed by taking mixtures of the
extremal measures, it is clear from their definitions that each of the classes
C, C1, and C2 are closed under the operation of mixing. It is also clear from the
relations proved above that C2 ⊂ C1 ⊂ C. This section concludes by showing
that C = C1 = C2, i.e., that these three possible definitions of compatibility
are equivalent.

Any measure P determines a point

P = (p(1), p(2), · · · , p(m)) (25)

in the (m − 1)-dimensional simplex with the m vertices (1, 0, · · · , 0),
(0, 1, · · · , 0), · · · , (0, 0, · · · , 1) where

p(i) = P {si} (26)

for i = 1, 2, · · · ,m. Any class of measures P defines a subset of the simplex and
a class closed under mixing defines a convex subset. Thus C, C1, and C2 may
be identified with convex subsets of the simplex. Any convex set in (m − 1)-
dimensional space is uniquely determined by the pairs of planes of support
determined by all families of parallel planes of dimension m−2. To show that
C = C2 one need only check that they have all the same planes of support.

In the present formulation, the intersection of the simplex with any plane
of dimension m− 2 consists of all those measures P for which a variate V has
the same expectation. For example, the plane of points P such that

a1p
(1) + a2p

(2) + · · ·+ amp
(m) = c (27)

contains all measures P such that E(V ) = c where V is defined by

V (si) = ai (28)

for i = 1, 2, · · · ,m. Of course, V is unique only up to a linear transformation
of the form a+ bV and the family of planes parallel to (27) shares the family
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of variates a + bV . It follows that the planes of support of a closed convex
subset of the simplex in the family of planes parallel to (27) are those which
maximize and minimize E(V ) over choices of P in the closed convex subset.
From (16) and (22), and because the extrema in (22) occur in C2, it follows
that the closed convex subsets C and C2 have the same pairs of planes of
support, as was required to prove.

From all this, it is seen that the class of compatible measures is a closed
convex polygon in the simplex, having at most m! vertices, namely, the
extremal measures P . There may be as few as m distinct vertices; for example,
the class of compatible measures may be the whole simplex in the “informa-
tionless” model where p11···1 = 1 and all other pδ1δ2···δm = 0.

3 Other Approaches

The approach to upper and lower probabilities introduced above may be
placed in a clearer perspective by considering a hierarchy of approaches, sug-
gested to the author by L.J. Savage. Again consider for simplicity the case of
finite S.

Any class C of probability measures P over the subsets T ⊂ S defines
upper and lower probabilities

P ∗(T ) = supPεCP (T );
P∗(T ) = infPεCP (T ). (29)

Since the same upper and lower probabilities are yielded by the convex closure
of C as by C itself, one might as well restrict C to be a closed convex set of
measures.

Define Ω to be the class of all closed convex subsets of the simplex, i.e.,
all sets of probability measures over the subsets of S which are closed under
mixing. Define Ω1 ⊂ Ω to consist of those closed convex sets of measures
defined solely by inequalities on probabilities of events. Finally, define Ω2

to consist of sets of compatible measures as defined in Sect. 2, where the
definition (15) assures that Ω2 ⊂ Ω1. It is clear, see for example Fig. 1, that
Ω1 is properly contained in Ω. It will next be shown that Ω2 is properly
contained in Ω1.

For any member of Ω2, define

p′δ1δ2···δm
= pδ1δ2···δm

/(1− p00···0) (30)

if at least one δi = 1, and define p′00···0 = 0. The set of p′δ1δ2···δm
determine the

same C as do the original pδ1δ2···δm
with the simplification that the normalizing

factor 1 − p00···0 may be ignored. Thus, for example when m = 3, all lower
probabilities (and hence upper probabilities from (34)) may be formed from
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(a) (b) (c)

Fig. 1. Three types of convex subsets of the triangle: case (a) a general convex
subset, case (b) a subset in Ω1 but not in Ω2 as described in the text, and case (c)
a subset in Ω2 with p100 = p010 = p001 = 1

4
and p110 = p101 = p011 = p111 = 1

16

P∗ {s1} = p′100;
P∗ {s2} = p′010;
P∗ {s3} = p′001; (31)

P∗ {s1, s2} = p′100 + p′010 + p′110;
P∗ {s1, s3} = p′100 + p′001 + p′101;
P∗ {s2, s3} = p′010 + p′001 + p′011.

These relations may be solved to yield

p′100 = P∗ {s1} , and similarly for p′010 and p′001;
p′110 = P∗ {s1, s2} − P∗ {s1} − P∗ {s2} and similarly for p′101 and p′011;

(32)

p′111 = 1(= P∗ {s1, s2, s3})− P∗ {s1, s3} − P∗ {s1, s3} − P∗ {s2, s3}
+ P∗ {s1}+ P∗ {s2}+ P∗ {s3} .

The obvious extension of (32) to general m is easily proved by induction, and
is omitted here.

The relations (32) may be applied to any member of Ω1 using on the
right side the bounding planes of support for that member. The result is a
set of p′δ1δ2···δm

which may be used as in (31) to determine the bounds of
probabilities and hence give back the member of Ω1. It also follows from (32)
that the p′δ1δ2···δm

sum to unity, but a difference between Ω1 and Ω2 arises
because the p′δ1δ2···δm

need not all be non-negative in Ω1. A simple example
of the latter when m = 3 is pictured in case (b) of Fig. 1. For this example,
P∗{s1} = P∗{s2} = P∗{s3} = 0 while P∗{s1, s2} = P∗{s1, s3} = P∗{s2, s3} =
1
2 and (32) yields p′100 = p′010 = p′001 = 0, p′110 = p′101 = p′011 = 1

2 and
p′111 = − 1

2 . Thus there are closed convex subsets in Ω1 which are not in Ω2,
where Ω2 is the class of primary interest in this paper.

Many of the basic relationships of ordinary probability theory have ana-
logues for systems of upper and lower probabilities. For example, in Ω one has

P∗(∅) = P ∗(∅) = 0, P∗(S) = P ∗(S) = 1; (33)
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if the complement of T is denoted by T̄ , then

P∗(T ) + P ∗(T̄ ) = 1; (34)

if T and R are mutually exclusive, then

P∗(T ) + P∗(R) � P∗(T ∪R) � P∗(T ) + P ∗(R)
� P ∗(T ∪R) � P ∗(T ) + P ∗(R); (35)

if E∗(V ) = infPεC E(V ) and E∗(V ) = supPεC E(V ) are used to define upper
and lower expectations, then

E∗(V ) = −E∗(−V ) (36)

or more generally

E∗(a+ bV ) = a+ bE∗(V ) if b � 0
= a+ bE∗(V ) if b � 0 (37)

together with a similar formula for E∗(a + bV ); for any pair of variates V
and W ,

E∗(V ) + E∗(W ) � E∗(V +W ) � E∗(V ) + E∗(W )
� E∗(V +W ) � E∗(V ) + E∗(W ). (38)

Note that (38) and (36) generalize (35) and (34), respectively. To prove (38),
for example, note that there exists a measure in C such that E∗(V + W ) =
E(V +W ) = E(V ) + E(W ) � E∗(V ) + E∗(W ). The remaining parts of (38)
follow from the first part together with (36).

It is interesting to note that the definitions (12) and (22) do not coincide
in Ω as they do in Ω2, i.e., for general convex sets it can happen that

∫∞−∞ v dF ∗(v) < infPεCE(V ). (39)

This comes about because there is in general no measure P which simultane-
ously minimizes each of the terms in (24).

Another relation which holds in Ω2 but not in general in Ω is

P∗(T ) + P∗(R) � P∗(T ∪R) + P∗(T ∩R) � P∗(T ) + P ∗(R)
� P ∗(T ∪R) + P ∗(T ∩R) � P ∗(T ) + P ∗(R) (40)

for any T,R ⊂ S. Simple counterexamples may be found in Ω even for m = 3.
To prove (40) in Ω2 define T1 = T ∩ R, T2 = T − T1, T3 = R − T1, and
T4 = S − (T1 ∪ T2 ∪ T3). Then, analogous to (32) define

t1000 = P∗(T1), etc.,
t1100 = P∗(T1 ∪ T2)− P∗(T1)− P∗(T2), etc.,
t1110 = P∗(T1 ∪ T2 ∪ T3)− P∗ (T1 ∪ T2)− P∗(T1 ∪ T3)− P∗(T2 ∪ T3) (41)

+ P∗(T1) + P∗(T2) + P∗(T3). etc.,
t1111 = 1− P∗(T1 ∪ T2 ∪ T3)− · · ·+ P∗(T1 ∪ T2) + · · · − P∗(T1)

− · · · − P∗(T4).
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By a simple argument of inclusion and exclusion, these 24 − 1 quantities are
non-negative and sum to unity. Like (32), the relations (41) may be solved to
yield lower probabilities and thence upper probabilities in terms of tδ1δ2δ3δ4
for every event determined by T1, T2, T3, and T4 or equivalently by T and R.
The relations (40) follow simply by replacing each quantity with its expression
in terms of the tδ1δ2δ3δ4 and using the fact that each tδ1δ2δ3δ4 � 0.

I do not know whether (39) can happen or whether (40) can fail in Ω1. The
literature on upper and lower probabilities is to my knowledge quite small.
Good (1962) has presented an axiomatic approach which he believes simplifies
but does not necessarily agree with an earlier axiomatic approach of Koopman
(1940a), (1940b). I have not attempted to produce a compact set of probability
axioms sufficient to characterize Ω,Ω1 or Ω2, as the case may be. Nor does
Good appear to discuss models with the mathematical concreteness of the
families Ω,Ω1 or Ω2. Smith (1961), (1965) has also discussed upper and lower
probabilities, largely in the context of upper and lower betting odds. Since
upper and lower odds for any bet are equivalent to a pair of planes of support
for a convex set C of measures P , it appears that Smith is considering the
family Ω. Fishburn (1964) considers upper and lower probabilities and their
corresponding expectations apparently in the framework Ω1. There appears
to be no hint of the family Ω2 in any of the work referred to.

From the viewpoint of a reader to whom probabilities are essentially deter-
minants of bets or rational decisions, it may seem undesirable to restrict the
class of convex subsets C to Ω1 or even less to Ω2, since any member of Ω
would seem to be a defensible position for a rational consistent man. On the
other hand, when upper and lower probabilities can be traced back to a single
measure μ, a more stringent kind of logic can be introduced in the area of con-
ditioning. This concept of conditioning and its generalization to the concept
of combining independent sources of information are the crux of this paper
and, I believe, the most attractive feature of restriction to Ω2.

4 Upper and Lower Conditional Probabilities

Given a system of upper and lower probabilities defined over subsets T ⊂ S
by (X,F , μ) and Γ, what are the appropriate upper and lower conditional
probabilities of T given R, i.e., probabilities appropriate when S −R is ruled
impossible? The obvious answer is to use the same (X,F , μ) and Γ except
restricting Γ to subsets of R, or more precisely, using the multivalued mapping
Γ′ from X to R defined by

Γ′x = Γx ∩R. (42)

The upper and lower conditional probabilities defined by Γ′ may be expressed
simply in terms of the unconditional upper and lower probabilities defined by
Γ, i.e.,
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P ∗(T |R) = P ∗(T ∩R)/P ∗(R);
P∗(T |R) = 1− P ∗(T̄ |R) = 1− P ∗(T̄ ∩R)/P ∗(R). (43)

The first line of (43) is an application of (3) with Γ′ in place of Γ, and the
second line of (43) follows from (34) and the first line of (43). Note that upper
and lower conditional probabilities given R are undefined unless P ∗(R) > 0,
i.e., unless the range of Γ′ includes more than ∅.

The following lemma is a consequence of the above definitions.

Lemma 1. If T1 and T2 are mutually exclusive subsets of R, then

P∗(T1)/P ∗(T2) � P∗(T1|R)/P ∗(T2|R) � P ∗(T1|R)/P∗(T2|R)
� P ∗(T1)/P∗(T2). (44)

Only the first inequality need be proved, since the second is obvious and the
third follows from the first. To prove the first write

P∗(T1|R)/P ∗(T2|R) = (1 − P ∗(R− T1|R))/P ∗(T2|R)
= (P ∗(R)− P ∗(R − T1))/P ∗(T2)
� P∗(T1)/P ∗(T2), (45)

where the inequality between the last two numerators follows from (35). Rela-
tions (44) assert that the elimination of possibilities extraneous to a given
bet serves to tighten the upper and lower betting odds appropriate to that
bet. Note that these upper and lower betting odds do not in general come
together, even when R = T1 ∪ T2.

The definition of upper and lower conditional probabilities given above
relies for its motivation on the structure of Ω2. In Ω or Ω1 one could use (43)
but it would no longer appear natural; instead, one might regard

P ∗∗(T |R) = supPεCP (T |R), P∗∗(T |R) = infPεCP (T |R) (46)

as the natural definitions of upper and lower conditional probabilities. The
relationship between (43) and (46) as alternatives in Ω2 may be clarified as
follows:

Define T1 = T ∩R, T2 = R−T , and T3 = S−R. Analogous to (41), define

t100 = P∗(T1), etc.,
t110 = P∗(T1 ∪ T2)− P∗(T1)− P∗(T2), etc.,
t111 = 1− P∗(T1 ∪ T2)− P∗(T1 ∪ T3)− P∗(T2 ∪ T3) + P∗(T1) (47)

+ P∗(T2) + P∗(T3),

which in Ω2 are seven non-negative quantities summing to unity. From (43)
and (47) it follows that
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P ∗(T |R) = (t100 + t110 + t101 + t111)/
(t100 + t010 + t110 + t101 + t011 + t111),

P∗(T |R) = t100/(t100 + t010 + t110 + t101 + t011 + t111). (48)

On the other hand, the maximum and minimum of P (T |R) = P (T1)/(P (T1)+
P (T2)) are found by distributing the pieces (47) appropriately among T1, T2

and T3 where t100 must go to T1, while t110 may go to T1 or T2, and so on. Thus

P ∗∗(T |R) = (t100 + t110 + t101 + t111)/(t100 + t110 + t101 + t111 + t010),
P∗∗(T |R) = t100/(t100 + t010 + t110 + t011 + t111). (49)

From (48) and (49)

P ∗∗(T |R) � P ∗(T |R) � P∗(T |R) � P∗∗(T |R). (50)

Thus the additional structure used in the definitions (43) serves to pull the
upper and lower probabilities inward relative to the less structured defini-
tions (46).

In Sect. 5 the definitions (43) will be seen as a very special case of a method
of assimilating new information into a system of upper and lower probabilities.

5 Combination of Independent Sources of Information

A probability measure may be regarded as defining degrees of belief which
quantify a state of partial knowledge. Any such measure arises in some way
from a limited range of human experience which will be called a source of
information. A mechanism for combining such sources of information is a
virtual necessity for a theory of probability oriented to statistical inference.
The mechanism adopted here assumes independence of the sources, a concept
whose real world meaning is not so easily described as its mathematical def-
inition. Opinions of different people based on overlapping experiences could
not be regarded as independent sources. Different measurements by different
observers on different equipment would often be regarded as independent, but
so would different measurements by one observer on one piece of equipment:
here the question concerns independence of errors. In the application referred
to in Sect. 6, the independent sources are taken to be non-overlapping ran-
dom samples from a population, together with prior information which may
be regarded as a distillation of previous samples or experiences.

The sources considered here are mathematically defined by their basic
probability spaces (Xi,Fi, μi) and multivalued mappings Γi, where i indexes
the source. The space S into which Γi maps is the same for each i, i.e., the
different sources are giving information about the same uncertain outcome in
S. If the n sources i = 1, 2, · · · , n are assumed independent, then the combined
source (X,F , μ) and Γ is defined from
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X = X1 ×X2 × · · · ×Xn,

F = F1 ×F2 × · · · × Fn,
μ = μ1 × μ2 × · · · × μn,

Γx = Γ1x ∩ Γ2x ∩ · · · ∩ Γnx (51)

for all x εX . The product measure space (X,F , μ) is motivated by the usual
definition of statistical independence. The definition of Γ reflects the idea
that xi εXi is consistent with a particular s εS if and only if s εΓixi, for
i = 1, 2, · · · , n, and consequently x = (x1, x2, · · · , xn) εX is consistent with
that s if and only if s belongs to all of the Γixi simultaneously.

It is a characteristic of the above combination rule that neither upper prob-
abilities, nor lower probabilities nor probabilities of the type pδ1δ2···δm

have
a simple product rule of combination. A set of probabilities qi(T ) which do
obey a simple product rule is defined as follows: For the systems (X,F , μ)
and Γ defined by (51) from the systems (Xi,Fi, μi) and Γi, and for any
T ⊂ S, set

T̃ = {x εX,Γx ⊃ T } and T̃i = {xi εXi,Γixi ⊃ T } (52)

and set
q(T ) = μ(T̃ ) and qi(T ) = μi(T̃i). (53)

It follows immediately that

T̃ = T̃1 × T̃2 × · · · × T̃n (54)

and hence that

q(T ) = q1(T )× q2(T )× · · · × qn(T ). (55)

It will be seen shortly that, at least for finite S, the probabilities q(T ) are
sufficient to determine all upper and lower probabilities defined by a system
(X,F , μ) and Γ and hence from (55) they provide a convenient form, ready for
further combination, for storing the information in a given source. Note also
that, if T consists of a single element s εS, then T̃ = T ∗ so that q(T ) = μ(T ∗)
whence from (3) the q{s} as s ranges over S are proportional to P ∗{s}.

The foregoing ideas will now be concretely illustrated using a finite S,
beginning with m = 3. A source is characterized here by p000, p100, p010, p001,
p110, p101, p011 and p111. If the q(T ) corresponding to the T = ∅, {s1}, {s2},
{s3}, {s1, s2}, · · · , {s1, s2, s3} are denoted by q000, q100, q010, q001, q110, · · · ,
q111, it follows directly that

q000 = 1 = p100 + p010 + p001 + p110 + p101 + p011 + p111,

q100 = p100 + p110 + p101 + p111, and similarly for q010 and q001,

q110 = p110 + p111, and similarly for q101 and q011, and
q111 = p111. (56)
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The relations (56) may be solved to yield

p000 = 1− q100 − q010 − q001 + q110 + q101 + q011 − q111,

p100 = q100 − q110 − q101 + q111, and similarly for p010 and p001,

p110 = q110 − q111, and similarly for q101 and p011, and
p111 = q111, (57)

thus showing that the set of a q(T ) determine the pδ1δ2δ3 . Note also that the
extensions of (56) and (57) from m = 3 to general m are evident and easily
proved.

A pair of sources i = 1, 2 may be characterized by their p[i]
δ1δ2δ3

or by their

q
[i]
δ1δ2δ3

. The relations qδ1δ2δ3 = q
[1]
δ1δ2δ3

q
[2]
δ1δ2δ3

from (55) together with the
relations (56) and (57) applied to the two sources and their combination yield

p000 = p
[1]
100p

[2]
010 + p

[1]
100p

[2]
001 + p

[1]
100p

[2]
011 + p

[1]
010p

[2]
100 + p

[1]
010p

[2]
001 + p

[1]
010p

[2]
101

+ p
[1]
001p

[2]
100 + p

[1]
001p

[2]
010 + +p[1]

001p
[2]
110 + p

[1]
110p

[2]
100 + p

[1]
101p

[2]
010 + p

[1]
011p

[2]
100,

p100 = p
[1]
100p

[2]
100 + p

[1]
100p

[2]
110 + p

[1]
100p

[2]
101 + p

[1]
100p

[2]
111

+ p
[1]
110p

[2]
100 + p

[1]
110p

[2]
101 + p

[1]
101p

[2]
100 + p

[1]
101p

[2]
110 + p

[1]
111p

[2]
100, (58)

and similarly for p010 and p001,

p110 = p
[1]
110p

[2]
110 + p

[1]
110p

[2]
111 + p

[1]
111p

[2]
110,

and similarly for p101 and p011, and

p111 = p
[1]
111p

[2]
111.

The general rule here, extended to any m, is that

pδ1δ2···δm
=

∑
p
[1]
δ1′δ2′···δm

′p
[2]
δ1′δ2′′···δm

′′ (59)

with summation over all (δ1′, δ2′, · · · , δm′, δ1′′, δ2′′, · · · , δm′′) such that δi =
δi

′δi′′ for i = 1, 2, · · · ,m. It is clear, however, that combining sources directly
in terms of pδ1δ2···δm

is awkward, and by referring from (58) back to Table 1 one
sees that the situation is no better in terms of upper and lower probabilities.

This section concludes with two important properties of the combination
rule. To introduce the first of these, note that, if a source (X1,F1, μ1) and
Γ1 is combined with an informationless source, then the result is again the
original source (X1,F1, μ1) and Γ1. By an informationless source is meant
an (X2,F2, μ2) and Γ2 such that Γ2x2 = S for all x2εX2, i.e., a source for
which P ∗(T ) = 1 and P∗(T ) = 0 for every T other than ∅ and S. The more
general version of the first property asserts that, if a source (X1,F1, μ1) and
Γ1 is combined with a source (X2,F2, μ2) and Γ2 where Γ2x2 = R ⊂ S for all
x2εX2, then
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P ∗(T ) = P1
∗(T |R), P∗(T ) = P1∗(T |R) (60)

for T ⊂ S, where P1
∗(T |R) and P1∗(T |R) are upper and lower conditional

probabilities for the system (X1,F1, μ1) and Γ1 according to the definitions
(43). In other words, the rule of this section is sufficiently general to include the
definition of conditioning as a special case. The relations (60) are immediate
consequences of the definitions adopted.

The second property concerns sharp sources. A source will be called sharp
if it is sharp with respect to T for all TεE , and will be called sharp with
respect to T if P ∗(T ) = P∗(T ). Thus a sharp source is an ordinary probability
measure over the events TεE . Assuming finite S, it will be shown that a
source which is sharp with respect to a given T remains sharp with respect
to T after combination with any other source. A similar property therefore
holds for sharpness with respect to all T . Thus, if sharpness is once achieved
by a user of this theory, it remains a characteristic of all subsequent states of
knowledge of the user.

The demonstration depends on a simple lemma:

Lemma 2. A source is sharp with respect to TεE if and only if q(R) = 0 for
every R such that R∩T 	= ∅ and R∩ T̄ 	= ∅. Clearly, P ∗(T )−P∗(T ) � q(R)
for any R such that R ∩ T 	= ∅ and R ∩ T̄ 	= ∅, so that P ∗(T ) = P∗(T )
implies q(R) = 0 for all such R. Conversely, if q(R) = 0 for all such R, then
no Γx which intersects both T and T̄ may have positive probability, which
implies that P ∗(T ) = P∗(T ). In view of the simple combination property of
the q(R) function, the sharpness property of the preceding paragraph follows
immediately from the above lemma.

A new kind of limit theorem becomes possible in discussions of upper
and lower probability, namely results about convergence to sharpness. For
example, in view of (51) one would expect the combination of n sources to
be sharper than a typical member of the sources combined. Thus rates of
convergence to sharpness deserve definition and study. An illustration of this
may be found in equation (32) of Dempster (1966).

6 An Application

The theory proposed in this paper has been implicitly applied to statistical
inference in an earlier paper (Dempster (1966)). The nature of the application
will be sketched briefly. Individual sample observations may be regarded as
sources whose information may be combined according to the rule of Sect. 5.
In such an individual source, the role of X is played by a space representing
the possible sample individuals, and the role of S is represented by a parame-
ter space or more generally by the product of a parameter space and a space
of future observations. Before a particular sample observation is recorded, the
source defined by that sample individual is informationless, but after condi-
tioning by the sample observation one generally gets a non-trivial system of



72 A. P. Dempster

upper and lower probabilities referring to the parameters or to the parameters
and future observations jointly.

The combination of many sample individuals appears to lead to sharp
inferences which agree with standard asymptotic inferences given either by
Bayesian methods or by confidence methods. It is also suggested as valid to
treat a prior distribution as a source of information independent of sample
data. If source 1 is taken to be combined sample information, and source 2 is
taken to be prior information, and if this prior information is sharp and has
a density, then combination of the two sources reduces in this special case to
the familiar product of likelihood and prior leading to a Bayesian posterior
density.

Further concrete examples of these applications to inference will be forth-
coming soon.
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4

A Generalization of Bayesian Inference∗

Arthur P. Dempster

Abstract. Procedures of statistical inference are described which generalize
Bayesian inference in specific ways. Probability is used in such a way that in general
only bounds may be placed on the probabilities of given events, and probability
systems of this kind are suggested both for sample information and for prior infor-
mation. These systems are then combined using a specified rule. Illustrations are
given for inferences about trinomial probabilities, and for inferences about a mono-
tone sequence of binomial pi. Finally, some comments are made on the general class
of models which produce upper and lower probabilities, and on the specific models
which underlie the suggested inference procedures.

1 Introduction

Reduced to its mathematical essentials, Bayesian inference means starting
with a global probability distribution for all relevant variables, observing the
values of some of these variables, and quoting the conditional distribution
of the remaining variables given the observations. In the generalization of
this paper, something less than a global probability distribution is required,
while the basic device of conditioning on observed data is retained. Actually,
the generalization is more specific. The term Bayesian commonly implies a
global probability law given in two parts, first the marginal distribution of
a set of parameters, and second a family of conditional distributions of a
set of observable variables given potential sets of parameter values. The first
part, or prior distribution, summarizes a set of beliefs or state of knowledge
in hand before any observations are taken. The second part, or likelihood
function, characterizes the information carried by the observations. Specific
generalizations are suggested in this paper for both parts of the common
Bayesian model, and also for the method of combining the two parts. The

∗ Read at a Research Methods Meeting of the Society, February 14th, 1968,
Professor R.L. Plackett in the Chair.
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components of these generalizations are built up gradually in Sect. 2 where
they are illustrated on a model for trinomial sampling.

Inferences will be expressed as probabilities of events defined by unknown
values, usually unknown parameter values, but sometimes the values of observ-
ables not yet observed. It is not possible here to go far into the much-embroiled
questions of whether probabilities are or are not objective, are or are not
degrees of belief, are or are not frequencies, and so on. But a few remarks
may help to set the stage. I feel that the proponents of different specific views
of probability generally share more attitudes rooted in the common sense of
the subject than they outwardly profess, and that careful analysis renders
many of the basic ideas more complementary than contradictory. Definitions
in terms of frequencies or equally likely cases do illustrate clearly how rea-
sonably objective probabilities arise in practice, but they fail in themselves
to say what probabilities mean or to explain the pervasiveness of the concept
of probability in human affairs. Another class of definitions stresses concepts
like degree of confidence or degree of belief or degree of knowledge, sometimes
in relation to betting rules and sometimes not. These convey the flavour and
motivation of the science of probability, but they tend to hide the realities
which make it both possible and important for cognizant people to agree when
assigning probabilities to uncertain outcomes. The possibility of agreement
arises basically from common perceptions of symmetries, such as symmetries
among cases counted to provide frequencies, or symmetries which underlie
assumptions of exchangeability or of equally likely cases. The importance of
agreement may be illustrated by the statistician who expresses his inferences
about an unknown parameter value in terms of a set of betting odds. If this
statistician accepts any bet proposed at his stated odds, and if he wagers
with colleagues who consistently have more information, perhaps in the form
of larger samples, then he is sure to suffer disaster in the long run. The moral
is that probabilities can scarcely be “fair” for business deals unless both par-
ties have approximately the same probability assessments, presumably based
on similar knowledge or information. Likewise, probability inferences can con-
tribute little to public science unless they are as objective as the web of gen-
erally accepted fact on which they are based. While knowledge may certainly
be personal, the communication of knowledge is one of the most fundamental
of human endeavours. Statistical inference can be viewed as the science whose
formulations make it possible to communicate partial knowledge in the form
of probabilities.

Generalized Bayesian inference seeks to permit improvement on classi-
cal Bayesian inference through a complex trade-off of advantages and disad-
vantages. On the credit side, the requirement of a global probability law is
dropped and it becomes possible to work with only those probability assump-
tions which are based on readily apparent symmetry conditions and are there-
fore reasonably objective. For example, in a wide class of sampling models,
including the trinomial sampling model analysed in Sect. 2, no probabilities
are assumed except the familiar and non-controversial representation of a
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sample as n independent and identically distributed random elements from a
population. Beyond this, further assumptions like specific parametric forms
or prior distributions for parameters need be put in only to the extent that
they appear to command a fair degree of assent.

The new inference procedures do not in general yield exact probabilities for
desired inferences, but only bounds for such probabilities. While it may count
as a debit item that inferences are less precise than one might have hoped, it is
a credit item that greater flexibility is allowed in the representation of a state
of knowledge. For example, a state of total ignorance about an uncertain event
T is naturally represented by an upper probability P ∗(T ) = 1 and a lower
probability P∗(T ) = 0. The new flexibility thus permits a simple resolution of
the old controversy about how to represent total ignorance via a probability
distribution. In real life, ignorance is rarely so total that (0, 1) bounds are
justified, but ignorance is likely to be such that a precise numerical probability
is difficult to justify. I believe that experience and familiarity will show that
the general range of bounds 0 ≤ P∗(T ) ≤ P ∗(T ) ≤ 1 provides a useful tool
for representing degrees of knowledge.

Upper and lower probabilities apparently originated with Boole (1854) and
have reappeared after a largely dormant period in Good (1962) and Smith
(1961, 1965). In this paper upper and lower probabilities are generated by a
specific mathematical device whereby a well-defined probability measure over
one sample space becomes diffused in its application to directly interesting
events. In order to illustrate the idea simply, consider a map showing regions
of land and water. Suppose that 0 ·80 of the area of the map is visible and
that the visible area divides in the proportions 0·30 to 0·70 of water area to
land area. What is the probability that a point drawn at random from the
whole map falls in a region of water? Since the visible water area is 0 ·24 of
the total area of the map, while the unobserved 0·20 of the total area could
be water or land, it can be asserted only that the desired probability lies
between 0 ·24 and 0 ·44. The model supposes a well-defined uniform distri-
bution over the whole map. Of the total measure of unity, the fraction 0 ·24
is associated with water, the fraction 0 ·56 is associated with land, and the
remaining fraction 0 ·20 is ambiguously associated with water or land. Note
the implication of total ignorance of the unobserved area. There would be no
objection to introducing other sources of information about the unobserved
area. Indeed, if such information were appropriately expressed in terms of an
upper and lower probability model, it could be combined with the above infor-
mation using a rule of combination defined within the mathematical system.
A correct analogy can be drawn with prior knowledge of parameter values,
which can likewise be formally incorporated into inferences based on sample
data, using the same rule of combination. The general mathematical system,
as given originally in Dempster (1967a), will be unfolded in Sect. 2 and will
be further commented upon in Sect. 4.

If the inference procedures suggested in this paper are somewhat spec-
ulative in nature, the reason lies, I believe, not in a lack of objectivity in
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the probability assumptions, nor in the upper and lower probability feature.
Rather, the source of the speculative quality is to be found in the logical
relationships between population members and their observable characteris-
tics which are postulated in each model set up to represent sampling from
a population. These logical relationships are conceptual devices, which are
not regarded as empirically checkable even in principle, and they are some-
what arbitrary. Their acceptability will be analysed in Sect. 5 where it will be
argued that the arbitrariness may correspond to something real in the nature
of an uncertainty principle.

A degree of arbitrariness does not in itself rule out a method of statisti-
cal inference. For example, confidence statements are widely used in practice
despite the fact that many confidence procedures are often available within the
same model and for the same question, and there is no well-established theory
for automatic choice among available confidence procedures. In part, there-
fore, the usefulness of generalized Bayesian inference procedures will require
that practitioners experiment with them and come to feel comfortable with
them. Relatively few procedures are as yet analytically tractable, but two
examples are included, namely, the trinomial sampling inference procedures
of Sect. 2, and a procedure for distinguishing between monotone upward and
monotone downward sequences of binomial pi as given in Sect. 3. Another
model is worked through in detail in Dempster (1967b).

Finally, an acknowledgement is due to R.A. Fisher who announced with
characteristic intellectual boldness, nearly four decades ago, that probability
inferences were indeed possible outside of the Bayesian formulation. Fisher
compiled a list of examples and guide-lines which seemed to him to lead to
acceptable inferences in terms of probabilities which he called fiducial probabil-
ities. The mathematical formulation of this paper is broad enough to include
the fiducial argument in addition to standard Bayesian methods. But the spe-
cific models which Fisher advocated, depending on ingenious but often con-
troversial pivotal quantities, are replaced here by models which start further
back at the concept of a population explicitly represented by a mathematical
space. Fisher did not consider models which lead to separated upper and lower
probabilities, and indeed went to some lengths, using sufficiency and ancillar-
ity, and arranging that the spaces of pivotal quantities and of parameters be
of the same dimension, in order to ensure that ambiguity did not appear. This
paper is largely an exploration of fiducial-like arguments in a more relaxed
mathematical framework. But, since Bayesian methods are more in the main
stream of development, and since I do explicitly provide for the incorpora-
tion of prior information, I now prefer to describe my methods as extensions
of Bayesian methods rather than alternative fiducial methods. I believe that
Fisher too regarded fiducial inference as being very close to Bayesian inference
in spirit, differing primarily in that fiducial inference did not make use of prior
information.
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2 Upper and Lower Probability Inferences Illustrated
on a Model for Trinomial Sampling

A pair of sample spaces X and S underlie the general form of mathematical
model appearing throughout this work. The first space X carries an ordinary
probability measure μ, but interest centres on events which are identified with
subsets of S. A bridge is provided from X to S by a logical relationship which
asserts that, if x is the realized sample point in X , then the realized sample
point s in S must belong to a subset Γx of S. Thus a basic component of
the model is a mathematical transformation which associates a subset Γx of
S with each point x of X . Since the Γx determined by a specific x contains
in general many points (or branches or values), the transformation x → Γx
may be called a multivalued mapping. Apart from measurability considera-
tions, which are ignored in this paper, the general model is defined by the
elements introduced above and will be labelled (X,S, μ,Γ) for convenient ref-
erence. Given (X,S, μ,Γ), upper and lower probabilities P ∗(T ) and P∗(T ) are
determined for each subset T of S.

In the cartographical example of Sect. 1, X is defined by the points of
the map, S is defined by two points labelled “water” and “land”, μ is the
uniform distribution of probability over the map, and Γ is the mapping which
associates the single point “water” or “land” in S with the appropriate points
of the visible part of X and associates both points of S with the points of the
unseen part of X . For set-theoretic consistency, Γx should be regarded as a
single point subset of S, rather than a single point itself, over the visible part
of X , but the meaning is the same either way.

The general definitions of P ∗(T ) and P∗(T ) as given in Dempster (1967a)
are repeated below in more verbal form. For any subset T of S, define T ∗ to
be the set of points x in X for which Γx has a non-empty intersection with
T , and define T∗ to be the set of points x in X for which Γx is contained in T
but is not empty. In particular, the sets S∗ and S∗ coincide. The complement
X − S∗ of S∗ consists of those x for which Γx is the empty set. Now define
the upper probability of T to be

P ∗(T ) = μ(T ∗)/μ(S∗) (1)

and the lower probability of T to be

P∗(T ) = μ(T∗)/μ(S∗). (2)

Note that, since T∗ ⊂ T ∗ ⊂ S∗, one has

0 ≤ P∗(T ) ≤ P ∗(T ) ≤ 1. (3)

Also, if T̄ is the complement of T in S, then T̄∗ and T̄ ∗ are respectively the
complements of T ∗ and T∗ in S∗, so that

P∗(T̄ ) = 1− P ∗(T ) and P ∗(T̄ ) = 1− P∗(T ). (4)
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Other formal consequences of the above definitions are explored in Dempster
(1967a).

The heuristic conception which motivates (1) and (2) is the idea of carrying
probability elements dμ from X to S along the branches of the mapping Γx.
The ambiguity in the consequent probability measure over S occurs because
the probability element dμ(x) associated with x inX may be carried along any
branch of Γx or, more generally, may be distributed over the different branches
of Γx for each x. Part of the μ measure, namely the measure of the set X−S∗

consisting of points x such that Γx is empty, cannot be moved from X at all.
Since there is an implicit assumption that some s in S is actually realized, it
is appropriate to condition by S∗ when defining relevant probabilities. This
explains the divisor μ(S∗) appearing in (1) and (2). Among all the ways of
transferring the relevant probability μ(S∗) from X to S along branches of
Γx, the largest fraction which can possibly follow branches into T is P ∗(T ),
while the smallest possible fraction is P∗(T ). Thus conservative probability
judgements may be rendered by asserting only that the probability of T lies
between the indicated upper and lower bounds.

It may also be illuminating to view Γx as a random set in S generated
by the random point x in X , subject to the condition that Γx is not empty.
After conditioning on S∗, P ∗(T ) is the probability that the random set Γx
intersects the fixed set T , while P∗(T ) is the probability that the random set
Γx is contained in the fixed set T .

A probability model like (X,S, μ,Γ) may be modified into other proba-
bility models of the same general type by conditioning on subsets of S. Such
conditioning on observed data defines the generalized Bayesian inferences of
this paper. Beyond and generalizing the concept of conditioning, there is a
natural rule for combining or multiplying several independent models of the
type (X,S, μ,Γ) to obtain a single product model of the same type. For exam-
ple, the models for n independent sample observations may be put together by
the product rule to yield a single model for a sample of size n, and the model
defining prior information may be combined with the model carrying sam-
ple information by the same rule. The rules for conditioning and multiplying
will be transcribed below from Dempster (1967a) and will be illustrated on
a model for trinomial sampling. First, however, the elements of the trinomial
sampling model will be introduced for a sample of size one.

Each member of a large population, shortly to be idealized as an infinite
population, is supposed known to belong to one of three identifiable categories
c1, c2 and c3, where the integer subscripts do not indicate a natural ordering
of the categories. Thus the individuals of the population could be balls in an
urn, identical in appearance apart from their colours which are red (c1) or
white (c2) or blue (c3). A model will be defined which will ultimately lead
to procedures for drawing inferences about unknown population proportions
of c1, c2 and c3, given the categories of a random sample of size n from the
population. Following Dempster (1966), the individuals of the population will
be explicitly represented by the points of a space U , and the randomness
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associated with a sample individual drawn from U will be characterized by
a probability measure over U . Thus, a finite population of size N could be
represented by any finite space U with N elements, with random sampling
represented by the uniform distribution of probability over the N elements of
U . Such a finite population model is analysed in detail in Dempster (1967b).
Here, however, the population is treated as infinite, and, for reasons tied
up with the trinomial observable, the space U is identified with a triangle.
Convenient barycentric coordinates for a general point of U are

u = (u1, u2, u3), (5)

where 0 ≤ u1, 0 ≤ u2, 0 ≤ u3 and u1 + u2 + u3 = 1. See Fig. 1. It is fur-
ther supposed that a random sample of size one means an individual u drawn
according to the uniform distribution ρ over the triangle U . In the model
(X,S, μ,Γ) representing a random sample of size one from a trinomial popu-
lation the roles of X and μ will be played by U and ρ.

Two further spaces enter naturally into the model for a single trinomial
observation. The first is the three-element space C = {c1, c2, c3} whose general
member c represents the observable category of the sample individual. The
second is the space Π whose general point is

π = (π1, π2, π3), (6)

with 0 ≤ π1, 0 ≤ π2, 0 ≤ π3 and π1+π2+π3 = 1, where πi is to be interpreted
for i = 1, 2, 3 as the proportion of the population falling in category ci. Note
that Π is a mathematical copy of U , but its applied meaning is distinct from
that of U . The role of S in the general model (X,S, μ,Γ) will be played by
the product space C ×Π which represents jointly the observation on a single
random individual together with the population proportions of c1, c2 and c3.

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

U1

U2
u = (u1, u2 , u3)

U3

π = (π1, π2, π3)

Fig. 1. A triangle representing the space U , showing the barycentric coordinates
of the three vertices of U together with a general point u = (u1, u2, u3). The three
closed sub-triangles labelled U1, U2 and U3 with a common vertex at π represent the
subsets of U consisting of points u such that Bu contains (c1, π), (c2, π) and (c3, π),
respectively



80 A. P. Dempster

Finally, the role of Γ is played by B where, for any u in U , the set Bu in
C ×Π consists of the points (ci, π) such that

πi
ui

= max
(
π1

u1
,
π2

u2
,
π3

u3

)
, (7)

for i = 1, 2, 3, To understand the definition of B, but not yet the motivation
for the definition, it is helpful to visualize C ×Π as a stack of three triangles
as in Fig. 2 where the three levels correspond to the three points of C. The
contributions to Bu from the three levels of C ×Π are shown as shaded areas
in Fig. 2. It is important also to understand the inverse mapping B−1 which
carries points of C ×Π to subsets of U , where

Ui = B−1(ci,π) (8)

Level c = c2

(c2, u)

(c3, u)

(c1, u)

Level c = c3

Line π1 = π3 = 0, Line π1 = π2 = 0,
π2 = π3 = 0

Line π1 = 1,

Level c = c1

π2 = 1 π3 = 1

Fig. 2. The space C × Π represented as triangles on three levels. The three closed
shaded regions together make up the subset Bu determined from a given u
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is defined to be the subset of U consisting of points u for which Bu contains
(ci, π). The subsets U1, U2, U3 defined by a given π in Π are illustrated in
Fig. 1.

It is easily checked with the help of Fig. 1 that

ρ(Ui) = πi and ρ(Ui ∩ Uj) = 0 (9)

for i, j = 1, 2, 3 and i 	= j. It will be shown later that the property (9) is
a basic requirement for the mapping B defined in (7). Other choices of U
and B could be made which would also satisfy (9). Some of these choices
amount to little more than adopting different coordinate systems for U , but
other possible choices differ in a more fundamental way. Thus an element of
arbitrariness enters the model for trinomial sampling at the point of choosing
U and B. The present model was introduced in Dempster (1966) under the
name structure of the second kind. Other possibilities will be mentioned in
Sect. 5.

All of the pieces of the model (U,C × Π, ρ, B) are now in place, so that
upper and lower probabilities may be computed for subsets T of C × Π. It
turns out, however, that P ∗(T ) = 1 and P∗(T ) = 0 for interesting choices of T ,
and that interesting illustrations of upper and lower probabilities are apparent
only after conditioning. For example, take T to be the event that category c1
will be observed in a single drawing from the population, i.e. T = C1 × Π,
where C1 is the subset of C consisting of c1 only. To check that P ∗(T ) = 1
and P∗(T ) = 0, note (i) that T ∗ = U because every u in U lies in U1 of Fig. 1
for some (c1, π) in C1×Π, and (ii) that T∗ is empty because no u in U lies in
U1 for all (c1, π) in C1 × Π. In general, any non-trivial event governed by C
alone or by Π alone will have upper probability unity and lower probability
zero. Such a result is sensible, for if no information about π is put into the
system no information about a sample observation should be available, while
if no sample observation is in hand there should be no available information
about π. (Recall the interpretation suggested in Sect. 1 that P ∗(T ) = 1 and
P∗(T ) = 0 should convey a state of complete ignorance about whether or not
the real world outcome s will prove to lie in T .)

Turning now to the concept of upper and lower conditional probabilities,
the definition which fits naturally with the general model (X,S, μ,Γ) arises as
follows. If information is received to the effect that sample points in S−T are
ruled out of consideration, then the logical assertion “x in X must correspond
to s in Γx ⊂ S” is effectively altered to read “x in X must correspond to
s in Γx ∩ T ⊂ S”. Thus the original model (X,S, μ,Γ) is conditioned on T
by altering (X,S, μ,Γ) to (X,S, μ, Γ̃), where the multivalued mapping Γ̃ is
defined by

Γ̃x = Γx ∩ T. (10)

Under the conditioned model, an outcome in S − T is regarded as impossi-
ble, and indeed the set S − T has upper and lower conditional probabilities
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both zero. It is sufficient for practical purposes, therefore, to take the condi-
tional model to be (X,T, μ, Γ̃) and to consider upper and lower conditional
probabilities only for subsets of T .

Although samples of size one are of little practical interest, the model for a
single trinomial observation provides two good illustrations of the definition of
a conditioned model. First, it will be shown that conditioning on a fixed value
of π = (π1, π2, π3) results in πi being both the upper and lower conditional
probability of an observation ci, for i = 1, 2, 3. This result is equivalent to
(9) and explains the importance of (9), since any reasonable model should
require that the population proportions be the same as the probabilities of the
different possible outcomes in a single random drawing when the population
proportions are known. Second, it will be shown that non-trivial inferences
about π may be obtained by conditioning on the observed category c of a
single individual randomly drawn from U .

In precise mathematical terms, to condition the trinomial sampling model
(U,C × Π, ρ, B) on a fixed π is to condition on T = C × Π̃, where Π̃ is the
subset of Π consisting of the single point π. T itself consists of the three points
(c1, π), (c2, π) and (c3, π) which in turn define single point subsets T1, T2 and T3

of T . The conditioned model may be written (U, T, ρ, B̃) where B̃u = Bu∩T
for all u. By referring back to the definition of B as illustrated in Figs. 1
and 2, it is easily checked that the set of u in U such that B̃u intersects Ti is
the closed triangle Ui appearing in Fig. 1, while the set of u in U such that
B̃u is contained in Ti is the open triangle Ui, for i = 1, 2, 3. Whether open or
closed, the triangle Ui has measure πi, and it follows easily from (9) that the
upper and lower conditional probabilities of Ti given T are

P ∗(Ti|T ) = P∗(Ti|T ) = πi, (11)

for i = 1, 2, 3, Note that B̃u is not empty for any u in U , so that the denom-
inators in (1) and (2) are both unity in the application (11).

Consider next the details of conditioning the trinomial model on a fixed
observation c1. The cases where a single drawing produces c2 or c3 may be
handled by permuting indices. Observing c1 is formally represented by con-
ditioning on T̃ = C1 × Π where C1 as above is the subset of C consisting of
c1 alone. In the conditional model (U, T̃ , ρ, B̃), the space T̃ is represented by
the first level in Fig. 2 while B̃u is represented by the closed shaded region
in that first level. Since B̃u is non-empty for all u in U , the ρ measure may
be used directly without renormalization to compute upper and lower condi-
tional probabilities given T̃ . An event R defined as a subset of Π is equivalently
represented by the subset C1 × R of T̃ . The upper conditional probability of
C1×R given T̃ is the probability that the random region B̃u intersects C1×R
where (c1,u) is uniformly distributed over C1 × Π. See Fig. 3. Similarly, the
lower conditional probability of C1 × R given T̃ is the probability that the
random region B̃u is contained in C1 × R. For example, if R is the lower
portion of the triangle where 0 ≤ π1 ≤ π′′

1 , then
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(c1, 1, 0, 0)

Bu

(c1, 0, 1, 0) (c1, 0, 0, 1)

(c1, u1, u2, u3)

C1 × R

˜

Fig. 3. The triangle T̃ = C1 × Π for the model conditioned on the observation
c1. Horizontal shading covers the region B̃u, while vertical shading covers a general
fixed region C1 × R

P ∗(C1 ×R|T̃ ) = 1− (1− π′′
1)2 = π′′

1(2− π′′
1) and P∗(C1 ×R|T̃ ) = 0.

Or, in more colloquial notation,

P ∗(0 ≤ π1 ≤ π′′
1 |c = c1) = π′′

1(2 − π′′
1) and P∗(0 ≤ π1 ≤ π′′

1 |c = c1) = 0.

More generally, it can easily be checked that

P ∗(π′
1 ≤ π1 ≤ π′′

1 |c = c1) = π′′
1(2− π′′

1), (12)

while

P∗(π′
1 ≤ π1 ≤ π′′

1 |c = c1) = 0
= (1 − π′

1)
2

if π′′
1 < 1

if π′′
1 < 1,

}
(13)

for any fixed π′
1 and π′′

1 satisfying 0 ≤ π′
1 ≤ π′′

1 ≤ 1. Likewise,

P ∗(π′
2 ≤ π2 ≤ π′′

2 |c = c1) = 1− π′
2, (14)

while
P∗(π′

2 ≤ π2 ≤ π′′
2 |c = c1) = 0

= π′′
2

if π′
2 > 0

if π′
2 = 0,

}
(15)

for any fixed π′
2 and π′′

2 satisfying 0 < π′
2 < π′′

2 < 1. Relations (14) and (15)
also hold when subscripts 2 and 3 are interchanged. Formulae (12) to (15) are
the first instances of generalized Bayesian inferences reached in this paper,
where, as will shortly be explained, prior knowledge of π is tacitly assumed
to have the null form such that all upper probabilities are unity and all lower
probabilities are zero. For example, the model asserts that, if a single random
individual is observed to belong in category c1, and no prior knowledge of π
is assumed, it may be inferred that at least half the population belongs in c1
with probability between 1

4 and 1.
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A collection of n models (X(i), S, μ(i),Γ(i)) for i = 1, 2, . . . , n may be
combined or multiplied to obtain a product model (X,S, μ,Γ). The formal
definition of (X,S, μ,Γ) is given by

and

X = X(1) ×X(2) × . . .×X(n),

μ = μ(1) × μ(2) × . . .× μ(n)

Γx = Γ(1)x(1) ∩ Γ(2)x(2) ∩ . . . ∩ Γ(n)x(n),

⎫
⎪⎪⎬

⎪⎪⎭
(16)

where x = (x(1), x(2), . . . , x(n)) denotes a general point of the product spaceX .
The product model is appropriate where the realized values x(1), x(2), . . . , x(n)

are regarded as independently random according to the probability measures
μ(1), μ(2), . . . , μ(n), while the logical relationships implied by Γ(1),Γ(2), . . . ,Γ(n)

are postulated to apply simultaneously to a common realized outcome s in S.
It may be helpful to view the models (X(i), S, μ(i),Γ(i)) as separate sources
of information about the unknown s in S. In such a view, if the n sources are
genuinely independent, then the product rule (16) represents the legitimate
way to pool their information.

The concept of a product model actually includes the concept of a condi-
tioned model which was introduced earlier. Proceeding formally, the informa-
tion that T occurs with certainty may be represented by a degenerate model
(Y, S, ν,Δ), where Y consists of a single point y, while Δy = T and y carries
ν measure unity. Multiplying a general model (X,S, μ,Γ) by (Y, S, ν,Δ) pro-
duces essentially the same result as conditioning the general model (X,S, μ,Γ)
on T . For X × Y and μ × ν are isomorphic in an obvious way to X and μ,
while Γx∩Δy = Γx∩T = Γ̃x as in (10). Thus the objective of taking account
of information in the special form of an assertion that T must occur may be
reached either through the rule of conditioning or through the rule of multipli-
cation, with identical results. In particular, when T = S the degenerate model
(Y, S, ν,Δ) conveys no information about the uncertain outcome s in S, both
in the heuristic sense that upper and lower probabilities of non-trivial events
are unity and zero, and in the formal sense that combining such a (Y, S, ν,Δ)
with any information source (X,S, μ,Γ) leaves the latter model essentially
unaltered.

Product models are widely used in mathematical statistics to repre-
sent random samples of size n from infinite populations, and they apply
directly to provide the general sample size extension of the trinomial sam-
pling model (U,C ×Π, ρ, B). A random sample of size n from the population
U is represented by u(1),u(2), . . . ,u(n) independently drawn from U accord-
ing to the same uniform probability measure ρ. More precisely, the sample
(u(1),u(2), . . . ,u(n)) is represented by a single random point drawn from the
product space

Un = U (1) × U (2) × . . .× U (n) (17)

according to the product measure

ρn = ρ(1) × ρ(2) × . . .× ρ(n), (18)
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where the pairs (U (1), ρ(1)), (U (2), ρ(2)), . . . , (U (n), ρ(n)) are n identical math-
ematical copies of the original pair (U, ρ). In a similar way, the observable
categories of the n sample individuals are represented by a point in the prod-
uct space

Cn = C(1) × C(2) × . . .× C(n), (19)

where C(i) is the three-element space from which the observable category
c(i) of the sample individual u(i) is taken. The interesting unknowns before
sampling are c(1), c(2), . . . , c(n) and π, which define a point in the space Cn×Π.
Accordingly, the model which represents a random sample of size n from a
trinomial population is of the form (Un, Cn × Π, ρn, Bn), where it remains
only to define Bn. In words, Bn is the logical relationship which requires that
(7) shall hold for each u(i). In symbols,

Bn
(
u(1),u(2), . . . ,u(n)

)
= B(1)u(1) ∩B(2)u(2) ∩ . . . ∩B(n)u(n), (20)

whereB(i)u(i) consists of those points (c(1), c(2), . . . , c(n), π) in Cn×Π such that

πk/u
(i)
k = max

{(
π1/u

(i)
1

)
, (π2/u

(i)
2 ), (π3/u

(i)
3 )

}
(21)

for k = 1, 2, 3.
The model (Un, Cn ×Π, ρn, Bn) now completely defined provides in itself

an illustration of the product rule. For (17), (18) and (20) are instances of the
three lines of (16), and hence show that (Un, Cn × Π, ρn, Bn) is the product
of the n models (U (i), Cn ×Π, ρ(i), B(i)) for i = 1, 2, . . . , n, each representing
an individual sample member.

As in the special case n = 1, the model (Un, Cn × Π, ρn, Bn) does not
in itself provide interesting upper and lower probabilities. Again, condition-
ing may be illustrated either by fixing π and asking for probability judg-
ments about c(1), c(2), . . . , c(n) or conversely by fixing c(1), c(2), . . . , c(n) and
asking for probability judgments (i.e. generalized Bayesian inferences) about
π. Conditioning on fixed π leads easily to the expected generalization of (11).
Specifically, if T is the event that π has a specified value, while T̃ is the
event that c(1), c(2), . . . , c(n) are fixed, with ni observations in category ci for
i = 1, 2, 3, then

P ∗(T̃ |T ) = P∗(T̃ |T ) = πn1
1 πn2

2 πn3
3 . (22)

The converse approach of conditioning on T̃ leads to more difficult mathe-
matics.

Before c(1), c(2), . . . , c(n) are observed, the relevant sample space Cn × Π
consists of 3n triangles, each a copy of Π. Conditioning on a set of recorded
observations c(1), c(2), . . . , c(n) reduces the relevant sample space to the single
triangle associated with those observations. Although this triangle is actually
a subset of Cn×Π, it is essentially the same as Π and will be formally identified
with Π for the remainder of this discussion. Conditioning the model (Un, Cn×
Π, μn, Bn) on c(1), c(2), . . . , c(n) leads therefore to the model (Un,Π, μn, B̃n)
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where B̃n is defined by restricting Bn to the appropriate copy of Π. The
important random subset B̃n(u(1),u(2), . . . ,u(n)) of Π defined by the random
sample u(1),u(2), . . . ,u(n) will be denoted by V for short. V determines the
desired inferences, that is, the upper and lower probabilities of a fixed subset
R of Π are respectively the probability that V intersects R and the probability
that V is contained in R, both conditional on V being non-empty.

V is the intersection of the n random regions B(i)u(i) for i = 1, 2, . . . , n
where each B(i)u(i) is one of the three types illustrated on the three levels of
Fig. 2, the type and level depending on whether the observation c(i) is c1, c2
or c3. Figure 4 illustrates one such region for n = 4. It is easily discovered by
experimenting with pictures like Fig. 4 that the shaded region V may have
3,4,5 or 6 sides, but most often is empty. It is shown in Appendix A that
V is non-empty with probability n1!n2!n3!/n! under independent uniformly
distributed u(1),u(2), . . . ,u(n). Moreover, conditional on non-empty V , six
random vertices of V are shown in Appendix A to have Dirichlet distributions.
Specifically, define W(i) for i = 1, 2, 3 to be the point π in V with maximum
coordinate πi and define Z(i) for i = 1, 2, 3 to be the point π in V with
minimum coordinate πi. These six vertices of V need not be distinct, but are
distinct with positive probability and so have different distributions. Their
distributions are

W(1) : D(n1 + 1, n2, n3),
W(2) : D(n1, n2 + 1, n3),
W(3) : D(n1, n2, n3 + 1),
Z(1) : D(n1, n2 + 1, n3 + 1),
Z(2) : D(n1 + 1, n2, n3 + 1),
Z(3) : D(n1 + 1, n2 + 1, n3),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(23)

(0 , 1, 0)

u(2) u(4)

u(3)

u(1)

(0, 0, 1)

(1, 0, 0)

Fig. 4. The triangle Π representing the sample space of unknowns after n = 4 obser-
vations c(1) = c1, c

(2) = c3, c
(3) = c1, c

(4) = c2 have been taken. The shaded region
is the realization of V determined by the illustrated realization of u(1),u(2),u(3)

and u(4)
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whereD(r1, r2, r3) denotes the Dirichlet distribution over the triangle Π whose
probability density function is proportional to

πr1−1
1 πr2−1

2 πr3−1
3 .

The Dirichlet distribution is defined as a continuous distribution over Π
if ri > 0 for i = 1, 2, 3. Various conventions, not listed here, are required to
cover the distributions of the six vertices when some of the ni are zero.

Many interesting upper and lower probabilities follow from the distribu-
tions (23). For example, the upper probability that π1 exceeds π′

1 is the prob-
ability that V intersects the region where π1 ≥ π′

1 which is, in turn, the
probability that the first coordinate of W(1) exceeds π′

1. In symbols,

P ∗(π1 ≥ π′
1|n1, n2, n3) =

∫ 1

π′
1

∫ 1

0

n!
n1!(n2 − 1)!(n3 − 1)!

πn1
1 πn2−1

2 πn3−1
3 dπ1dπ2

=
∫ 1

n1′

n!
n1!(n2 + n3 − 1)!

πn1
1 (1 − π1)n2+n3−1dπ1

(24)

if n2 > 0 and n3 > 0. Similarly, P∗(π1 ≥ π′
1|n1, n2, n3) is the probability that

the first coordinate of Z(1) exceeds π′
1, that is,

P∗(π1 ≥ π′
1|n1, n2, n3)=

∫ 1

π1′

(n+ 1)!
(n1 − 1)!(n2 + n3 + 1)!

πn1−1
1 (1 − π1)n2+n3+1dπ1,

(25)

again assuming no prior information about π. Two further analogues of the
pair (24) and (25) may be obtained by permuting the indices so that the role
of 1 is played successively by 2 and 3. In a hypothetical numerical example
with n1 = 2, n2 = 1, n3 = 1 as used in Fig. 4, it is inferred that the probability
of at least half the population belonging in c1 lies between 3

16 and 11
16 . In pass-

ing, note that the upper and lower probabilities (24) and (25) are formally
identical with Bayes posterior probabilities corresponding to the pseudo-prior
distributions D(1, 0, 0) and D(0, 1, 1), respectively. This appears to be a math-
ematical accident with a limited range of applicability, much like the relations
between fiducial and Bayesian results pointed out by Lindley (1958). In the
present situation, it could be shown that the relations no longer hold for events
of the form (π′

1 ≤ π1 ≤ π′′
1 ).

The model (Un, Cn×Π, ρn, Bn) has the illuminating feature of remaining
a product model after conditioning on the sample observations. Recall that
the original model (Un, Cn×Π, ρn, Bn) is expressible as the product of the n
models (U (i), Cn × Π, ρ(i), B(i)) for i = 1, 2, . . . , n. Conditioning the original
model on the observations yields (Un, T̃ , ρn, B̃n) where, as above, T̃ is the
subset of Cn × Π with c(1), c(2), . . . , c(n) fixed at their observed values and

B̃n(u(1),u(2), . . . ,u(n)) = Bn(u(1),u(2), . . . ,u(n)) ∩ T̃ . (26)
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Conditioning the ith component model on the ith sample observation yields
(U (i), T̃ (i), ρ(i), B̃(i)), where T̃ (i) is the subset of Cn ×Π with c(i) fixed at its
observed value, and

B̃(i)u(i) = B(i)u(i) ∩ T̃ (i), (27)

for i = 1, 2, . . . , n. It is clear that

T̃ = T̃ (i) ∩ T̃ (2) ∩ . . . ∩ T̃ (n), (28)

and from (20), (26), (27) and (28) it follows that

B̃n(u(1),u(2), . . . ,u(n)) = B̃(1)u(1) ∩ B̃(2)u(2) ∩ . . . ∩ B̃(n)u(n). (29)

From (28) and (29) it is immediate that the model (Un, T̃ , ρn, B̃n) is the
product of the n models (U (i), T̃ (i), ρ(i), B̃(i)) for i = 1, 2, . . . , n. The meaning
of this result is that inferences about π may be calculated by traversing two
equivalent routes. First, as above, one may multiply the original n models and
condition the product on T̃ . Alternatively, one may condition the original n
models on their associated T̃ (i) and then multiply the conditioned models. The
availability of the second route is conceptually interesting, because it shows
that the information from the ith sample observation c(i) may be isolated and
stored in the form (U (i), T̃ (i), ρ(i), B̃(i)), and when the time comes to assemble
all the information one need only pick up the pieces and multiply them. This
basic result clearly holds for a wide class of choices of U and B, not just the
particular trinomial sampling model illustrated here.

The separability of sample information suggests that prior information
about π should also be, stored as a model of the general type (X,Π, μ,Γ)
and should be combined with sample information according to the product
rule. Such prior information could be regarded as the distillation of previous
empirical data. This proposal brings out the full dimensions of the general-
ized Bayesian inference scheme. Not only does the product rule show how to
combine individual pieces of sample information: it handles the incorporation
of prior information as well. Moreover, the sample information and the prior
information are handled symmetrically by the product rule, thus banishing the
asymmetric appearance of standard Bayesian inference. At the same time, if
the prior information is given in the standard form of an ordinary probability
distribution, the methods of generalized Bayesian inference reproduce exactly
the standard Bayesian inferences.

A proof of the last assertion will now be sketched in the context of trinomial
sampling. An ordinary prior distribution for an unknown π is represented
by a model of the form (X,Π, μ,Γ) where Γ is single-valued and hence no
ambiguity is allowed in the computed probabilities. Without loss of generality,
the model (X,Π, μ,Γ) may be specialized to (Π,Π, μ, I), where I is the identity
mapping and μ is the ordinary prior distribution over Π. For simplicity, assume
that μ is a discrete distribution with probabilities p1, p2, . . . , pd assigned to
points π1, π2, . . . , πd in Π. From (16) it follows that the mapping associated
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with a product of models is single-valued if the mapping associated with any
component model is single-valued. If a component model not only has a single-
valued mapping, but has a discrete measure μ as well, then the product model
is easily seen to reduce to another discrete distribution over the same carriers
π1, π2, . . . , πd. Indeed the second line of (16) shows that the product model
assigns probabilities P (πi) to πi which are proportional to pili, where li is
the probability that the random region V includes the point πi. Setting πi =
(πi1, πi2, πi3), it follows from the properties of the random region V that

li = πn1
i1 π

n2
i2 π

n3
i3 , (30)

which is just the probability that all of the independent random regions whose
intersection is V include πi. Normalizing the product model as indicated in
(1) or (2) leads finally to

P (πi) =
pili

p1l1 + p2l2 + . . .+ pdld
(31)

for i = 1, 2, . . . , d, which is the standard form of Bayes’s theorem. This result
holds for any choices of U and B satisfying (9). Note that li is identical with
the likelihood of πi.

Generalized Bayesian inference permits the use of sample information
alone, which is mathematically equivalent to adopting the informationless
prior model in which all upper probabilities are unity and all lower probabil-
ities are zero. At another extreme, it permits the incorporation of a familiar
Bayesian prior distribution (if it is a genuine distribution) and then yields
the familiar Bayesian inferences. Between these extremes a wide range of flex-
ibility exists. For example, a prior distribution could be introduced for the
coordinate π1 alone, while making no prior judgment about the ratio π2/π3.
Alternatively, one could specify prior information to be the same as that con-
tained in a sample of size m which produced mi observations in category ci
for i = 1, 2, 3. In the analysis of quite small samples, it would be reasonable to
attempt to find some characterization of prior information which could reflect
tolerably well public notions about π. In large samples, the inferences clearly
resemble Bayesian inferences and are insensitive to prior information over a
wide range.

3 A Second Illustration

Consider a sequence of independent Bernoulli trials represented by zi with

P (zi = 1|pi) = pi and P (zi = 0|pi) = 1− pi, for i = 1, 2, · · · , n, (32)

where it is suspected that the sequence pi is subject to a monotone upward
drift. In this situation, the common approach to a sequence of observations
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zi is to apply a test of the null hypothesis {p1 = p2 = . . . = pn} designed
to be sensitive against the alternative hypothesis {p1 ≤ p2 ≤ . . . ≤ pn}. The
unorthodox approach suggested here is to compute upper and lower probabil-
ity inferences for the pair of symmetric hypotheses {p1 ≥ p2 ≥ . . . ≥ pn}
and {p1 ≤ p2 ≤ . . . ≤ pn} under the overall prior assumption that the
sequence pi is monotone, either increasing or decreasing, with probability
one. A small upper probability for either of these hypotheses would be evi-
dence for drift in the direction contrary to that indicated by the hypothesis.
Upper and lower probabilities may also be computed for the null hypothesis
{p1 = p2 = . . . = pn}, but the upper probability will usually be vanishingly
small in sample sequences of moderate length however little trend is apparent,
while the lower probability is always zero.

The model described could apply in simple bioassays or learning situa-
tions. A wider range of applications could be achieved in several ways, for
example by allowing several observations at each pi or postulating Markov-
type dependence in the zi sequence. But the aim here is to focus attention
as simply as possible on one feature of the new methods, namely their abil-
ity to handle the problem of many nuisance parameters which plagues the
more traditional forms of statistical inference. Plausible inferences may be
obtained despite the presence of as many continuous parameters as there are
dichotomous observables.

Under the binomial analogue of the trinomial model treated in Sect. 2, a
single binomial observable z is represented before observation by the model
(U,Z × P, ρ,B) where

U = {u : 0 ≤ u ≤ 1} , (33)
Z = {z : z = 0 or z = 1} , (34)
P = {p : 0 ≤ p ≤ 1} , (35)

ρ is the uniform distribution over U , and

Bu = {(z, p) : z = 0 and u ≤ p ≤ 1, or}
z = 1 and 0 ≤ p ≤ u}. (36)

After conditioning on z, this model becomes effectively (U,P, ρ,Bz), where

Bzu = {p : u ≤ p ≤ 1} if z = 0,
= {p : 0 ≤ p ≤ u} if z = 1. (37)

A conditioned model of this kind may be constructed for each of n inde-
pendent observations zi and associated parameters pi. Combining these n
sources of information about p1, p2, . . . , pn yields a single model (Un, Pn, ρn,
B(z1,z2,...,zn)), where

Un = {(u1, u2, . . . , un) : 0 ≤ ui ≤ 1 for i = 1, 2, . . . , n} , (38)
Pn = {(p1, p2, . . . , pn) : 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n} , (39)
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ρn is the uniform distribution over the cube U , and

B(Z1,z2,...,zn)(u1, u2, . . . , un) = {(p1, p2, . . . , pn) : pi ∈ Bziui

for i = 1, 2, . . . , n} . (40)

The combined model would be appropriate for unrestricted inferences about
an unknown (p1, p2, . . . , pn) based on observations (z1, z2, . . . , zn). However,
when consideration is restricted to the subset S of Pn in which p1, p2, . . . , pn
is a monotone sequence, the sharpness of the inferences is much improved.

Define T1 and T2 to be the subsets of S for which p1 ≤ p2 ≤ . . . ≤ pn and
p1 ≥ p2 ≥ . . . ≥ pn, respectively. Define T12 = T1 ∩ T2 to be the subset of
S for which p1 = p2 = . . . = pn. An immediate objective is to characterize
T ∗

1 , T
∗
2 and T ∗

12, from whose ρn measure the desired inferences will follow. For
example, T ∗

1 consists of all points (u1, u2, . . . , un) for which there exists some
(p1, p2, . . . , pn) satisfying p1 ≤ p2 ≤ . . . ≤ pn and such that pi lies in Bziui,
for i = 1, 2, . . . , n. With the help of Fig. 5 it is easily checked that

T ∗
1 = {(u1, u2, . . . , un) : ui ≤ uj , whenever zi = 1, zj = 0, i < j} . (41)

By symmetry,

T ∗
2 = {(u1, u2, . . . , un) : ui ≥ uj , whenever zi = 0, zj = 1, i < j} . (42)

Finally,

T ∗
12 = {(u1, u2, . . . , un) : ui ≤ uj, whenever zi = 1, zj = 0} . (43)

0
0

1

1 2 3 n

u or p

u1

p1

p2

p3

u3

pn

un

u2

i...

Fig. 5. The plotted values p1, p2, . . . , pn determine a point P n for which p1 ≤ p2 ≤
. . . ≤ pn The plotted values u1, u2, . . . , un determine a point of Un for which p1 lies
in B1 z1, p2 lies in B0z2, p3 lies in B1 z3, . . . , pn lies in B0zn. The interpretation is
that (u1, u2, . . . , un) lies in the region T ∗

1 determined by the observation z1 = 1, z2 =
0, z3 = 1, . . . , zn = 0
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It is clear that T ∗
12 = T ∗

1 ∩T ∗
2 and that T ∗

12, T
∗
1 −T ∗

12 and T ∗
2 −T ∗

12 are disjoint
sets whose union is S∗.

Un may be decomposed into n! geometrically similar simplexes, each char-
acterized by a particular ordering of the values of the coordinates (u1, u2, . . . ,
un). These simplexes are in one-to-one correspondence with the permutations

(1, 2, · · · , n)→ (1∗, 2∗, . . . , n∗),

where for every (u1, u2, . . . , un) in a given simplex the corresponding permu-
tation obeys u1∗ ≤ u2∗ ≤ . . . ≤ un∗ . Since the characterizations (41), (42) and
(43) involve only order relations among coordinates ui, each of the simplexes
is either included or excluded as a unit from T ∗

1 or T ∗
2 or T ∗

12. And since each
of the n! simplexes has ρn measure 1/n!, the ρn measures of T ∗

1 or T ∗
2 or T ∗

12

may be found by counting the appropriate number of simplexes and dividing
by n!. Or, instead of counting simplexes, one may count the permutations to
which they correspond. The permutation

(1, 2, . . . , n)→ (1∗, 2∗, · · · , n∗)

carries the observed sequence (z1, z2, . . . , zn) of zeros and ones into another
sequence (z1∗ , z2∗ , . . . , zn∗) of zeros and ones. According to the definition of
T ∗

1 , a simplex is contained in T ∗
1 if and only if its corresponding permutation

has the property that i∗ < j∗ for all i < j such that zi = 1 and zj =
0, i.e. any pair ordered (1,0) extracted from (z1, z2, . . . , zn) must retain the
same order in the permuted sequence (z1∗ , z2∗ , . . . , zn∗). Similarly, to satisfy
T ∗

2 any pair ordered (0,1) extracted from (z1, z2, . . . , zn) must have its order
reversed in the permuted sequence, while to satisfy T ∗

12 = T ∗
1 ∩T ∗

2 the sequence
(z1∗ , z2∗ , . . . , zn∗) must consist of all ones followed by all zeros.

If (z1, z2, . . . , zn) contains n1 ones and n2 zeros, then a simple counting of
permutations yields

ρ(T ∗
12) =

n1!n2!
n!

(44)

A simple iterative procedure for computing ρn(T ∗
1 ) or ρn(T ∗

2 ) is derived in
Appendix B by Herbert Weisberg. The result is quoted below and illustrated
on a numerical example.

For a given sequence of observations z1, z2, . . . of indefinite length define
N(n) to be the number of permutations of the restricted type counted in
T ∗

1 . N(n) may be decomposed into

N(n) =
r∑

k=0

N(k, n), (45)

where N(k, n) counts the subset of permutations such that (z1∗ , z2∗ , . . . , zn∗)
has k zeros preceding the rightmost one. Since no zero which follows the
rightmost one in the original sequence (z1, z2, . . . , zn) can be permuted to the
left of any one under any allowable permutation, the upper limit r in (45) may
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be taken as the number of zeros preceding the rightmost one in the original
sequence (z1, z2, . . . , zn). In the special case of a sequence consisting entirely
of zeros, all of the zeros will be assumed to follow the rightmost one so that
N(k, n) = 0 for k > 0 and indeed N(n) = N(0, n) = n!. Weisberg’s iterative
formula is

N(k, n+ 1) =
k−1∑

j=0

N(j, n) + (n1 + 1 + k)N(k, n) if zn+1 = 1

= (n2 + 1− k)N(k, n). if zn+1 = 0, (46)

where n1 and n2 denote as above the numbers of ones and zeros, respectively,
in (z1, z2, . . . , zn).

Formula (46) has the pleasant feature that the counts for the sequences
(z1), (z1, z2), (z1, z2, z3), . . . may be built up successively, and further observa-
tions may be easily incorporated as they arrive. Consider, for example, the
hypothetical observations

(z1, z2, . . . , z7) = (0, 0, 1, 1, 0, 1, 1).

Table 1 shows

zn, N(0, n), . . . , N(r, n)

on line n, for n = 1, 2, . . . , 7, from which N(7) = 1680. The number of
permutations consistent with T ∗

2 is found by applying the same iterative
process to the sequence (1,1,0,0,1,0,0) with zeros and ones interchanged.
This yields Table 2 from which N(7) = 176. The number of permutations
common to T ∗

1 and T ∗
2 is 3! 4! = 144. Thus ρn(T ∗

1 ) = 1680/7!, ρn(T ∗
2 ) =

176/7!, ρn(T ∗
12) = 144/7!, and ρn(S∗) = (1680 + 176 − 144)/7! = 1712/7!.

Consequently, the upper and lower probabilities of T1, T2 and T12 conditional
on S and (z1, z2, . . . , z7) = (0, 0, 1, 1, 0, 1, 1) are

P ∗(T1) =
1680
1712

, p∗(T1) =
1536
1712

, P ∗(T2) =
176
1712

, P∗(T2) =
32

1712
,

P ∗(T12) =
144
1712

, p∗(T12) = 0.

Table 1.

n zn N(0, n) N(1, n) N(2, n) N(3, n)

1 0 1
2 0 2
3 1 2 2 2
4 1 4 8 12
5 0 12 16 12
6 1 36 76 84 40
7 1 144 416 640 480
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Table 2.

n zn N(0, n) N(1, n) N(2, n)

1 1 1
2 1 2
3 0 2
4 0 4
5 1 12 4 4
6 0 36 8 4
7 0 144 24 8

Since more than 10% of the measure could apply to a monotone non-increasing
sequence, the evidence for an increasing sequence is not compelling.

For the extended sequence of observations 0,0,1,1,0,1,1,0,1,1,1,. . ., the
lower and upper probabilities of a monotone downward sequence after n obser-
vations are exhibited in Table 3.

Table 3.

n P∗(T2) P ∗(T2)

1 0 1
2 0 1
3 0 0.333
4 0 0.167
5 0.167 0.417
6 0.048 0.190
7 0.019 0.103
8 0.188 0.319
9 0.065 0.148
10 0.028 0.080
11 0.014 0.047

4 Comments on the Method of Generating Upper
and Lower Probabilities

Although often notationally convenient, it is unnecessary to use models
(X,S, μ,Γ) outside of the subclass where the inverse of Γ is single-valued.
For the model (X, S̃, μ, Γ̃) with

S̃ = X × S (47)

and
Γ̃x = {x} × Γx (48)
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does belong to the stated subclass, and yields

(P ∗(T ), P∗(T )) = (P̃ ∗(X × T )P̃∗(X × T )) (49)

for any T ⊂ S, where the left side of (49) refers to any original model
(X,S, μ,Γ) and the right side refers to the corresponding model (X, S̃, μ, Γ̃).
Moreover, the model (X, S̃, μ, Γ̃) provides upper and lower probabilities for
all subsets of X × S, not just those of the form X × T . On the other hand,
it was assumed in applying the original form (X,S, μ,Γ) that the outcome x
in X is conceptually unobservable, so that no operational loss is incurred by
the restriction to subsets of the form X × T ⊂ S̃.

Underlying the formalism of (X,S, μ,Γ) or its equivalent (X, S̃, μ, Γ̃) is the
idea of a probability model which assigns a distribution only over a partition
of a complete sample space, specifically the distribution μ over the partition
of S̃ = X × S defined by X . Thus the global probability law of an ordinary
probability measure space is replaced by a marginal distribution or what might
be called a partial probability law. The aim therefore is to establish a useful
probability calculus on marginal or partial assumptions.

I believe that the most serious challenges to applications of the new cal-
culus will come not from criticism of the logic but from the strong form of
ignorance which is necessarily built into less-than-global probability laws. To
illustrate, consider a simple example where w1 denotes a measured weight,
w2 denotes a true weight, and x = w1 − w2 denotes a measurement error.
Assume that ample relevant experience is available to justify assigning a spe-
cific error distribution μ over the space X of possible values of x. The situation
may be represented by the model (X,W, μ,Γ) with X and μ as defined, with
W = {(w1, w2);w1 ≥ 0, w2 ≥ 0}, and Γ defined by the relation x = w1 − w2.
Conditioning the model on an observed w1 leaves one with the same measure
μ applied to w1−w2, except for renormalization which restricts the measure to
w1 ≥ 0. The result is very much in the spirit of the fiducial argument (although
there is some doubt about Fisher’s attitude to renormalization). I am unable
to fault the logic of this fiducial-like argument. Rather, some discomfort is
produced by distrust of the initial model, in particular by its implication that
every uncertain event governed by the true weight w2 has initial upper and
lower probabilities one and zero. It would be hard to escape a feeling in most
real situations that a good bit of information about a parameter is available,
even if difficult to formalize objectively, and that such information should
clearly alter the fiducial-like inference if it could be incorporated. One way to
treat this weakness is openly to eschew the use of prior information, while not
necessarily denying its existence, that is, to assert that the statistician should
summarize only that information which relies on the observation w2 and the
objectively based error distribution μ. Because of the conservatism implicit in
the definition of upper and lower probabilities, the approach of rejecting soft
information seems likely to provide conservative inferences on an average, but
I have not proved theorems to this effect. The difficulty is that the rejection
of all soft information, including even information about parametric forms,
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may lead to unrealistically weak inferences. The alternative approach is to
promote vague information into as precise a model as one dares and combine
it in the usual way with sample information.

Some comments on the mathematics of upper and lower probabilities are
appropriate. A very general scheme for assigning upper and lower probabilities
to the subsets of a sample space S is to define a family C of measures P over
S and to set

P ∗(T ) = sup
C
P (T ), P∗(T ) = inf

C
P (T ). (50)

Within the class of systems of upper and lower probabilities achieved in this
way for different C, there is a hierarchical scheme of shrinking subclasses end-
ing with the class of systems defined by models like (X,S, μ,Γ). (See Demp-
ster, 1967a.). The family C corresponding to a given (X,S, μ,Γ) consists of
all measures P which for each x distribute the probability element dμ(x) in
some way over Γx. Some readers may feel that all systems should be allowed,
not just the subclass of this paper. In doing so, however, one loses the con-
ception of a source of information as being a single probability measure. For,
in the unrestricted formulation of (50), the class C consists of conceptually
distinct measures such as might be adopted by a corresponding class of per-
sonalist statisticians, and the conservatism in the bounds of (50) amounts to
an attempt to please both extremes in the class of personalist statisticians. I
believe that the symmetry arguments underlying probability assignments do
not often suggest hypothetical families C demanding simultaneous satisfac-
tion. Also, the rules of conditioning and, more generally, of combination of
independent sources of information do not extend to the unrestricted system
(50), and without these rules the spirit of the present approach is lost.

The aim of this short section has been to suggest that upper and lower
probabilities generated by multivalued mappings provide a flexible means of
characterizing limited amounts of information. They do not solve the difficult
problems of what information should be used, and of what model appropri-
ately represents that information. They do not provide the only way to discuss
meaningful upper and lower probabilities. But they do provide an approach
with a well-rounded logical structure which applies naturally in the statistical
context of drawing inferences from samples to populations.

5 Comments on the Models Used for Inference

The models used here for the representation of sampling from a population
take as their point of departure a space whose elements correspond to the
members of the population. In addition to the complex of observable charac-
teristics usually postulated in mathematical statistics, each population mem-
ber is given an individual identity. In conventional mathematical statistics
the term hypothesis is often used for an unknown population distribution of
observable characteristics, but the presence of the population space in the
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model leads directly to the more fundamental question of how each hypothe-
sized population distribution applies to the elements of the population space,
that is, under a given hypothesis what are the observable characteristics of
each population member? In the trinomial sampling model of Sect. 2, the
question is answered by the multivalued mapping B defined in (7). As illus-
trated in Fig. 1, B asserts that for each hypothesis π the population space
U partitions into three regions U1, U2, U3 corresponding to the observable
characteristics c1, c2, c3. More generally, the observable characteristics may be
multinomial with k categories c1, c2, . . . , ck and the population space U may
be any space with an associated random sampling measure ρ. For a given
hypothesis π = (π1, π2, . . . , πk) the question is answered by determining
subsets U1, U2, . . . , Uk of U which specify that a population member in Ui is
permitted to have characteristic ci under π, for i = 1, 2, . . . , k. Having reached
this point in building the model, it seems reasonable to pose the restriction
which generalizes (9), namely,

ρ(Ui) = πi and ρ(Ui ∩ Uj) = 0 (51)

for i, j = 1, 2, . . . , k and i 	= j. The reason for (51) as with (9) is simply to
have πi represent both upper and lower probabilities of ci for a single drawing
with a given π.

Now it is evident that the above information by no means uniquely
determines a model for multinomial sampling. Indeed, one may start from
any continuous space U with measure ρ, and for each π specify a partition
U1, U2, . . . , Uk satisfying (51) but otherwise completely arbitrary. In other
words, there is a huge bundle of available models. In Dempster (1966), two
choices were offered which I called models of the first kind and models of the
second kind. The former assumes that the multinomial categories c1, c2, . . . , ck
have a meaningful order, and is uniquely determined by the assumption that
the population members have an order consistent with the order of their
observable characteristics under any hypothesis π. (See Dempster, 1967b.)
The restriction to ordered categories implies essentially a univariate charac-
teristic, and because that restriction is so severe the following discussion is
mostly aimed at a general multinomial situation with no mathematical struc-
ture assumed on the space of k categories. The general model of the second
kind is defined by extending (5), (6) and (7) in the obvious way from k = 3
to general k. This model treats the k categories with complete symmetry, but
it is not the only model to do so, for one can define B−1 arbitrarily for π
such that π1 ≤ π2 ≤ . . . ≤ πk, and define B−1 for other π by symmetry. But
the general model of the second kind is strikingly simple, and I recommend
it because I can find no competitor with comparable aesthetic appeal.

The status of generalized Bayesian inference resembles that of Bayesian
inference in the time of Bayes, by which I mean that Bayes must have adopted
a uniform prior distribution because no aesthetically acceptable competitor
came to mind. The analogy should be carried further, for even the principles
by which competitors should be judged were not formulated by Bayes, nor
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have the required principles been well formulated for the models discussed
here. I believe that the principles required by the two situations are not at
all analogous, for the nature and meaning of a prior distribution has become
quite clear over the last two centuries and the concept may be carried more
or less whole over to generalized Bayesian inference. The choice of a model
satisfying (51), on the other hand, has no obvious connection with prior infor-
mation as the term is commonly applied relative to information about pos-
tulated unknowns. In the case of generalized Bayesian inference, I believe the
principles for choosing a model to be closely involved with an uncertainty
principle which can be stated loosely as: The more information which one
extracts from each sample individual in the form of observable characteris-
tics, the less information about any given aspect of the population distribution
may be obtained from a random sample of fixed size. For example, a random
sample of size n = 1000 from a binomial population yields quite precise and
nearly objective inferences about the single binomial parameter p involved.
On the other hand, if a questionnaire given to a sample of n = 1000 has been
sufficient to identify each individual with one of 1,000,000 categories, then it
may be foolhardy to put much stock in the sample information about a bino-
mial p chosen arbitrarily from among the 21,000,000 − 2 non-trivial available
possibilities. Conceptually, at least, most real binomial situations are of the
latter kind, for a single binomial categorization can be achieved only at the
expense of suppressing a large amount of observable information about each
sample individual. The uncertainty principle is therefore a specific instance of
the general scientific truism that an investigator must carefully delimit and
specify his area of investigation if he is to learn anything precise.

Generalized Bayesian inference makes possible precise formulations of the
uncertainty principle. For example, the model of the second kind with k = 2
and n = 1000 yields inferences which most statisticians would find nearly
acceptable for binomial sampling. On the other hand, it is a plausible con-
jecture that the model of the second kind with k = 1, 000, 000 and n = 1000
would yield widely separated upper and lower probabilities for most events.
The high degree of uncertainty in each inference compensates for the pres-
ence of a large number of nuisance parameters, and protects the user against
selection effects which would produce many spurious inferences. Use of the
model of the first kind with k = 1, 000, 000 and n = 1000 would very likely
lead to closer bounds than the model of the second kind for binomial infer-
ences relating to population splits in accord with the given order of population
members. And it is heuristically clear that models could be constructed which
for each π would place each point of U in each of U1, U2, . . . , Uk as π∗ varies
over an arbitrarily small neighbourhood about π. Such a model would present
an extreme of uncertainty, for all upper and lower probability inferences would
turn out to be one and zero, respectively. It is suggested here that the choice of
a model can only be made with some understanding of the specific reflections
of the uncertainty principle which it provides. For the time being, I judge
that the important task is to learn more about the inferences yielded by the
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aesthetically pleasing models of the second kind. Eventually, intuition and
experience may suggest a broader range of plausible models.

Models of the second kind were introduced above for sampling from a gen-
eral multinomial population with k categories and unknown 1× k parameter
vector π. But the range of application of these models is much wider. First, one
may restrict π to parametric hypotheses of the general form π = π(θ, φ, . . .).
More important, the multinomial may be allowed to have an infinite num-
ber of categories, as explained in Dempster (1966), so that general spaces of
discrete and continuous observable characteristics are permissible. It is possi-
ble therefore to handle the standard parametric hypotheses of mathematical
statistics. Very few of these have as yet proved analytically tractable.

At present, mainly qualitative insights are available into the overview of
statistical inference which the sampling models of generalized Bayesian infer-
ence make possible. Some of these insights have been mentioned above, such as
the symmetric handling of prior and sample information, and the uncertainty
principle by which upper and lower probabilities reflect the degree of confusion
produced by small samples from complex situations. It is interesting to note
also that parametric hypotheses and prior distributions, which are viewed as
quite different in conventional statistical theory, play indistinguishable roles
in the logical machinery of generalized Bayesian inference. For a parametric
hypothesis such as π = π(θ, φ, . . .) may be represented by a model of the
general type (X,S, μ,Γ), which assigns all of its probability ambiguously over
the subset of π allowed by π(θ, φ, . . .) as θ, φ, . . . range over their permitted
values, and this model combines naturally with sample information using the
rule of combination defined in Sect. 2 and suggested there to be appropriate
for the introduction of prior information.

Concepts which appear in standard theories of inference may reappear
with altered roles in generalized Bayesian inference. Likelihood is a prime
example. The ordinary likelihood function L(π) based on a sample from a
general multinomial population is proportional to the upper probability of
the hypothesis π. This may be verified in the trinomial example of Sect. 2 by
checking that the random region illustrated in Fig. 4 covers the point π with
probability πn1

1 πn2
2 πn3

3 . The general result is hardly more difficult to prove.
Now the upper probability of π for all π does not contain all the sample infor-
mation under generalized Bayesian inference. Thus the likelihood principle
fails in general, and the usual sets of sufficient statistics under exponential
families of parametric hypotheses no longer contain all of the sample informa-
tion. The exception occurs in the special case of ordinary Bayesian inference
with an ordinary prior distribution, as illustrated in (31). Thus the failure of
the likelihood principle is associated with the uncertainty which enters when
upper and lower probabilities differ. In passing, note that marginal likelihoods
are defined in the general system, that is, the upper probabilities of specific
values of θ from a set of parameters θ, φ, . . . are well defined and yield a
function L(θ) which may be called the marginal likelihood of θ alone. If the
prior information consists of an ordinary prior distribution of θ alone, with
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no prior information about the nuisance parameters, then L(θ) contains all of
the sample information about θ.

Unlike frequency methods, which relate to sequences of trials rather than
to specific questions, the generalized Bayesian inference framework permits
direct answers to specific questions in the form of probability inferences. I find
that significance tests are inherently awkward and unsatisfying for questions
like that posed in the example of Sect. 4, and the main reason that Bayesian
inference has not replaced most frequency procedures has been the stringent
requirement of a precise prior distribution. I hope that I have helped to reduce
the stringency of that requirement.
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Appendix A

A derivation is sketched here for the distributions (23) relating to specific
vertices of the random region R defined by (20). R is the intersection of n
regions B(i)u(i), for i = 1, 2, . . . , n, as illustrated in Fig. 4. The region B(i)u(i)

corresponding to u(i), which gives rise to an observation c1, consists of points
u such that u3/u1 ≤ u

(i)
3 /u

(i)
1 and u2/u1 ≤ u

(i)
2 /u

(i)
1 . The intersection of the

n1 regions corresponding to the n1 observations c1 is a region R1 consisting
of points u such that

u3/u1 ≤ c13 and u2/u1 ≤ c12, (A.1)

where c13 = min(u(i)
3 /u

(i)
1 ) and c12 = min(u(i)

2 /u
(i)
1 ), the minimization being

over the subset of i corresponding to observations c1. Note that R1 together
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with the n1 regions which define it are all of the type pictured on level 1
of Fig. 2. By permuting subscripts, define the analogous regions R2 with
coordinates c23, c21 and R3 with coordinates c31, c32, where R2 and R3 are of
the types pictured on levels 2 and 3 of Fig. 2, respectively. One is led thus to
the representation

R = R1 ∩R2 ∩R3. (A.2)

Any particular instance of the region R which contains at least one point
is a closed polygon whose sides are characterized by fixed ratios of pairs of
coordinates ui, uj. Thus R may be described by a set of six coordinates

bij = max
u∈R

(uj/ui) (A.3)

for i 	= j. From (A.1), (A.2), and (A.3) it follows that

bij ≤ cij (A.4)

for i 	= j. Moreover, equality holds if the corresponding side of Ri is also a
side of R, while the inequality is strict if the side of Ri misses R entirely.
The reader may wish to satisfy himself that R may have 3, 4, 5 or 6 sides in
which case the strict inequality in (A.4) holds for 3, 4, 5 or 6 pairs i, j (with
probability one).

If R is considered a random region, while R0 is a fixed region of the same
type with coordinates b0ij , then

P(R ⊃ R0) = P(bij ≥ b0ij) for all i 	= j

= (1 + b012 + b013)
−n1(1 + b021 + b023)

−n2(1 + b031 + b032)
−n3 . (A.5)

To prove (A.5) note first that the three events
{
b12 ≥ b012, b13 ≥ b013

}
,

{
b21 ≥ b021, b23 ≥ b023

}
,

{
b31 ≥ b031, b32 ≥ b032

}

are equivalent respectively to the three events
{
c12 ≤ b012, c13 ≥ b013

}
,

{
c21 ≥ b021, c23 ≥ b023

}
,

{
c31 ≥ b031, c32 ≥ b032

}
.

In the latter form, the three events are clearly independent, for they depend
on disjoint sets of independent u(i), and their three probabilities are the
three factors in (A.5). For example, the first event says that the n1 points
u(i) corresponding to observations c1 fall in the subtriangle u2/u1 ≥ b012 and
u3/u1 ≥ b013 whose area is the fraction (1 + b012 + b013)−1 of the area of the
whole triangle U .

It will be convenient to denote the right side of (A.5) by F (b012, b
0
13, b

0
21, b

0
23,

b031, b
0
32) which defines, as the b0ij vary, a form of the joint cumulative distri-

bution function of the bij . This c.d.f. should be handled with care. First, it is
defined only over the subset of the positive orthant in six dimensions such that
the b0ij define a non-empty R0. Many points in the orthant are ruled out by
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relations like b012 ≤ b013b
0
32 which are implicit in (A.3). Second, the distribution

of the bij is not absolutely continuous over its six-dimensional domain, but
assigns finite probability to various boundary curved surfaces of dimensions
5, 4 and 3, corresponding to random R with 5, 4 and 3 sides. Nevertheless it
is not difficult to deduce (23) from (A.5).

Suppose that u∗ denotes the vertex of R with maximum first coordinate.
This vertex lies, with probability one, at the intersection of two of the six sides
of R1, R2 and R3. By looking at the vertices defined by all possible pairs of
sides it is easily checked that exactly three possibilities exist for u∗, namely,

(i)
(ii)
(iii)

u∗1/u
∗
2 = c21 and u∗1/u

∗
3 = c31,

u∗3/u
∗
2 = c23 and u∗1/u

∗
3 = c31,

u∗1/u
∗
2 = c21 and u∗2/u

∗
3 = c32,

or

⎫
⎬

⎭ (A.6)

The probability density function of u∗ may be formed by summing the con-
tributions from the three possibilities (i),(ii),(iii). The contribution from case
(i) will be expressed first in terms of c21, c31 and then transformed to u∗1, u

∗
2.

Consider the event E that both {b021 < c21 < b021 + δ, b031 < c31 < b031 + ε}
and that the lines c21 and c31 intersect in a point which maximizes the first
coordinate. The latter condition may be written

{c12 ≥ v2/v1, c13 ≥ v3/v1, c23 ≥ v3/v2, c32 ≥ v2/v3, } (A.7)

where v = (v1, v2, v3) is the point at which the lines c21 and c31 intersect, or
{
c12 ≥ c−1

21 , c13 ≥ c−1
31 , c23 ≥ c21c

−1
31 , c32 ≥ c−1

21 c31.
}

(A.8)

Thus, apart from terms of second order and higher in δ and ε,

Pr(E) =F
{(
b021 + ε

)−1
,
(
b031 + δ

)−1
, b021 + ε, (b021 + ε)(b031 + δ)−1 ,

b031 + δ, (b021 + ε)−1(b031 + δ)}

− F
{(
b021 + ε

)−1
,
(
b031

)−1
, b021 + ε, (b021 + ε)(b031)

−1 ,

b031, (b
0
21 + ε)−1b031}

− F
{(
b021

)−1
,
(
b031 + δ

)−1
, b021, b

0
21

(
b031 + δ

)
, b031 + δ,

(b021)
−1

(
b031 + δ

)
}

+ F
{(
b021

)−1
,
(
b031

)−1
, b021, b

0
21(b

0
31)

−1, b031,
(
b021

)−1
b031

}
. (A.9)

That is, the required case (i) contribution is found in terms of c21, c31 repre-
sented by b021, b

0
31 by differentiating F with respect to its third and fifth argu-

ments and then substituting (b021)−1, (b031)−1, (b021(b031)−1, (b021)−1b031 in order
for the other four arguments. Expressing the result in terms of the coordinates
u = (u1, u2, u3) at which the lines b021 and b031 intersect, one finds

n2n3u
n1
1 un2+1

2 un3+1
3
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which, after multiplying by

∂(u1, u2)/∂
(
b021, b

0
31

)
= u1u

−2
2 u−2

3

gives the density contribution

n2n3u
n1+1
1 un2−1

2 un3−1
3 (A.10)

expressed in terms of u1, u2 and of course u3 = 1−u1−u2. The contributions
from cases (ii) and (iii) may be found similarly to be

n2n3u
n1
1 un2−1

2 un3
3 and n2n3u

n1
1 un2

2 un3−1
3 . (A.11)

Since

u1 + u2 + u3 = 1,

the sum of the three parts is

n2n3u
n1
1 un2−1

2 un3−1
3 ,

or
n1!n2!n3!

n!

{
n!

n1! (n2 − 1)!(n3 − 1)
un1

1 un2−1
2 un2−1

3

}
, (A.12)

where the first term is the probability that u∗ is anywhere, i.e. that R is not
empty, while the second is the Dirichlet density given in (23).

The density of the point with minimum first coordinate may be found by
a similar argument. The analogue of (A.6) is

(i)
(ii)
(iii)

u∗2/u
∗
1 = c21 and u∗3/u

∗
1 = c13,

u∗2/u
∗
3 = c32 and u∗3/u

∗
1 = c13,

u∗2/u∗1 = c12 and u∗3/u∗2 = c23,
or

⎫
⎬

⎭ (A.13)

and the corresponding three components of density turn out to be

n1(n1 + 1)un1−1
1 un2

2 un2
3 , n1(n3)un1−1

1 un2
2 un2

3 , and n1n2u
n1−1
1 un2

2 un3
3 (A.14)

which sum to

n1!n2!n3!
n!

{
(n+ 1)!

(n1 − 1)n2!n3!− 1
un1−1

1 un2
2 un2

3

}
, (A.15)

which, like (A.12) is the product of the probability that R is not empty and
the Dirichlet density specified in (23).

The remaining four lines of (23) follow by symmetry. The probability that
R is not empty may be obtained directly by an argument whose gist is that,
for any set of n points in U , there is exactly one way to assign them to three
cells of sizes n1, n2, n3 corresponding to observations c1, c2, c3 in such a way
that R is not empty. This latter assertion will not be proved here.
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On Random Sets and Belief Functions∗

Hung T. Nguyen

1 Introduction

The mathematical theory of evidence, as developed by Shafer [1, 2], is based, in
the main, upon the notion of lower-probability measures in the work of Demp-
ster on statistical inference (e.g., [3]). Such set-functions have been employed
in many different fields such as theory of capacities (Choquet, [4]), stochastic
geometry (Kendall [5], Matheron [6]), random fields (Spitzer [7]), and set-
valued Markov processes (Harris [8]).

This paper deals with a closer relationship between Dempster’s scheme
of multivalued mappings and Shafer’s belief functions. The basic probability
assignment is regarded as the probability distribution of a random set, the
notion of condensability is expressed in terms of a multivalued mapping and is
related to a general notion of regularity of probability measures. These points
of view are useful for applying the notion of belief to fuzzy analysis where
multivalued mappings are replaced by fuzzy mappings, and propositions are
of the form “X is A,” where A is the label of some fuzzy set [9] of a universe
of discourse, possibly a continuum.

2 Measurability of Multivalued Mappings

Let (X,A), (S,B), (P(S),B) be three measurable spaces, where P(S) denotes
the collection of all subsets of the set S.

Consider a multivalued mapping:

Γ : X → P(S).

We shall formulate two notions of measurability for Γ : the first one is
needed for defining the lower (and upper) probability measure, the second
∗ Research sponsored in part by the National Science Foundation under Grant

MCS-76-06693 and the Army Research Office Grant under DAHC04-75-G0056.
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one for considering random sets. Note that these notions of measurability
have been investigated, for example, by Debreu [10] in a topological setting.

First, consider two inverses of T :

(a) Lower-inverse:

Γ∗ : P(S)→ P(X),
T ∈ P(S), Γ∗(T ) = T∗ = {x ∈ X : Γx 	= φ, Γx ⊂ T } .

(b) Upper-inverse:

Γ ∗ : P(S)→ P(X),
T ∈ P(S), Γ ∗(T ) = T ∗ = {x ∈ X : Γx ∩ T 	= φ} .

Remark 1. The names of these inverse of Γ are given in the way that is related
to lower and upper probability measures. The lower-inverse [resp. upper-
inverse] is called upper-inverse [resp. lower-inverse] by Berge [11], and strong
inverse [resp. weak inverse] by Debreu [10].

Definition 1. The multivalued mapping Γ is said to be strongly measurable,
with respect to A and B, iff:

∀B ∈ B, Γ ∗(B) ∈ A.

Example 1. Let X be a topological space and A its Borel σ-field; S is a finite
set with its discrete topology. If Γ is lower-semicontinuous on X (i.e., for
each x0 ∈ X , for any V open in S such that V ∩ Γx0 	= φ, there exists a
neighborhood U of X0 such that: x ∈ U ⇒ V ∩ Γx 	= φ), then Γ is strongly
measurable, with respect to A and P(S), since ∀A ⊂ SΓ ∗(A) is open in X .

Now consider Γ as a point-to-point mapping from X to P(S), where
“points” in P(S) are in fact subsets of S. The collection of all subsets of
P(S) is denoted by PP(S).

Let Γ−1 be the inverse mapping of Γ , i.e.,

Γ−1 : PP(S)→ P(X),

T̂ ∈ PP(S), Γ−1(T̂ ) =
{
x ∈ X : Γx ∈ T̂

}
.

If B̂ is a σ-field on P(S), then as usual, Γ is said to be measurable, with
respect to A and B̂, iff:

∀T̂ ∈ B̂, Γ−1(T̂ ) ∈ A.

Remark 2. Let J be the class of all finite subsets of the set S. For I ∈ J , let
πI be the projection from P(S) to P(I), i.e.,

A ∈ P(S), πI(A) = A ∩ I.
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A finite-dimensional cylinder set in P(S) is a subset Â of P(S) of the form:

Â = π−1
I (A), where I ∈ J , and A ⊂ P(I).

In particular, if A = {I1}, I1 ⊂ I, then:

Â = {B ⊂ S : B ⊃ I1, B
′ ⊃ I − I1} .

Note that if I1, I2 ∈ J and I1 ∩ I2 = φ, then:

π−1
I1∪I2(I1) = {B ⊂ S : B ⊃ I1, B

′ ⊃ I2} .

Let C denote the class of all finite dimensional cylinder sets in P(S), and
F = σ(C), the σ-field of P(S), generated by C. It is clear that if Γ is strongly
measurable (with respect to A and B) and if J ⊂ B, then Γ is measurable
(with respect to A and F).

3 Lower-Probability Measure and Belief Functions

Definition 2. A source is a probability space (X,A,P) and a multivalued
mapping Γ : X → P(S). For simplicity, we assume that S∗ ∈ A and
P(S∗) = 1. Let B be a σ-field on S, we assume that Γ is strongly measurable
(with respect to A and B), and in addition:

If T ∈ B, then

T̃ = {x ∈ X : Γx ⊃ T } ∈ A.

The lower and upper probability measures P∗,P∗ are defined respectively by:

P∗(B) = P(B∗),
P∗(B) = P(B∗).

Note that P∗(B) = 1−P∗(B′).
Dempster [3] considered also the set-function:

Q(B) = P(B̃).

Remark 3. In the study of random fields [7] and set-valued Markov processes
[8], the set-functions Q and P∗, in the case where Γ is regarded as a random
set, are called the correlation function and incidence function, respectively.

Let f be a set-function: B → R. Two types of successive differences of
f(B), B ∈ B, with respect to parameters Bi ∈ B, i = 1, . . . , n+ 1, are defined
as follows:

(i) ∇1(B;B1)f = f(B)−f(B∪B1),∇n+1(B;B1, . . . , Bn+1)f =∇n(B;B1, . . . ,
Bn)f −∇n(B ∪Bn+1;B1, . . . , Bv)f ,
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(ii) Δ1(B;B1)f = f(B)−f(BDB1), Δn+1(B;B1, . . . , Bn+1)f =Δn(B;B1, . . . ,
Bn)f −Δn(B ∩Bn+1;B1, . . . , Bn)f .

Following Choquet [4], we say that:

(a) f is alternating of infinite order if ∇n � 0 for all n,
(b) f is monotone of infinite order if Δn � 0 for all n.

Properties of P∗ and P∗ can be summarized as follows:

Proposition 1. (i) P∗(φ) = 0,P∗(S) = 1,
(ii) P∗ is monotone of infinite order.
(iii) If Bn ∈ B is a decreasing sequence, then:

P∗(Bn) ↓ P∗

(
⋂

n

An

)
.

In a dual way:

Proposition 2. (i) P∗(φ) = 0,P∗(S) = 1,
(ii) P∗ is alternating of infinite order.
(iii) If Bn ∈ B is an increasing sequence, then:

P∗(Bn) ↑ P∗
(
⋃

n

Bn

)
.

These facts can be seen from the definition of P∗ and P∗ in terms of P,
and the fact that:

Γ∗

(
⋂

i

Bi

)
=

⋃

i

T∗(Bi),

Γ ∗
(
⋃

i

Bi

)
=

⋃

i

Γ ∗(Bi).

Remark 4. (a) We have only Γ∗(
⋃
tBi) ⊇

⋃
i Γ∗(Bi).

(b) In particular, the lower-probability measure P∗ [resp. P∗] is strongly
superadditive [resp. strongly subadditive].

(c) For the time being, no topological notions are considered. For further
application to fuzzy analysis, where S = [0, 1] or some compact set of
the real line, the topology will play an important role. Let us point out a
result in [6] (Choquet’s theorem) concerning a functional associated with a
random closed set [this functional plays the role of probability distribution
function of a real random variable]: If S is a locally compact space, the
space F of closed subsets of S is topologized in some suitable way, σF
denotes its Borel σ-field, and T is a set-function defined on the space K
of compact sets of S, then the following are equivalent:
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(i) T is an alternating Choquet Capacity of infinite order such that T
takes values in [0, 1] and T (φ) = 0.

(ii) There exists a unique probability measure P̂ on σF such that

T (K) = P̂ [{A ∈ F : A ∩K 	= φ}] , ∀K ∈ K.

Definition 3. We recall here the notion of belief function on a finite set S.
A belief function Bel on S is a set-function from P(S) to [0, 1] such that:

(i) Bel(φ) = 0,
(ii) Bel(S) = 1,
(iii) For any k,

Bel

(
k⋃

i=1

Ai

)
�

∑

I 	= φ
I ⊂ {1, . . . , k}

(−1)|I|+1 Bel

(
⋂

i∈I
Ai

)
,

where |I| denotes the number of elements in I.
Note that a belief function Bel is increasing and there exists a set-function:

m : P(S)→ [0, 1]

such that:

(a) m(φ) = 0,
(b) ΣA∈P(S)(A) = 1,
(c) Bel(A) = ΣB⊂Am(B).

m is called the basic probability assignment [2], and

m(A) =
∑

B⊆A
(−1)|A−B| Bel(B).

Note also that (iii) is equivalent to the nonnegativity of m.

Remark 5. The representation problem of belief functions in terms of measure
algebra and allocation of probability has been fully discussed in [1].

4 Random Sets and Belief Functions

Consider a source (X,A,P), Γ : X → P(S).
Let B be a σ-field on S. We assume that Γ is strongly measurable (with

respect to A and B).

Proposition 3. The lower-probability measure P∗ on B is deduced from the
probability distribution of Γ considered as a random set.
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Proof. Let B̂ be the σ-field on P(S) defined by:

�
T ∈

�
B ⇔ Γ−1(

�
T ) ∈ A.

Thus, with respect to A and B̂, Γ is a measurable mapping. We say that Γ is
a random set by specifying its probability distribution P̂ on B:

�
T ∈ B,

�
P(

�
T ) = P[Γ−1(

�
T )].

If A ∈ P(S), denote by I(A) the principal ideal generated by A, i.e., I(A) =
{B ⊂ S : B ⊂ A}, then ∀B ∈ B, I(B) ∈ B. Indeed: Γ−1(I(B)) = B∗ ∈ A by
strong measurability of Γ . It follows that: P̂[I(B)] = P∗(B), ∀B ∈ B.

Proposition 4. In the finite case, the probability distribution of the random
set Γ is precisely the basic probability assignment.

Proof. Since S is finite, and we assume that Ã ∈ A for all A ⊆ S, it is clear
that B̂ = PP(S).

On the other hand, since:

m(A) =
∑

B⊆A
(−1)|A|−|B|P∗(B)

⇒ P∗(B) =
∑

B⊂A
m(B) =

∑

B∈I(A)

m(B) = m̂[I(A)],

where m̂ is the probability measure on PP(S) with density m. But

P[I(A)] = P∗(A) ⇒
�
P ({A}) =

∑

B⊂A
(−1)|A|−|B|P∗(B)

= m̂ ({A}) .

Remark 6. (i) For A ⊂ S, let F (A) be the principal filter generated by A;
then: ∀A ⊂ S (or more generally, A ∈ B, in the infinite case) Ã ∈ A ⇔
F (A) ∈ B.

(ii) LetX be a topological space, andA its Borel σ-field. Let S be a Hausdorff,
locally compact space, and B its Borel σ-field.
F,G,K denote respectively the collection of all closed, open, compact sub-
sets of S. As a topological space, where the topology is generated by
{FK ,K ∈ K} and {FG, G ∈ G}, with

FK = {A ∈ F : A ∩K = φ} ,
FG = {A ∈ F : A ∩G 	= φ} ,

the space F is a Hausdorff, compact space. If Γ : X → F is continu-
ous, then:
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∀B ∈ B, {x ∈ X : Γx = B} ∈ A.

Note that if A∗ and Ã ∈ A then:

A∗ ∩ Ã = {n : Γx = A} ∈ A.

(iii) In this finite case, the existence of the biunivocal correspondence between
belief functions on S and probability distributions of random sets is estab-
lished by using the fact that to construct P̂, it is sufficient to construct
its density on P(S), on one hand; and on the other hand, given a set
function υ (belief function) on P(S), we define P̂[I(A)] = υ(A), and we
are in conditions of application of the Mobius inversion theorem [12] to
obtain P̂({A}) via the Mobius function:

μ (A,B) = − (−1)|A|−|B| , A ⊂ B.

(iv) If R(Γ ) denotes the range of Γ , it is sufficient to consider I(A) = {B ∈
R(Γ ) : B ⊂ A}.

Example 2. Let E = {At, t ∈ [0, 1]} be a family of subsets of S such that:

(a) A0 = S,
(b) A1 = φ,
(c) s ≤ t⇔ As ⊇ At.

Let E be the σ-field on E defined as follows:

T̂ ∈ E ⇔ T̂ = {At}t∈T ,

where T ∈ B1 the Borel σ-field of the unit interval [0, 1].
Let Γ be a random set taking values in (E, E) with probability distribu-

tion P̂:

P̂
[
Γ ∈

�
T

]
= Λ(T ),

where Λ is the Lebesgue measure on [0, 1].
Let

I(A1) = {As : As ⊆ At} .

Then

I(At) ∈ E for all t ∈ [0, 1],

since
I(At) = {As}s∈[t,1].

Define a belief function v on E by:

v(At) = P̂[Γ ∈ I(At)] = 1− t.
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5 Regularity and Condensability

In this paragraph, given a scheme (X,A,P), Γ : X → P(S), we assume that Γ
is strongly measurable with respect to A and P(S). Thus, the belief function
P∗ and the upper probability measure P∗ are defined on P(S). Following
Shafer [1], we say that the upper probability measure P∗ is condensable iff
P∗ has the following approximation property:

∀A ∈ P(S), P∗(A) = sup
B∈J∩P(A)

P∗(B) (1)

where J denotes the collection of all finite subsets of S. Recall that, if An is
an increasing sequence in P(S), then:

P∗
(
⋃

n

An

)
= sup

n
P∗(An).

The condensability of P∗ is stronger than this sequential increasing continuity.
In fact [1], P∗ is condensable if and only if for any upward net Ai in P(S), i ∈ I,
we have:

P∗
(
⋃

I

Ai

)
= sup

I
P∗(Ai). (2)

The fact that (2) implies (1) can be seen as follows: Let A ∈ P(S), and T =
J ∩P(A). It is obvious that T is an upward net in P(S), and A =

⋃
I∈T thus:

P∗(A) = P∗
(

⋃

I∈T
I

)
= sup

I∈J∩P(A)

P∗(I).

Recall also that the upper-inverse Γ ∗ of Γ maps P(S) into A, since Γ is
strongly measurable, and:

(i) Γ ∗ is increasing,
(ii) Γ ∗(

⋃
I Ai) =

⋃
I Γ

∗(Ai).

As a consequence, if Ai is an upward net in P(S), then Γ ∗(Ai) is an upward
net in A.

We now proceed to give a first characterization of condensability of P∗ in
terms of Γ .

Let Â(P) be the subset of P(A) defined by:

Â ∈ Â(P) ⇔
⋃

A∈
�
A

A ∈ A

⇔ P

⎛

⎜⎝
⋃

A∈
�
A

A

⎞

⎟⎠ = sup
A∈

�
A

P(A).
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Let U [P(S)] be the set of all upward nets in P(S). Define the mapping Γ̂ ,
from PP(S) into PP(X) [in fact into PP(A)], induced by Γ̂ ∗, as follows:

Γ̂ (Â) =
{
Γ ∗(A), A ∈ Â

}
.

Proposition 1. A necessary and sufficient condition for the condensability of
P∗ is that Γ̂ maps U [P(S)] into A(P).

Proof. Suppose that P∗ is condensable. Let Ai, i ∈ I, be an upward net in
P(S). By strong measurability of Γ, Γ (

⋃
I Ai) ∈ A, thus

⋃
I Γ

∗(Ai) ∈ A.
We have:

P∗
(
⋃

I

Ai

)
= P

[(
⋃

I

Ai

)∗]
= P

[
⋃

I

A∗
i

]
= sup

I
p∗(Ai) = sup

I
P(A∗

i ).

Thus {Ai, i ∈ I} ∈ Â(P).
The sufficiency follows immediately from the definition of A(P).

There is another way to study the condensability of the upperprobability
measure P∗, associated with the scheme (X,A,E), Γ : X → P(S), uniquely in
terms of the probability space (X,A,P) and Γ . As before, the upper-inverse
Γ ∗ will play an important role. For this purpose, we shall first introduce a
general notion of regularity for probability measures (or generally, for mea-
sures); using this notion, we shall express the condensability of P∗ in terms
of Γ ∗ as a criterion and study some consequences.

Notion of ρ-regularity. Let (Ω,A,P) be a probability space. Let (E,�) be
a partially ordered set, and F ⊂ E. Finally, let ρ be a mapping from E to A.

Definition 4. We say that the probability measure P is regular with respect
to the system (E,F, ρ) (or simply ρ-regular, if E and F are fixed) iff:

∀x ∈ E, P[p(x)] = sup
A∈ρ̂(x)

P(A),

where

ρ̂(x) = {ρ(y) : y ∈ F, y � x} .

Remark 7. (i) Let, E,F be subclasses of A : F ⊂ E ⊂ A; and ρ : E → A the
canonical injection. Then the ρ-regularity of P is the usual one, i.e.,

∀A ∈ E, P(A) = sup
B∈F∩P(A)

P(B).

Here, ρ̂(A) = F ∩ P(A).
(ii) If P is ρ-regular, and ρ increasing, then:

P[ρ(x)] = sup
A∈ρ(F )∩P[ρ(x)]

P(A).
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Consider again the scheme (X,A,P), Γ : X → P(S), with Γ strongly
measurable. Denote by J the collection of all finite subsets of S. Put J ∗ =
Γ ∗(J ) and A∗ = Γ ∗[P(S)]. Consider the system (P(S),J , Γ ∗).

We say that P is Γ ∗-regular if P is regular with respect to the system
(P(S),J , Γ ∗). Then it is straightforward that:

Proposition 2. The following are equivalent:

(i) P∗ is condensalbe,
(ii) P is Γ ∗-regular.

Proposition 3. If P is Γ ∗-regular, then:

∀A ∈ A∗, P(A) = sup
T∈J ∗∩P(A)

P(T ).

Proof. Let B ∈ P(S) such that A = Γ ∗(B). We have:

P(A) = P[Γ ∗(B)] = sup
T∈Γ̂∗(B)

P(T ),

where

Γ̂ ∗(B) = {Γ ∗(I), I ∈ J , I ⊂ B}

Thus:

P(A) = sup
I∈J ,I⊂B

P[Γ ∗(I)]

� sup
I∈J ,Γ∗(I)⊂Γ∗(B)

P[Γ ∗(I)] since Γ ∗ is increasing.

We obtain, in fact, equality since P is increasing.

Remark 8. If (Ω,A,P) is a probability space and T̂ ⊂ B ⊂ A, we say that P
is (inner) regular on B if:

∀B ∈ B, P(B) = sup
T∈C∩P(B)

P(T ).

More generally, let ψ be a mapping from B into P(C) such that ψ(B) ⊂
C ∩P(B) for all B ∈ B. We can say that P is regular with respect to (C,B, ψ)
iff: ∀B ∈ B,P(B) = supT∈ψ(B)P(T ). If the upper-inverse Γ ∗ is injective
[11], i.e.,

A 	= B ⇒ Γ ∗(A) ∩ Γ ∗(B) = φ,

then P∗ is condensable if and only if P is regular with respect to (J ∗,A∗, ψ)
where:

A ∈ A∗, A 	= φ,

ψ(A) = {Γ ∗(I), I ∈ J , I ⊂ B}, where B is the unique element of P(S)
such that A = Γ ∗(B).
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Proposition 4. If for each B ∈ P(S), there exists a sequence {In}n∈N ele-
ments of J such that:

Γ ∗(B)
⋃

n

Γ ∗(Jn),

then P is regular on A∗ with respect to J ∗.

Proof. Let A ∈ A∗, A = Γ ∗(B) for some B ∈ P(S).
Since J is closed under finite union, and Γ ∗ preserves (arbitrary) unions,

we can assume that the sequence {Γ ∗(In)}n∈N is increasing.
By monotone continuity of P, we have:

P(A) = P[Γ ∗(B)] = sup
n

P[Γ ∗(In)] � sup
I∈J ,Γ∗(I)⊂A

P(Γ ∗(I)).

We then get equality since P is increasing.

Proposition 5. If S is countable, then P is Γ ∗-regular.

Proof. Each B ∈ P(S) can be written as:

B =
⋃

n

In with In ∈ J , and In increasing,

Γ ∗(B) =
⋃

n

Γ ∗(In) with {Γ ∗(In)}n incresing.

Thus:

P[Γ ∗(B)] = sup
n

P[Γ ∗(In)]

� sup
I∈J ,I⊂B

P[Γ ∗(I)]

� sup
I∈J ,Γ∗(I)⊂Γ∗(B)

P[Γ ∗(I)] ≤ P[Γ ∗(B)]
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6

Non-Additive Probabilities in the Work
of Bernoulli and Lambert∗

Glenn Shafer

1 Introduction and Summary

Jacob Bernoulli, a 17th century pioneer in the mathematical theory of chance,
and Johann Heinrich Lambert, a broad-ranging 18th century scholar, both
studied non-additive probabilities. The purpose of this essay is to understand
their work, both in its historical context and in relation to the modern theory
of non-additive epistemic probability presented in my monograph A Mathe-
matical Theory of Evidence (1976).

The starting point of our effort to understand Bernoulli and Lambert is
the modern distinction between aleatory probability (or “objective” probabil-
ity), which we think of as a feature of the world, and epistemic probability (or
“subjective” probability), which is more strictly a feature of our knowledge or
belief. An aleatory probability is the probability of a chance event. Because
of their relation to frequencies, aleatory probabilities must be additive. The
epistemic probability of a proposition, on the other hand, is simply a mea-
sure of how certain we are of the proposition; epistemic probabilities bear no
necessary relation to frequencies and, in my opinion, need not be additive.

Until the late seventeenth century there was a similar distinction between
chance, or randomness, and probability, which was an attribute of opinion.
As Ian Hacking has stressed in The Emergence of Probability 1975 [36], these
two concepts were, until about 1660, remarkably unrelated.1 Considerable
progress had been made in the theory of games of chance before 1660; Car-
dano had written on the subject around 1560 [62] and Galileo around 1620,
the correspondence between Pascal and Fermat occurred in 1654, and Huy-
gens published his De ratiociniis in aleae ludo in 1657 [42]. But in none of

∗ From Archive for History of Exact Sciences, Vol. 19, Number 4, 1978, 309–370,
c© Springer-Verlag 1978. The author has updated some of the references and

footnotes, added some new footnotes, and corrected a few typographical errors.
1 This is also discussed by M.G. Kendall, in Sect. 33 of “The beginnings of a

probability calculus,” 1956 [44].
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these writings do we find the word probability. And the philosophers who dis-
cussed probability before 1660 seem, similarly, to have seldom perceived any
connection between their subject and chance. For medieval and Renaissance
thinkers, probability (Latin probabilitas) belonged to the realm of opinion and
argument, where the random was quite out of place.

The connection between probability and chance seems to have first been
made in a discussion of the philosophical concept of probability rather than
in a discussion of the mathematical theory of chance. In his textbook on
logic l’Art de penser, published in 1662 [2], Antoine Arnauld perceived the
relevance to his subject of the emerging theory of chance and suggested that
the principles of this new theory be used when considering the “probabilities”
of gain and loss in everyday life. For Arnauld, the chances that the new theory
had learned to calculate were probabilities. He could take this view because
of the epistemic aspect of these chances; they were known a priori and hence
were unequivocally a feature of one’s knowledge.

Jacob Bernoulli was the first substantial contributor to the theory of games
of chance to grapple with its connection with probability. Bernoulli began
his work on chance and probability in the 1680’s, some twenty years after
Arnauld had written his textbook. In view of the fame of that textbook, and
in view of the similar ideas that we find in the writings of Leibniz, we need
not be surprised that Bernoulli made the connection between probability and
chance. But how exactly was this connection to be understood? How could
one mathematize the concept of probability and use the methods of the theory
of games of chance to calculate probabilities while preserving the generality
of probability and its role in the assessment of argument? Bernoulli addressed
this question with subtlety and penetration.

In his Ars Conjectandi, published posthumously in 1713 [6], Bernoulli
explains that probability is a degree of subjective certainty—a measure of our
knowledge. Probabilities are calculated from arguments, and their properties
depend on the nature of the arguments. Most importantly, the probabilities
from different arguments can be combined to produce what we might today
call probabilities “based on the total evidence.” In calculating probabilities,
Bernoulli uses the methods of the theory of games of chance: he uses Huygens’
rule for calculating “expectations.” Yet not all Bernoulli’s probabilities have
the special features of those in games of chance; in some cases, we notice,
the probability of a thing and the probability of its opposite do not add to
one. It is to this fact that I refer when I write of Bernoulli’s “non-additive
probabilities.”

Bernoulli’s subtle understanding of the connection between probability
and chance did not endure. We can discern two important reasons for its
failure. First, his theory of combining arguments was not completely sat-
isfactory in its own terms and could not be compared as a mathematical
theory with the already well-developed theory of games of chance. Secondly,
his understanding was a bit too subtle; it was natural for his successors to
simplify it by identifying his “probability” with “ease of happening” as it was
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understood in games of chance. In the long run, this simplification was encour-
aged by Bernoulli’s own law of large numbers. This theorem tells us that in
those cases where the ease of happening of a thing is not known a priori,
it may be learned a posteriori, from the observation of frequencies. Bernoulli
thought one could use such frequencies to find the ease of happening of various
cases in individual arguments; the probabilities of these individual arguments
could then be calculated and combined according to general rules. Bernoulli’s
successors tended to leave aside his struggle with the combination of argu-
ments and to think of every probability as an “ease of happening,” to be
found directly from frequencies.

Bernoulli sought to develop a truly general and hence essentially epis-
temic theory of probability. But the main effect of his effort, ironically, was
to attach the name probability to an increasingly aleatory theory of chance.
It is clear to us today that Bernoulli’s law of large numbers is a theorem
about aleatory probabilities rather than a theorem about epistemic probabil-
ities. And it is precisely in this respect that it is a departure from the earlier
achievements of the theory of games of chance. Arnauld had found it possible
to relate the earlier theory to probability because of the a priori nature of
the chances it calculated. Granted that there was always an aleatory aspect
to these chances—granted that ease of happening always seemed to be a fact
about the world—still, these “chances” were known a priori; they were a fea-
ture of our knowledge. Though he did not realize it, Bernoulli destroyed this
epistemic aspect of chance with his law of large numbers. A chance which can
only be known a posteriori is not initially a feature of our knowledge.

After Bernoulli, and especially after the work of his successors Montmort
and De Moivre, we already have our modern perplexity. We have a mathe-
matical theory that is basically about chance but bears the name probability,
a general belief that the theory must indeed apply to the epistemic ideas that
this name unavoidably evokes, and bewilderment as to how it can do so.

Johann Heinrich Lambert stands out as the single 18th century scholar
who was able to break away from the identification of probability with the
additive theory of chance. In his Neues Organon, published in 1764 [51], Lam-
bert took up and extended Bernoulli’s theory of argument. He explicitly rec-
ognized and sought to explain the possible non-additivity of the probabilities
of propositions, and he corrected and extended Bernoulli’s rules for combin-
ing probabilities based on different arguments. Lambert’s rule of combination
turns out to be a special case of Dempster’s rule of combination, a rule that
plays a central role in A Mathematical Theory of Evidence.

In Sect. 4 below, I examine in detail the ideas on probability that we find
in Bernoulli’s mathematical diary2 and in Ars Conjectandi. In Sects. 3 and 5,
I examine the historical context of Bernoulli’s work, with special attention to

2 Bernoulli’s diary, or Meditationes, has not been translated into English. In 1975,
B.L. van der Waerden published it in the original Latin with commentary in
German, in Vol. 3 of Die Werke von Jakob Bernoulli [7]. This volume also includes
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the relative lack of connection between probability and chance before Bernoulli
and the near fusion of the two concepts after him. In Sect. 6, I discuss Lam-
bert’s treatment of probability in Neues Organon. And in Sects. 2 and 7, I
relate the work of Bernoulli and Lambert to modern ideas. In Sect. 2, I set
forth as precisely as possible the ideas that inform my examination of the
historical record, and in Sect. 7, I argue for the revival of Bernoulli and Lam-
bert’s conceptions of non-additivity and combination in a modern theory of
epistemic probability.

2 Aleatory vs. Epistemic Probability

The word probability is used today in a great variety of ways, and modern
scholars have distinguished many different “kinds” of probability. But the
broad distinction I have already mentioned, the distinction between aleatory
and epistemic probability, is the most common distinction and, I believe, the
most fundamental.

Aleatory probabilities find their role in the paradigm of chance; they are
the numbers assigned to the various possible outcomes of a chance event.
The aleatory probability (or chance) of each outcome is thought to measure
its propensity to occur, and this is a feature of the objective world, for it is
approximated by the frequency with which the outcome does occur when a
large number of “trials” of the event are observed. An epistemic probability,
on the other hand, describes our knowledge. It is a number that represents,
albeit with a usually ludicrous affectation of precision, the degree to which we
are certain of something, or alternatively, the degree to which we believe it or
the degree to which our evidence supports it.

There are, of course, nuances in the way we understand aleatory probabil-
ity. In its purest form, the idea of aleatory probability is openly opposed to
determinism; it presents us with an image of “random phenomena,” phenom-
ena that are truly governed by chance laws and by no deeper laws, so that the
chances given by these laws are fundamental facts about nature. This is the
image that informs the branch of pure mathematics now called the mathemat-
ical theory of probability, and it is also the image to which the Copenhagen
interpretation of quantum mechanics appeals. Yet it is common, especially
among statisticians and others attuned to the skeptical epistemology of our
age, to treat this image as a more tool, a tool by which we “model reality.”

But these nuances must not be allowed to obscure the fundamental fact
that aleatory probabilities are not, in the first instance at least, features of
our knowledge in the way that epistemic probabilities are. When we posit that
a certain phenomenon is random—i.e., governed by a chance law, we hardly
ever, in this cautious age, posit that we know the chances. There are occasions,

facsimiles of Johann de Witt’s treatise on annuities and Nicolaus Bernoulli’s
dissertation, as well as several scholarly studies cited in this paper.
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in sciences such as physics and genetics, where a theory tells us the chances,
but even here we are cautious: we must test the theory by observing frequen-
cies and thus empirically verifying the chances. And commonly, as when we
practice statistical inference, we stress our initial ignorance of the chances. We
link the different possible values of these chances with different possibilities
as to other facts, and our intent is to gather unprejudiced empirical evidence
about the former and to count it as evidence about the latter.

Sometimes we do come to know the aleatory probabilities for the various
outcomes of a chance event, at least to a tolerable degree of precision. These
aleatory probabilities are then part of our knowledge—part of our evidence,
if your will, as to which outcome will result from a given trial, past or future.
If these aleatory probabilities are our only evidence, then they would seem
to warrant identical numbers as epistemic probabilities. Quod facile est in
re, id probabile est in mente, as Leibniz put it: “That which is easy in fact is
probable in the mind.”3 But it cannot be too strongly stressed that we usually
do have other evidence. If the trial is in the past, we may have evidence from
memory, from testimony, or from knowledge of its consequences. And even if
it is in the future, we may in fact have evidence relating to it as a special case,
contrary to the “useful model” which would make it a mere trial of a chance
event. To know an aleatory probability is to know a great deal, and it is rare
that we know so much and nothing more.

Our modern distinction between aleatory and epistemic probability cannot
be traced to the distinction between chance and probability that preceded
Bernoulli. For this older distinction disappeared in the 18th century, in a
process of synthesis that culminated in the work of Bayes and Laplace. But
the modern distinction can be said to be over a century old; it has historical
roots in the dissolution of the Laplacean synthesis, which began in the mid-
19th century.

Poisson, in his Recherches sur la probabilité des jugements . . . (1837 [64],
pp. 30–31), formulated a distinction close to the modern one, and proposed
to mark it with the words chance and probability. The chance of an event, he
suggested, is a property of the event in itself, independent of our knowledge;
probability, in contrast, is relative to our knowledge. The distinction must have
been widely understood, but the terminology never gained wide acceptance.
Today, at least, this terminology is likely to strike the scientist as impudent, for
it would revoke the license of several centuries’ standing by which the theory
of chance bears the grander title probability. But I believe the terminology
is thoroughly justified by history and etymology, by the most basic facts of
the European languages, and by the clarity it would bring into discussions of
our subject. I am prone to adopt it whenever I believe I can do so without
confusing the reader.

Cournot, in his Exposition de la théorie des chances et des probabilités
(1843 [14], p. v), proposed to mark the distinction with the terms objective

3 Quoted by Hacking, 1975 [36], p. 128.
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probability and subjective probability. This is a natural terminology. It has
been quite popular during the past several decades, and is still more current
than the relatively recent aleatory vs. epistemic terminology. But I fear it
has lost its power to mark the broad distinction at which it aims. The term
objective probability now suggests a strong commitment to the objective reality
of chance, and is therefore wont to inspire debates somewhat to one side of
the distinction sought. And the term subjective probability, having become
identified with a view that emphasizes the personal and arbitrary aspects of
belief, has lost the broader connotations of epistemic probability.

Ernest Nagel, in his Principles of the Theory of Probability (1939),
described the various kinds of probability as different ways of interpreting
the “probability calculus”—i.e., the mathematical theory of probability. This
has become a quite common view of the matter. The name probability, in this
view, belongs most properly to the branch of pure mathematics that now bears
that name and to the set functions it studies—functions P that are defined
on an algebra of subsets of a set Θ and satisfy three axioms: (1) P (φ) = 0;
(2) P (Θ) = 1; and (3) P (A∪B) = P (A) + P (B) whenever A∩B = φ. Every
kind of numerical probability, it is held, obeys these rules and is hence an
interpretation of this mathematical theory.

I reject this view. I believe that epistemic probabilities need not obey
the rule of additivity, axiom (3) above. And thus, in my view, aleatory and
epistemic probability are distinguished by their mathematics as well as by
their meaning.

The additivity of aleatory probability is compelled by the fact that these
probabilities are mirrored by frequencies. If Θ is the set of all possible out-
comes of a chance event and A and B are disjoint subsets of Θ, then the
frequency with which the event’s outcome falls in A∪B is necessarily the sum
of the frequency with which it falls in A and the frequency with which it falls
in B. And since these frequencies, when based on a sufficiently large number
of trials, approximate P (A ∪ B), P (A), and P (B), respectively, the relation
P (A ∪B) = P (A) + P (B) follows.

The view that epistemic probabilities should also be additive is very ven-
erable and is thoroughly engrained in current thought. Among the unreflec-
tive, the view has undoubtedly derived strength from a failure to distinguish
between aleatory and epistemic probability, and from a misunderstanding
of the significance of the pure mathematics of additive probability. More
thoughtful scholars have advanced a variety of explicit arguments for requir-
ing epistemic probabilities to be additive. And perhaps most importantly, the
Bayesian theory of statistical inference has exerted a powerful influence in
favor of such additivity.

A basic task of statistical inference, at least as I understand it, is to com-
pute, from the evidence provided by a limited number of trials of a chance
event, epistemic probabilities for assertions as to values of the event’s aleatory
probabilities. The Bayesian theory provides a method for computing such epis-
temic probabilities, a method based in an essential way on the assumption they
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are additive. Since at least the mid-19th century, this method has been the
principal argument for the usefulness of numerical epistemic probability. And
as such, it has been an argument for the additivity of epistemic probability.

(The Bayesian theory is named after Thomas Bayes, the English clergyman
who first formulated it; the enigmatic essay in which he did so was published
in 1764 [3], shortly after his death. Laplace appears to have rediscovered the
Bayesian method; in any case, his perspicuous explanation of it, first published
in 1774 [52], was historically responsible for its wide acceptance (Stigler 1975
[76]). It should be noted that Bayes was entirely oblivious to any distinction
between aleatory and epistemic probability, and that Laplace avoided making
any such distinction explicit. It should also be noted that the early thinking
about probability and chance studied in this essay antedates the Bayesian
theory.)

The theory of epistemic probability presented in my monograph A Mathe-
matical Theory of Evidence (1976 [70]) is related in many ways to the Bayesian
tradition; it is inspired, in large part, by criticisms of that tradition in general
and its approach to statistical inference in particular. But in this new theory,
the axiom of additivity is replaced by a more general inequality. This permits
greater freedom of expression, especially when the evidence is scant. And, as
we see in this essay, it permits the revival of important aspects of Bernoulli’s
and Lambert’s ideas.

3 Probability and Chance before Bernoulli

In order to understand the meaning and significance of Bernoulli’s work, we
must understand the concepts of chance and probability that preceded him
and trace the development of these concepts during the 17th century. To this
end, this section reviews the early concept of probability, the early (pre-1660)
theory of games of chance, and the application of this theory to mortality
statistics in the years from 1660 to 1700. We also review Arnauld’s linking of
probability and chance and Leibniz’s views on probability. I rely heavily on
the work of Hacking [36].

3.1 Probability and Chance before 1660

J. van Brakel (1976 [11], p. 124) has suggested that the ancients had, roughly
speaking, three epistemological categories: “(i) that of which certain knowl-
edge is possible, (ii) that of which probable knowledge is possible, and (iii)
that of which no knowledge is possible.” The first two categories correspond to
Plato’s distinction between knowledge (episteme, translated into Latin by sci-
entia) and opinion (doxa, translated into Latin by opinio). The third category
was, by definition, the realm of randomness. These categories seem to have
endured through the middle ages: probability was an attribute of opinion, and
randomness was understood in such a way as to exclude, so it would seem,
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the recognition of statistical regularities or the development of a mathematics
of chance.

These categories were transformed during the Renaissance, though we do
not thoroughly understand why and how. Hacking (1975 [36]) traces the trans-
formation to the notion of sign, as it had been understood in the low sciences
of the middle ages. In the medieval understanding, opinion was based on tes-
timony: a probable opinion was one approved by some authority or by the
testimony of respected judges.4 Our modern, broader concept of evidence was
lacking. But the low sciences extended the notion of testimony by including
signs—the testimony of nature. By the end of the Renaissance, sign was trans-
formed into a new concept of evidence; Arnauld in his l’Art de penser (1662
[2]) could then distinguish two kinds of evidence: external evidence, or the
evidence of testimony, and internal evidence, or the evidence of things.

It is clear that the emergence of the concept of internal evidence changed
the meaning of the word probability (Latin probabilitas, French probabilit é).
Hacking goes further; he suggests that the origin of the new concept of internal
evidence in the older concept of sign was reflected in a tendency of philosophers
to relate issues of evidence and probability to wagers in games of chance.
For signs are only sometimes accurate, and one must take into account the
proportion of the time they are accurate. Hacking cites Thomas Hobbes, who
wrote around 1640 as follows:

. . . though a man have always seen the day and night to follow one
another hitherto, yet can he not hence conclude that they shall do
so, or that they have done so eternally: experience concludeth nothing
universally. If the signs hit twenty times for one missing, a man may
lay a wager of twenty to one of the event; but may not conclude it for
a truth.

Perhaps, Hacking hints, the new concept of internal evidence was even respon-
sible in part for enabling the 16th and 17th centuries to develop a theory of
games of chance.5

Be this as it may, the originators of the theory of games of chance were not
concerned with general issues of evidence and probability, and they did not
use the concept of probability when they dealt with games of chance. Cardano
and Galileo sought simply to compute the relative ease with which different
outcomes can happen in a game of chance. And Pascal, Fermat and Huygens
took as their starting point a problem of equity, the “problem of points.”

The problem of points was the problem of dividing the stakes when a
game of chance is left unfinished—e.g., if a point is awarded for each play and
4 For a discussion of Thomas Aquinas’ views on what makes an opinion probable

(Latin probabilis), see Byrne (1968 [12]).
5 The author reviewed Hacking’s book in 1976 [71]. Hacking’s views on the evolution

of the notion of evidence before Pascal were subsequently challenged by several
authors. See The Science of Conjecture: Evidence and Probability before Pascal,
by James Franklin, Johns Hopkins University Press, 2001, especially p. 373 ff.
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a player must win three points to win the game, then how are the stakes to
be divided if play is halted when one player has one point and the other has
two? Fermat’s approach to this question was to count the hasards favorable
to the one player and to the other, for the stakes were to be divided in the
same ratio [30]. Pascal and Huygens preferred when possible to use a more
conceptual approach, one based on computations of value. Pascal sought to
find the value to a player of each point won, and Huygens reasoned in terms of
the value of a player’s chance (Dutch kans, French chance), meaning, broadly,
his prospects. In NeoLatin this value was called the player’s expectatio or spei ;
thus our present usage: expectation in English and espérance in French.

The aleatory features of this early theory cannot be denied. It was, after
all, about chance. Its vocabulary included Latin words (aleae, sors, etc.) used
since antiquity to evoke randomness. The correspondence between Pascal and
Fermat tends to be narrowly addressed to the problem of points, but in the
more general discussions of Cardano, Galileo and Huygens, we find modes
of expression that must be given an aleatory rather than an epistemic inter-
pretation.6 Galileo, for example, remarks that some numbers in a dice-game
are made more easily and more frequently (piu facilmente e piu frequente-
mente) than others. And ease of occurrence seems to be a basic concept for
Huygens as well. These early writers did not, of course, indulge in hints of
indeterminism of the sort typical of contemporary explications of the idea of
chance. (See Sect. 2 above.) They knew of the indeterminism that some of the
ancients had associated with the random, but Christianity supplied them with
a determined determinism, and we can only speculate as to whether they felt
any tension between this determinism and the notion of ease of occurrence.

Yet the theory also had epistemic features, stemming, as I have already
mentioned, from its a priori nature. Even though Cardano and Galileo seem to
have thought of chance as a feature of the world, they betrayed no discomfort
with the thought that chances can be known a priori. Notice, moreover, that
the problem of equity addressed by Pascal, Fermat and Huygens is an a priori
problem. It is implicit in the problem that the game ought to be fair, and that
the stakes ought to be divided on the assumption that it is fair. Hence it is
natural to use a vocabulary that takes knowledge of its fairness for granted.

3.2 The Port-Royal Logic

The connection between probability and chance seems to have first been made
in print in 1662, the year of Pascal’s death, by his friend Antoine Arnauld, who
was the leader of the Port-Royal Jansenists and in whose defense Pascal had
written his Provinciales. Arnauld’s discussion of probability occurs in the final
chapter of la Logique, ou l’ art de penser, which was first published in that year
and later became known simply as the Port-Royal Logic. (Arnauld wrote the
Logic in collaboration with Pierre Nicole, but he is generally considered the
senior author of the book and the most probable author of the final chapter.)
6 See Hacking [36], pp. 49–56.
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From a modern perspective, Arnauld’s discussion seems rather banal.
But because of its historical significance, and especially its significance for
Bernoulli, I will quote it at length:

. . . [Many people] consider only the magnitude and the importance
of the benefit they hope for or the detriment they fear, without con-
sidering at all the verisimilitude and the probability that that benefit
or that detriment will or will not materialize.

. . . in order to judge what one should do to obtain a good or avoid
an evil, it is necessary to consider not only the good or the evil itself,
but also the probability that it will or will not materialize, and to
consider geometrically the proportion that these things have together.
This can be clarified by this example:

There are games in which ten persons each put up a crown, one of
them wins everything, and all the others lose. Here each person risks
only the loss of one crown, and stands to gain nine. If one considered
only the gain and loss in themselves, it would seem that each person
is at an advantage. But it must further be recognized that while each
person can win nine crowns and is risking only the loss of one, it is
also nine times more probable in the case of each that he will lose his
crown and not win the nine. Hence each person has nine crowns to
hope for, one crown to lose, nine degrees of probability of losing one
crown, and a single one of winning the nine crowns: which leaves the
matter in a perfect equality.

All games of this kind are equitable, to the extent that games can
be equitable, and those that do not meet this condition are obviously
unfair. And thereby one can show that there is an obvious unfairness
in those sorts of games that are called lotteries, for since the operator
of the lottery usually takes a tenth of everything as his share, the whole
body of players is cheated in the same way as a man who bets ten
pistoles against nine in an equal game—i.e., in a game where there is as
much verisimilitude of gain as of loss. This being disadvantageous for
the whole body of players, it is also disadvantageous for each player,
because it follows that the probability of loss exceeds the probability
of gain more than the profit one hopes for exceeds the injury to which
one exposes oneself, which is to lose what one has put up.

There is sometimes so little verisimilitude in the success of some-
thing that no matter how profitable it is and no matter how little one
must risk in order to obtain it, it is best not to risk it. Accordingly,
it would be foolish to risk twenty sous against ten million pounds, or
against a kingdom, on the condition that one could not win it unless
a child should suddenly compose the first twenty verses of Virgil’s
Aeneid in the course of arranging at random the letters of a printing
press. Indeed, there is not a moment in one’s life but that, without
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thinking, one risks it more than a prince would be risking his kingdom
in betting on this condition.

These reflections seem trifling, and indeed they are, if one leaves
the matter at that. But we can use them in more important matters,
and the main use we should make of them is to make us more rea-
sonable in our hopes and fears. There are, for example, many people
who are excessively frightened when they hear thunder. If the thun-
der makes them think of God and of death, so much to the good—one
cannot think too much on these things. But if it is merely the dan-
ger of dying from the thunder that causes their extraordinary dread,
then it is easy to make them see that it is not reasonable. For from
among two million people, one such death would be a lot; and one can
even say that there is hardly any violent death that is less common.
Hence since the fear of an evil ought to be proportional not only to
the magnitude of the evil but also to the probability of the event, and
since there is hardly any kind of death less common than death from
thunder, there are also hardly any that should cause us less fear -
especially since this fear does nothing to help us avoid death.7

Here, suddenly, probability has been connected with chance and has
become numerical: “nine times more probable,” “the probability of loss
exceeds the probability of gain,” “the fear of an evil ought to be propor-
tional not only to the magnitude of the evil but also to the probability of
the event.” Most fundamentally, the word probability has been used to draw
an analogy between games of chance and everyday life. Notice, though, that
Arnauld stops just short of our conception of numerical probability: he does
not anticipate Bernoulli by singling out the ratio of the number of favorable
cases to the total number of cases and assigning the name probability to this
ratio.

Looking backwards, it seems remarkable that Pascal himself did not appro-
priate the word probability in his discussion of chance. (One recent student of
the mathematical theory of probability, Alfred Renyi [67], found it so incredi-
ble that he composed a letter for Pascal to send to Fermat, rectifying the omis-
sion.) After all, Pascal likened one’s decision whether to accept the Catholic
religion to a wager in a game of chance. And whether the Catholic religion
is true might be considered an opinion whose probability can be discussed.
But there is no evidence that Pascal ever used probability in connection with
chance. Perhaps he avoided the word because of his opposition to probabilism,
a doctrine of the Jesuits which gave Christians exceptional latitude in choos-
ing among probable opinions in difficult matters of conscience. Or perhaps,
in spite of his famous wager, he was simply too old-fashioned to speak of the
“probability of an event.”

7 This passage is from the last chapter of the book: Chapter XV of Part IV in the
first edition, Chap. XVI in later editions.
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It is difficult to assess the originality of Arnauld’s writing, and hence its
influence. Was his use of the word probability as novel as it appears to be from
the written record? Or had the vernacular already appropriated the word to
describe games of chance? Did his linking of probability with randomness
seem familiar to his readers, or bizarre?

This much can be said: Though the Port-Royal Logic was the most widely
read and successful logic text of its time, it did not convince all its readers
that games of chance provide a fundamental model for epistemic probability.
It remained quite possible after 1662 to formulate the notion of probability
in a purely epistemic and non-numerical way. The English philosopher John
Locke may be advanced as a case in point; when he undertook to write his own
treatise on human reasoning in 1671, he produced this account of probability:

Probability then is a likeliness to be true. The very notation of the
word signifying as much, and from its derivation may be thus defined:
“Probabile est quod probari potest,” i.e., a proposition for which there
be arguments or proofs to make it pass or be received for true.8

Probability admits of degrees; Locke preceded the statement just quoted with
the remark that there are “degrees of probability from the very neighborhood
of certainty and evidence quite down to improbability and unlikeliness even to
the confines of impossibility.” And Locke further makes it clear that the degree
of probability depends on the strength and number of the arguments pro and
con. But this goes no farther than Thomas Granger’s maxim of 1620 “Many
probabilities concurring prevail much.”9 There is no hint that probability can
be numerical, and no connection with chance. This same purely epistemic
treatment persisted in the final version of Locke’s Essay Concerning Human
Understanding, published in 1690 [59].

3.3 The Demographers

The tendency of the late 17th century to associate epistemic ideas with chance
seems to have been furthered, or at least reflected, by the activities of the
practical statisticians of the age—the demographers. Stimulated by the new
theory of games of chance, as well as by political curiosity and by the fashion of
selling annuities, Graunt, Petty, and Halley in England and de Witt, Hudde,
and the brothers Huygens in Holland began during this period to compile life
tables and calculate life expectancies. Hacking has surveyed the work of these
scholars, from the publication of Graunt’s pioneering Natural and Political
Observations in 1662 to the publication of Halley’s articles on degrees of
mortality in 1693.10

8 See p. 56 of Aaron and Gibb’s edition of Locke’s draft [60].
9 Divine Logike, p. 80 [35].

10 For another survey, see Kohli and van der Waerden [45]. This essay is especially
valuable for its overview of early practices regarding annuities and for its precis
of de Witt’s tract of 1671 on annuities.
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One is struck by the frank dependence of this work on the vocabulary and
methods of the theory of games of chance. Graunt was mainly concerned with
numerical facts, yet he writes of “hazards” and betting. The later authors are
more explicitly concerned with the theory of chance. de Witt and Hudde con-
sulted with Huygens himself, who had already corresponded with his brother
Lodewijk about statistics of mortality.

Yet these authors are soon using a more epistemic vocabulary than had
been seen in the early theory of games of chance. In 1669, Huygens described
what we would now call a man’s median life expectancy with the French
phrase age auquel il y a égale apparence qu’il parviendra ou ne parviendra
pas (literally, “age such that there is equal appearance of his reaching or not
reaching it”).11 The undeniably epistemic apparence echoes Arnauld and was
shortly echoed in demographic contexts by de Witt’s Dutch apparenz (1671)
and Petty’s English likelihood (1674). Such epistemic terms are, or course,
entirely in order. One does not examine mortality statistics because of an
interest in randomness. Rather, one is interested in what verisimilitude is given
to various possible future happenings by our knowledge of men’s mortality in
general. Still, none of these authors followed Arnauld in using the weightier
epistemic term probability.

It might be thought that the need to gather statistics about mortality
should have weakened the a priori nature of the exercise and thus its epis-
temic flavor, but this seems not to be the case. As Hacking shows, there was
considerable confusion about the roles of statistics and a priori knowledge in
the construction of mortality curves. And the statistics were soon at hand in
any case. It was only long after Bernoulli’s statement of his law of large num-
bers that problems began to arise from the habit of giving epistemic status
to still unknown facts.

3.4 Leibniz

A survey of the thinking about probability that preceded and influenced Jacob
Bernoulli can hardly omit reference to Gottfried Wilhelm Leibniz (1646–1716),
the great German philosopher and mathematician whose version of the calcu-
lus inspired the mathematics of both Jacob and Johann Bernoulli, and who
displayed an unbounded optimism concerning the possibilities for mathema-
tizing thought. Unfortunately, it is difficult to summarize Leibniz’s opinions
or to assess his influence; his was an undisciplined and prolific genius, and
most of his work remained unpublished long after his death.12

Leibniz first discussed probability in De conditionibus, the dissertation he
submitted for his bachelor’s degree in law at Leipzig in 1665. De conditionibus
11 See p. 537 of Vol. VI of Huygens’ complete works [43]. In the passage from Arnauld

above, the French apparence was translated by versisimilitude.
12 For a guide to Leibniz’ scattered thoughts on probability, see Couturat, 1901 [15],

pp. 239–282, and Hacking [36], 1975, pp. 85–91, 122–142. Both authors, in my
judgment, occasionally credit Leibniz with too much.
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deals with the idea of conditional rights (Latin jus conditionale). Towards
the end of this dissertation, Leibniz suggests that rights be represented as
numbers; an absolute right (jus purum) is unity, a non-existent right (jus
nullum) is zero, and a conditional right is a fraction. Whether a right is
non-existent, conditional, or absolute depends, he explains, on whether the
condition on which it is based is impossible, contingent, or necessary. And the
magnitude of a conditional right depends on the probability of the existence
of the condition: Quanto major probabilitas est existentiae Conditionis, tanto
majoris jus Conditionale, “The greater the probability of the existence of the
condition, the greater the conditional right.”13

De conditionibus was published in Leipzig in 1665, revised in 1667, and
republished as part of Specimina juris in 1669. But it was not, apparently,
influential or even widely available in later years.14 While granting its relative
lack of influence, Hacking (pp. 85–91) emphasizes its intellectual significance:
Leibniz appears to have been moving towards a numerical conception of prob-
ability neither inspired by nor connected with the theory of games of chance.15

Leibniz became familiar with the contemporary work on games of chance
and annuities during his stay in Paris from 1672 to 1676 [40]. It was during
these years that he became a serious mathematician and did his most impor-
tant mathematical work, and Huygens and Arnauld were among the mathe-
maticians with whom he rubbed shoulders. Within a few years of his return
to Germany he had written two essays on chance: De incerti aestimatione, an
unpolished memorandum dated 1678,16 and Essai de quelques raisonnements
sur la vie humaine et sur le nombre des hommes, written around 1682.17

Mathematically, De incerti aestimatione is a confused and on the whole unsuc-
cessful attempt to master Huygens’ method; philosophically, it can be read
as an attempt to justify that method by principles of jurisprudence.18 The
Essai de quelques raisonnements is Leibniz’ contribution to the problem of
annuities. Neither essay achieves anything new mathematically, but they are
13 The idea of basing property settlements on epistemic probabilities is not so foreign

to modern practice. Out-of-court settlements between large American corpora-
tions and the Internal Revenue Service are often explicitly based on the lawyers’
judgment of the probability of the I.R.S. winning in court. Notice, incidentally,
that additive probabilities are most natural in this context.

14 See Ravier, 1937 [66], pp. 3–4, and Couturat, 1901 [15], p. 240.
15 The case is not quite proven. It is plausible that Leibniz had not heard of the new

theory of games of chance during his student years at Leipzig and Altdorf, nearly
certain that he did not understand the new theory’s mathematics. But would he
have not yet seen l’Art de penser in 1667? He certainly had seen it by 1671, when
he praised it in a letter to Arnauld. (See Lewis, 1952 [58], p. 4.)

16 First published by Biermann and Faak, 1957 [9]. A translation into French, with
commentary, appears in l’estime des apparences, by G.W. Leibniz, edited by Marc
Parmentier, Vrin, Paris, 1995.

17 See Couturat 1902 [15], p. 274.
18 Hacking’s report (p. 145) that this memorandum mentions the notion of degree of

certainty is in error. And I cannot agree with Hacking’s discernment (pp. 125–128)
of distinct aleatory and epistemic approaches within the memorandum.
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notable for their recognition of the role of the concept of probability in the
theory of games of chance. Because of his understanding of the role of proba-
bility in jurisprudence, Leibniz took it for granted that Huygens’ problem of
equity was a problem about probabilities. And he readily used probablement
in discussions of mortality statistics, where Huygens had contented himself
with apparence.

To what extent did Leibniz’s ideas on probability influence Jacob
Bernoulli? We have to be impressed by Leibniz’s strong, almost instinctive
conviction that probability could be made numerical and by his unhesitat-
ing classification of the contemporary work on chance and annuities under
the general heading of probability. His many correspondents of the 1680s and
1690s must have also been impressed, and hence it is plausible that his ideas
indirectly influenced Bernoulli. But the direct influence seems to have been
scant. The correspondence between the two indicates that Leibniz learned
Bernoulli was working on probability in 1703; by this time Bernoulli had
been pondering the subject for many years and was about to begin writing
Part IV of Ars Conjectandi.19 In April of that year Leibniz inquired about
Bernoulli’s work, and in letters written in 1703 and 1704, Bernoulli explained
and defended his law of large numbers. On the whole, the new ideas in this
correspondence seem to be coming from Bernoulli. And as late as February,
1705, 6 months before his death, Bernoulli remarks that he has only two of
Leibniz’s works: De Arte Combinatoria and Hypothesis Physica nova. Appar-
ently he never saw De conditionibus, De incerti aestimatione, or the Essai de
quelques raisonnements.

There is one important point on which Leibniz anticipated Bernoulli
and may have influenced him: the ambiguous use of the phrase aeque pos-
sibiles, “equally possible.” This phrase occurs in De incerti aestimatione;
there Leibniz requires that eventus sint aeque faciles seu aeque possibiles,
“the events be equally easy or equally possible.” The use of aeque faciles in
this context is familiar, but the use of aeque possibiles seems to be new with
Leibniz. It is an intriguingly ambiguous phrase, for a thing can be possible
either relative to our knowledge or relative to nature. And this ambiguity can
be related to basic issues in Leibniz’s philosophy: that which is most possible
in the sense of internal consistency has the greatest power to come into exis-
tence.20 Bernoulli apparently never saw De incerti aestimatione and certainly
did not have a full view of Leibniz’s philosophy, but at one point in their
correspondence,21 Leibniz casually mentions equipossibility; he reports that
de Witt has used equally possible cases. Bernoulli may have been consciously
following Leibniz when he himself wrote about “equally possible cases.”
19 Their correspondence is in Gerhardt’s collection of Leibniz’ mathematical works,

[57], Vol. III, pp. 3–110. The passages commented on here are on pp. 71, 77–78,
83–84, 87–89, and 95. For a commentary on the correspondence, see Kohli 1975
[48].

20 See Hacking [36], p. 138.
21 See [57], Vol. III, p. 84.
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4 Jacob Bernoulli’s Treatment of Probability

In the late 17th century the Bernoullis were prominent merchants in the city
of Basel, where they had settled after having been driven from Antwerp by
Catholic persecution a century earlier. Jacob, born in 1654, was the first of the
family to become a mathematician, and he did so only after the conclusion of
his studies in philosophy at the University of Basel. He established extensive
contacts with European mathematicians during his travels from 1676 to 1682;
on his return to Basel he devoted himself to physics and mathematics, finally
accepting a chair in mathematics at the University of Basel in 1687. He became
well known during his lifetime for his work on the infinitesimal calculus; he
and his younger brother Johann were the first to master Leibniz abbreviated
presentation of the differential calculus, and they eventually became his cham-
pions in the dispute with Newton. Jacob died while still holding his chair at
Basel, on August 16, 1705.

Bernoulli’s great treatise on probability, Ars Conjectandi, was not pub-
lished until 1713, 8 years after his death. But we now know, from B.L. van
der Waerden’s study of Bernoulli’s Meditationes (his mathematical diary) that
he had already worked out the treatise’s most basic results, including the law
of large numbers and its proof, in three periods of study between 1684 and
1689.22 It appears that he began, in 1684 or 1685, with a study of the five
problems that Huygens had posed at the end of De ratiociniis in aleae ludo. In
a second period, during the fall or winter of 1685/86, he went beyond the realm
of games of chance to think about probabilities in connection with aspects of
daily life such as marriage contracts, weather, and testimony. Finally, some-
time during the period from 1687 to 1689, after a period of attention to other
matters (including Leibniz infinitesimal calculus), he returned to probability
and stated and proved his law of large numbers.

It is the second period, in the fall or winter of 1685/86, that is of greatest
interest to us. For it was here that Bernoulli made the transition from chance
to probability, and in the course of trying to compute probabilities in practi-
cal questions, found the motivation for his law of large numbers. The crucial
passage in his Meditationes is his study of a problem concerning a marriage
contract.23 Titius is marrying Caja, and an agreement is to be made concern-
ing the division of the estate between him and the children in case she (Caja)
dies before him. But the size of the estate will vary according to whether one
or both of their fathers are still living. Titius proposes two possible agree-
ments: one specifies that 2/3 of the estate will fall to him in any case; the
other varies the proportion according to which fathers are still living. Which
agreement is most advantageous to Titius? The answer depends, obviously, on
the chances Caja has of outliving one or both of the fathers. Bernoulli makes
22 Van der Waerden’s discussion of the dates for the Meditationes is in [7], Vol. 3,

pp. 385–389.
23 This passage is in [7], Vol. 3, pp. 42–48; van der Waerden’s commentary is on pp.

364–369.
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various assumptions from which these chances can be calculated, and proceeds
to calculate them. In the course of these calculations, we suddenly find him
writing about parts of certainty and probabilities; from one calculation, for
example, he obtains “1/5 of certainty,” or “one probability where five make
the whole certainty.” This kind of language reappears in Ars Conjectandi, but
it is in contrast with the language of Huygens, which Bernoulli had tended to
use in earlier passages in his Meditationes.

The practicality of Titius’ problem not only led Bernoulli to the vocabulary
of probability; it also led him to realize that we cannot choose a priori among
various assumptions about different individuals’ chances of death. Instead,
we must observe actual patterns of mortality for similar individuals. And,
Bernoulli adds, such a need for observations often arises in civil and ethical
matters: “The safest way to estimate probabilities in these matters is not a
priori or from first principles but a posteriori or from the outcomes observed in
many similar examples.” One must agree with van der Waerden’s conclusion
that this passage marks the inspiration for the law of large numbers. We see,
moreover, that the example of mortality statistics was at the heart of this
inspiration. Indeed, Bernoulli published a note on Titius’ problem in 1686,
in which he remarked, with apparent reference to Graunt’s work, that the
probabilities could be estimated from data like that collected in London and
Paris.24

When Bernoulli sat down to write Ars Conjectandi, he once again began
with Huygens’ theory and Huygens’ vocabulary. The first three parts of the
treatise deal with the theory of games of chance and with combinatorics; the
word probabilitas does not appear. But in Part IV he presents his numerical
conception of probability and undertakes to show how the methods of the
theory of games of chance can be used to calculate probabilities in practical
life—in civilibus, moralibus, et oeconomicis.

In the following pages I quote Part IV of the Ars Conjectandi extensively
and examine its approach to probability in detail. As I show in Sects. 4.1
and 4.2 below, the approach is based, in the first instance, on the notion
of argument. In Sects. 4.3 and 4.4, I examine Bernoulli’s rules for calculat-
ing probabilities and for combining the probabilities obtained from different
arguments; it turns out that the probabilities obtained from these rules are,
in general, non-additive. His rules of combination are cast in terms of the enu-
meration of cases from which he calculates the probabilities for each argument,
but I recast them simply in terms of the probabilities, and compare them in
this form with the more general and more satisfactory rule later proposed by
Lambert. (See Sect. 6.4 below.) In Sect. 4.5, I note, but do not quote in full,
Bernoulli’s discussion of the problem of judging when his rules of combination
are appropriate.

24 For the note, see p. 283 of Vol. 1 of [7]. For van der Waerden’s comments, see pp.
367–368 of Vol. 3.
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The idea of calculating probabilities from arguments is, on the face of
it, completely epistemic and completely divorced from chance or aleatory
probability. But Bernoulli proposes to make such calculations using Huygens’
method: he analyzes an argument by distinguishing cases that “are equally
possible, or can happen with equal ease,” and then calculates the probabili-
ties afforded by the argument using the same formula that Huygens used to
calculate expectations. And he introduces his law of large numbers as a tool
for determining the ease with which different cases happen.

The law of large numbers is, quite justly, the most celebrated of Bernoulli’s
contributions in Ars Conjectandi and probably his most important contribu-
tion to mathematics. But it did not turn out to be primarily a contribution
to the theory of epistemic probability. Instead, it quickly became, in the eigh-
teenth century, the linchpin of an essentially aleatory theory; and since the
mid-nineteenth century it has been transmuted into the “frequency interpre-
tation of probability,” whereby that aleatory theory is sharply divorced from
epistemic conceptions. I do not examine the law of large numbers in this paper,
for my purpose is rather to study Bernoulli’s epistemic ideas, which have been
all but forgotten in the shadow of that theorem’s fame. In Sects. 4.5 and 4.6
below I do, however, consider the implications of Bernoulli’s presentation of
the theorem for his successors’ conception of probability.

Ars Conjectandi ends with the proof of Bernoulli’s law of large numbers.
We are told that Bernoulli had not finished the treatise, but we are not told
what he intended to add (Kohli 1975 [46]). It appears that he intended to clar-
ify and illustrate the application of this theorem. Indeed, his repeated requests
of Leibniz to help him find de Witt’s tract tend to confirm the suspicion that
he hoped to do so with mortality statistics (Kohli 1975 [48]).

4.1 Bernoulli’s Conception of Probability

The conception of probability that Bernoulli presents in Part IV of Ars Con-
jectandi is decidedly and forthrightly epistemic. It encompasses probabilities
in games of chance, but here, as in general, probability is a measure of our
knowledge; a game of chance is merely an example where we lack certainty of
what is or will be, and hence have only probability.

Bernoulli begins with a discussion of the notion of certainty. There are,
he tells us, two kinds of certainty, objective certainty and subjective certainty.
Every truth is completely certain “objectively and in itself.” But we ourselves
may be completely certain of something or only partly certain. This is cer-
tainty considered “subjectively and in relation to us”; it admits of degree
because it is a “measure of our knowledge.”

The certainty of things considered in relation to us is not the same
for all things, but varies manifoldly, being sometimes greater, some-
times less. Those things concerning which (by revelation, reasoning,
perception, trial, self-knowledge, or otherwise) there is such certainty
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that we can in no way doubt their being or future being—these things
enjoy absolute and utmost certainty. All other things hold an imper-
fect measure of certainty in our minds, greater or less according as
there are more or fewer probabilities arguing that the thing is, will
be, or has been.

For probability is a degree of certainty and differs from it as a part
from a whole. Indeed, if whole and absolute certainty, which we denote
by the letter a or by the unit 1, is supposed for the sake of discussion
to consist of five probabilities or parts, three of which stand for the
being or future being of some event, the rest against, then that event
is said to have 3

5a, or 3
5 of certainty. [Ars Conjectandi, p. 211]

Notice that a numerical probability is not merely a measure of intensity;
it is a part of a whole. The idea that probability is a part of certainty is one
whose time seems to have come at the end of the seventeenth century. Leibniz
announced it in 1687, in a letter to V. Placcius ([56], Vol. VI, I, p. 36):

In imitation of the mathematicians, I shall think of certainty or truth
as a whole and of probabilities as parts, so that probabilities relate to
truth as acute angles relate to a right angle.

And, as we shall see in Sect. 5.2 below, an anonymous Englishman offered a
similar formulation to the English public in 1699 [1]. It would seem that for
Bernoulli’s generation it was necessary to represent probability as a part of
a whole in order to treat it as a number. If it was to be a fraction, it had to
be a fraction of something; and since probability was epistemic the something
had to be subjective certainty.

Bernoulli’s conception of probability is closely related to his conception of
contingency. Contingency, like subjective certainty, is a feature of our knowl-
edge. The outcome of a throw of a die, for example, is contingent not because
it is inherently undetermined but because it lies beyond our ken.

. . . It is most certain, given the position, speed, and distance of a
die from the gambling table at the moment when it leaves the hand
of the thrower, that the die cannot fall otherwise than as it actually
does fall. Likewise, given the present constitution of the atmosphere
and given the strength, position, motion, direction and velocity of
the winds, vapors and clouds, and the laws of operation by which all
these things act on one another, tomorrow’s weather cannot be other
than what it in fact will be. Indeed, these effects follow from their own
proximate causes with no less necessity than the phenomena of eclipses
follow from the motion of the heavenly bodies. Nevertheless, the usage
is observed that only the eclipses are reckoned as necessary, while the
falls of the die and the future weather are reckoned as contingent. The
only reason for this is that those things which are supposed to be given
in order to determine these subsequent effects, and are indeed given
in nature, are nevertheless not sufficiently known to us. And if they
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were, the study of geometry and physics is not sufficiently cultivated
to enable these effects to be calculated from them in the manner in
which eclipses can be computed and predicted from known principles
of Astronomy. Before Astronomy had been brought to this point of
perfection, eclipses themselves had to be regarded, no less than these
other two and for the same reason, as future contingencies. Hence it
follows that what can be seen as contingent by one person at one time
is necessary to another person (or even the same person) at another
time, after its causes have become known. Thus contingency especially
depends on our knowledge. . . [Ars Conjectandi, pp. 212–213]

4.2 The Classification of Arguments

Probabilities are calculated from arguments:

Probabilities are appraised from the number together with the
weight of the arguments which in any way prove or indicate that a
thing is, will be, or has been. By weight, moreover, I mean the force
of proof. [Ars Conjectandi, p. 214]

The arguments which give rise to probabilities are not, of course, demonstra-
tive or necessary. Rather, they are contingent arguments. And in order to
calculate the probabilities they warrant, we must understand the nature of
this contingency. As we shall see, some contingent arguments yield additive
probabilities, while others yield non-additive probabilities.

In this Sect. I examine Bernoulli’s classification of contingent arguments,
and in the next Sect. I examine his methods for calculating probabilities from
the various types of contingent arguments. Finally, in Sect. 4.4 below, I show
how Bernoulli combines the probabilities obtained from the various arguments
bearing on a question to obtain probabilities based on the total evidence.

Bernoulli distinguishes two ways in which an argument may be contingent.
It may be contingent whether the argument arises or “exists” (Latin existere,
to come into existence). And it may be contingent whether the argument
“proves” (Latin indicare,25 to indicate). Some arguments are contingent in
one of these ways but not the other; some are contingent in both ways:

One who examines the various arguments upon which an opin-
ion or conjecture is based should take notice of a threefold distinc-
tion among them. Indeed, certain of them exist necessarily and prove
contingently; others exist contingently and prove necessarily; finally,
others both exist and prove contingently. I explain the distinction by

25 The verb indicare is most often translated by “to indicate,” but “to prove” seems
preferable in this context. Bernoulli thinks of a contingent argument as one which
proves in some cases and does not prove in others. In the cases where it does prove
it definitely establishes the thing to be proved. It would not convey Bernoulli’s
meaning to say that it merely “indicates” in these cases.
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examples: My brother has not written me for a long time; I am not
sure whether his indolence or his business is to blame; also I fear he
might in fact have died. Here there are three arguments concerning
the interrupted writing: indolence, death, and business. The first of
these exists necessarily (by a hypothetical necessity, since I know and
assume my brother to be lazy), but proves contingently, for it might
have happened that this indolence did not keep him from writing.
The second exists contingently (for my brother may still be among
the living), but proves necessarily, since a dead man cannot write.
The third both exists contingently and proves contingently, for he
might or might not have business, and if he has any it may not be
so great as to keep him from writing. Another example: I consider a
gambler who, by the rules of a game, would win a prize if he threw a
seven with two dice, and I wish to conjecture what hope he has of so
winning. Here the argument for his winning is a throw of the seven,
which proves it necessarily (by a necessity from the agreement entered
into by the players) but exists only contingently, since other numbers
of points can occur besides seven. [Ars Conjectandi, pp. 217–218]

It is difficult for us to grasp exactly what Bernoulli means by the existence of
an argument, in part because his notion of an argument (Latin argumentum)
is so broad; he applies the name to any testimony by a witness or an authority,
as well as to any sign or circumstance “that seems to have a sort of bond with
the thing to be proven.” If, however, we think of an argument as consisting
of premises and conclusion, then we surely come close to Bernoulli’s meaning
if we say that the argument exists contingently when the premises do not
necessarily hold, and that the argument proves contingently when the premises
do not necessarily entail the conclusion.

After distinguishing the different ways in which an argument can be contin-
gent, Bernoulli distinguishes between pure arguments and mixed arguments.
This distinction is of particular interest to us, because pure arguments give
rise to non-additive probabilities.

. . . I call those arguments pure which prove a thing in certain cases
in such a way that they prove nothing positively in other cases; I call
those mixed which prove the thing in some cases in such a way that
they prove the contrary in the remaining cases. Here is an example: A
certain man has been stabbed with a sword in the midst of a rowdy
mob, and it is established by the testimony of trustworthy men who
were standing at a distance that the crime was committed by a man
in a black cloak. If it is found that Gracchus and three others in the
crowd were wearing tunics of that color, this tunic is something of
an argument that the murder was committed by Gracchus, but it is
mixed; for in one case it proves his guilt, in three cases his innocence,
according to whether the murder was perpetrated by himself or by
one of the remaining three; for it is not possible that one of these
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perpetrated it without Gracchus being thereby supposed innocent.
But if indeed in a subsequent hearing Gracchus paled, this pallor of
face is a pure argument; for it proves Gracchus’ guilt if it arises from
a guilty conscience, but it does not, on the other hand, prove his inno-
cence if it arises otherwise; for it could be that Gracchus pales from a
different cause yet is still the murderer. [Ars Conjectandi, p. 218]

In other words, the evidence of a mixed argument points to both sides of the
question it addresses, whereas the evidence of a pure argument points only to
the positive side.

4.3 The Calculation of Probabilities

According to my monograph A Mathematical Theory of Evidence, the prob-
ability p of a proposition and the probability q of its negation should obey
0 � p � 1, 0 � q � 1 and p + q � 1. The case p > 0 and q = 0 corresponds
to the presence of evidence in favor of the proposition and the absence of
evidence against it, whereas the case p > 0 and q > 0 corresponds to the
presence of evidence on both sides of the question. The case p > 0, q > 0 and
p+ q = 1 (additivity) occurs only when there is very strong evidence on both
sides of the question.

From the perspective of this modern theory, it is natural to expect
Bernoulli’s analysis of argument to lead him to non-additive probabilities.
A pure argument in favor of a proposition, for example, should give rise to
probabilities p > 0 and q = 0; there is evidence for the proposition but none
against it. And an argument which exists contingently but proves necessarily
ought also to give rise to probabilities of this form; for the possibility that
an argument for a proposition may fail does not in itself give any positive
support for the proposition’s negation. An argument which exists necessarily
and is mixed should, no doubt, yield additive probabilities; but an argument
which exists contingently and is mixed when it does exist should perhaps yield
probabilities p and q with p > 0, q > 0 and p+ q < 1.

The passage quoted in the last section is followed by a list of rules for
calculating probabilities. Though Bernoulli does not say so explicitly, these
rules do indeed sometimes yield non-additive probabilities.

It is clear from what has been said thus far that the force of proof
by which any given argument avails depends on the large number of
cases whereby it can exist or not exist, prove or not prove, or even
prove the contrary of the thing. Indeed, the degree of certainty or
probability which the argument generates can be computed from these
cases by the doctrine of the first Part [i.e., Part I of the book], just
as the fates of gamblers in games of chance are usually investigated.
In order to show this, we assume b is the number of cases where a
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given argument exists,26 c is the number where it does not exist, and
a = b + c is the number of both together. Similarly, we assume β is
the number of cases where it proves, γ is the number where it does
not prove or else proves the contrary of the thing and α = β+γ is the
number of both together. Moreover, I suppose that all the cases are
equally possible, or can happen with equal ease. Otherwise, discretion
must be applied and in the place of any case that happens more easily
than the others one must count as many cases as it happens more
easily. For example, in place of a case that happens three times more
easily than the others I count three cases which can happen equally
as easily as the others.

1. So first let the argument exist contingently and prove necessarily.
By what has just been said, there will be b cases where the argument
exists and thus proves the thing (or 1), and c cases where it does not
exist and thus proves nothing. By Corollary I of Proposition III of
Part I,27 this is worth

b · 1 + c · 0
a

=
b

a
,

so that such an argument establishes b
a of the thing, or of the certainty

of the thing. [Ars Conjectandi, pp. 218–219]

What proportion of the certainty of the contrary is established by such an
argument? Bernoulli does not pause to answer this question, but the only
sensible answer is zero; the argument cannot provide support for the contrary
merely by not existing. Hence we have probabilities p = b

a and q = 0 for the
thing, and p+ q < 1 unless p = 1.

Bernoulli continues:

2. Next let the argument exist necessarily and prove contingently.
By hypothesis, there will be β cases where it proves the thing, and γ
cases where it does not prove or proves the contrary; this now gives a
force of argument for proving the thing of

β · 1 + γ · 0
α

=
β

α

26 A literal translation yields “the number of cases in which it can happen that a
given argument exists.” But this English phrase is ambiguous. Bernoulli does not
mean merely that the argument might or might not exist in these cases. He means
that it would exist in each of these cases.

27 Proposition III of Part I is Huygens’ rule for computing an expectation: if there
are p cases where one obtains a prize a and q cases where one obtains a prize b,
and all p + q cases are equally easy, then one’s expectation is (pa + qb/(p + q).
Bernoulli’s Corollary I to this proposition is merely the special case where b = 0.
Bernoulli is applying this corollary to the case where the prize one obtains is
certainty or lack of it.
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Therefore an argument of this kind establishes β
α of the certainty of

the thing; and moreover, if it is mixed it establishes (as is clear in the
same way)

γ · 1 + β · 0
α

=
γ

α

of the certainty of the contrary. [Ars Conjectandi, p. 219]

So we have additive probabilities in the mixed case: β
α + γ

α = 1. But if the
argument is pure then it establishes none of the certainty of the contrary, and
it would seem that γ

α must be replaced by zero.

3. If some argument exists contingently and proves contingently, I
suppose first that it exists, in which case it is judged in the manner
just shown to prove β

α of the thing and moreover, if it is mixed, γ
α

of the contrary. Hence, since there are b cases where it exists and c
cases where it does not exist and hence cannot prove anything, this
argument is worth

b · βα + c · 0
a

=
bβ

aα

for proving the thing, and, if it is mixed, is worth

b · γα + c · 0
a

=
bγ

aα

for proving the contrary. [Ars Conjectandi, p. 219]

So in the case of a mixed argument which exists only contingently, we do
indeed have a positive probability p for the thing and a positive probability p
for its contrary such that p+ q < 1. For

bβ

aα
+
bγ

aα
=
b

a
,

which is less than one if the argument really exists only contingently.
It is clear that Bernoulli is calculating non-additive probabilities in the

passages we have just quoted, and that he is not in the least embarrassed to
do so. It does not even occur to him to remark on their non-additivity. The
contemporary understanding of probability is so dominated by the model of
chance that non-additive probabilities are apt to strike us as bizarre, artifi-
cial, or simply impossible. But Bernoulli was striving for an understanding
genuinely grounded in the analysis of argument, and from this perspective
the pure arguments, with their one-sided probabilities, seem exceedingly nat-
ural; it is the mixed arguments, with their chance-like probabilities, that seem
relatively artificial.

It should be added, however, that Bernoulli did not consistently recog-
nize the implications of possible non-additivity. At one point, for example, he
identifies zero probability with impossibility:
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That is possible which has even a small part of certainty, impossible
which has none or infinitely little. Thus that is possible which has 1

20
or 1

30 of certainty. [Ars Conjectandi, p. 211]

But, as the example of the pure argument shows, a small or zero degree
of certainty for a thing need not imply great or complete certainty for its
contrary.

4.4 The Combination of Arguments

The touchstone of a truly epistemic theory of probability is its emphasis on
combination. There can be only one true aleatory probability for a chance
event, and hence there is no question of combining different aleatory proba-
bilities. But there is usually more than one argument for or against a propo-
sition, and the epistemic probabilities from each argument must be combined
to obtain a probability based on the total evidence.

Bernoulli turns to the problem of combination immediately after showing
us how to calculate probabilities from a single argument. He does not give
a single general rule of combination as Lambert was to do later. Instead, he
gives several separate rules: one for combining two or more pure arguments,
one for combining two or more mixed arguments, and one for combining pure
with mixed arguments. As Lambert pointed out, the first two of these rules are
sensible, while the third is not. Lambert’s own rule, as we shall see, includes
the first two of Bernoulli’s rules as special cases and corrects the third; it also
deals with more complex possibilities that Bernoulli addressed awkwardly or
not at all.

When he turns to the problem of combination, Bernoulli suppresses con-
sideration of the two distinct ways in which an argument may be contingent,
and thus simplifies his notation. In his previous notation he had considered
aα = (b + c)(β + γ) cases, bβ in which the argument proves “the thing” and
bγ + cβ + cγ in which it proves the contrary or else nothing at all. Now he
denotes the total number of cases for the first argument he considers simply by
a, the number of these in which the argument proves by b, and the remainder
by c. And he uses a similar notation for additional arguments.

He first adduces his rule for combining pure arguments:

4. If, further, more arguments are assembled for the proof of the
same thing, and denoted

Arguments 1st 2nd 3rd 4th 5th etc.
number of cases

Total ..................................................... a d g p s etc.
Proving ................................................. b e h q t etc.
Non-proving or proving the contrary..... c f i r u etc.

then the force of proof resulting from the assemblage of all the argu-
ments is computed as follows. First let all the arguments be pure.
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Then, as we have seen, the weight of the first argument considered
alone will be b

a = a−c
a . (This stands for β

α if the argument proves
contingently, or for bβ

aα if it also exists contingently.) Now consider
another argument which in c or d − f cases proves the thing (or 1),
and in f cases proves nothing, so that the weight of the first argument
alone, which has been shown to be a−c

a , remains effective; the weight
from both arguments together will be worth

(d− f)1 + i(a−ca )
d

=
ad− cf

ad
= 1− cf

ad

of the thing. Let a third argument be added; there will be h or g − i
cases that prove the thing, and i cases in which the argument is null
and the two earlier proofs retain their power of proof by themselves,
ad−cf
ad ; whence the force of all three is judged to be

(g − i)1 + i(ad−cfad )
g

=
adg − cfi

adg
= 1− cfi

adg
.

And so on successively if there be further arguments at hand. From
this it is clear that all the arguments taken together induce a prob-
ability which falls short of absolute certainty of the thing, or unity,
by that part of unity that is obtained by dividing the product of the
non-proving cases by the product of all the cases in all the arguments.
[Ars Conjectandi, p. 220]

Dispensing with the analysis into cases, we can express this rule abstractly: if
there are n pure arguments for a proposition and the ith gives it probability
pi then the n together give it probability

1− [(1− p1)(1 − p2) · · · (1− pn)]. (1)

The student of aleatory probability will recognize this as the chance of
the occurrence of at least one of n independent events which have chances
p1, p2, . . . , pn, respectively.

Bernoulli next adduces his rule for combining mixed arguments.

5. Next let all the arguments be mixed. Since the number of proving
cases in the first argument is b, in the second e, in the third h, etc.,
and the number proving the contrary, c, f, i, etc., the probability of the
thing to the probability of the contrary is as b is to c on the strength
of the first argument alone, as e is to f on the strength of the second
alone, and as h is to i on the strength of the third alone, etc. Hence
it is evident enough that the total force of proof resulting from the
assemblage of all the arguments should be composed of the forces of
all the arguments taken singly, i.e., that the probability of the thing
to the probability of its contrary should be in the ratio of beh · · · to
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cfi · · · . Hence the absolute probability of the thing is beh
beh+cfi, and

the absolute probability of the contrary is cfi
beh+cfi . [Ars Conjectandi,

pp. 220–221]

(Notice the implicit assumption of additivity. The probability for the thing and
the probability for its contrary add to one in the case of each mixed argument
alone; it is taken for granted that they still do so when the arguments are
combined.) As with the rule for combining pure arguments, we can express
this rule abstractly: if there are n mixed arguments for a proposition and the
ith gives it probability pi and hence gives its negation probability qi = 1− pi
then the n together give the proposition probability

p1p2 · · · pn
p1p2 · · · pn + q1q2 · · · qn

(2)

and give its negation probability
q1q2 · · · qn

p1p2 · · · pn + q1q2 · · · qn
. (3)

After Laplace it became possible to contrive a Bayesian argument to justify (2)
and (3), at least in the case where the n “arguments” are the testimonies of n
different witnesses. (See Sect. 5.2 below.) But it would be a gross anachronism
to attribute any Bayesian argument to Bernoulli.

We now come to the rule which was refuted by Lambert, the rule for
combining pure with mixed arguments.

6. On the other hand, let some of the arguments be pure (say
the first three) and some mixed (say the two others). Consider first
the pure ones alone, which by Sect. 4 prove adg−cfi

adg of the certainty of
the thing, falling short of unity by cfi

adg . Hence there are adg−cfi cases,
as it were, where these three arguments together prove the thing, or
unity, and cfi cases in which they prove nothing and consequently
give the mixed arguments alone an opportunity to prove something.
But by Sect. 5 above these two arguments prove qt

qt+ru of the thing
and ru

qt+ru of the contrary. So the probability of the thing resulting
from all the arguments is

(adg − cfi)1− (cfi)( qt
qt+ru )

adg
=
adgqt+ adgru − cfiru

adgqt+ adgru

= 1− cfiru

adg(qt+ ru)
,

which falls short of complete certainty or unity by the product of cfi
adg

(the deficit from unity of the probability of the thing resulting from
the pure arguments alone according to Sect. 4) by ru

qt+ru , the absolute
probability of the contrary computed from the mixed arguments by
Sect. 5 above. [Ars Conjectandi, p. 221]
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For simplicity in re-expressing this rule, suppose we wish to combine one
pure argument with one mixed argument, that the pure argument gives our
proposition probability p1 (and its negation probability 0 of course), while the
mixed argument gives it probability p2 (and hence its negation probability
1− p2). Then Bernoulli’s rule yields a probability of

p1 + (1− p1)p2 = 1− (1 − p1)(1− p2) (4)

for the proposition. We shall examine this rule more closely shortly; it is the
rule with which Lambert found fault.

Finally, Bernoulli awkwardly addresses the case where there are pure argu-
ments on both sides of an issue.

7. Now if besides the arguments that tend to prove a thing, other
pure arguments urging the contrary arise, then both categories of argu-
ments must be weighed separately according to the preceding rules so
as to establish the ratio that holds between the probability of the
thing and the probability of the contrary. Here it should be noted
that if the arguments adduced on each side are strong enough, it may
happen that the absolute probability of each side significantly exceeds
half of certainty, i.e., that both of the contraries are rendered prob-
able, though relatively speaking one is less probable than the other.
So it is possible that one thing should have 2

3 of certainty while its
contrary will have 3

4 ; in this way both contraries will be probable, yet
the first less probable than its contrary, in the ratio 2

3 to 3
4 , or 8 to 9.

[Ars Conjectandi, p. 221]

Not only does Bernoulli allow the probability of a thing and its contrary to
add to less than one, he also allows them to add to more than one! Notice
that he refuses, in the example he presents, to “ renormalize” so as to adjust
the absolute probabilities to 8

17 and 9
17 This refusal is surely not accidental,

for while 8
17 and 9

17 might seem reasonable final values in this example, a
method which thus introduces additivity in the case of conflicting pure argu-
ments would not be satisfactory in general. Suppose, indeed, that one pure
argument proves 1

10 of the certainty of a thing and another pure argument
proves 1

100 of the certainty of the opposite. Then it would seem that the two
together, like each singly, fail to prove very much of anything; but a method
that renormalizes to force additivity would have it that they together prove
10
11 of the certainty of the thing.

It is easy to understand Lambert’s criticism (Sect. 6.4 below) of Bernoulli’s
rule for combining a pure with a mixed argument. Indeed, the rule seems to
give an unreasonable priority to the pure argument. For no matter how much
the mixed argument disfavors the proposition the rule insists on awarding
the proposition at least as much probability as the pure argument did. This
is evident from (4): the result is always greater than or equal to p1 Even
when the mixed argument claims certainty in the negation (i.e., p2 = 0), (4)
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still gives the proposition probability p1 It is possible to avoid this absur-
dity; one might argue that Bernoulli meant the rule to apply only when
the mixed argument really was an argument for the proposition—i.e., when
p2 >

1
2 . (It may be unfair, in any case, to dwell on the extreme case where

p2 = 0. In his definition of a mixed argument, Bernoulli had said that it should
prove the thing in casibus nonnullus—in some cases. And the Latin nonnullus
does literally mean non-zero.) But on the whole, Lambert’s criticism seems
pertinent. I believe that Bernoulli himself would have concurred with it had
he seen Lambert’s more elegant general rule.

Anticipating the presentation of Lambert’s ideas in Sect. 6.4 below, I state
his general rule in the language of (1)–(4): if one argument gives a proposition
probability p1and gives its negation probability q1 (p1+q1 � 1), and if another
argument gives a proposition probability p2 and its negation probability q2
(p2+q2 � 1), then the two arguments together give the proposition probability

p1 + p2 − p1p2 − p1q2 − p2q1
1− p1q2 − p2q1

(5)

and give its negation probability

q1 + q2 − q1q2 − p1q2 − p2q1
1− p1q2 − p2q1

. (6)

In the case where both arguments are pure (q1 = q2 = 0), (5) reduces to
p1 +p2−p1p2 = 1− (1−p1)(1−p2), in agreement with (1), and (6) reduces to
zero. In the case where both arguments are mixed (q1 = 1−p1 and q2 = 1−p2),
(5) reduces to

p1p2

p1p2 + q1q2

and (6) reduces to
q1q2

p1p2 + q1q2
,

in agreement with (2) and (3). When the first argument is pure and the second
is mixed (q1 = 0 and q2 = 1− p2), (5) reduces to

p2

1− p1(1 − p2)
;

unlike (4), this reduces to zero when p2 = 0. Finally, consider two pure but
opposed arguments; say p1 = 2

3 , q1 = 0, p2 = 0, and q2 = 3
4 , as in Bernoulli’s

last example. Then (5) becomes 1
3 and (6) becomes 1

2 ; the proposition is less
probable than its negation, but the probabilities still are not additive.

4.5 Two Fundamental Questions

Bernoulli’s account of epistemic probability raises two questions which are far
more fundamental and important than the technical imperfections of his rules
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of combination. First, when are the rules of combination appropriate? Surely
they are inappropriate unless the arguments being combined are somehow
totally distinct or “independent.” But what exactly does this mean? Secondly,
and more fundamentally, how do we judge the probability due a thing on the
basis of a single argument? We count the cases, Bernoulli tells us. But how
do we discern cases which happen with equal case? Bernoulli grappled with
both these questions, and his efforts to answer them should be of interest to
us today, not least because the same questions remain fundamental in any
theory of epistemic probability based on a rule of combination.

When is it appropriate to apply the rules of combination? Bernoulli
addresses this question immediately after presenting his rules:

I cannot conceal the fact that in the specific application of these
rules I foresee that many things will happen which can cause one to
err frequently and shamefully unless one proceeds cautiously in dis-
cerning arguments. For sometimes arguments can seem distinct which
in fact are one and the same argument. Or, vice versa, those which
are distinct can seem identical. Sometimes such things are assumed
in one argument as to demolish clearly a contrary argument. . . [Ars
Conjectandi, pp. 221–222]

As one illustration of the possible problems, Bernoulli considers again the
example of Gracchus. If the murderer in that example is also known to have
red hair, and Gracchus is one of three men in the mob who has red hair, then
his red hair is another mixed argument for his guilt. But if he is the only one
in the mob with both red hair and a black tunic, then he stands convicted, and
the red hair and black tunic should not be treated as two distinct arguments
to be combined by the rule in Bernoulli’s paragraph Sect. 5.

Bernoulli’s discussion of combination suffers from the fact that he can only
combine probabilities for a single proposition and its negation. Greater insight
is possible in the case of Dempster’s rule of combination, which can operate
on collections of probabilities for larger algebras of propositions. (See Sect. 8.2
of A Mathematical Theory of Evidence.) But we are unlikely to improve on
Bernoulli’s practical advice: Proceed cautiously in discerning arguments.

How do we appraise probabilities on the basis of a single argument or
a single item of evidence? This is surely the most fundamental question
facing a theory of epistemic probability. The best answer, perhaps, is that
this appraisal is ultimately and simply an act of judgment. (See Sect. 1.6 of
A Mathematical Theory of Evidence.) But Bernoulli, as we have seen, directs
our minds to an enumeration of “equally possible” cases, or cases that “hap-
pen with equal ease,” and suggests that we reckon from this enumeration just
as we reckon concerning games of chance. And thus for him the question is
how to identify these equally possible cases—or, alternatively, how to deter-
mine how much more easily a thing happens in one way than in another. As
his answer to this question, he offers the famous theorem that Poisson later
called the law of large numbers.
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The problem, as Bernoulli points out, is that “equally possible cases” can-
not be identified a priori in matters of practical life as they can be in games
of chance:

It has been shown in the preceding chapter how, from the number
of cases in which the arguments for things of any sort can exist or
not exist, prove or not prove, or even prove the contrary, their force of
proof and the proportionate probabilities of the things can be deduced
and reckoned by calculation. And hence it turns out that nothing else
is needed in order to form correctly conjectures on any topic whatever
but that first the number of these cases be accurately determined and
then that it be determined how much more easily some can occur than
others. But here, finally, we are in deep water. For this can scarcely
be done in the smallest matters. And it hardly succeeds anywhere
except in games of chance; the first inventors took pains to ensure
fairness by arranging these so that the numbers of cases in which gain
or loss must follow are fixed and known, and so that all these cases can
happen with equal ease. In most other matters, whether they depend
on the operation of nature or on the decisions of men, this is by no
means the situation. . . . [Ars Conjectandi, pp. 223]

But even when the relative facilities of different cases cannot be found a priori,
it may still be possible to find them a posteriori, by observing the frequencies
with which the different cases actually appear in repeated trials:

. . . that which it is not possible to find a priori may at least be brought
out a posteriori, by observing the outcome of many similar examples.
For it should be presumed that a particular thing can henceforth hap-
pen and not happen in as many cases as it has been found to happen
and not happen in similar circumstances in the past. If, for exam-
ple, you once made a study of 300 men of Titius’ present age and
constitution, and you observed that 200 of them had died before the
end of a decade and that the others had prolonged their lives further,
then you will be able safely enough to conclude that there are twice
as many cases whereby Titius would have to pay his debt to nature
within the next decade as cases whereby this bound could be passed.
And if anyone should have watched the weather and noted how many
times it was calm or rainy for many years past, or if anyone should
have very often watched two players and seen how many times one
or the other emerged as victor in their game, he would have thereby
discovered the probable ratio between the numbers of cases according
to which the same events are able to happen or not happen in simi-
lar circumstances, in the past or in the future. [Ars Conjectandi, pp.
224–225]
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Bernoulli continues this discussion at length and makes his meaning clear:
there is a “true ratio,” and this ratio can be estimated by the relative fre-
quencies of actual outcomes.

Bernoulli acknowledges that others had already thought of using obser-
vations in similar ways, and cites the Port-Royal Logic as an example. (We
should not be misled by his modesty. The idea that the frequency of an event
in the future will be similar to its frequency in the past may have been a
familiar one. The idea that both are approximations to and hence can be
used to estimate a hidden “true ratio”—this is clearly original.) He claims
this originality: he has proven a theorem (his law of large numbers) to the
effect that a sufficiently large number of observations allows one to estimate
the true ratio to a given accuracy with as great a probability as desired. He
can even calculate how many observations are needed.

The law of large numbers caught the imagination of Bernoulli’s successors
and became the basis for a great mathematical theory. But it has been clear for
several centuries that as a solution to the general problem of calculating epis-
temic probabilities, it seldom works. It only works, in fact, where one is dealing
with a situation quite analogous to a game of chance; it must be possible to
make repeated trials involving circumstances identical or nearly identical with
those at hand. There are situations where such repeated trials are possible,
and where the circumstances or individuals involved in these trials are suf-
ficiently like the circumstances or individuals in question that probabilities
calculated from the repeated trials are relevant and useful; the probabilities
calculated from mortality statistics provide, for us as for Bernoulli, the most
obvious examples. But more often we contemplate circumstances sufficiently
unusual or detailed that repeated trials or observations involving similar cir-
cumstances are simply impossible.

4.6 The Ambiguity of Bernoulli’s Legacy

Bernoulli had begun Part IV with a concept of probability which was truly
general and hence epistemic. But in the end, as we have seen, he based his
epistemic probabilities on the enumeration of cases that “can happen with
equal ease.” And by offering the law of large numbers as a device for measur-
ing “ease of happening,” he ensured an ultimately aleatory interpretation for
this notion. Bernoulli’s immediate successors resolved the conflict between the
epistemic and aleatory aspects of his work in a way that largely favored the
aleatory. They left aside his analysis of argument and his theory of combina-
tion, and they completely lost sight of the non-additive and hence non-aleatory
probabilities that he had associated with pure arguments; they seized instead
on his mathematical success, the law of large numbers, and they elaborated
its role in the theory of chance. But they did not, and perhaps could not,
undo the knot by which Bernoulli had bound chance with probability. Theirs
was basically a theory of chance, but it had the name probability, and all the
pretensions implied by that name.
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From our twentieth-century standpoint, the notion of “ease of happening”
is decidedly aleatory rather than epistemic; it refers to a property of the world
rather than to an aspect of our knowledge. Bernoulli did not, of course, draw
the strict distinction between aleatory and epistemic ideas that informs our
standpoint; he considered games of chance a special case in his general art
of conjecture. Nevertheless, “ease of happening” must have referred primar-
ily, even in Bernoulli’s time, to the thing-in-itself rather than to concepts of
knowledge; certainly, such terminology had long been associated with chance
rather than with epistemology. (Galileo and Huygens, in their discussions of
chance, had used Latin terms such as aeque facile and aeque in proclivi ; see
Hacking [36], pp. 124–125.) And Bernoulli’s explication of the ease of hap-
pening of an event by means of his law of large numbers forces one to a
non-epistemic understanding: this ease of happening must be a feature of the
objective world, for it is measured by the frequency with which the event
actually happens.

It was clearly Bernoulli’s intention that one should use his law of large
numbers in conjunction with his rules for combining arguments. Observations
of frequencies are to be used to determine equally possible cases for each argu-
ment, and then the arguments are to be combined. But if one’s imagination is
captured by the law of large numbers, then one is likely to ignore Bernoulli’s
theory of argument and envision a cruder approach: regard all the evidence as
a single “argument” and obtain one’s probability by measuring the frequency
with which “similar arguments” are correct. The history of probability theory
since Bernoulli has been characterized by this crude simplification; we have
interpreted his proposal focusing the law of large numbers as a suggestion
that probabilities in practical life are reflected in frequencies in the same way
as probabilities in games of chance. And the defects of this crude approach
have long bedeviled us; when we include all the evidence (all relevant facts
and circumstances), the hopelessness of finding similar cases (let alone finding
the truth in these other cases) becomes painfully obvious.

It comes close to the mark to say that the mathematical theory that
emerged with the proof of the law of large numbers was basically about
chance. But Bernoulli’s immediate successors could not divorce this theory of
chance from epistemic probability. For though the theory could not tell how to
calculate epistemic probabilities in practical life, it required epistemic prob-
abilities for its own purposes. Indeed, the law of large numbers tells us that
the frequency of a random event will probably approximate its true aleatory
probability. The “probably” demanded, for at least 150 years after Bernoulli,
an epistemic interpretation. And with such an interpretation, it grew into the
theory of statistical inference.

Through its role in statistical inference, Bernoulli’s law of large numbers
can indeed help us calculate epistemic probabilities, but the way it does so
is less direct than Bernoulli had envisaged. And the debate over the theo-
rem’s role has not led to a general understanding of epistemic probability.
Our present need is to understand both the nature of statistical inference and
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the nature of epistemic probability, and to this end we may do well to attend
less to Bernoulli’s law of large numbers and more to his theory of argument.

5 Probability and Chance after Bernoulli

After Bernoulli’s death, the word probability continued to have its broad epis-
temic meaning in the European languages. But the connection with games
of chance quickly came to dominate the thinking of those who sought to
understand epistemic probability numerically. With the exception of Lambert,
scholars of the 18th century seem to have taken it for granted that all numeri-
cal probabilities—including all probabilities of propositions—should obey the
rules obeyed by probabilities in games of chance. In particular, probability
became additive: the probability of a proposition and the probability of its
negation had to add to one. Bernoulli’s broader conception, which stressed
the analysis of argument and consequently allowed non-additivity, was lost.

The disappearance of Bernoulli’s broad conception was not, in my opin-
ion, inevitable. Bernoulli did not invent the idea that probabilities are based
on arguments and that their determination requires the combination of argu-
ments. Rather, this idea was already a basic feature of the philosophical con-
cept of probability, and he was compelled to take it into account in his attempt
to make the concept numerical. Had Bernoulli been immediately followed by
a scholar of Lambert’s breadth—by a mathematician who shared Bernoulli’s
understanding of and interest in the philosophical concept of probability—the
theory of argument might have survived. But in fact, Bernoulli was followed by
two mathematicians, Montmort and De Moivre, who were relatively narrowly
concerned with the theory of games of chance and saw in Bernoulli’s struggle
with probability only a license to give that name to their subject. In Sect. 5.1
below, I examine the relation of Montmort and De Moivre to Bernoulli, and
their influence on the 18th century’s understanding of probability.

Though Bernoulli’s explicit recognition of non-additive probabilities reap-
peared in the 18th century only in Lambert, some aspects of his ideas on
the combination of arguments survived for nearly a century in the form of
rules for calculating the “credibility of testimony.” These rules first appear in
1699, in an anonymous paper in the Philosophical Transactions, and various
authors reproduce them in the course of the 18th century, until they are finally
replaced by Laplace’s Bayesian approach to testimony. These authors do not
appear to think of the probabilities calculated by these rules as non-additive,
but, as I argue in Sect. 5.2 below, the rules make good sense only from such
a perspective.

5.1 Probability becomes Additive

The disappearance of Bernoulli’s broad conception of numerical
probability may have been partly due to the delay in the publication of Ars
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Conjectandi.28 The existence of the treatise became well known during the
eight years between Bernoulli’s death and its publication. But in the absence
of the actual text, it was hardly possible for scholars to form a conception of
the subtlety of its ideas. They were left instead to form their own conception
as to how the theory of chance could be applied to practical affairs.

The learned public first learned of Ars Conjectandi from two eulogies pub-
lished in 1706, one in the Journal des Sçavans [68],29 and one, by Fontenelle,
in the memoirs of the French Academy of Sciences [32].30 In their report on
Ars Conjectandi, these eulogies give the general impression that Bernoulli’s
idea was to study the role of randomness in practical affairs. In the eulogy in
the Journal des Sçavans, for example, we read as follows:

The title of the work is supposed to be de Arte Conjectandi, “On the
Art of Conjecturing.” In it the author in effect determines, and reduces
to calculation, the various degrees of certitude or of verisimilitude of
the conjectures that one can frame about things which depend on
chance; and he even extends this to civil life and to practical affairs.

In Pierre Rémond de Montmort’s Essay d’analyse sur les jeux de hazard,
published in 1708, this narrowing of Bernoulli’s conception becomes more
definite: the notion of numerical probability is essentially narrowed to the
paradigm of games of chance, and the attempt to calculate probabilities in
situations other than games of chance is taken as an attempt to assimilate
those situations completely to this paradigm.

The body of Montmort’s book deals strictly with games of chance.31 But
in its preface, he discusses Bernoulli’s broader ambitions. He had not seen
Ars Conjectandi, but he had read the eulogies, and he explains that Bernoulli
“had undertaken to give rules for judging the probability of future events of
which knowledge is hidden from us, both in games and in other things in life
where chance alone plays a part.” How can chance be given a large role in a
deterministic world? Montmort’s explanation echoes the opening paragraphs
of Part IV of Ars Conjectandi :

Strictly speaking, nothing depends on chance. When one studies
nature, one is quickly convinced that its Author acts in a general and
uniform way, characterized by infinite wisdom and foresight. So in
order to give chance32 a meaning that conforms to the true Philosophy,

28 The delay was due to apprehension on the part of Jacob’s widow and son that
an editor, even Jacob’s brother Johann or nephew Nicolaus, might plagiarize
his manuscripts. Eventually the editorship of Ars Conjectandi was entrusted to
Nicolaus. See Kohli 1975 [46].

29 According to Montmort (1708 [61], p. iv), the author of this eulogy was Joseph
Saurin.

30 See Kohli 1975 [46].
31 For assessments of Montmort’s contribution to the theory of chance, see David

1962 [17] and Henny 1975 [39].
32 French hazard.
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we must say that all things are governed by laws which are certain
but whose ordering we most often do not know, and that those things
depend on chance whose natural causes are hidden from us. After
making this definition, we may say that the life of man is a game
governed by chance.

So life is a game of chance. Ironically, a stubborn determinism has extended
the domain of chance: since chance must be understood as an aspect of our
knowledge rather than as a feature of reality, one may as well use the paradigm
of chance to describe all our uncertainties.

If we could count the cases in practical life as in games of chance, says
Montmort, we could proceed as Arnauld had recommended:

. . . generally, with regard to all things in life about which we have to
make decisions, our deliberations should come down, as in the case
of betting in games, to a comparison of the number of cases in which
a certain event will happen to the number of cases in which it will
not happen; or to speak as a geometer, to an examination of whether
what we hope for, multiplied by the degree of probability that we will
obtain it, equals or exceeds our stake, i.e., the advances that we shall
have to make, whether they be effort, money, credit, or whatever.

It follows that the same rules of analysis that we have used in
games to determine the players’ bets or the way in which they should
play should also be used to determine the correct measure of our
expectations in our many undertakings and to teach us the way we
should behave in order to obtain the greatest possible advantage.

But Montmort has the same problem as Bernoulli did; he does not know how
to count the cases. As he puts it, he is unable to “formulate hypotheses which,
being based on established facts, could guide and support me. . . ” And thus,
as he confesses, he is unable to emulate Bernoulli’s application of the theory
of games of chance to practical life.

Montmort’s treatment of games of chance is, for the most part, in Huy-
gens’ vocabulary—i.e., he counts cases and computes expectations. On a few
occasions early in the book he uses the word probability, but only in the vague
way that it was used by Arnauld. Notice, though, that the quotation above
goes one step beyond Arnauld in a technical sense. Since Montmort would
have us compare the value of our stakes with the product of the value of the
prize by the degree of probability of obtaining it, he must be thinking of this
probability as a number between zero and one—it must mean the ratio of the
number of favorable cases to the total number of cases.

Montmort’s contribution to the theory of games of chance was soon fol-
lowed by that of Abraham De Moivre (1667–1754). De Moivre was already a
middle-aged and powerful mathematician when Montmort’s book aroused his
interest, and he quickly broke new ground; he became, by all accounts, the
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most important contributor to the theory between Bernoulli and Laplace.33

I shall not attempt here a general assessment of De Moivre’s mathematical
contributions, but I do wish to note his influence in fixing the word probability
as a technical term within the theory of games of chance. It is in De Moivre’s
Doctrine of Chances that we first find probability and the ratio to which it
refers playing a basic role in the vocabulary and methods of this theory.

De Moivre’s De Mensura Sortis [18], his first essay on the theory of games
of chance, was published in 1711, still two years before the appearance of
Ars Conjectandi. It was inspired by Montmort’s essay, and it opens with an
explanation of probability and expectation that would sound familiar to a
reader of Montmort:

If p is the number of cases by which some event may happen, and
q is the number of cases by which it may not happen, then both the
happening and the not happening of the event have their degrees of
probability. And if all the cases by which the event can happen or not
happen are equally easy, then the probability of happening will be to
the probability of not happening as p is to q.

If two players A and B contend about the event so that A wins
in the p cases and B wins in the q cases, and a is the amount of the
stakes, then the prospect34 or expectation of A himself will be qa

p+q . . . .

The essay solves a long list of problems. But as in the case of Montmort’s book,
these problems are mostly posed in the language of expectation; probability
does not play a large role in their statement or solution.

After the appearance of Ars Conjectandi, De Moivre developed a new
vocabulary. He adopted Bernoulli’s idea that probabilities are numbers between
zero and one, and he took as axiomatic the rule that the probability of an
event is the ratio of the favorable number to the total number of cases. His
Doctrine of Chances [19], published in 1718, opens as follows:

The Probability of an Event is greater, or less, according to the
number of Chances by which it may Happen, compar’d with the num-
ber of all the Chances, by which it may either Happen or Fail.

Thus, If an Event has 3 Chances to Happen, and 2 to Fail, the
Probability of its Happening may be estimated to be 3

5 , and the Prob-
ability of its Failing 2

5 .
Therefore, if the Probability of Happening and Failing are added

together, the Sum will always be equal to Unity.

And the word probability plays a fundamental role in the statement and solu-
tion of the problems that comprise the body of the book. Instead of asking for
expectations or the ratios of expectations, these problems demand to know
the probabilities of various events.

33 See David 1962 [17], Schneider 1968 [69], and Kohli 1975 [47].
34 Latin sors, meaning chance, lot, or fortune.
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De Moivre’s definition of probability was repeated by Laplace and others,
and has come to be called the classical definition. There is a good deal of
justice in the claim that the definition originated with De Moivre. Cardano
and Fermat had both calculated the same ratio on occasion, but they had
not, of course, called it a probability. Bernoulli did sometimes call this ratio a
probability (see Sect. 4.3 above), but only in the case of an argument which
exists necessarily.

Notice the rule of additivity that De Moivre announces in the last para-
graph of the quotation above. This appears to be the first statement of a rule
of additivity for probabilities; the more general rule (that the probability of
the disjoint union of two events should be the sum of their probabilities) was
first stated by Bayes, about half a century later.

One could argue that De Moivre used probability as a technical term within
a mathematical theory of chance, and that it was quite proper for him to
set aside the question of whether his mathematical definition always fit the
accepted epistemic meaning of the word. But his work, by virtue of its math-
ematical success, quickly became the last word on the nature of numerical
probability. With the single exception of Lambert, the mathematicians and
philosophers who followed De Moivre took it for granted that probabilities
were additive.

Today we understand “pure mathematics” as an exercise unto itself; a
mathematician may use whatever words he pleases, and the theorems he
proves about these words need not have any significance for other people’s
use of the words. But the 18th century gave mathematics a greater authority:
if the mathematicians had demonstrated that probability could be measured
and that numerical probabilities were additive, then this had to be true.

5.2 The Credibility of Testimony

In 1699 a brief anonymous paper entitled “A Calculation of the Credibil-
ity of Human Testimony” appeared in the Philosophical Transactions of the
Royal Society. This paper echoed Bernoulli’s conception of probability as a
degree of certainty, and set forth two rules for combining the “credibilities”
of witnesses. The first of these rules concerns successive testimony (or chains
of testimony), and the second concerns concurrent testimony. Both can be
construed as applications of Bernoulli’s methods, and both were repeated by
various authors during the 18th century. As I explain below, these rules make
good sense only if one thinks of the probabilities or credibilities they yield as
non-additive or “one-sided.” Towards the end of the century, when the work
of Bayes and Laplace made scholars more accustomed to the implications
of additivity for the probabilities of propositions, these rules began to seem
wrong-headed and were severely criticized. The 19th century replaced them
with a pair of rules that were more sensible in terms of the additive theory.35

35 Work on this topic during the 1980s includes Glenn Shafer’s “The combination
of evidence,” in International Journal of Intelligent Systems, 1:155–179, 1986,
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The author of “A Calculation of the Credibility of Human Testimony” has
a wondrously varied vocabulary. He begins by writing of degrees of certitude
and degrees of confidence:

Moral Certitude Absolute, is that in which the Mind of Man
entirely acquiesces, requiring no further Assurance: As if one in whom
I absolutely confide, shall bring me word of 1200 l accruing to me by
Gift, or a Ships Arrival; and for which therefore I would not give the
least valuable Consideration to be Ensur’d.

Moral Certitude Incompleat, has its several Degrees to be estimated
by the Proportion it bears to the Absolute. As if one in whom I have
that degree of Confidence, as that I would not give above One in
Six to be ensur’d of the Truth of what he says, shall inform me, as
above, concerning 1200 l: I may then reckon that I have as good as the
Absolute Certainty of a 1000 l, or five sixths of Absolute Certainty
for the whole Summ.

Later he writes of degrees of certainty and degrees of credibility. All these
terms are synonyms; they all refer to a fraction between 0 and 1. At one point
he even casually uses the word probability: “So if the Probability or Proportion
of Certitude transmitted by each Reporter, be 100

106 . . . ”; this appears to be the
first time that the word was explicitly used in print to denote a fraction. The
paper as a whole is shallow in comparison with Ars Conjectandi, but it is
remarkable as a sign of the extent to which Bernoulli’s ideas were in the air
at the end of the 17th century.

The two rules are quite simple. The rule for successive testimony says that
if a report has been relayed to us through a chain of n witnesses, each witness
having a degree of credibility p, then the credibility of the report is pn. And the
rule for concurrent testimony says that if a fact is testified to simultaneously
by n witnesses each with credibility p, then the credibility of their common
report is 1 − (1 − p)n. (Here 0 � p � 1.) Thus the credibility of a report is
weakened by transmission through many witnesses but strengthened by the
simultaneous concurrence of many witnesses.

There are many grounds on which to criticize these rules. The rule for
successive testimony paradoxically assumes certain knowledge as to the length
and nature of the chain. And the rule for concurrent testimony can only be
defended if one assumes an unlikely independence in the evidence and motives
of the different witnesses. (See Sect. 8 of Shafer, 1976 [70].) But we wish only
to note here that the rules make no sense at all unless the credibilities are taken
to be one-sided: one’s confidence p in the truth of a report is accompanied by
confidence 0 (not 1− p) in its falsehood.

Stephen M. Stigler’s “John Craig and the probability of history: From the death
of Christ to the birth of Laplace,” Journal of the American Statistical Association,
81:879–887, 1986, and Sandy L. Zabell’s “The probabilistic analysis of testimony,”
Journal of Statistical Planning and Inference, 20:327–354, 1988.
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Consider the rule for successive testimony. It is sensible, and in the same
spirit as the multiplication made by Bernoulli in the case of an argument
that both exists and proves contingently. Each successive transmission ought
to diminish our confidence in the report. But does this signify an increasing
confidence that the report is false? Surely not. Rather, we should say that our
possibly quite small confidence pn in the report’s truth is still accompanied
by a confidence 0 in its falsehood.

The rule concerning concurrent testimony is merely Bernoulli’s rule for
combining pure arguments, and must be interpreted in the same one-sided
way. Notice, for example, that 1− (1− p)n tends to 1 with increasing n even
if p is quite small; the report acquires high credibility even if each witness
has a credibility of only p = 1

10 , say. This would be absurd if the credibility
p = 1

10 for each witness were thought to entail a confidence of 1− p = 9
10 in

the falsehood of his report.
Who wrote “A Calculation of the Credibility of Human Testimony”?36

Todhunter (1865 [78], p. 55) notes a suggestion that it may have been written
by the Scottish mathematician John Craig. Craig, a friend of Newton and a
mathematician of some note, did publish a treatise entitled Theologiae Chris-
tianae Principia Mathematica in 1699 [16], in which he professed to show,
inter alia, how the probability of a history diminishes with time, distance,
and transmission. The suggestion that he was also the author of “A Calcula-
tion. . . ” has been repeated many times, and credited to varying degrees. But
it is rendered unlikely, I think, by the internal evidence.

The ideas to which Craig’s treatise and “A Calculation. . . ” attempt to
give mathematical form do indeed overlap. Both argue that the credibility of
a narrative diminishes by transmission, that the diminution is slower for a
written than for an oral tradition, and that it can be retarded by concurrent
chains of transmission. But the mathematical treatments in the two works are
quite different. The rules in “A Calculation. . . ” are obviously inspired by the
theory of games of chance. Craig’s treatise, in contrast, does not betray any
hint of a connection with that theory; it takes the initial probability of a his-
tory to be an arbitrary positive constant and assumes that it decreases linearly
with the length of the chain of witnesses. (There are additional deductions for
distance in space and time; these are inversely proportional to the square of
the distance!) Internal evidence shows that Craig wrote his treatise in 1696;
perhaps “A Calculation. . . ” reflects an alternative approach that occurred to
him later. More likely it is someone else’s alternative approach.

Craig attracted widespread attention and censure by pretending to calcu-
late the rate of diminution of the Christian faith and deducing therefrom the

36 Historians of probability now know, as some historians of theology had known
all along, that the article was written by George Hooper (1640–1727), Bishop of
Bath and Wells. It was reprinted in two collections of Hooper’s works published by
Oxford, one in 1757 and one in 1855. Brown Grier, of Northern Illinois University,
called this to the attention of historians of probability in 1981.
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data of the second coming. He also repeated the argument for Pascal’s wager
and attempted to mathematize pleasure. The author of “A Calculation. . . ”
was more prudent and remains anonymous.

The rules for concurrent and successive testimony given by our anonymous
author were fairly popular during the 18th century. The author of the arti-
cle Probabilit é in Diderot’s Encyclopédie [28]37 adopted them. According to
Todhunter (p. 441), C.-F. Bicquilley adopted them in his du Calcul des prob-
abilités, published in 1783. And according to Prevost and Lhulier, writing in
1797 [65] (p. 122), they were advocated in “many other memoirs and courses.”
We may cite two other 18th century authors who produced rules along similar
lines: J.H. Lambert, whose work we examine in more detail in Sect. 6 below,
and Nicolaus Bernoulli, Jacob’s nephew.

In 1709, Nicolaus defended and published a dissertation [8] in which he
sought to apply his uncle’s Ars Conjectandi to legal questions.38 Among other
topics, he considered how the credit we can give to the innocence of an accused
person diminishes from unity as evidence accumulates against him.39 Nicolaus
argued, in effect, that if each item of evidence had sufficient force to reduce
the plausibility40 of his innocence to 2

3 , then n items should reduce it to(
2
3

)n. Notice that Nicolaus’ rule measures the plausibility of innocence rather
than the probability of the arguments for guilt. If, however, we follow Shafer
(1976 [70], p. 144) in identifying the plausibility of innocence with the deficit
from unity of the probability of guilt, then this rule reduces to Jacob’s rule
for combining pure arguments and thus agrees with the rule for concurrent
testimony: each item of evidence against the accused has probability 1

3 , and
all together have probability 1− (1 − 1

3 )n = 1−
(

2
3

)n.

37 The article on probability in the Encyclopédie has sometimes been attibuted
to Diderot himself; see, for example, Jean Mayer’s “Diderot et le calcul des
probabilités dans l’Encyclopédie,” in Revue d’histoire des sciences, Vol. XLIV,
pp. 375–391. Work by Jean-Daniel Candaux (Recherches sur Diderot et sur
l’Encyclopédie, number 15, October 1993, pp. 71–96) and Thierry Martin (“La
logique probabiliste de Gabriel Cramer,” Mathématiques et sciences humaines,”
number 176, 2006:4) has shown that it was written by Charles Benjamin de
Lubières, who drew its ideas from an unpublished paper by Gabrielle Cramer.
See also Martin’s “La logique probabiliste de Gabriel Cramer,” Electronic Jour-
nal for History of Probability and Statistics (www.jehps.net), 2(1), November,
2006.

38 The dissertation is reprinted in Vol. 3 of Die Werke von Jakob Bernoulli and
discussed in detail by Karl Kohli on pp. 541–556 of that volume. As Kohli’s
discussion shows, most of Nicolaus’ examples can be readily understood from the
viewpoint of an additive conception of probability.

39 See pp. 54–55 of the dissertation, pp. 69–170 of the excerpts published in Actorum
Eruditorum, or p. 196 of Todhunter [78].

40 Nicolaus does not use “plausibility” or any other such term. He says merely that
the accused’s innocence would be worth such and such: ejus innocentia valeret(

2
3

)10
, etc.
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In Chap. XI of his famous Théorie analytique des probabilités, Laplace
discussed the probability of testimony and gave Bayesian rules for successive
and concurrent testimony.41 Laplace’s rules were the ones commonly received
in the 19th century. They are more complicated than the 18th century rules,
but they make more sense if one insists on the additivity of probability.

Consider first the case of successive testimony, where one witness reports
the report of a second. If we claim, in the case of each witness, that there is a
probability p that the witness tells the truth and a probability 1− p that he
lies, then there is a probability p2 that both tell the truth and a probability
(1 − p)2 that they both lie. But the first lies by telling the opposite of the
truth and the second lies by telling the opposite of the report of the first, so
when both lie the second reports the truth. Hence the total credibility of the
report of the second is p2 + (1− p)2 In the case of a chain of three witnesses,
similar principles give a credibility of p3 + 3p(1 − p)2 to the final report; in
the case of n witnesses, a credibility of

∑

0�k� n
2

(
n

2k

)
pn−2k (1− p)2k =

1
2

+
1
2
(2p− 1)n.

This is Laplace’s rule for successive testimony, in the special case where all
the witnesses have the same credibility p and must always choose between the
same two reports, each of which has prior probability 1

2 .
42

The derivation of Laplace’s rule for concurrent testimony is also straight-
forward. We suppose again that the witnesses act independently and that each
tells the truth with probability p and lies with probability (1− p). Then with
probability pn all will tell the truth and with probability (1− p)n all will lie.
When we find that all n agree, we know that they either all told the truth or
all lied; so if we had previously given prior probability 1

2 to both the truth and
falsehood of what has been reported, then we have a posterior probability of

pn

pn + (1− p)n

that the report is true, and a posterior probability of

(1− p)n

pn + (1− p)n

that it is false. Notice that though the derivation is based on Bayesian prin-
ciples, the result is merely Bernoulli’s rule for combining mixed arguments.

Though the development of these two Bayesian rules definitely followed
and depended on Laplace’s 1774 Bayesian paper, they were not, apparently,
41 Chapter XI first appears in the second edition, published in 1814 [53].
42 In Laplace’s exposition, the witnesses are reporting on which ball was drawn from

an urn, so that these are prior probabilities derived from the number of balls in
the urn.
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first adduced by Laplace himself. The rule for concurrent testimony can be
discerned in Condorcet’s work; see p. 10 of his 1785 Essai [13] and pp. 357 and
400 of Todhunter. And according to Todhunter (p. 463), it was also adduced
by Matthew Young in 1798. Both rules were given by Prevost and Lhulier
in 1797 [65] (see Sect. 6.6 below), and Prevost claimed priority in that paper
for the rule for successive testimony. Both Young and Prevost and Lhulier
explicitly noted and rejected the 18th century rules.

6 Lambert’s Treatment of Probability

Johann Heinrich Lambert was born in 1728 in Mulhouse in the Alsace.
Mulhouse was then part of Switzerland; his family had settled there after flee-
ing Catholic persecution in Lorraine in 1635. As a youth he did not enjoy the
advantages of Bernoulli and Leibniz; his family was poor and his formal educa-
tion was limited. But his energy and talent enabled him to advance quickly in
the world; he became a tutor for a wealthy Swiss family in 1748, and during his
10 years in their employment he developed into a creative and broad-ranging
scholar. In 1765 he obtained an academic post in the Berlin academy, where
he remained until his death, from a neglected pulmonary infection, in 1777.
His literary education was never outstanding; he wrote awkwardly in Latin
and French. But during his relatively short career he distinguished himself as
a mathematician, natural scientist, and philosopher.

Lambert’s contribution to the theory of games of chance, considered as a
branch of pure mathematics, was slight. But he frequently applied the theory
in his scientific work, and some of these applications were path-breaking.43 Of
particular interest are his discussions of the theory of errors; on one occasion
(§§271–306 of his Photometria, published in 1760), he formulated what we
now call the method of maximum likelihood.44 Our present interest is in his
philosophical treatment of probability, and particularly in the discussion of the
probability of propositions in his Neues Organon. It was here that he devel-
oped Bernoulli’s theory of non-additive probability and corrected Bernoulli’s
rules of combination.

Organon (Greek for “tool”) was the name given to Aristotle’s treatise on
logic. Francis Bacon (1561–1626) had entitled his own treatise on inductive
logic Novum Organon, in the belief that it would replace Aristotle’s work.
Lambert wrote his Neues Organon while he was still a tutor45 and published
it in 1764. It was his first venture into philosophy and also his best known,

43 Sheynin [73] is valuable for its wealth of references.
44 A more careful exposition of this idea was published by Daniel Bernoulli in 1777

[5]. The idea did not survive as an independent approach to statistical inference,
for it was absorbed into Laplace’s Bayesian synthesis; see Laplace’s memoir of
1774.

45 See Eisenring, 1942 [29], p. 8.
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though some philosophers consider his later Anlage zur Architektonik (1771)
more important.

Neues Organon is divided into four parts, each with a title derived from
Greek: 1) the Dianoiologie, which studies the laws of thought, 2) the Alethiolo-
gie, which studies the nature of truth, 3) the Semiotik, which studies seman-
tics, and 4) the Phänomenologie, which studies how to distinguish appear-
ance from truth. All the passages that I translate below are from Chap. 5 of
the Phänomenologie, which is entitled Von dem Wahrscheinlichen (“On the
probable”). The paragraphs of the Phanomenologie are numbered, and these
numbers are reproduced in the translations.

In Sects. 6.1 and 6.2, I examine Lambert’s attitude toward the different
“kinds” of probability and quote his derivation of two rules for calculating
probabilities of propositions. I then proceed, in Sects. 6.3 and 6.4, to the
matters of principal interest; in Sect. 6.3, I show how Lambert’s treatment
of the syllogism led him to the recognition of the possible non-additivity of
probability, and in Sect. 6.4, I present the passages in which he corrects and
generalizes Bernoulli’s rules of combination. In Sect. 6.5, I record the scant
notice that posterity gave to Lambert’s ideas.

6.1 Lambert’s Conception of Probability

In contrast to most of the mathematicians who studied the doctrine of chances
after Bernoulli, Lambert shared Bernoulli’s interest in epistemic probability.
But there is a great difference between their standpoints. Bernoulli was still
trying to perfect the synthesis of the epistemic concept with chance. Lam-
bert, 80 years later, was already in our modern situation: the synthesis had
become so well accepted, and aleatory ideas had become so dominant within
it, that he could do justice to epistemic ideas only by distinguishing among
different “kinds” of probability. (Writing in German, Lambert used the word
Wahrscheinlichkeit, but then as now, this was clearly understood to be the
equivalent of Bernoulli’s Latin probabilitas.)

He began by distinguishing three kinds of probability related to physical
events. Two of these can be classified as aleatory: the first kind, which consists
of probabilities that can be known a priori in games of chance and similar
setups, and the second kind, which consists of probabilities that resemble
those in games of chance but which can only be found a posteriori. The third
kind is clearly epistemic; it consists of probabilities that are given to events
by virtue of inference from effects or from circumstances.

After dealing with the probabilities of physical events. Lambert turns to
his main subject: logic and the probability of propositions. Here, as we might
expect, his probabilities are more consistently epistemic.

Lambert’s distinction between a priori and a posteriori probabilities is
taken, of course, directly from Bernoulli. We need not pause over his account
of a priori probabilities, but his account of a posteriori probabilities is of some
interest.
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§153. Games of chance have the special feature that the number
of possible cases and their individual degrees of possibility can be
determined from the structure of the game. In this way, the probability
of each case can be calculated a priori. But it is evident from what
has already been said that this could also be done a posteriori, were
the game repeated for a long time or infinitely many times. For this
reason, people have also begun to apply the theory of probability to
other situations. Not only in games of chance, but also in countless
other matters, nature operates according to very complex laws, and
such that only the net results of all these laws can be known from
experience. Thus these results have been tabulated in order to find the
extent of each law and the probability of the case where it dominates.
This is the second general kind of probability, and we will elucidate it
in greater detail.
§154. One considers a proposition arising from experience but from

which experience sometimes deviates, without it being possible to dis-
cuss the circumstances under which one or the other happens. One
records both kinds of cases, as they occur and without selection, so
as to determine from the totals of each the ratio of the correct cases
to the failures. This ratio determines the natural 46 degree of probabil-
ity of the proposition. It tells not only that some A are B, but more
precisely, how many are and how many are not. Thus, for example,
the annual death rate in large cities has been determined from annual
records of the numbers living and dying.

He emphasizes that all cases of A must be counted without selection, “as they
occur,” in order for the calculation to be valid. And he also requires that the
tabulation be made under constant conditions, or else that the observations
continue long enough for the irregularities to balance out and the ratio to
become constant or only imperceptibly variant.

If no such balancing out occurs, then the a posteriori calculation is impos-
sible, and our attention turns to the third, more epistemic kind of probability.
This third kind is based either on incomplete induction from effects to causes,
or else on the appraisal of circumstances:

§161. Furthermore, the actual tabulation of cases can only be
undertaken and used where there is something constant and defi-
nite in the variation in successive causes. Otherwise, if new causes
were always appearing, or if some were disappearing without being
replaced by equivalent ones, or if they lasted for a short time (as in
many human activities), one would be unable to find any constant or
definite ratio between different kinds of cases. So in situations such
as this, in order to determine with probability or certainty what will

46 der Natur gemaβ
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actually happen one must use entirely different principles and take
individual circumstances into account.
§162. This leads us to the third general kind of probability. Indeed,

we can assure ourselves immediately of the occurrence of an event if
we have either seen it or done it ourselves, or if we see effects of
it which necessarily imply its occurrence. But if the effects we find
are insufficient to establish its occurrence then here again we attain
only a certain degree of probability. We get no further when forced to
decide whether the event has happened or will happen from circum-
stances, causes, or motives—especially when the event is subject to
hindrance. . .

Lambert’s understanding of induction is based on the idea that no two causes
can have exactly the same effects, so that a cause is established once each of
its “direct” effects is observed. If only some of these effects are observed, then
the cause is only probable. The above passage continues as follows:

. . . Effects are unreliable if they could have derived, collectively or indi-
vidually, from other causes. But the more numerous and varied such
other causes must have been, the less probable it is that they should
have all coincided to produce effects collectively derivable from a single
event. Here particulars in the effects are especially helpful in inferring
a cause. Lacking these, one takes the cause as a hypothesis and derives
the effect from it. But this sort of reasoning is only an induction, and
it must therefore be complete if it is to serve as a proof. For, certainly,
when every effect that a cause must entail in given circumstances is
definitely observed, one may validly conclude that these effects could
not have derived from anything else (Dianoiolog. §569, 595; Alethiol.
§176). Incidentally, there is also a distinction concerning the effects
themselves, as to whether they are direct or indirect. It is intrinsically
sufficient for induction that the direct effects be complete, since the
indirect effects derive from them. And it is often necessary to assemble
many indirect effects to make up for the lack of one direct one. We
make this remark with a view to calculating probabilities from such
inductions. All the direct effects together constitute certainty, which is
taken in calculations of probability to be a unit, of which the degrees
of probability are fractions (Alethiol. §76). Each direct effect yields
such a fraction, and determining this fraction obviously comes down
to determining what part the effect is of the total.. . .

How do we judge what part of the total effects is constituted by the effects
we observe? Lambert does not tell us. Neither has anyone since.

Lambert’s treatment of induction in the case of propositions is quite similar
to his treatment in the case of physical events:
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§165. We now advance from physical consequences,47 which are
really effects and modifications, to logical ones. These are more general
and include the physical ones as a special class, insofar as they enter
into inference. Thus we here consider not events themselves, but the
ideas and propositions they afford us. Once again there are different
kinds of probabilities to investigate as to composition and departure
from certainty. The first we derive from the question of the extent to
which a proposition can be deduced from its consequences. We estab-
lished that this is possible in principle for any proposition when we
showed, in §175 of the Alethiologie, that a proposition is necessarily
true as long as nothing contradictory can be deduced from it. Thus if
every conclusion that can be validly deduced from a proposition with
the help of other true propositions is found to be true, the original
proposition is also true.. . .

Suppose, for example, that we wish to establish the proposition that A is
B. Then we identify as many as possible of the features of B—i.e., of the
predicates that are true of B—and call these C,D,E, F, etc. If we know
from experience or from first principles that each of these predicates is also
true of A, then we are naturally inclined to conclude that A must be B. If
the predicates C,D,E, F, etc., include all possible predicates of B, or more
realistically, if they include predicates unique to B, then the conclusion is
valid. In some other cases, the proposition A is B will be rendered probable:

§168. . . . The only remark we wish to add with respect to prob-
ability is this: If, in this kind of inference, one amasses a very large
number of predicates C,D,E, F, etc., without being able to make any
selection, then the presumption increases that one of them, or several
of them taken together, is unique to B and thus that the proposi-
tion A is B is thereby proven. In fact it increases in proportion to
the diversity of the predicates C,D,E, F, etc., and to the extent that
none of these predicates appear to follow from others.. . .

6.2 Two Rules from the Doctrine of Chances

Lambert’s discussion of the probability of propositions soon leads him to the
problem of combining arguments. His first step in dealing with this problem
is to adduce two rules from the doctrine of chances. Formally, they are similar
to the rules given in the English article of 1699 we noticed in Sect. 5.2 above.

First Lambert addresses the problem of combining several uncertain argu-
ments for the same conclusion, any one of which would fully establish the
conclusion if it were certain.

§169. . . . Here we shall content ourselves with reducing this cal-
culation to the theory of games of chance. Let us imagine a heap of

47 Folgen, hitherto translated as “effects.”
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tickets for each argument. In each heap let the ratio of the number
of valid or marked tickets to the number of unmarked ones be the
same as the ratio of the number of cases where the argument is valid
to the number where it is not valid. If we then suppose that Cajus
takes a ticket blindly from each heap, the question is how probable
it is that there will be no valid tickets among the ones drawn. It will
be this probable, or this improbable, that all the arguments one has
found on behalf of the proposition do not prove it. The theory of
games of chance specifies the following rule for this calculation. Multi-
ply together the numbers of tickets in the different heaps, and likewise
multiply together the numbers of invalid or unmarked tickets in the dif-
ferent heaps. Then the latter product, divided by the former, will give
the degree of probability that the arguments do not prove. And if this
degree, which is necessarily a fraction, is subtracted from one, then
the remainder is the degree of probability that the arguments prove.

This is, of course, Bernoulli’s rule for combining pure arguments.
The context in which Lambert introduces this rule is problematic. He is

dealing with the situation where one seeks to prove “A is B” by observing A
to have features known to belong to B. Each such feature is an argument for
the proposition “A is B”; its strength is measured by the proportion of cases
where the feature belongs to B rather than to some other subject. Lambert is
treating these arguments, in effect, as pure arguments, but one might argue
that they are mixed.

Lambert’s second rule is a rule for combining the probabilities of uncertain
arguments where all these arguments are needed for the conclusion.

§184. . . . We remark that the calculation of degree of probability
given above (§169) is actually only applicable where every argument
is independent of the others. For each one contributes in itself to the
lessening of the improbability, so that if one of them is certain, or if
one knows one of them to be correct in a given case, the rest thereby
become superfluous. Thus the question as to whether Cajus will draw
at least one valid ticket from the several heaps of tickets is directly
decided if even only one of these heaps consists of purely valid tickets.
. . .
§185. On the other hand it is entirely different when the proba-

bility of the conclusion of a syllogism is to be determined from the
probability of the premises. For then the premises cannot be viewed
as separate, mutually independent arguments, because the conclusion
necessarily depends on both of them together; the conclusion only
follows when all the premises are correct. With this understood, the
calculation of the probability of a conclusion even from a whole chain
of reasoning can also be reduced to the theory of games of chance.
For this purpose we again consider the heaps of tickets—in fact, we
consider as many as there are premises in the chain of reasoning. In
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each heap, let the ratio of the number of valid tickets to the number
of invalid be the same as the ratio of the cases in which the premise is
correct to those in which it is not. Now let Cajus take a ticket blindly
from each heap. Then the question is how probable it is that no invalid
tickets should be found among the tickets drawn—i.e., that all should
be valid. The conclusion will obtain this degree of probability from
the given chain of reasoning. The theory of games of chance gives the
following rule for this calculation: Multiply together the numbers of
tickets in the different heaps and likewise multiply together the num-
bers of valid tickets in the different heaps. Then the latter product,
divided by the first, will give the degree of probability of the conclu-
sion. The first product represents the total of all the possible cases,
while the latter represents the number of cases in which the conclu-
sion follows, or, what amounts to the same thing, the premises are all
correct.

6.3 The Syllogism

Lambert acknowledges quite explicitly that the probabilities for a proposition
and its negation may add to less than one. In §212, for example, he tells
us that “the degrees of probability obtained for the affirmation and for the
denial of the conclusion of a syllogism do not always together form a whole.
For often a considerable portion remains undetermined. . .One must certainly
take this indeterminate portion into account if one wants to infer the degree of
improbability from the degree of probability.” In this Sect. I study Lambert’s
treatment of probability in the syllogism and show how this treatment led to
his cognizance of non-additive probabilities. The essence of the matter, as we
shall see, is that a merely probable minor premise in a syllogism of the first
figure leads to a non-additively probable conclusion.

As Lambert sees it, the proposition “A is B” can be numerically qualified
in three ways. (1) We may qualify the subject, writing

3
4
A and B

to mean that 3
4 of the individuals that are A have the predicate B. (2) We

may qualify the predicate, writing

C is
2
3
B

to mean that C is known to have 2
3 of the attributes in the concept B. Of

course, in order to determine the number 2
3 , a judgment must be made as to

the weight of various attributes. As Lambert explains in §191, if M,N,P and
Q form a comprehensive (die seinem Umfang ausfüllen) list of the attributes
in B, none of these are known to be unique to B, and C is only known to
have attributes M,N, and P , then
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the conclusion
C is B

can only be drawn with probability, for it remains undecided whether
C has the predicate Q. Here the degree of probability depends on the
ratio of the magnitude and quantity of the predicates MNP , which
have already been found in C, to the magnitude and quantity of those
that have yet to be found.

(3) Finally, we may qualify the proposition as a whole. Lambert expresses this
by qualifying the connective “is”; he writes, for example,

C
1
2

is B

to indicate that the proposition “C is B” has probability 1
2 .

Notice that the statements “ 3
4A are B” and “C is 2

3A” have the form of
statements of fact, not of probability. They can give rise, however, to state-
ments of probability. If 3

4A are B and we know of a particular individual only
that it is an A, then we may say with probability 3

4 that it is B; similarly, if C
is 2

3A, then we may say with probability 2
3 that C has any particular attribute

that forms part of the predicate A. Lambert represents these deductions by
quantifying the first figure of the traditional syllogism. He begins with the
syllogism Barbara

all A are B
C is A

therefore C is B

as his basic example of a syllogism of the first figure, and modifies it to

3
4
A are B

C is A

therefore C
3
4

is B

or to

all A are B

C is
2
3
A

therefore C
2
3

is B.

After exhibiting these examples, Lambert proceeds to an example where
both premises of the syllogism are qualified. In place of the major premise
“all A are B” he puts “ 3

4A are B” and “ 1
4A are not B,” and in place of the
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minor premise “C is A” he puts “C is 2
3A.” (Notice that we do not add that

“C is 1
3 not A.” For “C is 2

3A” means that we have verified that C has 2
3 of

the attributes which make up A; if it fails to have one of the remaining 1
3 ,

then the conclusion is not “C is 1
3 not A” but simply “C is not A.”) With

these premises he obtains a probability of 1
2 for the conclusion “C is B,” and

a probability of 1
6 for its negation:

§192. . . . It comes out as follows:

3
4
A are B, C is

2
3
A, therefore C

1
2

is B.

For here the probability of the one premise is diminished in proportion
to the probability of the others. So we can take only 2

3 of the 3
4 for

the conclusion—i.e., only 2
4 or 1

2 .
§193. If we make the major premise of this syllogism negative, the

result is

1
4
A are not B, C is

2
3
A, therefore C

1
6

is not B.

Thus the probability that the syllogism’s conclusion is negative is 1
6 ,

whereas the probability that it is affirmative is 1
2 . Both probabilities

together yield 1
6 + 1

2 = 2
3 , which is the probability of the minor premise.

And nothing more can be obtained from the calculation or from the
syllogism itself. For one cannot make the minor premise negative in the
first figure of the syllogism; if it is negative, the form of the conclusion
remains undetermined. And thus in cases where the minor premise
influences the probability of the conclusion, we find only that part of
the probability of the conclusion that can be determined according to
the form of the syllogism and its rules. That is to say, if one takes a
number of cases where the premises are similar in kind and degree to
the two presented here, the conclusion will be affirmed in half these
cases and denied in 1

6 of them; in the 1
3 that remain it is entirely

undetermined whether it will be affirmed or denied, entirely or in
part.

It should be noted that two sources of indeterminacy are confounded in this
example. The first is our ignorance as to whether C possesses the remaining
attributes of A. The second lies in the fact that denial of the minor premise
leads not to denial of the conclusion but to no conclusion at all. This second
source of indeterminacy is the more fundamental insofar as the syllogism is
concerned, for it causes indeterminacy in the conclusion even when there is
none in the premises. To illustrate this suppose that the premises themselves
(rather than their “middle term” A) are only probable, but additively so—e.g.,
begin with

all A
3
4

are B, all A
1
4
are not B
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and
C

2
3

is A, C
1
3

is not A.

Then, as the general rule that Lambert later (§216) propounds makes clear,
Lambert would still obtain a probability of 1

2 for “C is B” and a probability of
1
6 for “C is not B.” The probability of 1

3 attached to “C is not A” contributes
nothing to the syllogism.

Having perceived the essential role played by indeterminacy, Lambert
introduces a more compact and perspicuous notation and generalizes his exam-
ple by allowing indeterminacy in the major premise as well as the minor:

§194. Call the affirmative a, the negative e, and the indeterminate
u. Then the most complex case with regard to the middle term will
be this:

(
2
3
a+

1
4
e+

1
12
u

)
A are B, C is

(
3
5
a+

2
5
u

)
A, therefore

C

(
2
5
a+

3
20
e+

9
20
u

)
is B.

In order to explain and prove this formula, which is only a special case
so far as the numbers are concerned, we observe the following:

1. In the major premise, (2
3a+ 1

4e+ 1
12u) means that of all individ-

uals that are A, or of all A, there are 2
3 for which B certainly holds, 1

4
for which B does not hold, and 1

12 for which it remains undetermined
whether B holds or not. In this way three major premises are com-
bined, as it were, and since 2

3 + 1
4 + 1

12 = 1, we see that all A will be
taken into account in this syllogism.

2. In the minor premise,
(

3
5a+ 2

5u
)

represents the sum of the
attributes of A. One knows that 3

5 of these hold for C; the matter
is still undetermined for the remaining 2

5 . The part that would be e
cannot occur here. For if even a single attribute were in A that one
knew was not in C, the minor premise would be denied for certain,
and consequently the conclusion would be thoroughly indeterminate.

3. Now
(

2
3a+ 1

4e+ 1
12u

)
is multiplied by

(
3
5a+ 2

5u
)
, and the prod-

uct is divided into three classes:

(
2
5
aa)+(

3
20
ae)+(

3
60
au+

4
15
au+

2
20
eu+

2
60
uu) =

2
5
a +

3
20
e +

9
20
u

That is to say, everything involved with u belongs in one class, or
to the indeterminate part of the conclusion, the ae belongs in the
second class, or to the negative part, and the aa in the third, or to
the affirmative part.

4. So the conclusion says that out of 20 cases where inferences
of this kind and degree occur without selection, eight are affirmed,
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three are denied, and nine remain undetermined. Or alternatively, in
a particular case one would have eight reasons to affirm the conclusion,
three reasons to deny it, and nine reasons to leave it undecided—i.e.,
not draw a conclusion.

Lambert continues his discussion of the syllogism at great length. After
presenting the example we have just quoted, he proceeds to consider examples
where fractions are attached to the other parts of the premises—to the terms
B and C or to the connectives; and in §216 he finally states a general rule
that allows all these possibilities simultaneously. He also extends his methods
to longer chains of reasoning and to the other figures of the syllogism. And
he does not neglect to caution the reader against applying arguments from
probability when other arguments can yield certainty; he is particularly con-
cerned that every effort should be made to complete an incomplete induction
before settling for mere probability. (See §§166–183.) But the excerpts we have
quoted here surely suffice to convey the gist and spirit of his methods.

6.4 The Combination of Testimony

Lambert’s discussion of Bernoulli’s rules of combination occurs towards the
end of his chapter on probability in the context of a discussion of the credibility
of testimony. In this Sect. I examine the passages where Lambert criticizes
Bernoulli’s rules and proposes a new, more general rule.

Lambert stresses that the assessment of testimony should take into account
a common-sense examination of circumstances, motives, and other particulars.
But he also discusses how one might assess the credibility of a witness solely on
the basis of the witness’s general intelligence, character and knowledgeability.
Such an assessment may produce a very middling degree of probability for
the witness’s report, but this can be increased by multiplying the number of
witnesses:

§236. . . . one seeks to increase such apparently trifling degrees of
probability by amassing separate witnesses. And if indeed this amass-
ment is done without selection, then it certainly cannot be denied that
each independent witness can be treated as a separate and indepen-
dent argument, provided of course that their testimonies agree, and
to the extent that they agree. . .

Notice that he again insists that all the evidence be considered, “without
selection.”

Lambert uses this idea of combining testimony to introduce his general
rule for combining probabilities.

§237. Consider two witnesses who give the same testimony. Let the
credibility of the first be such that for every ten truths he tells three
untruths and one lie—viz., if one wants to hit on the truth, one must
believe him in ten cases, not believe him in three cases, and believe
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the opposite in one case. We express this by 10a+ 3u+ 1e. Similarly,
let the credibility of the other be 12a+ 5u+ 2e.When these cases are
multiplied together the product is

120aa+ 86au+ 15uu+ 11eu+ 2ee+ 32ae.

The 32ae will be omitted from this product, for it is impossible to
believe the testimony on account of one witness and simultaneously
believe the opposite on account of the other. Moreover, the 120aa+
86au will be consolidated to form 206a. For though the one witness is
not believed in 86 cases, the other still is. The 2ee+11eu are similarly
consolidated to form 13e. For in case of the 11eu, belief falls to the
opposite of the testimony. Thus we have

206a+ 15u+ 13e

for the credibility of a single witness who counts for as much as these
two together. . . . Here is the general formula:

Witness 1 Ma+Nu+ Pe
Witness 2 ma+ nu+ pe
Both (Mm+Mn+mN)a+Nnu+ (Pp+ Pn+ pN)e.

If one witness is fully credible, say n = p = 0, then all the u and e
terms drop out of the product; and since all the remaining cases are a,
this shows that the remaining witnesses neither increase nor decrease
his credibility. On the other hand, when no witness is fully credible,
u and e still enter into the total sum, and consequently the testimony
merely has probability.

We can apply the same rule to the case where one witness testifies to the
opposite, provided we interchange the a and the e in his credibility.

§238. . . . To retain the previous example, if the second witness tes-
tifies to the opposite, then 12a + 5u + 2e becomes 2a + 5u + 12e.
Taking the first witness10a+ 3u+ e into account, the total credibility
is 76a+ 15u+ 53e, which differs markedly from the previous result. If
the witness who says the opposite is fully credible, then M = N = 0
in the general formula, and only the e cases remain in the product; his
credibility, as a result, is unimpaired by that of the other witnesses.
Moreover, in the case of two witnesses who both have full credibility,
it is intrinsically impossible that one should say the opposite of the
other’s testimony. If one posits this case, then M = N = n = p = 0 in
the formula, and thus all the terms in the product are equal to zero.
This says that no such case occurs.

Lambert now remarks that his rule of combination can be used to combine
probabilities arising from any independent arguments. And as a general rule
of combination, it is an improvement over Bernoulli’s rules, both in generality
and in soundness.
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§239. We might remark in passing that the formula given above
can also be used with arguments, when these are independent of one
another and make the same proposition probable. In the case of such
an argument,

12a+ 5u+ 2e

means that in 12 cases the argument proves the proposition, in 5
cases proves nothing (i.e., leaves the proposition undecided), and in 2
cases overturns it (i.e., makes it negative or proves the opposite). If a
probable syllogism (§194) produces a proposition of the form

all A

(
12
19
a+

5
19
u+

2
19
e

)
are B

then the fractions with which the connective is encumbered represent
the credibility of the proposition and thus the weight of the argu-
ment. The method of calculation given here differs markedly, by the
way, from the methods that appear on p. 220ff of Bernoulli’s Ars con-
jectandi. There Mr. Bernoulli accepts two kinds of arguments: namely,
those that partly prove and partly do not prove, and then those that
partly prove and partly prove the opposite. He calls the first pure argu-
ments and the others mixed arguments. Along with these he would
include yet a third kind—namely, those that partly do not prove and
partly prove the opposite; but he only announces this kind, and does
not bring it into the calculations. Here we have combined these three
kinds of arguments into a single general kind. For from the formula
Ma + Nu + Pe, one can obtain: 1). Ma + Nu; 2). Ma + Pe; and
3). Nu+Pe by setting P or N or M equal to zero. In this respect the
method of calculation presented here is more general than Bernoulli’s,
for it exhibits all his special cases at once. But it also gives a differ-
ent result, and this should not be, if both were correct. Rather than
expound Bernoulli’s method, we will merely remark on his formula (p.
221):

1− cfi

adg
· ru

qt+ ru
.

If we take one of the arguments that partly prove nothing48 and partly
prove the opposite to be complete (i.e., if we assume it completely
proves the opposite), and if we accordingly set q or t equal to zero,
then this formula becomes

1− cfi

adg
.

48 This seems to be a slip. The numbers q and t, which Lambert wants to manipulate,
refer to mixed arguments, and hence Lambert should say. “If we suppose one of
the mixed arguments completely proves the opposite. . . ”
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But it should be zero, because in this case all the affirmative arguments
represented in the formula are completely refuted. The reason why this
formula says otherwise will be found on p. 221; to wit, Mr. Bernoulli
considers all the cases where the pure argument proves to be valid,
whether or not the cases from the mixed argument with which they
are combined prove the opposite. But in §237 we completely omitted
the cases ae because they were impossible, and this makes the result
in the calculation presented here different from Bernoulli’s result.

We conclude by restating Lambert’s rule of combination in terms of the
probabilities. Consider two arguments bearing on a proposition, and suppose
the first provides a probability p1 for the proposition and a probability q1 for
its negation, while the second provides a probability p2 for the proposition and
a probability q2 for the negation. In order to apply the rule as Lambert states
it in his paragraph §237, quoted above, we must choose numbers M,N,P such
that

p1 =
M

M +N + P
and q1 =

P

M +N + P
,

and numbers m,n, p such that

p2 =
m

m+ n+ p
and q2 =

p

m+ n+ p
.

The rule then yields a probability for the proposition, on the basis of both
arguments together, of

Mm + Mn + mN

Mm + Mn + mN + Nn + Pp + Pn + pN
=

M(m + n + p) + m(M + N + P ) − Mm − Mp − mP

(M + N + P )(m + n + p) − Mp − mP

=
p1 + p2 − p1p2 − p1q2 − p2q1

1 − p1q2 − p2q1
(7)

and a probability for its negation of

Pp + Pn+ pN

Mm +Mn +mN +Nn+ Pp+ Pn + pN
=
P (m+ n+ p) + p(M +N + P ) − Pp−Mp −mP

(M +N + P )(m + n+ p) −Mp −mP

=
q1 + q2 − q1q2 − p1q2 − p2q1

1 − p1q2 − p2q1
. (8)

Thus formulae 5 and 6, which we used to state Lambert’s rule in Sect. 4.4
above, are indeed accurate.

Lambert’s rule of combination is obviously a special case of Dempster’s
rule for combining belief functions; see pp. 374–376 of Shafer 1976 [72].
Lambert’s quantification of the probable syllogism (§194) can also be con-
strued as a special case of Dempster’s rule.

6.5 The Unintelligibility of Non-Additivity

The influence of Lambert’s ideas is easily summed up: hardly anyone noticed,
and no one understood. At the time he wrote he was already in conflict with
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received opinion; scholars had known since De Moivre that all probabilities
are additive. And within a few years of the publication of Neues Organon,
scholars began to learn, from Bayes, Condorcet, and Laplace, just how this
additivity worked in the case of propositions; then Lambert’s non-additive
probabilities became simply unintelligible.

There is one exception to this general neglect of Lambert’s thought. Pierre
Prevost and Simon Lhulier,49 noted and praised Lambert’s emendation of
Bernoulli and Lambert’s general rule of combination in their memoir of 1797.
And they seem to have understood the non-additivity implicit in this rule.
But after having praised Lambert’s ideas, they proceeded to specialize his
rule to the case of additivity. This specialization yields the 18th-century (or
Bayesian) rule for concurrent testimony (see Sect. 5.2 above), and, in fact,
Prevost and Lhulier give the Laplacean justification for this rule. They also
derive the 18th-century rule for successive testimony.

Todhunter, in his famous history (1865 [78], pp. 71, 462), noted Prevost
and Lhulier’s memoir and used their report on Lambert’s criticism of Bernoulli.
Todhunter did not, however, quote Lambert’s general rule or give any hint that
Lambert had dealt with non-additive probabilities. For Todhunter, we may
presume, non-additivity for probability made no sense at all.

That Bernoulli and Lambert contemplated non-additive probabilities will
be obvious to anyone who carefully reads the passages presented in this essay.
But after Prevost and Lhulier no one seems to have thought this non-additivity
worth noting. In fact I know of no reference to it in the historical or mathe-
matical literature from the time of Prevost and Lhulier until I pointed it out
in 1972.50

7 Lessons for a Modern Theory

For 250 years our culture’s conception of probability has been dominated
by two ideas: the idea that probabilities concerning practical matters are
obtained from frequencies, and the idea that probabilities are necessarily addi-
tive. These two ideas may well have been essential to the tremendous progress
that probability has made during this period. But future progress may require
that we lessen our dependence on them, and this, in turn, may require that
we rediscover the alternatives provided by Bernoulli and Lambert.

The precise relation of probabilities to frequencies has been a matter of
great scholarly debate during the past century. But the popular understanding
of the matter has always been that the probability of a thing is to be found
by observing the frequency with which similar things have been found to be
49 These authors’ last names appeared in this form in their papers on the probability

of testimony, which appeared in the memoirs of the Berlin academy. The French
spellings Prévost and L’Huilier are also sometimes seen.

50 See Hacking 1975 [36], p. 144; Dempster 1974 [27], p. 58; and Shafer 1976 [72], p.
430.
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true. It is also thought that we should take all our evidence into account.
And, as I pointed out in Sect. 4.6 above, this produces a conundrum, for the
more details of our evidence we take into account, the fewer similar cases are
to be found. When we take all the evidence into account there are usually no
similar cases at all. As John Venn (1888, p. 222) put it, what mortality table
are we to apply to a consumptive Englishman living in Madeira?51

In order to escape this conundrum we must, I believe, return to Bernoulli
and Lambert’s conception of the combination of arguments. The detailed prob-
lems we face in practical life are always unique; they always present features
and combinations of detail that are utterly new to us. But we can and do rec-
ognize familiar features in such problems, and we can and do refer these famil-
iar features to our understanding and experience—we may even, occasionally,
note the frequency with which some of these features have presaged various
things in the past. And having made our judgments concerning these separate
features of the evidence, we have no choice but to recombine them “at the
epistemic level”;52 that is to say, we must weigh and combine the arguments
they provide. Such a local approach to the assessment of evidence contrasts
with the global approach most often favored by contemporary philosophers of
probability, but it is not so foreign to common sense.

It should be mentioned that there has been at least one scholar of the past
two centuries who attempted such a local assessment of evidence. The English
mathematician George Boole, in his Laws of Thought (1854 [10]), maintained
that probabilities always ultimately derive from frequencies. But he admitted
that joint frequencies are sometimes unavailable, so that joint probabilities
must sometimes be generated at the epistemic level; he prescribed that joint
probabilities be obtained in these cases by treating the events as if they
were independent. It is not clear to this author just how close Boole came to
Lambert’s rule of combination in his exploration of this idea.53

Whereas the relation of probabilities to frequencies has been subject to
some debate during the past two centuries, the additivity of probability has
not. Indeed, the study of epistemic probability has been pervaded by a nearly
universal and almost unconscious acceptance of additivity. Most discussions
of epistemic probability have been within the Bayesian theory, and even
explicit attempts to generalize the Bayesian theory have tended to rely on
its additive conception of probability. Even many of the proponents of “qual-
itative” probability, who would relinquish numerical probability altogether in
favor of more general orderings on algebras of propositions, have insisted on
the self-evidence of axioms whose appeal lies entirely in their mirroring of
the rule of additivity.54 Nonetheless, Bernoulli and Lambert’s non-additive

51 Cf. Dempster, 1968 [25], p. 34.
52 See §11.3 of Shafer [70].
53 Boole’s treatment of probability baffled his contemporaries, and I do not pretend

to understand him fully. See Theodore Hailperin’s recent monograph (1976 [37]).
54 See, e.g., Fine, 1973 [31], p. 17.
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probabilities have gradually and awkwardly reemerged within the confines
of the additive theory; they have re-emerged under the guise of “probability
bounds” or “upper and lower probabilities.”

It is easy to see how the mathematics that Lambert associated with
non-additive probability can be translated into the language of “probability
bounds.” Instead of supposing, as Lambert in effect did, that a proposition
might merit a probability p and its negation might merit a probability q,
where p+ q < 1, one posits a lower bound p∗ (which corresponds to p) and an
upper bound p∗(which corresponds to 1 − q) for the proposition’s unknown
probability P . One supposes that this unknown probability P is additive, in
the sense that the probability of the proposition’s negation is taken to be the
equally unknown number 1 − P . The possibility that p + q < 1, which was
the possibility of non-additivity for Lambert, becomes merely the possibility
that p∗ < p∗. Thus the mathematics of non-additivity is admitted but kept at
arm’s length from the concept of probability itself: one supposes there does
in fact exist an additive probability P ; it is just that our knowledge about P
is limited to the knowledge that p∗ � P � p∗.

The idea of probability bounds can be found in Boole’s Laws of Thought.
Boole sought, in general, to find probabilities from frequencies, either directly
or indirectly. To find the probability of a proposition A, he would have us
express A in terms of other propositions whose probabilities can be observed
directly as frequencies. But if some of the frequencies remain unobserved,
then the probability of A is determined only within limits. “Between these
limits,” he wrote (p. 268), “it is certain that the probability sought must lie
independently of all new experience which does not absolutely contradict the
past.” Thus, though statements of probability may express an uncertainty of
a “frequentist” character, bounds may express a second-order uncertainty as
to what the frequencies are.

After a long period of relative dormancy, the idea of probability bounds
reappeared in the work of Bernard O. Koopman (1940 [49]), who introduced
the term “upper and lower numerical probabilities” to name numbers that
emerged from his axiomatization of qualitative probability. In the early 1960’s
there were several discussions of upper and lower probabilities by statisticians
and philosophers, including those by I.J. Good (1962 [34]), C.A.B. Smith (1961
[74], 1965 [75]), and Henry E. Kyburg (1961 [50]). And shortly after this work,
A. P. Dempster (1966–1969 [20, 21, 22, 23, 24, 26]) used the language of upper
and lower probabilities to formulate an original and remarkable new theory,
a theory which includes the rule of combination repeatedly alluded to in this
essay and a number of algorithms for statistical inference. More recently, upper
and lower probabilities have been discussed by Beran (1970 [4]), Giles (1976
[33]), Huber (1973 [41]), and Suppes (1974 [77]).

This 20th century development of the idea of upper and lower probabili-
ties has been predominantly epistemic, and because of this it has encountered
a fundamental problem of interpretation: what is the meaning of the deter-
mined but not fully known probability P that is supposed to lie between the
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bounds p∗ and p∗? If P can be interpreted as a frequency or as an aleatory
probability, as in Boole’s work, then we can make sense of the idea that P is
unknown. But an unknown epistemic probability is a contradiction in terms—
an unknown feature of our knowledge. Most of the recent writers on upper
and lower probabilities more or less acknowledge the absence of a meaningful
interpretation for the unknown additive epistemic probability P ; they treat
P as a metaphor and stress that one’s knowledge is fully expressed by the
pair (p∗, p∗). But they still struggle to place some significance on the addi-
tivity of this metaphor, and when they try to interpret the numbers (p∗, p∗)
they reveal their puzzlement as to why one’s knowledge should fall short of an
additive probability. In Dempster’s work, for example, the difference p∗−p∗ is
called one’s “confusion” about the proposition in question; this “confusion” is
thought to reflect an uncertainty which somehow differs from the uncertainty
reflected by additive probabilities.

I believe that Dempster’s theory gains in clarity if one drops the language
of upper and lower probability bounds in favor of the straightforward approach
to non-additive epistemic probability that we find in Bernoulli and Lambert.
And, as I have argued in A Mathematical Theory of Evidence, it also gains
new mathematical power. By considering Dempster’s p∗ as a non-additive
epistemic probability or degree of belief, one is able to understand the rule
of combination as a rule for translating “weights of evidence” into degrees of
belief. And this leads in turn to an understanding that additivity, rather than
non-additivity, is anomalous for degrees of belief; additivity is a limiting case
which is approached when one has extremely strong but discordant evidence.

The modern study of epistemic probability has a great deal to gain from
a revival of the insights of Bernoulli and Lambert. From Bernoulli we can
learn the importance of combining arguments and thereby rediscover a natural
approach to the mathematical representation of probable reasoning. From
Lambert we can learn how natural non-additivity is when probable reasoning
amounts to deduction from probable premises. And the insights of both these
scholars can help us correct the neglect of concepts of evidence that has led
the 20th century theory of epistemic probability to its exaggerated emphasis
on concepts of decision.
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7

Allocations of Probability1

Glenn Shafer

Abstract. This paper studies belief functions, set functions which are normalized
and monotone of order ∞. The concepts of continuity and condensability are defined
for belief functions, and it is shown how to extend continuous or condensable belief
functions from an algebra of subsets to the corresponding power set. The main tool
used in this extension is the theorem that every belief function can be represented
by an allocation of probability—i.e., by a ∩-homomorphism into a positive and com-
pletely additive probability algebra. This representation can be deduced either from
an integral representation due to Choquet or from more elementary work by Revuz
and Honeycutt.

Key words: Belief function, Allocation of probability, Capacity, Upper and
lower probabilities, Condensability, Continuity

1 Belief Functions

In his pathbreaking “Theory of capacities,” Gustave Choquet (1953) estab-
lished the following definitions: a class E of subsets of a set Ω is a multiplicative
subclass of P(Ω) if A ∩ B is in E whenever A and B are in E , an additive
subclass of P(Ω) if A ∪ B is in E whenever A and B are in E . A real-valued
function g on a multiplicative subclass E is monotone of order n if

g(A) �
∑{

(−1)|I|+1
g (∩i∈IAi) |∅ 	= I ⊂ {I, · · · , n}

}

for every collection A,A1, · · · , An of elements of E such that A ⊃ Ai for all i,
monotone of order ∞ if it is monotone of order n for all n � 1. A real-valued
function g on an additive subclass E is alternating of order n if

g(A) �
∑{

(−1)|I|+1
g (∪i∈IAi) |∅ 	= I ⊂ {I, · · · , n}

}

1 This research was partially supported by NSF Grant GP43248.
AMS 1970 subject classifications. Primary 60A05; secondary 62A99.
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for every collection A,A1, · · · , An of elements of E such that A ⊂ Ai for all i;
alternating of order ∞ if it is alternating of order n for all n � 1.

We call a function f on a multiplicative subclass E of P(Ω) a belief function
if ∅ and Ω are in E , f(∅) = 0, f(Ω) = 1, and f is monotone of order ∞.
The condition that f be monotone of order ∞ implies in particular that f is
increasing; hence a belief function always takes values in the interval [0, 1]. The
name “belief function” derives from the thought that these functions might
be used to represent partial belief: if Ω is interpreted as a set of “possibilities”
and A is a subset of Ω, then f(A) might express one’s degree of belief that the
truth lies in A. In a recent monograph (1976a), I argue at length that belief
functions are useful and appropriate for the representation of partial belief,
and I study these functions in detail in the case where Ω is finite. This paper
develops tools for extending that study to the case where Ω is infinite.

We call a function f∗ on an additive subclass E∗ of P(Ω) an upper proba-
bility function if ∅ and Ω are in E , f∗(∅) = 0, f∗(Ω) = 1, and f∗ is alternating
of order ∞. Notice that if f is a belief function on E , then the function f∗

defined on the additive subclass E∗ = {A|A ∈ E} by f∗(A) = 1 − f(A) is an
upper probability function.

It will be shown in Sect. 5 below that a belief function f on a multiplicative
subclass E of P(Ω) can always be extended to a belief function on P(Ω). In
fact, it always has a canonical extension to P(Ω): namely, the belief function
f̄ on P(Ω) given by

f̄(A) = supΣ
{
(−1)|I|+1

f(∩i∈IAi)|∅ 	= I ⊂ {1, · · · , n}
}
,

where the supremum is taken over all n � 1 and all collections A1, · · · , An of
elements of E that are subsets of A. We call this extension canonical because
it is minimal; i.e., f̄ � g for any other belief function g on P(Ω) that extends
f . (In fact, f̄ � g for any other belief function g on P(Ω) such that f � g|E .)
This can also be expressed by saying that f̄ ’s upper probability function (f̄)∗

is the maximal extension of f∗; i.e., (f̄)∗ � g for any other upper probability
function g on P(Ω) that extends f∗.

In this paper we consider two regularity conditions for a belief function
over an infinite set Ω: continuity and condensability. We call a belief function
f on P(Ω) continuous if it satisfies

f(∩ iAi) = limi→∞ f(Ai) (1)

for every decreasing sequence A1 ⊃ A2 ⊃ · · · of subsets of Ω, and we call a
belief function on a proper multiplicative subclass of P(Ω) continuous if it can
be extended to a continuous belief function on P(Ω). We call a belief function
f on P(Ω) condensable if

f(∩Q) = infA∈Qf(A) (2)

for every downward net Q in P(Ω), and we call a belief function on a proper
multiplicative subclass of P(Ω) condensable if it can be extended to a con-
densable belief function on P(Ω). (A subset Q of P(Ω) is called a downward
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net if for every pair A1, A2 of elements of Q there exists an element A of Q
such that A ⊂ A1 ∩A2.)

Though condensability is a rather restrictive condition it is intimately
related to the idea of “weights of evidence” (see Shafer (1976a)) and to Demp-
ster’s rule for combining belief functions (see Shafer (1978)), and hence it
seems intuitively appropriate for belief functions that purport to represent
empirical knowledge. The weaker condition of continuity seems appropriate
in the case of partial beliefs arising from theoretical knowledge; it applies in
particular to the partial beliefs arising from knowledge of chances or “objective
probabilities.”

The conditions of continuity and condensability can also be stated in terms
of the upper probability function. A belief function f on P(Ω) is continuous if

f∗(∩iAi) = limi→∞ f∗(Ai)

for every increasing sequence A1 ⊂ A2 ⊂ · · · of subsets of Ω; it is condens-
able if

f∗(∪Q) = supA∈Qf
∗(A)

for every upward net Q ⊂ P(Ω), or equivalently, if

f∗(A) = sup {f∗(B)|B ⊂ A;B is finite} (3)

for all A ⊂ Ω. This last expression shows how strong a condition condensability
is; a condensable belief function on a power set is completely determined by
its upper probabilities for finite subsets.

Suppose f is a belief function on an algebra E of subsets of Ω or, more
generally, on a subset E of P(Ω) that is both a multiplicative and an additive
subclass. Then, as we see in Sect. 5 below, f is continuous if and only if it
satisfies (1) for every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E such
that ∩iAi is in E . And f is condensable if and only if for every A ∈ E and
every ε > 0 there exists a cofinite subset B of Ω such that A ⊂ B and f(C)−
f(A) < ε for all C ∈ E such that A ⊂ C ⊂ B. These theorems are proven by
showing how to extend a belief function satisfying one of these conditions to a
continuous (or condensable) belief function on P(Ω); the extensions exhibited
are canonical in the sense that they award each subset of Ω the minimal degree
of belief that is compelled by the adoption of f on E and by the hypothesis
of continuity (or condensability).

The most important tool we use in our study of the extension of belief
functions is the representation theorem presented in Sect. 3. This theorem
is a direct consequence of an integral representation due to Choquet (1953),
and it can also be deduced from more elementary work by Revuz (1955) and
Honeycutt (1971). (These scholars’ results are reviewed in Sect. 2.) The the-
orem says that every belief function can be represented by an allocation of
probability: i.e., that for every belief function f : E → [0, 1] there exists a
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complete Boolean algebra M, a positive and completely additive measure μ
on M, and a mapping ρ : E → M that preserves finite meets and satisfies
f = μ ◦ ρ. Notice the intuitive interpretation of this representation: the ele-
ments of M are portions of one’s belief or “probability,” and ρ(A) is the
portion of one’s probability that is “allocated” or committed to A.

In addition to helping us extend belief functions, the representation of
belief functions by allocations of probability also helps give intuitive content
to the idea of condensability. It is also useful in the study of Dempster’s rule
of combination and in the study of particular belief functions that arise in
connection with statistical inference.

2 ∩-homomorphisms

Suppose E is a multiplicative subclass of P(Ω) containing both ∅ and Ω,
and suppose F is a multiplicative subclass of P(X ) containing both ∅ and
X . We call r : E → F a ∩-homomorphism if r(∅) = ∅, r(Ω) = X , and
r(A ∩ B) = r(A) ∩ r(B) for all A,B ∈ E . (Cf. Choquet (1953), p. 197.) It is
easily seen that if f is a belief function and r is a ∩-homomorphism, then f ◦r
is also a belief function.

Since a finitely additive probability measure qualifies as a belief function,
this implies in particular that μ ◦ r is a belief function whenever r : E → F is
a ∩-homomorphism, F is an algebra, and μ is a finitely additive probability
measure on F . Probability measures being abundant and ∩-homomorphisms
being easy to construct, this fact enables us to construct an abundance of
belief functions. In fact, all belief functions can be obtained in this way:

Theorem 1. Suppose E is a multiplicative subclass of P(Ω) and f is a belief
function on E. Then there exists a set X , an algebra F of subsets of X , a
finitely additive probability measure μ on F , and a ∩-homomorphism r: E → F
such that f = μ ◦ r.

This theorem is due to Choquet; it is a direct consequence of his integral
representation theorem. It is also a direct consequence of a construction due
to Revuz (1955) and Honeycutt (1971).

In its simplest version Choquet’s integral representation theorem is merely
a sharpening of the Krein-Milman theorem (see Choquet (1969), Vol. II,
p. 117). It states that if L is a locally convex Hausdorff topological vector
space, U is a compact convex subset of L, and f ∈ U , then there exists a
Radon probability measure μ on U such that the support of U is contained in
the closure X of the extreme points of U and f is the resultant of μ. (In other
words, α(f) =

∫
X α(g)dμ(g) for every continuous linear function α : U → R.)

If we take L to be the vector space of all real-valued functions on E , endowed
with the topology of simple convergence, and let U ⊂ L be the set of all belief
functions on E , then the set of extreme points of U consists of the two-valued
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belief functions—those that take only the values zero and one. (See Choquet
(1953), pp. 260–261. Notice that the two-valued belief functions on E are in a
one-to-one correspondence with the filters in E ; a filter F ⊂ E corresponds to
the belief function which assigns degree of belief one to all elements of F and
degree of belief zero to all elements of E−F .) And this set is compact and hence
equal to its closure X . For each A ∈ E , the mapping αA : L → R : g → g(A)
is continuous and linear, and hence

f(A) = αA(f) =
∫

X
g(A) dμ(g)

= μ ({g ∈ X |g(A) = 1|}) .

That is to say, f = μ ◦ r, where r is the ∩-homomorphism given by r(A) =
{g ∈ X|g(A) = 1}.

In order to relate Theorem 1 to Revuz’ construction, set X = P(E) − ∅,
define r : E → P(X ) by r(A) = {B ∈ E|∅ 	= B ⊂ A}, and let F be the
algebra of subsets of X generated by the image r(E). Revuz’ work, as emended
by Honeycutt, shows how to construct, for a given belief function f on E , a
unique finitely additive probability measure μ on F such that f = μ ◦ r.

The measure μ obtained in Choquet’s proof is countably additive (in fact,
it is a Radon measure), but the ∩-homomorphism r obtained in this proof
need not preserve infinite intersections. In the Revuz-Honeycutt construction,
on the other hand, the ∩-homomorphism r preserves arbitrary intersections
(provided these intersections are in E), but the measure μ need not be count-
ably additive.

3 Allocations of Probability

As it turns out, it is both useful and intuitively appealing to replace the mea-
sure space (X ,F , μ) of the preceding representation by a probability algebra:
i.e., a complete Boolean algebra that has associated with it a positive and
completely additive probability measure. In this section we show that every
belief function can be represented by a ∩-homomorphism into a probability
algebra. We call such ∩-homomorphisms allocations of probability.

Some notation and nomenclature: we denote a probability algebra M’s
zero by Λ, its unit by V. We use the symbols ∧,∨ and � to denote meet,
join and majorization in M, reserving the analogous symbols ∩,∪ and ⊂
for their set-theoretic roles. To say that the measure μ on M is positive is
to say that μ(M) > 0 for every nonzero element M of M. To say that it
is completely additive is to say that μ(∨B) = ΣM∈Bμ(M) whenever B is a
collection of pairwise disjoint elements of M. And when we say ρ : E → M
is a ∩-homomorphism, we mean, of course, that ρ(ϕ) = Λ, ρ(Ω) = V, and
ρ(A ∩B) = ρ(A) ∧ ρ(B).

The condition that the measure μ on a probability algebra M be both
positive and completely additive implies in particular that M must satisfy
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the countable chain condition: every collection of pairwise disjoint elements
of M is countable. And using this statement one can further deduce that
every subset B of M must have a countable subset C such that ∨B = ∨C,
that μ(∨B) = supM∈B μ(M) for every upward net B in M, and that
μ(∧B) = infM∈B μ(M) for every downward net B in M. (See pp. 61–69 of
Halmos (1963).)

Theorem 2. Suppose f is a belief function on a multiplicative subclass E.
Then there exists an allocation of probability ρ : E →M such that f = μ ◦ ρ,
where μ is the measure associated with the probability algebra M.

Proof. Recall that if M0 is a σ-algebra of subsets and μ0 is a countably addi-
tive probability measure onM0, then a probability algebra can be constructed
by taking the quotient of M0 by the σ-ideal I consisting of all sets in M0

of μ0-measure zero; this quotient M = M0/I is a complete Boolean algebra
and the measure μ that μ0 induces on M is positive and completely additive.
The projection π : M0 → M satisfies μ0 = μ ◦ π; and since it is a Boolean
homomorphism, it is in particular a ∩-homomorphism. (For details, again see
Halmos (1963).)

Since f is a belief function, Choquet’s integral representation supplies us
a σ-algebra M0, a countably additive probability measure μ0 on M0, and a
∩-homomorphism r : E →M0 satisfying f = μ0 ◦ r. Let M and π be defined
as in the preceding paragraph, and set ρ = π ◦ r. Then f = μ◦ρ, and ρ, being
the composition of two ∩-homomorphisms, is itself a ∩-homomorphism and
hence an allocation of probability.

(Notice that the appeal to Choquet’s integral representation could be
replaced by a more elementary approach based on Revuz’ construction. That
construction yields a ∩-homomorphism r : E → M1, where M1 is merely an
algebra with a finitely additive probability measure μ1. But the Stone repre-
sentation theorem could be used to construct a σ-algebra M0, a countably
additive measure μ0, and a Boolean homomorphism g :M1 →M0 such that
μ1 = μ0 ◦ g.)

The representation of a belief function f by an allocation ρ can be
much more useful in theoretical discussions than the representation by a ∩-
homomorphism into the algebra of a measure space, particularly if one is
concerned with the conditions of continuity and condensability. For example:

Theorem 3. Suppose ρ : P(Ω) → M is an allocation for the belief function
f. Then f is continuous if and only if

ρ(∩iAi) = ∧iρ(Ai) (4)

for every sequence A1, A2, · · · of subsets of Ω. And f is condensable if and
only if

ρ(∩Q) = ∧A∈Qρ(A) (5)

for every nonempty subset Q of P(Ω).
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The proof of this theorem is straightforward and directly yields a gener-
alization to the case of an allocation ρ for a belief function on an arbitrary
multiplicative subclass E of P(Ω): in this case we may say that (1) holds for
every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E whose intersection
is in E if and only if (4) holds for every sequence A1, A2, · · · of elements of E
whose intersection is in E ; and that (2) holds for every downward net Q ⊂ E
whose intersection is in E if and only if (5) holds for every subset Q of E whose
intersection is in E .

The representation of a belief function by an allocation of probability ρ into
a probability algebra M is intuitively meaningful because nonzero elements
of M can be thought of as “probability masses” or “portions of belief,” and
ρ(A) can be thought of as the (total) portion of belief one commits to A. The
defining characteristics of an allocation of probability suit this interpretation;
it seems reasonable to require that the measure of a portion of belief should
always be positive, that the measures of disjoint portions should add, and
that the portion committed to A∩B should include all of what is committed
both to A and to B.

The notion of an allocation also lends itself to a geometric intuition. Sup-
pose, for example, that ρ is an allocation from a power set P(Ω) into a prob-
ability algebra M. Then think of the probability represented by M as spread
over the set Ω. But instead of distributing this probability in a fixed way, allow
it a limited freedom of movement: require that a probability mass M ∈M be
constrained to remain inside a set A ⊂ Ω if and only if M � ρ(A). This makes
geometric sense: if we write “M ct A” to indicate that M is constrained to A,
then we find that M ct A and M ct B imply M ct A ∩B, that M ct A and
N ct A imply M ∨N ct A, etc.

Occasionally, it is convenient to shift our attention from an allocation
ρ : E → M to the mapping ζ : E∗ → M defined by ζ(A) = ρ(A). We call ζ
an allowment of probability for f = μ ◦ ρ; it is dual to ρ in that it satisfies
f∗ = μ ◦ ζ and preserves joins rather than meets. Notice that in terms of the
geometric intuition associated with an allocation, ζ(A) = ρ(Ā) is the total
probability mass that is not constrained to Ā; i.e., the total probability mass
that is allowed to move into A.

4 Condensability

The intuition associated with an allocation of probability on a power set P(Ω)
acquires its full force only when that allocation is condensable, for it is only
in that case that a probability mass committed to each of a collection B of
subsets of Ω is necessarily committed to the intersection ∩ B. Indeed, if f is
a belief function on P(Ω) with allocation ρ : P(Ω) → M and allowment ζ :
P(Ω) →M, then the following conditions are all equivalent to the statement
that f is condensable:

(1) ρ(∩B) = ∧B∈B(B) for all B ⊂ P(Ω).
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(2) If B ⊂ P(Ω),M ∈M, and M ct B for each B ∈ B, then M ct ∩ B.
(3) ζ(∪B) = ∨B∈Bζ(B) for all B ⊂ P(Ω).
(4) If ∅ 	= A ⊂ Ω, then there exists a sequence ω1, ω2, · · · of elements of A and

a countable disjoint partition M1,M2, · · · of ζ(A) such that Mi � ζ({ωi})
for each i.

(5) There exists a mapping λ : M → P(Ω) such that an element M of M
and a subset A of Ω satisfy M ct A if and only if λ(M) ⊂ A.

Notice the geometric interpretation of (4) and (5). For each M ∈ M, λ(M)
is the smallest subset of Ω to which all of M is constrained. And (4) demands
sufficient freedom of movement for the probability mass ζ(A) to allow any
diffusion, or “continuous” distribution, to be reversed: it must be possible for
ζ(A) to “condense” into a countable number of discrete probability masses,
each still located within A.

5 The Canonical Extension of Belief Functions

Given a belief function f on a multiplicative subclass E of P(Ω), we define f̄
on P(Ω) by setting

f̄(A) = sup
{
Σ(−1)|I|+1f(∩i∈IAi)|∅ 	= I ⊂ {1, · · · , n}

}
, (6)

where the supremum is taken over all n � 1 and all collections A1, A2, · · ·An
of elements of E that are subsets of A.

Notice that if E is an additive as well as a multiplicative subclass, then (6)
reduces to

f̄(A) = sup {f(B)|B ∈ E ;B ⊂ A} . (7)

In this case we define f̃ and f̂ on P(Ω) by

f̃(A) = sup {limi→∞ f(Ai)|A1 ⊃ A2 ⊃ · · · ∈ E ;∩ Ai ⊂ A} (8)

and
f̂(A) = inf

{
f̄(B)|B ⊂ Ω is cofinite; A ⊂ B

}
. (9)

Theorem 4. Suppose f is a belief function on a multiplicative subclass E of
P(Ω).

(1) f̄ is a belief function, and f = f̄ |E. Furthermore,

f̄ = inf{g|g is a belief function on P(Ω) and g|E = f}.

(2) Suppose E is an additive as well as a multiplicative subclass. Then f is
continuous if and only if

f (∩iAi) = limi→∞ f(Ai) (10)
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for every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E such
that ∩iAi ∈ E. If f is continuous, then f̃ is a continuous belief function,
f = f̃ |E, and

f̃ = inf {g|g is a continuous belief function on P(Ω) and g|E = f} .

If f is continuous and E is closed under countable intersections, then
f̃ = f̄ .

(3) Suppose E is an additive as well as a multiplicative subclass. Then f is
condensable if and only if for every A ∈ E and every ε > 0 there exists a
cofinite subset B of Ω such that A ⊂ B and f(C)−f(A) < ε for all C ∈ E
such that A ⊂ C ⊂ B. If f is condensable, then f̂ is a condensable belief
function, f = f̂ |E, and

f̂ = inf {g|g is a condensable belief function on P(Ω) and g|E = f} .

If f is condensable and E is closed under arbitrary unions and intersec-
tions, then f̂ = f̄ .

Proof. Let ρ : E →M be an allocation of probability for f , and let μ denote
the measure on M.

(1) Define ρ̄ : P(Ω) → M by ρ̄(A) = ∨{ρ(B)|B ∈ E ;B ⊂ A}. It is easily
verified that ρ̄ is an allocation and that f̄ = μ ◦ ρ̄; hence f̄ is a belief
function. The other assertions in (1) are then obvious.

(2) It is clear that if f is continuous, then (10) holds. Suppose, on the other
hand, that (10) holds.

For each A ⊂ Ω, define D(A) ⊂M by

D(A) = {∧B∈Bρ (B) |B is a countable subset of E ;∩ B ⊂ A} .

Notice that D(A) is an upward net in M. (If M1 and M2 are the elements
of D(A) corresponding to subsets B1 and B2 of E , then B ≡ {B1 ∪ B2|B1 ∈
B1;B2 ∈ B2} will also be countable subset of E with ∩ B ⊂ A, and the
element of D(A) corresponding to B will majorize both M1 and M2.) Define
ρ̃ : P(Ω) → M by ρ̃(A) = ∨D(A). We will show that ρ̃ is a continuous
allocation, that f̃ = μ ◦ ρ̃, and that ρ̃|E = ρ; the assertions of (2) will then be
obvious.

The relation ρ̃|E = ρ follows from the fact that

ρ (∩B) = ∧B∈Bρ (B)

whenever B ∈ E is countable and ∩ B ∈ E . (See the comment following
Theorem 3.2.) For in the case where B ⊂ E and ∩ B ⊂ A ∈ E , we there-
fore have

∧B∈Bρ (B) � ∧B∈Bρ (A ∪B) = ρ (∩B∈B (A ∪B)) = ρ(A).
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To verify that f̃ = μ ◦ ρ̃, we must notice that for any sequence A1, A2, · · ·
in E there is a decreasing sequence B1, B2, · · · , defined by

Bi = A1 ∩ · · · ∩Ai,

which satisfies both ∩iBi = ∩iAi and ∧iρ(Bi) = ∧ iρ(Ai). Hence

D(A) = {∧iρ (Ai) |A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A} .

And since D(A) is an upward net, it follows that

μ (ρ̃(A))) = μ(∨D(A))
= supM∈D(A) μ(M)

= sup {μ (∧iρ (Ai)) |A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A}
= sup {limi→∞ f(Ai)|A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A}
= f̃(A).

The fact that ρ̃|E = ρ means in particular that ρ̃(∅) = Λ and ρ̃(Ω) = V.
So in order to show that ρ̃ is a continuous allocation, we need only show that
it preserves countable meets; i.e., that

ρ̃ (∩iAi) = ∧iρ̃(Ai),

or

∨D (∩iAi) = ∧ ∨ D (Ai)

for any sequence A1, A2, · · · of subsets of Ω. To this end, we fix the sequence
A1, A2, · · · and simplify our notation by setting D ≡ D(∩iAi),Di ≡ D(Ai)
and M ≡ ∧i ∨Di. Our task is then to show that ∨D = M . And since D ⊂ Di
for each i, the relation ∨D � ∧i ∨ Di = M is immediate, and it remains only
to show that ∨D � M .

Since Di is an upward net, it will include an element that arbitrarily nearly
covers its meet ∨Di. In particular, if ε > 0 then we can choose Mi ∈ Di
such that

μ (∨Di −Mi) � ε

2i
.

(proof. By the countable chain condition, Di has a countable subset Ei such
that ∨Ei = ∨Di. Since Di is an upward net, Ei may be taken as an increasing
sequence, and then the continuity of μ assures that an element sufficiently far
along in this sequence will have measure within ε/2i of the measure of ∨Di.)
Since M � ∨Di, we also have

μ (M −Mi) � ε

2i
.
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Fix ε > 0 and choose such an Mi ∈ Di for each i. And let Bi be a countable
subset of E such that ∩ Bi ⊂ Ai and Mi = ∧B∈Biρ(B). Set Bε = ∪iBi and
Mε = ∧iMi. Then ∩ Bε ⊂ ∩iAi, and

Mε = ∧i(∧B∈Biρ(B)) = ∧B∈Bερ(B);

thus Mε ∈ D, so that Mε � ∨D. Since

μ (M −Mε) = μ (∨i(M −Mi)) � ε

it follows that ∨D includes all but at most ε of M . And since ε is arbitrary,
this yields the conclusion that ∨D � M .

(3) Suppose f is condensable. Then there exists a condensable belief function
g on P(Ω) such that f = g|E . Since g is condensable,

g(A) = inf {g(B)|B ⊂ Ω is cofinite; A ⊂ B} . (11)

(Cf. (3).) It follows that for all A ∈ E and all ε > 0, there exists a cofinite
subset B of Ω such that A ⊂ B and f(C) − f(A) < ε for all C ∈ E such
that A ⊂ C ⊂ B.

Suppose, on the other hand, that the condition of the preceding sentence
is met. Then we define ρ̂ : P(Ω)→ μ by

ρ̂(A) = ∧{ρ̄(B)|B ⊂ Ω in confinite;A ⊂ B} .

It is clear that f̂ = μ◦ρ̂. We will show that ρ̂|E = ρ and that ρ̂ is a condensable
allocation.

Suppose A ∈ E . Clearly ρ̂(A) � ρ(A). In order to show that ρ̂(A) = ρ(A),
we fix ε > 0 and choose a cofinite subset Bε of Ω such that A ⊂ Bε and
f(C)− f(A) < ε/2 for all C ∈ E such that A ⊂ C ⊂ Bε. Then

ρ(A) = ∧{∨{ρ(C)|C ∈ E ;C ⊂ B} |B ⊂ Ω is confinite; A ⊂ B}
= ∧{∨{ρ(C)|C ∈ E ; A ⊂ C ⊂ B} |B ⊂ Ω is confinite; A ⊂ B}
� ∨{ρ(C)|C ∈ E ; A ⊂ C ⊂ Bε} .

Denote this last element of M by Mε. Since {ρ(C)|C ∈ E ;A ⊂ C ⊂ Bε} is
an upward net, we may choose Cε ∈ E such that A ⊂ C ⊂ Bε and μ(Mε) −
f(Cε) = μ(Mε − ρ(Cε)) < ε/2. Since Mε � ρ̂(A) � ρ(A), we have

μ(ρ̂(A))− ρ(A)) � μ(Mε − ρ(A)) = |μ(Mε)− f(A)|
= |μ (Mε)− f (Cε) + f (Cε)− f (A)|

<
ε

2
+
ε

2
= ε.

And since ε may be chosen arbitrarily small, this means μ(ρ̂(A)− ρ(A)) = 0,
or ρ̂(A) = ρ(A). So ρ̂|E = ρ.
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The fact that ρ̂|E = ρ means in particular that ρ̂(∅) = Λ and ρ̂(Ω) = V .
So in order to show that ρ̂ is a condensable allocation, we need only show
that it preserves arbitrary meets. Fix a subset B of E . A cofinite subset of Ω
contains ∩ B if and only if it contains some finite intersection of elements of
B, and it does this if and only if it itself is the intersection of a finite number
of cofinite subsets of Ω, each of which contains some element of B. Hence

ρ̂(∩B) = ∧{ρ̄(C)|C ⊂ Ω is cofinite;∩ B ⊂ C}
= ∧{ρ̄(C1 ∩ · · · ∩ Cn)|n � 1;C1, · · · , Cn are

confinite subsets of Ω, each containing some
element of B}

= ∧{ρ̄(C1) ∧ · · · ∧ ρ̄(Cn)|n � 1;C1, · · · , Cn
are confinite subsets of Ω, each containing
some element of B}

= ∧{ρ̄(C)|C ⊂ Ω is confinite; C containing some
element of B}

= ∧B∈Bρ̂(B).

So ρ̂ is a condensable allocation.
Suppose g is a condensable belief function on P(Ω) and g|E = f . Then

g � f̄ by (1), and comparison of (9) and (11) shows that g � f̂ .
Finally, suppose E is closed under arbitrary unions and intersections. Then

a mapping θ : P(Ω) → E may be defined by θ(A) = ∪{B|B ∈ E , B ⊂ A}.
This mapping satisfies f̄ = f ◦ θ and preserves arbitrary intersections. So if B
is a downward net in P(Ω), then {θ(B)|B ∈ B} is a downward net in E . Using
all these facts, together with the condensability of f , we obtain

f̄(∩ B) = f(θ(∩ B)) = f(∩B∈Bθ(B))
= infB∈Bf(θ(B)) = infB∈Bf̄(B)

for any downward net B in P(Ω). Thus f̄ is condensable. It follows that f̄ = f̂ .
The belief function f̄ assigns to each subset of Ω only the degree of belief

that f forces it to assign, and it is therefore the belief function on P(Ω) that
we will adopt if our knowledge about Ω is limited to what f says about E .
(See Chap. 6 of Shafer (1976a) for further discussion.) Hence we may call f̄
the canonical extension of f to P(Ω).

Similarly, let us call a continuous belief function h on P(Ω) the canonical
continuous extension of f to P(Ω) in the case where f is continuous and

h = inf {g|g is a continuous belief function on P(Ω) and g|E = f} .

And let us call a condensable belief function h on P(Ω) the canonical con-
densable extension of f to P(Ω) in the case where f is condensable and
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h = inf {g|g is a condensable belief function on P(Ω) and g|E = f} .

Theorem 4 tells us that canonical continuous and condensable extensions
always exist when E is an additive as well as a multiplicative subclass; it
is an interesting open question whether they always exist when E is merely a
multiplicative subclass.

The notion of canonical extension generalizes to the case of larger multi-
plicative subclasses that fall short of the whole power set; if E1 ⊂ E2 are both
multiplicative subclasses of P(Ω) and f is a belief function on E1, then it is
evident that

f̄ |E2 = inf {g|g is a belief function on E2 and g|E1 = f} ,

and hence we may call f̄ |E2 the canonical extension of f to E2.
Notice that this process of canonical extension is consistent: if E2 ⊂ E3, then

the canonical extension to E3 of f is the canonical extension to E3 of the canonical
extension to E2 of f . If E1 ⊂ E2 and a belief function f on E2 is the canonical
extension to E2 of its restriction f |E1, we say that f is discerned by E1.

It should be pointed out that the “possibilities” in a set Ω can always be
split into more fully described possibilities, so that P(Ω) is rendered merely
a complete subalgebra of a larger power set. (See Chap. 6 of Shafer (1976a).)
Thus power sets must share with all complete algebras any special status
they can claim as domains for belief functions. It is reassuring, therefore,
that the canonical extension of a belief function f from a complete algebra
coincides with the canonical continuous extension if f is continuous and with
the canonical condensable extension if f is condensable.

As the reader may have noticed, the formula for f̃ in Theorem 4 gives the
usual inner measure when applied to a continuous (i.e., countably additive)
probability measure f on an algebra E , and in particular gives the unique
extension of f to a continuous probability measure on the σ-algebra Ẽ gen-
erated by E . But the canonical continuous extension of a continuous belief
function on an algebra E is not in general its only continuous extension, even
to Ẽ . To see that this is true, choose an algebra E ⊂ P(Ω) that contains no
singletons, but such that Ẽ contains all the singletons in P(Ω). (For example,
set Ω = [0, 1) and let E consist of all finite unions of left-closed, right-open
subintervals on Ω.) And let f be the vacuous belief function on E ; i.e., the
belief function that assigns degree of belief zero to every proper subset of Ω
in E . Then the canonical continuous extension of E to Ẽ is simply the vacuous
belief function on Ẽ . But for every ω ∈ Ω, the two-valued belief function on
Ẽ corresponding to the principal filter (Ω,Ω − {ω}) ⊂ Ẽ is also a continuous
extension of f .

The method of defining f̂ will appear familiar to some readers; it is anal-
ogous to Choquet’s method of extending a capacity. It does not appear, how-
ever, that (3) of Theorem 4 can be cast as a special case of Choquet’s results
on the extension of capacities. (See pp. 158–164 of Choquet (1969).)
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If the multiplicative subclass E is not closed under countable intersections,
then we can easily construct a continuous two-valued belief function f on E
such that f̃ 	= f̄ . We simply choose a sequence A1, A2, · · · in E such that
∩iAi 	∈ E and let f be the two-valued belief function corresponding to the
principal filter {A ∈ E|∩iAi ⊂ A}, so that f̄(∩iAi) = 0 but f̃(∩iAi) = 1. If E
is not closed under arbitrary intersections, then one can similarly construct a
condensable two-valued belief function f such that f̂ 	= f̄ .
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Computational Methods for A Mathematical
Theory of Evidence ∗†

Jeffrey A. Barnett

Abstract. Many knowledge-based expert systems employ numerical schemes to
represent evidence, rate competing hypotheses, and guide search through the
domain’s problem space. This paper has two objectives: first, to introduce one such
scheme, developed by Arthur Dempster and Glen Shafer, to a wider audience; sec-
ond, to present results that can reduce the computation-time complexity from expo-
nential to linear, allowing this scheme to be implemented in many more systems.
In order to enjoy this reduction, some assumptions about the structure of the type
of evidence represented and combined must be made. The assumption made here is
that each piece of the evidence either confirms or denies a single proposition rather
than a disjunction. For any domain in which the assumption is justified, the savings
are available.

1 Introduction

How should knowledge-based expert systems reason? Clearly, when domain-
specific idiosyncratic knowledge is available, it should be formalized and used
to guide the inference process. Problems occur either when the supply of easy-
to-formalize knowledge is exhausted before our systems pass the “sufficiency”
test or when the complexity of representing and applying the knowledge is
beyond the state of our system building technology. Unfortunately, with the
current state of expert-system technology, this is the normal, not the excep-
tional case.

At this point, a fallback position must be selected, and if our luck holds, the
resulting system exhibits behavior interesting enough to qualify as a success.
∗ From Proceedings of the Seventh International Conference on Artificial Intelli-

gence, 1981, 868–875.
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Typically, a fallback position takes the form of a uniformity assumption allow-
ing the utilization of a non-domain-specific reasoning mechanism: for example,
the numerical evaluation procedures employed in mycin [17] and internist [14],
the simplified statistical approach described in [10], and a multivalued logic
in [18]. The hearsay-ii speech understanding system [13] provides another
example of a numerical evaluation and control mechanism—however, it is
highly domain-specific.

Section 2 describes another scheme of plausible inference, one that
addresses both the problem of representing numerical weights of evidence and
the problem of combining evidence. The scheme was developed by Arthur
Dempster [3, 4, 5, 6, 7, 8, 9], then formulated by his student, Glen Shafer
[15, 16], in a form that is more amenable to reasoning in finite discrete domains
such as those encountered by knowledge-based systems. The theory reduces
to standard Bayesian reasoning when our knowledge is accurate but is more
flexible in representing and dealing with ignorance and uncertainty. Section 2
is a review and introduction. Other work in this area is described in [12].

Section 3 notes that direct translation of this theory into an implemen-
tation is not feasible because the time complexity is exponential. However, if
the type of evidence gathered has a useful structure, then the time complexity
issue disappears. Section 4 proposes a particular structure that yields linear
time complexity. In this structure, the problem space is partitioned in several
independent ways and the evidence is gathered within the partitions. The
methodology also applies to any domain in which the individual experiments
(separate components of the evidence) support either a single proposition or
its negation.

Section 5 and 6 develop the necessary machinery to realize linear time
computations. It is also shown that the results of experiments may vary over
time, therefore the evidence need not be monotonic. Section 7 summarizes the
results and notes directions for future work in this area.

2 The Dempster-shafer Theory

A theory of evidence and plausible reasoning is described in this section. It is
a theory of evidence because it deals with weights of evidence and numerical
degrees of support based upon evidence. Further, it contains a viewpoint on
the representation of uncertainty and ignorance. It is also a theory of plausible
reasoning because it focuses on the fundamental operation of plausible rea-
soning, namely the combination of evidence. The presentation and notation
used here closely parallels that found in [16].

After the formal description of how the theory represents evidence is pre-
sented in Sect. 2.1, an intuitive interpretation is given in Sect. 2.2, then a
comparison is made, in Sect. 2.3, to the standard Bayesian model and sim-
ilarities and differences noted. The rule for combining evidence, Dempster’s
orthogonal sum, is introduced in Sect. 2.4 and compared to the Bayesians’



8 Computational Methods for A Mathematical Theory of Evidence 199

method of conditioning in Sect. 2.5. Finally, Sect. 2.6 defines the simple and
separable support functions. These functions are the theory’s natural repre-
sentation of actual evidence.

2.1 Formulation of the Representation of Evidence

Let Θ be a set of propositions about the exclusive and exhaustive possibilities
in a domain. For example, if we are rolling a die, Θ contains the six proposi-
tions of the form ‘the number showing is i’ where 1 ≤ i ≤ 6. Θ is called the
frame of discernment and 2Θ is the set of all subsets of Θ. Elements of 2Θ, i.e.,
subsets of Θ, are the class of general propositions in the domain; for example,
the proposition ‘the number showing is even’ corresponds to the set of the
three elements of Θ that assert the die shows either a 2, 4, or 6.

The theory deals with refinings, coarsenings, and enlargements of frames
as well as families of compatible frames. However, these topics are not pursued
here—the interested reader should see [16] where they are developed.

A function Bel : 2Θ → [0, 1], is a belief function if it satisfies Bel(∅) = 0,
and for any collection, A1, . . . , An, of subsets of Θ,

Bel(A1 ∪ · · · ∪An) ≥
∑

I⊆{1...n}
I �=∅

(−1)|I|+1Bel(
⋂

i∈I
Ai).

A belief function assigns to each subset of Θ a measure of our total belief in
the proposition represented by the subset. The notation, |I|, is the cardinality
of the set I.

A function m : 2Θ → [0, 1] is called a basic probability assignment if it
satisfies m(φ) = 0 and

∑

A⊆Θ
m(A) = 1.

The quantity, m(A), is called A’s basic probability number ; it represents our
exact belief in the proposition represented by A. The relation between these
concepts and probabilities are discussed in Sect. 2.3. If m is a basic probability
assignment, then the function defined by

Bel(A) =
∑

B⊆A
m(B), for all A ⊆ Θ (1)

is a belief function. Further, if Bel is a belief function, then the function defined
by

m(A) =
∑

B⊆A
(−1)|A−B|Bel(B) (2)
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is a basic probability assignment. If equations (1) and (2) are composed in
either order, the result is the identity-transformation. Therefore, there cor-
responds to each belief function one and only one basic probability assign-
ment. Conversely, there corresponds to each basic probability assignment one
and only one belief function. Hence, a belief function and a basic probability
assignment convey exactly the same information.

Other measures are useful in dealing with belief functions in this theory. A
functionQ : 2Θ → [0, 1] is a commonality function if there is a basic probability
assignment, m, such that

Q(A) =
∑

A⊆B
m(B) (3)

for all A ⊆ Θ. Further, if Q is a commonality function, then the function
defined by

Bel(A) =
∑

B⊆¬A
(−1)|B|Q(B)

is a belief function. From this belief function, the underlying basic probability
assignment can be recovered using (2); if this is substituted into (3), the
original Q results. Therefore, the sets of belief functions, basic probability
assignments, and commonality functions are in one-to-one correspondence and
each representation conveys the same information as any of the others.

Corresponding to each belief function are two other commonly used quan-
tities that also carry the same information. Given a belief function Bel, the
function Dou(A) = Bel(¬A), is called the doubt function and the function
P�(A) = 1−Dou(A) = 1− Bel(¬A), is called the upper probability function.

For notational convenience, it is assumed that the functions Bel, m, Q,
Dou, and P� are each derived from one another. If one is subscripted, then
all others with the same subscript are assumed to be derived from the same
underlying information.

2.2 An Interpretation

It is useful to think of the basic probability number, m(A), as the measure of
a probability mass constrained to stay in A but otherwise free to move. This
freedom is a way of imagining the noncommittal nature of our belief, i.e.,
it represents our ignorance because we can not further subdivide our belief
and restrict the movement. Using this allusion, it is possible to give intuitive
interpretations to the other measures appearing in the theory.

The quantity Bel(A) =
∑

[B⊆A]m(B) is the measure of the total proba-
bility mass constrained to stay somewhere in A. On the other hand, Q(A) =∑

[A⊆B]m(B) is the measure of the total probability mass that can move
freely to any point in A. It is now possible to understand the connotation
intended in calling m the measure of our exact belief and Bel the measure of
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our total belief. If A ⊆ B ⊆ Θ, then this is equivalent to the logical state-
ment that A implies B. Since m(A) is part of the measure Bel(B), but not
conversely, it follows that the total belief in B is the sum of the exact belief
in all propositions that imply B plus the exact belief in B itself.

With this interpretation of Bel, it is easy to see that Dou(A) = Bel(¬A) is
the measure of the probability mass constrained to stay out of A. Therefore,
P�(A) = 1 − Dou(A) is the measure of the total probability mass that can
move into A, though it is not necessary that it can all move to a single point,
hence P�(A) =

∑
[A∩B �=∅]m(B) is immediate. It follows that P�(A) ≥ Bel(A)

because the total mass that can move into A is a superset of the mass con-
strained to stay in A.

2.3 Comparison with Bayesian Statistics

It is interesting to compare this and the Bayesian model. In the latter, a
function p : Θ → [0, 1] is a chance density function if

∑
[a∈Θ] p(a) = 1; and

the function Ch: 2Θ → [0, 1] is a chance function if Ch(∅) = 0, Ch(Θ) = 1,
and Ch(A∪B) = Ch(A) + Ch(B) when A∩B = ∅. Chance density functions
and chance functions are in one-to-one correspondence and carry the same
information. If Ch is a chance function, then p(a) = Ch({a}) is a chance
density function; conversely, if p is a chance density function, then Ch(A) =∑

[a∈A] p(a) is a chance function.
If p is a chance density function and we define m({a}) = p(a) for all a ∈ Θ

and make m(A) = 0 elsewhere, then m is a basic probability assignment and
Bel(A) = Ch(A) for all A ∈ 2Θ. Therefore, the class of Bayesian belief func-
tions is a subset of the class of belief functions. Basic probability assignments
are a generalization of chance density functions while belief functions assume
the role of generalized chance functions.

The crucial observation is that a Bayesian belief function ties all of its
probability masses to single points in Θ, hence there is no freedom of motion.
This follows immediately from the definition of a chance density function and
its correspondence to a basic probability assignment. In this case, P� = Bel
because, with no freedom of motion, the total probability mass that can move
into a set is the mass constrained to stay there.

What this means in practical terms is that the user of a Bayesian belief
function must somehow divide his belief among the singleton propositions.
In some instances, this is easy. It we believe that a fair die shows an even
number, then it seems natural to divide that belief evenly into three parts. If
we don’t know or don’t believe the die is fair, then we are stuck.

In other words, there is trouble representing what we actually know with-
out being forced to overcommit when we are ignorant. With the theory
described here there is no problem—just let m(even) measure the belief and
the knowledge that is available. This is not to say that one should not use
Bayesian statistics. In fact, if one has the necessary information, I know of
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no other proposed methodology that works as well. Nor are there any serious
philosophical arguments against the use of Bayesian statistics. However, when
our knowledge is not complete, as is often the case, the theory of Dempster
and Shafer is an alternative to be considered.

2.4 The Combination of Evidence

The previous sections describe belief functions, the technique for representing
evidence. Here, the theory’s method of combining evidence is introduced. Let
m1 and m2 be basic probability assignments on the same frame, Θ, and define
m = m1 ⊕m2, their orthogonal sum, to be m(∅) = 0 and

m(A) = K
∑

X∩Y=A

m1(X) ·m2(Y )

K−1 = 1−
∑

X∩Y=∅
m1(X) ·m2(Y ) =

∑

X∩Y �=∅
m1(X) ·m2(Y ),

when A 	= ∅. The function m is a basic probability assignment if K−1 	= 0; if
K−1 = 0, then m1⊕m2 does not exist and m1 and m2 are said to be totally or
flatly contradictory. The quantity logK = Con(Bel1,Bel2) is called the weight
of conflict between Bel1 and Bel2. This formulation is called Dempster’s rule
of combination.

It is easy to show that if m1, m2, and m3 are combinable, then m1⊕m2 =
m2⊕m1 and (m1⊕m2)⊕m3 = m1⊕ (m2⊕m3). If v is the basic probability
assignment such that v(Θ) = 1 and v(A) = 0 when A 	= Θ, then v is called
the vacuous belief function and is the representation of total ignorance. The
function, v, is the identity element for ⊕, i.e., v ⊕m1 = m1.

Figure 1 is a graphical interpretation of Dempster’s rule of combination.
Assume m1(A),m1(B) 	= 0 and m2(X),m2(Y ),m2(Z) 	= 0 and that m1

and m2 are 0 elsewhere. Then m1(A) + m1(B) = 1 and m2(X) + m2(Y ) +
m2(Z) = 1. Therefore, the square in the figure has unit area since each side
has unit length. The shaded rectangle has area m1(B) · m2(Y ) and belief
proportional to this measure is committed to B ∩ Y . Thus, the probability
number m(B∩Y ) is proportional to the sum of the areas of all such rectangles
committed to B∩Y . The constant of proportionality,K, normalizes the result
to compensate for the measure of belief committed to ∅. Thus, K−1 = 0 if
and only if the combined belief functions invest no belief in intersecting sets;
this is what is meant when we say belief functions are totally contradictory.

Using the graphical interpretation, it is straightforward to write down
the formula for the orthogonal sum of more than two belief functions. Let
m = m1 ⊕ · · · ⊕mn, then m(∅) = 0 and

m(A) = K
∑

∩Ai=A

∏

1≤i≤n
mi(Ai) (4)

K−1 = 1−
∑

∩Ai=∅

∏

1≤i≤n
mi(Ai) =

∑

∩Ai �=∅

∏

1≤i≤n
mi(Ai)
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UNIT SQUARE
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Fig. 1. Graphical representation of an orthogonal sum

when A 	= ∅. As above, the orthogonal sum is defined only if K−1 	= 0 and
the weight of conflict is logK.

Since Bel, m, Q, Dou, and P� are in one-to-one correspondence, the nota-
tion Bel = Bel1 ⊕ Bel2, etc., is used in the obvious way. It is interesting to
note that if Q = Q1 ⊕Q2, then Q(A) = KQ1(A)Q2(A) for all A ⊆ Θ where
A 	= ∅.

2.5 Comparison with Conditional Probabilities

In the Bayesian theory, the function Ch(·|B) is the conditional chance func-
tion, i.e., Ch(A|B) = Ch(A ∩ B)/Ch(B), is the chance that A is true given
that B is true. Ch(·|B) is a chance function. A similar measure is available
using Dempster’s rule of combination.

Let mB(B) = 1 and let mB be 0 elsewhere. Then BelB, is a belief
function that focuses all of our belief on B. Define Bel(·|B) = Bel ⊕ BelB.
Then [16] shows that P�(A|B) = P�(A ∩ B)/P�(B); this has the same
form as the Bayesians’ rule of conditioning, but in general, Bel(A|B) =
(Bel(A∪¬B)−Bel(¬B))/(1−Bel(¬B)). On the other hand, if Bel is a Bayesian
belief function, then Bel(A|B) = Bel(A ∩B)/Bel(B).

Thus, Dempster’s rule of combination mimics the Bayesians’ rule of condi-
tioning when applied to Bayesian belief functions. It should be noted, however,
that the function BelB is not a Bayesian belief function unless |B| = 1.
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2.6 Simple and Separable Support Functions

Certain kinds of belief functions are particularly well suited for the represen-
tation of actual evidence, among them are the classes of simple and separable
support functions. If there exists an F ⊆ Θ such that Bel(A) = s 	= 0 when
F ⊆ A and A 	= Θ, Bel(Θ) = 1, and Bel(A) = 0 when F 	⊆ A, then Bel is
a simple support function, F is called the focus of Bel, and s is called Bel’s
degree of support.

The vacuous belief function is a simple support function with focus Θ. If
Bel is a simple support function with focus F 	= Θ, then m(F ) = s, m(Θ) =
1− s, and m is 0 elsewhere. Thus, a simple support function invests all of our
committed belief on the disjunction represented by its focus, F , and all our
uncommitted belief on Θ.

A separable support function is either a simple support function or the
orthogonal sum of two or more simple support functions that can be combined.
If it is assumed that simple support functions are used to represent the results
of experiments, then the separable support functions are the possible results
when the evidence from the several experiments is pooled together.

A particular case has occurred frequently. Let Bel1 and Bel2 be simple
support functions with respective degrees of support s1 and s2, and the com-
mon focus, F . Let Bel = Bel1 ⊕ Bel2. Then m(F ) = 1 − (1 − s1)(1 − s2) =
s1 + s2(1− s1) = s2 + s1(1− s2) = s1 + s2− s1s2 and m(Θ) = (1− s1)(1− s2);
m is 0 elsewhere.

The point of interest is that this formula appears as the rule of combination
in mycin [17] and [11] as well as many other places. In fact, the earliest known
development appears in the works of Jacob [2] circa 1713. For more than
two and a half centuries, this formulation has had intuitive appeal to workers
in a variety of fields trying to combine bodies of evidence pointing in the
same direction. Why not use ordinary statistical methods? Because the simple
support functions are not Bayesian belief functions unless |F | = 1.

We now turn to the problem of computational complexity.

3 The Computational Problem

Assume the result of an experiment—represented as the basic probability
assignment, m—is available. Then, in general, the computation of Bel(A),
Q(A), P�(A), or Dou(A) requires time exponential in |Θ|. The reason1 is
the need to enumerate all subsets or supersets of A. Further, given any one
of the functions, Bel, m, Q, P�, or Dou, computation of values of at least
two of the others requires exponential time. If something is known about the
structure of the belief function, then things may not be so bad. For example,
with a simple support function, the computation time is no worse than o(|Θ|).
1 I have not proved this. However, if the formulae introduced in Sect. 2 are directly

implemented, then the statement stands.
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The complexity problem is exaggerated when belief functions are com-
bined. Assume Bel = Bel1 ⊕ · · · ⊕ Beln, and the Beli are represented by
the basic probability assignments, mi. Then in general, the computations of
K, Bel(A), m(A), Q(A), P�(A), and Dou(A) require exponential time. Once
again, knowledge of the structure of the mi may overcome the dilemma. For
example, if a Bayesian belief function is combined with a simple support func-
tion, then the computation requires only linear time.

The next section describes a particularly useful structuring of the mi. Fol-
lowing sections show that all the basic quantities of interest can be calculated
in o(|Θ|) time when this structure is used.

4 Structuring the Problem

Tonight you expect a special guest for dinner. You know it is important
to play exactly the right music for her. How shall you choose from your
large record and tape collection? It is impractical to go through all the
albums one by one because time is short. First you try to remember
what style she likes—was it jazz, classical, or pop? Recalling past con-
versations you find some evidence for and against each. Did she like
vocals or was it instrumentals? Also, what are her preferences among
strings, reeds, horns, and percussion instruments?

4.1 The Strategy

The problem solving strategy exemplified here is the well known technique of
partitioning a large problem space in several independent ways, e.g., music
style, vocalization, and instrumentation. Each partitioning is considered sep-
arately, then the evidence from each partitioning is combined to constrain the
final decision. The strategy is powerful because each partitioning represents a
smaller, more tractable problem.

There is a natural way to apply the plausible reasoning methodology intro-
duced in Sect. 2 to the partitioning strategy. When this is done, an efficient
computation is achieved. There are two computational components necessary
to the strategy: the first collects and combines evidence within each parti-
tioned space, while the second pools the evidence from among the several
independent partitions.

In [16], the necessary theory for pooling evidence from the several parti-
tions is developed using Dempster’s rule of combination and the concept of
refinings of compatible frames; in [1], computational methods are being devel-
oped for this activity. Below, a formulation for the representation of evidence
within a single partitioning is described, then efficient methods are developed
for combining this evidence.
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4.2 Simple Evidence Functions

Let Θ be a partitioning comprised of n elements, i.e., |Θ| = n; for example,
if Θ is the set of possibilities that the dinner guest prefers jazz, classical,
or pop music, then n = 3. Θ is a frame of discernment and, with no loss
of generality, let Θ = {i|1 ≤ i ≤ n}. For each i ∈ Θ, there is a collection
of basic probability assignments μij that represents evidence in favor of the
proposition i, and a collection, νij that represents the evidence against i.
The natural embodiment of this evidence is as simple support functions with
the respective foci {i} and ¬{i}.

Define μi({i}) = 1 −
∏

(1 − μij({i})) and μi(Θ) = 1 − μi({i}). Then μi
is a basic probability assignment and the orthogonal sum of the μij . Thus,
μi is the totality of the evidence in favor of i, and fi = μ({i}) is the degree
of support from this simple support function. Similarly, define νi(¬{i}) =
1−

∏
(1−νij(¬{i})) and νi(Θ) = 1−νi(¬{i}). Then ai = νi(¬{i}) is the total

weight of support against i. Note, ¬{i} = Θ − {i}, i.e., set complementation
is always relative to the fixed frame, Θ. Note also that j, in μij , and νij ,
runs through respectively the sets of experiments that confirm or deny the
proposition i.

The combination of all the evidence directly for and against i is the sep-
arable support function, ei = μi ⊕ νi. The ei formed in this manner are
called the simple evidence functions and there are n of them, one for each
i ∈ Θ. The only basic probability numbers for ei that are not identically zero
are pi = ei({i}) = Ki · fi · (1 − ai), ci = ei(¬{i}) = Ki · ai · (1 − fi), and
ri = ei(Θ) = Ki · (1 − fi) · (1 − ai), where Ki = (1 − aifi)−1. Thus, pi is
the measure of support pro i, ci is the measure of support con i, and ri is
the measure of the residue, uncommitted belief given the body of evidence
comprising μij and νij . Clearly, pi + ci + ri = 1.

The goal of the rest of this paper is to find efficient methods to compute
the quantities associated with the orthogonal sum of the n simple evidence
functions. Though the simple evidence functions arise in a natural way when
dealing with partitions, the results are not limited to this usage—whenever
the evidence in our domain consists of simple support functions focused on
singleton propositions and their negations, the methodology is applicable.

4.3 Some Simple Observations

In the development of computational methods below, several simple observa-
tions are used repeatedly and the quantity di = 1− pi = ci + ri appears. The
first thing to note is K−1

i = 0 iff ai = fi = 1. Further, if K−1 	= 0 and v is
the vacuous belief function, then

pi = 1 iff fi = 1 ci = 1 iff ai = 1
pi = 1⇒ ci = ri = 0 ci = 1⇒ pi = ri = 0
fi = 1 iff ∃j μij({i}) = 1 a1 = 1 iff ∃j νij(¬{i}) = 1
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pi = 0 iff fi = 0 ∨ ai = 1 ci = 0 iff ai = 0 ∨ fi = 1
fi = 0 iff ∀j μij = v ai = 0 iff ∀j νij = v
ri = 1 iff pi = ci = 0 ri = 0 iff fi = 1 ∨ ai = 1

5 Algorithms and Computations

The goal is to calculate quantities associated with m = e1 ⊕ · · · ⊕ en, where
n = |Θ| and the ei are the simple evidence functions defined in the previous
section. All computations are achieved in o(n) time measured in arithmetic
operations.

Figure 2 is a schematic of information flow in a mythical system. The μij
and νij may be viewed as sensors, where a sensor is an instance of a knowledge
source that transforms observations into internally represented evidence, i.e.,
belief functions. Each is initially v, the vacuous belief function. As time passes
and events occur in the observed world, these sensors can update their state by
increasing or decreasing their degree of support. The simple evidence function,
ei, recomputes its state, ai and fi, and changes the stored values of pi, di, ci,
and ri each time one of its sensors reports a change. From the definitions of
μij , νij , and ei it is evident that the effect of an update can be recorded in
constant time. That is to say, the time is independent of both the ranges of j
in μij and νij and of n.

A user asks questions about the current state of the evidence. One set of
questions concerns the values of various measures associated with arbitrary

STORE
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Decisions

Conflict

λ(A)

USER

Queries

pi ci ri di
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fi ai
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νij

... ...

...

...
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Fig. 2. Data flow model
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A ⊆ Θ. These questions take the form ‘what is the value of λ(A)?’, where
λ is one of the functions Bel, m, Q, P�, or Dou. The other possible queries
concern the general state of the inference process. Two examples are ‘what is
the weight of conflict in the evidence?’ and ‘is there an A such that m(A) = 1;
if so, what is A?’. The o(n) time computations described in this section and
in Sect. 6 answer all these questions.

One more tiny detour is necessary before getting on with the business
at hand: it is assumed that subsets of Θ are represented by a form with
the computational nicety of bit-vectors as opposed to, say, unordered lists
of elements. The computational aspects of this assumption are: (1) the set
membership test takes constant time independent of n and the cardinality of
the set; (2) the operators ⊆, ∩, ∪, =, complementation with respect to Θ,
null, and cardinality compute in o(n) time.

5.1 The Computation of K

From equation (4), K−1 =
∑

[∩Ai �=∅]
∏

[1≤i≤n] ei(Ai) and the weight of inter-
nal conflict among the ei is logK by definition. Note that there may be conflict
between the pairs of μi and νi that is not expressed because K is calculated
from the point of view of the given ei. Fortunately, the total weight of con-
flict is simply log[K ·

∏
Ki]; this quantity can be computed in o(n) time if K

can be.
In order to calculate K, it is necessary to find the collections of Ai that

satisfy ∩Ai 	= ∅ and ei(Ai) 	= 0, i.e., those collections that contribute to
the summation. If Ai is not {i}, ¬{i}, or Θ, then ei = 0 identically from
the definition of the simple evidence functions. Therefore, assume throughout
that Ai ∈ {{i}¬{i}Θ}.

There are exactly two ways to select the Ai such that ∩Ai 	= ∅.

1. If Aj = {j} for some j, and Ai = ¬{i} or Ai = Θ for i 	= j, then
∩Ai = {j} 	= ∅. However, if two or more Ai are singletons, then the
intersection is empty.

2. If none of the Ai are singletons, then the situation is as follows. Select
any S ⊆ Θ and let Ai = Θ when i ∈ S and Ai = ¬{i} when i 	∈ S. Then
∩Ai = S. Therefore, when no Ai is a singleton, ∩Ai 	= ∅ unless Ai = ¬{i}
for all i.

Let J , K, L be predicates respectively asserting that exactly one Ai is a
singleton, no Ai is a singleton, i.e., all Ai ∈ {¬{i}Θ}, and all Ai = ¬{i}.
Then equation (4) can be written as

K−1 =
∑

∩Ai �=∅

∏

1≤i≤n
ei(Ai)

=
∑

J

∏

1≤i≤n
ei(Ai) +

∑

K

∏

1≤i≤n
ei(Ai)−

∑

L

∏

1≤i≤n
ei(Ai).
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Now the transformation, below called transformation T,
∑

xj∈Sj

∏

1≤i≤n
fi(xi) =

∏

1≤i≤n

∑

x∈Si

fi(x) (T)

can be applied to each of the three terms on the right; after some algebra, it
follows that

K−1 =
∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di −

∏

1≤i≤n
ci, (5)

where pi = ei({i}), ci = ei(¬{i}), and di = ei(¬{i}) + ei(Θ) have been
substituted. If pq = 1 for some q, then dq = cq = 0 and K−1 =

∏
[i�=q] di. On

the other hand, if pi 	= 1 for all i, then di 	= 0 for all i and equation (5) can
be rewritten as

K−1 =
[ ∏

1≤i≤n
di

][
1 +

∑

1≤i≤n
pi/di

]
−

∏

1≤i≤n
ci. (6)

In either case, it is easy to see that the computation is achieved in o(n) time,
as is the check for pi = 1.

5.2 The Computation of m(A)

From equation (4), the basic probability numbers, m(A) for the orthogonal
sum of the simple evidence functions are

m(A) = K
∑

∩Ai=A

∏

1≤i≤n
ei(Ai),

for A 	= ∅ and by definition, m(∅) = 0. Also, m can be expressed by

m(∅) = 0

m({q}) = K
[
pq

∏

i�=q
di + rq

∏

i�=q
ci

]
(7)

M(A) = K
[∏

i∈A
ri

][∏

i�∈A
ci

]
, when |A| ≥ 2.

It is easy to see that the calculation is achieved in o(n) time since |A|+ |¬A| = n.
Derivation of these formulae is straightforward. If A = ∩Ai, then A ⊆ Ai

for 1 ≤ i ≤ n and for all j 	∈ A, there is an Ai such that j 	∈ Ai. Consider
the case in which A is a nonsingleton nonempty set; If i ∈ A, then Ai = Θ—
the only other possibilities are {i} or ¬{i}, but neither contains A. If i 	∈ A,
then both Ai = ¬{i} and Ai = Θ are consistent with A ⊆ Ai. However, if
Ai = Θ for some i 	∈ A, then ∩Ai ⊇ A ∪ {i} 	= A. Therefore, the only choice
is Ai = ¬{i} when i 	∈ A and Ai = Θ when i ∈ A. When it is noted that
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ei(Θ) = ri and ei(¬{i}) = ci and, transformation T is applied, the formula
for the nonsingleton case in equation (7) follows.

When A = {q}, there are two possibilities: Aq = Θ or Aq = {q}. If Aq = Θ,
then the previous argument for nonsingletons can be applied to justify the
appearance of the term rq

∏
[i�=q] ci. If Aq = {q}, then for each i 	= q it

is proper to select either Ai = Θ or Ai = ¬{i} because, for both choices,
A ⊆ Ai; actually, ∩Ai = {q} = A because Aq = A. Using transformation T
and noting that eq({q}) = pq and di = ci + ri gives the term pq

∏
[i�=q] di in

the above and completes the derivation of equation (7).

5.3 The Computations of Bel(A), P�(A), and Dou(A)

Since Dou(A) = Bel(¬A) and P�(A) = 1 − Dou(A), the computation of P�

and Dou is o(n) if Bel can be computed in o(n) because complementation is
an o(n) operation. Let Bel be the orthogonal sum of the n simple evidence
functions. Then Bel(∅) = 0 by definition and for A 	= ∅,

Bel(A) =
∑

B⊆A
m(B) =

∑

∅�=B⊆A
K

∑

∩Bi=B

∏

1≤i≤n
ei(Bi)

= K
∑

∅�=∩Ai⊆A

∏

1≤i≤n
ei(Ai).

Bel is also expressed by

Bel(A) = K
[[ ∏

1≤i≤n
di

][∑

i∈A
pi/di

]
+

[∏

i�∈A
ci

][∏

i∈A
di

]
−

∏

1≤i≤n
ci

]
(8)

when di 	= 0 for all i. If dq = 0, then pq = 1. Therefore,m({q}) = Bel({q}) = 1.
In all variations, Bel(A) can be calculated in o(n) time. Since the formula
evaluates Bel(∅) to 0, only the case of nonempty A needs to be argued.

The tactic is to find the collections of Ai satisfying ∅ 	= ∩Ai ⊆ A then
apply transformation T. Recall that the only collections of Ai that satisfy
∅ 	= ∩Ai are those in which (1) exactly one Ai is a singleton or (2) no Ai is a
singleton and at least one Ai = Θ. To satisfy the current constraint, we must
find the subcollections of these two that also satisfy ∩Ai ⊆ A.

If exactly one Ai is a singleton, say Aq = {q}, then ∩Ai = {q}. In order
that ∩Ai ⊆ A it is necessary and sufficient that q ∈ A. Thus, the contri-
bution to Bel(A), when exactly one singleton Ai is permitted, is the sum
of the contributions for all i ∈ A. A brief computation shows this to be
[
∏

[1≤i≤n] di][
∑

[i∈A] pi/di].
When no Ai is a singleton, it is clear that Ai = ¬{i} for i 	∈ A; oth-

erwise, i ∈ A and ∩Ai 	⊆ A. For i ∈ A, either Ai = ¬{i} or Ai = Θ is
permissible. The value of the contribution to Bel from this case is given by
the term [

∏
[i�∈A] ci][

∏
[i∈A] di]. Since at least one of the Ai = Θ is required,

we must deduct for the case in which Ai = ¬{i} for all i, and this explains
the appearance of the term −

∏
[1≤i≤n] ci.
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5.4 The Computation of Q(A)

The definition of the commonality function shows that Q(∅) = 1 identically.
For A 	= ∅

Q(A) =
∑

A⊆B
m(B) =

∑

A⊆B
K

∑

∩Ai=B

∏

1≤i≤n
ei(Ai) = K

∑

A⊆∩Ai

∏

1≤i≤n
ei(Ai).

Q can be expressed also by

Q(∅) = 1

Q({q}) = K(pq + rq)
∏

i�=q
di

Q(A) = K
[∏

i∈A
ri

][∏

i�∈A
di

]
, when |A| ≥ 2.

In order that a collection, Ai, satisfy A ⊆ ∩Ai, it is necessary and sufficient
that A ⊆ Ai for all i. If i 	∈ A, then both Ai = ¬{i} and Ai = Θ fill this
requirement but Ai = {i} fails. If i ∈ A, then clearly Ai = ¬{i} fails and
Ai = Θ works. Further, Ai = {i} works iff A = {i}. It is now a simple matter
to apply transformation T and generate the above result. It is evident that
Q(A) can be calculated in o(n) time.

6 Conflict and Decisiveness

In the previous section, a mythical system was introduced that gathered and
pooled evidence from a collection of sensors. It was shown how queries such
as ‘what is the value of λ(A)?’ could be answered efficiently, where A is an
arbitrary subset of Θ and λ is one of Bel, m, Q, P�, or Dou. It is interesting
to note that a sensor may change its value over time. The queries report
values for the current state of the evidence. Thus, it is easy to imagine an
implementation performing a monitoring task, for which better and more
decisive data become available, as time passes, and decisions are reevaluated
and updated on the bases of the most current evidence.

In this section, we examine more general queries about the combined evi-
dence. These queries seek the subsets of Θ that optimize one of the measures.
The sharpest question seeks the A ⊆ Θ, if any, such that m(A) = 1. If such
an A exists, it is said to be the decision. Vaguer notions of decision in terms
of the other measures are examined too.

The first result is the necessary and sufficient conditions that the evidence
be totally contradictory. Since the orthogonal sum of the evidence does not
exist in this case, it is necessary to factor this out before the analysis of deci-
siveness can be realized. All queries discussed in this section can be answered
in o(n) time.
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6.1 Totally Contradictory Evidence

Assume there are two or more pi = 1, say pa = pb = 1, where a 	= b. Then
dj = cj = rj = 0, for both j = a and j = b. The formula for K is

K−1 =
∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di −

∏

1≤i≤n
ci,

and it is easy to see that K−1 = 0 under this assumption. Therefore, the
evidence is in total conflict by definition.

Let pa = 1 and pi 	= 1 for i 	= a. Then da = ca = 0, and di 	= 0 for
i 	= a. Therefore. the above formula reduces to K−1 =

∏
[i�=a] di 	= 0 and the

evidence is not totally contradictory.
Now assume pi 	= 1, hence di 	= 0, for all i. CanK−1 = 0? Since di = ci+ri,

it follows that
∏
di −

∏
ci ≥ 0. If K−1 = 0, this difference must vanish. This

can happen only if ri = 0 for all i. Since pi 	= 0, this entails ci = 1 for all i. In
this event the pi = 0 and K−1 = 0.

Summary: The evidence is in total conflict iff either (1) there exists an
a 	= b such that both pa = pb = 1 or (2) ci = 1 for all i ∈ Θ.

6.2 Decisiveness in m

The evidence is decisive when m(A) = 1 for some A ⊆ Θ and A is called the
decision. If the evidence is decisive and A is the decision, then m(B) = 0 when
B 	= A because the measure of m is 1. The evidence cannot be decisive if it
is totally contradictory because the orthogonal sum does not exist, hence m
is not defined. The determination of necessary and sufficient conditions that
the evidence is decisive and the search for the decision is argued by cases.

If pq = 1 for some q ∈ Θ, then the evidence is totally contradictory if pi = 1
for some i 	= q. Therefore, assume that pi 	= 1 for i 	= q. From equation (7)
it is easy to see m({q}) = K

∏
[i�=q] di because rq = 0. Further, it was shown

directly above that K−1 =
∏

[i�=q] di under the same set of assumptions. Thus,
m({q}) = 1.

The other possibility is that pi 	= 1, hence di 	= 0, for all i ∈ Θ. Define
C = {i|ci = 1}, and note that if |C| = n, the evidence is totally contradictory.
For i ∈ C, pi = ri = 0 and di = 1. If |C| = n − 1, then there is a w such
that {w} = Θ − C. Now pw 	= 1 and cw 	= 1 entails rw 	= 0; therefore, from
equation (7)

m({w}) = K
[
pw

∏

i�=w
di + rw

∏

i�=w
ci

]
= K[pw + rw] 	= 0.

If there is a decision in this case, it must be {w}. Direct substitution into equa-
tion (5) shows that, in this case, K−1 = pw + rw and therefore, m({w}) = 1.

Next, we consider the cases where 0 ≤ |C| ≤ n−2 and therefore, |¬C| ≥ 2.
Then, from equation (7)
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m(¬C) = K
[∏

i�∈C
ri

][∏

i∈C
ci

]
= K

∏

i�∈C
ri 	= 0 (9)

because i 	∈ C iff ci 	= 1 (and pi 	= 1 for all i ∈ Θ) has been assumed: hence,
ri 	= 0 for all i ∈ ¬C. Therefore, if the evidence is decisive, m(¬C) = 1 is the
only nonzero basic probability number. Can there be a pq 	= 0? Obviously,
q 	∈ C. The answer is no since di 	= 0, hence, m({q}) = K[pq

∏
[i�=q] di +

rq
∏

[i�=q] ci] 	= 0, a contradiction. Thus, pi = 0 for all i ∈ Θ. From equation (5)
it now follows that K−1 =

∏
[1≤i≤n] di −

∏
[1≤i≤n] ci. Therefore, from (9),∏

[i�∈C] ri =
∏

[1≤i≤n] di −
∏

[1≤i≤n] ci if m(¬C) = 1. Since di = ci = 1 when
i ∈ C, this can be rewritten as

∏
[i�∈C] ri =

∏
[i�∈C] di −

∏
[i�∈C] ci. But di =

ci + ri. Therefore, this is possible exactly where ci = 0 when i 	∈ C.
Summary: Assuming the evidence is not in total conflict, it is decisive iff

either (1) exactly one pi = 1; the decision is {i}. (2) There exists a w such
that cw 	= 1 and ci = 1 when i 	= w; the decision is {w}. Or (3) there exists
a W 	= ∅ such that ri = 1 when i ∈ W and ci = 1 when i 	∈ W ; the decision
is W .

6.3 Decisiveness in Bel, P�, and Dou

If Bel(A) = Bel(B) = 1, then Bel(A ∩ B) = 1 and it is always true that
Bel(Θ) = 1. The minimal A such that Bel(A) = 1 is called the core of Bel.
If the evidence is decisive, i.e., m(A) = 1 for some A ⊆ Θ, then clearly A is
the core of Bel. Assume the evidence is not decisive, not totally contradictory,
and Bel(A) = 1, then equations (8) and (6) can be smashed together and
rearranged to show that

∑

q �∈A
pq

∏

i�=q
di +

∏

i∈A
di

[∏

i�∈A
di −

∏

i�∈A
ci

]
= 0.

Since the evidence is not decisive, di 	= 0. Further, di = ci + ri so that
ri = 0 when i 	∈ A; otherwise, the expression

∏
di −

∏
ci makes a nonzero

contribution to the above. Similarly, pi = 0 when i 	∈ A; hence ci = 1 is
necessary. Let A = {i|ci 	= 1}, then substitution shows Bel(A) = 1 and A is
clearly minimal.

Summary: The decision is the core when the evidence is decisive, other-
wise {i|ci 	= 1} is the core.

P� and Dou do not give us interesting concepts of decisiveness because
Dou(A) = Bel(¬A) = 0 would be the natural criterion. However this test is
passed by any set in the complement of the core as well as others. Therefore, in
general, no unique decision is found. A similar difficulty occurs in an attempt
to form a concept of decisiveness in P� because P�(A) = 1−Dou(A).

6.4 Decisiveness in Q

Since Q(∅) = 1 and Q(A) ≤ Q(B) when B ⊆ A, it is reasonable to ask for the
maximal N such that Q(N) = 1. This set, N , is called the nucleus of Bel. If
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m(A) = 1, then the decision, A, is clearly the nucleus. If i ∈ N , then i ∈ A
for all m(A) 	= 0. Further, Q({i}) = 1 iff i is an element of the nucleus.

Assume that the simple evidence functions are not totally contradictory
and there is no decision. Then di 	= 0 and there is no w such that ci = 1 when-
ever i 	= w. The necessary and sufficient conditions, then, that Q({z}) = 1,
and hence z ∈ N are (1) pi = 0 if i 	= z and (2) cz = 0. To wit,

Q({z}) = 1

K(pz + rz)
∏

i�=z
di = 1

(pz + rz)
∏

i�=z
di = K−1

(pz + rz)
∏

i�=z
di =

∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di−

∏

1≤i≤n
ci

∑

q �=z
pq

∏

i�=q
di + (dz − rz)

∏

i�=z
di −

∏

1≤i≤n
ci = 0

∑

q �=z
pq

∏

i�=q
di + cz

∏

i�=z
di −

∏

1≤i≤n
ci = 0

∑

q �=z
pq

∏

i�=q
di + cz

(∏

i�=z
di −

∏

i�=z
ci

)
= 0

Since di 	= 0, it follows that pq = 0 for q 	= z, else the first term makes a
nonzero contribution. Since di = ci+ ri, the quantity,

∏
di−

∏
ci, can vanish

only if ri = 0 when i 	= z. However, this and pi 	= 1 because there is no
decision, entails ci = 1 when i 	= z. Therefore, either {z} is the decision or
the evidence is contradictory. Thus, cz = 0 so that the second term of the last
equation vanishes. Since the steps above are reversible, these are sufficient
conditions too.

Summary: If A is the decision, then A is the nucleus. If two or more
pi 	= 0, then the nucleus is ∅. If pz 	= 0, cz = 0, and pi = 0 when i 	= z, then
{z} is the nucleus. If pi = 0 for all i, then {i|ci = 0} is the nucleus. Clearly,
this construction can be carried out in o(n) time.

6.5 Discussion

It has been noted that pi = 1 or ci = 1 if and only it there is a j such that
respectively μij({i}) = 1 or νij(¬{i}) = 1, i.e., if and only if the result of
some experiment is decisive within its scope. The above analyses show the
effects occurring when pi = 1 or ci = 1; subsets of possibilities are irrevocably
lost—most or all the nondecisive evidence is completely suppressed—or the
evidence becomes totally contradictory.

Any implementation of this theory should keep careful tabs on those con-
ditions leading to conflict and/or decisiveness. In fact, any decisive experiment
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(a degree of support of 1) should be viewed as based upon evidence so con-
clusive that no further information can change one’s view. A value of 1 in this
theory is indeed a strong statement.

7 Conclusion

Dempster and Shafer’s theory of plausible inference provides a natural and
powerful methodology for the representation and combination of evidence. I
think it has a proper home in knowledge-based expert systems because of
the need for a technique to represent weights of evidence and the need for a
uniform method with which to reason. This theory provides both. Standard
statistical methods do not perform as well in domains where prior probabilities
of the necessary exactness are hard to come by, or where ignorance of the
domain model itself is the case. One should not minimize these problems even
with the proposed methodology. It is hoped that with the ability to directly
express ignorance and uncertainty, the resulting model will not be so brittle.

However, more work needs to be done with this theory before it is on a solid
foundation. Several problems remain as obvious topics for future research.
Perhaps the most pressing is that no effective decision making procedure is
available. The Bayesian approach masks the problem when priors are selected.
Mechanical operations are employed from gathering evidence through the cus-
tomary expected-value analysis. But our ignorance remains hidden in the
priors.

The Dempster-Shafer theory goes about things differently—ignorance and
uncertainty are directly represented in belief functions and remain through the
combination process. When it is time to make a decision, should the estimate
provided by Bel or the one provided by P� be used? Perhaps something in
between. But what? No one has a good answer to this question.

Thus, the difference between the theories is that the Bayesian approach
suppresses ignorance up front while the other must deal with it after the
evidence is in. This suggests one benefit of the Dempster-Shafer approach:
surely, it must be right to let the evidence narrow down the possibilities, first,
then apply some ad hoc method afterward.

Another problem, not peculiar to this theory, is the issue of indepen-
dence. The mathematical model assumes that belief functions combined by
Dempster’s rule are based upon independent evidence, hence the name orthog-
onal sum. When this is not so, the method loses its feeling of inevitability.
Also, the elements of the frame of discernment, Θ, are assumed to be exclusive
propositions. However, this is not always an easy constraint to obey. For exam-
ple, in the MYCIN application, it seems natural to make the frame the set
of possible infections but the patient can have multiple infections. Enlarging
the frame to handle all subsets of the set of infections increases the difficulty
in obtaining rules and in their application; the cardinality of the frame grows
from |Θ| to 2|Θ|.
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One more problem that deserves attention is computational efficiency.
Above it is shown that, with a certain set of assumptions, it is possible to cal-
culate efficiently. However, these assumptions are not valid in all or even most
domains. A thorough investigation into more generous assumptions seems
indicated so that more systems can employ a principled reasoning mechanism.

The computational theory as presented here has been implemented in SIM-
ULA. Listings are available by writing directly to the author.
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Constructive Probability∗

Glenn Shafer

In a series of papers published in the 1960’s, A. P. Dempster developed a
generalization of the Bayesian theory of statistical inference. In A Mathemat-
ical Theory of Evidence, published in 1976, I advocated extending Dempster’s
work to a general theory of probability judgement. The central idea of this new
general theory is that we might decompose our evidence into intuitively inde-
pendent components, make probability judgements based on each component,
and then extend, adapt, and combine these judgements using formal rules. In
this way we might be able to construct numerical degrees of belief based on
total evidence that is too complicated or confusing to deal with holistically.
The systems of numerical degrees of belief that the theory helps us construct
are called belief functions. Belief functions have a certain structure, but they
are not, in general, additive like Bayesian probability distributions: a belief
function Bel may assign a proposition A and its negation A degrees of belief
Bel(A) and Bel(A) that add to less than one.

The theory of belief functions should be sharply distinguished from the
ideas on “upper and lower probabilities” that have been developed by
I. J. Good [11], C. A. B. Smith [28], and, more recently, Peter Williams [30, 31].
It is true that the theory’s degrees of belief Bel(A) have some properties in
common with these authors’ lower probabilities P∗(A). And it is also true that
Dempster, in his writing, used the vocabulary of upper and lower probabil-
ities. But the conceptual structure of the theory of belief functions is quite
different from the structure underlying Good, Smith, and Williams’ work.

Since its publication, A Mathematical Theory of Evidence has been
reviewed or discussed by several authors, including Persi Diaconis [4], Terry

∗ From Synthese 48 (1981) 1–60, c© 1981 by D. Reidel Publishing Co., Dordrecht,
Holland, and Boston, U.S.A. The author has corrected some typographical errors
and updated some references. The original research was partially supported by
grant MCS 78-01887 from the National Science Foundation. The basic ideas of
Sect. 1 were formulated in discussions with Amos Tversky. The author also prof-
ited from discussions with Zeno Swijtink and correspondence with Peter Williams.
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Fine [5], Isaac Levi [16], Dennis Lindley [17], Teddy Seidenfeld [20], and Peter
Williams [32]. Most of these critics, being themselves dissatisfied with the
Bayesian theory, have welcomed the new theory. But they have been troubled
by the absence of a behavioral interpretation for the theory. The Bayesian
theory can appeal to its “betting interpretation” to explain what its degrees
of belief mean and to justify its rules for these degrees of belief. No such inter-
pretation has been supplied for the theory of belief functions. So what do its
degrees of belief mean? And why should we accept the theory’s rules for these
degrees of belief? Why, in particular, should we prefer these rules to the rules
suggested by Good, Smith, and Williams?

In this paper, I argue that a constructive theory of probability judgment
need not rely for its meaning and justification on any behavioral interpreta-
tion. My argument is based on an understanding of constructive probability
judgment developed in recent unpublished work by Amos Tversky and myself.
According to this understanding, numerical probability judgment amounts to
comparing one’s evidence to a scale of canonical examples, and a construc-
tive theory of probability judgment must supply both the scale of canonical
examples and methods of breaking the task of comparison down into simpler
judgments. As I explain in Sect. 1 below, the Bayesian theory, the theory of
belief functions, and a theory of lower probability functions can all be devel-
oped in this framework. All three of these constructive theories use the idea
of chance in their scale of canonical examples. The theory of belief functions
uses examples where the meaning of a message depends on chance, while the
other two theories use examples where the truth is generated by chance.

In the course of the paper I give particular attention to Peter Williams’
review of A Mathematical Theory of Evidence. Williams’ writing is excep-
tionally lucid, and he is exceptionally explicit in relating his criticisms of the
theory of belief functions to the betting interpretation of probability.

Williams treats both lower probabilities and Bayesian (i.e., additive) prob-
abilities as betting rates. And he hints that his intuitions about lower prob-
abilities are inherent in the very idea of betting. One of the purposes of this
paper is to show that this is not so. The theory of belief functions is as con-
sistent with the use of probability judgments as betting rates as the theory
of lower probabilities Williams favors. It is especially important to recognize
that one cannot choose between the different rules of conditioning used by
belief functions and by Williams’ theory (see Sect. 3 below) on the basis of
the idea of betting alone.

1 The Meaning of Probability

Williams begins his review of A Mathematical Theory of Evidence with two
questions: “(i) What is meant by ‘degree of belief’ and how might an individual
determine his degrees of belief in a particular case? (ii) For what reasons are
degrees of belief required to satisfy the conditions imposed?”
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On a practical level, making a probability judgment means assessing the
strength and significance of one’s evidence by fitting it into a scale of canonical
examples. And the probability judgment or “degree of belief” itself means that
we have made the comparison—perhaps with the aid of some theory—and
found our evidence to match a certain example on the scale best. Thus the
meaning of a degree of belief depends on the scale we use and, more generally,
the theory we use in arriving at it.

To make numerical probability judgments we need, of course, a numerical
scale, and the obvious approach to constructing such a scale is to use examples
involving chance. There is, however, more than one way of using the idea of
chance to construct a scale of examples, and different ways correspond to
different theories of probability judgment. It will be helpful, before going into
Williams’ questions more fully, to compare three such theories—the Bayesian
theory, the theory of belief functions, and a theory of lower probabilities.

1.1 The Bayesian Theory

In the classical picture of chance, we imagine a game that can be played
repeatedly and for which we know the chances. These chances are long-run
frequencies, they can be thought of as propensities, and they also define fair
betting rates—rates at which a bettor would break even in the long run. Since
they are known and there is no other evidence, these chances give a measure
of how much reason we have to believe that one or another of the game’s
outcomes will occur on a particular occasion. So we can call them numerical
degrees of belief. If we imagine a number of different games, with different
chances, then we have a scale of numerical degrees of belief.

The Bayesian theory uses this scale in a straightforward way. The
Bayesian’s task is to compare his problem to a scale of examples in which
the truth is generated according to known chances and to decide which of
these examples is most like his problem. And so when he makes the probabil-
ity judgment P (A) = p, say, he is saying that his evidence provides support
for A comparable to what would be provided by knowledge that the truth
is generated by a chance setup that produces a result in A exactly p of the
time. He is not saying that his evidence is just like such knowledge in all
respects, nor that the truth is in fact a result of chance. But he is measuring
the strength of his evidence by comparing it to a scale of chance setups.

How can the Bayesian accomplish his task? How can he make his scale of
chances and the affinity of his evidence to this scale vivid enough to his imag-
ination that he can meaningfully locate the evidence on the scale? This ques-
tion does not, I believe, have a simple general answer. In any particular case
the Bayesian must struggle to find ways of understanding his evidence that
facilitate its comparison to the scale of chances. Perhaps he can understand
his evidence in terms of a causal model and assess numerically the propensity
of the model to produce various outcomes. Perhaps he can discern relevant
frequencies in his evidence. And perhaps he can make enough well-founded
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judgments of these sorts to enable him to construct an overall probability
distribution that seems well-founded to him. Or perhaps he cannot. There is
nothing in the Bayesian theory that can guarantee its success.

The probability distributions of the Bayesian theory have, of course,
exactly the same structure as chance distributions: a function P defined for
all subsets of a finite set Θ (the frame of discernment) is a Bayesian (or addi-
tive) probability distribution if there exist non-negative numbers p(θ) for the
elements θ of Θ such that

P (A) =
∑

θ∈A
p(θ) (1)

for all A ⊂ Θ. (It is also required that
∑

θ∈Θ p(θ) = 1.) In words: the degree
of belief P (A) that the truth lies in A is the sum over the elements θ of A of
the degrees of belief p(θ) that the truth is θ.

1.2 The Theory of Belief Functions

A function Bel defined for all subsets of a frame Θ is called a belief function
if it is of the form

Bel(A) =
∑

B⊂A
m(B), (2)

where m(B) are non-negative numbers satisfying m(φ) = 0 and
∑

B⊂Θ
m(B) = 1. Every Bayesian probability distribution is a belief function. (The
m-values for a Bayesian probability distribution P are obtained by setting
m({θ}) = p(θ) and m(B) = 0 for all B that contain more than one element.)
But not every belief function is a Bayesian probability distribution.

The theory of belief functions is based on a way of comparing our evidence
to the scale of chances that is quite different from that of the Bayesian theory.
Instead of comparing our evidence to a scale of examples where the truth is
generated according to known chances, we compare it to a scale of examples
where the reliability and meaning of a message depends on known chances.

Here is a way to develop the scale of examples needed for belief functions.
Suppose someone chooses a code at random from a list of codes, uses the
chosen code to encode a message, and then sends us the result. We know
the list of codes and the chance of each code being chosen—say the list is
c1, . . . , cn, and the chance of ci being chosen is pi. We decode the encoded
message using each of the codes and find that this always produces a message
of the form “the truth is in A” for some non-empty subset A of Θ. Let Ai
denote the subset we get when we decode using ci, and set

m(A) =
∑
{pi | 1 ≤ i ≤ n;Ai = A}

for each A ⊂ Θ. Then m(A) is, in a certain sense, the total chance that the
true message was A.1 And Bel(A), given by (2), is the total chance that the
1 This is not to say that we are dealing with a random mechanism that produces

the message A with chance m(A). It is just that m(A) is the sum of the chances
for those codes that decode our encoded message to A.
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true message implies A. If the true message is infallible and the coded message
is our only evidence, then we will want to call Bel(A) our degree of belief that
the truth lies in A.

We can tell this story with whatever values of the m(A) we please, and
so it provides us a canonical example corresponding to every possible belief
function Bel. Of course we will seldom or never encounter in practice a situa-
tion in which our evidence really does consist of a coded message and all the
assumptions of the canonical example are satisfied. But it is also rare that our
evidence amounts to knowledge of a chance distribution according to which
the truth has been or will be generated. In both cases the canonical examples
are meant not as realistic examples but as standards for comparison.

Our task, when we assess evidence using belief functions, is to choose
values of m(A) that make the canonical “coded-message” example most like
that evidence. But how do we do this? In complicated problems it is absurd,
surely, to suppose that we can simply look at our evidence holistically and
write down the best values for the m(A). So we need a theory—a set of tools
for constructing belief functions from simpler, more elementary judgments. A
Mathematical Theory of Evidence suggests a number of such tools: assessment
using simple support functions, assessment using consonance, discounting,
minimal extension, and Dempster’s rule of combination. All these tools are
readily intelligible in terms of the canonical examples.

Dempster’s rule of combination is the most important single tool of
the theory. This rule tells us how to combine a belief function Bel1 (with
m–values m1(A), say) representing one body of evidence with a belief func-
tion Bel2 (with m-values m2(A)) representing an unrelated body of evidence
so as to obtain a belief function Bel (with m-values m(A)) representing the
pooled evidence. The idea underlying the rule is that the unrelatedness of the
two bodies of evidence makes pooling them like combining two stochastically
independent randomly coded messages. We should, that is to say, combine the
canonical examples corresponding to the two bodies of evidence by supposing
that the two random choices of codes are stochastically independent. It is
easy to see how this leads to a rule for obtaining the m(C) from the m1(A)

Let us denote by C the set of codes that decode our encoded message to A. If
we had not yet seen the encoded message, it would certainly be natural to adopt
m(A) as our degree of belief that the code used is in C. The suggestion here is
that it is still natural to do so in the situation where we have seen the encoded
message and thus know that the code used being in C is equivalent to A being
the true message.

A similar tack is often taken by non-Bayesian statisticians when they make
probability judgments based on probability sampling or on randomization. Here,
as in those cases, one might refuse to adopt the suggested degrees of belief and
adopt instead a parametric model. In this case the model would have the true
message as its parameter and the encoded message as its observable given each
value of the parameter. In the absence of other evidence about the true message,
this model does not seem very useful. (Cf. Kempthorne, [15].)
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and the m2(B). Denote by c1, . . . , cn and by p1, . . . , pn the codes and their
chances in the case of the first message, and by c′1, . . . , c

′
m and p′1, . . . , p

′
m the

codes and their chances in the case of the second. Then independence means
that there is a chance pip′j that the pair

(
ci, c

′
j

)
of codes will be chosen. But

notice that decoding may now tell us something. If the message Ai we get
by decoding the first message with ci contradicts the message Bj we get by
decoding the second message with c′j (i.e., if Ai ∩Bj = φ), then we know that(
ci, c

′
j

)
could not be the pair of codes actually used. So we must condition

the chance distribution, eliminating such pairs and multiplying the chances
for the others by K, where

K−1 =
∑
{pip′j | 1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj 	= φ}

=
∑
{m1(A)m2(B) | A ⊂ Θ;B ⊂ Θ;A ∩B 	= φ}.

Notice also that if the first message is A and the second message is B, then
the overall message is A ∩ B. Thus the total chance of the overall message
being C is

m (C) = K
∑
{pip′j | 1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj = C} (3)

= K
∑
{m1 (A)m2 (B) | A ⊂ Θ;B ⊂ Θ;A ∩B = C}.

Formula (3) is Dempster’s rule.
The availability of Dempster’s rule opens the possibility that we might

construct a belief function based on complicated evidence by decomposing
the evidence, breaking it down into small unrelated items whose message is
relatively clear. The most convenient case, perhaps, is when each small item
points clearly and unambiguously to a single subset of Θ. In this case the
assessment of each item means the determination of a simple support function.

A simple support function focused on a subset A0 of Θ and awarding it
degree of support s is a belief function with m-valuesm(A0) = S,m(Θ) = 1−s
and m(A) = 0 for all other A ⊂ Θ. This corresponds to a coded message which
means A0 with chance s and means Θ (i.e., means nothing at all) with chance
1− s. The values of the belief function are

Bel(A) =

⎧
⎨

⎩

0 if A0 	⊂ A
s if A0 ⊂ A 	= Θ
1 if A = Θ.

In words: we have no positive beliefs beyond those implied by the degree of
support s for A0. Simple support functions are appropriate when the message
of an argument or an item of evidence is clear and unambiguous, but its
reliability must be assessed. The chance s corresponds, in such a case, to an
assessment of that reliability. It is our assessment, so to speak, of the chance
that the argument is sound.
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The idea of the chance that an argument is sound (as opposed to the
Bayesian idea of the chance that an assertion is true) is illustrated by the
following example, which is essentially due to J. H. Lambert (see Shafer [22])
and which could be used to provide an alternative scale of canonical examples
for simple support functions. Suppose we know all α’s are β’s, and we are
told, by a randomizing device that tells the truth with chance s and lies with
chance 1− s, that γ is an α. If the device told the truth (chance s), then we
have a syllogism:

All α’s are β’s.
γ is an α.

γ is a β.

If the device lied (chance 1 − s), then we have nothing, for when the minor
premise in the syllogism Barbara is negated, there is no conclusion:

All α’s are β’s.
γ is not an α.

Maybe γ is a β; maybe not.

So the argument for the proposition “γ is a β” is sound with chance s and
unsound with chance 1 − s. As evidence, it amounts to the same thing as a
message that asserts this proposition with chance s and says nothing with
chance 1− s.

There is no guarantee that a satisfactory analysis of one’s evidence will
be achieved using belief functions, just as there is no guarantee of success
with the Bayesian theory. I do believe, however, that the greater flexibility of
belief functions will often be valuable. In many cases our deliberation needs to
be directed towards the structure and reliability of the evidence rather than
towards the nature of the process by which the truth is generated, and this
means that a random model for the evidence may fit our needs better than a
random model for the truth.

1.3 Lower Probabilities

Suppose we know a certain process is governed by chance, but instead of
knowing precisely the chance law P governing it, we know only that P is in
a class P of chance laws. Denote by Θ the set of possible outcomes for the
process. Then we might set our degree of belief that the outcome of a given
trial will be in a subset A of Θ equal to

P∗(A) = inf {P (A)|P ∈ P} . (4)

This seems natural because we know the chance of A is at least P∗(A). And
so, in particular, we can expect to at least break even in the long run if we
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offer to bet (with others who have no more knowledge than we) on A at the
odds P∗(A) : 1− P∗(A).

By varying the class P in this story we obtain a scale of examples. Per-
haps we can construct a theory of probability judgment—a “theory of lower
probabilities”—using this scale as the standard to which to compare our evi-
dence. It will rarely if ever happen, of course, that our evidence really consists
of knowledge that the truth is generated by chance and the chance law is in
a class P . But we have said the same thing about the canonical examples
underlying the Bayesian theory and the theory of belief functions.

But what are the elements of this theory of lower probabilities? What tools
do we have for locating our evidence on its scale of canonical examples? How,
that is to say, do we break the task of constructing the class P down into
simple judgments?

Here is an idea. Suppose we assess our evidence by making judgments of
the form “our evidence is like knowing that the truth is generated by chance
and that the chances have such-and-such a property.” Since there are many
properties of chance distributions, this formulation permits a wide variety of
judgments. We may say that our evidence is like knowing that the chance
of A is greater than the chance of B, or like knowing that the conditional
chance of A given C is greater than that of B given C, or like knowing that
the mathematical expectation of some function of the truth is between certain
bounds, etc. Our theory will ask us to make as many of these judgments as
we think necessary to capture the message of the evidence, and P will consist
of all the distributions that have all the properties we have specified.

Notice that this idea does not involve the decomposition of evidence. The
task of constructing P is broken down into simple judgments by distinguishing
different questions, not by distinguishing different items of evidence bearing
on these questions. All the judgments are supposed to be based on the total
evidence.

A class P of chance distributions determines, of course, more than the
lower probabilities (4). It also determines lower conditional probabilities

P∗ (A|B) = inf {P (A|B) |P ∈ P ;P (B) > 0} , (5)

which are defined whenever P (B) > 0 for some P ∈ P ,2 and lower expectations

E∗ (X) = inf {EP (X) |P ∈ P} ,

which are defined (in the case where Θ is finite) for every real-valued function
X on Θ. Since a lower unconditional probability is a special case of a lower
conditional probability (P∗ (A) = P∗ (A|Θ)) and a lower conditional probabil-
ity can be determined from knowledge of lower expectations (P∗ (A|B) = p if
2 De Finetti [8] assumes that P (A|B) is defined for an additive probability distri-

bution even if P (B) = 0, and Williams [30] accordingly supposes that P∗(A|B) is
always defined. But it is not necessary to explore these subtleties in the present
discussion.
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E∗ (X) = 0, where X (θ) = 1−p if θ ∈ A∩B, −p if θ ∈ A∩B, and 0 if θ ∈ B),
we obtain more information about P as we pass from lower probabilities to
lower conditional probabilities to lower expectations.

Example 1. Here are two classes P1 and P2 that have the same lower uncondi-
tional probabilities but can be distinguished by their lower conditional prob-
abilities. Set Θ = {a, b, c}, P1 =

{
P |P ({a, b}) ≥ 1

2

}
, and P2 = {P |P ({b}

| {b, c}) ≥ 1
2 }. Then P∗1(A) = P∗2(A) for all A ⊂ Θ. But P∗1 ({b} | {b, c}) = 0,

while P∗2 ({b} | {b, c}) = 1
2 . (2) Here are two classes that have the same lower

conditional probabilities but can be distinguished by other lower expectations.
Set Θ = {−2,−1, 1, 2}, set P1 = {P |EP ≥ 0}, where EP denotes the mean
of the distribution P , and set P2 = P1 ∪ {P2}, where P2 is the distribution
that puts mass 1

2 on −2, 1
3 on 1, and 1

6 on 2. Then P∗1(A|B) = P∗2(A|B) for
all A and B, but the lower expectations of the identity function X (θ) = θ
are E∗1(X) = 0 and E∗2(X) = − 1

3 . (3) Here are two distinct classes
that cannot be distinguished by their lower expectations. Set Θ = {a, b},
P1 = {P |P ({a}) ≥ .5}, and P2 = {P |.5 ≤ P ({a}) ≤ .6 or P ({a}) ≥ .9}.

Let us call a function P∗, defined for all A ⊂ Θ, a lower probability function
if it is given by (4) for some class P . And let us call a function of two variables
P∗(A|B) a lower conditional probability function if it is given by (5) for some
class P ; such a function is defined for B = Θ and for all other B ⊂ Θ such that
P∗(B|Θ) < 1. In general, as we have seen, there are many classes that yield
the same lower probability function or lower conditional probability function.
But the largest class that yields a given lower probability function P∗ is

P (P∗) = {P |P (A) ≥ P∗ (A) for all A ⊂ Θ} , (6)

and the largest class that yields a given lower conditional probability function
P∗(·|·) is

P (P∗(·|·)) =
{
P | if P∗(B|Θ) < 1, then P (B) > 0 and P (A|B) > P∗ (A|B)

}
.

(7)
Lower probability functions have been characterized axiomatically by Williams
[31], Huber [14], and Wolf [33]. I have not seen simple axioms for lower con-
ditional probability functions, but see Williams [30].

Our “theory of lower probabilities,” as I have described it so far, includes
in its scale of canonical examples every possible class P of chance distributions
over a frame Θ. For the theory allows us to specify an arbitrary property of a
chance distribution and to say that our evidence is like knowing that the truth
is generated according to chances having that property. Perhaps this is too rich
a scale. In practice there will surely be a limit to the complexity and subtlety
of properties that can sensibly be said to correspond to intuitive insights about
our evidence. And it may be desirable, from a psychological point of view, for
the theory to recognize this explicitly by specifying a somewhat sparser scale.
It cannot help us in fitting our evidence to a scale of canonical examples to
have that scale encumbered with confusing and superfluous possibilities.
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Just what classes P should be included in the theory’s scale? I see no
definitive answer to this question, but it does seem that an adequate scale
should include all P that can be defined by the sorts of constraints com-
monly placed on chance distributions—all that can be defined, say, by (1)
bounds on chances, conditional chances, and expectations, (2) comparisons
among chances and conditional chances, and (3) conditions of independence
and conditional independence. This is a rich scale. It includes far more P
than those of the form (6) or (7), and far more, even, that those that can
be defined by bounds on expectations. (As we have already noted, bounds
on chances and conditional chances can be reduced to bounds on expecta-
tions. Moreover, some comparisons can be reduced to bounds: the condition
P (A) > P (B), for example, is equivalent to P

(
A ∩B|A� B

)
≥ 1

2 , or simply
to P (A|A ∪B) ≥ 1

2 if A∩B = ∅. But conditions of independence and compar-
isons of the form P (A|B) ≥ P (A), say, go beyond bounds on expectations.)

Notice that if we were content with a scale consisting of P of the form
(7), then the lower conditional probability function P∗(·|·) would completely
identify P and hence would be a complete report of our assessment of our
evidence. If we agree, as I think we must, that a richer scale is necessary,
then P∗(·|·) cannot be regarded as a complete assessment. But it might be an
adequate summary for some purposes.

1.4 The Literature on Lower Probabilities

The idea of constructing a class of distributions by comparing our evidence
to knowledge that the truth is generated according to chances having certain
properties is an adaptation of an idea developed by I. J. Good [11]. Good
suggests that we pretend we have an additive probability distribution P in
a black box. Initially we know nothing about P , except that it is defined for
subsets of a frame Θ. But we make qualitative probability judgments about Θ,
and we interpret these judgments as constraints on P . For example, we judge
that A is more probable than B, and we interpret this as P (A) > P (B). Or
we judge that we would think A more probable than B if we knew C for
certain, and we interpret this as P (A|C) > P (B|C). If we manage to keep
these constraints from conflicting, then they determine a non-empty set P of
additive probability distributions.

Unfortunately, Good does not say that we are comparing our evidence
with knowledge that the truth is generated by some chance law in P . Instead
he studiously avoids pinning down the nature of the unknown probability
distribution P—he locates P in a “black box” precisely in order to avoid saying
whether it is a chance law, a hidden subjective distribution, or something else.
I believe this deliberate vagueness is untenable in a constructive theory. It
leaves us uncertain about how to make the qualitative probability judgments
and uneasy about whether we really want to interpret these judgments as
constraints on P . We cannot make even qualitative probability judgments
unless we have a definite language in which to work.
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Most other recent literature on lower probabilities seems less relevant to
our constructive view. Smith [28] and Williams [30, 31] study lower probabili-
ties as betting rates, but as I argue in Sect. 2 below, it is difficult to relate talk
about betting to constructive probability judgment. Huber’s work on lower
probabilities [13, 14] is mainly concerned with situations where the truth’s
being generated by chance is a serious hypothesis and not just a metaphor.
For further references, see Shafer [22].

1.5 Belief Functions and Lower Probabilities

Mathematically, every belief function is a lower probability function. Every
function of the form (2), that is to say, is also of the form (4). Here is one way
to see this. Given a belief function Bel on a frame Θ, we can construct an
additive probability distribution P such that P (A) > Bel(A) for all A ⊂ Θ
by choosing an element θB of every non-empty subset B of Θ and setting

p (θ) =
∑

{m (B) |θB = θ} .

Let P denote the class of distributions obtained by varying the choice of the
θB. Then P (A) is smallest for those P in P that choose θB to be outside A
whenever possible—i.e., whenever B 	⊂ A. So

inf {P (A) |P ∈ P} =
∑

{m (B) |B ⊂ A} = Bel (A) .

Not every lower probability function, on the other hand, is a belief function;
Williams exhibits an example of one that is not on page 380 of his review.

Does the fact that every belief function is a lower probability function
mean that our theory of lower probabilities is more general than the theory of
belief functions? Certainly not. For the theory of belief functions uses a belief
function in a different way than our theory of lower probabilities would use
it. The meaning is quite different in the two cases. One theory is comparing
our evidence to knowledge provided by a randomly coded message; the other
is comparing our evidence to knowledge about chances governing the truth. I
will discuss some of the implications of this difference in meaning in Sects. 3
and 5 below.

Since it does retain the Bayesian idea that our evidence is like knowing
that the truth is generated by chance, our theory of lower probabilities is much
closer in spirit to the Bayesian theory than the theory of belief functions is.
And, as we shall see in Sect. 3 below, it does not escape as thoroughly as one
might think from the Bayesian emphasis on prior probabilities.

I will not surprise the reader when I say that I find belief functions more
interesting and promising than lower probabilities. In many cases, I believe,
our evidence is so unlike knowledge that the truth is generated by chance that
it is misleading to liken a conviction that the evidence supports A better than
B to knowledge that the chance of A is greater than the chance of B.
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I hope, on the other hand, that the theory of lower probabilities I have
sketched here is more than a straw man. It is quite possible that judgments
of the kind the theory suggests will sometimes provide the most useful and
insightful way to analyze one’s evidence. And, as I shall try to show in this
paper, the theory provides explicit motivation for assumptions that Good,
Smith, and Williams have taken for granted in their writings on lower proba-
bilities.

1.6 What is a Degree of Belief?

What is meant by “degree of belief,” and how might an individual determine
his degrees of belief in a particular case?

The meaning of an “epistemic probability” or “degree of belief” is very
rich. It depends, I have argued, on the whole theory by which the probability
judgment is made or, as we might put it, on the whole language in which it is
expressed. A degree of belief of .3, say, means one thing in the Bayesian theory
and something different in the theory of belief functions. It also depends on
the canons of judgment that have been established in the particular field of
inquiry. A historian’s valuation of certain kinds of evidence may differ from a
judge’s.

There is room for ambiguity in the question about how an individual
might “determine his degrees of belief.” Some Bayesians give the impression
of thinking that we have numerical probabilities for everything hidden in our
psyche; they would interpret “determine” as a synonym for “elicit.” Others
take a more constructive view; for them probability judgment is a matter of
assessing evidence and constructing reasonable numerical beliefs. As I have
tried to make clear, I subscribe to the constructive view. Probability judgment
is a matter of construction. We may come to the task with some vague beliefs,
but these will not be numerically precise and will usually not even have any
very definite structure. (It would be silly, for example, to argue about whether
our unreflective beliefs have a structure more like belief functions or more like
Bayesian probability distributions. There simply is not that much structure
there.) And the process of construction should ideally be sufficiently fruitful in
new insights and understanding as to render obsolete much of any rudimentary
structure that might be in these initial vague beliefs.

1.7 Why Belief Functions?

For what reasons are degrees of belief required to satisfy the conditions
imposed? Why, that is to say, should “belief functions” be required to be
of the form (2) instead of, say, the more general form (4)?

As I see it, the theory of belief functions is a language in which one can
construct and express probability judgments. Asking why the theory uses
degrees of belief with a given structure is like asking why some aspect of
a language’s grammar is as it is. Explanations can be given, but they are
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inevitably internal explanations—explanations of how that aspect fits in with
other aspects of the language. Challenged to explain why belief functions are
required to be of the form (2), I might point out that only functions of this form
can be combined by Dempster’s rule. Or I might point out that functions of
this form result when evidence is assessed using the scale of canonical examples
involving randomly coded messages. But these are only internal explanations.
They do not rule out the usefulness or even superiority of a different theory
using a different and possibly more general structure for degrees of belief.

As I have tried to make clear, I do not deny the possibility of a theory
superior to the theory of belief functions. I believe, though, that the superi-
ority of one theory of probability judgment to another can be demonstrated
only by a preponderance of examples where the best analysis using the one
theory is more insightful than the best analysis using the other. As Amos
Tversky puts it, the unit of comparison for theories of probability judgment
is the individual analysis.

The individual analyses we compare should be complete analyses—analyses
beginning with an intuitive account of one’s actual evidence and building up
formal judgments step by step. (Examples of such analyses using belief func-
tions are given in Shafer [24] and Shafer and Breipohl [27].) It may be unfair
to ask a theory to deal with a problem which has already been translated from
actual experience into the language of another theory.

It would be unfair, for example, to argue that the very existence of a class
P of chance distributions such that (4) is not a belief function is proof of
the inadequacy of the theory of belief functions. For it is not the case that
we can ever really know, in a concrete problem, that the truth is generated
by chance in accordance with some distribution in a class P . Rather, the
determination of the class P must itself be regarded as the first step in one
particular approach to constructing probability judgments. And so it proves
nothing that the theory of belief functions may be unable to carry on from this
first step. The important questions are: (1) Can a theory of lower probability
functions show us how to carry out this first step insightfully? (2) In real
examples where such a theory succeeds, can the theory of belief functions do
as good or better using some other first step?

2 Betting

Since they use the picture of chance, our three constructive theories inevitably
lead us to think about betting. But what exactly is the significance of betting
for these theories?

Certainly we should not, in a constructive theory, interpret a probability
judgment as an actual commitment to bet. Nor should we interpret it as
a declaration that the person making the judgment has exactly the same
attitude towards a bet in accordance with that judgment as he has towards
a fair bet in a game of chance. Our relative equanimity about fair bets in
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games of chance is based on the assurance that the chances are objective
facts and on the assurance that no possible opponent can gain an advantage
over us through deeper understanding or knowledge of the game, and these
elements are missing when we construct probability judgments on the basis
of ordinary evidence. A probability judgment using the Bayesian theory, for
example, is merely a judgment that our evidence is more similar in strength
and significance to the evidence provided by knowledge of given chances than
to the evidence provided by knowledge of different chances. We will not be
happy unless we feel that the similarity is substantial and instructive and that
our judgment is sound, but we will not pretend that the similarity is complete,
nor that we are certain no one else could make a better judgment.

2.1 Long-Run Policies

So what are we saying about betting when we announce a probability judg-
ment in one of our constructive theories? We are only saying, I think, that
we judge our evidence to be similar to knowledge of a chance model where
certain bets conform to a prudent long-run policy.

It is instructive to spell this out for each of our three theories.

• When we construct a Bayesian probability distribution P , we are judging
our evidence to be like knowledge of a chance model where betting on A
at the rate P (A) conforms to a policy that breaks even in the long run.
(If, for i = 1, 2, . . . , a chance distribution Pi over Θi is used to generate an
independent outcome θi ∈ Θi, and if on each occasion we choose a subset
Ai of Θ and bet on it at rate Pi(Ai), then we break even in the long run.)

• When we construct a belief function Bel, we are judging our evidence
to be like knowledge of a chance model where betting on A at the rate
Bel(A) would conform to a policy that at least breaks even in the long
run. (Consider a sequence of randomly and independently coded messages.
Suppose the ith message bears on Θi. If we choose a subset Ai of each Θi,
and if Beli(Ai) turns out to be the total chance that the ith true message
implies Ai, then we at least break even in the long run by betting on Ai
at the rate Beli(Ai).)

• When we construct a lower probability function P∗, we are judging our
evidence to be like knowledge of a chance model where betting on A at
the rate P∗(A) would conform to a policy that at least breaks even in the
long run. (If, for i = 1, 2, . . . , a chance distribution Pi over Θi is used
to generate an independent outcome θi ∈ Θi, and if on each occasion we
choose a subset Ai of Θi and bet on it at a rate P∗i (Ai) ≤ Pi(Ai), then
we at least break even in the long run.)

Notice that we can make statements for belief functions and lower probabil-
ity functions that are identical on the surface. But in making these statements
we have chance models and long-run policies in mind that are quite different
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in the two cases. A belief function and a lower probability function that are
mathematically equivalent evoke the same bets in our actual problem, but
they refer these bets to different chance models and embed them in different
long-run policies.

Notice also that our statements about the long-run policies breaking even
in the chance models are not quite theorems. They can be turned into theorems
only by giving some mathematical form to the implicit assumption that our
choice of the Ai is independent of the truth and of the random action of the
model.

In formulating the statements about the models, I have been careful to
embed each probability judgment in a sequence of judgments with different
chance models and even different frames. For the chance model and the frame
are constructed to represent the evidence in the problem at hand, and the
next problem, and its evidence, will be different. If we were to allow ourselves
to envision repeated trials using the same model (P,Θ), then we could make
much stronger and more mathematically precise statements for the Bayesian
and lower probability models. We could, for example, say the following:

• If a chance distribution P over Θ is used to generate a sequence θ1, θ2, . . . ,
of independent outcomes, and on each occasion we bet on A ⊂ Θ at the
rate P (A), then we will break even in the long run. In fact, we will break
even even if we offer such bets for all A ⊂ Θ and let our opponents choose,
on each occasion, which bets to accept.

But since P is a product of our particular problem, these strong statements
are utterly irrelevant.

In the case of the chance model for belief functions there is no such temp-
tation to talk about repetitions. For the belief function Bel is determined, in
the model, by the random choice of a code and would vary even if the chance
distribution for the code were kept fixed.

To summarize: Constructive probability judgments can be related to bet-
ting, but the relation is tenuous on two counts. It is tenuous because we are
only comparing our evidence to a chance model. And it is tenuous because
even in the model the bets can be justified only when embedded in a particular
long-run policy involving other models.

2.2 The Dutch-Book Arguments

Williams must have a more intimate relation between probability and betting
in mind when he writes about the “betting interpretation” of Bayesian degrees
of belief and of lower probabilities and pleads for a similar “operational inter-
pretation” for belief functions. But what more intimate relation can there be
if we insist on a constructive understanding of probability judgment?

Williams’ answer, apparently, is that our primary purpose in constructing
probability judgments should be the setting of rates at which we will offer
bets in accordance with some betting scheme.
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There is, Williams reminds us, a betting scheme that seems to force a
Bayesian structure on betting rates and another, looser one that seems to
force the less restrictive structure of lower probability functions on them.

• Suppose we must choose, for each subset A of Θ, a betting rate P (A) and
then offer to take either side of a bet on A at odds P (A) : 1−P (A). Then
an opponent can compile a book of bets from our offers that assures a net
gain from us (a “Dutch book”) if and only if the function P fails to be an
additive probability distribution.

• Suppose we must choose a betting rate p∗ for each A and then offer to
bet on A at the odds p∗ : 1 − p∗, but we are not required to offer to take
the other side of the bet. Let P∗(A) denote the greatest rate at which
we have offered to bet on A—either explicitly or because such a bet can
be compounded from our other offers. Then a Dutch book can be made
against us if and only if P∗ fails to be a lower probability function. (See
Smith [28] or Williams [31]. Williams’ proof of this result is especially
elegant.)

But there does not seem to be a betting scheme in which the avoidance of
Dutch book yields precisely the class of belief functions.

The Dutch-book arguments are interesting, but it is hard to accept the
claim that the setting of betting rates in some particular betting scheme is
the primary purpose of probability judgment.

It is often argued in this connection that every choice or action is like a
bet and that probability judgments ultimately have no purpose other than to
guide future choice and action.

But how well do human choices and actions fit the picture of a bet? How
well, that is to say, do they fit the apparatus of “decision theory,” where
alternatives are weighed by the combination of probabilities and utilities? I
believe that they do not fit very well. One way to understand why they do not
fit is to recognize that utilities, like probabilities, do not simply exist. They
are constructed. And in the case of utilities the construction is accomplished
not so much by reflective thought as by our choices and actions themselves.
It is only after a human being or a society of human beings has established a
self-conception through crucial choices in a given domain that we can speak in
any detail about his or its preferences in that domain. (For a review of some
recent thinking about the inadequacy of decision theory, see March [18].)

Probability judgments should help guide our future choice and action, but
it is also important to remember that the proximate purpose of probability
judgment is always understanding. Human beings often seem to prize under-
standing for its own sake, and it is not easy to argue that this is always mere
appearance. For it is only after we have gained understanding that we can
formulate other goals.

Sometimes we are told that the Bayesian theory is a theory about the
betting behavior of ideal rational agents, and that as such it is “normative”—
it provides us with a definition of rationality that is so inherently attractive



9 Constructive Probability 233

that we should try to conform to it, even if we cannot fully succeed. But
surely this line of thought begs all the important questions. It is vacuous to
call a mode of thinking or behavior an ideal unless it is appropriate to our
needs and capabilities. And though the Bayesian theory is clearly a norm for
behavior within a particular betting scheme, this does not make it a useful
norm in ordinary thought and action.

I conclude that it is misleading to speak of a “betting interpretation” of
probability. All three of our theories of probability judgment produce degrees
of belief that can be used to set betting rates without fear of Dutch book. But
this is only a minor aspect of their meaning.

2.3 Betting as a Tool in Probability Judgment

Another possible way of relating betting to probability might be to use intro-
spection about betting as a tool in constructing probability judgments.

In the context of our three constructive theories, this would mean using
such introspection to help us compare our evidence to canonical examples
involving chance. We might try to locate the strength of our evidence on
the scale of chances by asking ourselves at what odds our attitude towards a
given bet would be comparable to our attitude towards a fair bet (Bayesian
theory), or perhaps at what odds our attitude would be comparable to our
attitude towards a bet we know to be at least fair (theory of lower probability
functions). This might be more effective psychologically than trying to think
about our evidence in terms of frequencies or propensities. The prospect of
monetary loss or gain might concentrate our minds and thus permit a more
honest and acute assessment of the strength of our evidence than we could
obtain by thinking about it directly.

Here we have a reasonably sharp empirical question. Does it help people
assess their evidence to think about betting? Or is it more helpful to think
about frequencies or propensities? This question has not, perhaps, been inves-
tigated as directly as it might be. But the many empirical studies that have
been made in this area do not seem to indicate that the betting metaphor is
any more useful than the frequency metaphor, say, as a psychological aid in
constructing degrees of belief.

I do not personally find that talk about betting concentrates my mind on
my evidence; instead it tends to divert my mind to extraneous questions: my
attitude towards the monetary and social consequences of winning or losing
the bet, my assessment of the knowledge and astuteness of my opponent, etc.
I find it inherently implausible, moreover, that I could better understand the
strength of my evidence by asking myself about my willingness to bet. In a
situation where I had somehow made a thorough and unimprovable but not
fully conscious analysis of my evidence, it might be sensible for me to forget
about the evidence and concentrate on my own hidden attitudes. But so far
as I know, I do not make such unconscious analyses of evidence.
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2.4 Lower Expectations

A function X which assigns a real number X(θ) to every θ ∈ Θ can be thought
of as a gamble: if X(θ) > 0, then X(θ) is the amount we win; if X(θ) < 0,
then −X(θ) is the amount we lose. The idea of buying a gamble generalizes
the idea of betting, for betting the amount p on A at the odds p : 1−p means
paying p to buy the gamble

X(θ) =
{

1 if θ ∈ A
0 if θ /∈ A.

Let us consider how each of our three theories would price a gamble.

• Bayes. If the truth is generated by chance in accordance with the chance
distribution P , then the fair price for the gamble X is, of course, its expec-
tation with respect to P , EP (X). Paying EP (X) for X is a policy that at
least breaks even in the long run.

• Belief Functions. If we receive an infallible message that the truth is in
A ⊂ Θ, then we know the gamble X(θ) is worth at least inf{X(θ)|θ ∈ A}
to us. So if we receive a randomly coded message and the chance of the
message meaning A turns out to be m(A) for each A ⊂ Θ, then it is natural
to price the gamble at the average value

B̂el(X) =
∑

A⊂Θ
m (A)

[
inf
θ∈A

X(θ)
]
. (8)

Let us call B̂el(X) the lower expectation of X . It is a fair price to pay for
X in the sense that we will at least break even if we pay such prices for
gambles in a long run of independent randomly coded messages.

• Lower probabilities. Suppose we know the truth is generated by chance
in accordance with some distribution in a class P . Then we know the
expectation of X is at least

E∗(X) = inf
P∈P

EP (X). (9)

And we will at least break even in the long run if we follow the policy of
paying this price for X .

In Sect. 1 above I called (9) the lower expectation of X . Is it consistent to
call both (8) and (9) by the same name? As it turns out, it is; if

P = {P |P (A) ≥ Bel(A) for all A ⊂ Θ} ,

then (8) and (9) will be equal. (See Huber [13] and Shafer [23].)
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3 Conditioning

The idea of conditioning has its origin in the theory of chance.
Conditioning occurs most naturally, perhaps, in the case of a game of

chance that unfolds step by step. When such a game has been only partly
played out (when only the first die has been thrown, say), chance still has a role
to play. And this role can be described by the conditional chance distribution.
Suppose, indeed, that X denotes the set of complete outcomes for the game,
and that the chance for each outcome x is denoted p(x), so that the chance
law P governing the game is given by

P (A) =
∑
{p(x)|x ∈ A}

for all A ⊂ X . Say the partial playing out of the game determines only that
the eventual outcome will be in the subset X0 of X . Then the conditional
chances p′(x) governing the remainder of play are obtained by reducing the
p(x) for x /∈ X0 to zero and multiplying the p(x) for x ∈ X0 by the factor
P (X0)−1. And the conditional chance distribution P (·|X0)−1 is given by

P (A|X0) =
∑
{p′(x)|x ∈ A} =

P (A ∩X0)
P (X0)

(10)

for all A ⊂ X . We can see that this is the right way to define the conditional
chances by thinking about long-run frequencies: P (A|X0) is simply the pro-
portion of the games that reduce to X0 during the first stage of play that will
go on to have their eventual outcome in A.

Conditioning can, of course, be applied in the case of any subset X0 of X ,
even if X0 does not correspond to a partial completion of the game. There
are several ways of explaining what meaning conditioning might have in this
more general case. One way is to turn our attention from the chances to the
degrees of belief they justify. If we know the chance distribution P and have
therefore adopted its values as our degrees of belief concerning how the game
will turn out, then news that the outcome has fallen in X0 will naturally lead
us to revise our beliefs by (10). Of all the games in which this news is true,
we will tell ourselves, P (A|X0) is the proportion in which the outcome is in
A. And so adopting P (A|X0) as our new degree of belief seems reasonable,
provided there is no trickery involved in our having received the news that
the outcome is in X0—provided, in other words, that our receipt of this news
is not the result of some fiendish scheme to mislead us.

Now suppose we represent ordinary evidence by constructing degrees of
belief over a frame Θ and then obtain new evidence whose direct effect on Θ
is to establish with certainty that the truth is in a subset Θ0. How should we
change our degrees of belief to take this new evidence into account? Each of
our constructive theories of probability has its own way of translating the rule
of conditioning for chance distributions into an answer to this questions.
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• Bayes. In the Bayesian case we have constructed an additive probability
distribution P over Θ, with the understanding that our evidence is com-
parable to knowledge that the truth is generated by P . So we will simply
adopt the conditional distribution P (·|Θ0) as our new additive probability
distribution.

• Belief functions. In the case of belief functions, the chance distribution in
our model is a distribution for the random choice of a code, and when we
take the news that the truth is in Θ0 into account, we have to condition
this distribution on a subset of codes.
Say we have represented our old evidence by a belief function Bel, cor-
responding to a randomly coded message with possible codes c1, . . . , cn,
where code ci was used with chance pi and decoding by code ci produces
the message Ai ⊂ Θ. We can simply incorporate the news that the truth
is in Θ0 into the messages, thus changing Ai to Ai ∩ Θ0. But we must
also notice that the news may tell us something about which code was
used: if Ai ∩ Θ0 = ∅, then code ci cannot be the code that was used. So
in addition to changing Ai to Ai ∩ Θ0 we must also condition the chance
distribution for the codes on the subset {ci|Ai ∩Θ0 	= ∅} of codes. This
means we replace the pi by p′i, where

p′i =
{

0 if Ai ∩Θ0 = ∅
pi∑{pj |Aj∩Θ0 �=∅} if Ai ∩Θ0 	= ∅.

These two changes (replacing pi with p′i and Ai with Ai ∩ Θ0) give us a
new randomly coded message representing the total evidence. The belief
function Bel (·|Θ0) corresponding to this randomly coded message has
m-values

m (A|Θ0) =
∑

{p′i|Ai ∩Θ0 = A} =
∑
{pi|Ai ∩Θ0 = A}∑
{pi|Ai ∩Θ0 	= ∅}

for all A 	= ∅, and so

Bel (A|Θ0) =
∑

{m (B|Θ0) |B ⊂ A}

=
∑
{pi|Ai ∩Θ0 ⊂ A} −

∑
{pi|Ai ∩Θ0 = ∅}

1−
∑
{pi|Ai ∩Θ0 = ∅}

=
Bel

(
A ∪Θ0

)
−Bel

(
Θ0

)

1−Bel
(
Θ0

)

for all A ⊂ Θ. This is the rule of conditioning for belief functions.
• Lower probabilities. Suppose we think the evidence bearing on a frame Θ

is similar in strength to knowledge that the truth is generated by chance
in accordance with some distribution in a class P . Then we can take new
evidence that the truth is in Θ0 into account by saying that our total
evidence is similar in strength to knowledge that the truth is generated
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by chance in accordance with some distribution in the class P ′ obtained
by conditioning on Θ0 each element of P that can be so conditioned. In
particular, we replace our lower probability P∗ by P ′

∗, where

P ′
∗(A) = inf {P (A|Θ0)|P ∈ P ;P (Θ0) > 0} ,

and we replace our lower conditional probability function P∗(·|·) by

P ′
∗ (A|B) = inf {P (A|B ∩Θ0) |P ∈ P ;P (B ∩Θ0) > 0} = P∗ (A|B ∩Θ0) .

Notice that P ′
∗ (A|B) is undefined if P∗(B ∩Θ0) = 1, in which case

P ′
∗
(
B|Θ0

)
= 1.

3.1 The Role of Conditioning

It should be emphasized that the decision to use the rule of conditioning in
one of our constructive theories is itself a constructive judgment. We condition
on B, as I have said, when the direct effect of new evidence on our frame Θ is
to establish that the truth is in B. But whether this is the direct effect of the
new evidence is a matter of judgment, not of fact. “The direct effect of the new
evidence” is an idea that has reality only within our language of probability
judgment. We learn the meaning of this idea by example, just as we learn the
meaning of other elements of a language, and our application of the idea to
particular evidence is, like other probability judgments, a comparison of that
evidence with other examples.

The decision to condition is just one place where the idea of “the direct
effect of given evidence” comes into play in the theory of belief functions.
It also comes into play when we represent an item of evidence by a simple
support function; in this case we must judge that the item’s only direct effect
on Θ is to support a given subset. And, as we shall see in Sect. 4 below, this is
merely a special case of the judgment that the direct effect of given evidence
on Θ is discerned by a given subalgebra.

The theory of belief functions is so concerned to identify the direct effect
of given evidence because it often works with limited items of evidence. As
I pointed out in Sect. 1 above, the fundamental strategy of the theory is to
make judgments based on different items of evidence and then to combine
these judgments. Conditioning is merely one example of such decomposition
and recombination, and it is unusual only in that the message of one of the
items of evidence is conclusive.

Theories which compare evidence to knowledge that the truth is gener-
ated by chance do not depend so extensively on the decomposition of evi-
dence. Our theory of lower probabilities, for example, breaks the overall task
of judgment down by distinguishing different questions, not by distinguishing
different items of evidence bearing on those questions. We construct a lower
probability function from many judgments of the form “our evidence is like
knowing the chance of A to be greater than p,” but it is “A” and “p” that vary
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from judgment to judgment, not the evidence; all the judgments are supposed
to be based on the total evidence. In this theory, as in the Bayesian theory, it
is only in the case of conditioning that we decompose our evidence, and so it
is only in the case of conditioning that we are concerned with identifying the
direct effect of a limited item of evidence.

How important is conditioning? Some Bayesians have given it a central role
in their theory, perhaps because it is the only way their theory decomposes
evidence and is hence the only way they can formally combine “new” evidence
with old. (See, for example, de Finetti [8], p. 141.) But I am inclined to think
of conditioning as a tool we will not use very often in a constructive theory.
It will happen fairly often, no doubt, that we can formulate a frame and
distinguish evidence whose direct effect is to establish that the truth is in a
certain subset. But how often will this frame be the same as the one we have
used or want to use in assessing the balance of our evidence? New evidence
that we actually obtain after constructing numerical probability judgments
over a frame Θ will seldom affect Θ so simply. And I also find it doubtful
whether the assessment of a body of evidence already obtained will very often
be best accomplished by singling out a part that establishes a subset B of a
frame Θ, using the rest to construct degrees of belief over all of Θ, and then
conditioning on B. It will usually, I think, be more sensible and efficient to
treat knowledge of B as just another element of our background knowledge
and to concentrate our probability judgments on matters that we really find
uncertain. For a discussion of this point in the context of a detailed example,
see Shafer [24].

One aspect of a decision to use conditioning in our constructive theories
is the implicit judgment that the news that the truth is in B has not been
selected from the many things we might be told just because it will interact
with other evidence in such a way as to mislead us. This judgment can be
translated into statements about the chance models used by the theories.
In the Bayesian theory and the other theories that think of the truth as
being generated by chance, the judgment comes down to saying that our new
evidence is like learning the truth is in B by means of some mechanism that
selects this message to send us without regard to the chances by which the
truth was generated. In the theory of belief functions, the judgment comes
down to saying that the selection of the message was without regard either
to how the random coding of previous messages was set up or to how that
random coding turned out. Notice that these statements assure, within the
chance models, that betting in accord with the new degrees of belief remains
a policy that at least breaks even in the long run.

3.2 A Comparison of Two Rules

The theory of belief functions and our theory of lower probabilities have very
different rules of conditioning—rules that can give very different results even
when applied to the same degrees of belief. We can gain insight into the



9 Constructive Probability 239

difference between the two theories by studying a simple example of this
divergence.

Let us first consider how the theory of belief functions conditions a simple
support function. Suppose A1 is a proper non-empty subset of Θ and we
represent strong but inconclusive evidence that the truth is in A1 by the
simple support function

Bel (A) =

⎧
⎨

⎩

0 if A1 	⊂ A
.95 if A1 ⊂ A 	= Θ
1 if A = Θ.

(11)

This belief function has m-values m(A1) = .95, m(Θ) = .05, and m(A) = 0
for all other A. In adopting it we are likening our evidence to a message
that probably means A (chance .95) but might possibly (chance .05) mean
nothing. Now suppose we obtain new evidence whose direct effect on Θ is to
establish that the truth is in A2, where A2 is some other subset of Θ such
that A1 ∩A2 	= ∅. Then we condition Bel on A2, obtaining

Bel (A|A2) =

⎧
⎨

⎩

0 if A1 ∩A2 	⊂ A
.95 if A1 ∩A2 ⊂ A 	⊃ A2

1 if A2 ⊂ A;
(12)

the news that the truth is in A2 changes the message that it is probably in
A1 into the more specific message that it is probably in A1 ∩A2.

Let us make the story more concrete. Suppose a burglar is traced to a
rooming house, in such a way as to make it highly probable that he is actu-
ally one of the roomers, though it is believed that he keeps his tools and loot
elsewhere. A police detective searches the rooming house and interviews the
five roomers, but on this first examination finds nothing that either exonerates
or further incriminates any of them. At this point the detective might formu-
late a frame Θ which includes, for each roomer i, a subset Bi corresponding to
the possibility that roomer i is the burglar. (See Fig. 1.) And he might adopt
(11) as a representation of his evidence, where A1 is the union of the Bi’s.

Suppose now that roomers 4 and 5 produce airtight alibis, conclusively
establishing that neither is the burglar. Such alibis, in order to be convincing,

B1 B5B4B3B2

A1

Fig. 1. Roomer i is the burglar
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would have to involve great detail, and this detail would inevitably provide
less conclusive evidence about other questions. But we may suppose that these
other questions are not germane to the investigation and therefore need not be
introduced into the frame Θ. Thus the detective may judge that the only direct
effect of this new evidence on Θ is to eliminate B4 and B5 from consideration.
In this case he will want to condition (11) on the set A2 = B4 ∪B5, which
corresponds to the burglar being someone other than roomer 4 or roomer 5.
The set A1 ∩ A2 = B1 ∪ B2 ∪ B3 corresponds to the burglar being one of
the first three roomers. And according to the new belief function (12), the
suspicion against the rooming house now points to these three.

Here is another way the story might go. Suppose the new evidence, instead
of consisting of alibis, is evidence from the scene of the crime establishing that
the burglar has blood type O. In this case the detective might introduce the
question of the burglar’s blood type into our frame Θ, so that there is a subset
A2 of Θ corresponding to its being type O. (This set A2 is pictured in Fig. 2;
since we do not yet know the roomers’ blood types, A2 intersects with each
Bi.) And he will then condition (11) on A2. The resulting belief function (12)
awards degree of belief .95 to A1 ∩ A2, which corresponds to the proposition
that the burglar is one of the roomers and has blood type O. Under these
circumstances the detective’s next step will no doubt be to find out the blood
type of each of the roomers and to condition (12) on this further information.
I will refrain from illustrating this further conditioning graphically, because
a very complicated picture arises when we introduce distinctions about each
roomer’s blood type into Θ. But the final result is obvious: if none of the
roomers have type O blood then the suspicion against them is dispelled; oth-
erwise it is focused on those that do.

One might challenge the adequacy of (11) and (12) as an analysis of this
detective story on the grounds that there is probably other evidence that
it does not take into account. Surely the detective acquired some hints and
hunches in the course of interviewing the roomers. And might he not have
some prior inclination to expect type O blood, given its high frequency in the

A1

A2

Fig. 2. The intersection of A1 and A2
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population? The answer to this challenge is that the theory of belief functions
can always accommodate further evidence, provided its relevance is identified
and its value is assessed. The detective can decide he has further evidence
worth introducing into the analysis, or he can decide he does not.

Let us now consider how to analyze the detective story using our theory
of lower probabilities.

The most obvious approach is to liken the initial evidence in favor of A1

to knowledge that the truth is generated by chance and that the chance of
A1 is at least .95. This means representing the evidence by the class P =
{P |P (A1) ≥ .95} or by the lower probability function

P∗ (A) =

⎧
⎨

⎩

0 if A1 	⊂ A
.95 if A1 ⊂ A 	= Θ
1 if A = Θ,

(13)

which is mathematically identical to the belief function (11). But if we con-
dition P on a subset A2 that intersects both A1 and A1, then we will obtain
the new lower probability function

P ′
∗ (A) =

{
0 if A2 	⊂ A
1 if A2 ⊂ A,

(14)

which indicates no particular support at all for A1 ∩ A2. In fact, (14) seems
to ignore the initial evidence. It is presumably the lower probability function
we would adopt if we had only the new evidence establishing A2.

It will be agreed, I think, that (14) is unsatisfactory. How is it to be
avoided?

The natural move is to challenge the adequacy of the class P = {P |P (A1)
≥ .95} as a representation of our initial evidence. There is, one might argue,
more to be said on the basis of the initial evidence than that the chance of
A1 is at least .95. In order to prepare for conditioning on the alibis of the
two roomers for example, we might decide that the five roomers have equal
chances of being the burglar, thus narrowing the class P down to the class

P1 = {P |P (A1) ≥ .95;P (B1) = P (B2) = P (B3) = P (B4) = P (B5)} .

This already awards a lower probability of .57 to B1 ∪B2 ∪B3. And when we
condition P1 on A2 = B4 ∪B5, we obtain

P ′
1 =

{
P |P (A2) = 1, P (A1 ∩A2) ≥

.57

.62
≈ .92;P (B1) = P (B2) = P (B3)

}
,

which awards a lower probability of .92 to A1 ∩ A2 = B1 ∪ B2 ∪ B3. This is
nearly as great as the degree of belief .95 awarded by the belief function (12).
Notice, though, that this analysis is sensitive to the number of roomers and
the proportion with alibis in a way that the analysis using belief functions is
not. If four out of the five roomers have alibis, then the final lower probability
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for the remaining one would be only .19
.24 ≈ .79; if there were 20 and 19 were

similarly exonerated, then the final lower probability for the remaining one
would be .0475

.0975 ≈ .49. And these figures could easily be altered if we claimed
that our initial evidence justified unequal prior chances for the roomers.

The initial class P can also be adapted to give sensible results when condi-
tioned on the burglar’s blood type. In this case the natural move is to narrow
P down to

P2 = {P |P (A1) ≥ .95;P (A1 ∩A2) = P (A1)P (A2)} .

We require, that is to say, that A1 and A2 be independent. This is reasonable;
once we have decided to think of the truth as random, it is natural to think
of the random determination of the burglar’s blood type as stochastically
independent of the random determination of whether he is one of the roomers.
Conditioning P2 on A2 yields

P ′
2 = {P |P (A2) = 1;P (A1 ∩A2) ≥ .95} ,

which gives a lower probability function mathematically identical to the belief
function (12).

This last analysis can be extended to an analysis incorporating further
conditioning on the roomers’ blood types that will continue to agree with the
analysis using belief functions. Here is the set-up. Let T denote the burglar’s
blood type, let Ti denote the ith roomer’s blood type, and set

X =
{

0 if the burglar is not one of the roomers
i if the burglar is the ith roomer.

(Notice that T = Ti when X = i. And “X 	= 0” is equivalent to A1.) Replace
the initial class P by the class P3 consisting of all P such that P (A1) ≥ .95,
(X,T1, .., T5) are jointly independent with respect to P , all the Ti have the
same marginal distribution, and T has this same distribution conditional on
X = 0. We may take the burglar’s and the roomers’ blood types into account
by conditioning P3 on the values of T and the Ti, and if there is a subset of
roomers whose blood type agrees with the burglar’s they will inherit the full
.95 suspicion against the rooming house.

To summarize: A basic idea of the theory of belief functions is the idea
of evidence whose only direct effect on the frame Θ is to support a subset
A1, and an implicit aspect of this idea is that when this evidence is combined
with further evidence whose only direct effect on Θ is to establish a compatible
subset A2, the support for A1 is inherited by A1 ∩ A2. The theory of lower
probabilities does not have a fully equivalent idea. New evidence establishing
A2 may cause prior support for a subset A1 to be inherited by A1 ∩A2 in the
theory of lower probabilities, but whether this happens will depend, as in the
Bayesian theory, on various “prior probabilities.”

Indeed, the similarity between our theory of lower probabilities and the
Bayesian theory in their dependence on prior probabilities is striking. Our
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theory of lower probabilities does not, apparently, always get us away from
the Bayesian bemusement over how to assess prior probabilities when the
evidence is weak. In the case of our five roomers there was a natural symmetry
on which to pin “equal prior probabilities,” but one could easily construct
similar examples where there are no obvious symmetries or else competing
ones, so that the prior probabilities needed in order to get sensible answers
from conditioning seem much more arbitrary. This makes us wonder just how
much is gained in the generalization from the Bayesian theory to the theory
of lower probabilities.

However we answer this question, the drastically different results we get by
conditioning (11) and (13) should bring home to us that a belief function can
have quite a different meaning from a mathematically identical lower proba-
bility function. Saying our evidence is like a message that probably means A1

but might mean nothing is quite different from saying it is like knowing that
the truth is generated by chance and that the chance of A1 is great. So we
must decide when we make a probability judgment, just which formulation
fits the significance of our evidence. We cannot simply make a vague judg-
ment that the evidence supports A1, express it numerically by (11), and then
interpret (11) indifferently either as a belief function or as a lower probability
function.

3.3 Conditional Bets

Consider again two proper subsets A1 and A2 of Θ such that A1 	= A2 and
A1 ∩A2 	= ∅. Following de Finetti, let us call a gamble of the form

X (θ) =

⎧
⎨

⎩

1− p if θ ∈ A1 ∩A2

−p if θ ∈ A1 ∩A2

0 if θ /∈ A2,
(15)

where 0 < p ≤ 1, a “bet on A1 conditional on A2.” The idea behind this name
is that if we agree to this gamble (i.e., buy it for the price zero), then we will
be betting on A1 at odds p : 1 − p and total stakes p+ (1− p) = 1, with the
understanding that the bet will be called off if the truth turns out, when it is
revealed, not to be in A2.

In our constructive theories of probability judgment, our attitude towards
a gamble depends, in the tenuous way discussed in Sect. 2 above, on the
gamble’s expectation or lower expectation. This is true in particular of a
conditional bet. If the expectation or lower expectation of the conditional bet
is nonnegative, then the bet conforms, in the chance model we have used to
represent our evidence, to a policy that at least breaks even in the long run.

Our attitude towards any gamble will, in general, change as we acquire new
evidence. And in the theory of belief functions, our attitude towards a condi-
tional bet can change dramatically when we obtain new evidence establishing
the condition of the bet. Suppose, for example, that we have represented our
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evidence about Θ by the belief function (11). Then our lower expectation for
the conditional bet (15) is

B̂el (X) = .95
[

inf
θ∈A1

X (θ)
]

+ .05
[

inf
θ∈Θ

X (θ)
]

= −.05p.

Since this is negative, the theory gives no sanction to the bet. But if we obtain
new evidence establishing A2 and change our belief function to (12), then the
lower expectation changes to

B̂el (X |A2) = .95
[

inf
θ∈A1∩A2

X (θ)
]

+ .05
[

inf
θ∈A2

X (θ)
]

= .95 (1− p) + .05 (−p) .

If p < .95, then this will be positive and so the theory will sanction the bet as
reasonable policy. It is easy to see intuitively why our attitude towards the bet
changes in this way. The bet is essentially a bet on A1 ∩A2, and the original
evidence, while supporting A1, does not provide any particular support for
A1 ∩A2 until it is conjoined with the evidence establishing A2.

Neither the Bayesian theory nor the theory of lower probabilities, in con-
trast, ever changes its willingness to sanction a conditional bet because of new
evidence whose direct effect is to establish the bet’s condition. Indeed, when
we condition a Bayesian probability distribution P on A2, the expectation of
(15) changes only from EP (X) to

EP (X |A2) =
EP (X)
P (A2)

;

it cannot change in sign. And when we condition a class P of distribution on
A2, the lower expectation of (15) changes only from

E∗ (X) = inf {EP (X)|P ∈ P}

to

E∗ (X |A2) = inf
{
EP (X)
P (A2)

|P ∈ P ;P (A2) > 0
}
,

and while this may be a change from zero to a positive quantity it cannot be
a change from a negative to a non-negative quantity or vice-versa.

This contrast can also be expressed in terms of maximum rates for condi-
tional bets. The maximum rate for betting on A1 conditional on A2 is defined
as follows:

• In the case of a Bayesian probability distribution P such that P (A2) > 0,
it is

sup {p|EP (X) ≥ 0} ,

where X , which depends on p, is the conditional bet (15).



9 Constructive Probability 245

• In the case of a belief function Bel such that Bel(A2) < 1, it is

sup
{
p|B̂el (X) ≥ 0

}
.

• In the case of a class P of distributions such that p∗(A2) < 1 (i.e., P (A2) >
0 for some P ∈ P), it is

sup {p|E∗ (X) ≥ 0} = sup {p|EP (X) ≥ 0 for all P ∈ P} .

These definitions all say the same thing: the maximum rate is defined
except when we are certain the truth is not in A2 (in which case the conditional
bet is of no interest), and it is defined to be the greatest value p for which
the bet is sanctioned. In general, a bet on A1 conditional on A2 is sanctioned
in one of the constructive theories only if the bet’s value for p is less than or
equal to this maximum rate. Thus the contrast between belief functions and
the other two theories can be expressed by saying that the maximum rate for
betting on A1 conditional on A2 may change when one conditions on A2 in
the theory of belief functions, but not in the other theories.

The picture becomes clearer, perhaps, then we notice that in the Bayesian
theory the maximum rate for betting on A1 conditional on A2 happens to be
equal to the conditional probability P (A1|A2). This is because EP (X) ≥ 0 if
and only if

P (A1 ∩A2) (1− p) + P
(
A1 ∩A2

)
(−p) ≥ 0

or

p ≤ P (A1 ∩A2)
P (A2)

= P (A1|A2).

Bear in mind that though this maximum rate might be called a “conditional
betting rate,” it is the bet that is conditional; the rate itself is “uncondi-
tional” in the sense that it is our rate prior to obtaining new evidence and
“conditioning” on A2. But when we obtain this new evidence the conditional
bet becomes, for practical purposes, unconditional—for we know its condition
is satisfied. Thus our new maximum rate for the conditional bet will be the
same as our new maximum rate for an unconditional bet on A1—i.e., our
new degree of belief in A1. But this new degree of belief is P (A1|A2). This is
how it happens that our maximum rate for this particular conditional bet is
unchanged.

The same thing happens in our theory of lower probabilities: the maximum
rate for betting on A1 conditional on A2 happens to be equal to P∗(A1|A2),
and hence remains unchanged when we condition on A2. But in the theory of
belief functions this does not happen: our “prior” maximum rate for betting
on A1 conditional on A2 is usually not equal to Bel(A1|A2), our “posterior”
maximum rate for betting on A1.
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3.4 The Dynamic Assumption of the Betting Theories

In this essay I have insisted on understanding both the Bayesian theory and
the theory of lower probabilities as constructive theories. I have assumed that
the degrees of belief given by both theories are the result of comparing one’s
evidence to knowledge about chances governing the truth. And I have used
this assumption to derive the theories’ methods for pricing gambles and their
rules of conditioning.

In the literature that treats probability theory as a theory about the gam-
bling behavior of “idealized rational agents,” on the other hand, there is no
possibility of appealing to chance models to derive rules of conditioning. And
thus these rules for changing degrees of belief or betting rates become, to
use Ian Hacking’s eloquent phrase, dynamic assumptions.3 And one faces the
problem of making these assumptions plausible.

Here is how de Finetti tries to make the Bayesian rule of conditioning
plausible. He begins by defining a Bayesian’s “conditional probability of A
given B,” denoted P (A|B), as his rate for betting “on A conditional on B”—
his rate for betting, that is to say, on A with the understanding that the
bet will be called off unless B is true. (See de Finetti [6], p. 109, [7], p. 82,
[8], p. 135.) He then proceeds to interpret P (A|B) as the probability of A
conditional on B in the usual sense—i.e., as the Bayesian’s degree of belief or
betting rate for A after he has obtained new evidence establishing B. (See de
Finetti [6], p. 119, [7], p. 210, [8], p. 141).

What are we to make of this procedure? It obviously takes for granted that
one’s betting rate for a conditional bet should be unchanged when new evidence
is obtained whose direct effect is to establish the truth of the bet’s condition.
Let us call this de Finetti’s principle. I have been unable to find a critical
discussion of this principle in de Finetti’s writing. He seems to consider the
principle too self-evident to require such a discussion.

As one who finds the theory of belief functions, which does not obey
de Finetti’s principle, self-consistent and appealing; I find the idea that de
Finetti’s principle is self-evident baffling. I see the correctness of the principle
when betting rates are based on knowledge of chances governing the truth. I
am willing to accept the principle as part of a theory that compares our evi-
dence to knowledge of chances. But I do not see that it is inherent to the idea
of betting per se. It is clear enough that a bettor should change his betting
rates when he learns that B is true, and that his new rate for an unconditional
bet on A should be the same as his new rate for a bet on A conditional on B.

3 See Hacking [12]. In this paper Hacking complains about the lack of any justifi-
cation for the rule of conditioning in the Bayesian literature. The literature on
lower probabilities is equally lacking. Since Hacking wrote, Teller [29] has given
a Dutch-book argument for the Bayesian rule of conditioning, but this argument
depends on the Bayesian rule of additivity and also on the assumption that we
know before obtaining the new evidence that the subset established by it will be
an element of a certain partition. See also Freedman and Purves [10].
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Moreover, these new rates should be the same as the new rate for a bet on A
conditional on any B′ such that B ⊂ B′ ⊂ Θ. All these bets are equivalent
for someone who knows that the truth is in B. But why should the new rates
for all these bets be the same as the old rate for the bet conditional on B?
Why should this particular rate remain unchanged while the others change?

De Finetti’s principle can similarly serve as the dynamic assumption of a
betting theory of lower probabilities. Smith [28] seems to use it in this way, for
he gives the name “lower conditional probability” to a bettor’s maximum rate
for a bet on A which is to be called off unless B is true (p. 6) and then takes
it for granted that this should become his betting rate for an unconditional
bet on A when he obtains new evidence establishing B. Williams [30] similarly
identifies lower conditional probabilities as betting rates for conditional bets
but does not discuss changes in betting rates resulting from new evidence.

3.5 Williams’ Argument on Conditional Bets

On p. 381 of his review, Williams discusses the pricing of conditional bets in
the theory of belief functions. He casts his argument in terms of a numerical
example, but we can easily recast it in general terms. It begins, essentially,
with the following fact: offers to bet on A2 at rate p and on A1 conditional
on A2 at rate q entail an offer to bet on A1∩A2 at rate pq. (Proof: If the bet
on A2 has total stakes q, then it is the gamble

X1 (θ) =
{

(1− p) q if θ ∈ A2

(−p) q if θ /∈ A2.

If the conditional bet has unit stakes, then it is the gamble

X2 (θ) =

⎧
⎨

⎩

1− q if θ ∈ A1 ∩A2

−q if θ ∈ A1 ∩A2

0 if θ /∈ A2.
(16)

Taking both these gambles means taking the gamble

X1 (θ) +X2 (θ) =
{

1− pq if θ ∈ A1 ∩A2

−pq if θ ∈ A1 ∩A2,

which is merely a bet on A1 ∩A2 at the rate pq.)
Suppose we price gambles using a belief function Bel, so that Bel(A2) and

Bel(A1 ∩A2) are the greatest rates at which we will bet on A2 and A1 ∩A2,
respectively. If q is a rate at which we bet on A1 conditional on A2, then our
willingness to bet on A2 at the rate Bel(A2) implies, by the italicized sentence,
a willingness to bet on A1 ∩ A2 at the rate Bel(A2)q. So the assertion that
Bel(A1∩A2) is the greatest rate at which we will bet on A1∩A2 will be valid
only if

Bel(A1 ∩A2) ≥ Bel(A2)q. (17)
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Williams asks, in effect, whether the pricing of conditional gambles in the
theory of belief functions guarantees that (17) will be true.

In fact, the theory of belief function does guarantee (17). For it sanctions
the conditional bet (16) only if (16) has a non-negative lower expectation—i.e.,
only if

(1− q)
∑

{m (A) |A ⊂ A1 ∩A2} ≥ q
∑{

m (A) |A ∩A1 ∩A2 	= ∅
}
,

which implies

(1− q)
∑

{m (A) |A ⊂ A1 ∩A2} ≥ q
∑

{m (A) |A ⊂ A2;A 	⊂ A1 ∩A2} ,

or
(1− q)Bel(A1 ∩A2) ≥ q (Bel (A2)−Bel (A1 ∩A2)) ,

which is equivalent to (17).
There is, of course, a more general issue here. The question is whether

interpreting Bel(A), for each A ⊂ Θ, as the greatest rate at which a bet on A
is sanctioned is consistent with sanctioning every gamble with non-negative
lower expectation. We easily see that a bet on A at rate p has non-negative
lower expectation if and only if p ≤ Bel(A). But perhaps it is possible, in some
cases, to build up a bet on A at a rate higher than Bel(A) by compounding
other sanctioned gambles. In fact, it is not possible. One way to verify this
is to check directly that the lower expectation B̂el obeys B̂el(X1 + X2) ≥
B̂el(X1) + B̂el(X2) and B̂el(aX) = aB̂el(X) for a ≥ 0. Another way is to
apply the general theory developed by Smith and Williams.

The relation (17) would be a problem for belief functions if we interpreted
the conditional degree of belief Bel(A1|A2) as a sanctioned rate for a bet on
A1 conditional on A2. For then (17) would imply

Bel (A1 ∩A2) ≥ Bel (A2)Bel(A1|A2), (18)

and, as Williams shows using a numerical example, this relation can easily be
violated by belief functions.

Unfortunately, Williams finds the identification of conditional degrees of
belief with betting rates for conditional bets so compelling that he takes the
failure of (18) to be a shortcoming of the theory of belief functions. He concedes
(p. 381) that one might say that “Bel(A|B) as defined by Shafer should be
interpreted as the largest rate at which the subject would be prepared to
bet on A if B were discovered to be true (whatever this means), whereas
the interpretation given is in terms of the subject’s prior readiness to accept
conditional bets.” But he evidently finds this too bizarre to take seriously,
for he concludes (p. 387) that the theory’s rule of conditioning “excludes
the possibility of interpreting degrees of belief in terms of acceptable betting
rates.”

I have, I hope, adequately explained why the theory of belief functions does
not identify conditional degrees of belief with betting rates for conditional
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bets. And I think we may conclude from the example provided by the theory
of belief functions that such an identification is not inherent in the idea of
betting itself. So if we apply to Williams’ ideas on lower probabilities the same
standards of justification that he has applied to the rules for belief functions,
we must ask him to justify this identification. Perhaps the best justification
is the one I have developed in this essay: the identification holds if our model
for evidence is partial knowledge of chances governing the truth.

4 Minimal Extension

A lower probability function defined only on a restricted class of subsets of
a frame Θ can always be extended in a minimal way to a lower probability
function defined on all subsets of Θ. Belief functions can be extended in a
similar way provided that the restricted class is closed under intersections
but not, in general, otherwise. And this, Williams argues, makes it “difficult,
in certain cases, to find a belief function which might adequately express a
subject’s opinions.”

Here, as elsewhere in his review, it is not clear whether Williams is taking
a constructive point of view. His talk about “expressing a subject’s opinion”
could be construed to mean that we are concerned not so much with con-
structive probability judgment as with the task of eliciting opinions already
determined. I shall, however, respond to Williams’ criticism within the con-
structive framework of this essay.

4.1 Minimal Extension for Belief Functions

Consider a detective who is trying to find out who stabbed a man to death.
Many questions will engage his interest: the circumstances of the killing, the
circumstances of the victim, etc. But few of his sources of evidence will bear
directly on more than a few of these questions. A medical specialist might, for
example, give evidence that bears directly only on the time of death and the
nature of the struggle. Evidence that bears on the time of death may, of course,
ultimately point to the killer, but only indirectly, through its interaction with
other evidence.

It may be the case, as I suggested in Sect. 3 above, that the idea of “direct
effect of evidence” cannot be reduced to simpler ideas and so must be learned
by example. Be this as it may, it is a clear and commonplace idea, and one
that is fundamental in the theory of belief functions. The use of the idea is
quite simple. When we judge that given evidence bears directly only on certain
questions, we formulate a frame that deals only with these questions and then
construct a belief function Bel over this frame to represent the evidence. We
then think of this frame as a coarsening of a finer frame Θ that takes into
account the other questions with which we are concerned. (See Chap. 6 of A
Mathematical Theory of Evidence.) Or, to use a more familiar vocabulary, we
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think of the subsets of the first frame as forming a subalgebra B of the algebra
of all subsets of the finer frame Θ. And we adopt the belief function Bel over
Θ, where

Bel (A) = sup {Bel (B) |B ∈ B, B ⊂ A} (19)

for each A ⊂ Θ. The belief function Bel is called the minimal (or vacuous,
or canonical) extension of Bel; it gives each element of B the same degree of
belief as Bel does, and it gives the other subsets the smallest degrees of belief
consistent with these. (See Sect. 7.3 of A Mathematical Theory of Evidence.)

The subalgebra B may be more or less detailed. The detective and med-
ical specialist, for example, may judge that the direct significance of certain
medical evidence is exhausted by saying that it is highly probable that death
took place between 5 and 10 hours ago. Or they may think this evidence also
provides some support for a more exact time of death. Or they may think it
provides both this and also some indication of the nature of the struggle. In
the first case they might set B = {∅, B0, B0, Θ}, where B0 corresponds to the
death taking place between 5 and 10 hours ago, set Bel(∅) = Bel(B0) = 0,
Bel(B0) = .95, and Bel(Θ) = 1, and thus obtain for Bel a simple support
function focused on B0. But in the other cases B will be more detailed and
Bel will be more complicated.

The idea of minimal extension can be generalized to the case where the
initial belief function Bel is defined not on a subalgebra but merely on a
collection E of subsets of Θ that is closed under intersections. (A function
on such a collection is called a belief function if there is at least one way to
extend it to a belief function over Θ.) As it turns out, there always exists
in this general case a belief function Bel over Θ that extends such a belief
function Bel (i.e., agrees with it on E) and gives all subsets of Θ the smallest
degrees of belief given to them by any belief function that extends Bel. To
put it another way, the function Bel defined by

Bel(A) = inf{Bel′(A)|Bel′ is an extension of Bel} (20)

for all A ⊂ Θ is a belief function. If E is not an algebra, then the formula (19)
for Bel may not be valid, but a more complicated formula can be given. (See
Shafer [26].)

The notion of minimal extension breaks down for belief functions if the
collection E on which Bel is initially defined is not even closed under inter-
sections. For in this case there may not be a single extension of Bel which
assigns smallest degree of belief to all subsets of Θ. To put it another way,
the function Bel given by (20) may fail to be a belief function. The practical
implication of this is that probability judgments based on a single item of
evidence should include direct judgments about A∩B whenever they include
direct judgments about A and about B. If, for example, our medical specialist
judges given evidence to indicate both that the death occurred within the last
ten hours and that the victim resisted, then his numerical judgments should
include not only judgments about the support for each of these propositions
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but also a judgment about the support for their conjunction. If the special-
ist judges that the support for the two propositions comes from intuitively
independent items of evidence or aspects of the evidence, then he can use
Dempster’s rule to determine the degree of support for the conjunction, but
otherwise he must make a direct judgment.

In practice, the theory of belief functions applies minimal extension mainly
to the case where initial judgments determine a belief function on a subalge-
bra. For the intuitive judgment that given evidence bears directly only on cer-
tain questions seems to translate naturally into the idea that it bears directly
only on a subalgebra. And most of the theory’s relevant tools (assessment rel-
ative to a single dichotomy, consonant assessment, discounting of frequencies)
are readily understood as tools for constructing belief functions on subalge-
bras. The generalization to the case of a collection of subsets closed only under
intersection seems to be of interest only as a technical tool in a theoretical
context. (See Shafer [23].)

4.2 Minimal Extension for Lower Probabilities

As Williams points out, minimal extension can be applied to lower probabili-
ties defined on an arbitrary collection E . Suppose, indeed, that we make direct
judgments that give us lower probabilities P∗(A) for A in such a collection E
and then make the judgment that those lower probabilities exhaust the impact
of the evidence. If we have arranged the judgments P∗(A) for A ⊂ E so that
there is at least one extension to a lower probability function over Θ (i.e., so
that there is at least one lower probability function P ′

∗ defined for all subsets
of Θ such that P ′∗ (A) = P∗ (A) for all A ⊂ E ; this may be a difficult condition
to check), then there exists a minimal extension—a lower probability function
P ′∗ defined for all A ⊂ E and awarding all subsets the least values awarded by
any P ′

∗ that extends P∗. In other words,

P ′∗ (A) = inf {P ′
∗ (A) |P ′

∗ is an extension of P∗}

defines a lower probability function. This is obviously the same concept of
minimal extension as the one used by the theory of belief functions. The
only difference is that it works for all E , not just for E that are closed under
intersections.

The matter can be put most concisely by saying that there always exists
a minimum element in the class of those lower probability functions assigning
given values to given subsets. Notice, however, that there are many other prop-
erties such that there does not exist a minimum element in the class of lower
probability functions having the property. If, for example,Θ = {−1, 0, 1}, then
there is no minimum element in the class of lower probability functions having
lower expectation zero. Thus even lower probability functions are limited in
this respect. One cannot specify arbitrary properties for a lower probability
function, decide that these specifications exhaust the impact of the evidence,
and then adopt the minimum lower probability function having the properties.
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Williams’ notion of minimal extension finds a place in the general construc-
tive theory of lower probabilities that I developed in Sect. 1 above, but only
as a rather special case. For in that theory we make judgments that impose a
rather wide variety of constraints on a supposed chance distribution P before
judging that we have exhausted the impact of the evidence and proceeding
to derive a lower probability function P∗ from the class P of distributions
satisfying the constraints. And only if the constraints are all of the particular
form “P (A) > c” can we think of each judgment as establishing a particular
value P∗(A).

4.3 Williams’ Example

The tool of minimal extension is more widely available for lower probabilities
than for belief functions. But what significance does this have? It seems to
me that it has little immediate significance, and that its ultimate significance
can only emerge from comparing the two theories as a whole in the context of
actual examples. Discussing the question in isolation is rather like comparing
two tool boxes on the basis of the weight of their hammers without regard for
the different roles the two hammers play.

Williams does give an example to support his belief that minimal extension
for arbitrary E is needed. He writes as follows:

. . . suppose there is evidence relating to the unknown outcomes of two
tosses of a coin giving rise, for each toss, to a belief function

Bel({H}) =
1
2
, Bel({T }) = 0.

The upper and lower probabilities of heads, on either toss are therefore
1
2 and 1, respectively. Now consider which belief function might be
chosen to express the impact of the evidence on the set of possible
joint outcomes {HH,HT, TH, TT }. We must have

Bel({HH,HT }) = Bel({HH,TH}) =
1
2
, (5)

Bel({TH, TT }) = Bel({HT, TT }) = 0 (6)

since the arguments in (5) are respectively the events ‘heads on the
first toss’ and ‘heads on the second toss’, whilst the arguments in (6)
refer correspondingly to tails. Furthermore, one can imagine situations
in which it would seem reasonable to say that no more support accrues
to the remaining sets of possibilities than is required by (5) and (6).
That is to say, we should look for a minimum element in the set of
belief functions satisfying these conditions. . . .

But, as Mr. Williams points out, there is no minimum in the class of belief
functions over the frame Θ = {HH,HT, TH, TT } satisfying (5) and (6). (Here
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we have, in effect, E = {∅, {HH,HT }, {HH,TH}, {TH, TT }, {HT, TT }, ∅},
and this is not closed under intersection. We have made judgments about
the degree of support for {HH,HT } and about the degree of support for
{HH,TH}, but not about the degree of support for {HH} = {HH,HT } ∩
{HH,TH}.)

What are we to make of this example? Does it demonstrate that the wider
availability of minimal extension can enable a theory of lower probabilities to
do better than the theory of belief functions? No. The deficiency of the exam-
ple in this respect is its abstract starting point. To compare theories fairly we
need to compare complete analyses—analyses beginning with a full intuitive
account of one’s evidence and then building up the formal judgments step
by step. Williams begins with the assumption that his evidence is best repre-
sented by the judgments (5) and (6) and the further judgment that E exhausts
the impact of the evidence, and this assumption begs the real questions. If we
do begin with an intuitive account of the evidence, then it may emerge that
these judgments provide one sensible analysis, but it is unlikely that they will
provide the only one. It is quite possible that there will be sensible analyses
using belief functions that take quite different tacks. We might even choose
to make a direct judgment about {HH}.

The only gesture Williams makes towards giving an intuitive basis to his
example is the following:

. . . Suppose the evidence to consist of the outcome of a single toss
of the coin. It is hard to see how this could provide evidence for or
against any particular correlation. . .

And this, to my mind, says nothing about the real evidence. It seems
to indicate that we have dreamed up a statistical model as one approach
to analyzing the evidence. Apparently we are regarding two possible events
(here called coin tosses) as repeatable experiments, with some joint chance
distribution governing the pair of outcomes (X1, X2), say. And apparently
our statistical model consists of those chance laws with identical marginals
for X1 and X2. We are to observe another toss independent of (X1, X2) but
governed by the same marginal and to infer what we can about the joint
distribution and hence about how (X1, X2) will turn out. This is a parametric
statistical problem. But where does it come from? What is the evidence for
the model? A sensible analysis using belief functions would require answers
to these questions.

5 The Independence of Evidence

Both the Bayesian theory and the theory of belief functions have a concept
of independence for evidence. Both recognize different items of evidence as
intuitively independent and model this intuitive independence in terms of
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stochastic independence. But since the two theories use the picture of chance
in different ways, their concepts of independence are different.

In the theory of belief functions we liken evidence to a message whose
meaning is random, or to a randomly valid argument—one whose validity
depends on chance. We call different items of evidence intuitively indepen-
dent when they can be likened to stochastically independent randomly valid
arguments.

In the Bayesian theory, on the other hand, we liken our evidence to knowl-
edge that the truth is generated by certain chances. Thus we do not, in general,
think of the evidence itself as random. If, however, we single out a few items of
our evidence, imagine that we have not yet obtained these items of evidence,
and include the question of whether we will obtain them among the questions
about which we are making probability judgments, then whether or not these
items will occur becomes part of the truth which we are modeling as random,
and so it becomes possible to think of these items of evidence as stochastically
independent.

The two theories’ concepts of independence have much in common. In
many cases, the two theories can agree on calling certain items of evidence
independent. And in both theories independence is relative to a given frame of
discernment. In the theory of belief functions, this is expressed by saying that
different arguments should be treated as independent only relative to a frame
that discerns the interactions of their conclusions, while in the Bayesian theory
it is expressed by saying that different items of evidence may be independent
only conditionally given certain hypotheses.

We should not be misled, however, into thinking that the two concepts of
independence are practically identical—that the two theories will always agree
on whether given items of evidence are independent.4 The fact is that they
will often disagree. As we shall see in this section, the theory of belief functions
may allow us to discern independent items of evidence in situations where the
Bayesian theory suggests dependent items of evidence or even suggests that
we need not distinguish separate items of evidence at all.

Confusion between the two theories’ concepts of independence can be held
responsible for the suggestion, made by Williams in his review, that the theory
of belief functions cannot do as well as the Bayesian theory in taking depen-
dencies in evidence into account. One goal of this section is to understand the
thinking behind this claim and to explain why it is wrong.

5.1 Independence in the Theory of Belief Functions

The concurrence of many independent arguments can justify a high degree
of belief. And it is natural to account for this by reasoning about chances.
There may be a substantial chance, we tell ourselves, for any single one of the
arguments to be invalid, but there is a much smaller chance that they should

4 In Shafer [24] I suggested, wrongly, that there was such a practical identity.
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all be invalid. If pi is the chance that the ith argument is invalid, and the
arguments are independent, then the chance that they are all invalid is the
product of the pi.5

This is a sensible account, but it must be rightly understood. When we
say that the chance of an argument’s validity is pi we do not mean that the
argument is literally a repeatable experiment, sometimes valid, sometimes
not, and that we know the chance pi in the way we might know the chance
of heads when tossing a well-studied coin. We mean rather that we judge
the force of the argument to be comparable to the force of such a randomly
valid argument. And when we say that the arguments are independent, we do
not mean that their validities are literally stochastically independent random
events. We mean rather that we judge the arguments to be independent in an
intuitive sense that is well-represented by stochastic independence6—i.e., that
we judge the uncertainties in the arguments to be sufficiently unrelated that
the combination of the arguments should have the force of the concurrence of
two stochastically independent randomly valid arguments.

Dempster’s rule of combination is merely an extension of this simple idea
of combining the force of independent arguments by multiplication. As I
explained in Sect. 1 above, the rule pools two bodies of evidence by treat-
ing the two randomly coded messages representing them as stochastically
independent. When one uses the rule, one is making a judgment that the two
bodies of evidence are sufficiently unrelated that pooling them is like pooling
stochastically independent randomly coded messages.

Consider a simple example from A Mathematical Theory of Evidence. A
detective investigating a burglary turns up one argument indicating that the
burglar was lefthanded and another argument indicating that the burglary was
an inside job. Suppose these two arguments are intuitively independent, in the
sense that they involve different uncertainties and that the evaluation of each
depends on a different small world of experience. Say the argument for the
burglar being left-handed is based on smudges on the door of the safe, and thus
depends for its evaluation on the detective’s experience and insight into the
question of how safes are forced open, whereas the argument for the burglary
being an inside job is based on the detective’s understanding of the possibilities

5 This rule was discussed by James Bernoulli in his Ars Conjectandi, published
posthumously in 1713. Bernoulli also gave several other rules for combining prob-
abilities based on independent arguments. Since most of these rules are special
cases of Dempster’s rule of combination, Bernoulli can be regarded as the founder
of the theory of belief functions. Though Bernoulli’s account of the combination
of arguments was popular during the 17th century, it was eventually displaced by
the Bayesian account developed by Condorcet and Laplace. See pp. 345–349 of
Shafer [22] and pp. 465–469 of Pearson [19].

6 We should bear in mind that chance is never an objective fact but is always an
abstract picture that we impose on nature to aid our understanding. Stochastic
independence, in particular, is an abstract concept that we use to model situations
where we have first perceived a causal or intuitive independence.
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for entering the building. It might, in such a case, be quite reasonable for the
detective to treat the two arguments as if they were stochastically independent
randomly coded messages. It is not that his train of thought in forming each
argument is an independent chance process and that he knows the chance
that each process has to produce a valid result; it is just that he can evaluate
his confidence in each argument by comparing it with the scale of randomly
coded messages and he can judge that there is no important common element
in the uncertainties in the two arguments.

We might, of course, challenge the detective’s judgment. We might discover
a soft spot which is common to both arguments and which the detective
failed to notice—perhaps he is too readily ruling out some hypothesis that
could explain both the smudge on the safe door and an unnoticed entry into
the building. But the possibility of challenge is not peculiar to judgments of
independence. Every probability judgment is open to challenge.

One point that emerges from this example is that the idea of independence
applies not to isolated facts or propositions but to whole small worlds of
experience and human interaction with experience. When we explain what
arguments we are combining, it is natural to identify each by a proposition:
Argument 1 = “there were smudges on the door of the safe;” Argument 2 =
“the building was being watched.” But these propositions are only tags. We
are really combining whole “bodies of evidence”—whole bodies of concrete
experience and interactive human evaluation of that experience.

It is inherent in the idea of analyzing our evidence into independent argu-
ments that the force of each argument is evaluated in abstraction from the
other arguments. Each argument is evaluated, that is to say, in abstraction
from the other evidence bearing on its conclusions. But when we combine
arguments we must take the interaction of the conclusions into account—we
must take into account whether the arguments concur, what they support
when they are combined, and whether they conflict, either in pairs or in more
complicated interactions. Since conflict modifies our evaluation of the weight
of the arguments (through the renormalizing constant K in (3)) even when
the conflict is not on a point of substantive interest to us, we must take
all conflict in conclusions into account. So we should apply Dempster’s rule
to belief functions representing different arguments only if the frame Θ over
which these belief functions are defined is fine enough to take all conflict and
other relevant interaction into account.

So we have two requirements for the use of Dempster’s rule of combination:
(i) The bodies of evidence must be entirely distinct. The uncertainties in
the arguments being combined, that is to say, must be independent when
the arguments are viewed abstractly—i.e., before the interactions of their
conclusions are taken into account. (ii) The frame Θ must be fine enough to
discern all relevant interaction of the conclusions.
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5.2 Is There an Objective Criterion for Independence?

Peter Williams is not satisfied with the preceding explanation of the conditions
for the legitimate use of Dempster’s rule of combination. It is not clear, he
tells us,

that this formulation is sufficient to distinguish unambiguously
between permissible and impermissible applications of the rule. To
begin with, the identity criteria for bodies of evidence are unclear if
these cannot be expressed as propositions. Indeed, even if they can
be, do two propositions which are not logically equivalent, but are
nonetheless equivalent by virtue of natural laws, express ‘entirely dis-
tinct bodies of evidence’? Or again, suppose that two bodies of evi-
dence are distinct, taken as wholes, but nonetheless partly overlap.
. . . [H]ow is one to extract the common part, given that bodies of
evidence are not necessarily expressible as propositions?

In this passage Williams seems to be demanding some objective criterion
for deciding when two bodies of evidence are independent and, more generally,
some mechanical way of analyzing evidence into distinct or independent items.
Do these demands make sense?

It seems to me that the idea of an objective criterion for the independence
of evidence—the idea of a criterion exterior to the judgment—is a chimera.
The judgment that two bodies of evidence are independent is a probability
judgment, and the appropriateness of probability judgments can never be
justified on the basis of criteria that do not themselves demand the application
of judgment.

The analysis of evidence into distinct and independent arguments is, more-
over, always a constructive act of judgment. Williams is quite right to suggest
that there is no unambiguous formula telling us how to do it. It is usually
the most creative and the most difficult part of our effort to understand a
problem.

There is, in short, no royal road. The analysis of evidence is difficult, and
foolish mistakes are always possible. As James Bernoulli put it, “many things
will happen which can cause one to err frequently and shamefully unless one
proceeds cautiously in discerning arguments. For sometimes arguments can
seem distinct which are in fact one and the same argument. Or, vice versa,
those which are distinct can seem identical. . . ” (See p. 337 of Shafer [22]).

As Williams’ comments indicate, one concomitant of the desire for a
mechanical approach to the analysis of evidence is a desire to express evi-
dence as sentences or as propositions. If we could translate all our evidence
into statements of fact, then we could, it would seem, give rules for mechan-
ically analyzing this evidence using symbolic logic together with background
knowledge encoded as prior probabilities. But we cannot usually translate our
evidence into statements of fact.
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We can always describe our evidence, the reader may protest. This is true.
But the description will usually have to include not only statements of fact but
also statements of probability judgment. How might the detective describe the
evidence that convinces him that a person cannot enter the building without
being seen by the watchman? The evidence consists, in a very real sense,
of mental experiments that the detective carried out on the scene. He tried
everything he could think of, and nothing seemed plausible. Perhaps he can
describe some of this mental experimentation—at least if you allow him to
draw pictures. But how can he reduce his conviction that a certain trick will
not work to statements of fact? How can he formulate statements of fact to
express his degree of conviction that he has tried everything? In the end he will
simply have to supplement his statements of fact with probability judgments.7

5.3 Independence in the Bayesian Theory

The Bayesian theory can combine intuitively independent items of evidence,
but it does not do so, as the theory of belief functions does, by regarding each
as an independent argument. Instead it asks us to think of the occurrence of
each item of evidence as a random event and to assess the probabilities of
these events under various hypotheses. And it asks us to model the intuitive
independence of the different items of evidence by stochastic independence,
conditional on the various hypotheses, of the events that these items of evi-
dence will occur.

The idea is that we should single out certain items of evidence and then
imagine ourselves assessing, before these items of evidence occur, both the
probabilities of the hypotheses on which we want to bring these items of evi-
dence to bear and also the probability that these items of evidence will occur,
given each of the hypotheses. Suppose, for example, that we are considering
an exhaustive list of mutually exclusive hypotheses H1, . . . , Hk and we single
out two items of evidence E1 and E2. Then our task is to use “old evidence”
(evidence other than the occurrence of E1 and E2) to construct Bayesian
probabilities P (Hi) and P (E1 and E2|Hi). And if we judge E1 and E2 to be
like independent random events given Hi—if, that is to say, our old evidence
together with knowledge of Hi can be compared to knowledge that E1 and
E2 are stochastically independent—then we can construct P (E1 and E2|Hi)
by making separate probability judgments P (E1|Hi) and P (E2|Hi) and then
setting

P (E1 and E2|Hi) = P (E1|Hi)P (E2|Hi) . (21)

7 In another passage, Williams coments on my insistence on the “hazy and non-
propositional nature of evidence.” While standing by the claim that evidence
cannot usually be reduced to statements of fact, I would like to withdraw any
suggestion (see, for example, p. 120 of A Mathematical Theory of Evidence) that
evidence is “vague” or “hazy.” These epithets are themselves vague, and no useful
idea is conveyed when they are applied to evidence. (Cf. Austin [1], pp. 125–127.)
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Notice that making all these probability judgments amounts to constructing
a Bayesian probability distribution P over a certain frame of discernment Θ.
We can suppose, indeed that the Hi and Ei are subsets of this frame, and
that the 4k subsets Hi∩E1 ∩E2, Hi∩E1∩E2, Hi∩E1 ∩E2 and Hi∩E1 ∩E2

are disjoint and each contain exactly one element.
The point of constructing this probability distribution P is that we may

then take the “new evidence”

E1 and E2 = E1 ∩ E2

into account by conditioning. We can calculate, in particular, the probability

P (Hi|E1 ∩ E2) =
P (Hi)P (E1|Hi)P (E2|Hi)
k∑
j=1

P (Hj)P (E1|Hj)P (E2|Hj)
, (22)

our probability for Hi based on the total evidence. Formula (22) is known as
Bayes’ Theorem.

Consider, for example, the detective who has evidence that the burglar was
lefthanded and evidence that the burglary was an inside job. Give names to
these two items of evidence—say E1 and E2. The propositions of substantive
interest are

I = an insider was involved in the burglary,

and
L = the safe was opened by a left-hander,

and so the hypotheses are H1 = I ∩ L, H2 = I ∩ L, H3 = I ∩ L, and H4 =
I ∩L. And formula (22) provides a way of constructing probability judgments
concerning the Hi using the total evidence.

We must always ask, of course, whether the independent judgment (21) is
reasonable. Is it reasonable to think of the evidence E1 involving the smudge
on the safe and the evidence E2 involving access to the building as random
events that are stochastically independent given the Hi?

A more fundamental question is whether it is reasonable or helpful to
think of E1 and E2 as random events at all. In our belief-function analysis we
regarded E1 and E2 as arguments involving independent uncertainties. Here
the perspective is different. Here we think of E1 and E2 not as arguments but
as facts. And we transfer all the uncertainties to the hypothetical question of
whether these facts would have occurred, given each of the hypotheses. But
does this make sense? Can we, for example, intelligibly translate the question
of how strongly E2, the detective’s study of access to the building supports
I into the question of how likely his study would have been to turn out as it
did, given that I is true and given that it is false?

In my opinion, we often cannot intelligibly translate our understanding of
the significance of given evidence into answers to the question of how likely
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that evidence would be to occur. And this, I believe, is the fundamental objec-
tion to the version of the Bayesian theory that would have us assess all new
evidence using Bayes’ theorem. For a detailed discussion, see Shafer [24].

It should be noted, in any case, that the Bayesian theory, like the theory of
belief functions, has no objective criterion for independence. In both theories
the judgment that two items of evidence should be treated as independent is
itself a probability judgment.8

5.4 Dependent Evidence?

Bayesian assessment of two items of new evidence does not necessarily require
a judgment that the items are conditionally independent. Even if E1 and
E2 are judged dependent, we can still construct the probability judgment
P (E1 ∩ E2|Hi) through the formula

P (E1 ∩ E2|Hi) = P (E1|Hi)P (E2|E1 ∪Hi) ,

where P (E2|E1 ∩Hi) is a judgment as to how likely E2 would be to occur
based on the old evidence together with knowledge that E1 has occurred and
that Hi is true. And thus we can still use Bayes’ theorem, in the form

P (Hi|E1 ∩ E2) =
P (Hi)P (E1|Hi)P (E2|E1 ∩Hi)
k∑
j=1

P (Hj)P (E1|Hj)P (E2|E1 ∩Hj)
.

So if we do use the Bayesian idea of assessing new evidence in terms of its
likelihood to occur, it is not very important whether two items of evidence
are independent or not.

The independence of different items of evidence is much more important
in the theory of belief functions. For Dempster’s rule of combination can be
used to combine arguments only if those arguments are judged independent.

There seems to be a paradox here. The Bayesian theory can be understood
as a special case of the theory of belief functions, and then Bayesian condi-
tioning is seen as a special case of Dempster’s rule of combination. (See p. 20
of A Mathematical Theory of Evidence.) But how can Bayesian conditioning
be a special case of Dempster’s rule if it can be used with dependent evidence
and Dempster’s rule cannot be?

The paradox is quickly resolved when we remind ourselves that “indepen-
dence” does not have the same meaning in the two theories. The fact is that
two items of evidence that are taken into account by conditioning are neces-
sarily independent in the sense of the theory of belief functions, even though
they may be either independent or dependent in the sense of the Bayesian
theory.
8 Seidenfeld [20] seems to think otherwise. The Bayesian theory, he writes, “provides

the machinery for deciding whether the data are mutually independent.” What
machinery?
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Let us recall the relation between conditioning and Dempster’s rule. We
explained conditioning in Sect. 3 above by saying that we condition a belief
function Bel on a subset E1 of its frame Θ in order to take into account new
evidence whose direct effect on the frame Θ is to establish for certain that
the truth is in E1. But we can also treat such new evidence as an argument
for E1 whose validity is certain and represent it by a belief function Bel1
with m-values m1(E1) = 1 and m1(A) = 0 for all other A ⊂ Θ. And it is
because combining Bel with Bel1 by Dempster’s rule gives the same result
as conditioning Bel on E1 that we say that conditioning is a special case of
Dempster’s rule.

Now consider a second item of new evidence whose direct effect on Θ
is to establish for certain that the truth is in E2 ⊂ Θ. This evidence can
be represented by a belief function Bel2 with m-values m2(E2) = 1 and
m2(A) = 0 for all other A ⊂ Θ. Are the uncertainties in the two new items
of evidence independent? Yes, for there are no uncertainties; we are modeling
each item of evidence as a randomly valid argument in which the chance of
validity is one, and so stochastic independence is automatic and it is legitimate
to combine Bel1 and Bel2 by Dempster’s rule. When we do combine Bel1 and
Bel2, we obtain a belief function Bel1 ⊕Bel2 that gives E1 ∩E2 the m-value
one, and combining Bel with Bel1 ⊕ Bel2 by Dempster’s rule amounts to
conditioning Bel on E1 ∩E2.

One way of putting the matter is to say that the only decompositions of
evidence recognized by the Bayesian theory are decompositions into items of
evidence that are, from the point of view of the theory of belief functions,
independent. The Bayesian theory permits the combination of evidence only
through conditioning, and this means that only one of the bodies of evidence
being combined, the “old evidence,” can involve uncertainties. The other items
of evidence must amount to certainties relative to the frame Θ and hence will
be trivially independent of each other and of the old evidence.

When we assign names (“E1” and “E”) to new items of evidence and incor-
porate them into our frame of discernment, we are, in effect, reducing them
from uncertain arguments to facts. We are stripping them of their uncertain-
ties and putting all these uncertainties into what we call the “old evidence,”
the evidence on which the probability distribution P over the frame Θ must
be based.

From the point of view of the theory of belief functions, the concentration
of all our uncertainties in the “old evidence” does not, of course, solve the
problem of probability judgment. Nor does it necessarily exhaust our interest
in the combination of evidence. For we face a new problem of assessment of
evidence, the problem of constructing a Bayesian probability distribution P
(or, more generally, a belief function Bel) over the frame Θ based on this old
evidence. And one way of doing this may be to decompose the old evidence
into independent items that can be recombined by Dempster’s rule.

It may deepen our understanding of the differences between the Bayesian
and belief-function concepts of independence to recognize that Bayesian
dependence of E1 andE2 may be compatible with belief-function independence
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not only of the items of evidence provided by the occurrence of E1 and E2

but also of the components of the old evidence that bear on E1 and E2. It
is possible, that is to say, for the combination of belief functions representing
intuitively independent components of the old evidence to produce a belief
function over Θ which happens to be Bayesian and in terms of which E1 and
E2 are dependent in the Bayesian sense. In fact, any Bayesian probability
distribution P over Θ can, in theory, be produced by such a combination of
belief functions.

5.5 Sorting out the Uncertainties

The preceding comments should not be construed as a denial of the practical
problems that dependent arguments cause in the theory of belief functions.
In many problems it will be easy to analyze the evidence into dependent
arguments and more difficult to analyze it into independent arguments.

How do we go about analyzing our evidence into independent arguments?
How, to put it another way, do we sort our evidence into arguments that
involve distinct uncertainties? Perhaps there is no general answer to this ques-
tion. But we can gain some insight by thinking about examples.

Suppose we are charged with deciding whether an aerial sprayer has
allowed insecticide to drift onto the property of a neighboring landowner. Two
arguments are presented by the prosecution: (1) The homeowner testifies that
spray billowed across the road from the field being sprayed and settled onto
her house and that this drift was significant enough to cause her and her
family to suffer from headaches and burning eyes and lips. (2) A government
bee inspector testifies that he found dead honey bees lying around the home-
owner’s beehive, that in his judgment they were killed by insecticide, and that
the availability of flowering plants indicates that the bees must have been on
the homeowner’s property rather than on the field being sprayed when they
were exposed.

Both items of evidence seem to directly support the charge of negligence.
But one can argue that they involve overlapping uncertainties. The main
uncertainties are distinct. The main uncertainty in the first item of evidence is
how precise and reliable the homeowner is—how well she remembers and how
much she exaggerates. The main uncertainty in the second item of evidence is
the reliability of the bee inspector’s judgment. But suppose the homeowner,
out of pure malice, made up the story about drift and poisoned the bees
herself. This possibility constitutes, it would seem, an uncertainty common to
both items of evidence. And so if we take the possibility seriously we must
count the two items as dependent.

There is, however, an obvious way of getting this common uncertainty out
of the two items of evidence: incorporate it into the frame of discernment.
We might, for example, consider a frame of discernment Θ consisting of three
possibilities:

θ1: The sprayer was not negligent; the homeowner was inaccurate, and the
bee inspector was mistaken.
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θ2: The sprayer was not negligent; the homeowner is lying, and she
poisoned the bees herself.

θ3: The sprayer was negligent.
Relative to this frame of discernment we might describe our two items of
evidence a little differently. The first item is our evidence for the reliability
and probity of the homeowner (we have listened to her testify, etc.), and it
supports θ3 to some extent, and {θ1, θ3} to a stronger extent. The second
item is our evidence from the bee inspector, and it supports {θ2, θ3}. Notice
that though the two items no longer both directly support negligence (θ3),
they still interact to support it. And they can now be regarded as independent
arguments.

This example illustrates a reasonably general idea: often two arguments
which seem dependent because of common uncertainties can be understood as
independent once the common uncertainties are incorporated into the frame
of discernment as explicit possibilities. This idea is the basis for saying that
Dempster’s rule should be used only when the frame “discerns the relevant
interaction” of the different arguments.

The task of sorting our uncertainties into distinct arguments is not always
so easy, of course. But I would argue that a theory that directs us to this task
is grappling with the real problems in the assessment of evidence.
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M. Przelecki, K. Szaniawski, and R. Wójciki, editors, Formal Methods in the
Methodology of Empirical Sciences. Ossolineum and D. Reidel.

[32] Peter M. Williams, 1978. On a new theory of epistemic probability (Review of
A Mathematical Theory of Evidence). The British Journal for the Philosophy
of Science, 29:375–387.

[33] Guus Wolf, 1977. Obere und Untere Wahrscheinlichkeiten. PhD thesis,
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Belief Functions and Parametric Models

Glenn Shafer

Abstract. The theory of belief functions assesses evidence by fitting it to a scale of
canonical examples in which the meaning of a message depends on chance. In order
to analyse parametric statistical problems within the framework of this theory, we
must specify the evidence on which the parametric model is based. This article gives
several examples to show how the nature of this evidence affects the analysis. These
examples also illustrate how the theory of belief functions can deal with problems
where the evidence is too weak to support a parametric model.

Key words: Bayesian statistics, Belief functions, Constructive probability,
Dempster’s rule, Exchangeability, Fiducial inference, Lower probabilities,
Likelihood, Parametric models

1 Constructive Probability

In A Mathematical Theory of Evidence (1976), I discussed the possibility that
the mathematical structure for upper and lower probabilities that Dempster
developed in his attempt to deal with parametric models might be used more
widely as a structure for probability judgements. I suggested that we call
set functions that have the structure of Dempster’s lower probabilities belief
functions, and I developed the implications of Dempster’s rule for combining
belief functions based on different bodies of evidence.

The central role of Dempster’s rule of combination in the theory of belief
functions is merely one aspect of the theory’s emphasis on the decomposition
and description of evidence. In general, the theory allows probability judge-
ments to depend not only on the overall strength of the evidence on which
they are based but also on the structure of that evidence.

In this paper I turn this general emphasis on evidence back onto the prob-
lem of parametric models. I argue that belief-function analyses of these models
should depend not just on the models themselves but also on the nature of
the evidence for them. I give several examples of this dependence.
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Before taking up the problem of parametric models, I briefly review the
theory of belief functions and its relation to other constructive theories of
probability judgement.

The exposition that follows is based on the idea, first developed in work
with Amos Tversky and subsequently published as Shafer and Tversky (1985)
(see Chap. 13), that all theories of probability judgement, including both the
theory of belief functions and the Bayesian theory, should be thought of in
terms of canonical examples to which the theories compare evidence. For a
further development of this theme, see Shafer (1981a, b).

1.1 Three Constructive Theories

Probability judgement, like all judgement, involves comparison. In order to
judge whether given evidence makes something practically certain, very prob-
able, fairly probable, or not at all probable, say, we must compare this evi-
dence to examples where it is agreed that these adjectives fit. We must, in
other words, fit our evidence to a scale of canonical examples. Numerical prob-
ability judgement similarly involves fitting our evidence to a scale of canonical
examples. Different choices of this scale produce different constructive theories
of probability.

Here are three such theories.
The Bayesian theory. Suppose our scale consists exclusively of examples

where the truth is generated according to known chances. Then when we make
a probability judgement P (A) = p we are saying that our evidence provides
support for A comparable to what would be provided by knowledge that the
truth is generated by a chance set-up that produces a result in A exactly p of
the time. And these probability judgements will obey the usual Bayesian rules.

If we are working with a set of possibilities Ω, then our scale of canonical
examples will include, for each chance distribution P over Ω, an example
where the truth is generated according to the chances given by P . Usually
we will not, of course, be able to fit our evidence to this scale by means
of a single holistic judgement. Instead we will break the overall comparison
down into many simpler comparisons and then construct P from these simpler
judgements.

Lower probabilities. Suppose we know that a certain process is governed by
chance, but instead of knowing precisely the chance distribution P governing
it, we know only that P is in a class P of chance distributions. Denote by Ω
the set of possible outcomes for the process. Then we might set our probability
or degree of belief that the outcome of a particular trial will be in a subset A
of Ω equal to

P∗(A) = inf {P (A)|P ∈ P} .

This seems natural because we know the chance of A is at least P∗(A). Notice
that the probabilities or degrees of belief obtained in this way will, in general,
be non-additive: P∗(A) and P∗(Ā) may add to less than one.
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By varying the class P in this story we obtain a scale of canonical examples.
Let us call the constructive theory that uses this scale the theory of lower
probabilities.

Belief functions. Suppose someone chooses a code at random from a list
of codes, uses the code to encode a message, and then sends us the result.
We know the list of codes and the chance of each code being chosen—say
the list is c1, . . . , cn, and the chance of ci being chosen is pi. We decode the
encoded message using each of the codes and find that this always produces a
message of the form “the truth is in A” for some non-empty subset A of the
set of possibilities Ω. Let Ai denote the subset we get when we decode using
ci, and set

m(A) =
∑

{pi|1 ≤ i ≤ n;Ai = A} (1)

for each A ⊂ Ω. The number m(A) is the sum of the chances for those codes
that indicate A was the true message; it is, in a sense, the total chance that
the true message was A. Notice that m(φ) = 0 and that the m(A) sum to one.
The quantity

Bel(A) =
∑

B⊂A
m(B) (2)

is, in a sense, the total chance that the true message implies A. If the true mes-
sage is infallible and the coded message is our only evidence, then it is natural
to call Bel (A) our probability or degree of belief that the truth lies in A.

A function Bel is called a belief function if it is of the form (2), with the
m(A) non-negative and summing to one and with m(φ) = 0. The subsets A
of Ω for which m(A) > 0 are called the focal elements of the belief function.

It is easily seen from (2) that Bel (A)+Bel(Ā) ≤ 1, or Bel (A) ≤ 1−Bel(Ā).
The quantity 1−Bel(Ā) is called the plausibility of A and is denoted by Pl(A);
it can be large even if the evidence for A is slight, provided that the evidence
against A is also slight.

The equation Bel(A)+Bel(Ā) = 1, which is equivalent to Bel(A) = Pl(A),
holds for all subsets A of Ω if and only if Bel’s focal elements are all singletons.
In this case, Bel is an additive probability distribution.

We can tell the story of the coded message with any values for the m(A)
we please. So this story provides a canonical example corresponding to each
possible belief function. It is sometimes helpful to vary the story slightly; what
is essential is that some chance experiment with outcomes c1, . . . , cn has been
carried out, that we know these outcomes had chances p1, . . . , pn, and that
we receive a message that means Ai if ci was the outcome.

1.2 Elements of the Theory of Belief Functions

Belief functions, we have suggested, are obtained by fitting evidence to a
certain scale of canonical examples. In order to turn this idea into a practical
tool, we need rules for breaking the fitting task down into simpler judgements,
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and techniques for making these simpler judgements feasible. Here we will
review some of these rules and techniques for the case where Ω is finite. For
an introduction to the case where Ω is infinite, see Shafer (1979).

The vacuous belief function. Consider the belief function Bel obtained by
setting m(Ω) = 1 and m(A) = 0 for every proper subset A of Ω. We see by
(2) that Bel also satisfies Bel (A) = 0 for every proper subset A; Bel indicates
no positive beliefs at all as to where in Ω the truth lies. This belief function
is appropriate when the evidence being considered does not, by itself, tell us
anything about which element of Ω is the truth.

Simple support functions. Consider the following variation on the story of
the randomly coded message. A certain mechanism that produces messages
has two modes of operation: reliable and unreliable. It is in its reliable mode
with chance p1, and then it produces only true messages. It is in its unreliable
mode with chance p2 = 1 − p1, and then it is completely unpredictable; we
have no idea whether or how often the messages it produces will be true or
false. Suppose this mechanism produces the message that the truth is in the
subset of E of Ω. Then we will say that the message has a chance p1 of meaning
E and a chance p2 of meaning nothing—i.e. meaning only that the truth is in
Ω. And so we will adopt a belief function with focal elements E and Ω, with
m(E) = p1 and m(Ω) = p2. This belief function, given by

Bel(A) =

⎧
⎪⎨

⎪⎩

0 if E 	⊂ A,

p1 if E ⊂ A 	= Ω,
1 if A = Ω,

is called a simple support function.
It is often natural to compare evidence to a mechanism that is only some-

times reliable and thus to represent it by a simple support function. The
reliability of a witness can obviously be taken into account in this way. The
strength of an argument can often be assessed in the same way; this means we
compare the argument to one that has a definite and known chance of being
reliable.

Dempster’s rule of combination. One of the basic strategies of the theory
is to decompose our evidence into two or more unrelated bodies of bodies
of evidence, make probability judgements separately on the basis of each of
these bodies of evidence, and then combine these judgements by Dempster’s
rule. This rule tells us how to combine a belief function Bel1 representing
one body of evidence with a belief function Bel2 representing an unrelated
body of evidence so as to obtain a belief function Bel1⊕Bel2 representing the
pooled evidence. The rule is most easily stated in terms of m-values: If the m-
values for Bel1 and Bel2 are denoted by m1(A) and m2(B), respectively, then
Bel1 ⊕ Bel2 is the belief function with m-values m(C), where m(φ) = 0 and

m(C) =
∑
{m1(A)m2(B) |A ⊂ Ω;B ⊂ Ω;A ∩B = C}∑
{m1(A)m2(B) |A ⊂ Ω;B ⊂ Ω;A ∩B 	= φ} (3)
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for all non-empty subsets C of Ω. (Notice that the focal elements of Bel1⊕Bel2
consist of all the non-empty intersections of focal elements of Bel1 with focal
elements of Bel2.)

The idea underlying Dempster’s rule is that the unrelatedness of two bodies
of evidence makes pooling them like combining two stochastically independent
randomly coded messages. Suppose Bel1 and Bel2 do correspond to two such
messages. Denote by c1, . . . , cn and p1, . . . , pn the codes and their chances in
the case of the first message, and by c′1, . . . , c′m and p′1, . . . , p′m the codes and
their chances in the case of the second. Independence means that there is a
chance pip′j that the pair (ci, c′j) of codes will be chosen. But decoding may
tell us something. If the message Ai we get by decoding the first message with
ci contradicts the message Bj we get by decoding the second message with c′j
(i.e. if Ai ∩ Bj = φ), then we know that (ci, c′j) cannot be the pair of codes
actually used. So we condition the chance distribution, eliminating such pairs
and multiplying the chances for the others by K, where

K−1 =
∑{

pip
′
j | 1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj 	= φ

}

=
∑

{m1(A)m2(B) |A ⊂ Ω;B ⊂ Ω;A ∩B 	= φ} .

If the first message is A and the second message is B, then the overall message
is A ∩B. So the total chance of the overall message being C is

m(C) = K
∑{

pip
′
j |1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj = C

}

= K
∑

{m1(A)m2(B)|A ⊂ Ω;B ⊂ Ω;A ∩B = C} ,

which is indeed equal to (3).
We may call Bel1 ⊕ Bel2 the “orthogonal sum” of Bel1 and Bel2. Here

are some elementary properties of the operation ⊕: (i) Bel1 ⊕ Bel2 exists
unless there is a subset A of Ω such that Bel1(A) = 1 and Bel2(Ā) = 1.
(ii) Commutativity: Bel1 ⊕ Bel2 = Bel2 ⊕ Bel1, (iii) Associativity: (Bel1 ⊕
Bel2)⊕Bel3 = Bel1⊕ (Bel2⊕Bel3). (iv) In general: Bel⊕Bel 	= Bel; Bel⊕Bel
will favour the same subsets as Bel but with, as it were, twice the weight of
evidence. (v) If Bel1 is Bayesian, then so is Bel1⊕Bel2. (vi) If Bel1 is vacuous,
then Bel1 ⊕ Bel2 = Bel2.

Dempster’s rule can be seen as a generalization of rules formulated in the
eighteenth century by James Bernoulli and Johann Heinrich Lambert. (See
Shafer, 1978.)

Conditioning. Consider evidence which establishes conclusively that the
truth is in a subset E of Ω but which does not tell us anything more spe-
cific. Such evidence can be compared to a randomly coded message which has
chance one of meaning E, and so we can represent it by a belief function BelE
whose m-value for E is one. The values of BelE are

BelE(A) =

{
0 if A 	⊃ E,

1 if A ⊃ E.
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An important property of BelE is its idempotence: BelE ⊕ BelE = BelE .
If Bel is a belief function satisfying Bel(E) < 1, then Bel⊕BelE exists. It

is natural to call Bel⊕BelE the result of conditioning Bel on E and to denote
(Bel⊕ BelE)(A) by Bel(A|E). Notice that conditioning an orthogonal sum is
equivalent to conditioning each term in the sum before combining: since BelE
is idempotent,

(Bel1 ⊕ Bel2)⊕ BelE = (Bel1 ⊕ BelE)⊕ (Bel2 ⊕ BelE).

The process of conditioning can be described directly in terms of focal
elements: to condition Bel on E, reduce the focal elements of Bel to their
intersections with E and then renormalize the m-values to take into account
the elimination of those focal elements that have been reduced to φ. If Bel is
an additive probability distribution, then this reduces to the usual Bayesian
rule of conditioning.

Minimal extension. Suppose the set of possibilities Ω has n elements: Ω =
{ω1, . . . , ωn}. And suppose Λ is a finer set of possibilities. This means that
the elements ω1, . . . , ωn of Ω correspond to a partition E1, . . . , En of Λ: “ωi
is the truth” means the same as “the truth is in Ei”, and, more generally, a
subset {ωi1 , . . . , ωik} of Ω has the same meaning as the subset Ei1 ∪ . . .∪Eik
of Λ.

Given a belief function Bel over Λ we can speak of its marginal over Ω:
the belief function Bel|Ω given by

(Bel|Ω)({ωi1 , · · · , ωik}) = Bel(Ei1 ∪ . . . ∪ Eik).

Marginalization can be described in terms of focal elements by saying that
a focal element A of Bel is reduced to the subset {ωi|Ei ∩ A 	= φ} of Ω. In
general, there will be many belief functions over Λ having a given marginal
over Ω. Or, to put the matter another way, a belief function over Ω will extend
in many ways to a belief function over Λ.

Suppose we use a given body of evidence to construct a belief function
Bel0 over Ω. And suppose we judge that this evidence bears on the questions
discerned by Λ only insofar as it bears on those already discerned by Ω. In
terms of the randomly coded message to which we are comparing our evidence,
this says that if {ωi1 , . . . , ωik} is the meaning of the message relative to Ω,
then Ei1 ∪ . . .∪Eik is its meaning relative to Λ. This suggests that Bel0 should
be extended to the belief function Bel over Λ whose m-values are given by
m(Ei1 ∪ . . . ∪ Eik) = m0({ωi1 , . . . , ωik}) and m(A) = 0 for all A ⊂ Λ which
are not unions of elements of the partition E1, . . . , En. This belief function
Bel does have Bel0 as its marginal. And for each A ⊂ Λ, Bel(A) is less than
or equal to the degree of belief given to A by any other extension of Bel0 to
Λ. So we call Bel the minimal extension of Bel0.

Conditional embedding. Sometimes we rule out some of the possibilities in
a set of possibilities Λ, thus reducing it to a smaller set of possibilities Ω ⊂ Λ.
If we have constructed a belief function Bel over Λ and we then reduce Λ to Ω
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because of new evidence that establishes that the truth is in Ω without saying
anything more specific, then we will, of course, replace Bel by its conditional
given Ω—i.e. by the belief function over Ω that assigns to each A ⊂ Ω the
degree of belief Bel (A|Ω). In general, there will be many belief functions over
Λ having a given conditional given Ω.

Suppose we begin by taking it for granted that the truth is in Ω and
construct a belief function Bel0 over Ω, but we later decide that all the ele-
ments of Λ must be admitted as possibilities. And suppose we judge that the
evidence on which Bel0 is based does not impugn any of the possibilities in
Λ − Ω. In terms of the randomly coded message to which we are comparing
the evidence, this means that if A ⊂ Ω is the meaning of the message relative
to Ω, then A ∪ (Λ − Ω) is its meaning relative to Λ. This suggests that Bel0
should be replaced by the belief function Bel over Λ whose m-values are given
by m(A ∪ (Λ − Ω)) = m0(A) for all A ⊂ Ω and m(A) = 0 for all subsets
A of Λ that do not contain Λ − Ω. This belief function Bel has Bel0 as its
conditional given Ω. And for each A ⊂ Λ, Bel(A) is less than or equal to the
degree of belief given to A by any other belief function over Ω that has Bel0 as
its conditional given Ω. We call Bel the conditional embedding of Bel0 in Λ.

The idea of conditioning embedding was first developed by Smets (1978).
Discounting. Suppose that after observing a randomly coded message and

calculating the belief function Bel by (1) and (2) we discover that our under-
standing of the process producing the message is not fully reliable; say there is
a chance 1−α that our understanding is correct, so that the message is indeed
the result of choosing among the codes c1, . . . , cn with chances p1, . . . , pn, but
a chance α that the message was produced in some other way about which
we know nothing and must therefore be counted as meaning nothing. Then
we must change the chance associated with the code ci from pi to (1 − α)pi,
and we must, in effect, introduce a new “code” that is used with chance α
and which decodes any message to the non-informative statement that the
truth is in Ω. This means reducing each m-value m(A) to (1 − α)m(A) and
then increasing the m-value for Ω by α. The result is a belief function Belα

related to Bel by Belα(A) = (1 − α)Bel(A) for all proper subsets A of Ω.
(Belα(Ω) = Bel(Ω) = 1, of course.) We say that Belα is the result of discount-
ing Bel. Discounting is the natural way to take account of doubts or second
thoughts about belief functions constructed by ourselves or others.

1.3 The Constructive View of Probability

By saying that probability judgements are made by fitting given evidence to a
scale of canonical examples, we are able to bring together two ideas that have
sometimes been set up in opposition to one another: the idea that probabilities
are subjective judgements, and the idea that probabilities can be based on a
limited body of evidence.

The idea that probability judgements can be based on limited evidence is
essential, of course, to a proper understanding of the theory of belief functions.
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Ultimately, we are always interested in judgements based on our total evi-
dence. But the motivation for using Dempster’s rule of combination is the
idea that we might gain in clarity of thought by weighing different items of
evidence separately before thinking about how they reinforce or contradict
each other.

I do not wish to suggest that the idea of basing subjective probability
judgements on limited evidence is utterly new. But consider the typology of
views on the interpretation of probability that Savage presents in The Foun-
dation of Statistics (1954, p. 3). Savage distinguishes three main classes of
views: objectivistic, personalistic and necessary. Objectivistic views hold that
probability is an objective property of certain repetitive events; personalistic
views hold that probability measures the confidence that a particular indi-
vidual has in the truth of a particular proposition; necessary views hold that
probability measures the extent to which one set of propositions, out of logical
necessity and apart from human opinion, confirms the truth of another. This
typology obviously does not accommodate the idea of probability judgement
based on limited evidence. Personalistic views focus on the attitudes a person
actually has towards a proposition, and these attitudes are presumably based
on his total evidence. Necessary views allow us to delimit the evidence, but
they insist that this evidence be cast in the form of propositions, and they
exclude any role for judgement in assessing it.

I would like to suggest that our constructive view of probability—the view
that probability judgement amounts to fitting given evidence to a scale of
canonical examples—should be recognized as a fourth view of probability,
distinct from and on a par with the objectivistic, personalistic and neces-
sary views.

2 Generalizations of Bayesian Parametric Inference

Let us adopt the now standard general notation for parametric statistical
models: Θ denotes the set of possible values for the parameter, θ,X denotes
the set of possibilities for the data x and {Pθ : θ ∈ Θ} denotes the model.
How do we make probability judgements about θ after observing x?

The Bayesian answers this question by representing prior evidence about
θ by an additive probability distribution P0 over Θ and by using this distribu-
tion, together with the Pθ, to construct a distribution, say P , over Θ× X ;P
is the unique probability distribution over Θ×X that has P0 as its marginal
for θ and the Pθ as its conditionals given θ. Once the Bayesian has observed
x, he will condition P on x to obtain posterior probabilities for θ.

How should our constructive generalizations of the Bayesian theory gen-
eralize this Bayesian treatment of parametric statistical inference?

Lower probabilities. The natural lower-probability generalization is to
replace the prior distribution P0 by a class P0 of additive probability dis-
tributions. This leads in turn to a class P of additive probability distributions
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over Θ × X , and conditioning this class on the observed data x gives poste-
rior lower probabilities for θ. The weakness of this approach is that if P0 is
a reasonably broad class, then the posterior lower probabilities are not very
informative. If, for example, we judge that we have no cogent prior evidence
about θ and so allow P0 to be the class of all additive probability distributions
on Θ, then our posterior degrees of belief will not indicate any evidence for any
proper subset of the set of Pθ which are possible in light of the observed data.
For a review of the literature on this lower-probability approach to parametric
inference, see DeRobertis (1978).

Belief functions. Suppose we represent our prior evidence about θ by a
belief function Bel0 over Θ. Then it seems natural to generalize the Bayesian
approach by asking for a belief function over Θ×X that has Bel0 as its marginal
for θ and Pθ as its conditional given Θ. Such a belief function could then be
conditioned on the observed data x to yield a posterior belief function over Θ.

This line of thought brings us immediately to a fundamental difference
between additive probability measures and more general belief functions: a
belief function is not, in general, uniquely determined by its marginal for a
given partition and its conditionals given elements of that partition. There
may be many belief functions over Θ× X having a given marginal Bel0 and
given conditionals Pθ. And there may be no reason to prefer one to the others.
In his original work on “generalized Bayesian inference”, Dempster (1968)
proposed a particular method of constructing a belief function with a given
marginal Bel0 and given conditionals Pθ, but both he and his critics were
uncomfortable with the seemingly arbitrary character of the method. (There
are general principles from which Dempster’s method can be derived (see
Shafer, 1976b) but I now believe the method is appropriate only in the case
where the evidence about a random experiment is limited to evidence for its
randomness; see Sect. 4 below.)

But it is no embarrassment to the general theory of belief functions that a
belief function is not fully determined by a given marginal and corresponding
conditionals. Belief functions are not meant, in general, to be constructed from
such elements. They are meant to be constructed from analyses of evidence.
And so long as we are working within the theory of belief functions we expect
to represent individual items of evidence by belief functions, not by objects
like conditional belief functions or parametric models.

So the general spirit of the theory of belief functions leads us to look
beyond the parametric model {Pθ : θ ∈ Θ} to the evidence on which the
model is based. Our goal should be to represent this evidence directly by a
belief function over Θ×X , and it will be this belief function, say Bel, that we
should regard as a full account of the effect of this evidence on Θ × X . The
model {Pθ :θ ∈ Θ} will be only a partial account: Pθ will be Bel’s conditional
given θ.

Once we have constructed such a belief function, Bel, we can take the
prior evidence about θ into account by combining Bel with Bel0’s minimal
extension to Θ × X , which we may denote by Bel0. If the evidence for the
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parametric model does not by itself give any indication as to the value of θ
(so that Bel’s marginal for θ is vacuous), resulting belief function Bel ⊕ Bel0
Bel0 will satisfy the conditions formulated above: Bel0 will be its marginal for
θ, and Pθ will be its conditional given θ.

3 Some Examples of Evidence for Parametric Models

Here we shall consider three possible ways a parametric model {Pθ : θ ∈ Θ}
might arise:

(1) Perhaps the values of the parameter θ have a substantive significance, and
our knowledge of each Pθ derives from actual observations, the observa-
tions affording our knowledge of one P being distinct and independent
of those affording our knowledge of another. In a problem of medical
diagnosis, for example, each θ might correspond to the hypothesis that
the patient has a particular disease, with Pθ giving the frequencies with
which that disease has been observed to give rise to various symptoms.

(2) Perhaps the model arises from a single empirical frequency distribution—
an “error distribution”. This possibility is often mentioned in textbooks.

(3) Perhaps we are convinced that a phenomenon is random without having
any evidence as to the frequency distribution of its outcomes, so that the
model includes all additive probability distributions on X .

These three ways suggest, as we shall see, quite different belief functions
on Θ×X , though in each case the belief function has the Pθ as its conditionals
and has a vacuous marginal for θ. For another example of the use of belief
functions in statistical problems see Shafer (1982).

3.1 Models Composed of Independent Frequency Distributions

Suppose our model consists of finitely many Pθ and each is based on indepen-
dent empirical data—i.e. each Pθ is an empirical frequency distribution which
we would be willing to translate into degrees of belief about x if we knew θ
to be true, and the Pθ for different θ are based on independent observations.
Then how should we combine them to obtain a belief function Bel on Θ×X ?

Smets (1978, pp. 145–190) has pointed out that the method of conditional
embedding can be used to answer this question. We represent each Pθ by its
conditional embedding, say Belθ, in Θ×X , and then we set Bel equal to the
orthogonal sum of all the Belθ.

Let us show that Bel is vacuous for θ and has Pθ for its conditional given
θ. We begin with the fact that Belθ’s focal elements are in one-to-one cor-
respondence with the elements of X ; corresponding to x ∈ X is the focal
element

{(θ, x)} ∪ ((Θ− {θ})×X ) , (4)
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with m-value equal to Pθ(x). (i) A focal element for Bel is obtained by inter-
secting focal elements from the different Belθ’s; in other words, it is of the form

⋂

θεΘ

[{(θ, xθ)} ∪ ((Θ− {θ})×X )] =
⋃

θεΘ

{(θ, xθ)} (5)

for some choice of xθ’s. But any subset of Θ× X of the form (5) has a non-
empty intersection with every cylinder set {θ} × X . So Bel has a vacuous
marginal for θ. (ii) Intersecting the focal element (4) with {θ} × X yields
{(θ, x)}, while intersecting it with {θ′}×X , where θ′ 	= θ, yields {θ′}×X . So
Belθ yields Pθ when conditioned on θ and yields the vacuous belief function on
X when conditioned on θ′ 	= θ. Since the conditioning of an orthogonal sum
can be achieved by conditioning each component before combining, it follows
that Bel yields Pθ when conditioned on θ.

It should be stressed that Smet’s method depends on the assumption that
Θ is finite. Moreover, it gives sensible results only when the number of elements
in Θ is fairly small, for enlarging Θ has the effect of weakening the posterior
degrees of belief. It is only when Θ is small, of course, that we could hope to
satisfy the assumption that each Pθ be based on independent empirical data.

Example 1. Consider, for simplicity, the case where X and Θ have only two
elements; say X = {0, 1}, Θ = {θ1, θ2}, Pθ1(1) = p1 and Pθ2(1) = p2.
Then the belief function Bel on Θ × X has the m-values given in Table 1.
Conditioning Bel on the observation x = 1 yields the degrees of belief

Bel (θ1|x = 1) =
p1(1− p2)

1− (1− p1)(1 − p2)
and

Bel(θ2|x = 1) =
(1− p1)p2

1− (1− p1)(1 − p2)
(6)

Some insight into these formulae may be gained by fixing p2 at some value
equal neither to 0 nor to 1 and considering extreme values of p1. If p1 = 0,
then the observation x = 1 tells us that θ = θ2; we have Bel(θ1|x = 1) = 0
and Bel (θ2|x = 1) = 1. If p1 = 1, then the observation x = 1 is evidence in
favour of θ = θ1; we have Bel (θ1|x = 1) = 1− p2 and Bel (θ2|x = 1) = 0.

The combination of observations. Smet’s method can be applied, of course,
to the case of multiple observations. If we expect to make n independent

Table 1.

Focal element m-value

{(θ1, 1), (θ2, 1)} p1 p2

{(θ1, 1), (θ2, 0)} p1 (1 − p2)
{(θ1, 0), (θ2, 1)} (1 − p1) p2

{(θ1, 0), (θ2, 0)} (1 − p1) (1 − p2)



276 G. Shafer

observations from Pθ, then we simply construct the product distributions Pnθ
on Xn, conditionally embed these to obtain belief functions Belnθ on Θ×Xn,
and then combine by Dempster’s rule to obtain a belief function Beln on
Θ × Xn that can be conditioned on the observations x1, . . . , xn to yield a
posterior belief function on Θ.

An alternative approach to assessing independent observations x1, . . . , xn
is to use each xi to construct a posterior belief function Bel (·|xi) on Θ and
then to combine these posterior belief functions by Dempster’s rule. This, it
turns out, gives the same result (Smets, private communication).

Proof. For each (x1, . . . , xn) ∈ Xn, Belnθ assigns the m-value Pθ(x1) . . . Pθ(xn)
to the focal element

{(θ, x1, · · · , xn)} ∪ ((Θ− {θ})×Xn) . (7)

Let Belθ denote, as before, the conditional embedding of Pθ in Θ×X . And let
Beliθ denote the result of conditionally embedding Belθ in Θ ×Xn, with the
X in Θ×X identified with the ith copy of X in Θ×Xn. Then Beliθ assigns,
for each xi ∈ X , the m-value Pθ(xi) to the focal element

({θ} × X1 × . . .×Xi−1 × {xi} × Xi+1 × . . .×Xn) ∪ ((Θ− {θ})×Xn) . (8)

We see, by comparing (7) and (8), that Belnθ = Bel1θ ⊕ . . .⊕ Belnθ. So

Beln = ⊕θBelnθ = ⊕θ(Bel1θ ⊕ . . .⊕ Belnθ) = (⊕θBel1θ)⊕ . . .⊕ (⊕θBelnθ) .

But ⊕θBeliθ is the conditional embedding in Θ × Xn of Bel = ⊕θBelθ. So
conditioning ⊕θBeliθ on (x1, . . . , xn) yields the same belief function on Θ as
conditioning Bel on xi. So

Beln (·|x1, . . . , xn) = Bel (·|x1)⊕ . . .⊕ Bel (·|xn)

for all (x1, . . . , xn) ∈ Xn.

Example 1 continued. Suppose k of our observations x1, . . . , xn are equal
to 1 and n − k are equal to 0. Then Beln(·|x1, . . . , xn) is obtained by using
Dempster’s rule to combine k copies of Bel(·|x = 1) and n − k copies of
Bel(·|x = 0). The result is

Beln (θ1|x1, . . . , xn) =
pk
1(1 − p1)n−k − (p1p2)

k ((1 − p1) (1 − p2))n−k

pk
1 (1 − p1)

n−k + pk
2(1 − p2)n−k − (p1p2)

k ((1 − p1) (1 − p2))
n−k

and

Beln (θ2|x1, . . . , xn) =
pk
2(1 − p2)n−k − (p1p2)

k ((1 − p1) (1 − p2))n−k

pk
1 (1 − p1)

n−k + pk
2(1 − p2)n−k − (p1p2)

k ((1 − p1) (1 − p2))
n−k

.

Notice that for large values of n and n− k,

Beln (θ1|x1, . . . , xn) + Beln (θ2|x1, . . . , xn) ≈ 1,
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and
Beln (θ1|x1, . . . , xn)
Beln (θ2|x1, . . . , xn)

≈
(
p1

p2

)k (1− p1

1− p2

)n−k
. (9)

This agrees with the posterior Bayesian odds that would result from equal
prior probabilities for θ1 and θ2.

Medical diagnosis. Smets’ work was inspired by the problem of medical
diagnosis. Here Θ is a list of possible diseases from which a patient might
be suffering, X is a list of symptoms he might exhibit, and we assume that
study of each disease θ has resulted in a distribution Pθ that gives the fre-
quency with which that disease produces the various symptoms. Conditional
embedding seems reasonable because Pθ bears on the set of possibilities Θ×X
regarding our patient only conditionally on his having disease θ, and the use
of Dempster’s rule seems reasonable because the different frequency distribu-
tions can be regarded as independent items of evidence.

The assumption that one’s evidence in a problem of medical diagnosis
consists of complete and clearly relevant frequency distributions of symptoms
is, of course, very unrealistic. But, as Smets points out (p. 160), the method
of conditional embedding can still be used when the evidence about each
disease justifies only a relatively weak belief function instead of a full frequency
distribution. The following example illustrates some of the possibilities.

Example 2. Imagine a disorder called “ploxoma”, which comprises two distinct
“diseases”: θ1 = “virulent ploxoma”, which is invariably fatal, and θ2 = “ordi-
nary ploxoma”, which varies in severity and can be treated. Virulent ploxoma
can be identified unequivocally at the time of a victim’s death, but the only
way to distinguish between the two diseases in their early stages seems to
be a blood test with three possible outcomes, labelled x1, x2 and x3. The
following evidence is available: (i) Blood tests of a large number of patients
dying of virulent ploxoma showed the outcomes x1, x2 and x3 occurring 20,
20 and 60 per cent of the time, respectively. (ii) A study of patients whose
ploxoma had continued so long as to be almost certainly ordinary ploxoma
showed outcome x1 to occur 85 per cent of the time and outcomes x2 and
x3 to occur 15 per cent of the time. (The study was made before methods
for distinguishing between x2 and x3 were perfected.) There is some question
whether the patients in the study represent a fair sample of the population of
ordinary ploxoma victims, but experts feel fairly confident (say 75 per cent)
that the criteria by which patients were selected for the study should not
affect the distribution of test outcomes. (iii) It seems that most people who
seek medical help for ploxoma are suffering from ordinary ploxoma. There
have been no careful statistical studies, but physicians are convinced that
only 5–15 per cent of ploxoma patients suffer from virulent ploxoma.

We can represent each of these three items of evidence by a belief function
on Θ×X = {θ1, θ2} × {x1, x2, x3}. (i) The first item of evidence can be rep-
resented by the conditional embedding in Θ×X of the frequency distribution
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Table 2.

Focal element m-value Focal element m-value

{(θ2, x1)} 0.541875 {(θ1, x1)} 0.01
{(θ2, x1), (θ2, x2), (θ2, x3)} 0.2125 {(θ1, x2)} 0.01
{(θ2, x2), (θ2, x3)} 0.095625 {(θ1, x3), (θ2, x2), (θ2, x3)} 0.00675
{(θ1, x3), (θ2, x1)} 0.03825 {(θ1, x1), (θ2, x1), (θ2, x2),

(θ2, x3)}
0.005

{(θ1, x3)} 0.03 {(θ1, x2), (θ2, x1), (θ2, x2),
(θ2, x3)}

0.005

{(θ1, x3), (θ2, x1), (θ2, x2),
(θ2, x3)}

0.015 {(θ1, x1), (θ2, x2), (θ2, x3)} 0.00225

{(θ1, x1), (θ2, x1)} 0.01275 {(θ1, x2), (θ2, x2), (θ2, x3)} 0.00225
{(θ1, x2), (θ2, x1)} 0.01275

Pθ1 , where Pθ1(x1) = 0.2, Pθ1(x2) = 0.2 and Pθ1(x3) = 0 · 6. (ii) For the
second item of evidence, we begin with a belief function Belθ2 on X that has
focal elements {x1} and {x2, x3} with m-values 0.85 and 0.15, respectively.
We discount this belief function at rate α = 0.25, and then conditionally
embed it in Θ×X . (iii) For the third item of evidence we begin with a belief
function Bel0 on Θ that has m-values m0({θ1}) = 0.05, m0({θ2}) = 0.85 and
m0(Θ) = 0.10, and we minimally extend Bel0 to Θ×X

Combining these three belief functions by Dempster’s rule results in the
belief function on Θ×X with the m-values given in Table 2. Table 3 shows the
posterior degrees of belief that result when this belief function is conditioned
on the result of the patient’s blood test. As these numbers indicate, the blood
test is not as informative as one might hope. The physician’s initial 85 per cent
degree of belief that a given ploxoma is ordinary is raised only to 96·5 per cent
by a test that comes out x1 and lowered only to 78.2 per cent by a test that
comes out x3.

3.2 Models derived from a Single Frequency Distribution

Let us turn from the case where there is a different frequency distribution
underlying each Pθ to an opposite extreme: the case where all the Pθ are
derived from a single frequency distribution. And let us think about the tritest
example: the parametric model generated by an error distribution.

Table 3.

Bel(θ1|x) Bel(θ2|x)

x1 0.014 0.965
x2 0.062 0.918
x3 0.165 0.782
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Consider a measuring instrument whose propensities to err are thoroughly
known to us; we have used it to measure many known quantities and recorded
its errors in these cases so as to obtain a frequency distribution P (e) which we
are willing to translate into degrees of belief about what our error e = x − θ
will be when we shortly use the instrument to obtain a measurement x of an
unknown quantity θ. Consider Θ×X , where Θ is the set of possible values of θ
and X is the set of possible values of x; we assume that Θ = X . Each possible
error e will correspond to a subset Θ × X ; namely, {(θ, x)|x − θ = e}. So we
can accomplish the translation of the error distribution P (e) into degrees of
belief about x− θ by minimally extending P to Θ×X . This means adopting
the belief function Bel on Θ × X that assigns the m-value P (e) to the focal
element {(θ, x)|x − θ = e}. It is evident that Bel is vacuous for θ. And its
conditional on X given θ is given by Bel(x|θ) = P (x− θ). The belief function
Bel(·|θ) is an additive probability distribution, and so it may denote it by Pθ,
thus obtaining a parametric model {Pθ : θ ∈ Θ} on X .

The preceding paragraph merely translates into the language of belief func-
tions a traditional account of how a parametric model arises from an error
distribution. Moreover, the result of conditioning the belief function Bel on
the actual measurement x is the additive probability distribution Bel (·|x) on
Θ given by Bel(θ|x) = P (θ−x), and this is the familiar fiducial solution to the
problem of inference for this model. Notice, however, that the belief-function
argument depends on the model having really arisen from the error distribu-
tion; the argument gives no sanction to fiducial methods in cases where one
begins with an abstract model {Pθ : θ ∈ Θ} and then notices a pivotal quan-
tity x−θ. (This belief-function treatment of the fiducial method was given by
Dempster (1966). The only novelty in the present exposition is my insistence
that the criterion for the method’s validity should be sought in the origin of
the parametric model.) This lack of sanction for the use of arbitrary pivotal
quantities appears to rule out marginalization paradoxes of the type discussed
by Dawid et al. (1973).

The belief function Bel on Θ× X is non-additive, even though its condi-
tionals Bel(·|θ) and Bel(·|x) are all additive. Notice also that Bel can, in some
circumstances, lead to posterior probabilities for θ that are non-additive. If
instead of observing the measurement x we observe only that x is in some sub-
set A of X , then we will condition Bel on Θ×A, and the resulting conditional
belief function will have a non-additive marginal for θ.

The combination of observations. Here, as in the case of Smets’ method,
there are two approaches to combining independent observations. We can
construct the product distribution Pn, conditionally embed it in Θ × Xn,
and then condition on the observations (x1, . . . , xn). Or we can construct a
posterior belief function Bel(·|xi) for each observation and then combine these
by Dempster’s rule. It can be shown, here as in the case of Smets’ method,
that both approaches give the same final belief function Beln(·|x1, . . . , xn) on
Θ. In this case, Beln(·|x1, . . . , xn) is an additive probability distribution.
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Table 4.

e P (e) e P (e)

−6 0.00009 1 0.21321
−5 0.00101 2 0.10916
−4 0.00750 3 0.03577
−3 0.03577 4 0.00750
−2 0.10916 5 0.00101
−1 0.21321 6 0.00009

0 0.26651

Example 3. Suppose X and Θ are both equal to the set of all integers, and
P is given by P (e) = c0.8e

2
, where c ≈ 0.26651. Table 4 gives the values of

P (e) that exceed 10−5. If we observe (x1, . . . , xn),then Bel(θ|xi) = c0·8(θ−xi)
2
,

and Beln(·|x1, . . . , xn) = Bel(·|xi)⊕ . . .⊕Bel(·|xn) is the additive probability
distribution specified by

Beln(θ|x1, . . . , xn) ∝
n∏

i=1

Bel(θ|xi) ∝ (0.8)n(θ−x̄)2

If, for example, n = 4 and (x1, . . . , x4) = (−2, 1, 0, 9), then we obtain

Bel4 (θ| − 2, 1, 0, 9) ∝ 0.84(θ−2)2 .

Table 5 gives the values of Bel4(θ| − 2, 1, 0, 9) that exceed 10−5.

Example 4. Let us suppose, in order to construct an example that is compa-
rable to Example 1 above, that Θ = {0, 1}, that 0 and 1 are also the possible
errors, with frequencies P (0) = p and P (1) = 1 − p, and that the addition
to obtain x = θ + e is modulo 2. This means that X = {0, 1}, and that Pθ
assigns 0 and 1 the frequencies p and 1− p, respectively, when θ = 0 and the
frequencies 1− p and p, respectively, when θ = 1.

Table 5.

θ Bel4(θ| − 2, 1, 0, 9)

−1 0·00017
0 0·01500
1 0·21832
2 0·53300
3 0·21832
4 0·01500
5 0·00017
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The belief function Bel on Θ × X has focal elements {(0,0),(1,1)} and
{(0,1),(1,0)} with m-values p and 1 − p, respectively. So conditioning on x = 1
yields Bel(θ = 0|x = 1) = 1 − p and Bel(θ = 1|x = 1) = p. Notice that these
posterior degrees of belief do not agreewith the posterior degrees of belief thatwe
obtained using Smets’ method in Example 1. In order to make the comparison,
we set θ1 = 1, θ2 = 0, p1 = p and p2 = 1− p in (6), thus obtaining

Bel(θ = 1|x = 1) = p2 {1− p (1− p)}−1 and

Bel(θ = 0|x = 1) = (1− p)2 {1− p (1− p)}−1 .

There is asymptotic agreement, however. If we have measurements x1, . . . ,
xn, k of which equal 1 and n− k of which equal 0, then we obtain

Beln (θ = 1|x1 . . . , xn) = pk (1− p)n−k
(
pk (1− p)n−k + (1− p)k pn−k

)−1

,

Beln (θ = 0|x1 . . . , xn) = (1− p)k pn−k
(
pk (1− p)n−k + (1− p)k pn−k

)−1

,

and
Beln (θ = 1|x1, . . . , xn)
Beln (θ = 0|x1, . . . , xn)

=
pk(1− p)n−k

(1− p)k pn−k
,

which agrees with (9).
Practical complications. The premises for our justification of the fiducial

method through belief functions will rarely be fully satisfied. Usually our
experience with a measuring instrument will be inadequate for us to credit
fully a frequency distribution and the possibility of systematic errors will
always limit the extent to which we are willing to treat successive errors as
independent. However, these complications, though they do push us away from
the fiducial method, need not push us away from the use of belief functions.

Example 3 continued. Suppose we take seriously the possibility of outliers
and therefore discount the frequency distribution P (e), using the discount
rate α = 0.01. This results in the Bel(·|xi) also being discounted at this rate.
When we combine these four discounted belief functions by Dempster’s rule,
we obtain a belief function Bel0.014 (θ|−2, 1, 0, 9) that is very nearly an additive
probability distribution; the whole set Θ is a focal element, but its m-value
is only 0 · 00005, and all the other focal elements are singletons. Values of
Bel0.014 (θ|− 2, 1, 0, 9) that exceed 10−5 are shown in Table 6. Notice the sharp
disagreement with the values of Bel4(θ|−2, 1, 0, 9) given in Table 5. When we
do not discount, we obtain a probability of 0.53300 for θ = 2, but when we do
discount, we obtain a probability of only 0.02517 for θ = 2 and a probability
of 0.87302 for −1 ≤ θ ≤ 1. This disagreement can be explained by saying that
discounting leads us to treat the measurement x4 = 9 as a probable outlier.
(See pp. 251–255 of Shafer, 1976.)

Now suppose we admit the possibility that there may be a systematic
error f affecting all our measurements. And suppose we make the following
probability judgements about f , based on our knowledge of the measuring
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Table 6.

Bel0.01
4 (θ| − 2, 1, 0, 9) Bel0.01

4 (θ| − 2, 1, 0, 9)

−7 0.00001 4 0.00042
−6 0.00004 5 0.00013
−5 0.00022 6 0.00022
−4 0.00119 7 0.00059
−3 0.00961 8 0.00116
−2 0.08154 9 0.00144
−1 0.32160 10 0.00116

0 0.39843 11 0.00059
1 0.15299 12 0.00019
2 0.02517 13 0.00004
3 0.00320 14 0.00001

instrument and process: we consider it certain that |f | ≤ 2, and we feel there
is a chance 0 ·8 that |f | ≤ 1 and a chance 0.6 that f = 0. In other words,
we adopt a belief function Belf that has focal elements {0}, {−1, 0, 1} and
{−2,−1, 0, 1, 2}, with m-values 0.6, 0.2 and 0.2, respectively.

We are now assuming that xi = θ + f + ei, or θ + f = xi − ei. So the
belief function Bel0·014 (·|−2, 1, 0, 9) must now be interpreted as giving degrees
of belief about θ + f rather than about θ. When we combine these degrees
of belief about 0 + f with the degrees of belief about f given by Belf , we
obtain a belief function Bel∗ with the m-values given (to the nearest 0.00001)
in Table 7. A few values of Bel∗ are given in Table 8.

3.3 Pure Randomness

Suppose we know an unknown quantity X must take one of a finite set, say
X = {1, . . . , k}, of possible values, and we feel it does so randomly. We can
express this by saying that X is governed by some frequency distribution. But
there are only so many frequency distributions on X—so many as there are
vectors θ = (θ1, θ2, . . . , θk) of non-negative numbers that add to one. Setting
Θ equal to the set of all these vectors and letting Pθ denote the frequency
distribution corresponding to θ (i.e. Pθ(x) = θx for all x ∈ X ), we obtain a
parametric model {Pθ : θ ∈ Θ}. This model, it seems fair to say, arises solely
from the idea that X is random.

As a result of work by de Finetti (1964), Hewitt and Savage (1955) and oth-
ers, many Bayesians subscribe to a purely subjective interpretation of the idea
thatX is random and is governed by one of the frequency distributions P . This
interpretation involves thinking of X as one of a sequence X = (X1, X2, . . .)
of unkown quantities, each of which takes values in X , and considering a
countably additive1 probability distribution P that represents a Bayesian’s
1 De Finetti prefers the weaker condition of finite additivity. But we can neglect

this subtlety in the present brief exposition.
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Table 7.

Focal element m-value Focal element m-value

{−7} 0.00000 {3,4,5} 0.00008
{−6} 0.00003 {4,5,6} 0.00003
{−5} 0.00013 {5,6,7} 0.00004
{−4} 0.00071 {6,7,8} 0.00012
{−3} 0.00577 {7,8,9} 0.00023
{−2} 0.04892 {8,9,10} 0.00029
{−1} 0.19297 {9,10,11} 0.00023
{0} 0.23906 {10,11,12} 0.00012
{1} 0.09179 {11,12,13} 0.00004
{2} 0.01510 {12,13,14} 0.00001
{3} 0.00192 {13,14,15} 0.00000
{4} 0.00025 {−9,−8,−7,−6,−5} 0.00000
{5} 0.00008 {−8,−7,−6,−5,−4} 0.00001
{6} 0.00013 {−7,−6,−5,−4,−3} 0.00004
{7} 0.00036 {−6,−5,−4,−3,−2} 0.00024
{8} 0.00069 {−5,−4,−3,−2,−1} 0.00192
{9} 0.00087 {−4,−3,−2,−1, 0} 0.01631
{10} 0.00069 {−3,−2,−1, 0, 1} 0.06432
{11} 0.00035 {−2,−1, 0, 1, 2} 0.07969
{12} 0.00012 {−1, 0, 1, 2, 3} 0.03060
{13} 0.00002 {0,1,2,3,4} 0.00503
{14} 0.00000 {1,2,3,4,5} 0.00064
Θ 0.00005 {2,3,4,5,6} 0.00008
{−8,−7,−6} 0.00000 {3,4,5,6,7} 0.00003
{−7,−6,−5} 0.00001 {4,5,6,7,8} 0.00004
{−6,−5,−4} 0.00004 {5,6,7,8,9} 0.00012
{−5,−4,−3} 0.00024 {6,7,8,9,10} 0.00023
{−4,−3,−2} 0.00192 {7,8,9,10,11} 0.00029
{−3,−2,−1} 0.01631 {8,9,10,11,12} 0.00023
{−2,−1, 0} 0.06432 {9,10,11,12,13} 0.00012
{−1, 0, 1} 0.07969 {10,11,12,13,14} 0.00004
{0,1,2} 0.03060 {11,12,13,14,15} 0.00001
{1,2,3} 0.00503 {12,13,14,15,16} 0.00000
{2,3,4} 0.00064

beliefs about X and that is symmetric—i.e. invariant under permutations of
finitely many of the Xi’s. As it turns out, the countable additivity and sym-
metry of P imply that for each x ∈ X , P (limn→∞f(x, n) exists) = 1, where
f(x, n) is the proportion of the quantities X1, . . . , Xn that equal x. The vector
limn→∞(f(1, n), . . . , f(k, n)) can be identified, of course, with the unknown
parameter θ; conditioning P on this vector being equal to θ reduces P to the
product distribution P∞

θ . The Bayesian’s prior distribution for θ is implicitly
contained in P ; it is P ’s marginal for the vector limn→∞(f(1, n), . . . , f(k, n)).
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Table 8.

A Bel∗(A)

{0} 0.23906
{−1} 0.19297
{1} 0.09179
{−2} 0.04892
{2} 0.01510
{−1, 0, 1} 0.60351
{−2,−1, 0} 0.54527
{0,1,2} 0.37655
{−2,−1, 0, 1, 2} 0.84214
{−3,−2,−1, 0, 1, 2, 3} 0.96609

The distribution P is fully determined, moreover, by this prior distribution;
there is only one symmetric and countably additive distribution for X having
a given marginal for limn→∞(f(1, n), . . . , f(k, n)).

How might we give a treatment of randomness via belief functions which
is analogous to this Bayesian treatment? The obvious goal is to capture the
aspects of our idea of randomness (belief in the existence of limiting frequen-
cies and recovery of {Pθ : θ ∈ Θ} by conditioning on the limiting frequencies)
captured by the Bayesian treatment while avoiding opinions about the value
of the limiting frequency. This means we should try to construct a symmetric
belief function Bel for X = (X1, X2, . . .) that satisfies

Bel
(

lim
n→∞ f(x, n) exists

)
= 1 (10)

for all x ∈ X ,

Bel(X1 = x1, . . . , Xn = xn| lim
n→∞

(f(1, n), . . . , f(k, n)) = θ) = Pθ(x1), . . . , Pθ(xn)

(11)

for all x1, . . . , xn ∈ X , and

Bel( lim
n→∞(f(1, n), . . . , f(k, n)) ∈ A) = 0 (12)

for every proper subset A of Θ. As it turns out, this goal can be achieved;
there are belief functions satisfying these conditions.

The dichotomous case. The construction of a belief function Bel satisfying
(10), (11) and (12) is most easily carried out in the case where X has only two
elements. In this case it is convenient to use {0,1} rather than {1,2} to label
the elements of X and to use [0,1] as the parameter space Θ, with Pθ(1) = θ
and Pθ(0) = 1 − θ. Let us also write Sn = Σni=1Xi. Then (10), (11) and (12)
become

Bel( lim
n→∞(Sn/n) exists) = 1, (13)

Bel(X1 = x1, . . . , Xn = xn| lim
n→∞ (Sn/n) = θ) = Pθ(x1) . . . Pθ(xn) (14)
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and
Bel( lim

n→∞(Sn/n) ∈ A) = 0 (15)

for all A ⊂ [0, 1].
The construction of a belief function Bel satisfying (13), (14) and (15)

begins with the construction of a belief function Beln for the finite sequence
(X1, X2, . . . , Xn). We construct Beln, which is a belief function over {0, 1}n,
by assigning m-values 1/n! to each of the n! subsets of {0, 1}n of the form

Aσ =
{
(x1, . . . , xn) ∈ {0, 1}n |xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n)

}
,

where σ is a permutation of {1, . . . , n}. (Here is an example of a set Aσ. If
n = 3 and (σ(1), σ(2), σ(3)) = (1, 3, 2), then

Aσ = {(0, 0, 0) , (1, 0, 0) , (1, 0, 1) , (1, 1, 1)} .)

A permutation of (X1, . . . , Xn) merely permutes the Aσ. So Beln is symmetric
—i.e. it satisfies

Beln ((X1, . . . , Xn) ∈ A) = Beln
((
Xσ(1), . . . , Xσ(n)

)
∈ A

)
(16)

for all permutations σ. It is also easy to see that each Aσ has exactly one
representative for each possible frequency of ones—i.e. for each k, 0 ≤ k ≤ n,
there is exactly one element (x1, . . . , xn) ∈ Aσ such that Σni=1xi = k. This
means that Beln’s marginal for Sn is vacuous—i.e.

Beln (Sn ∈ A) = 0 (17)

for every proper subset A of {0, 1, . . . , n}. It also means that conditioning on
Sn = k reduces the Aσ to singletons and hence reduces Beln to an additive
(i.e. Bayesian) belief function. Thus, by the symmetry of Beln,

Beln (X1 = x1, . . . , Xn = xn|Sn = k) = 1/
(
n
k

)
, (18)

provided that Σni=1xi = k.
The belief functions Beln “cohere”, in the sense that if m < n then Belm

is Beln’s marginal for marginal for X1, . . . , Xm. And it is fairly easy to show
that this set of coherent belief functions is the only one satisfying (16), (17)
and (18). All the Beln together can be regarded as a belief function for the
infinite sequence (X1, X2, . . .). More precisely, they can be regarded as defining
a belief function on the algebra of subsets of {0, 1}∞ consisting of all “finite
cylinder sets”. This belief function can then be minimally extended to a belief
function on the algebra of all subsets of {0, 1}∞. It turns out that if we use a
form of minimal extension that preserves “sequential continuity” (a condition
equivalent to countable additivity in the presence of finite additivity), then
the resulting belief function Bel on {0, 1}∞ does indeed satisfy (13). Since
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Beln is Bel’s marginal, (16) says that Bel is symmetric. And, as it turns
out, (17) implies (15) and (18) implies (14). (The proofs of the assertions in
this paragraph have not been published. But the concepts of continuity and
minimal continuous extension are discussed in Shafer, 1979.)

Since the belief function Bel, like the Bayesian’s additive probability dis-
tribution P , gives degree of belief one to the existence of the limit θ =
limn→∞(Sn/n), we can examine Bel’s marginal for (θ,X1), which is a belief
function on Θ × X . By (15), this belief function has a vacuous marginal for
θ. And by (14), its conditional given θ is Pθ. Thus the construction of Bel
yields a solution to our general problem of constructing a belief function on
Θ × X—a solution which seems appropriate when the specification is based
purely on the idea of randomness. As it turns out, this solution is Demp-
ster’s original “generalized Bayesian” method. (See Dempster, 1968, or Shafer,
1976b).

Instead of considering the marginal just for (θ,X1), we could also consider
the marginal for (θ,X1, . . . , Xn), thus obtaining a belief function on Θ ×Xn
which is vacuous for θ and has Pnθ as its conditional given θ. It is also true,
here as in the case of Smets’ method and the fiducial Belx on method, that
the belief function Θ obtained by conditioning on a vector x = (x1, . . . , xn)
of actual observations is the same as the belief function Belx1 ⊕ . . . ⊕ Belxn ,
where Belxi is the belief function on obtained by conditioning on a single
observation xi. See Sect. 4 of Dempster (1966) for some calculations of values
of Belx.

The general case. The results in the dichotomous case generalize to the
case where X = {1, . . . , k} in that there does exist a symmetric belief func-
tion on X∞ that satisfies (10), (11) and (12) and has a marginal for X × Θ
corresponding to Dempster’s generalized Bayesian method. It appears, how-
ever, that when k > 2 there are other symmetric belief functions on X∞ that
satisfy (10), (11) and (12) but have different marginals for X × Θ. It would
be interesting to obtain an understanding of these belief functions.

It should be noted, in any case, that the justification for Dempster’s gener-
alized Bayesian method offered here depends on the idea of pure randomness
and hence only applies when the parametric model consists of all the distri-
butions on X . This rules out Aitchison’s counter-example to the method. (See
Aitchison, 1968, or Lindley, 1972, p. 9.)

4 Parametric Models not Based on Evidence

In Chap. 11 of A Mathematical Theory of Evidence I suggested a general belief-
function treatment of statistical evidence which, in contrast to the methods
just discussed, does not depend on the nature of the evidence establishing the
parametric model and does not condition on the observations. This method
simply translates each observation x into the consonant belief functions on Θ
given by
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Belx(A) = sup {s|fx(θ) ≥ 1− s implies θ ∈ A} , (19)

where fx(θ) is the normalized likelihood function:

fx(θ) = Pθ(x)/ sup
θ′∈Θ

Pθ′(x).

(Belxi is determined by the conditions that it be consonant and that it award
degree of belief s to each “likelihood interval” {θ|fx(θ) ≥ 1− s}.)

Many statisticians have discussed the idea of determining degrees of belief
by (19). (See, for example, Hudson, 1971, and Edwards, 1972.) But the
usefulness of the idea seems to be limited, for one can construct exam-
ples where the likelihood function cannot be normalized, or where the nor-
malized likelihood function seems to be misleading. (See Lindley, 1972,
pp. 12–13.) I emphasized likelihood intervals in A Mathematical Theory of
Evidence because of their simple relation to the idea of weights of evi-
dence. But I now think (19) should be rejected as a general method of
statistical inference because it does not take into account the origin of the
model.

If we do use (19), then how should we combine physically independent
observations x1, . . . , xn? For each of the three methods we considered above
(Smets’ method, the fiducial method and the model of pure randomness)
there are two different ways of combining observations: (1) A belief function
can be constructed on Θ × Xn that has Pnθ as its marginal given θ, and
this belief function can be conditioned on x = (x1, . . . , xn) to yield a belief
function Belx on Θ. (2) A belief function can be constructed on Θ × X that
has Pθ as its marginal given θ, for each xi this belief function can be con-
ditioned on xi to yield a belief function Belxi on Θ, and Dempster’s rule
can be used to obtain the orthogonal sum Belx1 ⊕ . . . ⊕ Belxn . These two
ways of combining x1, . . . , xn give the same final result for all three meth-
ods: we always find that Belx = Belx1 ⊕ . . . ⊕ Belxn . In the case of (19)
we are not conditioning belief functions constructed on Θ × X or Θ × Xn,
but we can still distinguish two ways of combining observations: (1) We can
represent the physical independence of x1, . . . , xn by constructing the prod-
uct model {Pnθ : θ ∈ Θ} and apply (19) directly to this model to obtain a
belief function Belx. (2) We can apply (19) for each xi and then combine
the resulting belief functions, obtaining the orthogonal sum Belx1 ⊕ . . . ⊕
Belxn . And in this case Belx and Belx1 ⊕ . . . ⊕ Belxn will, in general, be
different.

Several reviewers of A Mathematical Theory of Evidence (see Diaconis,
1977, p. 678; Fine, 1978, p. 671; and Williams, 1978, pp. 384–385) have found
the divergence between Belx and Belx1 ⊕ . . .⊕Belxn in the case of (19) unac-
ceptable. I am now inclined to agree with them. The choices that a theory
of evidence asks us to make ought always to be judgements based on our
evidence—i.e. choices for which we can look to our evidence for guidance.
And it is not clear how we can use our evidence to choose between Belx and
Belx1 ⊕ . . .⊕ Belxn .
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The use of likelihood intervals, though unacceptable where the evidence
for a parametric model can be spelled out, may still be of interest in cases
where there is no evidence for the model—in cases, that is to say, where
one is merely trying out the model to see how it fits and what it suggests
about θ. Here the arbitrariness of the choice between Belx and Belx1 ⊕ . . .⊕
Belxn can be be seen as a consequence of the arbitrariness of the model
itself.

5 Beyond the Parametric Model

In the preceding pages we have seen several examples where evidence conven-
tionally used to justify parametric models can further be used to justify belief-
function analyses of those models. The purpose of presenting these examples
was to illustrate how the choice of a belief-function analysis depends on the
nature of the evidence for the model, not just on the model itself. But a sec-
ond lesson also emerged from our discussion—the lesson that the evidence
for a parametric model often does not justify the model very well and that
a belief-function analysis that makes weaker claims on behalf of the evidence
may often be appropriate.

It is here, I believe, that the theory of belief functions has the most to
offer. There is no great need for new methods of statistical inference for tra-
ditional problems where we have well-supported parametric models involving
few parameters. But there is a need for new methods for problems where such
models are not available. Some Bayesians have sought to address this need
by constructing models that have so many parameters that they could not
possibly fail to fit the data and then pretending to have prior beliefs about
these parameters. The theory of belief function offers an approach that better
respects the realities and limitations of our knowledge and evidence.
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Entropy and Specificity in a Mathematical
Theory of Evidence

Ronald R. Yager

Abstract. We review Shafer’s theory of evidence. We then introduce the concepts
of entropy and specificity in the framework of Shafer’s theory. These become com-
plementary aspects in the indication of the quality of evidence.

Key words: Entropy, Fuzzy sets, Specificity, Belief, Plausibility.

1 Introduction

In [1] Shafer presents a comprehensive theory of evidence. The problem of
concern to Shafer is the location of some special element in a set X , called
the frame of discernment or base set. In Shafer’s framework he is provided
with evidence as to the identity of this special element in terms of a mapping
from the power set of X (set of all subsets of X) into the unit interval. This
mapping which Shafer calls the basic assignment, associates with each subset
A of X , the degree of belief that the special element is located in the set A
with the understanding that he can’t make any more precise statement with
regards to the location of the element.

A significant aspect of Shafer’s structure is the ability to represent in this
common framework various different types of uncertainty, i.e. probabilistic
uncertainty and possibilistic uncertainty. Our purpose here is to take some
concepts developed in these individual frameworks and generalize them to
the comprehensive framework of Shafer. In particular we shall generalize the
idea of entropy from the probabilistic framework and specificity from the
possibilistic framework. We shall find that these two measures of uncertainty
provided complementary measures of the quality of a piece of evidence.

2 Shafer’s Theory of Evidence

In Ref. 1 Shafer presents a comprehensive theory of evidence based on the
concept of belief. The theory begins with the idea of using a number between
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zero and one to indicate the degree of support a body of evidence provides
for a proposition. The fundamental concept in Shafer’s theory is the basic
assignment.1

Definition 1. Assume m is a set mapping from subsets of the finite set X
into the unit interval

m : 2X → [0, 1]

such that

1) m(∅) = 0
2)

∑
A⊂X

m(A) = 1

m is then called a basic assignment.

The interpretation of m consistent with Shafer’s theory is that there exists
in the base set X some special unknown element u and m(A) is the degree
of belief that this element lies in the set A and nothing smaller than A. In
order to help in the understanding of this concept I quote several attempts at
clarification from Shafer [1].

“m(A) is the belief that the smallest set that the outcome is in is A.”
“m(A) measures the total portion of belief that is confined to A yet none

of which is confined to any proper subset of A.”
“m(A) measures the belief mass that is confined to A but can move to

every point of A.”2

Note — The formulation of m leads us to the following observations:

1) m(X) is not necessarily one.
2) A ⊂ B does not necessarily imply m(A) � m(B).
3) It allows that belief not be committed to either A or not A.

Having introduced the idea of the basic assignment Shafer next introduces
the concept of a belief function.

Definition 2. Given a basic assignment m we can define a belief function

Bel : 2X → [0, 1]

such that for any A ⊂ X

Bel(A) =
∑

B⊆A
m(B).

1 I have chosen to use the term basic assignment where Shafer uses the term basic
probability assignment. I feel that the use of the word probability conjures up
certain preconceived notions in the reader which I want to avoid.

2 If the special element u is the age of some person, then m(A) may measure the
degree to which we believe that u is contained in the set young, where A = young
is defined as a subset of X.
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Bel(A) measures the belief that the special element is a member of A. Whereas
m(A) measures the amount of belief that one commits exactly to A alone,
Bel(A) measures the total belief that the special element is in A.

A subset A of X is called a focal element of a belief function Bel
if m(A) > 0.

Shafer shows that Bel(∅) = 0, Bel(X) = 1 and that for every collection
A1, A2, . . . , An of subsets of X

Bel(A1 ∪A2 . . . ∪An)

�
∑

I ⊂ {1, 2, . . . , n}
I 	= ∅

(−1)|I|+1Bel

(
⋂

i∈I
Ai

)
,

where |I| denotes the cardinality of the set I.
Shafer also shows that a belief function uniquely determines an underlying

basic assignment,
m(A) =

∑

B⊂A
(−1)|A−B|Bel(B),

|A−B| indicates the cardinality of the elements in A not in B.
Shafer next defines the plausibility associated with A.

Definition 3. Given a belief function Bel : 2X → [0, 1] we define a plausibility
function Pl as,

Pl : 2X → [0, 1]

such that for any A ⊂ X

Pl(A) = 1− Bel(Ā).

Note — The following observations can be made with respect to P1:

1) Pl(A) measures the degree to which one fails to doubt A, where
dou (A) = Bel(Ā)

2) Pl(A) measures the total belief mass that can move into A, whereas Bel(A)
measures the total belief mass that is constrained to A.

3) Pl(A) =
∑
B∩A �=∅

m(B)
4) Bel(A) � Pl(A)

An important aspect of Shafer’s theory involves the combination of belief
functions to form a resulting belief function, that is, the combining of various
sources of evidence. Shafer accomplishes this by use of Dempster’s Rule of
Combination. Zadeh [2] has raised some questions as to the appropriateness
of this rule. Prade [3] has shown the relationship between Dempster’s rule
and the intersection of fuzzy sets. Smets [4] has used Shafer belief functions
in medical diagnosis. Nguyen [5] has discussed the relationship between belief
functions and random sets.
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While we shall not in this paper be concerned with the question of the
combination of evidence, we shall use a concept developed by Shafer in his
approach to combining evidence.

Definition 4. Assume Bel1 and Bel2 are two belief functions over 2X with
their associated basic assignments m1 and m2. The weight of conflict between
Bel1 and Bel2, denoted Con(Bel1,Bel2), is defined as

Con (Bel1,Bel2) = − ln(1− k)

where
k =

∑

i, j
Ai ∩Bj = ∅

m1(A1) ·m2(Bj).

The situation of no conflict occurs when k = 0 and hence Con(Bel1,Bel2) =
0. If Bel1 and Bel2 are flatly contradictory k = 1 and Con(Bel1,Bel2) = ∞.
Thus con(Bel1,Bel2) � 0 and increases with increasing conflict.

3 Types of Belief Functions

Shafer introduces various classes of belief functions. We shall discuss some of
these in the following.

Definition 5. A belief function over 2X is called a vacuous belief function if

Bel(X) = 1 and Bel(A) = 0 for A 	= X.

Note

1) If Bel is a vacuous belief function, then m(X) = 1 and m(A) = 0 for
A 	= X .

2) Vacuous belief functions are used in situations where there is no evidence.

Definition 6. A belief function is called a simple support function focused at
A if

Bel(B) =

⎧
⎪⎨

⎪⎩

0 if A 	⊂ B

1 if B = X for 0 < s < 1
s if A ⊂ B,B 	= X.

Note If Bel is a simple support function focussed at A, then its basic
assignment function m is:

m(A) = Bel(A) = s

m(X) = 1− Bel(A) = 1− s

m(B) = 0 for all others.

The simple support function focused at A is used to indicate the situation
that we think the special outcome is in A with belief s.
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We shall call the simple support function focused at A with m(A) = 1 the
certain support function focused at A.

Definition 7. A belief function on 2X is said to be a Bayesian belief func-
tion if

Pl(A) = Bel(A) for all A ⊂ X.

Note The following are two equivalent formulations of a Bayesian belief
function.

I) Bel(∅) = 0
Bel(X) = 1
Bel(A ∪B) = Bel(A) + Bel(B), whenever A ∩B = ∅

II) Bel(A) + Bel(Ā) = 1

Theorem 1. If Bel is a Bayesian belief function, then the basic assignment
m is such that m takes non-zero values for only subsets of X that are single-
tons. Hence ∑

x∈X
m({x}) = 1

The Bayesian structure implies that none of the evidence mass has freedom
of movement.

The Bayesian structure forms the prototype in Shafer’s theory for proba-
bilistic uncertainty in which the basic assignment function m plays the role of
the probability distribution function p. That is, every probability distribution
p : 2X → [0, 1] can be associated with a Bayesian belief function in which
p(x) = m({x}).

We note that a Bayesian structure is fully defined by a point function of
X equal to m({x}).

Since
Bel(A) =

∑

B⊆A
m(B) =

∑

x∈A
m ({x}) ,

and since Pl(A) = Bel(A) for Bayesian belief structure,

Pl(A) =
∑

x∈A
m ({x}) .

Furthermore,
Bel ({x}) = Pl ({x}) = m ({x}) .

Hence
Bel(A) =

∑

x∈A
Bel ({x}) = Pl(A) =

∑

x∈A
Pl ({x}) .

Definition 8. A belief function Bel: 2X → [0, 1] is said to be consonant if

1) Bel(∅) = 0
2) Bel(X) = 1
3) Bel(A ∩B) = Min(Bel(A), Bel(B)) for all A, B ⊂ C
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Note — The following are two equivalent formulations of a consonant belief
function:

1) Pl(A ∪B) = Max(Pl(A), Pl(B))
2) Pl(A) = Maxx∈A[Pl({x})] for all A 	= ∅

Note — Every simple support function is consonant.
Note — If Bel is a consonant belief function, then for all A ⊂ X either

Bel(A) = 0 or Bel(Ā) = 0.
The characterization of a consonant belief function is expressed by the

following theorem (Shafer).

Theorem 2. A belief function is consonant if the focal elements of its basic
assignment function m are nested. That is, if there exists a family of subsets
of X, Ai, i = 1, 2, . . . , n, such that Ai ⊂ Aj for i < j and Σim(Ai) = 1.

Note — A consonant belief structure is completely determined by a point
function

f : X → [0, 1]

such that f(x) = Pl({x}). At least one element x ∈ X , has f(x) = 1.
This follows since for any A ⊂ X, Pl(A) = Maxx∈A[Pl(x)]. Hence Pl is
completely determined by Pl defined over the point set X . Since Bel(A) =
1 − Pl(Ā), Bel(A) is also uniquely determined. Since Bel(A) uniquely deter-
mines m we have completely defined the structure from this mapping.

This relationship can be made even clearer with the following construction
suggested by Prade [2].

Assume we have a consonant belief structure. We can always build a nested
sequence of sets

{x1} ⊂ {x1, x2} ⊂ {x1, x2, x3} ⊂ . . . ⊂ X,

indicating these sets as A1 ⊂ A2 ⊂ A3 . . . ⊂ An = X such that Σni=1m(Ai) =
1. Hence all the belief mass lies in this nested sequence. (Some of the elements
in the sequence may have zero basic assignment but any subset not in the
sequence definitely has zero basic assignment.)

Since

Pl(B) =
∑

B∩A �=∅

m(A),

Pl ({x}) =
∑

{x}∩A �=∅

m(A) =
∑

i
{x} ∩Ai�=∅

m(Ai) =
∑

i
such that
x ∈ Ai

m(Al).

Therefore

Pl ({x1}) = m (A1) +m (A2) + . . .m(An−1) +m(X)



11 Entropy and Specificity 297

Pl ({x2}) = m (A2) + m (An−1) +m(X)

Pl ({xn}) = m (X)
...

...
...

Conversely

m(Ai) = Pl ({x})− Pl ({xi+1})
m(X) = Pl ({xn})

m(A) = 0 for all else.

The consonant belief structure forms the prototype for the possibilistic
type of uncertainty introduced by Zadeh [6] in which the plausibility measure
in Shafer’s theory plays the role of the possibility measure π in Zadeh’s theory.
Furthermore, since Bel(A) = 1 − Pl(Ā), the belief function is analagous to
Zadeh’s measure of certainty [6].

The representations of both these common types of uncertainty in a similar
format allows for a comparison of the two types of uncertainty. We see that
in a certain respect possibilistic and probabilistic (consonant and Bayesian)
uncertainty are opposite extremes. Whereas possibilistic uncertainty assigns
its beliefs massm to a nested sequence of sets, probabilistic uncertainty assigns
its belief mass to a collection of disjoint sets. There exists only one type of
belief structure which satisfies both structures.

Theorem 3. The certain support function focused at {x}, i.e., such that
m({x}) = 1 for some x ∈ X is the only belief function that is both a Bayesian
and a consonant belief function.

Note — This structure is a certainty structure in that we know that the
special element is x.

4 Entropy Like Measure

An important concept in the theory of probability is Shannon’s measure of
entropy for a probability distribution. This is a measure of the discordance
associated with a probability distribution. We shall introduce here a measure
of entropy associated with a basic assignment function m.

Definition 9. Assume that m is a basic assignment over 2X with associated
belief function Bel.

We define the entropy of m as

Em =
∑

A⊂X
m(A) ·Con (Bel, BelA)

where BelA is the certain support function focused at A. The next theorem
justifies our use of the term entropy.
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Theorem 4. Assume that m is a Bayesian structure. Then

Em = −
∑

x∈X
m(x) · lnm(x).

Proof.
Em =

∑

A⊂X
m(A) · con (Bel, BelA) .

Since for a Bayesian structure m(A) = 0 for all non-singletons,

Em =
∑

x∈X
m({x}) · con (Bel, BelA) .

We shall denote the basic assignment function associated with the certain
support function at {x}, by gx. Then

gx ({x}) = 1

gx(B) = 0 for all other B ⊂ X , and Con (Bel, Bel{x}) = − ln(1−k), where

k =
∑

i, j
for Ai ∩Bj = ∅

m(Ai) · gx (Bj) .

Since gx(B) = 0 for B 	= {x} and elsewhere equals 1,

k =
∑

i
for Ai ∩ {x} = ∅

m(Ai)

Since m is Bayesian,

k =
∑

i
{xi} ∩ {x} = ∅

m ({xi}) =
∑

i
for xi 	= x

m ({xi}) = 1−m ({x}) .

Thus

Con(Bel,Bel{x}) = − ln (1− (1−m ({x})))
= − ln (m ({x})) ,

hence
Em = −

∑

x∈X
m ({x}) . lnm ({x}) .

Thus this definition reduces to the Shannon entropy when the belief struc-
ture is Bayesian.
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As a simplification for our further work we note that

Con(Bel, BelA) = − ln (1− k)

and k =
∑

i, j
for Ai ∩Bj = ∅

m(Ai) ·mA (Bj) .

But since mA is such that mA(A) = 1 and elsewhere it is zero,

k =
∑

i
Ai ∩A = ∅

m(Ai).

However, since

1 =
∑

Ai⊂A
m(Ai) =

∑

Ai∩A=∅

m(Ai) +
∑

Ai∩A �=∅

m(Ai)

and since ∑

Ai∩A �=∅

m (Ai) = Pl (A)

it follows that
1− k = Pl (A) ,

where Pl(A) is the plausibility function associated with A under m. Thus

Con(Bel, BelA) = − ln (Pl(A)) .

Hence

Em = −
∑

A⊂X
m(A) · ln (Pl(A))−

∑

A⊂X
ln (Pl (A))m(A)

Thus we have proved the following.

Theorem 5. For a belief structure with basic assignment m and plausibility
Pl the entropy of this structure is

Em = −
∑

A⊂X
ln

(
Pl(A)m(A)

)
= −

∑

A⊂X
m (A) · ln Pl (A) :

Corollary 1.
eEm =

∏

A⊂X

(
Pl (A)−m(A)

)
.

Proof.

eEm = e−(ΣPl(A)m(A)) =
∏

A⊂X
e− ln(Pl(A)m(A))

=
∏

A⊂X

(
Pl (A)−m(A)

)



300 R. R. Yager

Since Pl(A) ∈ [0, 1] for all A ⊂ X then ln Pl(A) � 0 and since m(A) ∈
[0, 1] then

Em = −
∑

A⊂X
m(A) · ln (Pl (A)) � 0.

Thus Em assumes as its minimal value the value zero.
Let us look at the belief structures which take this minimal value for Em.

Theorem 6. For any simple support belief structure Em = 0.

Proof. Assume our simple support structure is focused at B, with m(B) = b.
Then since

Em = −
∑

A⊂X
m(A) · ln Pl (A) ,

and since for this type of belief function m(B) = b, m(X) = 1− b and for all
sets A not equal to B or X, m(A) = 0, it then follows that

Em = − (b · ln Pl (B)) + ((1− b) · ln Pl (X)) .

Since

Pl(A) = 1− Bel(Ā) we have
Pl(X) = 1− Bel(∅) = 1− 0 = 1
Pl(B) = 1− Bel(B̄) = 1− 0 = 1

from which we get Em = −(b ln 1 + (1− b) ln 1) = 0.
A more general classification of belief structures with zero entropy can be

obtained.

Lemma 1. Any belief structure for which the plausibility is one at all focal
elements has Em = 0.

Proof. This follows directly from

Em = −
∑

A⊂X
m(A) · ln Pl (A)

and the fact that ln 1 = 0.

Lemma 2. In a consonant belief structure the plausibility function is one at
focal elements.

Proof. Because of the nested nature of the focal elements of this structure
there exists at least one x ∈ X contained in all the focal elements, denote
this x∗.
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From the definition of plausibility it follows that

Pl ({x∗}) =
∑

A∩{x∗}�=∅

m (A)

Since x∗ is contained in all focal elements then Pl{x∗} =
∑

im(Ai) = 1, where
Ai are all the focal elements.

We note that for any A ⊂ X

Pl (A) = Max
x∈A

[Pl {x}] .

Hence if Ai is a focal element of m, then x∗ ∈ Ai and hence Pl(Ai) = 1.
Thus we have shown the following theorem.

Theorem 7. For every consonant believe structure Em = 0.

Since consonant belief structures are isomorphic to possibility distributions
and normalized fuzzy subsets, the concept of Shannon like entropy proves to
be a meaningless or empty concept in a theory dealing with only normal
fuzzy sets.

While it would be nice if only consonant belief structures had zero entropy
this is not the case as seen from the following example [10].

Example 1. X = {x1, x2, x3}
Let

A = {x1, x2} B = {x2, x3}
Assume

m(A) = 1/2 m (B) = 1/2

Since neither A ⊂ B nor B ⊂ A, this is not a consonant belief structure.
Our definition for entropy implies for this situation

Em = − [m (A) · ln Pl (A) +m (B) · ln Pl (B)] .

But
Pl (A) =

∑

D
D ∩A 	= ∅

m (D) = m (A) +m (B) = 1

and
Pl (B) =

∑

D
∩B 	= ∅

m (A) = m (A) +m (B) = 1

Hence Em = 0.
Actually the class of zero entropic belief structures can be classified as

follows.
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From our definition of Em, in order that Em = 0, any A where m(A) 	= 0
requires that ln Pl(A) = 0, which requires Pl(A) = 1. Since

Pl (A) =
∑

B
B ∩A 	= ∅

m (B)

this means that every pair of focal elements must have at least one element
in common. Thus we have proved the following.

Theorem 8. A belief structure has zero entropy if Ai ∩Aj 	= ∅ for each pair
of focal elements.

Thus we can see that this measure of entropy is related in some way
to the disjointedness of the sets containing the evidence mass. We note
that disjointedness in the focal elements is related to the discordance in the
evidence.

We further note that Bayesian structures, while not the only ones, are
prototypical examples of disjoint belief structures.

We now turn to belief structures which produce maximal type values for
the entropy.

Theorem 9. Em is finite.

Proof. From our definition of Em and the fact that for non focal elements
m(A) = 0, we get

Em = −
∑

Ai

m (Ai) · ln Pl (Ai) ,

where Ai are the focal elements.

Since there are at most a finite number of focal elements, Em = ∞ iff
ln Pl(Ai) = −∞, for some i, hence Pl(Ai) = 0 for some i. However, since
Ai ∩Ai 	= ∅ ·m(Ai) > 0 implies that Pl(Ai) > 0.

Theorem 10. Assume we have k focal elements with the values m(Ai) = ai.
Then Em is maximal if the focal sets Ai are disjoint, i.e., if Ai ∩Aj = ∅ for
all i 	= j.

Proof.

Em = −
K∑

i=1

m (Ai) · Pl (Ai)

Pl (Ai) =
∑

j
for Ai ∩Aj 	= ∅

m (Aj) = m (Ai)
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+
∑

Aj
for Ai ∩Aj 	= ∅

i = j

m (Aj) = ai + di

Em = −
K∑

i=1

ai ln (ai + di) .

As di increases ln(ai+di) increases and −
∑K

i=1 ai ln(ai+di) decreases hence
Em is maximal when di = 0 for all i. This occurs when all the Aj are disjoint.

Theorem 11. Assume we have k disjoint focal elements. Then Em is maximal
if m(Ai) = 1/K for all elements and in this case

Em = −
K∑

i=1

1
K

ln
1
K

= ln K

Proof.

Em = −
K∑

i=1

ai ln ai,

where
n∑

i=1

ai = 1, a1 � 0

A proof that this well known situation produces a maximal Em when
ai = 1/k can be found in Ref. 7.

Assume that we have a belief structure defined over the set X with car-
dinality N . The maximal number of disjoint subsets of X consist of the N
disjoint sets of singletons and this has a value of ln N when the belief mass is
equally divided. It appears that this situation induces the largest entropy for
a situation where the cardinality of X is N . We say “it appears” since to be
certain that this is so, we must prove that there is no non-disjoint collection
of RN focal elements which have more entropy than the best situation with N
disjoint focal elements. We are not ready at this time to prove this theorem.

5 Specificity Like Measure

Yager[8, 9] has introduced a measure of specificity associated with a possibility
distribution.

If Π : X → [0, 1] is a possibility distribution over the finite set X , then
Yager[8, 9] has defined the measure of specificity associated with Π as

S (Π) =

αmax∫

0

1
card Πα

dα.
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Πα = {x|Π(x) � α, x ∈ X} is a crisp set called the α level set of Π, card
Πα is the number of elements in Πα and αmax = Maxx∈XΠ(x).

Yager[8, 9] has shown S(Π) to have the following properties:

1) 0 � S(Π) � 1.
2) S(Π) = 1 iff there exists one and only one x ∈ X such that Π(x) = 1 and

Π(y) = 0 for all y 	= x.
3) if Π and Π∗ are such that Maxx∈XΠ(X) = 1 and Π(x) � Π∗(x) for all

x ∈ X , when
S (Π) � S (Π∗) .

This measure is an indication of the specificity of a possibility distribution
in the sense that it indicates the degree to which Π points to one and only
one element as its manifestation.

Example 2. Let X = {a, b, c, d} and let

Π(a) = 1
Π(b) = 0.7
Π(c) = 0.5
Π(d) = 0.2

0 � α � 0.2 Πα = {a, b, c, d} card πα = 4
0.2 < α � 0.5 Πα = {a, b, c} card πα = 3
0.5 < α � 0.7 Πα = {a, b} card πα = 2
0.7 < α � 1 Πα = {a} card πα = 1

S(Π) =

1∫

0

1
card Πα

dα

S(Π) =

0.2∫

0

1
4
dα+

0.5∫

0.2

1
3
dα+

0.7∫

0.5

1
2
dα +

1∫

0.7

dα

S(Π) = (0.2)
1
4

+ (0.3)
1
3

+ (0.2)
1
2

+ 0.3 (1) = 0.55.

We now generalize this measure from possibilistic belief structures to any
belief structure.

Definition 10. Assume m is a belief structure defined over the set X the
generalized specificity measure, denoted Sm, is defined as

Sm =
∑

A ⊂ X
A 	= ∅

m(A)
nA

.

nA is the number of elements in the set A, i.e., nA = Card A = |A|.
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First we show that this generalized measure reduces to the particular mea-
sure suggested by Yager for possibility distributions, i.e., for consonant belief
structures.

Assume that X has n elements with membership grades

an � an−1 � an−2 . . . � a1 = 1

Then

S(Π) =

an∫

0

1
n
dα+

an−1∫

an

1
n− 1

dα

+

an−2∫

an−1

1
n− 2

dα+ . . .

a1=1∫

a2

∣∣∣∣∣∣
1dα

hence

S(Π) =
1
n
an +

1
n− 1

(an−1 − an) +
1

n− 2
(an − an−1)

+ . . . (a1 − a2)

More generally

S(Π) =
n∑

i=1

1
i
(ai − ai+1),

with an+1 = 0 by definition.
Now assume that m is a consonant belief structure.
As Prade [3] has shown, if m is consonant, then there exists a nested family

of subsets Ai ⊂ X such that card Ai = i and
∑n
i=1 m(Ai) = 1, where n is the

cardinality of X .
Thus

Sm =
∑

A ⊂ X
A 	= ∅

m(A)
nA

=
n∑

i=1

m(Ai)
i

Furthermore, it was shown by Prade [3] that if an � an−1 � · · · � a1 are
the plausibilities of the singletons, the possibilities of the individual elements,
then m(Ai) = ai − ai+1. Thus

Sm =
n∑

i=1

ai − ai+1

i

in the consonant case. This shows that our generalized definition captures the
original case.
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Theorem 12. Assume that m is a belief structure over X, where the cardi-
nality of X is n. Then

1
n

� Sm � 1.

Proof. (1) For any A, nA � n, hence

Sm � 1
n

∑

A

m(A)

and since
∑
m(A) = 1, then Sm � 1/n.

2) For any A 	= ∅, nA � 1, hence

Sm �
∑

A⊂X
m (A) � 1

Let us look at the situations which attain these extremal values for Sm

Theorem 13. Sm assumes its minimal value for a given X iff m is a vacuous
belief structure. This minimal value is 1/n where n is the cardinality of X.

Proof. (1) If m is vacuous m(X) = 1 hence Sm = 1/n
2) If m is not vacuous then there exists some A, such that m(A) > 0 and

nA < n hence

Sm � 1
n
.

Theorem 14. Sm assumes its maximal value of 1 iff m is a Bayesian belief
structure.

Proof. (1) Assume that m is Bayesian. Then the sets having m(A) > 0 are
only the singletons. Thus

Sm =
n∑

i=1

m[{xi}] = 1

2) Assume that m is not Bayesian. Then there exists some A such that
m(A) > 0 and nA > 1 hence Sm < 1.

Thus whereas the entropy measure is minimized for consonant belief struc-
tures the specificity is maximized for Bayesian belief structures.

To get further insight into this measure we consider its evaluation on simple
support structures.

Theorem 15. Assume that m is a simple support structure focused at B, with
m(B) = b. Then

Sm =
b

nB
+

1− b

n
.
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Proof. For a simple support structure

m(B) = b

m(X) = 1− b

Sm =
b

nB
+

1− b

n
.

If b increases Sm increases. Furthermore as nB decreases, without becom-
ing vacuous, Sm increases.

Let us now examine the workings of this measure on consonant belief
structures.

Theorem 16. Assume that m1 and m2 are consonant belief structures gen-
erating plausibility measures Pl1 and Pl2 such that, for each x ∈ X,

Pl1 (x) � Pl2 (x)

Then.
Sm1 � Sm2 .

Proof. For consonant belief structures

Sm =

1∫

0

1
Card Πα

dα

Since Pl2(x) > Pl1(x), card
∏

2α
� card

∏
1α

.

As a special case of this situation consider two consonant belief structures
m1 and m2 defined over the same nested sets A1 ⊆ A2 ⊂ · · · ⊂ An where

Pl1 (x) � Pl2 (x)
m2 (An) = Pl2 (xn) > Pl1 (xn) = m1 (An)

so m2(An) � m1(An).
In the same manner for all j > 1,

m2 (An) +m2 (An−1) + . . .m2 (Aj) > m1 (Aj) + . . .m1 (An) .

But
n∑

i=1

m2 (Ai) =
n∑

i=1

m1 (Ai) ,

hence m1(A1) � m2(A1) and m2(An) � m1(An).
Thus the higher the specificity the more of the evidence mass lies in the

one element set and the less in the set X .
The meaning of the measure Sm appears to relate to the degree to which

the evidence is pointing to a one element realization. When one considers that
the total amount of plausibility assigned to the elements in X is
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∑

xi∈X
Pl (Xi) =

∑

A⊂X
nA ·m (A)

it appears that Sm is a measure of the reduction of excess plausibility. We
can also see that as the total plausibility value, which is always greater than
the belief, gets closer to the belief value than Sm increases. Hence Sm appears
inversely related to excess of plausibility over belief. In bringing the plausibility
in a structure closer to the belief ascertained in the structure we are getting
more specific in our allocation of evidence. This interpretation is reinforced by
the fact that for Bayesian structures in which the plausibility always equals
the belief, the value of Sm is maximum.

Since obtaining evidence involves a process of reducing possibilities, speci-
ficity thus seems to be measuring the effect of the evidence in that direction.

6 Using Both Measures

We feel that the two measures developed herein provide a complementary
approach to measuring the certainty with which a belief structure is pointing
to a unique outcome.

As noted, the entropy measure provides a measure of the dissonance of
the evidence. This is illustrated by the fact that consonant belief structures
have lowest entropic measures, while the highly dissonant type of Bayesian
structures have high entropic measures.

The specificity measure provides an indication of the dispersion of the
belief. We note that in this situation the Bayesian structure gets the highest
grades, while the vacuous case gets the lowest.

As we noted earlier the only structure that is Bayesian, specific and conso-
nant is the structure which m(x) = 1 for some x ∈ X . However this structure
corresponds to the certain situation where the evidence points precisely to x
as the special element.

Thus we see the following: the lower the Em, the more consistent the
evidence; and the higher Sm, the less diverse. Ideally we want low Em and
high Sm for certainty. Thus by using a combination of the two measures we
feel that we can have a good indication of the quality of a belief structure
with respect to suggesting one element as the outcome.

In particular the measure Em indicates the success of the structure in
reducing plausibilities, which is a desired quality in a belief structure up to a
point. This point will be that where the reduction is so great that everything
appears not possible, which implies an inconsistency in the evidence. The
entropy measure thus indicates the success of the belief structure in being
consistent. On the other hand, consistency is also desirable up to a point, this
being where we leave everything as possible in order to obtain this consistency.
The success with which we are able to satisfy both these criteria therefore
provides a good procedure for judging the quality of evidence.



11 Entropy and Specificity 309

We here suggest as a measure of quality of a belief structure the two tuple
(Sm, Em). As we have noted, the ideal situation, certain knowledge, occurs
only when (Sm, Em) = (1, 0). The closer a belief structure is to this point, the
better quality of evidence it is supplying.

7 Conclusion

We have extended Shafer’s theory of evidence to include a measure of entropy
and specificity to be associated with a belief structure. These measures taken
together provide an indication of the quality of the evidence supplied by a
belief structure.
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A Method for Managing Evidential Reasoning
in a Hierarchical Hypothesis Space∗

Jean Gordon and Edward H. Shortliffe

Abstract. Although informal models of evidential reasoning have been success-
fully applied in automated reasoning systems, it is generally difficult to define the
range of their applicability. In addition, they have not provided a basis for consistent
management of evidence bearing on hypotheses that are related hierarchically. The
Dempster–Shafer (D-S) theory of evidence is appealing because it does suggest a
coherent approach for dealing with such relationships. However, the theory’s com-
plexity and potential for computational inefficiency have tended to discourage its
use in reasoning systems. In this paper we describe the central elements of the D-S
theory, basing our exposition on simple examples drawn from the field of medicine.
We then demonstrate the relevance of the D-S theory to a familiar expert-system
domain, namely the bacterial-organism identification problem that lies at the heart
of the mycin system. Finally, we present a new adaptation of the D-S approach that
achieves computational efficiency while permitting the management of evidential
reasoning within an abstraction hierarchy.

1 Introduction

The representation and manipulation of incomplete and imperfect knowledge
are issues central to the design of reasoning systems. Drawbacks in tradi-
tional probabilistic approaches to the management of such uncertainty led
us to develop the certainty factor (CF) model of inexact reasoning [15]. The
initial CF model was implemented in the medical advice program known as
mycin and subsequently adapted for use in similar (emycin) systems [3].
However, despite the model’s good performance in many task domains, its
restrictive assumptions [1] and its inability to deal consistently with hierar-
chical relationships among values of parameters have left us dissatisfied with
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Alumni Scholars Program. Dr. Shortliffe was a Henry J. Kaiser Family Foundation
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the generality of the approach. We have accordingly been attracted to the
mathematical theory of evidence developed by Arthur Dempster. Although
it also makes assumptions that do not hold in all problem-solving domains,
its coherent approach to the management of uncertainty among hierarchically
related hypotheses merits careful study and interpretation in the context of
automated reasoning systems.

This theory was first set forth by Dempster in the 1960s and subse-
quently extended by Glenn Shafer when he published A Mathematical Theory
of Evidence [14]. The theory’s relevance to the issues addressed in the CF
model was not immediately recognized [19], but recently researchers have
begun to investigate applications of the theory to artificial intelligence sys-
tems [2, 6, 7, 10, 11, 16].

An advantage of the Dempster–Shafer (D-S) theory over previous
approaches is its ability to model the narrowing of the hypothesis set with
accumulation of evidence, a process which characterizes diagnostic reasoning
in medicine and expert reasoning in general. An expert uses evidence which
may apply not only to single hypotheses but also to sets of hypotheses that
together comprise a concept of interest. The functions and combining rule
of the D-S theory are well suited to represent this type of evidence and its
aggregation.

We believe there are several reasons why the D-S theory is not yet well
appreciated by the artificial intelligence research community. One problem has
been the mathematical notation used in most of the books and papers that
discuss it. In addition, the discussions generally lack simple examples that
could add clarity to the theory’s underlying notions. Finally, the D-S the-
ory is widely assumed to be impractical for computer-based implementation
due to an evidence-combination scheme that assures computational complex-
ity with exponential-time requirements. Although we could not totally avoid
mathematical notation in this paper, we do address all three of the issues cited
here, paying particular attention to methods for applying the theory in ways
that are computationally tractable.

In 1981, Barnett showed that apparent exponential-time requirements of
the D-S model could be reduced to simple polynomial time if the theory
were applied to single hypotheses, and to their negations, and if evidence
were combined in an orderly fashion [2]. However, Barnett’s proposal did not
solve the larger problem of how to allow evidential reasoning about sets of
hypotheses in a way that is computationally tractable for complex domains.

In this paper we propose a technique that permits adapting the D-S theory
so that hierarchical relationships among hypotheses are handled in a consistent
manner. The method builds on Barnett’s approach, augmenting it to provide
the additional features in a computationally efficient manner. We shall show
that the technique requires an assumption (that the hypothesis space can be
reduced to a strict hierarchy) and an approximation (it assigns disconfirma-
tory evidence only to hypotheses with ‘meaning’ in the domain), but it does
manage to capture the major strengths of the D-S theory while achieving a
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computationally tractable execution time and, hence, a practical method for
its implementation.

We accordingly have three goals in this paper. First, in Sect. 2 we wish to
describe for an AI audience the central elements of the D-S theory, avoiding
excessive mathematical notation and basing our exposition on simple exam-
ples drawn from the field of medicine. In Sect. 3 we demonstrate the relevance
of the D-S theory to a familiar expert-system domain, namely the bacterial-
organism identification problem that lies at the heart of mycin [3]. Since
mycin’s identification rules deal with single hypotheses and ignore hierarchi-
cal relationships, the Barnett technique is directly relevant to the program’s
task. In Sect. 4 we present an adaptation of the D-S approach that allows
computationally efficient reasoning within abstraction hierarchies.

The importance of hierarchical relationships among hypotheses can best
be appreciated in the setting of a simple example. Consider mycin’s task of
bacterial-organism identification. Here the hypothesis set is a group of over 100
organisms known to the program. By focusing on single organisms (hypothe-
ses), mycin’s rules and CF model are unable to deal with groups of organisms
as hypotheses that have explicit relationships to the single bacteria about
which knowledge is available. Such relationships, if they exist, must be spec-
ified in mycin using additional rules; they are not reflected automatically in
the structure of the hypothesis space for the domain. When searching for the
identity of an infecting organism, however, microscopic examination of a smear
showing gram-negative (pink-staining) organisms narrows the hypothesis set
of the 100 or so possible organisms to a proper subset. This subset can also
be thought of as a new hypothesis: the organism is one of the gram-negative
organisms. However, this piece of evidence gives no information concerning
the relative likelihoods of the individual organisms in the subset. Bayesians1

might assume equal prior probabilities and distribute the weight of this evi-
dence equally among the gram-negative organisms but, as Shafer points out,
they would thus fail to distinguish between uncertainty, or lack of knowledge,
and equal certainty. Because the D-S approach allows one to attribute belief to
subsets, as well as to individual elements of the hypothesis set, we believe that
it is similar to the evidence-gathering process observed when human beings
reason at varying levels of abstraction.

A second piece of evidence, such as the morphology (shape) of the organ-
ism, narrows the original hypothesis set (the 100 or so bacterial organisms) to
a different subset. How does the D-S theory pool this new piece of evidence
with the first? Each is represented by a belief function, and the two belief
functions thus must be merged using a combination rule to yield a new func-
tion. Belief functions assign numerical measures of belief to hypotheses based
on observed evidence. In a rule-based expert system, for example, each infer-
ential rule would have its own belief function associated with it, a function

1 A thorough discussion of Bayesian theory and its application to medical diagnostic
reasoning may be found in [17].
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that assigns belief to the consequent based on the evidence in the premise.
The combination rule proposed by Dempster, like the Bayesian and CF com-
bining functions, is independent of the order in which evidence is gathered.
In fact, the D-S combination rule includes the Bayesian and CF functions as
special cases.

Another consequence of the generality of the D-S belief functions is avoid-
ance of the Bayesian restriction that commitment of belief to a hypothesis
implies commitment of the remaining belief to its negation, i.e., the assump-
tion that belief in H is equivalent to P (H) so that the resulting belief in
NOT-H is 1−P (H). The concept that, in many situations, evidence partially
in favor of a hypothesis should not be construed as evidence partially against
the same hypothesis (i.e., in favor of its negation) was one of the desiderata
in the development of the CF model [15]. As in that model, the D-S measures
of belief assigned to each hypothesis in the original set need not sum to 1 but
may sum to a number less than 1; some of the remaining belief can be allotted
to sets of hypotheses that comprise higher-level concepts of interest.

Although the D-S theory includes many of the features of the CF model, its
derivation is based on set-theoretic notions which allow explicit and consistent
handling of subset and superset relationships in a hierarchy of hypotheses. As
we shall show, this feature provides a conceptual clarity that is lacking in the
CF model. In the next sections, we motivate the exposition of the theory with
a medical example and then discuss the relevance of the theory to systems
that reason in hierarchically organized hypothesis spaces.

2 Basics of the Dempster-Shafer Theory

2.1 A Simple Example of Medical Reasoning

Suppose a physician is considering a case of cholestatic jaundice, i.e., the
development of a yellow hue to a patient’s skin (jaundice) due to elevated
blood levels of bilirubin (a pigment produced by the liver). This problem
is caused by an inability of the liver to excrete bile normally, often due to
a disease within the liver itself (intrahepatic cholestasis) or blockage of the
bile ducts outside the liver (extrahepatic cholestasis). In a typical case of this
type, the diagnostic hypothesis set might well include two types of intrahepatic
cholestasis, hepatitis (Hep) and cirrhosis (Cirr), and two types of extrahepatic
cholestasis, gallstones (Gall) and pancreatic cancer (Pan). There are actually
more than four causes of jaundice, but we have simplified the example here for
illustrative purposes. In the D-S theory, this set of four disorders is called a
frame of discernment, denoted Θ or {Hep, Cirr, Gall, Pan}. As noted earlier,
the hypotheses in Θ are assumed mutually exclusive and exhaustive.

One piece of evidence considered by the physician might lend support to
the diagnosis of intrahepatic cholestasis rather than to a single disease, i.e.,
it might support the two-element subset of Θ, {Hep, Cirr}. Note that this
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subset corresponds to the hypothesis which is the disjunction of its elements,
viz. the hypothesis HEP-OR-CIRR. Similarly, the hypothesis extrahepatic
cholestasis = {Gall, Pan} = GALL-OR-PAN. Evidence confirming intrahep-
atic cholestasis to some degree will cause the physician to allot belief to the
subset {Gall, Pan}.

Subsequently a new piece of evidence might help the physician exclude
hepatitis to some degree. Evidence disconfirming HEP (i.e., disconfirming the
set {Hep}) is equivalent to evidence confirming the hypothesis NOT-HEP,
which corresponds to the hypothesis CIRR-OR-GALL-OR-PAN or the subset
{Cirr, Gall, Pan}. Thus, evidence disconfirming {Hep} to some degree will
cause the physician to allot belief to this three-element subset. Note, however,
that although evidence disconfirming the set {Hep}may be seen as confirming
the set {Cirr, Gall, Pan}, it says nothing about how the belief in the three-
element subset should be allocated among the singleton hypotheses {Cirr},
{Gall}, and {Pan}.

As illustrated above, any subset of hypotheses in Θ gives rise to a new
hypothesis, which is equivalent to the disjunction of the hypotheses in the
subset. Each element in Θ corresponds to a one-element subset (called a
singleton). By considering all possible subsets of Θ, denoted 2Θ, the set of
hypotheses to which belief can be allotted is enlarged. Henceforth, we use
the term ‘hypothesis’ in this enlarged sense to denote any subset of the orig-
inal hypotheses in Θ. We shall also hereafter use set notation to refer to the
corresponding hypothesis, e.g., {Cirr, Hep} refers to the hypothesis HEP-OR-
CIRR, {Pan} refers to the hypothesis PAN, etc.

A diagrammatic representation of 2Θ for the cholestasis example is given
in Fig. 1. Note that a set of size n has 2n subsets. (The empty set, ∅, is one
of these subsets, but is not shown in Fig. 1; it corresponds to a hypothesis
known to be false since the hypotheses in Θ are exhaustive.)

{Hep, Cirr, Gall, Pan}

{Cirr, Gall}

{Gall}

{Cirr, Pan}

{Hep, Cirr, Gall}

{Hep,Gall} {Hep, Pan}{Hep, Cirr}

{Cirr}{Hep}

{Hep, Cirr, Pan} {Cirr, Gall, Pan}{Hep, Gall, Pan}

{Gall, Pan}

{Pan}

Fig. 1. The subsets of the set of causes of cholestasis
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2.2 Basic Probability Assignments

The D-S theory uses a number in the range [0, 1] inclusive to indicate belief in
a hypothesis given a piece of evidence. This number is the degree to which the
evidence supports the hypothesis.2 Recall that evidence against a hypothesis
is regarded as evidence for the negation of the hypothesis, i.e., for the com-
plement in the set-theoretic interpretation of hypotheses introduced in the
previous section. Thus, unlike the CF model, the D-S model avoids the use of
negative numbers to represent disconfirming evidence.

The impact of each distinct piece of evidence on the subsets of Θ is rep-
resented by a function called a basic probability assignment (bpa). A bpa is a
generalization of a probability mass distribution; the latter assigns a number
in the range [0, 1] to every singleton of Θ such that the numbers sum to 1.
Using 2Θ, the enlarged domain of all subsets of Θ, a bpa, denoted m, assigns
a number in [0, 1] to every subset of Θ such that the numbers sum to 1. (By
definition, the number 0 must be assigned to the empty set, since this set
corresponds to a false hypothesis.) Thus, mi allows assignment of a portion
of the total belief of 1, based on a given piece of evidence i, to every element
in the hierarchy of Fig. 1, not just to those elements on the bottom row as is
the case for a probability density function.

The quantity m(A) is a measure of that portion of the total belief commit-
ted exactly to A, where A is an element of 2Θ. This portion of belief cannot
be further subdivided among the subsets of A and does not include portions
of belief committed to subsets of A. Since belief in A certainly entails belief
in all subsets of Θ containing A (i.e., nodes ‘higher’ up in the network of
Fig. 1), it would be useful to define a function which computes a total amount
of belief for each subset in Θ. This function applied to a subset in 2Θ, A,
would include not only belief committed exactly to A but to all subsets of A.
Such a function, called a belief function in the D-S model, is defined in the
next section.

The quantity, m(Θ), is a measure of that portion of the total belief which
is committed to Θ, i.e., which remains unassigned after commitment of belief
to various proper subsets of Θ. For example, evidence favoring a single subset
A need not say anything about belief in the other subsets. If m(A) = s and
m assigns no belief to other subsets of Θ, then m(Θ) = 1 − s. Thus, the
remaining belief is assigned to Θ and not to the negation of the hypothesis
(equivalent to Ac, the set-theoretic complement of A), as would be assumed
in the Bayesian model.

Example 1. Suppose there is no evidence concerning the specific diagno-
sis in a patient with known cholestatic jaundice, i.e., a patient for whom
Θ = {Cirr, Hep, Gall, Pan}. The bpa representing ignorance, called the vac-
uous bpa, assigns 1 to Θ = {Hep, Cirr, Gall, Pan} and 0 to every other subset
2 Note that this definition corresponds to the notion of a measure of belief (MB) in

the CF model.
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of Θ. Bayesians might attempt to represent ignorance by a function assigning
0.25 to each singleton hypothesis ({Hep}, {Cirr}, {Gall}, and {Pan}), or by a
function apportioning the total belief in accordance with information regard-
ing prevalence of the four disorders in the population. As remarked before,
however, such functions would imply more information given by the evidence
than is truly the case.

Example 2. Suppose that the evidence supports, or confirms, the diagnosis of
intrahepatic cholestasis = {Hep, Cirr} to the degree 0.6, but does not support
a choice between cirrhosis and hepatitis. The remaining belief, 1−0.6 = 0.4, is
assigned to Θ. The hypothesis corresponding to Θ is known to be true under
the assumption of exhaustiveness. Thus, m({Hep, Cirr}) = 0.6, m(Θ) =
m({Hep, Cirr, Gall, Pan}) = 0.4 and the value of m for every other subset
of Θ is 0. Bayesians might have assigned the remaining belief to extrahepatic
cholestasis= {Gall, Pan}, the negation (complement) of intrahepatic cholesta-
sis, rather than to Θ.

Example 3. Suppose that the evidence disconfirms the diagnosis of {Hep} to
the degree 0.7. This is equivalent to confirming that of {Cirr, Gall, Pan} to
the degree 0.7. Thus, m({Cirr, Gall, Pan}) = 0.7, m(Θ) = 0.3 and the value
of m for every other subset of Θ is 0. Note that the notion of disconfirmation
does not have a clear correlate in classical probability theory; the CF theory,
for example, was developed largely in an effort to address the need to define
relationships between confirmation and disconfirmation.

Example 4. Suppose that the evidence confirms the diagnosis of {Hep} to the
degree 0.8. Then, m({Hep}) = 0.8, m(Θ) = 0.2, and m is 0 elsewhere.

2.3 Belief Functions

A belief function, denoted Bel, corresponding to a specific bpa, m, assigns to
every subset A of Θ the sum of the beliefs committed exactly to every subset
of A by m. For example:

Bel ({Hep, Cirr,Pan}) =m ({Hep, Circ, Pan}) +m ({Hep, Cirr})
+m ({Hep, Pan}) +m ({Cir, Pan})
+m ({Hep}) +m ({Cirr}) +m ({Pan}) .

Thus, Bel(A) is a measure of the total amount of belief in A and not the
amount committed precisely to A by the evidence corresponding to the
bpa m.

This relationship may be clarified by referring to Fig. 1. Note that the
following observations follow from the definition given:
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(1) Bel andm are equal for singletons. For example, Bel({Hep}) = m({Hep}).
(2) Bel(A), where A is any other subset of Θ, is the sum of the values of m for

every subset in the subhierarchy formed by using A as root. For example,

Bel (intrahepatic cholestasis) = Bel ({Hep, Cirr})
= m ({Hep, Cirr}) +m ({Hep})

+m ({Cirr}) .

(3) Bel(Θ) is always equal to 1 since Bel(Θ) is the sum of the values of m
for every subset of Θ. This sum must be 1 by definition of a bpa. Clearly,
the total amount of belief in Θ should be equal to the total amount of
belief, 1, since the singletons are exhaustive. In Fig. 1, this means that
Bel(cholestatic jaundice)= Bel(Θ) = 1.

To further illustrate, the belief function corresponding to the bpa of Exam-
ple 2 above is given by Bel(Θ) = 1, Bel(A) = 0.6, where A is any proper
subset of Θ containing {Hep, Cirr}, and the value of Bel is 0 for every other
subset of Θ.

2.4 Combination of Belief Functions

The evidence-gathering process for diagnosis requires a method for combining
the support for a hypothesis, or for its negation, based upon multiple, accumu-
lated observations [15]. The D-S model also recognizes this requirement and
provides a formal proposal for its management. Given two bpa’s, each with the
same frame of discernment Θ but based on two different observations (e.g.,
two different inferential rules lending positive or negative support to the same
or competing hypotheses in an expert system), Dempster’s combination rule
shown below computes a new bpa which represents the impact of the combined
evidence.

Concerning the validity of this rule, Shafer writes that although he can pro-
vide “no conclusive a priori argument,. . .it does seem to reflect the pooling of
evidence.” In the special case of a frame of discernment containing two ele-
ments, Dempster’s rule can be found in Johann Heinrich Lambert’s book,Neues
Organon, published in 1764. In another special case where the two bpa’s assign
evidential support to exactly one and the same hypothesis, the rule reduces to
that found in themycinCFmodel and inArsConjectandi, thework of themath-
ematician Jean Bernoulli in 1713. It is based on intuition of how evidence should
combine, however, and not on any formal underlying theory.

The Dempster combination rule differs from the CF combining function
in the pooling of evidence supporting mutually exclusive hypotheses. For
example, evidence supporting {Hep} reduces belief in each of the singleton
hypotheses—{Cirr}, {Gall}, {Pan}—and in any disjunction (subset of Θ) not
containing {Hep}, e.g., {Cirr, Gall, Pan}, {Cirr, Pan}, etc. As we discuss later,
if the D-S model were adapted for use in an emycin system, each new piece
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of evidence would have an indirect impact on competing hypotheses, a feature
not provided by the CF model. The Dempster combination rule also differs
from the CF model in its approach to the assignment of belief in a hypothesis
when confirming and disconfirming evidence is pooled.

Let Bel1, Bel2 and m1, m2 denote two belief functions and their corre-
sponding bpa’s, respectively. The D-S combination rule defines a new bpa,
denoted m1 ⊕m2, which represents the combined effect of m1 and m2. The
corresponding belief function, denoted Bel1 ⊕ Bel2, may then be computed
from m1 ⊕m2 by definition of a belief function.

The Dempster combining function, also known as Dempster’s rule, suggests
that m1⊕m2 may be calculated from m1 and m2 by considering all products
of the form m1(X)m2(Y ) where X and Y are individually varied over all
subsets of Θ. It can be shown that the resulting function is itself a bpa since
the result of summing all such products is 1 by elementary algebra and the
definition of a bpa:

∑
m1 (X)m2(Y ) =

∑
m1(X)

∑
m2(Y ) = 1× 1 = 1.

Dempster’s rule states that the bpa representing the combination of m1 and
m2 apportions the total amount of belief among the subsets of Θ by assigning
m1(X)m2(Y ) to the set intersection of X and Y . Note that there are typi-
cally several different subsets of Θ whose intersection yields the same subset
of Θ. In the cholestatic jaundice example of Fig. 1, for example, the set {Hep,
Cirr} will be obtained by intersecting {Hep, Cirr} with any superset of {Hep,
Cirr}, by intersecting {Hep, Cirr, Pan} with {Hep, Cirr, Gall}, etc. Thus,
for every subset A of Θ, Dempster’s rule defines m1 ⊕m2(A) to be the sum
of all products of the form m1(X)m2(Y ) where X and Y are selected from
the subsets of Θ in all possible ways such that their intersection is A. The
commutativity of multiplication ensures that the rule yields the same value
regardless of the order in which the functions are combined. This is an impor-
tant property since evidence aggregation should be independent of the order
of its gathering. The following two examples illustrate the combination rule.

Example 5. As in Examples 2 and 3, suppose that for a given patient, one
observation supports intrahepatic cholestatic = {Hep, Cirr} to degree 0.6
(m1) whereas another disconfirms hepatitis (i.e., confirms {Cirr, Gall, Pan})
to degree 0.7 (m2). Then our net belief based on both observations is given
by m1 ⊕m2. For illustrative purposes, an ‘intersection tableau’ with values
assigned by m1 and m2 along the rows and columns, respectively, is a helpful
device. Only nonzero values assigned by m1 and m2 need be considered since
if m1(X) and/or m2(Y ) is 0, then the product m1(X)m2(Y ) contributes 0 to
m1⊕m2(A), where A is the intersection of X and Y . Entry i, j in the tableau
is the intersection of the subsets in row i and column j. Clearly, a given subset
of Θ may occur in more than one location of the tableau. The product of the
bpa values is shown below in parentheses next to the subset. The value of
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m1 ⊕ m2(A) is computed by summing the products in the tableau that are
noted in parentheses adjacent to each occurrence of A.

m1

m2

{Cirr, Gall, Pan} (0.7) Θ(0.3)

{Hep, Cirr} (0.6) {Cirr} (0.42) {Hep, Cirr} (0.18)
Θ (0.4) {Cirr, Gall, Pan} (0.28) Θ (0.12)

In this example, each subset appears only once in the tableau and m1⊕m2

is easily computed:

m1 ⊕m2 ({Cirr}) = 0.42,
m1 ⊕m2 ({Hep, Cirr}) = 0.18,
m1 ⊕m2 ({Cirr, Gall, Pan}) = 0.28,
m1 ⊕m2 (Θ) = 0.12,
m1 ⊕m2 is 0 for all other subsets of Θ.

Since Bel1 ⊕Bel2 is fairly complex, we give only a few sample values:

Bel1 ⊕Bel2 ({Hep, Cirr})=m1 ⊕m2 ({Hep, Cirr})+m1 ⊕m2 ({Hep})
+m1 ⊕m2 ({Cirr})

= 0.18 + 0 + 0.42
= 0.60,

Bel1 ⊕Bel2 ({Cirr, Gall, Pan}) = m1 ⊕m2 ({Cirr, Gall, Pan})
+m1 ⊕m2 ({Cirr, Gall})
+m1 ⊕m2 ({Cirr, Pan})
+m1 ⊕m2 ({Gall, Pan})
+m1 ⊕m2 ({Cirr})
+m1 ⊕m2 ({Gall}) +m1 ⊕m2 ({Pan})

= 0.28 + 0 + 0 + 0 + 0.42 + 0 + 0
= 0.70,

Bel1 ⊕Bel2 ({Hep, Cirr, Pan}) = Bel1 ⊕Bel2 ({Hep, Cirr}) = 0.60,

since

m1 ⊕m2 ({Hep, Cirr, Pan}) = m1 ⊕m2 ({Hep, Pan})
= m1 ⊕m2 ({Cirr, Pan}) = 0.
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In this example, the reader should note that m1 ⊕m2 satisfies the defini-
tion of a bpa: Σm1 ⊕m2(X) = 1 where X varies over all subsets of Θ, and
m1⊕m2(∅) = 0. We have already shown that the first condition in the defini-
tion of a bpa is always fulfilled, i.e., the sum of the beliefs assigned to all subsets
in Θ by the Dempster rule will always sum to 1. However, the second condi-
tion (viz. that a bpa assign 0 to the empty set) is problematic in cases where
the ‘intersection tableau’ contains ∅. This situation did not occur in Exam-
ple 5 because every two sets with nonzero bpa values always had at least one
element in common. In general, nonzero products of the form m1(X)m2(Y )
will be assigned to ∅ whenever X and Y have nonzero bpa values but their
intersection is the empty set.

The D-S model deals with this problem by setting m1 ⊕m2(∅) equal to 0
and normalizing the remaining bpa assignments so that they continue to sum
to 1.3 This behavior is achieved by defining κ as the sum of all nonzero values
assigned to ∅ in a given case (κ = 0 in Example 5). Dempster then divides all
other values of m1⊕m2 by 1− κ. The revised values still sum to 1 and hence
satisfy that condition in the definition of a bpa. This approach is illustrated
by the following example.

Example 6. Suppose now that, for the same patient as in Example 5, a third
belief function (m3) corresponds to a new observation which confirms the
diagnosis of hepatitis to the degree 0.8 (i.e., suppose we have a combination
of Examples 4 and 5). We now need to compute m3⊕m4, where m4 = m1⊕m2

of Example 5.

m3

m4

{Cirr} (0.42) {Hep, Cirr} (0.18) {Cirr, Gall, Pan} (0.28) Θ (0.12)

{Hep} (0.8) ∅(0.336) {Hep} (0.144) ∅ (0.224) {Hep} (0.096)

Θ (0.2) {Cirr} (0.084) {Hep, Cirr} (0.036) {Cirr, Gall, Pan} (0.056) Θ (0.024)

In this example, there are two null entries in the tableau, one assigned the
value 0.336 and the other 0.224. Thus:

κ = 0.336 + 0.224 = 0.56 and 1− κ = 0.44,
m3 ⊕m4 ({Hep}) = (0.144 + 0.096)/0.44 = 0.545,
m3 ⊕m4 ({Cirr}) = 0.084/0.44 = 0.191.
m3 ⊕m4 ({Hep, Cirr}) = 0.036/0.44 = 0.082,
m3 ⊕m4 ({Cirr, Gall, Pan}) = 0.056/0.44 = 0.127,
m3 ⊕m4 (Θ) = 0.024/0.44 = 0.055,
m3 ⊕m4 is 0 for all other subsets of Θ.

3 This convention is intuitive in that it maintains the relative beliefs among the

rest of the hypotheses in 2Θ. It should be noted, however, that the normalization
convention is not supported in any theoretic sense and can lead to paradoxical
behavior of the model in certain settings [19]. Some have argued that it would be
just as rational to move the belief originally assigned to ∅ to Θ.
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Note that
∑
m3 ⊕m4(X) = 1, as is required by the definition of a bpa.

2.5 Belief Intervals

After combining all bpa’s with the same frame of discernment and then com-
puting the belief function Bel defined by this new bpa, how should the informa-
tion given by Bel be used? Bel(A) gives the total amount of belief committed
to the subset A after all evidence bearing on A has been pooled. However,
the function Bel contains additional information about A, namely Bel(Ac),
the extent to which the evidence supports the negation of A. The quantity
1−Bel(Ac) expresses the plausibility of A, i.e., the maximum extent to which
the current evidence could allow one to believe A (note that this is not the
same as Bel(A), the extent to which the current evidence specifically sup-
ports A).

The information contained in Bel concerning a given subset A may be
conveniently expressed by the interval:

[Bel(A), 1−Bel (Ac)].

It is not difficult to see that the left endpoint is always less than or equal to
the right: Bel(A) ≤ 1 − Bel(Ac), or equivalently, Bel(A) + Bel(Ac) ≤ 1.
Since Bel(A) and Bel(Ac) are the sum of all values of m for subsets of A and
Ac, respectively, and since A and Ac have no subsets in common, Bel(A) +
Bel(Ac) ≤ Σm(X) = 1 where X varies over all subsets of Θ.

In the Bayesian situation, in whichBel(A)+Bel(Ac)=1, the two endpoints
of the belief interval are equal and the width of the interval, 1 − Bel(Ac) −
Bel(A), is 0. In the D-S model, however, the width is usually not 0 and
is a measure of the belief which, although not committed to A, is also not
committed to Ac. It may be seen that the width is the sum of belief committed
exactly to subsets of Θ which intersect A but which are not subsets of A. If
A is a singleton, all such subsets are supersets of A, but this is not true for a
nonsingleton A. To illustrate, let A = {Hep} and refer to Fig. 1:

1−Bel (Ac)−Bel (A) = 1−Bel ({Cirr, Gall, Pan})−Bel ({Hep})
= 1− [m ({Cirr, Gall, Pan}) +m ({Cirr, Gall})

+m ({Cirr, Pan}) +m ({Gall, Pan}) +m ({Cirr})
+m ({Gall}) +m ({Pan})]−m ({Hep})

= m ({Hep, Cirr}) +m ({Hep, Gall})
+m ({Hep, Pan}) +m ({Hep, Cirr, Gall})
+m ({Hep, Cirr, Pan}) +m ({Hep, Gall, Pan})
+m (Θ) .

Belief committed to a superset of {Hep} might, upon further refinement of
evidence, result in belief committed to {Hep}. Thus, the width of the belief
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interval is a measure of that portion of the total belief, 1, which could be
added to that committed to {Hep} by a physician willing to ignore all but the
disconfirming effects of the evidence.

The width of a belief interval can also be regarded as the amount of uncer-
tainty with respect to a hypothesis given the evidence. It is belief which is
committed to neither the hypothesis nor the negation of the hypothesis by the
evidence. The vacuous belief function results in width 1 for all belief intervals
and Bayesian functions result in width 0. Most evidence leads to belief func-
tions with intervals of varying widths where the widths are numbers between
0 and 1.

3 The Dempster-Shafer Theory Applied
to Singleton Hypotheses

Despite the intuitive appeal of many aspects of the D-S theory outlined above,
the enumeration of all subsets of Θ in the application of the Dempster combin-
ing rule becomes computationally intractable when there are a large number of
elements in Θ (as is true for many real-world problems in which the evidence-
gathering scheme could otherwise be employed). If we restrict the hypotheses
of interest in 2Θ to the mutually exclusive singletons and their negations,
however, Barnett has shown that a linear-time algorithm will permit rigorous
application of the Dempster rule [2]. In this section we show that one expert
system, mycin, can be viewed as a reasoning program in which the principal
hypotheses are restricted to singletons. mycin will therefore be discussed to
illustrate the applicability of the D-S theory in general and the relevance of
the Barnett formulation in particular.

mycin’s representation may be simply recast in terms of the D-S theory
we have outlined. A frame of discernment in mycin, for example, is a clinical
parameter (attribute) which may take on a range of values. The possible values
are mutually exclusive and may therefore be seen as the competing hypotheses
that make up the elements in Θ.4 This condition may be a stumbling block
to the model’s implementation in systems where mutual exclusivity does not
generally hold.

The belief functions which represent evidence in mycin correspond to the
individual rules in the system’s knowledge base. These are of a particularly
simple form (the CF in a rule corresponds to the value assigned by a bpa to
the hypothesis in the rule’s conclusion based on the evidence in its premise).
These features will now be discussed and illustrated with examples.

4 Some parameters in mycin can take on multiple values, e.g., the patient’s drug
allergies [3], but we will be focussing here on the central inferences in the system,
such as an organism’s identity, which satisfy the mutual exclusivity requirement.
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3.1 Frames of Discernment

How should the frames of discernment for a reasoning system be chosen?
Shafer points out [14] that:

It should not be thought that the possibilities that comprise Θ
will be determined and meaningful independently of our knowledge.
Quite to the contrary: Θ will acquire its meaning from what we know
or think we know; the distinctions that it embodies will be embedded
within the matrix of our language and its associated conceptual struc-
tures and will depend on those structures for whatever accuracy and
meaningfulness they possess.

The ‘conceptual structures’ in mycin, for example, are the associative
triples found in the conclusions of the rules [3]. These have the form (object,
attribute, value), i.e., each triple corresponds to a singleton hypothesis of
the form ‘the attribute of object is value’. As mentioned previously, a frame
of discernment would then consist of all triples with the same object and
attribute.

For example, one frame of discernment is generated by the set of all triples
of the form (Organism-1, Identity, X), where X ranges over all possible iden-
tities of organisms known to mycin—Klebsiella, E.coli, Pseudomonas, etc.
Another frame is generated by replacing ‘Organism-1’ with ‘Organism-2’. A
third frame is the set of all triples of the form (Organism-1, Morphology, X),
where X ranges over all known morphologies—coccus, rod, pleomorph, etc.

Although it is true that a patient may be infected by more than one organ-
ism, these organisms are represented as separate objects in mycin (not as
separate values of the same parameter for a single object). Thus mycin’s

representation scheme for the parameter that corresponds to its major clas-
sification task (i.e., the identity of an organism) complies with the mutual-
exclusivity demand for frames of discernment in the D-S theory. Many other
expert systems meet this demand less easily. Consider, for example, how the
theory might be applicable in a system which gathers and pools evidence con-
cerning a patient’s diagnosis. Then there is often the problem of multiple,
coexistent diseases, i.e., the hypotheses in the frame of discernment may not
be mutually exclusive. One way to overcome this difficulty is to choose Θ to
be the set of all subsets of all possible diseases. The computational implica-
tions of this choice are harrowing since if there are 600 possible diseases (the
approximate scope of the internist-1 knowledge base [12]), then |Θ| = 2600

and |2Θ| = 22600
! However, since the evidence may actually focus on a small

subset of 2Θ, the computations need not be intractable because the D-S the-
ory need not depend on explicit enumeration of all subsets of 2Θ when many
have a belief value of zero. An alternative would be to apply the D-S the-
ory after partitioning the set of diseases into groups of mutually exclusive
diseases and considering each group as a separate frame of discernment. The
latter approach would be similar to that used in internist-1 [12], where
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scoring and comparison of hypotheses is undertaken only after a partitioning
algorithm has separated evoked hypotheses into subsets of mutually exclusive
diagnoses.

3.2 Rules as Basic Probability Assignments

In the most general situation, a given piece of evidence supports many of the
subsets of Θ, each to varying degrees. However, the simplest situation is that
in which the evidence supports or disconfirms only one singleton subset to
a certain degree and the remaining belief is assigned to Θ. Because of the
modular way in which knowledge is captured and encoded in mycin, this
latter situation applies in the case of its rules.

If the premises confirm the conclusion of a rule with degree s, then the
rule’s effect on belief in the subsets of Θ can be represented by bpa. This bpa
would assign s to the singleton corresponding to the hypothesis in the con-
clusion of the rule, call it A, and 1 − s to Θ. In the language of mycin, the
CF associated with this conclusion is s. Since there is no concept equivalent
to Θ in mycin, however, the remaining belief, 1− s, is left unassigned. If the
premise of a rule disconfirms the conclusion with degree s, then the corre-
sponding bpa would assign s to the subset corresponding to the negation of
the conclusion, Ac, and 1− s to Θ. The CF associated with his conclusion is
−s. Thus, we are suggesting that the CF’s associated with rules in mycin,
and other emycin systems, can be viewed as bpa’s in the D-S sense. Note,
however, that mycin’s rules do not permit inferences regarding nonsingleton
hypotheses in 2Θ, e.g., the conclusion that an organism is either an E.coli or a
Klebsiella, which corresponds to the two-element subset {E.coli, Klebsiella}.
Our suggested solution to this problem is outlined in Sect. 4.

3.3 Dempster’s Rule Applied to Singleton Hypotheses

If we continue the analogy between CF’s in mycin’s rules and bpa’s in the D-S
theory, we can consider the use of Dempster’s rule for combining belief when
two or more rules succeed and assign belief to the same or competing singleton
hypotheses. To illustrate, we consider a frame of discernment Θ consisting of
all associative triples of the form (Organism-1, Identity, X) where X ranges
over all possible identities of organisms known to mycin. The triggering of two
rules that affect belief in such triples can be categorized in one of three ways:

(1) they may both confirm or both disconfirm the same hypothesis;
(2) one may confirm and the other may disconfirm the same hypothesis;
(3) each may bring evidence to bear on different competing hypotheses.

We describe the approach to each of these possibilities below.

Theorem 1. Two rules are both confirming or both disconfirming of the same
triple, or conclusion. For example, both rules confirm Pseudomonas (Pseu),
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one to degree 0.4 and the other to degree 0.7. The effect of triggering the rules
is represented by bpa’s, m1 and m2, where m1((Pseu}) = 0.4, m1(Θ) = 0.6,
and m2({Pseu}) = 0.7, m2(Θ) = 0.3. The combined effect on belief is given
by m1 ⊕m2, computed using the tableau below:

m1

m2

{Pseu} (0.7) Θ(0.3)

{Pseu} (0.4) {Pseu} (0.28) {Pseu} (0.12)
Θ (0.6) {Pseu} (0.42) Θ (0.18)

Note thatk = 0 in this example, so normalization is not required (i.e., 1−k = 1).

m1 ⊕m2 ({Pseu}) = 0.28 + 0.12 + 0.42 = 0.82,
m1 ⊕m2 (Θ) = 0.18.

Note that m1 ⊕m2 is a bpa which, like m1 and m2, assigns some belief to a
certain subset of Θ, {Pseu}, and the remaining belief to Θ. For two confirming
rules, the subset is a singleton; for disconfirming rules, the subset is a set of
size n− 1, where n is the size of Θ.5

Theorem 2. One rule is confirming and the other disconfirming of the same
singleton hypothesis. For example, one rule confirms {Pseu} to degree 0.4
and the other disconfirms {Pseu} to degree 0.8. The effect of triggering these
two rules is represented by bpa’s m1, m3 where m1 is defined in the previous
example and m3({Pseu}c) = 0.8, m3(Θ) = 0.2. The combined effect on belief
is given by m1 ⊕m3.

m1

m2

{Pseu}c (0.8) Θ(0.2)

{Pseu} (0.4) ∅ (0.32) {Pseu} (0.08)
Θ (0.6) {Pseu}c (0.48) Θ (0.12)

This time the tableau does contain the empty set as an entry; therefore k =
0.32 and 1− k = 0.68.

m1 ⊕m3 ({Pseu}) = 0.08/0.68 = 0.118,
m1 ⊕m3 ({Pseu}c) = 0.48/0.68 = 0.706,
m1 ⊕m3 (Θ) = 0.12/0.68 = 0.176,
m1 ⊕m3 is 0 for all other subsets of Θ.

5 Note that in this case Dempster’s rule has provided the same result as would the
original CF combining function (mycin would also combine 0.4 and 0.7 to get
0.82; see [15]).
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Given m1 above, the belief interval of {Pseu} is initially [Bel1({Pseu}),
1−Bel1({Pseu}c)] = [0.4, 1]. After combination with m3, it becomes [0.118,
0.294]. Similarly, given m3 alone, the belief interval of {Pseu} is [0, 0.2]. After
combination with m1, it becomes [0.118, 0.294].

As is illustrated in this example, an essential aspect of Dempster’s rule is
the effect of evidence that supports a hypothesis in 2Θ in reducing belief in
other hypotheses in 2Θ that are disjoint from the supported hypothesis. Thus,
evidence confirming {Pseu}c will reduce the effect of evidence confirming
{Pseu}; in this case the degree of support for {Pseu}, 0.4, is reduced to 0.118.
Conversely, evidence confirming {Pseu} will reduce the effect of evidence con-
firming {Pseu}c; 0.8 is reduced to 0.706. These two effects are reflected in
the modification of the belief interval of {Pseu} from [0.4, 1] to [0.118, 0.294],
where 0.294 = 1−Bel({Pseu}c) = 1− 0.706.

Consider the application of the CF combining function (CFcombine) to this
same situation.6 If CFp is the positive (confirming) CF for {Pseu}, and CFn

is the negative (disconfirming) CF:

CFCOMBINE(CFp,CFn) = (CFp + CFn) / (1−min {|CFp| , |CFn|})
= (s1 − s3) / (1−min {s1, s3})
= (0.4− 0.8) / (1− 0.4)
= −0.667.

Adapting this certainty factor to the language of the D-S theory, the
result of the CF combining function is belief in {Pseu} and {Pseu}c to the
degree 0 and 0.667, respectively. The larger disconfirming evidence of 0.8 com-
pletely negates the smaller confirming evidence of 0.4. The confirming evidence
reduces the effect of the disconfirming from 0.8 to 0.667.

If one examines CFcombine applied to combinations of confirming and dis-
confirming evidence as shown here, it is clear that it results in a CF whose
sign is that of the CF with the greater magnitude. Thus, support for A and
Ac is combined into reduced support for one or the other. In contrast, the D-S
function results in reduced support for both A and Ac, a behavior that may
more realistically reflect the competing effects of conflicting pieces of evidence.

The difference in the two approaches is most evident in the case of aggre-
gation of two pieces of evidence, one confirming A to degree s and the other
disconfirming A to the same degree. The CF function yields CF = 0 whereas

6 The CF combining function shown here has been used in mycin systems for
several years but is slightly different from the formula described in the original
CF model [15]. The revised empirically derived function prevents single pieces
of positive or negative evidence from overwhelming the effect of several pieces of
evidence in the opposite direction. The combining function remains unchanged
from its original form, however, when applied to two pieces of evidence that are
either both confirming or both disconfirming. See [3, Chap. 10] for a more detailed
discussion of these points.
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the D-S rule yields reduced but nonzero belief in each of A and Ac. We believe
that the D-S rule’s behavior in this case is preferable on the grounds that the
notion of applying confirming and disconfirming evidence of the same weight
should be different from that of having no evidence at all.

We now examine the effect on belief of combination of two pieces of evi-
dence supporting mutually exclusive singleton hypotheses. The CF combining
function results in no interaction between the beliefs in the two hypotheses
and differs most significantly from the D-S rule in this case.

Theorem 3. The rules involve different hypotheses in the same frame of dis-
cernment. For example, one rule confirms {Pseu} to degree 0.4 (see m1 in
the examples from Categories 1 and 2) and the other disconfirms {Strep} to
degree 0.7. The application of the second rule corresponds to m4, defined by
m4({Strep}c) = 0.7, m4(Θ) = 0.3. The combined effect on belief is given by
m1 ⊕m4.

m1

m4

{Strep}c (0.7) Θ(0.3)

{Pseu} (0.4) {Pseu} (0.28) {Pseu} (0.12)
Θ (0.6) {Strep}c (0.42) Θ (0.18)

In this case κ = 0 since the empty set does not occur in the tableau.

m1 ⊕m4 ({Pseu}) = 0.28 + 0.12 = 0.40,
m1 ⊕m4 ({Strep}c) = 0.42,
m1 ⊕m4 (Θ) = 0.18,
m1 ⊕m4 is 0 for all other subsets of Θ.
Bel1 ⊕Bel4 ({Pseu}) = 0.40,

Bel1 ⊕Bel4 ({Strep}c) = m1 ⊕m4 ({Strep}c) +m1 ⊕m4 ({Pseu})
= 0.42 + 0.40
= 0.82,

Bel1 ⊕Bel4 ({Pseu}c) = Bel1 ⊕Bel4 ({Strep}) = 0.

Before combination, the belief intervals for {Pseu} and {Strep}c are [0.4, 1]
and [0.7, 1], respectively. After combination, they are [0.4, 1] and [0.82, 1],
respectively. Note that evidence confirming {Pseu} has also confirmed
{Strep}c, a superset of {Pseu}, but that evidence confirming {Strep}c has
had no effect on belief in {Pseu}, a subset of {Strep}c. This kind of interac-
tion among competing hypotheses is ignored by the CF model.

3.4 Evidence-combination Scheme

Although the calculations in Categories 1–3 in the previous section were
straightforward, their simplicity is misleading. As the number of elements
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in Θ increases, Barnett [2] has shown that direct application of the D-S the-
ory, without attention to the order in which the bpa’s representing rules are
combined, results in exponential increases in the time for computations. This
is due to the need to enumerate all subsets or supersets of a given set. For
settings in which it is possible to restrict the hypotheses of interest to sin-
gletons and their negations, Barnett has proposed a scheme for reducing the
D-S computations to polynomial time by combining the functions in an order
that simplifies the calculations. We outline this scheme as it could be adapted
to reasoning system (such as mycin) in which evidence bears on mutually
exclusive singleton hypotheses.

Step 1. For each triple (i.e., singleton hypothesis), combine all bpa’s repre-
senting rules confirming that value of the parameter. If s1, s2, . . . , sk represent
different degrees of support derived from the triggering of k rules confirming
a given singleton, then the combined support is 1−(1−s1)(1−s2) · · · (1−sk).
(Refer to the example in Theorem 1 above for an illustration of this kind of
combination. The formula shown here may be easily derived and is identical
to the combining function used in the original CF model). Similarly, for each
singleton, combine all bpa’s representing rules disconfirming that singleton.
The same combining function is used for this calculation, and the numerical
beliefs can simply be associated with the negation of the singleton hypothe-
ses; it is not necessary to enumerate explicitly the elements in the set of size
n − 1 (where n is the size of Θ) that corresponds to the complement of the
singleton hypothesis in question. Thus, all evidence confirming a singleton is
pooled and represented by a bpa and all evidence disconfirming the singleton
(confirming the hypothesis corresponding to the set complement of the single-
ton) is pooled and represented by another bpa. We thus have 2n bpa’s, half of
which assign belief to a singleton hypothesis and Θ (and which assign zero to
all other hypotheses), the other half of which assign belief to the negation of a
singleton hypothesis and Θ. Except for the notion of Θ, this step is identical
to the original CF model’s approach for gathering positive and negative evi-
dence into the total confirming and disconfirming evidence respectively (MB
and MD; see [15]).

Step 2. For each triple (singleton hypothesis), combine the two bpa’s com-
puted in Step 1. Such a computation is a Theorem-2 combination and has
been illustrated. Formulae that permit this calculation without the enumer-
ation of any but the singleton subsets in 2Θ are derived in [2] and described
with examples in [9]. This step results in the definition of n bpa’s, one for
each of the n singleton hypotheses. Each bpa that results assigns belief to a
singleton hypothesis, its complement, and Θ while assigning zero to all other
hypotheses.

Step 3. The final task is to blend all n bpa’s from Step 2 into a single
belief function. This can be accomplished by combining the bpa’s derived in
Step 2 in one computation, using formulae developed by Barnett to obtain
the final belief function Bel [2]. Since these formulae allow computation of
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both the net belief in a singleton A and in its negation Ac, the belief interval
[Bel(A), 1−Bel(Ac)] for each singleton hypothesis can then be computed.

The details of Barnett’s approach are described in [2]. In another publi-
cation, we have also provided the form of the required computation and have
shown an example based on a small mycin rule set [9]. Since the new method
proposed in the next section borrows only on Step 1 of the Barnett approach,
we will not show the details of Steps 2 and 3 here.

4 The Dempster–Shafer Theory Applied
to a Hierarchical Hypothesis Space

In a system in which all evidence either confirms or disconfirms singleton
hypotheses, the combination of evidence via the D-S scheme with Barnett’s
formulae can be computationally simple as outlined in the previous section.
As we have shown, a program such as mycin could be easily recast to use the
D-S approach rather than the CF model.7

What attracted us to the D-S theory, however, and left us dissatisfied
with the approach to singleton hypotheses proposed by Barnett, is the the-
ory’s potential for handling evidence bearing on categories of diseases as well
as on specific disease entities. We are unaware of another model that suggests
how evidence concerning hierarchically-related hypotheses might be combined
coherently and consistently to allow inexact reasoning at whatever level of
abstraction is appropriate for the evidence that has been gathered. The pure
D-S model provides such a method for handling the aggregation of evidence
gathered at varying levels of detail or specificity. Much of our frustration
with the original mycin representation scheme and the CF model resulted
from their inability to handle such hierarchical relationships cleanly. In recent
years, a recurring theme in AI has been the explicit representation of hierar-
chic relationships among hypotheses (e.g., [8, 13]). Thus the D-S scheme might
be especially suitable for handling uncertainty in such hierarchically organized
networks. The problem, as we have emphasized, is the theory’s computational
complexity due to the potential need to enumerate all subsets in 2Θ. Thus we
have sought a technique that allows the model’s use in a hierarchical hypoth-
esis space while avoiding the exponential-time requirements that the theory

7 Additional conventions similar to those adopted in the CF model would be needed
before the D-S approach could be used, however. For example, it would be neces-
sary to adopt some mechanism for propagation of uncertainty in a rule-chaining
environment. Barnett’s suggestion [2] that mycin is ill-suited to such as implemen-
tation (due to its failure to satisfy the mutual exclusivity requirement) reflects a
misunderstanding of the program’s representation and control mechanisms. Mul-
tiple diseases are handled by instantiating each as a separate context (object);
within a given context, the requirements of single-valued parameters (attributes
assumed to take on precisely one value) maintain mutual exclusivity [3].
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otherwise would entail. Since Barnett’s approach is applicable only when the
space is limited to singleton hypotheses and their negations, it will not serve
our purposes.

To illustrate the need for such a capability, consider the way in which
hierarchic relationships in the mycin domain were handled in that program.
An example would be evidence suggesting that an organism was one of the
Enterobacteriaceae (a family of gram-negative rods). The triple (hypothesis)
for this conclusion was handled as (Organism Class Enterobacteriaceae), i.e.,
the frame of discernment (the Class parameter) was different from that nor-
mally used for concluding the identity of an organism (the Ident parameter).
There was no way for the system to reach conclusions about both singleton
hypotheses (e.g., Ident = E.coli) and supersets (e.g., Ident = Enterobacteri-
aceae) within the single Ident frame of discernment. Thus the Class parame-
ter was introduced to handle the latter case. The relationship between Class
Enterobacteriaceae and the individual organisms that make up that class was
handled using rules in which evidence for Enterobacteriaceae was effectively
transferred to Ident. This was accomplished by assigning as the values of the
Ident parameter each of the bacteria on the list of gram negative organisms in
that Class. The CF’s assigned to the individual organism identities in this way
were based more on guesswork than on solid data. The evidence really sup-
ported the higher-level concept, Enterobacteriaceae, and further breakdown
may have been unrealistic. In actual practice, decisions about treatment are
often made on the basis of high level categories rather than specific organ-
ism identities (e.g., “I’m quite sure that this is one of the enterics (i.e., the
Enterobacteriaceae), and would therefore treat with an aminoglycoside and a
cephalosporin (i.e., two types of antibiotic), but I have no idea which of the
enteric organisms is causing the disease.”).

Problems such as this would be better handled if experts could specify rules
which refer to semantic concepts at whatever level in the domain hierarchy
is most natural and appropriate. They should ideally not be limited to the
most specific level—the singleton hypotheses in the frame of discernment—
but should be free to use more unifying concepts. Because of the complexity
in the D-S theory’s approach to handling evidence, then, the challenge is to
make these computations tractable, either by a modification of the theory
or by restricting the evidence domain in a reasonable way. By taking the
latter approach, we have developed an algorithm for the implementation of
the theory which merges a strict application of the D-S combining function
with a simplifying approximation.

4.1 Simplifying the Evidence Domain to a Tree Structure

The key assumption underlying our proposed approach is that the experts
who participate in the construction of large knowledge bases can define a
strict hierarchy of hypotheses about which the reasoning system will gather
evidence. In D-S terms, we are suggesting that, for a given domain, only some
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of the subsets in 2Θ will be of semantic interest and that these can be selected
to form a strict hierarchy. In medical diagnosis, for example, evidence often
bears on certain disease categories as well as on specific disease entities. In
the simplified case of cholestatic jaundice discussed earlier, for which Θ =
{Hep, Cirr, Gall, Pan}, evidence available to the physician tends to support
either intrahepatic cholestasis = {Hep, Cirr}, extrahepatic cholestasis = {Gall,
Pan}, or the singleton hypotheses {Hep}, {Cirr}, {Gall}, and {Pan}. The
other nodes of 2Θ shown in Fig. 1 are not particulary meaningful notions in
this context. The network of subsets in Fig. 1 could thus be pruned to that
of Fig. 2, which summarizes the hierarchical relations of clinical interest. The
hierarchy of Fig. 2 is a tree in the strict sense—each node below Θ has a
unique parent. In the medical expert system known as mdx, the causes of
jaundice have been usefully structured in precisely this way [4]. We believe, as
do others [13], that such a structuring is characteristic of medical diagnostic
tasks (as well as of many other problem-solving situations).

4.2 Evidence Combination Scheme for a Strict Hierarchy

We now propose a new three-step scheme for the implementation of the D-S
theory in the situation in which the hypotheses of interest have been restricted
by domain experts to subsets which form a strict hierarchy. It should be noted
that, in general, the negations of hypotheses in the hierarchy (i.e., their set
complements) will not be in the tree. For example, {Hep}c = {Cirr, Gall,
Pan} does not occur in the hierarchy of Fig. 2. Thus, as did Barnett in his
Step 1, we propose an approach in which disconfirming evidence is handled
computationally by associating it directly with the disconfirmed hypothesis
rather than by converting it to be manipulated as confirming evidence regard-
ing the complement of the disconfirmed hypothesis. The first two steps in our
approach are a strict application of the D-S theory, in which simple formulae
can be derived due to the tree structure of the hypotheses of interest. In the
first step all confirmatory evidence is combined for each node in the tree, and
the same is done for all disconfirmatory evidence. This step is similar to the
first step in Barnett’s approach (Sect. 3.4) except that the hypotheses are not
restricted to singletons. In the second step all confirmatory evidence is com-
bined for the entire tree. The third step is an approximation for combining

Cholestatic Jaundice

Intrahepatic Cholestasis

{Hep} {Cirr} {Gall} {Pan}

Extrahepatic Cholestasis

Fig. 2. The subsets of clinical interest in cholestatic jaundice
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disconfirmatory evidence. Strict application of the D-S theory in this step
may result in an exponential-time computation, whereas our approximation
is computationally more efficient.

To illustrate these formulae, we use a slightly expanded version of the
cholestatic-jaundice tree depicted in Fig. 2. Suppose we add to Θ a fifth cause
of cholestatic jaundice, impaired liver function due to effects of oral contra-
ceptives, denoted Orcon = {Orcon}. This addition will permit us to better
demonstrate the properties of the technique we are proposing. Note that now
Θ = cholestatic jaundice = {Hep, Cirr, Orcon, Gall, Pan} whereas intrahep-
atic cholestasis becomes the three-element subset {Hep, Cirr, Orcon} and has
three direct descendents {Hep}, {Cirr}, and {Orcon}. This new tree is shown
in Fig. 3 with only the first letter of each singleton hypothesis used, and
commas and set brackets omitted for convenience of notation.

For the general case, we shall let T denote the set of all subsets (except for
Θ itself) in the hierarchy of hypotheses that has been defined by the domain
expert. Note that T is itself a subset of 2Θ. However, it is convenient to think
of T as simply the hypothesis tree without Θ. In our example, T is the set
consisting of intrahepatic cholestasis, extrahepatic cholestasis, and the five
single disease entities—i.e., {HCO, GP, H, C, O, G, P}. Let T ′ denote the set
of all complements of subsets in T . T ′ is also a subset of 2Θ, but the entities
in T ′ will generally not be in T and hence are of interest only because they
correspond to negations of pertinent hypotheses. In this example, T ′ is the
set {HCOc, GPc, Hc, Cc, Oc, Gc, Pc}.

Step 1. Using the combining functions described in Step 1 of Barnett’s
evidence-combination scheme detailed in Sect. 3.4, for each subset Xi in T ,
combine all confirmatory evidence to obtain a bpa, mXi , and all disconfirma-
tory evidence to obtain another bpa, mXc

i
.8 Note that mXi can have a nonzero

value on only Xi and Θ, mXc
i

on only Xc
i and Θ. Using our example, we would

thus compute the following bpa’s: mHCO, mGP, mH, mC, mO, mG, mP,

HCOGP

HCO

H

GP

C O G P

Fig. 3. The expanded tree of cholestatic jaundice

8 Note that we have introduced a variation on the notation used up to this point:
mi has denoted the bpa associated with the ith piece of evidence, whereas mXi

denotes the bpa associated with the set Xi after all evidence confirming Xi has
been combined.
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mHCOc , mGPc , mHc , mCc , mOc , mGc , mPc . Thus, mHCO(HCO) is the belief
in intrahepatic cholestasis (i.e., HCO) after all evidence confirmatory of this
disease category has been combined. The remaining belief, 1−mHCO(HCO), is
assigned to Θ. Similarly, mHCOc(HCOc) is the total belief against intrahepatic
cholestasis and 1−mHCOc(HCOc) is assigned to Θ.

Our goal is to compute the single aggregate bpa that assigns net belief to
all elements of T (by definition the only hypotheses of semantic interest for
the domain) by blending in the disconfirming evidence associated with the
sets in T ′. This corresponds to the bpa

mY1 ⊕mY2 ⊕ · · ·

where Yi takes on the value of all subsets occurring in either T or T ′. How-
ever, a strict application of the D-S theory in determining this bpa will assign
nonzero values to many subsets that are in neither T nor T ′, precisely the
event that we wish to avoid in order to prevent the enumeration of all sets in
2Θ. The technique we propose combines in an organized fashion the bpa’s just
computed in Step 1. Through a simple assumption defined below (see Step
3), we avoid the generation of new subsets.

We continue by observing that our aggregate final bpa can also be written
as

mT ⊕mT ′

where
mT = mx1 ⊕mX2 ⊕ · · · , Xi ∈ T

and
mT ′ = mxc

1
⊕mXc

2
⊕ · · · , Xc

i ∈ T ′.

The bpa, mT , has nonzero values on only Θ or subsets in T , i.e., on T ∪Θ,
since the intersection of any two subsets in T is either the empty set or in T
(the smallest of the two subsets). This computation is therefore performed as
Step 2.

Step 2. Combine all confirmatory evidence by computing the aggregate
bpa, mT , of the bpa’s in Step 1 of the form mxi , where

mT = mx1 ⊕mx2 ⊕ · · · , Xi ∈ T.

Note that mT has nonzero value only on T ∪Θ. In our example,

mT = mHCO ⊕mGP ⊕mH ⊕mC ⊕mO ⊕mG ⊕mP.

The quantity, mT (HCO), is the belief in HCO (intrahepatic cholestasis)
after combining all evidence confirmatory of this disease category with all
evidence confirmatory of every other disease category or entity in the tree.

Note that the calculation in Step 2 does not include evidence disconfirma-
tory of HCO or the other hypotheses in T . That task is left to Step 3, i.e., the
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remaining problem is to compute mT ⊕MT ′ . However, as mentioned earlier,
if mT ′ is computed by a strict application of the D-S combining rule, it has
nonzero value on many subsets that are in neither T nor T ′. Even the aggre-
gation of evidence disconfirmatory of a single subset in T (i.e., confirmatory
of a single subset in T ′) with mT leads to the generation of new subsets. For
example, the combination of mT with evidence disconfirmatory of hepatitis
leads to a bpa, mT ⊕mHc , which assigns belief to the diagnosis of CO, i.e.,
the set {Cirr, Orcon}.9 This set is not in the tree of Fig. 3 because it was
not originally defined to be of diagnostic interest. If this bpa is then combined
with that representing evidence disconfirmatory of cirrhosis, belief is assigned
to the diagnosis of HO = {Hep, Orcon}. This set also is not in T . As more
bpa’s are aggregated via the D-S combination rule, more subsets are generated
which are not in T and thus not of diagnostic interest. Hence, we make the
approximation described in Step 3.

Step 3. Combine disconfirmatory evidence by step-wise combination of the
mXc

i
’s in the following way. Choose any set Xc

1 in T ′ and compute mT !mXc
1
,

which is an approximation to mT ⊕mXc
1

with the property that mT !mXc
1

has nonzero value on only T ∪Θ. Belief assigned to a subset A by ⊕ is instead
assigned by ! to the smallest superset of A in T if A itself is not in T . Now
choose another set, Xc

2 , in T ′, and compute (mT!mXc
1
)!mXc

2
. Continue until

all sets in T ′ have been chosen. The result is an aggregate bpa in which belief
assigned to a set A in 2Θ by the D-S function is sometimes assigned instead
to an ancestor of A in T ∪ Θ. It may be shown (see Appendix A) that such
an assignment is unique. Belief is thus displaced upward in the tree in order
to avoid consideration of subsets not in T . Note that belief in A implies belief
in B if B is a superset of A. The function, !, is order-independent except in
an easily identifiable case (see Appendix A).

To illustrate, belief assigned in the previous example to CO, a set not in
the tree, is instead assigned to HCO, the smallest set in the tree containing
it. Belief assigned to HO is also assigned to HCO. Note that disbelief in a
singleton, which is represented as belief in its complement, is assigned by the
approximation as belief in Θ (unless the complement happens to be in T ).

As we have noted, the final bpa obtained by step-wise application of the
function ! in Step 3 differs from that obtained by the D-S function in that
some belief assigned to a given subset by the latter is assigned to an ancestor
of that subset by the former. Since belief in a subset of hypotheses implies
belief in a superset of that subset, the upward displacement of belief in the
hierarchy seems to be a reasonable exchange for the computational simplicity
of our approximation method.

A final point is important to stress regarding the approach in Step 3. It
should be clear that the scheme assigns all belief to subsets in T or to Θ. Thus,
for A in T, Bel(A) can be computed by summing net belief in A with belief

9 Note that mT ⊕ mHc assigns the quantity of belief, mT (HCO)mHc(Hc) to CO =
HCO ∩ Hc.
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assigned to all its descendents. However, it will not in general be possible
to compute Bel(Ac) since Ac will usually be in T ′ but not in T . Thus the
notion of a belief interval, [Bel(A), 1−Bel(Ac)] is lost in the scheme we have
proposed. Competing hypotheses would need to be compared based upon Bel
alone without regard to the width of the plausibility interval (see Sect. 2.5).

In summary, the proposed evidence aggregation scheme is as follows.

Step 1. Calculate mXi for all Xi in T and mXc
i

for all Xc
i in T ′.

Step 2. Calculate mT = mX1 ⊕mX2 ⊕ · · · for all Xi in T .
Step 3. Calculate mT !mXc

1
, then (mT !mXc

1
)!mXc

2
, etc. for all Xc

i in T ′.

Recall that Step 1 is accomplished using the technique described in
Sect. 3.4 and does not require the assumption of the tree structure of the
domain or an approximation technique. Steps 2 and 3 do depend upon the
assumption of the tree structure, however, and Step 3 requires the approxi-
mation outlined above. The formulae for the calculations in Steps 2 and 3 are
given below, with their derivations provided in an Appendix A.

Step 2.

mT (A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

KmA (A)
∏

X∈T
X�A

mX (Θ) if A ∈ T,

K
∏
X∈T

mX (Θ) if A = Θ,

where K = 1/(1− κ) and

1− κ =
∑

A∈T

⎡

⎢⎢⎢⎢⎢⎣
mA (A)

∏

X∈T
X�A

mX(Θ)

⎤

⎥⎥⎥⎥⎥⎦
.

Step 3. There are different formulae in Step 3 depending upon which
of three relationships hold between X and A : X ⊆ A,X ∩ A = ∅, or
X ⊃ A, where X is a subset of T ∪ Θ and A is a subset of T . In all cases,
K = 1/(1− κ) where

κ = mAc (Ac)
∑

X∈T
X⊆A

mT (X) .

Case 1. X ⊆ A:

mT !mAc (X) = KmT (X)mAc (Θ) .

Case 2. X ∩A = ∅ (i.e., X ∩Ac = X):
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(i) If X ∪A is a set in T ∪Θ:

mT !mAc (X) = K[mT (X) +mT (X ∪A)mAc (Ac)].

(ii) If X ∪A is not in T ∪Θ:

mT !mAc (X) = KmT (X) .

Case 3. X ⊃ A:

(i) If X ∩Ac is not a set in T :

mT !mAc (X) = KmT (X) .

(ii) If X ∩Ac is in T :

mT !mAc (X) = KmT (X)mAc (Θ) .

5 Conclusion

A major drawback for practical implementation of the Dempster–Shafer the-
ory of evidence in reasoning systems has been its computational complexity
(and resulting inefficiency). Based on the observation that evidence used in
diagnostic reasoning involves abstract categories that can often be naturally
represented in a strict hierarchical structure, we have designed a method for
evidence aggregation based on the D-S theory. Using combinatorial analysis,
a strict application of the theory, and an approximation, we have presented
an approach which is computationally tractable.

Some observers may question the value of using the D-S scheme rather than
the CF model or some other ad hoc method for handling uncertainty when
dealing only with singleton hypotheses. Systems like mycin and internist-1

have demonstrated expert-level performance using their current techniques
for inexact reasoning [12, 18]. We have previously suggested, in fact, that
the details of a model of evidential reasoning in an AI system may be
relatively unimportant since the careful semantic structuring of a domain’s
knowledge seems to blunt the sensitivity of its inferences to the values of the
numbers used.10 Some have even suggested that evidential reasoning can be
handled without the use of a numerical model at all [5]. As was emphasized
in Sect. 4, however, it is the D-S theory’s techniques for managing reasoning
about hypotheses in hierarchic abstraction spaces that we have found partic-
ularly appealing. The failure of previous models to deal coherently with these

10 See [3, Chap. 10] for a discussion of this point and an analysis of the sensitiv-
ity of mycin’s conclusions to the CF values used in its rules. As is discussed
there, mycin’s performance can be shown to extremely insensitive to rather wide
variations in the CF’s assigned to its rules.
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issues has led to unnatural knowledge representation schemes that require
evidential associations among related concepts to be stated explicity rather
than provided automatically by the hierarchic structure of pertinent domain
concepts.

Directions for further work lie in the implementation and evaluation of
our method in an actual reasoning system. Additional conventions will need
to be defined before this can be done. For example, it is common for the evi-
dence itself to be of an uncertain nature, and partially supported hypotheses
in one frame of discernment may themselves be used as evidence to assign
belief to hypotheses in another frame of discernment. This is a key feature of
rule-chaining systems, for example, where belief in the premise conditions of
rules may be less than certain. The ad hoc methods being used currently (e.g.,
the CF model’s multiplicate convention [15]) may simply be borrowed for a
D-S implementation. More interesting, perhaps, is the issue of how best to
use the belief in the hypotheses after the proposed scheme has been applied.
There is not likely to be a ‘correct’ approach to this problem because the
nature of the actions based on evidence varies so greatly from one domain to
another. Heuristics may be devised, however, for using thresholding or rela-
tive belief measures to determine what level of abstraction in the hypothesis
hierarchy is most appropriately selected as the basis for a final conclusion or
recommendation from an advice system.

The techniques described here will be neither necessary nor adequate for
all expert system application domains. Some tasks are well managed by purely
categorical inference techniques, and others do not lend themselves to hier-
archical domain structuring and the evidence gathering model of problem
solving. However, for diagnostic or classification tasks in settings where the
hypothesis space is well suited to assumptions of mutual exclusivity and
hierarchical organization, we believe that our adaptation of the Dempster–
Shafer theory holds great appeal as a computationally tractable and coherent
belief model.

Appendix A

We present here the details of Steps 2 and 3 in the proposed evidence combi-
nation scheme outlined in Sect. 4.

A Step 2: Aggregation of Confirmatory Evidence

The bpa mT is the aggregate of all bpa’s of the form, mX , where X is a subset
in T . Each mX has been obtained by combining all confirmatory evidence for
X . For the following discussion we shall use A to refer to an arbitrary subset
in T ∪Θ. We now derive formulae for mT by first computing the normalization
constant, K = 1/(1− κ), and then mT (A) for any subset A in T ∪Θ.
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A.1 The Normalization Constant of mT

Recall that 1 − κ is the sum of all beliefs not attributed to the empty set.
Thus, 1− κ is ∑ ∏

X∈T
mX(YX),

where YX is either X (a subset in T ) or Θ and the YX ’s intersect to give a
non-empty subset. For example, in the cholestatic jaundice hierarchy of Fig. 3,
two of the summands in 1− κ would be:

mH(H)mC (Θ)mO (Θ)mG (Θ)mp (Θ)mGP (Θ)mHCO (HCO) ,
mH(H)mC (Θ)mO (Θ)mG (Θ)mp (Θ)mGP (Θ)mHCO (Θ) .

Note that once we choose YA = A for a specific A, then, in order to avoid the
empty set as the final intersection, we must choose all other YX = Θ except
for descendents (subsets) or ancestors (supersets) of A. In the above example,
once we chose YH = H, we had to choose YX = Θ for all other X except for
X = HCO, the one ancestor of H in T . For YHCO, we could choose YHCO as
either HCO or Θ. Thus, we claim that

1− κ =
∑

A∈T

⎡

⎢⎢⎢⎢⎢⎣
mA (A)

∏

X∈T
X�A

mX (Θ)
∏

X∈T
X⊃A

[mX (X) +mX (Θ)]

⎤

⎥⎥⎥⎥⎥⎦
.

Since mX has nonzero value on only X and Θ, mX(X) +mX(Θ) = 1 for all
X in T . Thus, ∏

X∈T
X⊃A

[mX(X) +mX (Θ)] = 1

and the above simplifies to

1− κ =
∑

A∈T

⎡

⎢⎢⎢⎢⎢⎣
mA (A)

∏

X∈T
X�A

mX (Θ)

⎤

⎥⎥⎥⎥⎥⎦
.

The two products given above for the cholestatic jaundice example would
be represented in this expression by the summand in the expression for 1− κ
formed by choosing A = H. Because mHCO(HCO) +mHCO(Θ) = 1, note that
these two summands add to mH(H)mC(Θ)mO(Θ)mG(Θ)mP(Θ)mGP(Θ).
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A.2 Computation of mT (A)

In order to derive a formula for mT (A), where A is any subset in T ∪ Θ, we
need to enumerate all products of the form

∏

X∈T
mX (YX) ,

where YX is either X (a subset in T ) or Θ and the intersection of the YX ’s is
A. For A = Θ, we must choose YX = Θ for each X in T . Thus,

mT (Θ) = K
∏

X∈T
mX (Θ) .

For every A in T , we must choose YA = A for the factor mA(YA) since
YA = Θ will in general make it impossible to achieve a final intersection of A
due to the tree structure of the subsets. If X is not an ancestor of A, then we
must choose YX = Θ since YX = X will yield an empty intersection for some
subset of A. If X is an ancestor of A, then both YX = X and YX = Θ will
yield A as the intersection. Thus, we obtain

mT (A) = KmA (A)
∏

X∈T
X�A

mx (Θ)
∏

X∈T
X⊃A

[mX (X) +mX (Θ)] .

Once again, the indicated sum, and hence the last product, is 1 and the above
simplifies to

mT (A) = KmA (A)
∏

X∈T
X�A

mX (Θ) .

For example, in our model of cholestatic jaundice from Fig. 3, the effect of all
confirmatory evidence on belief precisely in hepatitis is given by

mT (H) = KmH(H)mC(Θ)mO(Θ)mG(Θ)mP(Θ)mGP(Θ).

The effect on belief in intrahepatic cholestasis (i.e., HCO) is given by

mT (HCO) =KmHCO (HCO)mH (Θ)mC (Θ)mO (Θ)mG (Θ)mP (Θ)
mGP (Θ) .

B Step 3: Aggregation of Disconfirmatory Evidence

As mentioned in Sect. 4, it is in this step that we first depart from a strict
application of the D-S combining function in order to avoid the assignment of
belief to subsets which are neither in T nor T ′. Our solution to this difficulty
is an approximation, mT !mAc , which assigns all belief to subsets in T ∪Θ;
i.e., the subsets on which mT may have nonzero value. For example, in the
hierarchy of Fig. 3, belief that would be assigned to CO is instead assigned to
its smallest ancestor in T , HCO. This is a justifiable assignment because:
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– the subset CO is, by the domain expert’s definition of T , not of diagnostic
interest and so should not be assigned belief;

– evidence confirming a subset also logically supports supersets of that
subset;

– there is a unique smallest superset due to the strict tree structure of the
hierarchy defined by the subsets in T , i.e., each subset in T has precisely
one parent in T , except for those at the top of the hierarchy whose parent
is Θ.

Thus, mT !mAc assigns mT (X)mAc(Ac) to X ∩Ac if X ∩Ac lies in T ∪Θ
and to X (which can be shown to be the unique smallest superset in T ∪ Θ
containing X ∩Ac) if not. We now derive formulae for mT !mAc .

B.1 Computation of Normalization Constant for the Modified
Combining Function

This time we consider κ, the sum of beliefs assigned to ∅, instead of 1− κ as
we did in Step 2. Thus, we want a simplified expression for

κ =
∑

X∈T
mT (X)mAc (YAc) ,

where YAc = Ac or Θ and X ∩ YAc = ∅. Clearly, X and YAc are not disjoint
if YAc = Θ. If YAc = Ac, then we must choose X = A or X a subset of A to
yield X ∩ YAc = ∅. Thus,

κ = mAc (Ac)
∑

X∈T
X⊆A

mT (X) .

B.2 Formulae for the Modified Combining Function

We derive formulae for mT !mAc(X) where X lies in T ∪Θ and therefore falls
into one of three cases. We are looking in each case for all sets in T ∪Θ which
intersect with either Ac or Θ to give X . For purposes of illustration, consider
the hypothesis tree of Fig. 3 and the calculations necessary for combining
evidence disconfirmatory of pancreatic cancer (A = P).

Case 1. X ⊆ A. There is no subset in T ∪Θ that will intersect with Ac to
give X so the only possibility is to choose X and Θ to yield X∩Θ = X . Thus,

mT !mAc (X) = KmT (X)mAc (Θ) .

In our example with A = P, the only setX in this case isX = A = P. Thus,

mT !mpc (P) = KmT (P)mpc (Θ) .
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Case 2. X∩A = ∅ (i.e., X∩Ac = X). Note that we may choose either X,Ac

or X,Θ as pairs yielding an intersection equal to X . Two subcases should be
distinguished: that in which X ∪ A is in T ∪ Θ and that in which X ∪ A is
not. For if X ∪A is in T ∪Θ, then we may also choose the pair X ∪A, Ac to
yield X as the intersection. Thus, in the first subcase:

mT !mAc (X) =K[mT (X)mAc (Ac) +mT (X)mAc (Θ)
+mT (X ∪A)mAc (Ac)].

This expression simplifies to

mT !mAc (X) = K [mT (X) +mT (X ∪A)mAc (Ac)] ,

since mAc(Ac) +mAc(Θ) = 1.
In our example with A = P, the set G falls into this subcase and

mT !mpc(G) = K[mT (G) +mT (GP)mpc (Pc)].

The second subcase applies for all X in T such that X, Ac and X, Θ are
the only two pairs yielding an intersection equal to X :

mT !mAc (X) = K[KmT (X)mAc (Ac) +mT (X)mAc (Θ)],

which simplifies to
mT !mAc (X) = KmT (X) ,

since mAc(Ac) +mAc(Θ) = 1.
In our example with A = P, the subsets HCO, H, C, and O fall in this

subcase and thus

mT !mpc (HCO) = KmT (HCO) ,
mT !mpc (H) = KmT (H) ,
mT !mpc (C) = KmT (C) ,
mT !mpc (O) = KmT (O) .

Case 3. X ⊃ A: In this case, the only pair yielding an intersection of X
is X, Θ. However, consider the pair X, Ac whose intersection may or may
not lie in T . If X ∩ Ac does not lie in T , it may be shown that X is the
smallest superset of X ∩Ac containing X ∩Ac and we assign mT (X)mAc(Ac)
to X . Then,

mT !mAc(X) = K[mT (X)mAc(Ac) +mT (X)mAc(Θ)] = KmT (X).

In our example, mT ! mPc(Θ) = KmT(Θ), since mT (Θ)mPc(Pc) is
assigned to Θ, the smallest superset of Pc in T ∪Θ.
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If X ∩ Ac does lie in T , then mT (X)mAc(Ac) was assigned to X ∩ Ac in
Case 2. Clearly, if X ∩ Ac is a subset in T, X ∩ Ac falls into Case 2 since
(X ∩Ac) ∩A = ∅. Thus, for X ⊃ A and X ∩Ac ∈ T :

mT !mAc (X) = KmT (X)mAc(Θ).

In our example, mT !mPc(GP) = KmT (GP)mPc(Θ).

B.3 Optimal Ordering of Evidence Aggregation

It can be shown that the function ! is order-independent except in the case
of evidence involving a subset A where both A and its parent have exactly
one sibling. In the hierarchy shown in Fig. 3, for example, the configuration of
concern occurs when A is taken to be either G or P. In this situation, evidence
involving the higher level subset GP should be combined before that involving
G or P. A small portion of the belief that would be assigned to G or P by the
D-S function is correctly assigned to G or P if disconfirming evidence mXc

i
is

aggregated first with the higher level subset and then with G and P. However,
it is assigned to GP, the parent of G and P, if the disconfirming evidence is
aggregated with the lower level subsets first.

Thus, a better approximation to the D-S function is obtained depending
on the order for aggregation chosen in Step 3. However, this difference is
insignificant in that the amount of belief involved is small and more impor-
tantly, it is only displaced upward by one level from a subset to its parent.
Such upward displacement is a common result of the approximation function
anyway. Combining evidence in a breadth-first fashion, from higher to lower
levels, will result in an optimal approximation.
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Languages and Designs for Probability
Judgment∗

Glenn Shafer and Amos Tversky

Abstract. Theories of subjective probability are viewed as formal languages for
analyzing evidence and expressing degrees of belief. This article focuses on two
probability language, the Bayesian language and the language of belief functions
[19]. We describe and compare the semantics (i.e., the meaning of the scale) and the
syntax (i.e., the formal calculus) of these languages. We also investigate some of the
designs for probability judgment afforded by the two languages.

Introduction

The weighing of evidence may be viewed as a mental experiment in which the
human mind is used to assess probability much as a pan balance is used to
measure weight. As in the measurement of physical quantities, the design of
the experiment affects the quality of the result.

Often one design for a mental experiment is superior to another because
the questions it asks can be answered with greater confidence and precision.
Suppose we want to estimate, on the basis of evidence readily at hand, the
number of eggs produced daily in the U.S. One design might ask us to guess
the number of chickens in the U.S. and the average number of eggs laid by
each chicken each day. Another design might ask us to guess the number of
people in the U.S., the average number of eggs eaten by each person, and
some inflation factor to cover waste and export. For most of us, the second
design is manifestly superior, for we can make a reasonable effort to answer
the questions it asks.

∗ From Cognitive Science 9, 309–339 (1985). Glenn Shafer has corrected some typo-
graphical errors and updated a reference. The original research was supported in
part by NSF grants MCS-800213 and 8301282 to the Glenn Shafer and ONR
Grant NR197-058 to Amos Tversky. The article benefited from the comments
of Jonathan Baron, Morris DeGroot, Persi Diaconis and David Krantz. Amos
Tversky died on June 2, 1996.
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As this example illustrates, the confidence and precision with which we
can answer a question posed in a mental experiment depends on how our
knowledge is organized and stored, first in our mind and secondarily in other
sources of information available to us.

The quality of the design of a mental experiment also depends on how
effectively the answers to the individual questions it asks can be combined to
yield an accurate overall picture or accurate answers to questions of central
interest. An analogy with surveying may be helpful. There are usually many
different ways of making a land survey—many different angles and lengths we
may measure. When we design the survey we consider not only the accuracy
and precision with which these individual measurements can be made but also
how they can be combined to give an accurate plot of the area surveyed [13].
Singer shows how a mental experiment may be designed to give a convincing
estimate of the total value of property stolen by heroin addicts in New York
City [24]. Other examples of effective designs for mental experiments are given
by Raiffa [15].

One way to evaluate competing designs for physical measurement is to
apply them to instances where the truth is known. But such empirical evalua-
tion of final results is not always possible in the case of a mental experiment,
especially when the experiment is designed to produce only probability judg-
ments. It is true that probability judgments can be interpreted as frequencies.
But as we argue below, this interpretation amounts only to a comparison with
a repeatable physical experiment where frequencies are known. How the com-
parison is made—what kind of repetitions are envisaged—is itself one of the
choices we make in designing a mental experiment. There may not be a single
set of repetitions to which the design must be referred for empirical validation.

Since empirical validation of a design for probability judgment is prob-
lematic, the result of carrying out the mental experiment must be scrutinized
in other ways. The result of the whole experiment must be regarded as an
argument, which, like all other arguments, is open to criticism and counter-
arguments.

Understanding and evaluating a design for probability judgment is also
complicated by problems of meaning. When we are simply guessing the answer
to a question of fact, such as the number of eggs produced daily in the U.S.,
the meaning of the question seems to be independent of our design. But when
we undertake to make probability judgments, we find that we need a theory
of subjective probability to give meaning to these judgments.

In the first place, we need a numerical scale or at least a qualitative scale
(practically certain, very probable, fairly probable, etc.) from which to choose
degrees of probability. We also need canonical examples for each degree of
probability on this scale—examples where it is agreed what degree of proba-
bility is appropriate. Finally, we need a calculus—a set of rules for combining
simple judgments to obtain complex ones.

Using a theory of subjective probability means comparing the evidence
in a problem with the theory’s scale of canonical examples and picking out
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the canonical example that matches it best. Our design helps us make this
comparison. It specifies how to break the problem into smaller problems that
can be more easily compared with the scale of canonical examples and how
to combine the judgments resulting from these separate comparisons.

Thought of in this way, a theory of subjective probability is very much
like a formal language. It has a vocabulary—a scale of degrees of probability.
Attached to this vocabulary is a semantics—a scale of canonical examples that
show how the vocabulary is to be interpreted and psychological devices for
making the interpretation effective. Elements of the vocabulary are combined
according to a syntax—the theory’s calculus.

Proponents of different theories of subjective probability have often
debated which theory best describes human inductive competence. We believe
that none of these theories provide an adequate account of people’s intuitive
judgments of probability. On the other hand, most of these theories can be
learned and used effectively. Consequently, we regard these theories as formal
languages for expressing probability judgments rather than as psychological
models, however idealized.

The usefulness of one of these formal languages for a specific problem may
depend both on the problem and on the skill of the user. There may not be a
single probability language that is normative for all people and all problems.
A person may find one language better for one problem and another language
better for another. Furthermore, individual probability judgments made in
one language may not be directly translatable into another.

This article studies the semantics and syntax of two probability languages,
the traditional Bayesian language and the language of belief functions, and it
uses these languages to analyze several concrete examples. This exercise can
be regarded as a first step toward the general study of design for probability
judgment. It illustrates the variety of designs that may be feasible for a given
problem, and it yields a classification of Bayesian designs that clarifies the
role of Bayesian conditioning. Our treatment is incomplete, however, because
it does not provide formal criteria or lay out general empirical procedures for
evaluating designs. The choice of design is left to the ingenuity of the user.

1 Examples

With the help of some simple examples we illustrate several designs for prob-
ability judgments. We will return to these examples in Sects. 3 and 4.

1.1 The Free-Style Race

We are watching one of the last men’s swim meets of the season at Holsum
University. We have followed the Holsum team for several seasons, so we watch
with intense interest as Curt Langley, one of Holsum’s leading free-stylers,
gets off to a fast start in the 1650-yard race. As Curt completes his first
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1000 yards, he is swimming at a much faster pace than we have seen him
swim before. His time for the first 1000 yards is 9 min and 25 s. His best
previous times for 1650 yards have been around 16 min and 25 s, a time that
translates into about 9 min and 57 s at 1000 yards. The only swimmer within
striking distance of him is a member of the visiting team named Cowan, whom
we know only by name. Cowan is about half a lap (about 12 yards or 7 s)
behind Curt.

Will Curt Win the Race? The first question we ask ourselves is whether
he can keep up his pace. Curt is known to us as a very steady swimmer—
one who knows what he is capable of and seldom, if ever, begins at a
pace much faster than he can keep up through a race. It is true that his
pace is much faster than we have seen before—much faster than he was
swimming only a few weeks ago. It is possible that there has been no
real improvement in his capacity to swim—that he has simply started fast
and will slow down before the race is over. But our knowledge of Curt’s
character and situation encourages us to think that he must have trained
hard and greatly increased his endurance. This is his senior year, and the
championships are near. And he must have been provoked to go all out
by Jones, the freshman on the team, who has lately overshadowed him in
the long-distance races. We are inclined to think that Curt will keep up
his pace.

If Curt does keep up his pace, then it seems very unlikely that Cowan could
have enough energy in reserve to catch him. But what if Curt cannot keep up
his pace? Here our vision becomes more murky. Has Curt deliberately put his
best energy into the first part of the race? Or has he actually misjudged what
pace he can keep up? In the first case, it seems likely he will soon slow down,
but not to a disastrously slow pace; it seems to be a toss-up whether Cowan
will catch him. On the other hand, if he has misjudged what pace he can keep
up, then surely he has not misjudged it by far, and so we would expect him to
keep it up almost to the end and, as usually happens in such cases, “collapse”
with exhaustion to a very slow pace. There is no telling what would happen
then—whether Cowan would be close enough or see the collapse soon enough
to take advantage of the situation.

There are many different designs that we might use to assess numeri-
cally the probability of Curt’s winning. There is even more than one possible
Bayesian design. The Bayesian design suggested by our qualitative discussion
assesses the probabilities that Curt will keep up the pace, slow down, or col-
lapse and the conditional probabilities that he will win under each of these
hypotheses and then combines these probabilities and conditional probabili-
ties to obtain his overall probability of winning. We call this a total-evidence
design because each probability and conditional probability is based on the
total evidence. In sect. 3 we will formalize and carry out this total-evidence
design. We will also carry out a somewhat different Bayesian total-evidence
design for the problem. In sect. 4 we will carry out a belief-function design for
the problem.
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1.2 The Hominids of East Turkana

In the August, 1978, issue of Scientific American, Alan Walker and Richard E.
T. Leakey [27] discuss the hominid fossils that have recently been discovered in
the region east of Lake Turkana in Kenya. These fossils, between a million and
two million years of age, show considerable variety, and Walker and Leakey
are interested in deciding how many distinct species they represent.

In Walker and Leakey’s judgment, the relatively complete cranium spec-
imens discovered in the upper member of the Koobi Fora Formation in East
Turkana are of three forms: (I) A “robust” form with large cheek teeth and
massive jaws. These fossils show wide-fanning cheekbones, very large molar
and premolar teeth, and smaller incisors and canines. The brain case has an
average capacity of about 500 cubic centimeters, and there is often a bony
crest running fore and aft across its top, which presumably provided greater
area for the attachment of the cheek muscles. Fossils of this form have also
been found in South Africa and East Asia, and it is generally agreed that they
should all be classified as members of the species Australopithecus robustus.
(II) A smaller and slenderer (more “gracile”) form that lacks the wide-flaring
cheekbones of I, but has similar cranial capacity and only slightly less mas-
sive molar and premolar teeth. (III) A large-brained (c. 850 cubic cm) and
small-jawed form that can be confidently identified with the Homo erectus
specimens found in Java and northern China.

The placement of the three forms in the geological strata in East Turkana
shows that they were contemporaneous with each other. How many distinct
species do they represent? Walker and Leakey admit five hypotheses:

1. I, II, and III are all forms of a single, extremely variable species.
2. There are two distinct species: one, Australopithecus robustus, has I as its

male form and II as its female form; the other, Homo erectus, is represented
by III.

3. There are two distinct species: one, Australopithecus robustus, is repre-
sented by I; the other has III, the so-called Homo erectus form, as its
male form, and II as its female form.

4. There are two distinct species: one is represented by the gracile form II;
the other, which is highly variable, consists of I and III.

5. The three forms represent three distinct species.

Here are the items of evidence, or arguments, that Walker and Leakey use
in their qualitative assessment of the probabilities of these five hypotheses:

(i). Hypothesis 1 is supported by general theoretical arguments to the effect
that distinct hominid species cannot coexist after one of them has
acquired culture.

(ii). Hypotheses 1 and 4 are doubtful because they postulate extremely dif-
ferent adaptations within the same species: The brain seems to over-
whelm the chewing apparatus in III, while the opposite is true in I.
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(iii). There are difficulties in accepting the degree of sexual dimorphism pos-
tulated by hypotheses 2 and 3. Sexual dimorphism exists among living
anthropoids, and there is evidence from elsewhere that hints that den-
tal dimorphism of the magnitude postulated by hypothesis 2 might have
existed in extinct hominids. The dimorphism postulated by hypothesis
3, which involves females having roughly half the cranial capacity of
males, is less plausible.

(iv). Hypotheses 1 and 4 are also impugned by the fact that specimens of
type I have not been found in Java and China, where specimens of type
III are abundant.

(v). Hypotheses 1 and 3 are similarly impugned by the absence of specimens
of type II in Java and China.

Before specimens of type III were found in the Koobi Fora Formation, Walker
and Leakey thought it likely that the I and II specimens constituted a single
species. Now on the basis of the total evidence, they consider hypothesis 5 the
most probable.

What Bayesian design might we use to analyze this evidence? A total
evidence design may be possible, but it is natural to consider instead a design
in which some of the evidence is treated as an “observation” and used to
“condition” probabilities based on the rest of the evidence. We might, for
example, first construct a probability distribution that includes probabilities
for whether specimens of Type I and II should occur in Java and China and
then condition this distribution on their absence there. It is natural to call
this a conditioning design. It is not a total-evidence design, because the initial
(or “prior”) probabilities for whether the specimens occur in Java and China
will be based on only part of the evidence.

Later in Sect. 3, we will work this conditioning design out in detail. In
Sect. 4 we will apply a belief-function design to the same problem.

2 Two Probability Languages

In order to make numerical probability judgments, we need a numerical scale.
We need, in other words, a scale of canonical examples in which numerical
degrees of belief are agreed upon. Where can we find such a scale?

The obvious place to look is in the picture of chance. In this picture, we
imagine a game which can be played repeatedly and for which we know the
chances. These chances, we imagine, are facts about the world: they are long-
run frequencies, they can be thought of as propensities, and they also define
fair betting rates—rates at which a bettor would break even in the long run.

There are several ways the picture of chance can be related to practical
problems, and this means we can use the picture to construct different kinds of
canonical examples and thus different theories or probability languages. In this
essay, we shall consider two such languages: the Bayesian language, and the
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language of belief functions. The Bayesian language uses a scale of canonical
examples in which the truth is generated by chance and our evidence consists
of complete knowledge of the chances. The language of belief functions uses a
scale of canonical examples in which our evidence consists of a message whose
meaning depends on known chances.

We emphasize the Bayesian language because it is familiar to most readers.
We study the language of belief functions as well in order to emphasize that
our constructive view of probability, while not implying that all probability
languages have equal normative claims, leaves open the possibility that no
single language has a preemptively normative status.

2.1 The Bayesian Language

As we see it, a user of the Bayesian probability language makes probability
judgments in a particular problem by comparing the problem to a scale of
examples in which the truth is generated according to known chances and
deciding which of these examples is most like the problem. The probability
judgment P (A) = p, in this language, is a judgment that the evidence provides
support for A comparable to what would be provided by knowledge that the
truth is generated by a chance setup that produces a result in A exactly p of
the time. This is not to say that one judges the evidence to be just like such
knowledge in all respects, nor that the truth is, in fact, generated by chance.
It is just that one is measuring the strength of the evidence by comparing it
to a scale of chance setups.

The idea that Bayesian probability judgment involves comparisons with
examples where the truth is generated by chance is hardly novel. It can be
found, for example, in Bertrand [2] and in Box [3]. Box states that the adoption
of given Bayesian probability distribution means that “current belief . . . would
be calibrated with adequate approximation by a physical stimulation involving
random sampling” (p. 385) from the distribution. The Bayesian literature has
not, however, adequately addressed the question of how this comparison can be
carried out. One reason for this neglect may be the emphasis that twentieth-
century Bayesians have put on betting. When “personal probabilities” are
defined in terms of a person’s preferences among bets, we are tempted to think
that the determination of probabilities is a matter of introspection rather than
a matter of examining evidence, but see Diaconis and Zabell [4].

Bayesian Semantics. The task of Bayesian semantics is to render the com-
parison of our evidence to the Bayesian scale of canonical examples effective—
to find ways of making the scale of chances and the affinity of our evidence
to it vivid enough to our imagination that we can meaningfully locate the
evidence on the scale.

By concentrating on different aspects of the rich imagery of games of
chance, we can isolate different ways of making the Bayesian scale of chances
vivid, and each of these ways can be thought of as a distinct semantics for
the Bayesian probability language. Three such semantics come immediately
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to mind: a frequency semantics, a propensity semantics, and a betting seman-
tics. The frequency semantics compares our evidence to the scale of chances
by asking how often, in situations like the one at hand, the truth would turn
out in various ways. The propensity semantics makes the comparison by first
interpreting the evidence in terms of a causal model and then asking about the
model’s propensity to produce various results. The betting semantics makes
the comparison by assessing our willingness to bet in light of the evidence: at
what odds is our attitude towards a given bet most like our attitude towards
a fair bet in a game of chance?

It is traditional, of course, to argue about whether probability should be
given a frequency, a propensity, or a betting interpretation. But from our
perspective these “interpretations” are merely devices to help us make what
may ultimately be an imperfect fit of our evidence to a scale of chances.
Which of these devices is most helpful will depend on the particular problem.
We do not insist that there exists, prior to our deliberation, some particular
frequency or numerical propensity in nature or some betting rate in our mind
that should be called the probability of the proposition we are considering.

Which of these three Bayesian semantics tends to be most helpful in fit-
ting our evidence to the scale of chances? We believe that the frequency and
propensity semantics are central to the successful use of the Bayesian proba-
bility language, and that the betting semantics is less useful. Good Bayesian
designs ask us to make probability judgments that can be translated into
well-founded judgments about frequencies or about causal structures.

Since we readily think in terms of causal models, the propensity semantics
often seems more attractive than the frequency semantics. But this attraction
has its danger; the vividness of causal pictures can blind us to doubts about
their validity. A simple design based on frequency semantics can sometimes be
superior to a more complex design based on propensity semantics. We may,
for example, obtain a better idea about how long it will take to complete
a complex project by taking an “outside view” based on how long similar
projects have taken in the past than by taking an “inside view” that attempts
to assess the strength of the forces that could delay the completion of the
project [10].

The betting semantics has a generality that the frequency and propensity
semantics lack. We can always ask ourselves about our attitude towards a bet,
quite irrespective of the structure of our evidence. But this lack of connection
with the evidence is also a weakness of the betting semantics.

In evaluating the betting semantics, one must distinguish logical from psy-
chological and practical considerations. Ramsey [16], Savage [18], and their
followers have made an important contribution to the logical analysis of sub-
jective probability by showing that it can be derived from coherent preferences
between bets. This logical argument, however, does not imply psychological
precedence. Introspection suggests that people typically act on the basis of
their beliefs, rather than form beliefs on the basis of their acts. The gam-
bler bets on Team A rather than on Team B because he believes that A is
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more likely to win. He does not usually infer such a belief from his betting
preferences.

It is sometimes argued that the prospect of monetary loss tends to con-
centrate the mind and thus permits a more honest and acute assessment of
the strength of evidence than that obtained by thinking about that evidence
directly. There is very little empirical evidence to support this claim. Although
incentives can sometimes reduce careless responses, monetary payoffs are nei-
ther necessary nor sufficient for careful judgment. In fact, there is evidence
showing that people are sometimes willing to incur monetary losses in order
to report what they believe [12]. Personally, we find that questions about bet-
ting do not help us think about the evidence; instead they divert our minds to
extraneous questions: our attitudes towards the monetary and social conse-
quences of winning or losing a bet, our assessment of the ability and knowledge
of our opponent, etc.

Bayesian Syntax. It follows from our understanding of the canonical
examples of the Bayesian language that this language’s syntax is the tra-
ditional probability calculus. A proposition that a person knows to be false
is assigned probability zero. A proposition that a person knows to be true
is assigned probability one. And in general probabilities add: if A and B are
incompatible propositions, then P (A or B) = P (A) + P (B).

The conditional probability of A given B is, by definition,

P (A | B) =
P (A and B)

P (B)
. (1)

If B1, . . . , B2 are incompatible propositions, one of which must be true, then
the rule of total probability says that

P (A) =
n∑

j=1

P (Bj)P (A | Bj), (2)

and Bayes’s theorem says that

P (Bi | A) =
P (Bi)P (A | Bi)
n∑
j=1

P (Bj)P (A | Bj)
. (3)

As we shall see in Sect. 3, both total-evidence and conditioning designs can use
the concept of conditional probability. Total-evidence designs often use (2),
while conditioning designs use (I). Some conditioning designs can be described
in terms of (3).

2.2 The Language of Belief Functions

The language of belief functions uses the calculus of mathematical probability,
but in a different way than the Bayesian language does. Whereas the Bayesian
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language asks, in effect, that we think in terms of a chance model for the facts
in which we are interested, the belief-function language asks that we think in
terms of a chance model for, the reliability and meaning of our evidence.

This can be put more precisely by saying that the belief-function language
compares evidence to canonical examples of the following sort. We know a
chance experiment has been carried out. We know that the possible outcomes
of the experiment are o1, . . . , on. and that the chance of oi is pi We are not
told the actual outcome but we receive a message concerning another topic
that can be fully interpreted only with knowledge of the actual outcome. For
each i there is a proposition Ai, say, such that if we knew the actual outcome
was oi then we would see that the meaning of the message is Ai, We have
no other evidence about the truth or falsehood of the Ai and so no reason to
change the probabilities pi.

What degrees of belief are called for in an example of this sort? How
strongly should be believe a particular proposition of A?

For each proposition A, set m(A) =
∑
{pi | Ai = A}. This number is

the total of the chances for outcomes that would show the message to mean
A; we can think of it as the total chance that the message means A. Now
let Bel(A) denote the total chance that the message implies A; in symbols,
Bel(A) =

∑
{m(B) | B implies A}. It is natural to call Bel(A) our degree of

belief in A.
We call a function Bel a belief function if it is given by the above equation

for some choice of m(A). By varying the pi and the Ai in our story of the
uncertain message, we can obtain any such values for the m(A), and so the
story provides canonical examples for every belief function.

We call the propositions A for which m(A) > 0 the focal elements of
the belief function Bel. Often the most economical way of specifying a belief
function is to specify its focal elements and their “m-values.”

Semantics for Belief Functions. We have based our canonical examples for
belief functions on a fairly vague story: We receive a message and we see,
somehow, that if oi were the true outcome of the random experiment, then
the message would mean Ai. One task of semantics for belief functions is to
flesh out the story in ways that help us compare real problems to it. Here
we shall give three ways of fleshing out the story. The first leads to canoni-
cal examples for a small class of belief functions, called simple support func-
tions. The second leads to canonical examples for a larger class, the consonant
support functions. The third leads to canonical examples for arbitrary belief
functions.

(i) A Sometimes Reliable Truth Machine. Imagine a machine that has two
modes of operation. We know that in the first mode it broadcasts truths. But
we are completely unable to predict what it will do when it is in the Second
mode. We also know that the choice of which mode the machine will operate
in on a particular occasion is made by chance: There is a chance s that it will
operate in the first mode and a chance 1− s that it will operate in the second
mode.
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It is natural to say of a message broadcast by such a machine on a particu-
lar occasion that it has a chance s of meaning what it says and a chance 1− s
of meaning nothing at all. So if the machine broadcasts the message that E is
true, then we are in the setting of our general story: The two modes of opera-
tion for the machine are the two outcomes o1 and o2 of a random experiment;
their chances are p1 = s and p2 = 1 − s; if o1 happened then the message
means A1 = E, while if o2 happened the message means nothing beyond what
we already know, i.e., it means A2 = Θ, where Θ denotes the proposition that
asserts the facts we already know. So we obtain a belief function with focal
elements E and θ; m(E) = s and m(Θ) = 1− s.

We call such a belief function a simple support function. Notice its non-
additivity: the two complementary propositions E and not E have degrees of
belief Bel(E) = s < 1 and Bel(not E) = 0.

It is natural to use simple support functions in cases where the message of
the evidence is clear but where the reliability of this message is in question.
The testimony of a witness, for example, may be unambiguous, and yet we
may have some doubt about the witness’s reliability. We can express this
doubt by comparing the witness to a truth machine that is less than certain
to operate correctly.

(ii) A Two-Stage Truth Machine. Consider a sometimes reliable truth
machine that broadcasts two messages in succession and can slip into its
untrustworthy mode before either message. It remains in the untrustworthy
mode once it has slipped into it. As before, we know nothing about whether or
how often it will be truthful when it is in this mode. We know the chances that
it will slip into its untrustworthy mode: r1 is the chance it will be in untrust-
worthy mode with the initial message, and r2 is the chance it will slip into
untrustworthy mode after the first message, given that it was in trustworthy
mode then.

Suppose the messages received are E1 and E2. and suppose these messages
are consistent with each other. Then there is a chance (1−r1)(1−r2) that the
message “E1 and E2” is reliable, a chance (1 − r1)r2 that the message “E1”
alone is reliable, and a chance r1 that neither of the messages is reliable. If
we set

p1 = (1− r1)(1− r2), A1 = E1&E2,

p2 = (1− r1)r2, A2 = E1,

p3 = r1, A3 = Θ,

then we are in the setting of our general story: there is a chance pi that the
messages mean Ai.

Notice that A1, A2, and A3 are “nested”: A1 implies A2, and A2 implies A3.
In general, we call a belief function with nested focal elements a consonant
support function. It is natural to use consonant support functions in cases
where our evidence consists of an argument with several steps; each step leads
to a more specific conclusion but involves a new chance of error.
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(iii) A Randomly Coded Message. Suppose someone chooses a code at
random from a list of codes, uses the chosen code to encode a message, and
then sends us the results. We know the list of codes and the chance of each
code being chosen—say the list is o1,. . . , on, and the chance of oi being chosen
is pi. We decode the message using each of the codes and we find that this
always produces an intelligible message. Let Ai denote the message we get
when we decode using oi. Then we have the ingredients for a belief function:
a message that has the chance pi of meaning Ai.

Since the randomly coded message is more abstract than the sometimes
reliable truth machine, it lends itself less readily to comparison with real
evidence. But it provides a readily understandable canonical example for an
arbitrary belief function. (For other scales of canonical examples for belief
functions, see [11] and [28].)

Syntax for Belief Functions. Our task, when we assess evidence in the
language of belief functions, is to compare that evidence to examples where
the meaning of a message depends on chance and to single out from these
examples the one that best matches it in weight and significance. How do
we do this? In complicated problems we cannot simply look at our evi-
dence holistically and write down the best values for the m(A). The the-
ory of belief functions provides, therefore, a set of rules for constructing
complicated belief functions from more elementary judgments. These rules,
which ultimately derive from the traditional probability calculus, consti-
tute the syntax of the language of belief functions. They include rules
for combination, conditioning, extension, conditional embedding, and
discounting.

The most important of these rules is Dempster’s rule of combination. This
is a formal rule for combining a belief function constructed on the basis of one
item of evidence with a belief function constructed on the basis of another,
intuitively independent item of evidence so as to obtain a belief function rep-
resenting the total evidence. It permits us to break down the task of judgment
by decomposing the evidence.

Dempster’s rule is obtained by thinking of the chances that affect the
meaning or reliability of the messages provided by different sources of evi-
dence as independent. Consider, for example, two independent witnesses who
are compared to sometimes reliable truth machines with reliabilities s1 and
s2 respectively. If the chances affecting their testimonies are independent,
then there is a chance s1s2 that both will give trustworthy testimony, and
a chance s1 + s2 − s1s2 that at least one will. If both testify to the truth
of A, then we can take s1 + s2 − s1s2 as our degree of belief in A. If,
on the other hand, the first witness testifies for A and the second testifies
against A, then we know that not both witnesses are trustworthy, and so
we consider the conditional chance that the first witness is trustworthy given
that not both are: s1(1 − s2)/(1 − s1s2), and we take this as our degree
of belief in A. For further information on the rules for belief functions, see
Shafer [19, 22].
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3 Bayesian Design

We have already distinguished two kinds of Bayesian designs: total-evidence
designs, in which all one’s probability judgments are based on the total evi-
dence, and conditioning designs, in which some of the evidence is taken into
account by conditioning. In this Sect. we will study these broad categories
and consider some other possibilities for Bayesian design.

3.1 Total-Evidence Designs

There are many kinds of probability judgments a total-evidence design might
use, for there are many mathematical conditions that can help determine
a probability distribution. We can specify quantities such as probabilities,
conditional probabilities and expectations, and we can impose conditions such
as independence, exchangeability, and partial exchangeability. Spetzler and
Stael von Holstein [25], Alpert and Raiffa [1], and Goldstein [8] discuss total-
evidence designs for the construction of probability distributions for unknown
quantities. Here we discuss total-evidence designs for a few simple problems.

Two Total-Evidence Designs for the Free-Style Race. The Bayesian design
for the free-style race suggested by our discussion in Sect. 1.2 above is an exam-
ple of a total-evidence design based on a causal model. This design involves
six possibilities:

A1 = Curt maintains the pace and wins.
A2 = Curt maintains the pace but loses.
A3 = Curt soon slows down but still wins.
A4 = Curt soon slows down and loses.
A5 = Curt collapses at the end but still wins.
A6 = Curt collapses at the end and loses.

The person who made the analysis (the story was reconstructed from actual
experience) was primarily interested in the proposition

A = {A1 or A3 or A5} = Curt wins,

but her insight into the matter was based on her understanding of the causal
structure of the swim race. In order to make the probability judgment P (A),
she first made the judgments P (Bi) and P (A | Bi), where

B1 = {A1 or A2} = Curt maintains his pace,
B2 = {A3 or A4} = Curt soon slows down,
B3 = {A5 or A6} = Curt collapses near the end,

and she then calculated P (A) using the rule of total probability—in this case,
the formula



358 G. Shafer and A. Tversky

P (A) = P (B1)P (A | B1) + P (B2)P (A | B2) + P (B3)P (A | B3). (4)

She did this qualitatively at the time, but she offers, in retrospect, the quan-
titative judgments indicated in Table 1. These numbers yield P (A) = .87
by (4).

This example brings out the fact that the value of a design depends on the
experience and understanding of the person carrying out the mental exper-
iment. For someone who lacked our analyst’s experience in swimming and
her familiarity with Curt Langley’s record, the design (4) would be worthless.
Such a person might find some other Bayesian design useful, or he/she might
find all Bayesian designs difficult to apply.

Though it is correct to call the design we have just studied a total-evidence
design, there is a sense in which its effectiveness does depend on the fact that
it allows us to decompose our evidence. The question of what the next event
in a causal sequence is likely to be is often relatively easy to answer precisely
because only a small part of our evidence bears on it. When we try to decide
whether Curt will still win if he slows down, i.e., when we assess P (A | B2)—
we are able to leave aside our evidence about Curt and focus on how likely
Cowan is to maintain his own pace.

Here is another total-evidence design for the free-style race, one which
combines the causal model with a more explicit judgment that Cowan’s abil-
ity is independent of Curt’s behavior and ability. We assess probabilities for
whether Curt will (a) maintain his pace, (b) slow down, but less than 3%,
(c) slow down more than 3%, or (d) collapse. (Whether Curt slows down
3% is significant because this is how much he would have to slow down for
Cowan to catch him without speeding up.) We assess probabilities for whether
Cowan (a) can speed up significantly, (b) can only maintain his pace, (c) can-
not maintain his pace. We judge that these two questions are independent.
And finally, we assess the probability that Curt will win under each of the
4× 3 = 12 hypotheses about what Curt will do and what Cowan can do.

Table 2 shows the results of carrying out this design. The numbers in
the vertical margin are our probability judgments about Curt, those in the
horizontal margin are our probability judgments about Cowan, and those in
the cells are our assessments of the conditional probability that Curt will win.
These numbers lead to an overall probability of (.85× .10× .5) + (.85× .70×
1.0) + · · · ≈ .88 that Curt will win.

Our judgments about Cowan are based on our general knowledge about
swimmers in the league. The numbers .10, .70, and .20 reflect our impression
that perhaps 20% of these swimmers are forced to slow down in the second

Table 1. Component judgments for the first total-evidence design

P (B1) = .8 P (A | B1) = .95
P (B2) = .15 P (A | B2) = .5
P (B3) = .05 P (A | B3) = .7
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Table 2. Component judgments for the second total-evidence design

Cowan

Can speed up Can only main- Cannot main-
significantly tain pace tain pace
.10 .70 .20

Curt
Maintains pace .85 0.5 1.0 1.0
Slows less than 3% .03 0.2 1.0 1.0
Slows 3% or more .07 0.0 0.0 0.5
Collapses .05 0.2 0.7 0.8

half of a 1650-yard race and that only 10% would have the reserves of energy
needed to speed up. We are, in effect, thinking of Cowan as having been chosen
at random from this population. We are also judging that Curt’s training and
strategy are independent of this random choice. Curt’s training has probably
been influenced mainly by the prospect of the championships. We doubt that
Cowan’s ability and personality are well enough known to Curt to have caused
him to choose a fast start as a strategy in this particular race.

When we compare the design and analysis of Table 2 with the design we
carried out earlier, we see that we have profited from the new design’s focus
on our evidence about Cowan. We feel that the force and significance of this
evidence is now more clearly defined for us. On the other hand, we are less
comfortable with the conditional probability judgments in the cells of Table 2;
some of these seem to be pure speculation rather than assessments of evidence.

Total-Evidence Designs Based on Frequency Semantics. In the two designs
we have just considered the breakdown into probabilities and conditional prob-
abilities was partly determined by a causal model. In designs that depend more
heavily on frequency semantics, this breakdown depends more on the way our
knowledge of past instances is organized.

Consider, for example, the problem of deciding what is wrong when an
automobile fails to start. If a mechanic were asked to consider the possible
causes for this failure, he might first list the major systems that could be at
fault (fuel system, ignition system, etc.), and then list more specific possible
defects within each system. This would result in a “fault tree” that could
be used to construct probabilities. The steps in the tree would not have a
causal interpretation, but the tree would correspond, presumably, to the way
the mechanic’s memory of the frequencies of similar problems is organized.
Fischhoff, Slovic, and Lichtenstein [7] have studied the problem of designing
fault trees so as to make them as effective and unbiased as possible.

Here is another simple example based on an anecdote reported by Kah-
neman and Tversky [10]. An expert undertakes to estimate how long it will
take to complete a certain project. He does this by comparing the project
to similar past projects. And he organizes his effort to remember relevant
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information about these past projects into two steps: First he asks how often
such projects were completed, and then he asks how long the ones that were
completed tended to take. If he focuses on a particular probability judgment—
“the probability that our project will be finished within 7 years” say—then he
asks first how frequently such projects are completed and then how frequently
projects that are completed take less than 7 years.

Why does the expert use this two-step design? Presumably because it
facilitates his mental sampling of past instances. It is easier for the expert to
thoroughly sample past projects he has been familiar with if he limits himself
to asking as he goes only whether they were completed. He can then come back
to the completed projects and attack the more difficult task of remembering
how long they took.

The emphasis in this example is on personal memory. The lesson of the
example applies, however, even when we are aided by written or electronic
records. In any case, the excellence of a design depends in part on how the
information accessible to us is organized.

3.2 Conditioning Designs

Bayesian conditioning designs can be divided into two classes: observational
designs and partitioning designs. In observational designs, the evidence to be
taken into account by conditioning is deliberately obtained after probabilities
are constructed. In partitioning designs, we begin our process of probability
judgment with all our evidence in hand, but we partition this evidence into
“old evidence” and “new evidence,” assess probabilities on the basis of the
old evidence alone; and then condition on the new evidence.

It should be stressed that a conditioning design always involves two steps:
constructing a probability distribution and conditioning it. The name “condi-
tioning design” focuses our attention on the second step, but the first is more
difficult. An essential part of any conditioning design is a subsidiary design
specifying how the distribution to be conditioned is to be constructed. This
subsidiary design may well be a total-evidence design.

Likelihood-Based Conditioning Designs. Bayesian authors often emphasize
the use of Bayes’s theorem. Bayes’s theorem, we recall, says that if B1, ..., Bn
are incompatible propositions, one of which must be true, then

P (Bi | A) =
P (Bi)P (A | Bi)
n∑
j=i

P (Bj)P (A | Bj)
. (5)

If A represents evidence we want to take into account, and if we are able to
make the probability judgments on the right hand side of (5) while leaving
this evidence out of account, then we can use (5) to calculate a probability
for Bi.

When we use Bayes’s theorem in this simple way, we are carrying out a
conditioning design. Leaving aside the “new evidence” A, we use the “old
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evidence” to make probability judgments P (Bi) and P (A | Bi). Making these
judgments amounts to constructing a probability distribution. We then condi-
tion this distribution on A. Formula (5) is simply a convenient way to calculate
the resulting conditional probability of Bi.

This is a particular kind of conditioning design. The subsidiary design that
we are using to construct the probability distribution to be conditioned is a
total-evidence design that just happens to focus on the probabilities P (Bi) and
P (A | Bi), where A is the new evidence and the Bi are the propositions whose
final probabilities interest us. Since the conditional probabilities P (A | Bi) are
called “likelihoods,” we may call this kind of conditioning design a likelihood-
based conditioning design.

Both observational and partitioning designs may be likelihood-based.
Bayesian theory has traditionally emphasized likelihood-based conditioning
designs, and they will also be emphasized in this section. At the end of the
section, however, we will give an example of a conditioning design that is not
likelihood-based.

A Likelihood-Based Observational Design: The Search for Scorpion. The
successful search for the remains of the submarine Scorpion, as reported by
Richardson and Stone [17], provides an excellent sample of a likelihood-based
observational design. The search was conducted from June to October, 1968,
in an area about 20 miles square located 400 miles southwest of the Azores.
The submarine was found on October 28.

Naval experts began their probability calculations by using a causal model
to construct a probability distribution for the location of the lost subma-
rine. They developed nine scenarios for the events attending the disaster and
assigned probabilities to those scenarios. They then combined these probabil-
ities with conditional probabilities representing uncertainties in the subma-
rine’s course, speed, and initial position to produce a probability distribution
for its final location on the ocean floor. They did not attempt to construct
this probability distribution for the final location in continuous form. Instead,
they imposed a grid over the search area with cells about one square mile
in size and used their probabilities and conditional probabilities in a Monte
Carlo simulation to estimate the probability of Scorpion being in each of
these approximately 400 cells. They then used these probabilities to plan the
search: The cells with the greatest probability of containing Scorpion were to
be searched first.

Searching a cell meant towing through the cell near the ocean bottom
a platform upon which were mounted cameras, magnetometers, and sonars.
The naval experts assessed the probability that this equipment would detect
Scorpion if Scorpion were in the cell searched. So when they searched a cell
and conditioned on the fact that Scorpion was not found there, they were, in
effect, using a likelihood-based conditioning design to assess new probabilities
for its location.

This example is typical of likelihood-based observational designs. The
probabilities required by the design were subjective judgments, not known
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objective probabilities. (The assessed likelihood of detecting Scorpion when
searching the cell where it was located turned out, for example, to be over
optimistic.) But these judgments were made before the observation on which
the experts conditioned was made. In fact, these judgments were the basis
of deciding which of several possible observations to make, i.e., which cell to
search.

A Likelihood-Based Partitioning Design: The Hominids of East Turkana.
Let us now turn back to Walker and Leakey’s discussion of the number of
species of hominids in East Turkana one and a half million years ago. They
begin, we recall, by taking for granted a classification of the hominids into
three types: the “robust” type I, the “gracile” type II, and Homo erectus,
type III. They were interested in five hypotheses as to how many distinct
species these three types represent:

B1 = One species.
B2 = Two species, one composed of I (male) and II (female).
B3 = Two species, one composed of III (male) and II (female).
B4 = Two species, one composed of I and III.
B5 = Three species.

We summarized the evidence they brought to bear on the problem under five
headings:

(i). A theoretical argument for B1.
(ii). Skepticism about such disparate types as I and III being variants of the

same species.
(iii). Skepticism about the degree of sexual dimorphism postulated by B2

and B3.
(iv). Absence of type I specimens among the type III specimens in the Far

East.
(v). Absence of type II specimens among the type III specimens in the Far

East.

How might we assess this evidence in the Bayesian language?
Partitioning design seems to hold more promise in this problem than total-

evidence design. Except for items (i) and possibly (ii), the evidence cannot be
interpreted as an understanding of causes that generate the truth, and hence
there is little prospect for a total-evidence design using propensity semantics.
We also lack the experience with similar problems that would be required for
a successful total-evidence design using frequency semantics. And since it is
the diversity of the evidence that complicates probability judgments in the
problem, a design that decomposes the evidence seems attractive.

Which of the items of evidence shall we classify as old evidence and
which as new? The obvious move is to classify (i) as old evidence and to
treat (ii)–(v), taken together, as our new evidence A. This means we will
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need to assess probabilities, P (B1), ..., P (B5) and conditional probabilities,
P (A | B1), ..., P (A | B5) and calculate P (Bi | A), by (5). The apparent com-
plexity of (5) is lessened if we divide it by the corresponding expression for
Bj , obtaining

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

P (A | Bi)
P (A | Bj)

(6)

or
P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

L(A | Bi : Bj), (7)

where L(A | Bi : Bj) = P (A | Bi)/P (A | Bj) is called the likelihood ratio
favoring Bi over Bj .

Expression (7) represents a real simplification of the design. Since the
probabilities P (B1 | A), ..., P (B5 | A) must add to one, they are completely
determined by their ratios, P (Bi | A)/P (Bj | A). Therefore, (7) tells us that
it is not necessary to assess the likelihoods, P (A | Bi) and P (A | Bj). It is
sufficient to assess their ratios, L(A | Bi : Bj) [6].

One further elaboration of this design seems useful. Our new evidence A
can be thought of as a conjunction: A = A1 and A2, where A1 is the event
that types I, II and III should be so disparate (items of evidence (ii) and (iii))
and A2 is the event that specimens of types I and II should not be found along
with the type III specimens in the Far East (items of evidence (iv) and (v)).
The two events A1 and A2 seem to involve independent uncertainties, and
this can be expressed in Bayesian terms by saying that they are independent
events conditional on any one of the five hypotheses:

P (A | Bi) = P (A1 | Bi)P (A2 | Bi).

Substituting this into (6), we obtain

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

P (A1 | Bi)P (A2 | Bi)
P (A1 | Bj)P (A2 | Bj)

or

P (Bi | A)
P (Bj | A)

=
P (Bi)
P (Bj)

L(A1 | Bi : Bj)L(A2 | Bi : Bj).

We are not, of course, qualified to make the probability judgments called
for by this design; it is a design for experts like Walker and Leakey, not a
design for laymen. (If we ourselves had to make probability judgments about
the validity of Walker and Leakey’s opinions, we would need a design that
analyzes our own evidence. This consists of their article itself, which provides
internal evidence as to the integrity and the cogency of their thought, our
knowledge of the standards of Scientific American, etc.) It will be instructive,
nonetheless, to put ourselves in the shoes of Walker and Leakey and to carry
out the design on the basis of the qualitative judgments they make in their
article. As we shall see, there are several difficulties.
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The first difficulty is in determining the prior probabilities P (Bi) on the
basis of the evidence (i) alone. This evidence is an argument for B1 and
so evaluation of it can justify a probability P (B1), say P (B1) = .75. But
how do we divide the remaining .25 among the other Bi? This is a typical
problem in Bayesian design. In the absence of relevant evidence, we are forced
to depend on symmetries, even though the available symmetries may seem
artificial and conflicting. In this case, one symmetry suggests equal division
among B2, B3, B4, B5 while another symmetry suggest equal division between
the hypothesis of two species (B2, B3, B4) and the hypothesis of three species
(B5). The P (Bi) given in Table 3 represent a compromise.

Now consider A1, the argument that the different types must represent
three distinct species because of their diversity. Our design asks us, in effect,
to assess how much less likely this diversity would be under the one-species
hypothesis and under the various two-species hypotheses. Answers to these
questions are given in the column of Table 3 labeled “L(A1 | Bi : B5).” These
numbers reflect the great implausibility of the intraspecies diversity postulated
by B1 and B4, the marginal acceptability of the degree of sexual dimorphism
postulated by B2, and the implausibility, especially in the putative ancestor
of Homo sapiens, of the sexual dimorphism postulated by B3. Notice how
fortunate it is that we are required to assess only the likelihood ratios, L(A1 |
Bi : B5) = P (A1 | Bi)/P (A1 | B5) and not, say, the absolute likelihood
P (A1 | B5). We can think about how much less likely the observed disparity
among the three groups would be if they represented fewer than three species,
but we would be totally at sea if asked to assess the unconditional chance of
this degree of disparity among three extinct hominid species.

Finally, consider A2, the absence of specimens of type I or II among the
abundant specimens of type III in the Far East. This absence would seem
much less likely if I or II were forms of the same species as III than if they
were not, say 100 times less likely. This is the figure used in Table 3. Notice
again that we are spared the well-nigh meaningless task of assessing absolute
likelihoods.

As the last column of Table 3 shows, the total evidence gives a fairly high
degree of support to B5, the hypothesis that there are three distinct species.
This is Walker and Leakey’s conclusion.

How good an analysis is this? There seems to be two problems with it.
First, we lack good grounds for some of the prior probability judgments.

Table 3. Component judgments for the likelihood-based partitioning design

P (Bj) L(A1 | Bj : B5) L(A2 | Bj : B5) P (Bj | A)

B1 .70 .01 .01 .00060
B2 .05 .50 1.00 .19983
B3 .05 .05 .01 .00020
B4 .05 .01 .01 .00004
B5 .10 1.00 1.00 .79933
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Second, the interpretation of the likelihoods seems strained. Are we really
judging that the observed difference between I and III is 100 times more likely
if they are separate species than if they are variants of the same species? Or
are we getting this measure of the strength of this argument for separate
species in some other way?

We should remark that it is a general feature of likelihood-based parti-
tioning designs that only likelihood ratios need be assessed. In likelihood-
based observational designs, on the other hand, we do usually need to assess
absolute likelihoods. This is because in an observational design we must be
prepared to condition on any of the possible observations. If, for example,
the possible observations are A and not A, then we need to have in hand
both L(A | Bi : Bj) = P (A | Bi)/P (A | Bj) and L(not A | Bi : Bj) =
P (not A | Bi)/P (not A | Bj). Since P (A | Bi) + P (not A | Bi) = P (A |
Bj) + P (not A | Bj) = 1, these likelihood ratios fully determine the absolute
likelihoods P (A | Bi) and P (A | Bj).

The Choice of New Evidence. Traditionally, Bayesian statistical theory
has been concerned with what we have called likelihood-based observational
designs. This is because the theory has been based on the idea of a statistical
experiment. It is assumed that one knows in advance an “observation space”—
the set of possible outcomes of the experiment—and a “parameter space”—
the set of possible answers to certain questions of substantive interest. One
assesses in advance both prior probabilities for the parameters and likelihoods
for the observations.

Many statistical problems do conform to this picture. The search for Scor-
pion, discussed earlier, is one example. But Bayesians and other statisticians
have gradually extended their concerns from the realm of planned experi-
ments, where parameter and observation spaces are clearly defined before
observations are made, to the broader field of “data analysis.” In data anal-
ysis, the examination of data often precedes the framing of hypotheses and
“observations.” This means that the Bayesian data analyst will often use par-
titioning designs rather than genuine observational designs.

We believe that Bayesian statistical theory will better meet the needs of
statistical practice if it will go beyond observational designs and deal explic-
itly with partitioning designs. In particular, we need more discussion of prin-
ciples for the selection of evidence that is to be treated as new evidence.
In the example of the hominids, we treated certain arguments as new evi-
dence because we could find better grounds for probability judgment when
thinking of the likelihood of their arising than when thinking about them
as conditions affecting the likelihood of other events. In other cases, we may
single out evidence because its psychological salience can give it excessive
weight in total-evidence judgments. By putting such salient evidence in the
role of new evidence in a partitioning design, we gain an opportunity to make
probability judgments based on the other evidence alone. (Cf. [25], p. 346
and [14], Chap. 3.) We need more discussion of such principles, and more
examples.
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A Partitioning Design that is not Likelihood-Based. Here is a problem that
suggests a partitioning design that is not likelihood-based. Gracchus is accused
of murdering Maevius. Maevius’s death brought him a great and sorely needed
financial gain, but it appears that Maevius and Gracchus were good friends,
and our assessment of Gracchus’s character suggests only a slight possibility
that the prospect of gain would have been sufficient motive for him to murder
Maevius. On the other hand, some evidence has come to light to suggest that
beneath the apparent friendship Gracchus actually felt a simmering hatred for
Maevius, and Gracchus is known to be capable of violent behavior towards
people he feels have wronged him. The means to commit the murder is not at
issue: Gracchus or anyone else could have easily committed it. But we think
it very unlikely that anyone else had reason to kill Maevius.

Our partitioning design uses the fact of Maevius’s murder as the new
evidence. We consider the propositions:

H = Gracchus hated Maevius,
GI = Gracchus intended to kill Maevius,
SI = Someone else intended to kill Maevius,

GM = Gracchus murdered Maevius,
SM = Someone else murdered Maevius,
NM = No one murdered Maevius.

Using the old evidence alone, we make the following probability judgments:
P (H) = .2, P (GI | H) = .2, P (GI | not H) = .01;
P (SI) = .001, SI is independent of GI ;
P (GM |GI & SI) = .4, P (SM | GI & SI)= .4, P (NM |GI & SI) = .2;
P (GM |GI & not SI)= .8, P (NM |GI & not SI) = .2;
P (SM |SI & not GI)= .8, P (NM |SI & not GI) = .2;

P (NM | not GI & not SI) = 1.

Combining these judgments, we obtain

P (GI) = P (GI | H)P (H) + P (GI | not H)P (not H)
= (.2)(.2) + (.8)(.01) = .048

P (GM) = P (GM | not GI)P (not GI) + P (GM | GI & SI)P (GI)P (SI)
+ P (GM | GI & not SI)P (GI)P (not SI)

= (0)(.952) + (.4)(.048)(.001) + (.8)(.048)(.999) = .03838.

Similarly,
P (SM) = .00078 and P (NM) = .96084.

Finally we bring in the new evidence—the fact that Maevius was murdered.
We find a probability

P (GM | not NM) =
.03838

.03838 + .00078
= .98

that Gracchus did it.
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One interesting aspect of this example is the fact that the “new evidence”—
the fact that Maevius was murdered—is actually obtained before much of the
other evidence. Only after Maevius’s death would we have gathered the evi-
dence against Gracchus.

3.3 Other Bayesian Designs

What other Bayesian designs are possible in addition to total-evidence and
conditioning design?

A large class of possible designs is suggested by the following general idea.
Suppose one part of our evidence lends itself to a certain design d, while the
remainder of our evidence does not fit this design, but seems instead relevant
to some of the judgments specified by a different design d′. Then we might
first construct a distribution Po using d and considering only the first part of
the evidence, and then switch to d′, using the total evidence to make those
judgments for which the second part of the evidence is relevant and obtaining
the other judgments from Po.

An interesting special case occurs when the total evidence is used only
to construct probabilities p1, ..., pn for a set of mutually incompatible and
collectively exhaustive propositions A1, ..., An, and the final distribution P is
determined by setting P (Ai) = pi and P (B | Ai) = Po(B | Ai) for all B. Since
such designs were considered by Jeffrey [9], we may call them Jeffrey designs.

Here is an example of a Jeffrey design. Gracchus is accused of murdering
Maevius and the evidence against him is the same as in the preceding example,
except that it is not certain that Maevius has been murdered. Perhaps Maevius
has disappeared after having been seen walking along a sea cliff. We partition
our evidence into two bodies of evidence—the evidence that was used in the
probability analysis above, and the other evidence that suggests Maevius may
have been murdered. We use the first body of evidence to make the analysis
of the preceding section, obtaining the probabilities obtained there: a proba-
bility of .03838 that Gracchus murdered Maevius, a probability of .00078 that
someone else did, and a probability of .96084 that no one did. We label this
probability distribution Po. Then we use the total evidence to assess directly
whether we think Maevius has been murdered or not. Say we assess the proba-
bility of Maevius’s having been murdered at .95. We then obtain a conditional
probability from Po : Po(Graccus did it|Maevius was murdered) ≈ .98. The
final result is a probability of .95 × .98 ≈ .93 for the event that Gracchus
murdered Maevius. For further examples of Jeffrey designs, see [21] and [4].

4 Belief-Function Design

Belief-function design differs from Bayesian design in that it puts more explicit
emphasis on the decomposition of evidence. As we have seen, total-evidence
designs are basic to the Bayesian language. (Even conditioning and Jeffrey
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designs must have subsidiary designs for the construction of initial distribu-
tions, and these subsidiary designs are usually total-evidence designs.) These
total-evidence designs break down the task of judgment by asking us to answer
several different questions. It is a contingent matter whether different items
of evidence bear on these different questions, though this seems to be the case
with the most effective total-evidence designs. The belief-function language,
on the other hand, since it directly models the meaning and reliability of evi-
dence, breaks down the task of judgment by considering different items of
evidence. It is a contingent matter whether these different items of evidence
bear on relatively separate and restricted aspects of the questions that interest
us, but again, as we shall see, this seems to be the case with the most effective
belief-function designs.

Here we shall explore the possibilities for belief-function design for Curt’s
swim race and Walker and Leakey’s hominids. For further examples of belief-
function design, see [20, 21, 23, 22].

4.1 The Free-Style Race

The second of the two Bayesian total-evidence designs that we gave for the
free-style race (Sect. 3.1) was based on independent judgments about Curt
and Cowan. We gave Curt an 85% chance of maintaining his pace, a 3%
chance of slowing less than 3%, a 7% chance of slowing more than 3%, and a
5% chance of collapsing. And we gave Cowan a 10% chance of being able to
speed up, a 70% chance of only being able to maintain his pace, and a 20%
chance of being unable to maintain his pace. Since we were using the Bayesian
language, we compared our evidence to knowledge that the evolution of the
race actually was governed by these chances. It is equally convincing, however,
to interpret these numbers within the language of belief functions. We compare
our knowledge about Curt to a message that has an 85% chance of meaning
that he will maintain his pace, etc., and we compare our knowledge about
Cowan to a message that has a 70% chance of meaning that he can only
maintain his pace, etc.

Formally, we have a belief function Bel1 that assigns degrees of belief .85,
.03, .07, and .05 to the four hypotheses about Curt, and a second belief func-
tion Bel2 that assigns degrees of belief .10, .70, and .20 to the three hypotheses
about Cowan. Judging that our evidence about Curt is independent of our
evidence about Cowan, we combine these by Dempster’s rule. If no further
evidence is added to the analysis, then our resulting degree of belief that Curt
will win will be our degree of belief that Curt will maintain his pace or slow
less than 3% while Cowan is unable to speed up: (.85+ .03)(.70+ .20) = .792.
And our degree of belief that Cowan will win will be our degree of belief that
Curt will slow 3% or more and Cowan will be able to at least maintain his
pace: (.07)(.10 + .70) = .056.

These conclusions are weaker than the conclusions of the Bayesian analysis.
This is principally due to the fact that we are not claiming to have evidence
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about what will happen in the cases where our descriptions of Curt’s and
Cowan’s behavior do not determine the outcome of the race. If we did feel we
had such evidence, it could be introduced into the belief-function analysis.

We can also relax the additivity of the degrees of belief about Curt and
Cowan that go into the belief-function analysis. Suppose, for example, that
we feel our evidence about Curt justifies only an 85% degree of belief that he
will maintain his pace, but we do not feel we have any positive reason to think
he will slow down or collapse. In this case, we can replace the additive degrees
of belief .85, .03, .07, and .05 with a simple support function that assigns only
degree of belief .85 to the proposition that Curt will maintain his pace. If we
retain the additive degrees of belief .10, .70, and .20 for Cowan’s behavior,
this leads to a degree of belief (.85)(.70 + .20) = .765 that Curt will win and
a degree of belief zero that Cowan will win.

As this example illustrates, a belief-function design can be based on a
causal structure like those used in Bayesian total-evidence designs. The belief-
function design must, however, go beyond this causal structure to an explicit
specification of the evidence that bears on its different parts.

4.2 The Hominids of East Turkana

Recall that Walker and Leakey considered five hypotheses:

B1 = One species.
B2 = Two species, one composed of I (male) and II (female).
B3 = Two species, one composed of III (male) and II (female).
B4 = Two species, one composed of I and III.
B5 = Three species.

In our Bayesian analysis in Sect. 3.2, we partitioned the evidence into three
intuitively independent arguments:

1. A theoretical argument for B1.
2. An argument that the three types are too diverse not to be distinct species.

This argument bears most strongly against B1 and B4, but also carries
considerable weight against B3 and some weight against B2.

3. The fact that neither I nor II specimens have been found among the III
specimens in the Far East. This provides evidence against hypotheses B1,
B3, and B4.

Let us represent each of these arguments by a belief function. Making roughly
the same judgments as in the Bayesian analysis, we have

1. Bel1, with m1(B1) = .75 and m1(Θ) = .25,
2. Bel2, with m2(B5) = .5, m2(B2 or B5) = .45, m2(B2 or B3 or B4) = .04,

and m2(Θ) = .01, and
3. Bel3, with m3(B2 or B5) = .99 and m3(Θ) = .01.
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Combining these by Dempster’s rule, we obtain a belief function Bel with
m(B5) = .4998, m(B2 or B5) = .4994, m(B2 or B4 or B5) = .0004, m(B1) =
.0003, and m(Θ) = .0001. This belief function gives fair support to B5 and
overwhelming support to B2 or B5: Bel(B5) = .4998 and Bel(B2 or B5) =
.9992.

These belief-function results can be compared to the Bayesian results of
Sect. 3.2, where we obtained P (B5) = .7993 and P (B2 or B5) = .9992. The
different results for B5 can be attributed to the different treatments of the first
item of evidence, the argument against coexistence of hominid species. In the
belief-function analysis, we treated this argument simply by giving B1 a 75%
degree of support. In the Bayesian analysis, we had to go farther and divide the
remaining 25% among the other four hypotheses. The belief-function analysis,
while it reaches basically the same conclusion as the Bayesian argument, can
be regarded as a stronger argument, since it is based on slightly more modest
assumptions.

5 The Nature of Probability Judgment

We have suggested that probability judgment is a kind of mental experiment.
Sometimes it is like a statistician’s thought experiment, as when we search,
in our mind or on a bookshelf, for examples on which to base a frequency
judgment. Sometimes it is more like a physicist’s thought experiment, as when
we try to trace the consequences of an imagined situation.

Probability judgment is a process of construction rather than elicitation.
People may begin a task of probability judgment with some beliefs already for-
mulated. But the process of judgment, when successful, gives greater content
and structure to these beliefs and tends to render initial beliefs obsolete. It is
useful, in this respect, to draw an analogy between probability and affective
notions such as love and loyalty. A declaration of love is not simply a report
on a person’s emotions. It is also part of a process whereby an intellectual and
emotional commitment is created; so too with probability.

A probability judgment depends not just on the evidence on which it is
based, but also on the process of exploring that evidence. The act of design-
ing a probability analysis usually involves reflection about what evidence is
available and a sharpening of our definition of that evidence. And the imple-
mentation of a design involves many contingencies. The probability judgments
we make may depend on just what examples we sampled from our memory
or other records, or just what details we happen to focus on as we examine
the possibility of various scenarios [26].

It may be helpful to point out that we do not use the word “evidence” as
many philosophers do—to refer to a proposition in a formal language. Instead,
we use it in a way that is much closer to ordinary English usage. We refer to
“our evidence about Cowan’s abilities,” to “our memory as to how frequently
similar projects are completed,” or to “the argument that distinct hominid
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species cannot coexist.” The references are, as it were, ostensive definitions of
bodies of evidence. They point to the evidence in question without translating
it into statements of fact in some language. This seems appropriate, for in all
these cases the evidence involves arguments and claims that would fall short
of being accepted as statements of fact.

Evidence, as we use the word, is the raw material from which judgments,
both of probability and of fact, are made. Evidence can be distinguished in
this respect from information. Information can be thought of as answers to
questions already asked, and hence we can speak of the quantity of informa-
tion, which is measured by the number of these questions that are answered.
Evidence, in contrast, refers to a potential for answering questions. We can
speak of the weight of evidence as it bears on a particular question, but it
does not seem useful to speak of the quantity of evidence.

Though we have directed attention to the notion of mental experimen-
tation, we want also to emphasize that when an individual undertakes to
make a probability judgment that individual is not necessarily limited to the
resources of memory and imagination. He or she may also use paper, pencils,
books, files, and computers. And an individual need not necessarily limit his
or her sampling experiments to haphazard search of memory and personal
bookshelves. The individual may wish to extend sampling to a large-scale
survey, conducted with the aid of randomization techniques.

There is sometimes a tendency to define human probability judgment
narrowly—to focus on judgments people make without external aids. But
it may not be sensible to try to draw a line between internal and external
resources. Psychologists who wish to offer a comprehensible analysis of human
judgment should, as Ward Edwards [5] has argued, take into account the
fact that humans are tool-using creatures. Moreover, statisticians and other
practical users of probability need to recognize the continuity between appar-
ently subjective judgments and supposedly objective statistical techniques.
The concept of design that we have developed in this paper is meant to apply
both to probability analyses that use sophisticated technical aids and to those
that are made wholly in our heads. We believe that the selection of a good
design for a particular question is a researchable problem with both technical
and judgmental aspects. The design and analysis of mental experiments for
probability judgment therefore represents a challenge to both statisticians and
psychologists.
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A Set-Theoretic View of Belief Functions

Logical Operations and Approximations by Fuzzy Sets∗

Didier Dubois and Henri Prade

Abstract. A body of evidence in the sense of Shafer can be viewed as an extension
of a probability measure, but as a generalized set as well. In this paper we adopt the
second point of view and study the algebraic structure of bodies of evidence on a set,
based on extended set union, intersection and complementation. Several notions of
inclusion are exhibited and compared to each other. Inclusion is used to compare a
body of evidence to the product of its projections. Lastly, approximations of a body
of evidence under the form of fuzzy sets are derived, in order to squeeze plausibility
values between two grades of possibility. Through all the paper, it is pointed out that
a body of evidence can account for conjunctive as well as a disjunctive information,
i.e. the focal elements can be viewed either as sets of actual values or as restrictions
on the (unique) value of a variable.

Key words: Theory of evidence, Possibility measure, Fuzzy set, Knowledge
representation

Introduction

The framework of plausibility and credibility (or belief) functions[24] or,
equivalently that of the random sets[19] encompasses both probability the-
ory and possibility theory[7, 38]. It is now acknowledged that fuzzy sets[35]
viewed as possibility distributions, are, using Shafer’s terminology, contour
functions of consonant belief functions[4, 17] or in the terminology of ran-
dom sets, one-point coverages of random sets[13, 22, 28]. In a recent paper[25]
Shafer carefully examines the rules of calculation of fuzzy sets and possibil-
ity measures as opposed to their counterparts for belief functions. It turns
out that the main difference lies in the use of Dempster rule for combining
belief functions versus fuzzy set-intersection for combining possibility mea-
sures. Dempster rule applied to the combination of possibility measures does
∗ This paper is based on a presentation at the 1st IFSA Conference, held in Palma

de Mallorca, Spain, July 1–6, 1985.
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not yield a possibility measure while a fuzzy set-intersection does. This paper
is a contribution to the debate between possibility measures and belief func-
tions. First, combination rules for belief functions in the spirit of Dempster
rule are described; they are counterparts of fuzzy set-theoretic union, comple-
mentation, products and projection. This set-theoretic view of belief functions
points out the fundamental identity of both approaches to combining. Next,
an extensive study of the concept of inclusion of bodies of evidence is carried
out. Four definitions are proposed and compared. The existence of two antag-
onistic points of view on bodies of evidence is stressed and it brings some
light to discriminate between definitions of inclusion. The following section is
devoted to projections and products of belief functions, and the links between
a body of evidence and the product of its projections. Lastly the problem of
approximating belief functions by consonant bodies of evidence is considered,
and best approximations, which squeeze a plausibility measure between two
possibility measures, are calculated.

1 Shafer’s Theory of Evidence Revisited

In this section, basic notions are introduced in a concise manner. It borrows
from several already published works [4, 24, 25, 38] to which the reader is
referred for proofs or detailed explanations. However some new issues are
raised, especially the convexity of the set of belief functions and the difference
between conjunctive and disjunctive items of information. This last point
follows some early remarks by Zadeh[37] and a more elaborated discussion by
Yager[31] in the framework of fuzzy sets and linguistic variables. Moreover,
the allocation of a probability weight on the empty set is no longer forbidden.

1.1 Uncertainty Measures Induced by a Body of Evidence

According to Shafer[24], a body of evidence is modelled by a weighted set of
logical statements, each referring to a subset A of a frame of discernment Ω.
This frame of discernment corresponds to a point of view on a problem, and
contains the possible values of some variable x. A body of evidence supplies
information about the actual value of x (which is some element in Ω), with
the following conventions, given here in a finite setting for simplicity. Let F
be a family of subsets of Ω. A body of evidence is viewed as a pair (F ,m)
where m is a mapping from 2Ω to the unit interval such that m(A) > 0 if and
only if A ∈ F . Any element of A of F is called a focal element, because part
of the available information focuses on A. m(A) is the relative weight of the
statement “x ∈ A”, and is viewed as the share of total belief committed to this
statement exactly, and not to any other statement of the form “x ∈ B ⊂ A”.
m is called a basic assignment and satisfies the following requirement

∑

A⊆Ω

m(A) = 1 (1)
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where 1 stands for the amount of total belief. The set of bodies of evidence
on Ω is denoted as B(Ω). In Shafer’s book a basic assignment satisfies the
additional condition

m(∅) = 0 (2)

which claims that no belief should be committed to the impossible event. (2)
is a normalization condition which looks reasonable if the statement “x ∈ Ω”
is taken for granted. However in some instances one may be uncertain as to
whether Ω is definitely exhaustive, or whether assigning a value to x is ever
meaningful. For instance, if x is the age of cars belonging to some population
where some individuals may have no cars (Zadeh[42]). Such situations can
be conveniently handled by letting m(∅) > 0. See also Dubois and Prade[4],
Yager[29], Zadeh[41, 42] for further discussions. A body of evidence satisfying
(2) is said to be normal.

Viewed as an allocation of probability over subsets of Ω, a body of evidence
is also a random set[19]. However it can be equivalently represented by one of
the following set-functions

∀ A ⊆ Ω, Cr(A) =
∑

∅ �=B⊆A
m(B), (3)

∀ A ⊆ Ω, Pl(A) =
∑

B∩A �=∅

m(B), (4)

∀ A ⊆ Ω, Q(A) =
∑

A⊆B
m(B). (5)

Cr is called a belief function by Shafer[24], but we had rather call it a
credibility measure since Cr(A) gathers the pieces of evidence which support
A. Pl is called a plausibility measure since Pl(A) gathers the pieces of evidence
which make the occurrence of A possible. Pl and Cr are related through the
duality relation

∀ A, Pl (A) + Cr
(
Ā
)

= 1−m (∅) (6)

i.e. Pl(A) accounts for evidence which does not support the opposite event
Ā nor events “outside Ω” (i.e. ∅). Q is called a commonality function by
Shafer[24] and gathers pieces of evidence supported by event A. So far, its
usefulness has been purely technical. Note that

Pl (∅) = Cr (∅) = 0; Q(∅) = 1 (7)
Pl (Ω) = Cr (Ω) = 1−m (∅) ; Q (Ω) = m (Ω) . (8)

When m(∅) = 0, Shafer[24] has proved that Cr is order-n superadditive
∀ n ∈ N. This property still holds when m(∅) > 0, for Cr +m(∅), hence for
Cr too. Then the basic assignment is still expressed in terms of the credibility
measures as

∀ A,m (A) =
∑

B⊆A
(−1)[A−B] (Cr(B) +m(∅)) =

∑

B⊆A
(−1)|A−B|Cr(B) (9)
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where |A−B| is the cardinality of the set-difference A−B. See Shafer[24] for
other inversion formulae (Pl in terms of Q, etc.. . .). Pl and Cr are monotonic
increasing with respect to set-inclusion, while Q is monotonic decreasing. As
a consequence of (6), Pl is subadditive, which reads at order n:

Pl (A1 ∩A2 . . . ∩An) �
∑

I ⊆ {1, . . . , n}
I 	= ∅

(−1)|I|+1 Pl

(
⋃

i∈I
Ai

)
. (10)

The set of plausibility measures on Ω is isomorphic to B(Ω) and has an
interesting structure. Namely it is a convex set since the convex combina-
tion

∑n
i=1 αi · Pli of subadditive functions Pli is subadditive too. The coef-

ficients αi are such that
∑n
i=1 αi = 1, αi � 0, ∀ i. The plausibility measure

Pl =
∑n
i=1 αi · Pli is called a mixture. Let (Fi,m) be the body of evidence

associated with Pli. Then, that associated with Pl is (F ,m) such that

F =
⋃

i=1,n

Fi; ∀ A ⊆ Ω,m (A) =
n∑

i=1

αimi (A) .

The same remark holds for credibility measures. Let B+(Ω) be the set of
normal bodies of evidence. Clearly B+(Ω) is a convex subset of B(Ω).

1.2 Possibility, Necessity, Probability

Two extreme cases of plausibility measures can be obtained by adding con-
straints on the set of focal elements.

a) F contains only singletons, i.e. ∀ A ∈ F , ∃ ω ∈ A, A = {ω}. This occurs
if and only if Cr = Pl and is a probability measure P. m is a probability
assignment in the usual sense (P ({ω}) = m({ω})).
The set functions Pl and Cr can be viewed as upper and lower probabilities

(Dempster[1]) since any probability measure P generated from (F ,m) by the
following allocation procedure

i) ∀ A ∈ F choose ωA ∈ A
ii) set P ({ω}) =

∑
ωA=ω

m(A), ∀ ω ∈ Ω

satisfies the following inequalities:

∀ A,Cr(A) � P (A) � Pl (A) (11)

when (F ,m) is normal.
Dempster[1] has proved that the set of probability measures satisfying (11)

is convex and is the convex closure of the set of probability measures obtained
by the procedure (i)–(ii).
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b) F contains only a nested sequence of subsets E1 ⊆ E2 . . . ⊆ Ep. It occurs
if and only if ∀ A,B ⊆ Ω

Cr (A ∩B) = min (Cr (A) ,Cr (B)) (12)
Pl (A ∪B) = min (Pl (A) ,Pl (B)) . (13)

Cr is called a consonant belief function by Shafer[24] and Pl a possibility
measure by Zadeh[38]. A possibility measure is denoted Π, and the duality
relationship (6) justifies the name of “necessity measure”[2] for consonant
belief functions. They are also called certainty measures by Zadeh[40], and
shall be denoted N in the following.

The set π(Ω) of possibility measures is not convex. Indeed if F and F ′ both
define nested sequences, then generally F ∪ F ′ does not, so that αΠ + (1 −
α)Π′ is not always a possibility measure. A possibility measure Π such that
∀ A,Π(A) ∈ {0, 1} is called a crisp possibility measure. Any crisp possibility
measure derives from a unique focal element which is a subset E of Ω, i.e. (F =
{E}).

These two extreme cases of bodies of evidence correspond to precise but
scattered pieces of uncertain information (Case (a)) and imprecise but conso-
nant pieces of information (Case (b)). The nature of the relevant uncertainty
measure (possibility or probability) is dictated by the structure of the avail-
able body of evidence. Generally a body of evidence is neither consonant
nor precise. A body of evidence (F ,m) is said to be consistent if and only
if

⋂
A∈F A 	= ∅. This condition is weaker than the consonant constraint of

nested focal elements, but still expresses some agreement between the various
statements which form the body of evidence.

The following result indicates that in some sense probability measures and
possibility measures are the basic concepts in the theory of evidence:

Proposition 1. Any plausibility measure other than a possibility or a proba-
bility measure is a convex combination of a probability measure and possibility
measures which are not Dirac functions.

Proof. For any subset A of Ω, denote ΠA the possibility measure such that
{A} is its set of focal elements. Let Pl be a plausibility measure. Then (4)
also reads

Pl (A) =
∑

B⊆Ω

m (B) ·ΠB (A) .

Now if B is a singleton, then ΠB is a Dirac function, so that the plausibility
measure defined by

P (A) =

∑
|B|=1

m (B) · ΠB (A)

∑
|B|=1

m (B)

is a probability measure when it exists. Q.E.D.
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As a consequence, if we identify the set of crisp possibility measures with
2Ω, the set of subsets of Ω, through the bijection A "→ ΠA such that m(A) = 1,
the set B(Ω) can be viewed as the convex hull of 2Ω, while the set P(Ω) of
probability measures is the convex hull of the subset of singletons of Ω.

1.3 Possibility Measures as Fuzzy Sets

A possibility or a probability measure is entirely characterized by the set
{Pl({ω})|ω ∈ Ω}; Pl({ω}) is the one-point coverage function, in terms of
random sets[13] and is called a contour function by Shafer[24]. In the case of
probability measures, Pl({ω}) = P ({ω}) and ∀ A, Pl(A) =

∑
ω∈A Pl({ω}).

In case of a possibility measure

Π (A) = max
ω∈A

Π({ω}) ; N(A) = min
ω∈Ā

1−Π({ω}) . (14)

When Π(Ω) = 1, we have maxω∈Ω Π({ω}) = 1.
In the following, Ω = {ω1, . . . , ωn} has n elements, P ({ωi}) is denoted pi,

and Π({ωi}) is denoted πi, for the sake of simplicity. When Π has values only
in {0,1}, the function μF : Ω "→ [0, 1] defined by

μF (ωi) = πi (15)

is the characteristic function of a set. In the general case it is the membership
function of a fuzzy set[35] F .

Let Fα={ω|μF (ω) � α} be the α-cut of F . When Ω is finite the set {Fα|α∈
[0, 1]} of α-cuts is finite, and it is proved[4] that it is the set of focal elements of
the possibility measure such that μF (ω) = Π({ω}). More specifically assume
π1 = 1 � π2 � · · · � πn � πn+1 = 0 and let Ai = {ω1, . . . , ωi}. Then the
basic assignment m is defined in terms of the πi’s by:[4]

{
m(A) = 0 if 	 ∃ i : A = Ai

m (Ai) = πi − πi+1

. (16)

In the general case, Pl({ω}) may still be interpreted as the membership
grade of ω in a fuzzy set F . However the knowledge of {Pl({ω})|ω ∈ Ω} is not
enough to recover the body of evidence (F ,m). Moreover F is not always a
normalized fuzzy set. Namely, even if (F ,m) is normal,

∃ ω : Pl ({ω}) = 1 if and only if (F ,m) is consistent.

Moreover when Pl is a probability measure, it rather corresponds to the idea of
a fuzzy point,[16] since the grade of complete membership (1) is shared among
the singletons in that case. The characterization of plausibility measures Pl
such that ∀ ω, Pl({ω}) = μF (ω), given μF , is done by Goodman[13] in the
setting of random sets.
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1.4 Disjunctive versus Conjunctive Evidence

In the preceding paragraphs, a set is viewed as restricting the possible values
of a variable x, and these values are supposedly mutually exclusive. Similarly
fuzzy sets are viewed as fuzzy restrictions[36]. There is another view of sets,
as containing values which are actually taken by x. This point of view is
considered by Yager[31] in terms of linguistic variables and by Prade and
Testemale[21] in the framework of fuzzy relational databases. In the first case
variables are single-valued and the body of evidence is said to be disjunctive.
In the second case, variables are multiple-valued, and the body of evidence
is said to be conjunctive. The difference between conjunctive and disjunctive
fuzzy sets has been pointed out by Zadeh[37].

Example 1. “John is tall ” means that John’s height is some number restricted
by the fuzzy set “tall”.

“John stayed in Paris from 1980 to 1984” means that {1980, 1981, 1982,
1983, 1984} is a set of years when John actually stayed in Paris.

In the case of conjunctive knowledge, ∀ B ⊆ A, if “x = A” is true then
“x = B” is also true, so that the entailment principle[39] works backwards
(Yager[31]). As a consequence, the quantity Q(A), i.e. the commonality num-
ber, defined by (5), is the actual grade of credibility of “x = A” in the case
of a conjunctive body of evidence, instead of Cr(A), as pointed out by Zadeh.
Notice that, for singletons the identity

Q ({ω}) = Pl ({ω}) (17)

holds, and moreover if F is consonant then, equivalently

∀ A,B,Q (A ∪B) = min (Q (A) , Q (B)) . (18)

In the consonant case, {Q({ω})|ω ∈ Ω} also characterizes the body of
evidence and

∀ A,Q (A) = min
ω∈A

Q ({ω}) . (19)

In the conjunctive context, the membership function μF defined by (15)
is no longer viewed as a possibility distribution, but what could be termed
as a “necessity” or “certainty” distribution since μF (ωi) = Q({ωi}) is now
the grade of certainty that ωi is a value of x. The grade of possibility is then
defined by

φ (A) = 1−Q
(
Ā
)

= max
ω �∈A

1− μF (ω) . (20)

Note that when F is such that there are at least two elements ω′ and ω′′ such
that μF (ω′) = μF (ω′′) = 0, then ∀ ω, φ({ω}) = 1. Indeed μF (ω) = 0 does
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not forbid ω as a value of x but only let this statement be contingent (total
uncertainty). In other words “x = A” means that x takes at least all values
in A. Lastly note that from (19) and (20)

φ (A) = ΠF̄

(
Ā
)
, Q (A) = 1−ΠF̄ (A) = NF̄

(
Ā
)

(21)

where ΠF̄ is the possibility measure where the underlying possibility distri-
bution is the membership function of the complement F̄ of F , i.e. 1− μF .

The notion of conjunctive versus disjunctive types of information seems to
be an important issue in knowledge representation, and is encountered in the
next section, as a by-product.

2 Set-Theoretic Operations on Bodies of Evidence

Dempster[1] has introduced a rule of combination for two disjunctive nor-
malized bodies of evidence (F1,m1), (F2,m2), consistently with Bayes rule of
conditioning. It reads:

∀ A ⊆ Ω, (m1 ∩m2) (A) =
∑

B∩C=A

m1 (B) ·m2 (C) (22)

∀ A ⊆ Ω,m (A) =
(m1 ∩m2) (A)

1− ({m1 ∩m2}) ∅
. (23)

Equation (22) can be justified in statistical terms on the basis of the inde-
pendence of the sources which provide (F1,m1) and (F2,m2). Equation (23)
underlies a complete reliability of these sources, and is a normalization tech-
nique. The term (m1 ∩m2)(∅) reflects the amount of dissonance between the
sources, and is eliminated. Equation (22) can be viewed as performing the
intersection of independent random sets[4, 13].

Contrastedly, if Π1 and Π2 are two possibility measures, with possibility
distributions π1 = μF1

, π2 = μF2
, a possibility measure Π12 can be obtained

from the possibility distribution π12 = μF1∩F2
where the fuzzy set-theoretic

intersection is defined by a triangular norm[8, 23]:

π12 = π1 ∗ π2. (24)

The main candidates for ∗ are a∗b = min(a, b); a ·b; max(0, a+b−1).[2, 8]
Assuming the complete reliability of the sources leads to normalize π12 into

∀ ω, π (ω) =
π1 (ω) ∗ π2 (ω)

max
ω∈Ω

π1 (ω) ∗ π2 (ω)
. (25)

(24) and (25) are possibilistic counterparts of (22) and (23) respectively.
It was pointed[4] that if Π1 and Π2 are combined via (22) what is obtained

is generally not a possibility measure. This is because when F1 and F2 are
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consonant, the set F1∩2 = {A∩B|A ∈ F1, B ∈ F2} is generally not consonant.
Besides, using (22) yields a not necessarily normalized plausibility function
Pl12 where[4]:

Pl12 ({ω}) = π1 (ω) · π2 (ω) (26)

which is a particular instance of (24) where ∗ is the product. Hence Dempster
rule is closely related to a fuzzy set intersection. But generally

Pl12 (A) � Π12 (A) = max
ω∈A

π1 (ω) · π2 (ω) (27)

i.e. Π12 is more informative than Pl12.
The set of combination operations for fuzzy sets is richer than for bod-

ies of evidence since all connectives of propositional logic can be extended
to the combination of fuzzy sets and this extension is not unique. Strangely
enough counterparts of set-union, set-complementation, etc.. . .have not been
considered for bodies of evidence, but in the mathematical literature of ran-
dom sets[12, 14].

In the following, these connectives are defined at an elementary level1, thus
casting Dempster rule in a set-theoretic framework, and enriching the set of
combination rules. This view of plausibility measures reflects the standpoint of
logic and contrasts with the measure-theoretic view which Dempster had when
he introduced his concept of upper and lower probabilities and expectations.

2.1 The Union of Bodies of Evidence

The union of two bodies of evidence (F1,m1) and (F2,m2) on Ω is defined,
in the spirit of (22)–(23) by the basic assignment m1 ∪m2 such that

∀ A ⊆ Ω, (m1 ∪m2) (A) =
∑

B∪C=A

m1 (B) ·m2 (C) . (28)

Note that (28) is (22) where ∩ is changed into ∪. While the intersection of
two bodies of evidence only keeps the items of information asserted by both
sources, the union does not reject anything. Especially if m1(∅) = m2(∅) = 0,
it is easy to check that (m1 ∪m2)(∅) = 0, i.e. the union does not generate
any conflict, and the normalization step (23) is useless here. The resulting set
of focal elements is indeed F1∪2 = {A ∪B | A ∈ F1, A ∈ F2}.

The union of two bodies of evidence is more easily performed via the
credibility measure since:

Proposition 2. Let Cr1 ∪ Cr2 be the credibility measure associated with
m1 ∪m2. Then ∀ A ⊆ Ω, (Cr1 ∪Cr2)(A) = Cr1(A) ·Cr2(A).

1 During the course of the investigation whose results are reported here, we became
aware of similar attempts by Yager[32] and Oblow[20].
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Proof.

(Cr1 ∪ Cr2) (A) =
∑

∅ �=B∪C⊆A
m1 (B) ·m2 (C)

=
∑

∅ �=B⊆A
m1 (B)

⎛

⎝
∑

∅ �=C⊆A
m2 (C)

⎞

⎠ . Q.E.D.

Notice that in the case of intersection of bodies of evidence, the counterpart
of Proposition 2 holds for the commonality numbers only, since, as noted by
Shafer[24], (22) implies

(Q1 ∩Q2) (A) = Q1 (A) ·Q2 (A) . (29)

The notion of conjunctive and disjunctive knowledge can shed light on
these properties, if we recall, following Yager[31], that in the presence of con-
junctive information, “x = A or x = B” translates into x = A∩B and “x = A
and x = B” translates into “x = A ∪B”.

Example 2. John stayed in Paris from 1980 till 1982 and from 1982 till 1984
is equivalent to “John stayed in Paris from 1980 till 1984”.

But if we happen to know from two sources that he stayed in Paris from
1980 till 1983 or from 1981 till 1984, then the only sure resulting item of
information is that he stayed in Paris from 1981 till 1983.

Now, if we remember that the commonality numbers play, for a conjunctive
body of evidence, the same role as the credibility degrees in a disjunctive body
of evidence, it is clear that (29) is the mirror image of Proposition 2, and
achieves an “or” of two conjunctive bodies of evidence.

As a consequence of (29) and Proposition 2, the union and intersection of
bodies of evidence are commutative and associative. If we denote by Ω (resp.:
∅) the body of evidence such that m(Ω) = 1 (resp.: m(∅) = 1), that is,
total ignorance (resp.: the null value “not applicable”) for variable x in the
disjunctive interpretation, we have

∀ m,m ∩ Ω = m; m ∪∅ = m. (30)

Now, applying (22) and (28) on subsets A of Ω, i.e. m(A) = 1, we recover the
usual set-intersection and union in 2Ω. But these operations are not idempo-
tent on B(Ω). Indeed, Proposition 2 and (29) lead to

∀ ω ∈ Ω, (Pl1 ∩ Pl2) ({ω}) = Pl1 ({ω}) · Pl2 ({ω}) (31)
(Pl1 ∪ Pl2) ({ω}) = Pl1 ({ω}) + Pl2 ({ω})− Pl1 ({ω}) · Pl2 ({ω}) .

(32)

Note that the intersection and the union in B(Ω) are not stable on the subset
of possibility measures. This is because if F1 and F2 are consonant, then gen-
erally neither F1∩2 nor F1∪2 are. But (32) as (31), correspond to well known
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fuzzy set-theoretic operations. The set of probability measures is not closed
under the union operation, since P1∪P2 corresponds to a set of focal elements
some of which are 2-element sets. Strictly speaking, the closure property does
not hold for intersection since the intersection of two probability measures is
no longer normalized (the intersection of singletons is generally empty!). The
closure property is recovered through normalization (23) i.e. using Dempster
rule as a whole.

Lastly the union of two consistent bodies of evidence is consistent while
their intersection may no longer be so.

2.2 Complement of a Body of Evidence

The complement of a body of evidence (F ,m) is (�F , m̄) defined by

∀ A ⊆ Ω, m̄ (A) = m
(
Ā
)

(33)

so that �F = {Ā|A ∈ F}. This complementation is formally involutive. More-
over the union and intersection satisfy De-Morgan laws since

∀ (m1 ∪m2) (A) = (m1 ∪m2)
(
Ā
)

=
∑

B∪C=Ā

m1 (B) ·m2 (C)

=
∑

B̄∩C̄=A

m̄1

(
B̄
)
· m̄2

(
C̄
)

= (m̄1 ∩ m̄2) (A) .

It is easy to see that (33) reduces to usual set complementation when
m(A) = 1. Moreover if F is consonant, then �F is also consonant, so that
(33) also reduces to fuzzy set complementation when applied to a possibility
measure, i.e. the set of possibility measures is closed under complementation.
But the set of probability measures is not for |Ω| > 2 since all focal elements
in �F then contain |Ω| − 1 elements.
B(Ω) is not a Boolean algebra. Indeed union and intersection are not

idempotent. Moreover the laws of contradiction and excluded middle are not
valid, i.e.

for m ∈ B (Ω)− 2Ω, generally m ∩ m̄ 	= ∅; m ∪ m̄ 	= Ω.

Actually it can be checked that (m ∩ m̄)(∅) > 0, (m ∪ m̄)(Ω) > 0 which
expresses that these laws somewhat hold. If F = {A,B} then �F = {Ā, B̄}
and (m ∩ m̄)(A ∩ B̄) > 0, (m ∪ m̄)(A ∪ B̄) > 0, etc. . ..

Hence B(Ω) has the same algebraic structure as the set of fuzzy subsets of
Ω, [0, 1]Ω, under the product, probabilistic sum, and usual complementation
of fuzzy sets, i.e.

μF∩G (ω) = μF (ω) · μG (ω)
μF∪G (ω) = μF (ω) + μG (ω)− μF (ω)μG (ω)

μF̄ (ω) = 1− μF (ω) .
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Moreover these fuzzy set-theoretic operations are consistent with set-theoretic
operations in B(Ω), under independence assumption, up to stability of π(Ω).

An interesting feature of complementation in B(Ω) is that it turns a dis-
junctive body of evidence into a conjunctive one. To see it consider the simple
case F = {A}, and A restricts the possible values of x. Then Ā is a set of val-
ues which are forbidden for x. Let x̄ be the variable which takes values which
x does not take. It is clear that A ⊆ x (x takes at least all values in A) is
equivalent to x is A (the value of x is restricted by A). In the general case, the
same transformation occurs, and any focal element Ā ∈�F is a set of values
which x certainly does not take (with weight m(A)). This transformation in
the nature of evidence provides some explanation of the following property.

Proposition 3. Let Q̄ be the commonality function associated with the com-
plement (�F , m̄) of a disjunctive body of evidence (F ,m). Then

∀ A,Cr (A) = Q̄
(
Ā
)
−m (∅) .

Proof.
∑

∅ �=B⊆A
m (B) =

∑

Ā⊆B̄ �=Ω

m̄
(
B̄
)

= Q̄
(
Ā
)
− m̄ (Ω) . Q.E.D.

This result stresses that Cr andQ play the same role in each type of knowledge,
disjunctive and conjunctive respectively.

An important remark is that, reciprocally, the complement of a conjunc-
tive body of evidence is not a disjunctive body of evidence in the sense defined
in this paper. To see it, consider the case of the conjunctive statement ‘A ⊆ x’,
then, defining x̄ as above, all we know about x̄ is that any subset of Ā is a
possible conjunctive set of values for x̄, so that the knowledge about x̄ is a
possibility distribution on 2Ā, say π, such that ∀ B ⊆ Ā, π(B) = 1 means
B is a possible set of values for x̄ (i.e. x possibly does not take any value
in B). Hence π defines disjunctive knowledge over 2Ā. The usual disjunctive
information is recovered as a particular case, setting π(B) = 1 if and only
if B is a singleton in Ā and 0 otherwise. This type of higher-order disjunc-
tive information is not a mere game of the mind; it is often encountered in
data-bases with multiple-valued attributes, when one wishes to represent the
possible sets of tongues spoken by an individual, for instance (see Prade and
Testemale[21]).

These remarks weaken the apparent strength of the involution property of
the complementation operation in B(Ω).

2.3 Inclusions

Concepts of inclusion can also be introduced on B(Ω). Given a normal body
of evidence (F ,m), the interval [Cr(A), Pl(A)] can be viewed as the range
of the probability of A induced by the lack of precision of the focal elements
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(see 1.2.). In other words, the body of evidence F defines a (convex) set of
probability measures on Ω, say C(F).

A normal body of evidence (F ,m) can be viewed as included in (F ′, m′)
as soon as C(F) ⊆ C(F ′). In terms of the plausibility and credibility measures
(Pl, Cr) and (Pl′,Cr′), this is equivalent to:

∀ A ∈ Ω, [Cr (A) ,Pl (A)] ⊆
[
Cr′ (A) ,Pl′ (A)

]
. (34)

We shall write (F ,m) ⊆ (F ′,m′) when (34) holds true. (34) reduces to (11)
when Cr = Pl = a probability measure. Note that because Cr(A) = 1−Pl(Ā),
any of the following inequalities is equivalent to (34):

Cr (A) � Cr′ (A) , ∀ A ∈ Ω, (35)
Pl (A) � Pl′ (A)∀ A ∈ Ω. (36)

Disjunctive and Conjunctive Inclusions

The definition of inclusion can be extended from B+(Ω) to B(Ω), taking (36)
as the actual definition. Note that (35) is not equivalent to (36) for bodies
of evidence which are not normal. Indeed, in the general case, (36) is equiva-
lent to:

Cr (A) +m (∅) � Cr′ (A) +m′ (∅) , ∀ A ∈ Ω

due to the definitions of Cr and Pl. (36) induces some relationships between
the respective contents of F and F ′ such that (F ,m) ⊆ (F ′,m′). In the
following the core (resp.: support) of (F ,m) is the intersection (resp.: union)
of focal elements and denoted C(F) (resp.: S(F)). The following necessary
condition for inclusion relationship is noticeable:

Proposition 4. If, (F ,m) ⊆ (F ′,m′) then

i) S(F) ⊆ S(F ′); C(F) ⊆ C(F ′),
ii) ∀ A′ ⊆ F ′, ∃A ∈ F , A ⊆ A′.

Proof. ∀ ω, Pl({ω}) = 1 if and only if ω ∈ C(F). From (36) if ω ∈ C(F) then
Pl({ω}) = 1 = Pl′({ω}); hence ω ∈ C(F ′). Besides ∀ ω, Pl({ω}) > 0 ⇔ ω ∈
S(F). From (36) if ω ∈ S(F) then 0 < Pl({ω}) � Pl′({ω}); hence ω ∈ S(F ′).
To prove (ii), let A′ ∈ F ′ contain no focal element in F . Then

Pl
(
Ā′) = 1 > 1−m′ (A′) � Pl′

(
Ā′)

which contradicts (36). Q.E.D.

Conditions on the relative structure of (F ,m) and (F ′,m′) which would
be necessary and sufficient to ensure (F ,m) ⊆ (F ′,m′) seem to be difficult to
produce. Inclusion ⊆ has natural properties such as transitivity, and mutual
inclusion implies equality (since Cr determines m). Notice also that
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(F ,m) ∩ (F ′,m′) ⊆ (F ,m) ⊆ (F ,m) ∪ (F ′,m′) . (37)

For instance
(
Pl ∩ Pl′

)
(A) =

∑

B∩B′∩A �=∅

m (B) ·m′ (B′)

=
∑

B∩A �=∅

m (B) ·

⎛

⎝
∑

B∩B′∩A �=∅

m′ (B′)

⎞

⎠ � Pl (A) .

The other inclusion in (37) can be obtained in a similar way.
If (F ,m) and (F ′,m′) both generate possibility measures with possibility

distributions π = μF and π′ = μF ′ , then

(F ,m) ⊆ (F ′,m′)⇔ F ⊆ F ′ (i.e. μF � μF
′). (38)

That is, the inclusion of bodies of evidence is completely consistent with
Zadeh’s[35] inclusion of fuzzy sets, hence with the usual inclusion in 2Ω.
To see it just notice that if (F ,m) ⊆ (F ′,m′) then, as a particular case
of (36), Pl({ω}) = μF (ω) � Pl′({ω}) = μF ′(ω). Conversely if F ⊆ F ′ then
Pl(A) = max{μF (ω)|ω ∈ A} � Pl′(A) = max{μF ′(ω) | ω ∈ A}.

More surprising, and a disquieting fact at first glance, is that the comple-
mentation introduced in 2.2. is not order-reversing for ⊆. To see it first notice
that due to Proposition 3

∀ A,Pl (A) � Pl′ (A) ⇔ ∀ A, Q̄ (A) � Q̄′ (A) (39)

where Q̄ and Q̄′ are the commonality functions of the complementary bodies
of evidence (�F , m̄), (�F ′, m̄′) respectively. Moreover (F ,m) ⊆ (F ′,m′) does
not imply any inequality between Q and Q′, as proved by the following:

Counter-example 1 Let

Ω = {a, b, c} , 0 < k <
1
2
.

F = {{a} ,Ω} ;m ({a}) = 1− k,m (Ω) = k.

F ′ = {{a, b} , {a, c}} ;m′ ({a, b}) = k,m′ ({a, c}) = 1− k.

Then the reader can check that (F ,m) ⊆ (F ′,m′); especially ∀ A 	=
{b}, {c},∅, Pl′(A) = 1 and Pl({b}) = Pl′({b}) = k, Pl({c}) = k < Pl′({c}) =
1 − k. But Q({c}) = k < Q′({c}) = 1 − k, Q({b, c}) = k > Q′({b, c}) = 0.
Q.E.D.

This lack of order-reversingness should not hurt our intuition because
(36) is meaningul only for disjunctive evidence, but (�F , m̄) is conjunctive
and the grade of credibility of A deduced from (�F , m̄) is Q̄(A). But from
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(39) (�F ′, m̄′) is contained in (�F , m̄) (remember that Q is a decreasing set-
function for set-inclusion), in the sense of a new kind of inclusion, which makes
sense only for conjunctive evidence, namely ⊂ such that (F ,m)⊂(F ′,m′) if
and only if

∀ A,Q (A) � Q′ (A) . (40)

⊂ can be called ‘conjunctive inclusion’ while ⊆ is called ‘disjunctive inclusion’,
respectively abbreviated as c-inclusion and d-inclusion.

Note that c-inclusion is transitive, that mutual c-inclusion means equality
(since Q determines m as well). Moreover

(F ,m) ∩ (F ′,m′)⊂ (F ,m)⊂ (F ,m) ∪ (F ′,m′) (41)

which is simply (37) transformed by complementation. Similarly, c-inclusion
applied to possibility measures is equivalent to Zadeh’s[35] inclusion of fuzzy
sets, i.e. a counterpart of (38) holds. A necessary condition to get (40) is
given now:

Proposition 5. If (F ,m)⊂(F ′,m′) then

i) S(F) ⊆ S(F ′), C(F) ⊆ C(F ′),
ii) ∀ A ∈ F , ∃ A′ ∈ F ′, A ⊆ A′.

Proof. (i) is easily seen due to S(�F) = C(F), C(�F) = S(F) using comple-
mentation to turn ⊂ into ⊃. Now let A ∈ F be contained in no focal element
in F ′ then

Q(A) � m (A) > 0 = Q′ (A)

which contradicts (40). Q.E.D.

At this point it is natural to define a third concept of inclusion which requires
both (36) and (40) to hold:

Definition 1. (F ,m) is said to be included in (F ′,m′), denoted (F ,m) ⊂⊂
(F ′,m′) if and only if (F ,m) is both c-included and d-included in (F ′,m′).

Inclusion is transitive, mutual inclusion is equality, (37) and (38) hold for
⊂⊂. (Note that c-inclusion and d-inclusion are already equivalent for possibility
measures). Moreover the complementation is order-reversing for ⊂⊂.

Strong Inclusion

Yager[33] has introduced a fourth definition of inclusion in B(Ω), which, for
reasons to be clarified below, can be called strong inclusion, and will be
denoted ⊂⊂⊂. This concept can be presented as follows.

Definition 2. (F ,m) ⊂⊂⊂ (F ′,m′) if and only if the three following state-
ments are valid:

i) ∀ Ai ∈ F , ∃ A′
j ∈ F ′, Ai ⊆ A′

j,
ii) ∀ A′

j ∈ F ′, ∃ Ai ∈ F , Ai ⊆ A′
j,
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iii) there exists a matrix W with size m×n, m = |F|, n = |F ′|, whose entries
are Wij ∈ [0, 1] such that Wij > 0⇒ Ai ⊆ A′

j ,
∑
ijWij = 1 and the basic

assignments m and m′ can be expressed in terms of the Wij ’s as follows:

∀ Ai ∈ F ,m (Ai) =
∑

j
Ai ⊆ A′

j

Wij , (42)

∀ A′
j ∈ F ′,m′ (A′

j

)
=

∑

i
Ai ⊆ A′

j

Wij . (43)

Note that (42) and (43) look like flow conservation equations in a flow network
(Ford and Fulkerson[11]). This analogy is explained in the appendix and is
useful to make Definition 2 work. The name ‘strong inclusion’ is justified by
the following result:

Proposition 6. Strong inclusion implies inclusion i.e.

(F ,m) ⊂⊂⊂ (F ′,m′) ⇒ ∀ A,Q (A) � Q′ (A) , Pl (A) � Pl′ (A) .

The converse does not hold.

Proof. Assume (F ,m) ⊂⊂⊂ (F ′,m′).

Pl′ (B) =
∑

A′
j∩B �=∅

m′ (A′
j

)
=

∑

i,j

{
Wij |Ai ⊆ A′

j ;A
′
j ∩B 	= ∅

}

but
{
(i, j) |Ai ⊆ A′

j ;A
′
j ∩B 	= ∅

}
⊇

{
(i, j) |Ai ⊆ A′

j ;Ai ∩B 	= ∅

}

hence
Pl′ (B) � Pl (B) =

∑

i,j

{
Wij |Ai ⊆ A′

j ;Ai ∩B 	= ∅

}
.

A similar proof holds for the commonality function. Q.E.D.

That the converse does not hold is indicated by the following:

Counter-example 2 Ω = {a, b, c, d, e}. Consider the two normal bodies of
evidence:

(F ,m) = ({a, b} , 0.3) ; ({a, c} , 0.3) ; ({c, d} , 0.3) ; ({e} , 0.1)
(F ′,m′) = ({a, b, c} , 0.4) ; ({a, b, d} , 0.3) ; ({a, c, d} , 0.2) ; ({c, d, e} , 0.1) .
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To check that (F ,m) ⊆ (F ′,m′) see on Table 1. To see that no matrix W
satisfying (42)–(43) exists, it is enough to verify that the following system of
equations has no solution in [0,1]:

⎡

⎢⎢⎣

0.4 = 0.3m11 + 0.3m21 (= m′ ({a, b, c}))
0.3 = 0.3 (1−m11) (= m′ ({a, b, d})
0.2 = 0.3 (1−m21) + 0.3m33 (= m′ ({a, c, d}))
0.1 = 0.1 + 0.3 (1−m33) (= m′ ({c, d, e})) .

This system is equivalent to (42)–(43) where the Wij ’s have been changed
into Wij = m(Ai)mij , with

∑
jmij = 1, which eliminates (42). Deeper

Table 1. Counter-example 2

Events Cr(A) Cr′(A) Q(A) Q′(A)

{a} 0 0 0.6 0.9
{b} 0 0 0.3 0.7
{c} 0 0 0.6 0.7
{d} 0 0 0.3 0.6
{e} 0.1 0. 0.1 0.1
{a, b} 0.3 0 0.3 0.7
{a, c} 0.3 0 0.3 0.6
{a, d} 0 0 0 0.5
{a, e} 0.1 0 0 0
{b, c} 0 0 0 0.4
{b, d} 0. 0 0 0.3
{b, e} 0.1 0 0 0
{c, d} 0.3 0 0.3 0.3
{c, e} 0.1 0 0 0.1
{d, e} 0.1 0 0 0.1
{a, b, c} 0.6 0.4 0 0.4
{a, b, d} 0.3 0.3 0 0.3
{a, b, e} 0.4 0 0 0
{a, c, d} 0.6 0.2 0 0.2
{a, c, e} 0.4 0 0 0
{a, d, e} 0.1 0 0 0
{b, c, d} 0.3 0 0 0
{b, c, e} 0.1 0 0 0
{b, d, e} 0.1 0. 0 0
{c, d, e} 0.4 0.1 0 0.1
{a, b, c, d} 0.9 0.9 0 0
{a, b, c, e} 0.7 0.4 0 0
{a, b, d, e} 0.4 0.3 0 0
{a, c, d, e} 0.7 0.3 0 0
{b, c, d, e} 0.4 0.1 0 0

(The use of Cr or Pl to check the inclusion is indifferent
because the bodies of evidence are normal).



392 D. Dubois and H. Prade

understanding about the reasons why this system has no solution is gained in
the appendix. Q.E.D.

The nice feature of Definition 2 is that it provides a construction method
to build two bodies of evidence (F ,m) and (F ′,m′) such that one is strongly
included in the other. It may act as a sufficient condition for having inclusion
in the sense of Definition 1. Namely note that letting

F ′ (A) = {A′ ∈ F ′, A⊆A′} ; F (A′) = {A ∈ F , A ⊆ A′}
then

F =
⋃

A′∈F ′
F (A′) ; F ′ =

⋃

A∈F
F ′ (A) . (44)

Given (F ′,m′), all bodies of evidence (F ,m) ⊂⊂⊂ (F ′,m′) can be obtained
by the following procedure:

Procedure a ∀ A′
j ∈ F ′ dispatch the weight m′(A′

j) among any family
F(A′

j) of subsets of A′
j , letting Wij be the share of m′(A′

j) allocated to Ai ∈
F(A′

j).
Define F and m by (44) and (42) respectively.

Similarly, given (F ,m) all bodies of evidence (F ,m) ⊂⊂⊂ (F ′,m′) can be
obtained by the dual procedure.

Procedure b ∀ Ai ∈ F , dispatch the weightm(Ai) among any family F ′(Ai)
of supersets of Ai(F ′(Ai) ⊆ {A|Ai ⊆ A}) letting Wij be the share of m(Ai)
allocated to A′

j ∈ F ′(Ai).
Define F ′ and m′ by (44) and (43) respectively.

Note that a particular case of Procedure (a) is obtained by forcing F(A′
j)

to contain only singletons (provided that (F ′,m′) is normal). We then recover
Dempster’s[1] procedure to generate the set C(F ′) of probability measures
satisfying (11) as recalled in 1.2. Procedure (a) thus generalizes Dempster’s
procedure, but cannot produce all bodies of evidence (F ,m) satisfying (34),
as indicated in Proposition 6. Procedure (b) was first suggested by Yager[33]
who gives it as the very definition of inclusion in B(Ω).

Inclusion ⊂⊂⊂ is transitive. To see it, rewrite (42), (43) under the form

∀ A′
j ∈ F ′,m′(A′

j) =
m∑

i=1

m(Ai) ·mij

as done in the proof of Proposition 6. Let M be the matrix with coefficient
mij , m and m′ be the column vectors expressing the basic assignments. Then
using matrix notation:

m′ = Mm. (45)

Now (F ,m) ⊂⊂⊂ (F ′,m′) and (F ′,m′) ⊂⊂⊂ (F ′′,m′′) translate into m′ =
Mm,m′′ = M ′m′, whereM,M ′ belong to the classM of Markovian matrices,
i.e. with positive entries summing to 1 on each row. Hence m′′ = M ′Mm,
and thus (F ,m) ⊂⊂⊂ (F ′′,m′′) since M is closed under matrix product, and
(44) holds between F and F ′′ as is straightforwardly checked.
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Of course, mutual strong inclusion of two bodies of evidence means their
equality. Strong inclusion applied to possibility measures is consistent with
Zadeh’s inclusion of fuzzy set:

Proposition 7. If (F ,m) and (F ′,m′) are consonant then

(F ,m) ⊂⊂⊂ (F ′,m′) if and only if μF � μF ′

where μF and μF ′ are the contour functions of (F ,m) and (F ′,m′).

Proof. The difficult part is to prove that Zadeh’s inclusion of fuzzy sets implies
the existence of a matrix W satisfying (42) and (43). The proof is given
through network flow theory arguments in the appendix, which gives a con-
structive procedure to build W . Q.E.D.

Lastly⊂⊂⊂ is order-reversing in B(Ω) since Procedures (a) and (b) exchange
via complementation. Inequalities (37) hold for the strong inclusion. Note that
(i) and (ii) of Definition 2 hold between F and F ′′ = {A∪B′|A ∈ F , B′ ∈ F ′}.
Moreover define Wij = m(Ai) ·m′(B′

j) as the share of m(Ai) allocated to the
focal element Ai ∪B′

j .

Properties of B(Ω) under Inclusions

Any of the introduced inclusions equips B(Ω) with a partial ordering structure
(reflexive, transitive and weakly antisymmetric, that is xRy and yRx implies
x = y). ⊂⊂⊂ is able to compare less elements in B(Ω) than ⊂⊂, which in turn
is able to compare less elements in B(Ω) than any of ⊆ and ⊃. However on
π(Ω) = [0, 1]Ω, the set of possibility measures (or fuzzy sets), all four inclusions
collapse into Zadeh’s fuzzy set inclusion.

The greatest element in B(Ω) in the sense of any inclusion is the total
ignorance function (m(Ω) = 1) and the least element is the empty body of
evidence (m(∅) = 1). The least elements in B+(Ω), i.e. normal bodies of
evidence, are the probability measures. This is in the sense of disjunctive
inclusion ⊆. Indeed, because

∑
ω P ({ω}) = 1, probability measures are not

comparable using (34) or (35). This is consistent with the idea that prob-
ability measures are sort of ‘fuzzy points’ (Höhle[16]) for which inclusion is
meaningless (there is equality or disjointness!). Moreover given a normal body
of evidence (F ,m) any probability measure in C(F) is contained in (F ,m) in
the sense of disjunctive inclusion.

Probability measures are always interpreted in the disjunctive information
framework (an event A occurs if and only if ∃ ω ∈ A which is observed, and not
only if all ω ∈ A are observed at the same time). Hence the commonality func-
tion Q is not interesting for probabilistic bodies of evidence (Q(A) = 0 as soon
as |A| > 1). Hence probability measures have no interesting role in (B+(Ω),⊂).
However they are still the least elements in (B+(Ω),⊂⊂⊂), because any prob-
ability measure in C(F) is strongly included in (F ,m), from Dempster’s[1]
construction.
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Lastly there is an interesting convexity property related to the inclusions:

Proposition 8. The following subsets of B(Ω) are convex:

{(F ,m)|(F ,m)R(F ′,m′)}
{(F ′,m′)|(F ,m)R(F ′,m′)}

with R =⊆, ⊂, ⊂⊂, ⊂⊂⊂.

Proof. Using the definition of the convex combination of two bodies of evi-
dence (F ,m) and (G, n) i.e. α(F ,m)+(1−α) (G, n) = (F ∪G, αm+(1−α)n)
with credibility measure Cr = αCrm + (1 − α)Crn, it is obvious that Propo-
sition 8 holds for R =⊆. Now Q = αQm + (1 − α)Qn as well, so that
Proposition 8 holds for R = ⊂ and ⊂⊂. Lastly if (F ,m) and (G, n) are
strongly included in (F ′,m′) then conditions (i) and (ii) in Definition 2 hold
for F ∪ G with respect to F ′. Moreover m = Mm′ and n = Nm′ implies
αm + (1 − α)n = (αM + (1 − α)N)m′ where αM + (1 − α)N is still a
Markovian matrix consistent with the conditions (i) and (ii) in Definition 2.
Hence Proposition 8 holds for ⊂⊂⊂. Q.E.D.

2.4 Projections and Cartesian Product

In this section only normal bodies of evidence are considered.
Let (F ,m) be a body of evidence on a Cartesian product Ω = U ×V . If S

is a subset of Ω its projection on U (resp.: V ) is denoted U(S) (resp.: V (S))
and defined by

U(S) = {u ∈ U |∃ v ∈ V, (u, v) ∈ S}.

More generally the projection of (F ,m) on U is (FU ,mU ) such that
(Shafer[25])

∀ A ⊆ U,mU (A) =
∑

S:A=U(S)

m(S). (46)

It is easy to check that (FU ,mU ) induces a plausibility measure PlU on
U such that PlU (A) = Pl(A × V ), and a credibility measure CrU such that
CrU (A) = Cr(A× V ), which sounds consistent.

Proof.

Pl(A× V ) =
∑

(A×V )∩S �=∅

m(S) =
∑

A∩U(S) �=∅

m(S) � PlU (A).

Now Cr(A× V ) = 1− Pl(Ā× V ). Q.E.D.

As a consequence, if Pl is a possibility measure Π i.e. its contour function
π is a fuzzy relation on U × V, PlU is the possibility measure based on the
projection of the fuzzy relation (in the sense of Zadeh[36]), since
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πU (u) = PlU ({u}) = Π({u} × V } = sup
v∈V

π(u, v).

Conversely, given two bodies of evidence (FU , mU ) and (FV , mV ) on U
and V respectively, we can define their cylindrical extensions and define the
product of these extensions via Dempster rule (Shafer[25]). Namely, the cylin-
drical extension of (FU , mU ) is (cFU , cmU ) such that

∀ B ⊆, U, cmU (B × V ) = mU (B)

and
cmU (A) = 0 for other A ⊆ Ω = U × V.

From (FU , mU ), (FV , mV ) on U and V respectively, (F̂ , m̂) � (FU , mU )
× (FV , mV ), denotes a Cartesian product of bodies of evidence. m̂ is calcu-
lated by:

∀ A ⊆ Ω, m̂ (A) = mU (B) ·mV (C) if A = B × C

= 0 otherwise. (47)

Note that {(B,C)|A = B×C} = {(U(A), V (A))} and B×C = ∅ only if B or
C = ∅ so that Dempster rule really boils down to (47), and F̂ = {B×C|B ∈
FU , C ∈ FV }. Note that (F̂ , m̂) is always normal since (FU , mU ) and
(FV , mV ) are supposed to be so.

If (FU , mU ) and (FV , mV ) reduce to sets B and C, then their products in
the sense of (47) is their Cartesian products. (47) is however not in accordance
with Zadeh’s[36] definition of the Cartesian product of fuzzy sets since if
(FU , mU ) and (FV , mV ) are possibility measures, with contour functions
μF and μG respectively then the fuzzy Cartesian product is the possibility
measure with contour function min(μF , μG). Rather, (47) implies that (F̂ , m̂)
is generally not a fuzzy Cartesian product since it is consistent with μF ·μG, an
operation previously introduced by the authors[3]; moreover (F̂ , m̂) defines
no possibility measure, generally.

The natural thing to do is now to project (F , m) on U and V and recom-
bine their projections. One may expect some relationship between (F , m)
and (F̂ , m̂) in terms of specificity, namely that (F ,m) is included in (F̂ , m̂);
unfortunately this property does not hold as shown below.

Counter example 3 F = {S1, S2} with S1 ∩ S2 = ∅, U(S1) ∩ U(S2) =
∅, V (S1)∩ V (S2) = ∅. F̂ = {U(Si)× V (Sj)|i = 1, 2; j = 1, 2}. F̂ is made of
four disjoint focal elements.

Now since S = U(S1) × V (S2) 	∈ F , Cr(S) = 0 while Ĉr(S) = m(S1) ·
m(S2) > 0. Moreover Cr(S1 ∪ S2) = 1 while Ĉr(S1 ∪ S2) � m(S1)2 + m(S2)2

< 1 (the equality holds if S1 and S2 are Cartesian products).

More particularly, if (F , m) is a probabilistic body of evidence then (F̂ , m̂)
also generates a probability measure, and no inclusion must be expected,
relating these two bodies of evidence.
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However, if (F , m) is consonant, this relationship might be expected to
hold. The following result leaves no hope about it for the d-inclusion.

Proposition 9. Even if (F , m) is consonant, the property (F , m) ⊆ (F̂ , m̂)
does not hold.

Counter example 4 F = {S1, S2}, S1 ⊂ S2, with U(S1) 	= U(S2), V (S1) 	=
V (S2). Let α = m(S1). Hence, m̂(U(S1) × V (S1)) = α2, m̂(U(S1) ×
V (S2)) = m̂(U(S2)× V (S1)) = α(1− α), m̂(U(S2)× V (S2)) = (1 − α)2.

Now assume S is such that:

(U (S1)× V (S2)) ∪ (U (S2)× V (S1)) ⊂ S ⊂ S2

where the inclusions are strict. It is easy to figure out that such a set S may
exist. Then we have:

Cr (S) = α < Ĉr (S) = α (2− α) , ∀α < 1. Q.E.D.

Note that the c-inclusion does not hold either. Indeed assume that Si 	=
U(Si)× V (Si) for i = 1, 2 in the above counter example. Clearly,

Q (U (S1)× V (S1)) = 1− α < Q̂ (U (S1)× V (S1)) = 1

Q (S2) = 1− α > Q̂ (S2) = (1− α)2

since S2 	⊂ U (Si)× V (Sj) , i 	= j.

Proposition 9 contrasts with a well-known result in fuzzy set theory, due to
Zadeh[36]. Namely, a fuzzy relation R on U × V is included in the Cartesian
product of its projections. The inclusion turns into an equality if and only
if μR(u, v) is of the form min(μA(u)μB(v)) where A and B are fuzzy sets
on U and V respectively. In the possibilitistic case it is interesting to specify
conditions under which (F , m) = (F̂ , m̂).

First any S ∈ F must be of the form A×B. Then F ⊆ F̂ is ensured. Now
F = {Ai×Bi|i = 1, p} and F̂ = {Ai×Bj |i = 1, p, j = 1, p}. Let Ai 	= Aj and
Bi 	= Bj , then one of Ai × Bj , Aj × Bi should not be in F̂ since there is no
inclusion relationship between them. So, to preserve a nested structure in F̂
we must have ∀ i, j, Ai = Aj or ∀ i, j, Bi = Bj . Hence the following result,
stated in the case when ∃ Bi 	= Bj :

Proposition 10. If (F , m) is consonant, (F̂ , m̂) = (F , m) if and only if

∃ A ⊆ U, B1 ⊂ B2 ⊂ · · · ⊂ Bp ⊂ V

such that
F = {A×Bi|i = 1, p} .

This is equivalent to state that mU (A) = 1, i.e. the projection of (F , m)
on U is a set. So that mV (Bi) = m(Bi) ∀ i.
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In the general case, the concept of inclusion, even the weaker one proves too
strong to be able to compare (F ,m) and the product of its projections. Such
a comparison can be however carried out using the measures of uncertainty
and specificity respectively introduced by Higashi and Klir[15] and Yager[30].
Then some interesting inequalities can be obtained expressing that (F̂ , m̂) is
not more specific than (F ,m) (see Dubois and Prade[9]). Note that we may
have (F ,m) = (F̂ , m̂) in the general case, since when F is not consonant the
requirement F = F̂ does not induce the same constraints on F , as in the
consonant case.

3 Consonant Approximation of a Body of Evidence

It is easier to deal with a possibility measure or a probability measure rather
than with a general plausibility measure. The main reason is that in both
cases, the body of evidence is completely characterized by its contour function,
i.e. a probability allocation or a fuzzy set. The question of approximation of
a body of evidence by either a probability measure or a possibility measure is
thus worth considering.

3.1 The Approximation Problem

A body of evidence (F ′,m′) can be viewed as a valid substitute of (F ,m) as
soon as (F ,m) ⊆ (F ′,m′) (here we assume bodies of evidence are disjunc-
tive). This is a generalized version of Zadeh’s entailment principle[39], and
it encompasses Yager’s[33] proposal based on the strong inclusion. Moreover
the knowledge of another body of evidence (F ′′,m′′) ⊆ (F ,m) enables the
plausibility measure associated with (F ,m) to be located in an interval, i.e.

∀ A,Pl′′ (A) � Pl (A) � Pl′ (A) . (48)

A related inequality holds for the credibility function, of course. Whenever
(48) holds the pair (Pl′′, Pl′) is said to be an approximation of Pl. Pl′′ is the
lower approximation, Pl′ the upper approximation.

The approximation problem2 for bodies of evidence can then be stated
as follows: Let A be a suitable subset of B(Ω) containing ‘simple’ bodies of
evidence, in the sense that it is easy to deal with them for some reason. Given
any body of evidence (F , m) 	∈ A, find two bodies of evidence (F∗, m∗) and
(F∗, m∗) in A, upper and lower approximations of (F , m) i.e.

2 An example of this approximation methodology can be found in the recent paper
by J. Gordon and E. H. Shortliffe: “A method for managing evidential reasoning
in a hierarchical hypothesis space,” Artificial Intelligence, 26, 1985, pp. 323–357.
In this paper the authors are looking for an approximation of the result of the
combination of several bodies of evidence by means of Dempster rule because the
exact result would be too difficult to compute.
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(F∗,m∗) ⊆ (F ,m) ⊆ (F∗,m∗) . (49)

Moreover (F∗,m∗) and (F∗,m∗) should be best approximations in the follow-
ing sense: denote A+(F ,m) and A−(F ,m) the sets

A+ (F ,m) = {(F ′,m′) | (F ,m) ⊆ (F ′,m′)} ∩ A
A− (F ,m) = {(F ′′,m′′) | (F ′′,m′′) ⊆ (F ,m)} ∩ A

and let A+∗ (F ,m) (resp.: A∗−(F ,m)) be the set of minimal (resp.: maximal)
elements in A+(F ,m) (resp.: A−(F ,m)). Then we should require (F∗,m∗) ∈
A∗

−(F ,m) and (F∗,m∗) ∈ A+
∗ (F ,m).

Clearly it is meaningless to choose A as being the set P(Ω) of probability
measures because an upper approximation will never exist when (F ,m) is nor-
mal (except if (F ,m) generate a probability measure) and a lower approxima-
tion only exists if (F ,m) is normal. In such a case A∗−(F ,m) = A− (F ,m) =
C(F) since probability measures do not compare with one another via ⊆. So
all probability measures are equally candidate as lower approximations.

A member of C(F) is especially interesting and has been suggested by the
authors[4, 5] previously. It is obtained by equally sharing the weights m(A)
among elements of A; we then have

∀ ω ∈ Ω, P ({ω}) =
∑

ω∈A

m (A)
|A| . (50)

(50) is in accordance with Laplace’s principle of modeling a lack of information
by uniformly distributed probability allocations. When (F ,m) is consonant
(50) defines a bijection between probability measures and possibility measures
on a finite set, and the converse mapping can be useful to derive a possibilistic
interpretation of histograms as explained in Dubois and Prade[4, 5].

3.2 Possibilistic Approximations of Normal Bodies of Evidence

A more satisfactory approach is to consider the set [0, 1]Ω of consonant bod-
ies of evidence as the approximation set A. In this section we derive best
upper and lower approximations of (F ,m) when A = [0, 1]Ω. The best lower
approximation Π∗ is first derived. The following result was already obtained
in Dubois and Prade[4].

Proposition 11. The best lower approximation in [0, 1]Ω of a body of evi-
dence (F ,m) is unique and is the possibility measure Π∗, whose possibility
distribution π∗ is the contour function of (F ,m).

Proof. [4]
∀ A,Pl (A) =

∑

B⊆Ω

m (B) · sup
ω∈A

μB (ω) ,

where μB is the characteristic function of B. Hence
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Pl (A) � sup
ω∈A

∑

B∈Ω

μB (ω)m (B) � sup
ω∈A

Pl ({ω}) .

Let Π∗ be the possibility measure such that Π∗({ω}) = Pl({ω}), clearly Π∗ ∈
A (F ,m). Let Π be a possibility measure such that Π � Pl. Then ∀ ω ∈
Ω, π(ω) � Pl({ω}) = π∗(ω). Hence Π � Π∗. Q.E.D.

Π∗ is defined for any (F ,m) ∈ B(Ω). However if (F ,m) is not consis-
tent (i.e. the core C(F) is empty), Π∗ is not normal, while it is always normal
otherwise, since Pl({ω}) = 1, ∀ ω ∈ C(F). As a consequence the lower approx-
imation is completely meaningful for consistent bodies of evidence. Obviously,
if (F ,m) is consonant, then Pl = Π∗. At the opposite if (F ,m) defines a prob-
ability measure then π∗(ω) = P ({ω}), which is not very interesting.

The use of the contour function of (F ,m) has been suggested by Zhang[43,
44] and Wang[27] to derive the membership of a fuzzy set from statistical data
made of error intervals.

The set of focal elements of the lower approximation is F∗ defined by

F∗ = {{ω|Pl ({ω}) � α} |α ∈]0, 1]}

and letting α1 = 1 > α2 · · · > αp > 0 be the elements of the set {Pl({ω})|ω ∈
Ω} ∪ {1}. F∗ contains p focal elements A1 ⊂ A2 ⊂ · · · ⊂ Ap with Ai =
{ω|Pl({ω}) � αi}. A1 	= ∅ if and only if (F ,m) is consistent. Indeed it is easy
to see that A1 is the core of (F ,m) i.e.

C (F) = {ω, ∀ A ∈ F , ω ∈ A}

and Ap is the support of (F ,m), i.e.

S (F) = {ω, ∃ A ∈ F , ω ∈ A} .

Hence (F ,m) and (F∗,m∗) have the same core and support. This remark
enables a member of A+(F ,m) to be constructed from the knowledge of F∗;
to do it we use a technique described in Dubois and Prade[6], which is an
alternative way of deriving a membership function from a set of statistical
data consisting of error intervals. This technique, which contrasts with Zhang
and Wang’s approach goes as follows.

i) Define a mapping f : F → F∗ where f(A) is the smallest Ai containing
A, i.e.

f(A) = Ai such that A ⊆ Ai, A 	⊂ Ai−1.

ii) Let (F∗,m∗) be such that F∗ = f(F) ⊆ F∗

∀ Ai,m∗ (Ai) =
∑

Ai=f(A)

m (A) .
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Note that f(A) is never empty since ∀ A, A ⊆ Ap. Moreover f defines a parti-
tion of F through the equivalence relation ∼: A ∼ B ⇔ f(B) = f(A). Hence

∑

Ai∈F∗

m∗ (Ai) =
∑

A∈F
m (A) .

It is easy to check that (F ,m) is strongly included in (F∗,m∗) since the above
technique is a particular case of Procedure (b) of 2.3.2. where the whole mass
m(A) is allocated to f(A). In Dubois and Prade,[6] however, the sets A1 . . . Ap
are given independently of (F ,m) except that A1 = C(F), Ap = S(F), and
A1 	= ∅ i.e. the procedure was defined only for consistent bodies of evidence.
Here we improve it by prescribing what are the focal elements Ai for 1 < i < p.
We now prove that (F∗,m∗) is a best approximation in some sense. Let π
and π′ be two possibility distributions on Ω, π and π′ are said to be order-
equivalent if and only if

∀ ω, ω′, π(ω) > π (ω′)⇔ π′ (ω) > π′ (ω′) . (51)

Order-equivalence can be nicely characterized in terms of focal elements:

Lemma 1. π and π′ are order-equivalent, if and only if their associated sets
of focal elements are equal.

Proof. Let {α1, . . . , αp} = {π(ω) > 0|ω ∈ Ω}. It is well-known that F =
{A1, . . . , Ap} where i = 1, p, Ai = {ω|π(ω) � αi}.[4, 7] Let ωi ∈ Ai such
that π(ωi) = αi. Now from order-equivalence Ai = {ω|π(ω) � π(ωi)} =
{ω|π′(ω) � π′(ωi)}. Hence Ai ∈ F ′, the set of focal elements of π′. Hence F ⊆
F ′ and F ′ ⊆ F since π and π′ play the same role. The converse proposition
is obvious. Q.E.D.

Note that π∗ and π∗ are generally not order-equivalent but satisfy the
weaker statement

∀ ω, ω′, π∗ (ω) > π∗ (ω′)⇒ π∗ (ω) � π∗ (ω′) . (52)

This is because generally F∗ ⊂ F∗.

Proposition 12. (F∗,m∗) is the best upper approximation of (F ,m) among
its order-equivalent consonant bodies of evidence.

Proof. Let N∗ and Π∗ be the necessity and possibility measures induced by
(F∗,m∗). First note that

∀ A∗
i ∈ F∗,Cr (A∗

i ) =
∑

A⊆A∗
i

m (A) =
i∑

j=1

m∗ (A∗
j

)
= N∗ (A∗

i ) .

Let (F ′,m′) be an upper approximation of (F ,m). Because π′ and π∗ are
order-equivalent, the Lemma yields F ′ = F∗. Now the inequality N ′(A) �
Cr(A), ∀ A implies ∀ A∗

i ∈ F∗, N ′(A∗
i ) � N∗(A∗

i ) which also reads
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∀ i 	= p,max {π′ (ω) |ω 	∈ A∗
i } � max {π∗ (ω) |ω 	∈ A∗

i } . (53)

Now the maximum in both sides of (53) is reached by any element ω in A∗
i+1∩

Ā∗
i since A∗

i is a focal element in both F ′ and F∗. Hence (53) translates into:

∀ ω 	∈ A∗
1, π

′ (ω) � π∗ (ω) .

Moreover ∀ ω ∈ A∗
1, π

′(ω) = π∗(ω) = 1, since C(F ′) = C(F∗). Q.E.D.

The condition of order-equivalence is a necessary one to get optimality.
Indeed (53) implies only the existence of some ω′ in Ā∗

i such that ∀ ω ∈
A∗
i+1 ∩ Ā∗

i , π
′(ω′) � π∗(ω).

Counter example 5 Ω = {a, b, c, d, e}
F = {{c} , {c, d} , {b, c} , {c, d, e} , {a, b, c}}

with a uniformly distributed basic assignment m(A) = 1
5 , ∀ A ∈ F .

We have the following results, where π∗ and π∗ are calculated from m and
π′ is given:

a b c d e
π∗ 0.2 0.4 1 0.4 0.2
π∗ 0.4 0.8 1 0.8 0.4
π′ 0.4 0.6 1 0.8 0.4

Note that Π∗(A) = Π′(A) except for A = {b}, {a, b}, {b, e}, for which
Π′(A) = 0.6 < Π∗(A) = 0.8. But Π′ � Pl since Pl({a}) = 0.2, Pl({a, b}) = 0.4
and Pl({b, e}) = Pl({a, b, e}) = 0.6. But the distribution π′ possesses a dis-
symmetry which does not look natural since neither Pl, nor π∗ have such a
dissymmetry. Assuming π′(d) = π′(b) = 0.6 is not possible since then (53) is
violated. Q.E.D.

It is clear that if (F ,m) is consonant then (F∗,m∗) = (F ,m) which shows
a good behavior of (F∗,m∗).

The possibility distribution associated with (F∗,m∗) is π∗ defined by

∀ ω 	∈ A∗
p, π

∗ (ω) = 0,

∀ ω ∈ A∗
1, π

∗ (ω) = 1,

∀ ω ∈ A∗
i −A∗

i−1, π
∗ (ω) = 1−N∗ (A∗

i−1

)
= 1−

∑

A⊆A∗
i−1

m (A)

=
p∑

j=i

m∗ (A∗
j

)
.

When (F ,m) generates a probability measure, the formula becomes

∀ ω, π∗ (ω) =
∑

{P ({ω′}))|P ({ω′}) � P ({ω})}

and if p1 � p2 . . . � pn are the probability weights on ω1, . . . , ωn we get values
π∗

1 � · · · � π∗
n such that
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π∗
i =

p∑

j=i

pj,∀ i. (54)

(54) defines a bijection between probability and possibility measures on Ω
since it is equivalent to

pi = π∗
i − π∗

i+1, ∀ i (55)

with π∗
n+1 = 0. Equation (54) provides the best possibilistic approximation of

a probability measure in the sense of the consistency condition:

∀ A,N∗ (A) � P (A) � Π∗ (A)

and under order-equivalence assumption.
Particularly this transformation provides a more specific result than the

converse of (50), proposed in a previous paper[5]. Note that in the case of
(F ,m) being a probability allocation, the result was already given in Dubois
and Prade[4].

Conclusion

Shafer’s theory of evidence seems to make measure theory and logic interfere
with each other. Mathematical beings, living in B(Ω) have a dual nature: they
are kinds of sets (more precisely convex combinations of sets) and as such can
combine via logical connectives such as union, intersection and complementa-
tion, and consequently any connective of classical logic can have an extension
in B(Ω). But they are also kinds of measures, and concepts of expectations
can be defined from them as Dempster did[1]. However, because bodies of
evidence first emerged as upper and lower probabilities, the possibility of con-
structing a logic calculus on them was not really pointed out by Dempster or
Shafer, but by the people working in random set theory[12, 14].

Logical operations cannot be introduced in the setting of probability mea-
sures because they are generalized points, not sets. This is why, may be, logic
and probability theory seem to ignore each other. Contrastedly, possibility
theory, first discussed in terms of fuzzy sets, was naturally equipped with
a logic calculus. The measure-theoretic point of view came afterwards when
possibility measures were also viewed as upper probabilities[4].

Similarly, Shafer’s book[24], due to a probabilistic background, always
assume information is disjunctive, as it must be in probability theory. On
the contrary a set is classically viewed as a conjunctive of values as often
as a restriction on the value of a variable. The framework of credibility and
plausibility measures enables the conjunctive point of view to enter the prob-
abilistic arena, and this is very important for knowledge representation issues.
The existence of logical connectives in B(Ω) has been exploited by Yager[34]
to define new patterns of reasoning which generalize the modus ponens. How-
ever, contrary to approximate reasoning, based on fuzzy sets, the choice of
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the implication connective is very much restricted by the unicity of basic
operations such as the union and complementation. This unicity stems from
the unicity of Dempster rule under decomposability conditions[10].

As noted by Zadeh, fuzzy set theory is not a particular case of Shafer’s
theory, although a possibility measure (i.e. a fuzzy set) is a special kind of
a body of evidence, where focal element are consonant. The reason is that
Shafer’s theory needs Dempster rule of combination to perform intersection
in B(Ω) while fuzzy sets are conjunctively combined by means of triangular
norms[8, 23]. Shafer’s rationale for Dempster rule stems from probabilistic
independence between two basic assignments m and m′, viewed as proba-
bility allocations on 2Ω. As a consequence the intersection of two consonant
bodies of evidence is generally no longer consonant. On the contrary Zadeh’s
approach starts from the requirements that any logical combination of fuzzy
sets should be a fuzzy set again. This requirement is linked to the fact that
possibility distributions model the meaning of imprecise statements, and that
the meaning of complex statements should be expressed as some combination
of simpler statements that they involve.

Shafer theory is based on the re-interpretation of results by Dempster,
results which were cast in a frequentist framework. And indeed Dempster
rule has a frequentist flavor, and the development of a frequentist theory of
upper and lower probabilities receives attention in the literature[26]. Such
attempts combined with results of Sect. 3, can provide grounds for statisti-
cal estimation of membership functions[6, 27]. However the possibility of a
frequentist interpretation of fuzzy set-theoretic operations seems to be very
unlikely, while the connections between these operations and the theory of
conjoint measurement[8, 18] are more promising. In other words fuzzy set
theory seems to be closer to research in psychological measurement than to
statistics, although possibility measures may have frequentist interpretation.
The rules of combination of frequentist possibility measures will be dictated
by independence-like arguments deriving from the study of statistical exper-
iments, while the rules of combination of subjectivist possibility measures
may turn out to be those of fuzzy set theory. The core of the debate is the
relevance of subjective probability theory. If subjective probability theory is
acknowledged as being too restrictive to model uncertainty judgments, then
Shafer’s subjectivist interpretation of upper and lower probabilities can be
questioned on the same grounds. From a mathematical point of view, the
theory of evidence is nothing but the rules of probability theory applied to
imprecise statements, while classical probability theory leaves no room to
imprecision. As a consequence the rules of combination of bodies of evidence
are given by the rules of probability theory, and what is behind the prob-
lem of validating Shafer’s theory as a theory of measurement of subjective
uncertainty is the validity of the rules of (subjective) probability theory (and
especially the rule of additivity). From this point of view fuzzy set theory
seems to be far less normative than the theory of evidence, although both
provide tools for modeling imprecision and uncertainty in a unique setting.
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cations Econométriques, IX, fascicule 1, 1976, pp. 1–23.

13. I. R. Goodman, “Fuzzy sets as equivalence classes of random sets.” In: Fuzzy Set
and Possibility Theory: Recent Developments, edited by R. R. Yager, Pergamon
Press, Oxford, 1982, pp. 327–342.

14. I. R. Goodman, “Characterization of n-ary fuzzy set operations which induce
homomorphic random set operations,” In: Fuzzy Information and Decision Pro-
cesses, edited by M. M. Gupta and E. Sanchez, North-Holland, Amsterdam,
1982, pp. 203–212.

15. M. Higashi and G. Klir, “Measures of uncertainty and information based on
possibility distributions.” International Journal of General Systems, 9, 1983,
pp. 43–58.
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Appendix

Flows in Networks and Inclusion

Let (F ,m) and (F ′,m′) be two bodies of evidence such that (F ,m) is strongly
included in (F ′,m′) (cf. Definition 2). Let A1, . . . , Ap (resp.: A′

1, . . . , A
′
q) be

the elements of F (resp.: F ′). It is then possible to build a bipartite graph
(V, V ′, E) where V and V ′ are disjoint sets of nodes, and E is a set of arcs
(v, v′) where (v ∈ V, v′ ∈ V ′, defined as follows:

each element of V (resp. : V ′) represents a focal element in F (resp. : F ′),
arc (vi, v′j) exists if and only if Ai ⊆ A′

j .

Note that ∀ vi, ∃(vi, v′j) ∈ E ; ∀ v′j , ∃(vi, v′j) ∈ E from strong inclusion.
Let s be a source node and d a sink node, which do not belong to V ∪ V ′.

Build the arcs (s, vi)∀ vi ∈ V , with an associated capacity ai = m(Ai), and the
arcs (v′i, d) with an associated capacity a′i = m′(Ai). The graph corresponding
to counter-example 2 is as follows:
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Arcs in E are supposed to have infinite capacity. It is clear that the strong
inclusion of (F ,m) in (F ′,m′) is equivalent to the existence of a flow of value
1 in the graph whose set of nodes is N = V ∪ V ′ ∪ {s, d} and arcs, E =
E ∪ {(s, vi)|vi ∈ V } ∪ {(v′j , d)|v′j ∈ V ′}. This fact is expressed by (42)–(43).

Now a cut in the graph is a partition (X, X̄) of the nodes such that s ∈
X, d ∈ X̄, and its capacity is the sum of the capacities of the arcs (i, j)
such that i ∈ X, j ∈ X̄. The max flow min-cut theorem[11] states that the
maximal flow value from s to d is equal to the minimal cut capacity of all cuts
separating s and d.

Obvious finite capacity cuts in (N,E) are obtained by stating X = {s} or
X̄ = {d}, and their capacity is 1. Hence the flow value through the graph is
at most 1. Moreover if a cut involves an arc in E , it has infinite capacity and
is useless in the computation of the maximal flow. Hence interesting cuts are
such that

if S ⊆ V is a part of X then the set Γ(S) ⊆ V ′ of successors of nodes in S
is also in X ,

if T ⊆ V ′ is a part of X̄ then the set Γ−1(T ) ⊆ V of predecessors of nodes
in T is also in X̄.

Hence the set of cuts can be described as the set {(S, T )|S ⊆ V, T ⊆
V ′,Γ(S) ∩ T = ∅,Γ−1(T ) ∩ S = ∅}. The capacity of cut (S, T ) is easily
found as

C (S, T ) =
∑

vi∈S̄
ai +

∑

vi∈T̄
a′i

since X = {s} ∪ S ∪ T̄ , X̄ = {t} ∪ T ∪ S̄.
Now consider the cut (Γ−1(T ),Γ(S)). It is clear that

C (S, T ) � C
(
Γ−1 (T ) ,Γ (S)

)
.

So that the set of interesting cuts for the computation of the maximal flow
is {(S, T )|S ⊆ V, T ⊆ V ′Γ(S) = T̄ ,Γ−1(T ) = S̄}. A necessary and sufficient
condition for the existence of a flow of value 1 through the network is thus

∀ S ⊆ V,
∑

vi∈S̄
ai +

∑

v′i∈Γ(S)

a′i � 1

∀ T ∈ V ′,
∑

vi∈Γ−1(T )

ai +
∑

v′i∈T̄
a′i � 1

which also reads

∀ S ∈ V,
∑

vi∈S
ai �

∑

v′1∈Γ(S)

a′i (I)

∀ T ∈ V ′,
∑

v′i∈T
a′i �

∑

vi∈Γ−1(T )

ai. (II)
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It is easy to check that the condition Q(A) � Q′(A) applied with A = Ai
gives (I) with S = {vi}, and the condition Cr(A) � Cr′(A) applied with
A = A′

j gives (II) with T = {v′j}. But generally it is possible to find S ⊆ V
such that

	 ∃ A,Q(A) =
∑

ui∈S
ai

and T such that
	 ∃ A,Cr′(A) =

∑

u′
i∈T

a′i.

This is why inclusion does not imply strong inclusion. In the above example
if S = {v3, v4} then Γ(S) = {v′3, v′4} and (I) is violated i.e.

a3 + a4 = 0.4 > a′3 + a′4 = 0.3.

However, as the Table 1 shows, Q(A) � Q′(A), Cr(A) � Cr′(A)∀ A.
Now assume (F ,m) and (F ′,m′) are consonant. F and F ′ are ordered such

that A1 ⊂ A2 · · · ⊂ Ap, A
′
1 ⊂ A′

2 · · · ⊂ A′
q. The bipartite graph (V, V ′, E) has

a special structure since if Ai ⊆ A′
j then Ai ⊆ A′

k, ∀ k � j.
We now prove that the flow equations always have a solution if the fuzzy

set F associated to (F ,m) is included in F ′ associated to (F ′,m′).
∀ vi ∈ V , let σ(i) be the index such that

σ (i) = min
{
j|Ai ⊆ A′

j

}
.

Similarly ∀υ′j ∈ V ′, let τ (j) be the index such that

τ (j) = max
{
i|Ai ⊆ A′

j

}
.

Then the flow (42) and (43) reads

ai =
∑

j�σ(i)

wij ∀ i = 1, p (III)

a′j =
∑

i�τ(j)
wij ∀ j = 1, p. (IV)

Let n = |σ(V )|, k ∈ σ(V ), σ−1(k) = {Ai|σ(i) = k} and ik = max{i, Ai ∈
σ−1(k)}. Because (F ,m) ⊆ (F ′, m′), A1 ⊆ A′

1 and Ap ⊆ A′
q. Moreover

∀ i ∈ σ−1(k), Ai ⊆ A′
k but Ai 	⊂ A′

k−1. Hence F can be partitioned into n
groups of consecutive focal elements, and this partition creates a partition of
F ′, also in n groups τ−1(ik), k ∈ σ(V ) with

τ−1 (ik) = {Bj |k � j < σ (ik + 1)} (see Fig. 1)

and ∀ Bj ∈ τ−1(ik), Bj ⊇ Ai for all i ∈ σ−1(σ(ik)), but Ai 	⊂ Bj , j < k.
Note that maxk∈σ(V ) ik = p so that σ(p+ 1) = q+1 by convention. It is clear
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that ik = τ(k + 1) − 1 (see Fig. 1). Pairs (σ−1(k), τ−1(ik)) are ranked along
increasing k’s and can be renumbered as {(Gi, G′

i) i = 1, n} as in Fig. 1.
For all (Ai, A′

j) ∈ Gk ×G′
l we define xkl = Σ{wij |(Ai, A′

j) ∈ Gk ×G′
l}.

āk =
∑

Ai∈Gk

ai, ā′l =
∑

A′
j∈G′

l

a′j.

FIGURE 1

Now (III) and (IV) imply

āk =
∑

l
l � k

xkl k = 1, n, (V)

ā′l =
∑

k
l � k

xkl l = 1, n. (VI)

Similarly, let Φ and Φ′ be the fuzzy sets derived from F and F ′ as follows: Φ
and Φ′ have n α-cuts which are respectively the smallest set in each Gk and
the greatest set in each G′

k, the mass allocated to the set from Gk (resp.: G′
k)

being āk (resp.: ā′k). It is easy to check that Φ ⊆ F ⊆ F ′ ⊆ Φ′.
System (V) and (VI) always have solutions. Let

μi =
n∑

k=i

āk, μ′
i =

n∑

k=i

ā′k.

Φ ⊆ Φ′ implies μi � μ′
i ∀ i = 1, n. Then let

x11 = 1− μ′
2

xii = μi − μ′
i+1 1 < i < n

xi,i+1 = μ′
i+1 − μi+1 1 � i < n

xnn = μn

xij = 0 otherwise.
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This is a solution of (V–VI). Indeed, it is demonstrated as follows:

āk = xkk + xkk+1 = μk − μk+1

ā′k = xkk + xk−1k = μ′
k − μ′

k+1.

From this solution, a solution to (III) and (IV) is easily deduced letting

wij =
ai · a′j
āk · ā′l

xkl whenever (Ai, Aj) ∈ Gk.l.

Hence if F ⊆ F ′ then (F ,m) is strongly included in (F ′,m′).

Example Ω = {a, b, c, d, e}
F = {1/a, 0.5/b, 0.4/c, 0.2/d}
F ′ = {1/a, 1/b, 0.5/c, 0.3/d, 0.3/e} .

Then

A1 = {a} a1 = 0.5 A′
1 = {a, b} a′1 = 0.5

A2 = {a, b} a2 = 0.1 A′
2 = {a, b, c} a′2 = 0.2

A3 = {a, b, c} a3 = 0.2 A′
3 = Ω a′3 = 0.3

A4 = {a, b, c, d} a4 = 0.2

G1 = {A1, A2} ā1 = 0.6 G′
1 = {A′

1} ā′1 = 0.5
G2 = {A3} ā2 = 0.2 G′

2 = {A′
2} ā′2 = 0.2

G3 = {A4} ā3 = 0.2 G′
3 = {A′

3} ā′3 = 0.3

x11 = 0.5

x12 = 0.5− 0.4 = 0.1 ⇒
{
w11 = 2.5/6
w21 = 0.5/6

x22 = 0.1 w12 = 0.5/6
x23 = 0.1 w22 = 0.1/6 etc . . . .
x33 = 0.2

Hence the flow
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Weights of Evidence and Internal Conflict
for Support Functions

Nevin L. Zhang

Abstract. Shafer [1] defined weights of evidence and the weight of internal conflict
for separable support functions. He also formulated a conjecture, the weight-of-
conflict conjecture, which implies that these definitions can be extended in a natural
way to all support functions. In this paper I show that the extension to support
functions can be carried out whether or not the weight-of-conflict conjecture is true.

1 Prerequisites

This section reviews basic concepts and results needed for the theorems in the
next section. See Shafer [1] for details.

Let Θ be a finite set, called a frame of discernment. A function Bel : 2Θ →
[0, 1] is called a belief function over Θ if

(1) Bel(∅) = 0, Bel(Θ) = 1, and
(2) for every integer n and arbitrary subsets A1, A2, . . . , An of Θ,

Bel

(
n⋃

i=1

Ai

)
≥

n∑

k=1

(−1)k−1
∑

{
Bel

(
⋂

i∈I
Ai

)∣∣∣∣∣ |I| = k, I ⊆ {1, 2, . . . , n}
}
.

Given a belief function Bel over the frame Θ, there exists a unique map
m : 2Θ → [0, 1] (called the basic probability assignment for Bel) such that for
each subset A of Θ,

Bel (A) =
∑

{m (B) |B ⊆ A} .

The function Q : 2Θ → [0, 1] defined by

Q (A) =
∑

{m (B) |B ⊇ A}

for each subset A of Θ is called the commonality function for Bel.
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Suppose Bel1 and Bel2 are belief functions, with basic probability assign-
ments m1 and m2, respectively. If the number

K =
∑{

m1 (A1)m2 (A2) |A1, A2 ∈ 2Θ, A1 ∩A2 	= ∅

}

is not zero, then we say that the orthogonal sum of Bel1 and Bel2 exists. We
denote this orthogonal sum by Bel1 ⊕ Bel2; by definition, it is the function
over Θ whose basic probability assignment is given by

m (A) =
1
K

∑
{m1 (A1)m2 (A2) |A1 ∩A2 = A} .

The number − logK is called the weight of conflict between Bel1 and Bel2. The
weight of conflict and the orthogonal sum are defined similarly for more than
two belief functions. They do not depend on the order of combination, and

Con (Bel1, . . . ,Beln) =Con (Bel1, . . . ,Beln−1)
+ Con (Bel1 ⊕ · · · ⊕ Beln−1,Beln) , (1)

where Con(Bel1, . . . ,Beln) stands for the weight of conflict among Bel1, . . . ,
Beln.

A subset of Θ to which the basic probability assignment assigns a positive
number is called a focal element. If Bel1 ⊕ Bel2 exists, then its set of focal
elements consists of all nonempty intersections of the form A1 ∩A2, where A1

is a focal element of Bel1 and A2 is a focal element of Bel2.
The belief function whose only focal element is Θ is called the vacuous

belief function. If Bel1 is vacuous, then Bel1 ⊕ Bel2 = Bel2. A belief function
with at most one focal element other than Θ is called a simple support func-
tion; the focal element not equal to Θ is called the focus. A belief function
which can be expressed as an orthogonal sum of simple support functions is
called a separable support function.

Suppose S is a simple support function focused on A. Then

w = − log [1− S (A)]

is called the weight of evidence focused on A.
The union of the focal elements of a belief function is called its core. If A

is the core of Bel, then Bel(B) = 1 if and only if B � A. If the core A of Bel
is a proper subset of Θ, then it is sometimes convenient to replace the frame
Θ by A or by some other set B such that A ⊂ B ⊂ Θ. (This means that we
work not with Bel : 2Θ → [0, 1] but with the restriction Bel|2B, which is a
belief function over B whenever Bel(B) = 1.)

Given a subset A of Θ, let BelA denote the belief function whose only focal
element is A; this means that BelA(B) = 1 whenever B � A and BelA(B) =
0 otherwise. [The corresponding basic probability assignment mA satisfies
mA(A) = 1 and mA(B) = 0 when B 	= A.] If Bel is another belief function
over Θ with Bel(Ā) < 1, then Bel⊕BelA exists and (Bel⊕BelA)(A) = 1. The
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belief function Bel⊕BelA can be thought of as a belief function over Θ or as
a belief function over A; in either case its values are given by

(Bel⊕ BelA) (B) =
Bel

(
B ∪ Ā

)
− Bel

(
Ā
)

1− Bel
(
Ā
) . (2)

Changing Bel to Bel⊕ BelA is called conditioning Bel on A.
The belief function BelA is idempotent with respect to the operation

⊕ : BelA ⊕ BelA = BelA. This fact, together with the commutivity and asso-
ciativity of ⊕, allows us to write

(Bel1 ⊕ · · · ⊕ Beln)⊕ BelA = (Bel1 ⊕ BelA)⊕ · · · ⊕ (Beln ⊕ BelA) . (3)

In words: combining and then conditioning on A gives the same result as
conditioning on A and then combining.

If we condition a simple support function on A, then the result, considered
as a belief function over A, is again a simple support function. (Suppose S
is a simple support function focused on B. Then S has at most two focal
elements, B and Θ. Since BelA has only one focal element, A, the orthogonal
sum S ⊕ BelA has at most two focal elements, B ∩ A and Θ ∩ A = A. If
B ∩ A = ∅ or B ∩ A = A, then A is S ⊕ BelA’s only focal element, and
therefore S ⊕BelA is the vacuous belief function over A.) It follows from this
and (3) that if we condition a separable support function on A, then the result,
considered as a belief function over A, is again a separable support function.

Suppose S is a separable support function over the frame Θ; we assume,
without loss of generality, that Θ is the core of S. In this case there exists
a unique set S1, . . . , Sn of nonvacuous simple support functions with distinct
foci such that S = S1 ⊕ · · · ⊕ Sn. The weight of conflict among these Si is
called the weight of internal conflict in S and is denoted by WS . If we denote
the focus of Si by Ai and denote the weight of evidence focused on Ai by wi,
then the function Vs : 2Θ → [0,∞) defined by

VS (A) =
∑

{wi|Ai 	� A}

is called the impingement function for S;V (A) is the total weight of evidence
impinging on A. It turns out that the commonality function QS for S satisfies

QS (A) = exp [WS − VS (A)] ,

or
VS (A) = WS − logQS (A) , (4)

for every nonempty subset A of Θ.
Suppose M is a field of subsets of the frame Θ, and suppose A is a subset

of Θ. Since Θ is finite, there is a smallest element of M containing A and a
largest element of M contained in A. We denote these elements of M by A+

and A−, respectively:
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A+ =
⋃
{B|B is an atom of M ;B ∩A 	= ∅}

or
A− =

⋃
{B|B is an atom of M ;B ⊆ A} .

We say that Bel is carried by the field M if all the focal elements of Bel
are in M . This is equivalent to the requirement that Bel(A) = Bel(A−) for
all A ⊆ Θ.

2 Main Results

Theorem 1. If Bel1 and Bel2 are both belief functions over Θ, and if Bel1
and Bel2 agree on the field M generated by the focal elements of Bel1, then
their commonality functions Q1 and Q2 satisfy Q1 ≥ Q2.

Proof. For any subset A of Θ,

Bel1 (A) = Bel1
(
A−)

= Bel2
(
A−)

=
∑{

m2 (B) |B ⊆ A−}

=
∑{

m2 (B) |B+ ⊆ A
}
,

where m2 is the basic probability assignment for Bel2. This implies that the
basic probability assignment for Bel1 is given by

m1 (A) =
∑{

m2 (B) |B+ = A
}
.

Therefore

Q1(A) =
∑

{m1 (B) |B � A}

=
∑{

m2 (B) |B+ � A
}

≥
∑

{m2 (B) |B � A} = Q2 (A) .

Theorem 2. If S and T are both separable support functions over Θ, and if
S and T agree on the field M generated by the focal elements of S, then

WS ≤WT (5)

and
VS ≤ VT . (6)

Proof. We will assume, without loss of generality, that Θ is the core of S.
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Let S = S1 ⊕ · · · ⊕ Sn be the unique decomposition of S into nonvacuous
simple support functions with distinct foci, and let A1, . . . , An denote these
foci. We will prove (5) by induction on n.

If n = 1, then (5) is immediate, because WS = 0.
Suppose (5) is true for all k < n.
Consider the belief functions S ⊕BelA1 and T ⊕BelA1 . Since A1 is in M ,

it follows from (2) and from the agreement of S and T on M that S ⊕ BelA1

and T ⊕ BelA1 agree on M . In particular, they agree on

M ′ = {A ∩A1|A ∈M} ,

which is a subset of M . When S ⊕ BelA1 and T ⊕ BelA1 are considered as
belief functions over A1, they are both separable support functions, and M ′

is the field of subsets generated by the focal elements of S⊕BelA1 . Moreover,
the number of nonvacuous simple support functions with distinct foci in the
decomposition of S ⊕ BelA1 is less than n. To see this, use (3) to write

S ⊕ BelA1 = (S1 ⊕ BelA1)⊕ · · · ⊕ (Sn ⊕ BelA1) , (7)

and recall that the Si ⊕ BelA1 , considered as belief functions over A1, are
simple support functions. Since A1 is the focus of S1, S1 ⊕ BelA1 is vacuous,
and others of the Si ⊕ BelA1 may also be vacuous. If we omit these from the
right-hand side of (7), and if we then combine any of the Si⊕BelA1 that have
a common focus to obtain a single simple support function with that focus,
then we will have reduced (7) to the unique decomposition of S ⊕ BelA1 into
nonvacuous simple support functions with distinct foci, and the number of
these simple support functions will be less than n.

It follows from the inductive hypothesis that

WS⊕BelA1
≤WT⊕BelA1

.

But by (1),
WS⊕BelA1

= WS + Con (S,BelA1)

and
WT⊕BelA1

= WT ⊕ Con (T,BelA1) .

And

Con (S,BelA1) = − log
[
1− S

(
Ā1

)]

= − log
[
1− T

(
Ā1

)]

= −Con (T,BelA1) .

So WS ≤WT .
From (5), (4), and Theorem 1, we immediately obtain (6).



416 N. L. Zhang

3 Support Functions

In this section we show how the weight of internal conflict and the impinge-
ment function can be defined for support functions.

Suppose Θ and Ω are two frames of discernment. We call a function ω :
2Θ → 2Ω a refining if {ω(θ)|θ ∈ Θ} constitutes a disjoint partition of Ω, and
ω(A) = ∪{ω(θ)|θ ∈ A} for all subsets A of Θ. If ω : 2Θ → 2Ω is a refining,
then we say that Ω is a refinement of Θ and Θ is a coarsening of Ω.

If Bel is a belief function over Ω and ω : 2Θ → 2Ω is a refining, then the
function Bel ◦ ω is a belief function over Θ. If Bel1 is a belief function over
Ω, Bel2 is a belief function over Θ, and Bel2 = Bel1 ◦ ω for some refining ω,
we say that Bel1 is an extension of Bel2.

If Bel is a belief function over Θ, m is the basic probability assignment
for Bel, and ω : 2Θ → 2Ω is a refining, then the belief function Belω over Ω
which is given by the basic probability assignment

mω(A) =

{
m (B) if B ⊆ Θ and ω (B) = A,

0 if there is no B ⊆ Θ such that ω (B) = A
(8)

is an extension of Bel to Ω. It is called the vacuous extension of Bel to Ω. It
is obviously carried by the image ω(2Θ), which is a field of subsets of Ω.

As (8) makes clear, a belief function and its vacuous extension have the
same structure, except that the vacuous extension is embedded in a finer
frame. In general, any operation on belief functions on a given frame gives the
same result when carried out on the vacuous extensions to a finer frame. For
example,

Con(Bel1, . . . ,Beln) = Con(Belω1 , . . . ,Belωn , (9)

and
(Bel1 ⊕ · · · ⊕ Beln)

ω = Belω1 ⊕ · · · ⊕ Belωn . (10)

A belief function is called a support function if it can be extended to a
separable support function over some refinement. Given a support function S,
we let Ss denote the set of all separable support functions which are extensions
of S. We set

W ′
S − inf {WT |T ∈ SS} ,

and we define a function V ′
s on 2Θ by

V ′
S(A) = inf{VT (ω(A))|T ∈ SS , S = T ◦ ω}.

We would like to call W ′
s and V ′

s the weight of internal conflict in S and the
impingement function for S, respectively. Doing so is justified by the following
theorem.

Theorem 3. If S is a separable support function over Θ, then W ′
s = Ws, and

V ′
s = Vs.
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Proof. Consider an arbitrary extension T of S. Let ω : 2Θ → 2Ω be the
corresponding refining, and let Sω denote the vacuous extension of S to Ω.
Since S = T ◦ω = Sω ◦ω, T and Sω agree on the field of subsets ω(2Θ). Since
the focal elements of Sω are all in ω(2Θ), it follows that T and Sω agree on
the field M generated by the focal elements of Sω. Therefore, by Theorem 2,
WSω ≤WT and VSω ≤ VT . Since T was an arbitrary element of SS , and since
Sω is in SS , it follows that W ′

S = WSω and V ′
S = VSω. On the other hand, it

is clear from (9) and (10) that WSω = WS and VSω = VS .

4 The Weight-of-Conflict Conjecture

Shafer [1] was unable to prove Theorem 3 because he did not have Theorem 2
available. His attempt to prove Theorem 3 led him to formulate the weight-of-
conflict conjecture: if the commonality functions Q1 and Q2 for two separable
support functions S1 and S2 satisfy Q1 ≥ Q2, then WS1 ≤WS2 . By reasoning
equivalent to that in the proof of Theorem 1, he showed that this conjecture
implied Theorem 3.

The results in this paper do not tell us whether Shafer’s conjecture is
true. They do show, however, that the conjecture is not needed for Shafer’s
purposes.
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A Framework for Evidential-Reasoning
Systems∗

John D. Lowrance, Thomas D. Garvey and Thomas M. Strat

Abstract. Evidential reasoning is a body of techniques that supports automated
reasoning from evidence. It is based upon the Dempster-Shafer theory of belief func-
tions. Both the formal basis and a framework for the implementation of automated
reasoning systems based upon these techniques are presented. The formal and prac-
tical approaches are divided into four parts (1) specifying a set of distinct proposi-
tional spaces, each of which delimits a set of possible world situations (2) specifying
the interrelationships among these propositional spaces (3) representing bodies of
evidence as belief distributions over these propositional spaces and (4) establish-
ing paths for the bodies of evidence to move through these propositional spaces by
means of evidential operations, eventually converging on spaces where the target
questions can be answered.

1 Introduction

For the past several years, we have been addressing perceptual problems that
bridge the gap between low-level sensing and high-level reasoning [9, 5, 13,
12, 14, 18]. Problems that fall into this gap are often characterized by mul-
tiple evidential sources of real-time data, which must be properly integrated
with general knowledge about the world to provide an understanding of the
situation that is sufficiently rich to support high-level goals. In this paper, we
describe a formal framework for reasoning with perceptual data that forms
the basis for evidential-reasoning1 systems.

The information required to understand the current state of the world
comes from multiple sources: real-time sensor data, previously stored general
∗ This research was sponsored in part by the U.S. Navy Space and Naval Warfare

Systems Command and the Defense Advanced Research Project Agency under
contract N00039-83-K-0656 and by the U.S. Army Signal Warfare Center under
contract DAAL02-85-C-0082.

1 Evidential reasoning is a term coined by SRI International [11] to denote the body
of techniques specifically designed for manipulating and reasoning from evidential
information as characterized in this paper.
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knowledge, and current contextual information. Sensors typically provide evi-
dence in support of certain conclusions. Evidence is characteristically uncer-
tain: it allows for multiple possible explanations; it is incomplete: the source
rarely has a full view of the situation; and it may be completely or partially
incorrect. The quality and the ease with which situational information may
be extracted from a synthesis of current sensor data and prestored knowledge
is a function both of how strongly the characteristics of the sensed data focus
on appropriate intermediate conclusions and on the strength and effectiveness
of the relations between those conclusions and situation events.

Given its characteristics, evidence is not readily represented either by log-
ical formalisms or by classical probabilistic estimates. Because of this, devel-
opers of automated systems that must reason from evidence have frequently
turned to informal, heuristic methods for handling uncertain information. The
“probabilities” produced by these informal approaches often cause difficulties
in interpretation. The lack of a formally consistent method can cause problems
in extending the capabilities of such systems effectively. Our work in eviden-
tial reasoning was motivated by these shortcomings. Our theory is based on
the Shafer-Dempster theory of evidence [3, 15, 16] and aims to overcome some
of the difficulties in reasoning from evidence by providing a natural represen-
tation for evidential information, a formal basis for drawing conclusions from
evidence, and a representation for belief.

In evidential reasoning, a knowledge source (KS) is allowed to express prob-
abalistic opinions about the (partial) truth or falsity of statements composed
of subsets of propositions from a space of distinct, exhaustive possibilities
(called the frame of discernment). The theory allows a KS to assign belief to
the individual propositions in the space or to disjunctions of these propositions
or both. When it assigns belief to a disjunction, a KS is explicitly stating that
it does not have enough information to distribute this belief more precisely.
This condition has the attractive feature of enabling a KS to distribute its
belief to statements whose granularity is appropriate to its state of knowl-
edge. Also, the statements to which belief is assigned are not required to be
distinct from one another. The distribution of beliefs over a frame of discern-
ment is called a body of evidence.

Evidential reasoning provides a formal method, Dempster’s Rule of Com-
bination, for fusing (i.e., pooling) two bodies of evidence. The result is a new
body of evidence representing the consensus of the two original bodies of evi-
dence, which may in turn be combined with other evidence. Because belief
may be associated directly with a disjunction of propositions, the probability
in any selected proposition is typically underconstrained. This necessitates
an interval measure of belief, because belief associated with a disjunction
may, based upon additional information, devolve entirely upon any one of
the disjuncts. Thus, an interval associated with a proposition implies that the
true probability associated with that proposition must fall somewhere in the
interval. A side-effect of applying Dempster’s rule is a measure of conflict
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between the two bodies of evidence that provides a means for detecting pos-
sible gross errors in the information.

Current expert-systems technology is most effective when domain knowl-
edge can be modeled as a set of loosely interconnected concepts (i.e., propo-
sitions) [2]; this loose interconnection justifies an incremental approach to
updating beliefs. In most of our work, there is the potential for strong intercon-
nectivity among beliefs in propositions. We, therefore, focus on a body of evi-
dence as a primitive, meaningful collection of interrelated (dependent) beliefs;
updating the belief in one proposition affects the entire body of evidence (other
work has addressed the concept of a body of evidence in a production-rule
formalism [6, 7] by creating special entities).

Evidential reasoning provides options for the representation of informa-
tion: independent opinions are expressed by multiple (independent) bodies of
evidence; dependent opinions (in which belief in one proposition depends on
that of another) can either be expressed by a single body of evidence or by
a network that describes the interrelationships among several bodies of evi-
dence. These networks of bodies of evidence capture the geneology of each
body (similar in spirit to those of [1]) and are used in a manner similar to
data-flow models [17] updating interrelated beliefs (i.e., for belief revision [4]).

In this paper we assume some familiarity with the Dempster-Shafer theory
of beliefs, although the appropriate equations from this theory are included.
We begin with a discussion of the formal approach to the problem of reason-
ing from evidence and then progress to a description of the implementation
approach, including an example. We close with a short description of the
system that we have developed for applying evidential reasoning.

2 Formal Approach

2.1 Framing the Problem

The first step in applying evidential reasoning to a given problem is to delimit
a propositional space of possible situations. Within the theory of belief func-
tions, this propositional space is called the frame of discernment. It is so
named because all bodies of evidence are expressed relative to this surround-
ing framework, and it is through this framework that the interaction of the
evidence is discerned. A frame of discernment delimits a set of possible situa-
tions, exactly one of which is true at any one time. For example, the problem
to be addressed is that of locating a ship. In this case, the frame of discern-
ment consists of the set of all possible locations for that vessel. This might be
represented by a set ΘA in which each element ai corresponds to a possible
location:

ΘA = {a1, a2, . . . , an} .
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Once a frame of discernment has been established, propositional state-
ments can be represented by disjunctions of elements from the frame corre-
sponding to those situations for which the statements are true. For example,
the proposition Ai might correspond to the statement that the vessel is located
in port, in which case Ai would be represented by the subset of elements from
ΘA that correspond to possible locations within port facilities:

Ai ⊆ ΘA .

Other propositions related to locating this vessel can be similarly repre-
sented as subsets of ΘA (i.e., as elements of the power set of ΘA, denoted
2ΘA). Once this has been accomplished, logical questions can be posed and
resolved in terms of the frame. Given two propositions, Ai and Aj , the follow-
ing logical operations and relation can be resolved through the associated set
operations and relation:

¬Ai ⇐⇒ ΘA − Ai

Ai ∧ Aj ⇐⇒ Ai ∩ Aj

Ai ∨ Aj ⇐⇒ Ai ∪ Aj

Ai ⇒ Aj ⇐⇒ Ai ⊆ Aj .

If other aspects of ships are of interest besides their location, then addi-
tional frames of discernment might be defined. For example, the activities
of these ships might be of interest. If so, an additional frame ΘB might be
defined to include elements corresponding to refueling, loading cargo, unload-
ing cargo, being enroute, and the like. Propositional statements pertaining to
a ship’s activity can then be defined relative to this frame; e.g.,

ΘB = {b1, b2, . . . , bn}
Bj ⊆ ΘB .

So far, propositional statements pertaining to a ship’s location or pertain-
ing to its activity can be addressed separately, but they cannot be jointly
considered. To do this, one must first define a compatibility relation between
the two frames. A compatibility relation simply describes which elements from
the two frames can be true simultaneously. For example, a ship located at a
loading dock might be loading or unloading cargo, but is not refueling, or
enroute. In other words, being located at a loading dock is only compatible
with one of two activities, loading or unloading. Thus, the compatibility rela-
tion between frames ΘA and ΘB is a subset of the cross product of the two
frames. A pair (ai, bj) is included if and only if they can be true simulta-
neously. There is at least one pair (ai, bj) included for each ai in ΘA (the
analogue is true for each bj):



16 A Framework for Evidential-Reasoning Systems 423

ΘA,B ⊆ ΘA ×ΘB .

Using the compatibility relation ΘA,B we can define a compatibility map-
ping CA �→B for translating propositional statements expressed relative to ΘA
to statements relative to ΘB. If a statement Ak is true, then the statement
CA �→B(Ak) is also true:

CA �→B : 2ΘA "→ 2ΘB

CA �→B(Ak) = {bj|(ai, bj) ∈ ΘA,B, ai ∈ Ak} .

Instead of translating propositional statements between these two frames
via CA �→B and CB �→A, we might choose to translate these statements to a
common frame that captures all of the information. This common frame is
identical to the compatibility relation ΘA,B. Frame ΘA (and analogously ΘB)
is trivially related to frame ΘA,B via the following compatibility relation and
compatibility mappings:

ΘA,(A,B) = {(ai, (ai, bj))|(ai, bj) ∈ ΘA,B}
CA �→(A,B)(Ak) = {(ai, bj)|(ai, (ai, bj)) ∈ ΘA,(A,B), ai ∈ Ak}

= {(ai, bj)|(ai, bj) ∈ ΘA,B, ai ∈ Ak}
C(A,B) �→A(Xk) = {ai|(ai, bj) ∈ ΘA,B, (ai, bj) ∈ Xk} .

Clearly, as more aspects of these ships become of interest, the number
and complexity of the frames and compatibility mappings increases. However,
there is a trade-off between the complexity of individual frames and the com-
plexity of the network of compatibility mappings connecting them. We might
define a single (complex) frame that encompasses all aspects of interest or,
alternatively, define a (complex) network of frames that includes a distinct
frame for each aspect of interest. Of course, these may not be equivalent. For
example, consider the following frame:

ΘA,B,C = {(a1, b1, c1), (a2, b1, c2), (a2, b2, c2)} .

If this frame properly captures the relationship among frames ΘA, ΘB ,
and ΘC , then c1 is the only element from ΘC compatible with a1 from ΘA.
However, if we maintain these as three separate frames connected by com-
patibility mappings, CA �→B, CB �→A, CB �→C , and CC �→B, both c1 and c2 are
compatible with a1 because a1 is compatible with b1, and b1 is compatible
with both c1 and c2; i.e., CB �→C(CA �→B({a1})) = {c1, c2}. However, if a1 is
true, then it follows that either c1 or c2 is true. Thus, the reasoning based
on a well-formed gallery of interconnected frames is sound but not necessar-
ily complete. A gallery is well formed if there exists a single all encompass-
ing frame whose answers are always included in the answers based upon the
gallery.
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In dynamic environments, compatibility relations can be used to reason
over time. If ΘA1 represents the possible states of the world at time one and
ΘA2 represents the possible states at time two, then a compatibility relation,
ΘA1,A2, can capture the possible state transitions. For example, ΘA1 and ΘA2

might both represent the possible locations of a ship (i.e., they are identical
to ΘA as previously defined), then ΘA1,A2 could represent the constraints on
that ship’s movement. A pair of locations (ai, aj) would be included in ΘA1,A2

if a ship located at ai on Day 1 (i.e., time) could reach aj by Day 2. If we
assume that the possible movements of a ship are constrained in the same
way over any two day period, then the compatibility mapping associated with
this compatibility relation can be reapplied as many times as necessary to
constrain the possible locations of a ship across an arbitrary number of days.

2.2 Analyzing the Evidence

Once a gallery has been established, the available evidence can be analyzed.
The goal of this analysis is to establish a line of reasoning, based upon both
the possibilistic information in the gallery and the probabilistic information
from the evidence that determines the most likely answers to some questions.
The gallery delimits the space of possible situations, and the evidential infor-
mation establishes the likelihoods of these possibilities. Within an analysis,
bodies of evidence are expressed relative to frames in the gallery, and paths are
established for the bodies of evidence to move through the frames via the com-
patibility mappings. An analysis also specifies if other evidential operations
are to be performed, including whether multiple bodies of evidence are to be
combined when they arrive at common frames. Finally, an analysis specifies
which frame and ultimate bodies of evidence are to be used to answer each
target question. Thus, an analysis specifies a means of arguing from multiple
bodies of evidence towards a particular (probabilistic) conclusion. An analysis,
in an evidential context, is the analogue of a proof tree in a logical context.

To begin, each body of evidence is expressed relative to a frame in the
gallery. Each is represented as a mass distribution (e.g.,mA) over propositional
statements discerned by a frame (e.g., ΘA):

mA : 2ΘA "→ [0, 1]
∑

Ai⊆ΘA

mA(Ai) = 1

mA(∅) = 0 .

Intuitively, mass is attributed to the most precise propositions a body of
evidence supports. If a portion of mass is attributed to a proposition Ai, it
represents a minimal commitment to that proposition and all the propositions
it implies. Additional mass attributed to a proposition Aj that is compatible
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with Ai, but does not imply it (i.e., ∅ 	= Ai ∩ Aj 	= Aj), represents a poten-
tial commitment: mass that neither supports nor denies that proposition at
present but might later move either way based upon additional information.

To interpret this body of evidence relative to the question Aj , we calculate
its support and plausibility to derive its evidential interval as follows:

Spt(Aj) =
∑

Ai⊆Aj

mA(Ai)

Pls(Aj) = 1− Spt(ΘA − Aj)
[Spt(Aj), P ls(Aj)] ⊆ [0, 1] .

The lower bound of an evidential interval indicates the degree to which the
evidence supports the proposition, while the upper bound indicates the degree
to which the evidence fails to refute the proposition, i.e., the degree to which
it remains plausible. This evidential interval, for the most part, corresponds
to bounds on the probability of Aj . Thus, complete ignorance is represented
by an evidential interval of [0.0, 1.0] and a precise probability assignment
is represented by the “interval” collapsed about that point (e.g., [0.7, 0.7]).
Other degrees of ignorance are captured by evidential intervals with widths
other than 0 or 1 (e.g., [0.6, 0.8], [0.0, 0.5], [0.9, 1.0]).

If a body of evidence is to be interpreted relative to a question expressed
over a different frame from the one over which the evidence is expressed,
a path of compatibility relations connecting the two frames is required. The
mass distribution expressing the body of evidence is then repeatedly translated
from frame to frame, via compatibility mappings, until it reaches the ultimate
frame of the question. In translating mA from frame ΘA to frame ΘB via
compatibility mapping CA �→B , the following computation is applied to derive
the translated mass distribution mB:

mB(Bj) =
∑

CA�→B(Ai)=Bj

mA(Ai) .

Intuitively, if we (partially) believe Ai, and Ai implies Bj , then we should
have the same (partial) belief in Bj . This same method is applied to move
mass distributions among frames that represent states of the world at different
times. However, when this is the case, the operation is called projection.

Once two mass distributions m1
A and m2

A representing independent opin-
ions are expressed relative to the same frame of discernment, they can be fused
(i.e., combined) using Dempster’s Rule of Combination. Dempster’s rule pools
mass distributions to produce a new mass distribution m3

A that represents the
consensus of the original disparate opinions. That is, Dempster’s rule produces
a new mass distribution that leans towards points of agreement between the
original opinions and away from points of disagreement. Dempster’s rule is
defined as follows:
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m3
A(Ak) = (1− k)−1

∑

Ai∩Aj=Ak

m1
A(Ai)m2

A(Aj)

k =
∑

Ai∩Aj=∅
m1
A(Ai)m2

A(Aj) 	= 1 .

Since Dempster’s rule is both commutative and associative, multiple (inde-
pendent) bodies of evidence can be combined in any order without affecting
the result. If the initial bodies of evidence are independent, then the deriva-
tive bodies of evidence are independent as long as they share no common
ancestors. Thus, in the course of constructing an analysis, attention must be
paid to the way that evidence is propagated and combined to guarantee the
independence of the evidence at each combination.

Other evidential operations can also be included in an analysis. One fre-
quently used operation is discounting. This operation adjusts a mass distribu-
tion to reflect its source’s credibility (expressed as a discount rate r ∈ [0, 1]).
If a source is completely reliable (r = 0), discounting has no effect; if it is
completely unreliable (r = 1), discounting strips away all apparent informa-
tion content; otherwise, discounting lowers the apparent information content
in proportion to the source’s unreliability:

m%
A(Ai) =

{
(1 − r)mA(Ai), Ai 	= ΘA
r + (1− r)mA(ΘA), otherwise .

Other evidential operations include summarization and gisting (among
others). Summarization eliminates extraneous details from a mass distribu-
tion by collecting all of the extremely small amounts of mass attributed to
propositions and attributing the sum to the disjunction of those propositions.
Gisting produces the “central” Boolean-valued statement that captures the
essence of a mass distribution. This is particularly useful when explaining lines
of reasoning.

3 Implementation Approach

In implementing this formal approach, we have found that the gallery, frames,
compatibility relations, and analyses can all be represented straightforwardly
as graphs consisting of nodes connected by directed edges. This has led us to
use Grasper IITM [10, 8], a programming language extension to LISP that
introduces graphs as a primitive data type. A graph in Grasper II consists of
a set of labeled subgraphs. Each subgraph consists of a set of labeled nodes
and a set of labeled, directed edges that connect pairs of nodes. Each node,
edge, and subgraph have values that can be used as general repositories for
information. Once the graphical representations have been established for the
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SHIP-GALLERY

LOCATIONS

DELTA-LOCATIONS

LOCATIONS-ACTIVITIES

DELTA-ACTIVITIES

ACTIVITIES

Fig. 1. SHIP-GALLERY gallery

gallery, frames, compatibility relations, and analyses, the remainder of the
formal approach is easily implemented.

The first step is to define the gallery. If the problem is to reason about the
locations and activities of ships, we might include two frames: a LOCATIONS
frame and an ACTIVITIES frame. These are each represented as nodes in
a subgraph called the SHIP-GALLERY (Fig. 1). In addition, the gallery
might include three compatibility relations represented as edges. One com-
patibility relation, LOCATIONS-ACTIVITIES, relates locations to activi-
ties and is represented by an edge from LOCATIONS to ACTIVITIES.
The two other compatibility relations, DELTA-LOCATIONS and DELTA-
ACTIVITIES, describe how a ship’s location and activity on one day are
related to the next day’s. Each of these is represented by an edge that begins
and ends at the same node.

The next step is to define the frames in the gallery. Each of these is repre-
sented by a subgraph sharing the same name as a node from the gallery. Each
such subgraph includes a node for each element of the frame and may include
additional nodes representing aliases, i.e., named disjunctions of elements.
Each of these additional nodes have edges pointing to elements of the frame (or
other aliases) that make up the disjunction. The LOCATIONS frame (Fig. 2)

LOCATIONS

AT-SEA

ZONE1 ZONE3

ZONE2

DOCKED

IN-PORT

CHANNEL LOADING-DOCK

REFUELING-DOCK

NORM NORM
NORM

NORM

NORM

NORM
NORM

Fig. 2. LOCATIONS frame
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ACTIVITIES

ENROUTE REFUELING

LOADING

UNLOADING

TUG-ESCORT

Fig. 3. ACTIVITIES frame

includes six elements (ZONE1, ZONE2, ZONE3, CHANNEL, LOADING-
DOCK, REFUELING-DOCK) and three aliases (IN-PORT, DOCKED, AT-
SEA). The ACTIVITIES frame (Fig. 3) includes five elements (ENROUTE,
TUG-ESCORT, UNLOADING, LOADING, REFUELING).

Each compatibility relation in the gallery is represented as a subgraph that
includes the nodes from the frames that they relate with edges connecting
compatible elements. For example, in the LOCATIONS-ACTIVITIES com-
patibility relation (Fig. 4), ZONE1, ZONE2, and ZONE3 are all connected
to ENROUTE (becuase these zones represent areas at sea), CHANNEL is
connected to TUG-ESCORT (because a ship entering or leaving the port at
the end of this channel would be under tugboat control), LOADING-DOCK
is connected to both LOADING and UNLOADING (because either activity

LOCATIONS-ACTIVITIES

ZONE3

ENROUTE

TUG-ESCORT

REFUELING

LOADING

UNLOADING

COMP

COMP

COMP

COMP

COMP

COMP

COMP

ZONE2

ZONE1

CHANNEL

REFUELING-DOCK

LOADING-DOCK

Fig. 4. LOCATIONS-ACTIVITIES compatibility relation
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DELTA-LOCATIONS

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT
ZONE3 ZONE2 ZONE1 CHANNEL

REFUELING-DOCK

LOADING-DOCK

Fig. 5. DELTA-LOCATIONS compatibility relation

is consistent with being at that dock), and REFUELING-DOCK is connected
to REFUELING. DELTA-LOCATIONS and DELTA-ACTIVITIES (Figs. 5
and 6) relate frames to themselves. They represent possible state transitions
in their respective frames over any two day period. Edges connect compatible
elements from one day to the next. DELTA-LOCATIONS indicates that the
zones are linearly ordered and that a ship must pass through the channel to get
to either the loading or refueling docks. It also indicates that a ship will only
remain at the refueling dock or in the channel for one day at a time but may
remain anywhere else for any number of days. In DELTA-ACTIVIES it can
be seen that a ship must progress through TUG-ESCORT from ENROUTE
before proceeding to REFUELING or UNLOADING and that REFUELING
and TUG-ESCORT are one day activities. Further, a ship must go through
LOADING after UNLOADING before returning to TUG-ESCORT.

After the gallery and its supporting frames and compatibility relations
have been established, evidential analyses can be constructed. These analyses
are represented as data-flow graphs where the data and the operations are
evidential. Figure 7 is one such analysis. Here primitive bodies of evidence
are represented by elliptical nodes and derivative bodies of evidence are rep-
resented by circular nodes. Diamond-shaped nodes represent interpretations
of bodies of evidence. The values of these nodes are used as repositories for
the information (i.e., data) that they represent (Fig. 7). For bodies of evi-
dence this includes a frame of discernment (including the day to which the

DELTA-ACTIVITIES

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT NEXT

NEXT

NEXT

NEXT
ENROUTE TUG-ESCORT UNLOADING

REFUELING

LOADING

Fig. 6. DELTA-ACTIVITIES compatibility relation
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GRAPH
ANALYSIS
EVIDENCE
REPORT
CELL

GRASPER II

I1 IP1

P1

D2

T3

IT3

P3 D3

F12

F123

IF123

ID2

IF12

INTERPRET INTERPRET

INTERPRET INTERPRET

TRANSLATE

PROJECT

PROJECT

DISCOUNT

FUSE

FUSE

FUSE

FUSE

PROJECT
TRANSLATE
DISCOUNT
SUMMARIZE
INTERPRET
CREATE
DESTROY

ANCESTORS
DESCENDANTS

EXAMINE/REVISE
EVALUATE

DISCOUNT

FUSE

INTERPRET

INTERPRET

REPORT1

REPORT 2

REPORT3

ANALYSIS1 ×

Fig. 7. ANALYSIS1 analysis

evidence pertains), a mass distribution, and other supporting information.
Edges pointing to a derivative node are labeled with the evidential operation
that is applied to the bodies of evidence, at the other ends of the edges, to
derive the body of evidence represented by this node.

In the analysis of a ship in Fig. 8, there are three primitive bodies of
evidence. REPORT1 locates the ship on Day 1 saying that there is a 70
percent chance that it can be found in the CHANNEL and a 30 percent
chance that it is in ZONE1; REPORT2 says that the ship was IN-PORT
on Day 2; and REPORT3 indicates that the ship was LOADING cargo on
Day 3. REPORT1 is taken at face value, but REPORT2 and REPORT3 have
been discounted by 20 percent and 40 percent, respectively, to derive D2 and
D3, reflecting doubt in the credibility of these reports. REPORT1 has been
projected forward by one day to derive P1 2 and then has been fused with D2
to derive a consensus for Day 2, F12. D3 has been projected backwards in time
by one day to derive P3 and then has been translated from the ACTIVITIES
frame to the LOCATIONS frame. Finally, this result, T3, has been fused with
F12 to derive a consensus, based on all three reports, about the ship’s location
on Day 2.

The interpretation nodes in this analysis track the evidential intervals for
some key propositions. I1 is based soley on REPORT1 and indicates that there
is precisely a 70 percent chance of the ship being IN-PORT[0.7, 0.7] and no
chance of it being DOCKED [0.0, 0.0]on Day 1. IP1 indicates that, based soley
upon REPORT1, after one day has ellapsed, nothing is known about whether

2 Note that the distribution at REPORT1 is a Bayesian distribution (i.e., a dis-
tribution over exclusive elements), but application of the projection operation
results in a non-Bayesian distribution at P1.
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REPORT1

REPORT3

REPORT2

D2

D3

P3

T3

F123

F12

TYPE : EVIDENCE

TYPE : EVIDENCE

TYPE: PROJECTION

TYPE: PROJECTION

TYPE: TRANSLATION

TYPE: FUSION

DELTA-T: –1.

THETA: LOCATIONS

TYPE: DISCOUNT

TYPE: FUSION

TYPE: EVIDENCE

TYPE: DISCOUNT
DISCOUNT-RATE: 40.

DISCOUNT–RATE: 20

DELTA-T: 1.

FOD: (LOCATIONS 1.)

FOD: (LOCATIONS 2.)

FOD: (LOCATIONS 2.)

FOD: (LOCATIONS 2.)

FOD: (ACTIVITIES 3.)

FOD: (ACTIVITIES 3.)

FOD: (ACTIVITIES 2.)

FOD: (LOCATIONS 2.)

FOD: (LOCATIONS 2.)

FOD: (LOCATIONS 2.)

MASSFUN: (((CHANNEL) 0.7) ((ZONE1) 0.3))

MASSFUN: (((REFUELING-DOCK LOADING-DOCK ZONE1)  0.7) ((ZONE2 CHANNEL ZONE1) 0.3))

MASSFUN: (((CHANNEL LOADING-DOCK REFUELING-DOCK) 1.0)

MASSFUN: (((CHANNEL LOADING-DOCK REFUELING-DOCK) 0.8) ((REFUELING–DOCK ZONE2 CHANNEL LOADING-DOCK ZONE1 ZONE3) 0.2))

MASSFUN: ((( LOADING–DOCK REFUELING-DOCK) 0.56)

MASSFUN: ((( LOADING) 0.6) ((TUG–ESCORT UNLOADING ENROUTE LOADING REFUELING) 0.4))

MASSFUN: (((UN LOADING) 0.6) ((REFUELING LOADING ENROUTE UNLOADING TUG-ESCORT) 0.4))

MASSFUN: ((( LOADING–DOCK) 0.6) ((ZONE3 ZONE2 ZONE1 LOADING–DOCK REFEULING–DOCK CHANNEL) 0.4) 

MASSFUN: ((( LOADING–DOCK) 0.5121951)

MASSFUN: ((( LOADING) 1.0))

((CHANNEL) 0.24000001)
((REFUELING–DOCK LOADING–DOCK ZONE1) 0.14))
((ZONE2 CHANNEL ZONE1) 0.60000002))

CONFLICT: 0.0

Exit

Exit

Exit

Exit

Exit

Exit

Exit

Exit

Exit

Exit

P1

((( LOADING–DOCK REFUELING–DOCK) 0.2731707 )
(( CHANNEL) 0.11707317 )
(( ZONE1 LOADING–DOCK REFUELING–DOCK) 0.06829268 )
(( ZONE2 ZONE1 CHANNEL ) 0.029268293) )

CONFLICT: 0.17999995

Fig. 8. Data from ANALYSIS1

the ship is IN-PORT [0.0, 1.0], but that it may now be DOCKED [0.0, .7.0].
If REPORT2 is included after being discounted, IF12 indicates that there
is strong reason to believe that the ship is IN-PORT [0.8, 1.0], but there is
conflicting information concerning whether or not it is DOCKED [0.56, 0.7].
IT3 indicates that based soley upon REPORT3, after having been discounted,
projected backwards a day, and translated to the LOCATION frame, that
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there is 0.6 support and 1.0 plausibility for both IN-PORT and DOCKED.
Finally, when all three reports are considered, IF123 indicates strong belief
that the ship is IN-PORT [0.9, 1.0] on Day 2 and a reasonably strong belief,
though mixed, that it is also DOCKED [0.78, 0.85].

4 Evidential-Reasoning Systems

To support the construction, modification, and interrogation of evidential
analyses, we have developed GisterTM . Gister supports an interactive, menu-
driven, graphical interface that allows these structures to be easily manipu-
lated. The user simply selects from a menu to add an evidential operation to
an analysis, to modify operation parameters (e.g., discount rates), or to change
any portion of a gallery including its frames and compatibility relations. In
response, Gister updates the analyses.

All of the figures in this paper are actual screen images from Gister.
Figure 3 includes the menus for working with analyses. On the left side of
the screen is a menu of nouns. The user determines with what class of objects
he wishes to work and selects the appropriate noun from the menu. Once
a noun has been selected, a menu of verbs appears on the right side of the
screen. A selection from this menu invokes the operation corresponding to
the selected verb on the previously selected noun. The user then designates
the appropriate nodes, edges, and the like for the selected operation.

Unlike other expert systems, Gister is designed as a tool for the domain
expert. With this tool, an expert can quickly and flexibly develop a line of
reasoning specific to a given domain situation. This differs markedly from
other expert systems in which a single line of reasoning is developed by an
expert and then is instantiated over different situations by nonexperts.

This approach has been successfully applied to Naval intelligence problems.
New work is focusing on adapting this technology to multisource data fusion
for the Army.

5 Summary

Evidential reasoning has already been successfully applied to problems in sev-
eral domains. However, the addition of the compatability relation to the the-
ory of beliefs, the formalization and development of new evidential operators,
and the use of graphical representations have greatly improved the overall
usefulness and accessibility of these techniques.
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Epistemic Logics, Probability, and the Calculus
of Evidence

Enrique H. Ruspini

Abstract. This paper, presents results of the application to epistemic logic
structures of the method proposed by Carnap for the development of logical foun-
dations of probability theory. These results, which provide firm conceptual bases
for the Dempster-Shafer calculus of evidence, are derived by exclusively using basic
concepts from probability and modal logic theories, without resorting to any other
theoretical notions or structures.

A form of epistemic logic (equivalent in power to the modal system S5), is
used to define a space of possible worlds or states of affairs. This space, called the
epistemic universe, consists of all possible combined descriptions of the state of the
real world and of the state of knowledge that certain rational agents have about
it. These representations generalize those derived by Carnap, which were confined
exclusively to descriptions of possible states of the real world.

Probabilities defined on certain classes of sets of this universe, representing differ-
ent states of knowledge about the world, have the properties of the major functions
of the Dempster-Shafer calculus of evidence: belief functions and mass assignments.
The importance of these epistemic probabilities lies in their ability to represent the
effect of uncertain evidence in the states of knowledge of rational agents. Further-
more, if an epistemic probability is extended to a probability function defined over
subsets of the epistemic universe that represent true states of the real world, then
any such extension must satisfy the well-known interval bounds derived from the
Dempster-Shafer theory.

Application of this logic-based approach to problems of knowledge integration
results in a general expression, called the additive combination formula, which can
be applied to a wide variety of problems of integration of dependent and indepen-
dent knowledge. Under assumptions of probabilistic independence this formula is
equivalent to Dempster’s rule of combination.

1 Introduction

The research work presented here was motivated by the need to improve the
understanding of issues in the analysis and interpretation of evidence. In the
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context of this paper, the term evidence is used to describe the informa-
tion usually imprecise and uncertain, that is conveyed by observations and
measurements of real-world systems. We have sought to gain such an under-
standing by examining the basic concepts, structures, and ideas relevant to
the characterization of imprecise and uncertain knowledge.

Our approach is strongly based on Carnap’s methodology [1, 2] for the
development of logical foundations of probability theory. In his formulation,
Carnap developed an universe of possible worlds that encompasses all possible
valid states of a real-world system. Information about that system, if precise
and certain, identifies its actual state (e.g., a detailed diagnosis of a disease).
If imprecise but certain, this information identifies a subset of possible system
states (e.g., a number of possible diagnoses). If uncertain, then the information
induces a probability distribution over system states (e.g., probability values
for specific diagnoses).

It is important to note, however, that in Carnap’s characterization no
distinction is drawn between degrees of precision or detail when the infor-
mation is uncertain. This representational shortcoming renders impossible
the modeling of information that only assigns degrees of likelihood values
to some subsets of possible states (i.e., instead of prescribing those val-
ues over all such subsets that are of relevance to the modeler). This type
of information, providing some knowledge about the underlying probability
distributions but not all the distribution values, is quite common in prac-
tical applications (e.g., in a medical diagnosis problem, tests and existing
medical knowledge indicate that there is a 60% chance of liver disease but
fail to provide any information about the likelihood of individual instances
thereof).

Seeking to generalize Carnap’s approach to allow for the treatment of this
type of uncertain information, we directed our attention to epistemic logics–a
form of modal logics developed to deal with problems of representation and
manipulation of the states of knowledge of rational agents. Originally studied
by Hintikka [6], their use in artificial intelligence problems was proposed by
Moore [8]. Recently epistemic logics have also been applied to the design of
intelligent robots [11].

In our extension of the Carnapian ideas the starting point is a general-
ization of Carnap’s space of possible worlds, or universe. This generalization,
obtained by considering representations of both the state of the world and
the knowledge of rational agents, is called the epistemic universe. Described
in the next section, the epistemic universe contains several interesting and
important subset families. Two of these collections have as members truth
sets and support sets, which are related, respectively, to different ontological
and epistemological properties of possible worlds. Furthermore, these families
have the properties of sigma algebras, i.e. the basic domain of definition of
probability functions.

Again followingCarnap’s leadwedefineprobabilities on these sigmaalgebras
and consider their relationships.Wediffer fromCarnap, however, in thatweview
evidence as generallyproviding informationabout the truthof somepropositions
while failing to give any indication about the truth of others. Evidence is further
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regarded as a potential modifier of our state of knowledge; accordingly, uncer-
tain evidence is represented as a conventional probability functiondefined on the
algebra of epistemic sets. This probability is then shown to have the structure
of the basic functions of the Dempster-Shafer calculus of evidence [3, 14]. Fur-
thermore, if such an epistemic probability is extended to the sigma algebra of the
truth sets (representing probabilities of the truth of propositions that describe
the world), then the extension must satisfy the bounds of the Dempster-Shafer
theory. These bounds correspond to the well-known concepts of lower and upper
probability functions and, in this particular regard, our results are in agreement
withthecharacterizationmadebySuppes [15]of theroleofuncertain information
in determining the probability distribution values that underlie rational choices
in decision problems.

Our approach is also related in several ways to the probabilistic logic
approach of Nilsson [10]–the major differences being in the use of epistemic
concepts and the derivation of global conditions for probability extension,
in contrast to formulas derived from interval probability theory or from
approximate-estimation techniques.

In addition, this work has similarities with that of Halpern and McAllester
[5]–the dissimilarities in this case being in the methods used to model uncer-
tainty. It is important to note, however, that Halpern and McAllester repre-
sent likelihood formally as the probability of knowledge (in the epistemic-logic
sense) of propositional truth, using an interpretation that is similar to ours in
several significant respects.

Section 4 deals with the problems associated with the combination of the
knowledge of several mutually trusting agents. Under assumptions that guar-
antee that the integrated knowledge is solely the logical consequence of the
states of knowledge of the agents, several results are presented, including a
general formula for knowledge combination. This additive combination for-
mula may be applied to several knowledge integration problems involving
either dependent or independent evidential bodies. For the latter case, the
corresponding result generalizes the Dempster’s rule of combination.

It is important to emphasize that the results of Sects. 3 and 4, identi-
fying the Dempster-Shafer calculus of evidence with the probability calculus
in the epistemic universe, were derived by the direct application of conven-
tional probability theory concepts without having to introduce other mul-
tivalued logic notions. The insight gained by using an epistemic model as
the basic foundation of the Dempster-Shafer calculus of evidence has made
possible the extension of this evidential formalism by the incorporation of
new formulas for combining dependent evidence and for utilizing conditional
knowledge.

In the exposition that follows, we have not included the proofs of any of the
theoretical results obtained in the research being discussed, as such extensive
discussion is well outside the scope of this paper. The reader interested in the
actual details will find them discussed in a related work [13].
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2 The Epistemic Universe

2.1 The Carnapian Universe

Carnap’s logical approach to probability starts with the construction of a
space of possible worlds that encompasses all valid states of a system of inter-
est. First, all propositions (actually instantiated first-order-Iogic predicates in
Carnap’s formulation) of relevance to the system p, q, r, s, ..., are considered.
All possible conjunctions of the type p∧¬q∧¬r∧s∧ ..., where every proposi-
tion appears only once either as itself or as its negation, are then considered.
After discarding logical impossibilities, the resulting set of logical expressions
includes all possible system states that may be represented using the propo-
sitions p, q, ....

Each such state corresponds to the truth of an atomic proposition about
the system in question. These atomic propositions are equivalent to the ele-
mentary events introduced in most treatments of basic probability theory.
Obviously, by construction, only one such proposition can truly describe the
state of the world. The space of atomic propositions, or universe, is therefore
a collection of all possible alternative states of the system.

Possible worlds can also be regarded as functions that map each relevant
proposition into its truth-value (i.e. true or false) or, alternatively, as subsets
of true propositions (i.e., those mapped into the true truth-value). If a possible
world is viewed through a “conceptual microscope” as illustrated in Fig. 1, it

W

p q -r s -t

Fig. 1. The carnapian universe under the microscope
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can be seen to contain all true propositions in that world, including the nega-
tions of those that are false; Two possible worlds will always be different since
at least one proposition which is true in one of them will be false in the other.

The space of possible worlds (considered as a probabilistic space) is the
basic structure used by Carnap to relate the values of probability functions
of subsets associated with relevant propositions on the basis of the logical
relationships between those propositions.

2.2 Epistemic Considerations

Carnap’s logical approach, while enabling a clearer understanding of the
relations between logical and probabilistic concepts, suffers from a major
handicap: it assumes that observations of the real world always determine
unambiguously probability values for every subset in the universe. This
assumption leads inevitably to problems associated with the need to define
probability values when the underlying information is not rich enough to fur-
nish them.

If, for example, we have certain (i.e., sure) information that a guest to a
party we are hosting is fond of French wine, we would ordinarily consider, in
a nonprobabilistic setting, that this information constrains our spectrum of
beverage choices (assuming, of course, that we aim to please our guest and are
able to do so) without identifying what particular label or vintage he is likely
to prefer. If, instead of being sure, our informant is uncertain and believes
there is an 80% chance that our caller will like French wine and a 20% chance
that he will opt for beer, it is unreasonable (simply because uncertainty has
now entered the picture) to assume that this information can be used to assign
probabilities for particular choices of wine or beer when before, in a world of
certainty, we regarded similar information as being only capable of identifying
a subset of possibilities.

These considerations have led to the development of schemes to represent
uncertain information as constraints on the values of valid probability dis-
tributions. Interval probability theories [16], of which the Dempster-Shafer
calculus is a particular case, are important examples of this technique.

The approach we have followed here, however, proceeds from a different
logical foundation. Starting from the notion that certain information improves
our knowledge by reducing the scope of possible valid states, it considers that
uncertain information is associated with a probability function defined on
some subsets (actually, a sigma algebra) of the universe, rather than on every
subset of the universe. While in the case of certain information we say that
we know that the system state is in a subset of possible states, in the case
of uncertain information we similarly affirm, with some degree of likelihood,
that state is in certain region of the universe. The corresponding probability
values constrain the values of other probability functions defined over richer
subset collections (i.e., probability extensions).
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To identify a model that constitutes the basis for defining probabilities that
take values over epistemic structure, we must look at abstract formalisms
that allow proper differentiation between states of the world and states of
knowledge. This framework is provided by epistemic logics.

2.3 Epistemic Logics and Epistemic Universes

The starting point for our generalization of the Carnapian universe is
again a collection of propositions about the real world, denoted by p, q, r, s,...
We consider, in addition, more complex propositions obtained therefrom by
negation, conjunction, and disjunction. The resulting set of propositions is
called a frame of discernment. Each of its members, describing a state of the
world, is called an objective proposition or objective sentence.

In addition to objective sentences, we shall also deal with propositions that
represent states of knowledge about the real world. When only one rational
agent is concerned, the simplest of these epistemic propositions are denoted
by Kp,Kq,Kr, ..., representing knowledge of their corresponding objective
counterparts. We shall also consider expressions formed by combination of
epistemic and objective propositions through disjunction, conjunction, impli-
cation, and negation, as in the examples ¬Kr, or p∨K(q∨Ks). The set of all
such propositions, which encompasses the frame of discernment as a subset,
is called the sentence space, denoted by S. .

The next step in constructing an extension of the Carnapian universe
is the generation of all possible states by the assignment of truth-values to
propositions in the sentence space. In addition to compliance with the axioms
of ordinary propositional logic, we shall also need the following axioms, which
supply the unary operator K with the required epistemilogical semantics:

E1 If Kp is true, then p is true.
E2 If Kp is true, then KKp is true (positive introspection).
E3 If K(p− > q) is true, then Kp→ Kq is also true.
E4 If ¬Kp is true, then K¬Kp is true (negative introspection).
E5 If p is an axiom, then Kp is an axiom.

This system is equivalent to the modal logic system S5 [7].
The space of possible worlds generated on the basis of the above schemata

is called the epistemic universe and is denoted by U(S). When seen through
our imaginary conceptual microscope, as shown in Fig. 2, each possible world
includes, as before, all objective propositions that are true in that world. Each
possible world, however, includes also all true epistemic propositions repre-
senting knowledge of the truth (e.g., Kp) or falsehood (K¬p) of propositions
and, in addition, propositions describing ignorance regarding the truth or
falsehood of certain propositions (e.g., ¬Kp ∧ ¬K¬p).

It is important to note that, in the epistemic universe, possible worlds may
share the same set of true objective propositions, even though the states of
knowledge (i.e., true epistemic propositions) will be different in each case.
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W

p q -r s -t
Kp -Kq -K -q K -r Ks K -t

Fig. 2. The epistemic universe under the microscope

In the remainder of this work we will require to employ two important
relations.

The first, called logical implication and denoted by =⇒, holds between
propositions in sentence space. This relation, well known in modal logic, is
used to indicate the fact that in any possible world the truth of some propo-
sition implies that of another. In other words, if p =⇒ q, then it is logically
impossible for q to be false if p is true.

The second relation, called the accessibility relation and denoted by ∼,
holds between possible worlds in the epistemic universe. Two possible worlds
are related through the accessibility relation if the same epistemic proposi-
tions are true in both worlds. Clearly, such world pairs cannot be discrim-
inated on the basis of the information (i.e. knowledge) available in each of
them.

2.4 Special Sets in the Epistemic Universe

Several subsets of the epistemic universe are of importance in the definition
of probability functions that adequately represent the effects of uncertain
evidence in knowledge states.

The subset of all possible worlds where an objective proposition p is known
to be true, i.e. in which the epistemic sentence Kp is true, is called the support
set of p and is denoted by k(p).
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The epistemic set for an objective proposition p is the set of all possible
worlds in which p is the most specific proposition that is known to be true
(i.e., p is the conjunction of all objective propositions q such that Kq is true).
The epistemic set e(p) consists of possible worlds where Kq is true if and only
if q is logically implied by p, i.e., p =⇒ q. Pairs of possible worlds in the same
epistemic set are always related by the accessibility relation ∼.

Epistemic sets and support sets are related by the set equation

k(p) = ∪
q=⇒p

e(q) (1)

which is of essential importance to establish the relationship between epistemic
constructs and the Dempster-Shafer calculus. Epistemic sets corresponding to
different propositions (i.e., those that are not logically equivalent, denoted sim-
ply by 	= in this work) are disjoint. The above expression, therefore, represents
the disjoint partition of support sets in terms of epistemic sets. Furthermore
it can be proved that

e(p) = k(p) ∩
⋃

q=⇒p
q �=p

[k(q)] (2)

Finally, truth sets are important subsets of the epistemic universe that are
directly related to the truth of objective, rather than epistemic, propositions.
The truth set t(p) for an objective proposition p is the collection of all possible
worlds where the proposition p is true.

Since p is true in a possible world W whenever Kp is true in W , then it
follows that the support set k(p) is a subset of the truth set t(p). It is also
true that k(p) is the largest support set contained in t(p).

The inclusion relations between truth, support and epistemic sets are
graphically illustrated in Fig. 3. This figure shows the truth set t(p) for a
proposition p; its corresponding support set k(p); and the epistemic sets for
several propositions which imply p (including the epistemic set for p itself).
As noted before, epistemic sets e(q) for propositions q that do not imply p are
disjoint from the support set k(p) and intersect the complement t(p) of the
truth-set t(p).

t (p)

e (p)

e (r)

e (s)

e (q)

k (p)

Fig. 3. Relations between epistemic, support, and truth sets
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3 Epistemic Probabilities

3.1 Sigma Algebras

The collections of subsets defined in the previous section are of particular
importance in a number of respects.

First, epistemic and support sets have a clear epistemological interpre-
tation as representations of similar states of certain (i.e., sure) knowledge.
Furthermore, the effect of uncertain information on states of knowledge can
be represented by probability values assigned to these sets.

Truth sets, on the other hand, represent states of the world that share
some ontological property. Probability values assigned to these sets represent
the likelihood of certain events in the real world, namely, the truth of the
proposition associated with the truth set. Because of the relations between
knowledge and truth embodied in the axiom schema (E), these probability
values can be expected to bear some relation, however, to probability values
over support and epistemic sets. This relationship is discussed below.

Truth sets, on one hand, and epistemic and support sets, on the other,
generate (by union, intersection, and complementation) sigma algebras of the
epistemic universe, called the truth algebra and the epistemic algebra, respec-
tively. Sigma algebras are the proper domain of definition for probability func-
tions. This fact has often been ignored in the past when, usually for the sake
of simplicity, probabilities have been assumed to be defined on every subset of
some space. Consideration of the proper domain of definition for probabilities
is, however, a most important issue in probability theory (e.g., when relating
joint and marginal distributions).

3.2 Probabilities, Supports and Masses

A probability function defined over the sigma algebra of support and epistemic
sets is called an epistemic probability. Epistemic probabilities represent the
effect of uncertain evidence on a rational agent’s state of knowledge. This
effect can always be represented without ambiguity as the result of either
previous experience or rational considerations. Under conditions of perfect
probabilistic information (in conventional approaches this is assumed to be
always available) the corresponding probability is defined for each atomic
proposition. At the opposite end, the vacuous epistemic probability function
assigns a probability of 1 to the epistemic set e(U) and a probability of 0 to
every other subset (i.e., the evidence does not convey any information).

Two functions, both defined in the frame of discernment, can be associated
in a natural manner with an epistemic probability.

The first of these, called a mass function and denoted by m, is defined by
the expression

m(p) = P (e(p)), (3)
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i.e., as the probability of the epistemic set associated with the objective propo-
sition p.

The second function is called the support function and is denoted by S. It
is defined by the expression

S(p) = P (k(p)). (4)

Support functions and mass functions are related by the equation

S(p) =
∑
q=⇒p

m(q), (5)

which is valid for every objective proposition p in the frame of discernment.
From this basic equation, by using results from combinatorial theory [4], it is
possible to show that S and m are belief and mass functions, respectively, in
the sense of Shafer [14].

In particular, it may be seen that m is expressed in terms of values of the
support function S by the equation

m(p) =
∑
q=⇒p

(−1)|p−q|S(q), (6)

where |p− q| is the number of different (i.e., not logically equivalent) propo-
sitions r such that q =⇒ r =⇒ p, and where the sum is over all propositions
q that imply p.

Furthermore, the following inequality, utilized by Shafer as an axiom for
belief functions, can be derived as a necessary and sufficient condition char-
acterizing support functions:

S(p1 ∨ ... ∨ pn) ≥
∑

I⊆{1,...,n}
I �=φ

(−1)|I|+1S(
∧
i∈I

pi) (7)

where |I| is the cardinality of the index subset I.
It is important to emphasize that the epistemic probability P associated

with mass and support functions is a conventional probability defined on the
epistemic algebra of the epistemic universe.

3.3 Lower and Upper Probabilities

Since both truth sets and epistemic sets are subsets of the epistemic universe,
it is reasonable to ask what kind of relations exists between the probabil-
ity values of members of either class. Answers to this question are obtained
by considering the problems associated with the extension of an epistemic
probability to a probability function defined over the truth algebra.

The problem of probability extension has received a great deal of attention
in probability theory (see, for example, [9]). The standard procedure for its
solution is to define lower and upper probabilities for sets not included in the
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domain of definition (i.e., sigma algebra) of the probability function being
extended.

The lower probability of a set X is the probability of the largest subset of
the sigma algebra (i.e., where the probability is actually defined) contained
in X . Similarly, the upper probability of X is the probability of the smallest
measurable subset that contains X .

If P∗ and P ∗ denote the lower and upper probability functions, respec-
tively, then well-known results of probability theory state that probability
extensions P always exist and that the value P (X) satisfies the inequality
constraints

P∗(X) ≤ P (X) ≤ P ∗(X) (8)

In addition, the bounds provided by P∗ and P ∗ may always be attained
by some extension and are therefore the best possible.

If these basic theoretical results are applied to the epistemic universe, it
can be seen that the value P (t(p)) of any epistemic probability extension P
on the truth set t(p) must satisfy the inequality

S(p) ≤ P (t(p)) ≤ Pl(p) (9)

where Pl is the plausibility function of Shafer, defined by

Pl(p) = 1− S(¬p) = P (k(¬p)) (10)

These basic results confirms the validity of the welI-known interval bounds
of the Dempster-Shafer calculus.

Furthermore, lower and upper probabilities provide a general methodol-
ogy to assess the impact of evidence upon understanding of the real-world
state. The basic approach, according to these results, consists of representing
knowledge as probabilities in an appropriate epistemic algebra, followed by
estimation of the values of the lower and upper probabilities of truth sets.

4 Combination of Knowledge

This section briefly describes the results of investigations concerning the com-
bination of the uncertain knowledge of several rational agents. For the sake
of simplicity the results presented here are confined to problems involving
the combination of the knowledge of two agents (Extensions to an arbitrary
number of agents being straightforward).

Each of these two agents is assumed to have obtained information about
the state of the world through observation devices that may possibly be depen-
dent or correlated to some degree.

Construction of the epistemic universe that includes both the possible
states of knowledge of the two agents, as well as the results of their integration
requires the introduction of three unary operators:K1 andK2 representing the
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knowledge of each agent, and the unsubscripted operatorK, describing results
of knowledge combination. It is assumed that neither agent has information
about the extent or nature of the information available to the other (i.e.,
propositions such as K1K2p are always false), and that each agent’s domain
of knowledge (i.e., the sentence spaces S1 and S2 and their related frames of
discernment) may be different.

Since the operator K describes the results of integrating the knowledge
of two agents, it is necessary to introduce an axiom that assures that the
combined knowledge is solely a function of the states of knowledge being
fused:

CK1 The proposition Kp is true if and only if there exist propositions p1 and
p2 such that K1p1 and K2p2 are true and p1 ∧ p2 =⇒ p

The epistemic universe constructed with this augmented framework is
called a logical product universe. In this universe it is possible, as before,
to define epistemic, support, and truth sets. However, since three epistemic
operators are involved, these sets must be distinguished by subscripts that
identify the respective knowledge sources.

If e(p), e1(p), e2(p), denote the epistemic sets for the proposition p that
are associated with the epistemic operators K, K1 and K2, respectively, then
the basic set equation that relates these sets is

e(p) =
⋃

p1∧p2=p
[e1(p1) ∩ e2(p2)] (11)

where the union is over propositions p1 and p2 (in the respective domains
of knowledge of K1 and K2) such that the conjunction p1 ∧ p2 is logically
equivalent to p.

If P is an epistemic probability in the logical universe, the above set equa-
tion may be combined with basic probability results relating marginal and
joint probability distributions to derive the following general expression for
knowledge combination, called the additive combination formula:

m(p) = k
∑

p1∧p2=p
P (e1(p1) ∩ e2(p2)) (12)

where k is a constant that makes
∑

m(p) = 1.
Under assumptions of independence of the (marginal) epistemic algebras

for K1 and K2, the above formula becomes a generalization of the Dempster’s
rule of combination:

m(p) = k
∑

p1∧p2
m1(p1)m2(p2). (13)

Simple cases of combination of dependent evidence, such as those governed
by compatibility relations, may also be derived directly from the additive
combination formula, as we have discussed elsewhere [13].
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In more general cases, the corresponding expressions must combine the
knowledge of the two agents (expressed by the additive combination formula)
with knowledge about the dependence relations between the two evidential
bodies. The latter information is typically modeled as probabilities defined on
a subalgebra of the epistemic algebra.

5 Conclusion

This paper has presented results that closely relate probability functions in
epistemic universes to the concepts and constructs of the Dempster-Shafer
calculus of evidence. The epistemic structures presented above also furnish
important insight that is very useful to enhance the calculus of evidence by
the development of expressions that allow for different types of dependent
evidence to be combined. These expressions are the current object of our
investigations, which focus particularly on the problems of combining multiple
evidential bodies that share common information.

In addition, we are also concerned with problems related to the use of
conditional evidence (i.e., evidence that is valid only when some proposition
is true). This research expands upon and enhances our previous results in this
area [12].

Our long term objectives include the treatment of problems involving
combination of the knowledge of multiple agents that are aware, to differ-
ent extents, of the information available to one another. The corresponding
issues are of central importance in the design of distributed artificial intelli-
gence systems with planning and counterplanning capabilities.
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Implementing Dempster’s Rule
for Hierarchical Evidence

Glenn Shafer and Roger Logan

Abstract. This article gives an algorithm for the exact implementation of Demp-
ster’s rule in the case of hierarchical evidence. This algorithm is computationally
efficient, and it makes the approximation suggested by Gordon and Shortliffe unnec-
essary. The algorithm itself is simple, but its derivation depends on a detailed under-
standing of the interaction of hierarchical evidence.

Introduction

Gordon and Shortliffe [4] propose an algorithm for approximating the results
of Dempster’s rule of combination for the case where the evidence being com-
bined is evidence for and against hypotheses that can be arranged in a hierar-
chical or tree-like structure. This proposal is motivated by the computational
complexity of Dempster’s rule. In general, the amount of computation needed
to implement the rule increases exponentially with the number of possible
answers in a diagnostic problem. Gordon and Shortliffe’s algorithm avoids
this exponential explosion; the amount of computation it requires increases
only linearly with the number of possible answers.

Gordon and Shortliffe’s algorithm usually produces a good approximation.
In the case of highly conflicting evidence, however, the approximation can be
poor; an example is given in Sect. 2. Moreover, the algorithm does not give
degrees of belief for all hypotheses (i.e., all subsets of the set of possible
answers). It gives degrees of belief only for hypotheses in the tree.

In this article we show that it is not necessary to resort to Gordon and
Shortliffe’s approximation. We give an algorithm for exact implementation
that is linear in its computational complexity. This algorithm works for slightly
more general types of evidence than Gordon and Shortliffe’s algorithm, and it
gives degrees of belief for more hypotheses. In particular, it gives plausibilities
as well as degrees of belief for hypotheses in the tree.
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Dempster’s rule is part of the theory of belief functions, sometimes
called the Dempster–Shafer theory in the artificial intelligence community.
A basic reference for the elementary aspects of this theory is Shafer [9].
A more recent exposition and an extensive bibliography are included in
Shafer [10]. Expositions that discuss the theory’s relevance to artificial intel-
ligence include Garvey, Lowrence, and Fischler [2], Gordon and Shortliffe [3],
and Shafer [11].

In the next section, we provide a reasonably self-contained discussion of
those mathematical aspects of the theory of belief functions that are relevant
to the algorithm presented in this article. Readers will need to turn to the
references just cited for further details of the theory and for information on
its intuitive interpretation.

In Sect. 2, we review the problem posed by Gordon and Shortliffe and
describe the approximation they propose. In Sect. 3 we derive some mathe-
matical facts about the problem, and in Sect. 4 we use these facts to derive
our algorithm. In Sect. 5, we discuss generalizations.

1 The Mathematics of Belief Functions

Suppose Θ denotes a set of possible answers to some question, and assume
that one and only one of these answers can be correct. We call Θ a frame of
discernment. A function Bel that assigns a degree of belief Bel(A) to every
subset A of Θ is called a belief function if it satisfies certain mathematical
conditions.

Those familiar with the usual mathematical theory of probability can
understand the mathematical structure of belief functions by thinking about
random sets. A function Bel defined for every subset A of Θ qualifies as a
belief function if and only if there is a random non-empty subset S of Θ such
that

Bel (A) = Pr[S ⊆ A]

for all A. (It should be emphasized that this interpretation in terms of a
random subset S provides insight only into the mathematical structure of
belief functions. It does not provide insight into the interpretation of Bel(A)
as a degree of belief based on evidence. See Shafer [9, 10] for explanations of
the evidential interpretation.)

The information in a belief function Bel can also be expressed in terms of
the plausibility function Pl, given by

Pl (A) = 1− Bel
(
Ā
)

= Pr [S ∩A 	= ∅] ,

where Ā denotes the complement of A. In the evidential interpretation, Pl(A)
is the plausibility of A in light of the evidence—a measure of the extent to
which the evidence fails to refute A. To recover Bel from Pl, we use the
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relation Bel(A) = 1 − Pl(Ā). Notice that Bel(A) ≤ Pl(A) for every subset A
of Θ. Both Bel and Pl are monotone: Bel(A) ≤ Bel(B) and Pl(A) ≤ Pl(B)
whenever A ⊆ B.

In this article we assume that the frame of discernment Θ is finite. In this
case the information in Bel or Pl is also contained in the commonality function
Q, defined by

Q (A) = Pr [S ⊇ A]

for every subset A of Θ. Indeed, it is shown in [9, Chap. 2] that

Q (A) =
∑{

(−1)|B|+1 Pl (B) |∅ 	= B ⊆ A
}

(1)

and
Pl (A) =

∑{
(−1)|B|+1

Q (B) |∅ 	= B ⊆ A
}

(2)

for every non-empty subset A of Θ, where |B| denotes the number of elements
in the set B. (Formulas (1) and (2) do not give values for Q(∅) or Pl(∅), but
we know that Q(∅) = 1 and Pl(∅) = 0 for any belief function.)

1.1 Dempster’s rule

Consider two random non-empty subsets S1 and S2. Suppose S1 and S2 are
probabilistically independent—i.e.,

Pr[S1 = A1 and S2 = A2] = Pr[S1 = A1]Pr [S2 = A2] .

And suppose Pr[S1 ∩ S2 	= ∅] > 0. Let S be a random non-empty subset that
has the probability distribution of S1 ∩ S2 conditional on S1 ∩ S2 	= ∅—i.e.,

Pr [S = A] =
Pr [S1 ∩ S2 = A]
Pr [S1 ∩ S2 	= ∅] (3)

for every non-empty subset A of Θ.
If Bel1 and Bel2 are the belief functions corresponding to S1 and S2, then

we denote the belief function corresponding to S by Bel1 ⊕ Bel2, and we call
Bel1⊕Bel2 the orthogonal sum of Bel1 and Bel2. The rule for forming Bel1⊕
Bel2 is called Dempster’s rule of combination. This rule corresponds, in the
evidential interpretation, to the combination or pooling of independent bodies
of evidence. (If Pr[S1 ∩ S2 	= ∅] = 0, then the two belief functions contradict
each other—i.e., there exists A such that Bel1(A) = 1 and Bel2(Ā) = 1. It
makes no sense to try to pool the evidence in this case.)

The formation of orthogonal sums by Dempster’s rule corresponds to the
multiplication of commonality functions. Indeed, if the commonality functions
for Bel1, Bel2, and Bel1 ⊕ Bel2 are denoted by Q1, Q2, and Q, respectively,
then
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Q (A) = Pr[S ⊇ A]

= K Pr [S1 ∩ S2 ⊇ A] = K Pr [S1 ⊇ A and S2 ⊇ A]

= K Pr [S1 ⊇ A] Pr [S2 ⊇ A] = K Q1 (A)Q2 (A) ,

where K does not depend on A;

K−1 = Pr [S1 ∩ S2 	= ∅] .

We can find K from Q1 and Q2 if we substitute KQ1(B)Q2(B) for Q(B) and
Θ for A in (2). Since Pl(Θ) = 1, this gives

1 =
∑{

(−1)|B|+1KQ1 (B)Q2 (B) |∅ 	= B ⊆ Θ
}
,

or
K−1 =

∑{
(−1)|B|+1

Q1 (B)Q2 (B) |∅ 	= B ⊆ Θ
}
. (4)

We may summarize by saying that the multiplication of commonality func-
tions gives a recipe for computing the plausibility function Pl for Bel1⊕Bel2.
First we find the plausibility functions Pl1 and Pl2 using the relation

Pli (A) = 1− Beli
(
Ā
)
.

Then we find the commonality functions Qi using the relation

Qi (A) =
∑{

(−1)|B|+1 Pli (B) |∅ 	= B ⊆ A
}
. (5)

Then we find Pl using the relation

Pl (A) = K
∑{

(−1)|B|+1
Q1 (B)Q2 (B) |∅ 	= B ⊆ A

}
, (6)

where K is given by (4). This recipe generalizes to the case where we wish to
combine more than two belief functions; we merely put Q1(B) · · ·Qn(B) in
the place of Q1(B)Q2(B) in (4) and (6).

Unfortunately, this recipe is computationally forbidding if Θ contains a
large number of elements. The number of subsets of Θ increases exponentially
with the number elements of Θ, and the sum in (4), for example, involves a
term for each of these subsets.

This computational complexity seems to be intrinsic to Dempster’s rule.
There does not seem to be any general way of implementing the rule that
will always involve fewer computations than are involved in (4), (5), and (6).
There are, however, special cases where alternative methods involving less
computation are possible.
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1.2 Focal elements, simple support functions, and dichotomous
belief functions

A subset S of Θ is called a focal element of Bel if Pr[S = S] is positive.
The simplest belief function is the belief function whose only focal element

is the whole frame Θ; in this case Pr[S = Θ] = 1. This belief function is called
the vacuous belief function. It is obvious that if Bel is the vacuous belief
function, then Bel⊕ Bel′ = Bel′ for any other belief function Bel′.

A belief function is called a simple support function if it has at most one
focal element not equal to the whole frame Θ. If a simple support function
does have a focal element not equal to Θ (i.e., if it is not vacuous), then this
focal element is called the focus of the simple support function.

A belief function is called dichotomous with dichotomy {A, Ā} if it has no
focal elements other than A, Ā, and Θ.

In general, combination by Dempster’s rule involves the intersection of
focal elements. The focal elements for Bel1 ⊕ · · · ⊕ Beln will consist of all
non-empty intersections of the form S1 ∩ · · · ∩ Sn, where Si is a focal ele-
ment of Beli. Therefore, the orthogonal sum of simple support functions
with a common focus will be another simple support function with that
focus. Similarly, the orthogonal sum of dichotomous belief functions with a
common dichotomy will be another dichotomous belief function with that
dichotomy.

1.3 Bayesian belief functions

This theory of belief functions is a generalization of the more familiar Bayesian
theory, which uses probability measures as expressions of subjective judgments
and updates these measures by conditioning. A probability measure is a belief
function, and conditioning is a special case of Dempster’s rule.

Let us call a belief function a Bayesian belief function if it is a probability
measure. A belief function is Bayesian if and only if its focal elements are all
singletons. This is equivalent to saying that the corresponding random subset
is always equal to a singleton. Since a singleton is contained in a subset A if
and only if it has a non-empty intersection with A, a Bayesian belief function
is equal to its plausibility function.

In the Bayesian theory, conditioning a belief function Bel1 on knowledge
that a subset B of Θ is true means changing one’s degree of belief for each
subset A from Bel1(A) to

Bel1 (A ∩B)
Bel1 (B)

. (7)

In the theory of belief functions, on the other hand, knowledge that a subset
B of Θ is true is represented by a belief function, say Bel2, that has B as its
only focal element. And the way to change Bel1 to take this knowledge into
account is to combine Bel1 with Bel2 by Dempster’s rule. In order to see that
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this application of Dempster’s rule gives the same result as (7), let us return
to (3) for a moment.

It is clear that from (3) that if S1 is always a singleton, then S is also
always a singleton, so Bel1 ⊕ Bel2 will indeed be Bayesian. Moreover, if we
substitute {s} for A in (3) and bear in mind that S1 is always a singleton and
S2 is always equal to B, then we obtain

Pr [S = {s}] =
Pr [S1 ∩B = {s}]
Pr [S1 ∩B 	= ∅]

=

⎧
⎨

⎩

Bel1 ({s})
Bel1 (B)

, if s ∈ B,

0, if s 	∈ B.

Adding Pr[S = {s}] for all s in A, we obtain (7) for our degree of belief in A.

1.4 Partitions

One case where the computational complexity of Dempster’s rule can be
reduced is the case where the belief functions being combined are carried
by a partition P of the frame Θ. In this case, P , which has fewer elements
than Θ, can in effect be used in the place of Θ when the computations (5),
(6) and (4) are carried out.

A partition of a frame of discernment Θ is a set of disjoint non-empty
subsets of Θ whose union equals Θ. Such a partition P can itself be regarded
as a frame of discernment; it is the set of possible answers to the question,
“which element of P contains the correct answer to the question corresponding
to Θ?” If P1 and P2 are partitions of Θ and for every element P1 in P1 there
is an element P2 in P2 such that P1 ⊆ P2, then we say that P1 is a refinement
of P2.

Given a partition P of Θ, we denote by P∗ the set consisting of all unions
of elements of P ;P∗ is a field of subsets of Θ.

We say that a belief function Bel over Θ is carried by P if the random
subset S corresponding to Bel satisfies

Pr [S ∈ P∗] = 1.

It is evident that if Bel1 and Bel2 are both carried by P , then Bel1⊕Bel2 will
also be carried by P ; for if S1 and S2 are both in the field P∗ with probability
one, then S1 ∩ S2 is as well.

For a given partition P of Θ and a given subset A of Θ, there is a largest
element of P∗ contained in A, namely

AP = ∪{P |P ∈ P , P ⊆ A} .

There is also a smallest element of P∗ containing A, namely
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AP = ∪{P |P ∈ P , P ∩A 	= ∅} .

When Bel is carried by P , its values for elements of P∗ determine its values
for the other subsets of Θ. Indeed, since S ∈ P∗, S ⊆ A if and only if S ⊆ AP ,
and so

Bel(A) = Pr [S ⊆ A] = Pr [S ⊆ AP ]
= Bel (AP ) = max {Bel (B) |B ⊆ A,B ∈ P∗} . (8)

Similarly,

Pl(A) = Pl
(
AP)

= min {Pl (B) |B ⊇ A,B ∈ P∗} . (9)

It turns out that when Bel is carried by P we can replace (1) and (2) by
analogous formulas that only involve elements of P∗:

Q (A) =
∑{

(−1)|B|P+1 Pl (B) |B ∈ P∗, ∅ 	= B ⊆ A
}

(10)

and
Pl (A) =

∑{
(−1)|B|P+1

Q (B) |B ∈ P∗, ∅ 	= B ⊆ A
}

(11)

for every non-empty element A of P∗, where |B|P denotes the number of
elements of P contained in B. It follows that if Bel1 and Bel2 are both carried
by P , we can compute the plausibility function Pl for Bel1 ⊕ Bel2 by first
computing

Pli (A) = 1− Beli
(
Ā
)

just for A in P∗, then computing

Qi (A) =
∑{

(−1)|B|P+1 Pli (B) |B ∈ P∗, ∅ 	= B ⊆ A
}

(12)

just for A in P∗, and then computing

Pl (A) = K
∑{

(−1)|B|P+1
Q1 (B)Q2 (B) |B ∈ P∗, ∅ 	= B ⊆ A

}
(13)

for A in P∗, where

K−1 =
∑{

(−1)|B|P+1
Q1 (B)Q2 (B) |B ∈ P∗, ∅ 	= B ⊆ A

}
. (14)

The values Pl(A) for A not in P∗ can then be obtained, if they are desired,
from (9).

Why do (10) and (11) hold for elements of P∗? The easiest way to see that
they do hold is to recognize that P∗ is isomorphic to the set of all subsets of
P . And when we do this, we see that (10) and (11) are merely (1) and (2)
with P in the place of Θ. When we use (12)–(14) we are treating our belief
functions as if they were really belief functions on the simpler frame P .

Formulas (13) and (14) generalize, of course, to the case where more than
two belief functions carried by P are combined. As before, we simply replace
Q1(B)Q2(B) by Q1(B) · · ·Qn(B).
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1.5 Coarsenings

Given a random subset S and a partition P , let SP denote the random subset
that is always equal to AP when S is equal to A. If Bel is the belief function
corresponding to S, then let BelP denote the belief function corresponding to
SP . Since SP is always in P∗, Bel is carried by P . Since SP ⊆ A if and only
if S ⊆ AP ,

BelP (A) = Pr
[
SP ⊆ A

]
= Pr[S ⊆ AP ] = Bel (AP) .

This means in particular that BelP(A) = Bel(A) if A ∈ P∗. Thus, BelP is the
unique belief function that agrees with Bel on P∗ and is carried by P .

Suppose we want to combine two belief functions Bel1 and Bel2. And
suppose we are tempted to do so using (12), (13), and (14), even though Bel1
and Bel2 are not carried by the partition P . We know that we will not get the
right answer; we will get Bel1P ⊕ Bel2P instead of Bel1 ⊕ Bel2. But suppose
we are not interested in the whole belief function Bel1⊕Bel2. Suppose we are
interested only in the values of Bel1⊕Bel2 on M∗ for some partition M. We
will get these values right if and only if

(Bel1P ⊕ Bel2P)M = (Bel1 ⊕ Bel2)M .

This is equivalent to

(
SP

1 ∩ SP
2

)M
= (S1 ∩ S2)

M
. (15)

It is also equivalent to the condition that M ∩ P 	= ∅, S1 ∩ P 	= ∅, and
S2 ∩ P 	= ∅ together imply S1 ∩ S2 ∩M 	= ∅ whenever M ∈ M, P ∈ P , S1 is
a focal element of Bel1, and S2 is a focal element of Bel2. If this condition is
satisfied, then we say that P discerns the interaction between Bel1 and Bel2
that is relevant to M.

It is easy to see that if P , P ′, M, and M′ are all partitions, P ′ is finer
than P , M′ is coarser thanM, and P discerns the interaction relevant to M,
then P ′ discerns the interaction relevant to M′.

We are most often interested in whether P discerns the interaction relevant
to itself. In this case (15) becomes

SP
1 ∩ SP

2 = (S1 ∩ S2)
P ,

and this is equivalent to the condition that S1∩P 	= ∅ and S2∩P 	= ∅ together
imply S1 ∩ S2 ∩ P 	= ∅ whenever P ∈ P , S1 is a focal element of Bel1, and
S2 is a focal element of Bel2. Notice that if one of the pair Bel1 and Bel2 is
carried by P , then P will necessarily discern the interaction between Bel1 and
Bel2 that is relevant to itself.

It might be thought that if P discerns the interaction relevant to itself and
P ′ is finer than P , then P ′ will also discern the interaction relevant to itself.
But this is not necessarily true; P ′ will discern the interaction relevant to P ,
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P1

S1

S2

P2 P3

Fig. 1. A partition that does not discern the interaction relevant to itself

but it may not discern the interaction relevant to P ′. Figure 1 illustrates this
point. If our two belief functions are simple support functions with foci S1

and S2, respectively, then the partition {P1, P2 ∪P3} discerns the interaction
relevant to itself, but the partition {P1, P2, P3} does not. Figure 2 illustrates
the opposite situation; {P1, P2, P3} discerns the interaction relevant to itself,
but {P1, P2 ∪ P3} does not.

The preceding discussion generalizes readily to the case where we have
more than two belief functions. For example, P discerns the interaction among
Bel1, . . . ,Beln that is relevant to itself if and only if

SP
1 ∩ · · · ∩ SP

n = (S1 ∩ · · · ∩ Sn)P ,

P1

S1 S2

P2 P3

Fig. 2. A partition that does discern the interaction relevant to itself
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and this is equivalent to the condition that Si ∩ P 	= ∅ for i = 1, . . . , n
implies S1 ∩ . . . ∩ Sn ∩ P 	= ∅ whenever P ∈ P and Si is a focal element of
Beli. Notice that if P discerns the interaction among Bel1, . . . ,Beln that is
relevant to itself and Beln+1, . . . ,Beln+m are carried by P , then P discerns
the interaction among Bel1, . . . ,Beln+m that is relevant to itself.

1.6 Barnett’s technique

Barnett [1] has shown that Dempster’s rule can be implemented in a number
of computations that increases only linearly with the number of elements in Θ
if the belief functions being combined are all simple support functions focused
on singletons or their complements. Here we will explain Barnett’s technique
in terms of the commonality function.

Recall that a simple support function focused on S is a belief function
whose only focal elements are S and Θ. If θ is an element of Θ, Bel1 is a
simple support function focused on the singleton {θ}, and Bel2 is a simple
support function focused on its complement {θ}, then Bel1 ⊕ Bel2 is easy
to calculate; it is dichotomous with the dichotomy {{θ}, {θ}}. In describing
Barnett’s technique we may, therefore, assume that we begin with dichoto-
mous belief functions of this form. In fact, we may assume, without loss of
generality, that we have such a dichotomous belief function, Belθ say, for every
element Θ of Θ; our task is to combine the Belθ. (If Belθ({θ}) = Belθ({θ}) =
0, then Belθ is vacuous, and its presence in the combination makes no
difference.)

For brevity, we denote Belθ({θ}) and Belθ({θ}) by θ+ and θ− respectively.
In order to avoid trivialities, we assume that both θ+ and θ− are less than
one. Then the commonality function for Belθ is given by

Qθ (B) =

⎧
⎪⎨

⎪⎩

1− θ−, if B = {θ} ,
1− θ+, if θ 	∈ B,
1− θ− − θ+, if θ ∈ B and |B| > 1

for all non-empty subsets B of Θ, and

∏

θ∈Θ
Qθ (B) =

⎧
⎪⎨

⎪⎩

(
1− θ−0

) ∏
θ �=θ0

(
1− θ+

)
, if B = {θ0}

∏
θ∈B

(
1− θ− − θ+

) ∏
θ �∈B

(
1− θ+

)
, if |B| > 1

=

⎧
⎪⎨

⎪⎩

∏
θ∈Θ

(
1− θ+)(1 − θ−0

)
/(1− θ+

0 ), if B = {θ0} ,
∏
θ∈Θ

(
1− θ+

) ∏
θ∈B

(
1− θ− − θ+

)
/(1− θ+), if |B| > 1.

So implementation of the generalization of (6) involves calculating
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∑

B ⊆ A
B 	= θ

(−1)|B|+1
∏

θ∈Θ
Qθ (B)

=
∏

θ∈Θ

(
1− θ+

)

⎡

⎢⎢⎢⎢⎢⎣

∑

θ∈A

1− θ−

1− θ+ −
∑

B ⊆ A
|B| > 1

(−1)|B| ∏

θ∈B

1− θ− − θ+

1− θ+

⎤

⎥⎥⎥⎥⎥⎦

=
∏

θ∈Θ

(
1− θ+

)

×
[
∑

θ∈A

1− θ−

1− θ+ + 1−
∑

θ∈A

1− θ− − θ+

1− θ+

−
∑

B⊆A
(−1)|B| ∏

θ∈B

1− θ− − θ+

1− θ+

⎤

⎦

=
∏

θ∈Θ

(
1− θ+

)
⎡

⎢⎣1 +
∑

θ∈A

θ+

1− θ+ −
∏

B ∈ A

(
1− 1− θ− − θ+

1− θ+

)
⎤

⎥⎦

=
∏

θ∈Θ

(
1− θ+

)
⎡

⎢⎣1 +
∑

θ∈A

θ+

1− θ+ −
∏

θ ∈ A

θ−

1− θ+

⎤

⎥⎦ .

(16)

The next to last equality is the crucial step; it reduces the summation over
subsets of A to a product over elements of A, which can be implemented in
linear time.

Substituting (16) in the generalizations of (4) and (6) and omitting the
common factor Πθ∈Θ(1− θ+), we obtain

Pl (A) = K

(
1 +

∑

θ∈A

θ+

1− θ+ −
∏

θ∈A

θ−

1− θ+

)
, (17)

where

K−1 = 1 +
∑

θ∈Θ

θ+

1− θ+ −
∏

θ∈Θ

θ−

1− θ+ . (18)

The statement that (17) and (18) allow the implementation of Dempster’s
rule in linear time should be interpreted with caution. It is true that the
number of computations required by (18) increases only linearly with the
number of elements in Θ, and the same is true of any particular instance
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of (17). If, however, we wish to compute the whole belief function Bel, then
we need to calculate Pl(A) for every subset A of Θ, and the number of such
subsets increases exponentially with the size of Θ. In some problems this will
cause no difficulty, for we will be able to identify a priori a few subsets A of
Θ as the only ones for which we need to know Bel(A) or Pl(A). But in other
problems we may be interested simply in finding the smallest subsets A that
have high values of Bel(A), and if it is not feasible to calculate and look at
Bel(A) for all A, then some search strategy may be needed.

If θ+ + θ− = 1 for all elements Θ in Θ, then it is easy to locate the subsets
A of Θ that have the highest values of Bel(A). Indeed, in this situation Bel
is a Bayesian belief function; Bel(A) = Pl(A) for all subsets A, and (17) and
(18) become

Bel(A) =
∑

θ∈A
f (θ) , (19)

where

f (θ) =
θ+

1− θ+ /
∑

θ′∈Θ

θ′+

1− θ′+
. (20)

In this case, to locate subsets A with high values of Bel(A) we need only order
the elements of Θ from largest to smallest in the value of f(θ), and consider
subsets obtained by taking initial sequences from this list.

In general θ+ + θ− will not equal one; in fact, θ+ + θ− can approach
one only as the weights of evidence for and against Θ become infinitely large
(see [9, Chap. 9]). However, when there is a substantial amount of evidence
both for and against most of the Θ, (19) and (20) may be nearly enough
correct to help us identify subsets for which (17) should be computed.

Barnett’s technique applies, of course, not only to the case where we begin
with simple support functions for and against singletons but also to the case
where we begin with simple support functions for and against elements of
some coarser partition P . Indeed, if Pl(A) is the plausibility function for the
belief function ⊕{BelP |P ∈ P}, where BelP is dichotomous with dichotomy
{P, P̄}, and we write P+ for BelP (P ) and P− for BelP (P̄ ), then

Pl (A) = K

⎛

⎜⎜⎜⎜⎜⎝
1 +

∑

P ⊆ A
P ∈ P

P+

1− P+
−

∏

P ⊆ A
P ∈ P

P−

1− P+

⎞

⎟⎟⎟⎟⎟⎠
(21)

for every element A of P∗, where

K−1 = 1 +
∑

P∈P

P+

1− P+
−

∏

P∈P

P−

1− P+
. (22)
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2 Gordon and Shortliffe’s Problem

Gordon and Shortliffe [3, 4] discussed the problem of implementing Demp-
ster’s rule in the case where one begins with simple support functions focused
for or against subsets of Θ that can be arranged hierarchically in a tree.
They concluded that it is not feasible to compute Dempster’s rule in such
cases, and they proposed a simplification of the rule that can be computed
easily.

Figure 3 shows a tree of the kind Gordon and Shortliffe considered. This
tree represents the frame Θ = {a, b, c, d, e, f}. We have labeled each node of
the tree with a capital letter, which we will use to name both the node and the
subset of Θ to which it corresponds. The terminal nodes of the tree correspond
to singleton subsets; A = {a}, F = {f}, etc. Each nonterminal node corre-
sponds to the union of the terminal nodes below it;G = {a, b, c}, H = {d, e},
and I = {a, b, c, f}. Notice that most subsets of Θ are not represented in
the tree; there is no node, for example, that corresponds to the subset {d, f}.

In Gordon and Shortliffe’s example, the elements of Θ are possible dis-
eases, so that higher nodes in the tree correspond to classes of diseases. They
suggested that diagnostic evidence tends either to support or refute particu-
lar diseases or natural classes of diseases that appear in the tree. Thus, they
posed the problem of combining simple support functions focused on nodes of
the tree and on the complements of these nodes.

Gordon and Shortliffe found that it is not difficult to combine simple sup-
port functions focused on nodes of the tree, because the intersection of two
subsets corresponding to nodes will either be empty (because neither node
lies below the other) or else equal to one of the two subsets (the one lying
below the other). Combining negative evidence leads to computational diffi-
culties, however, because the intersection of the complements of nodes may
fail to correspond to a node or its complement. The intersection of Ē and Ḡ

H

E F
G

I

Θ

A B C

D

Fig. 3. A tree of diseases
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in Fig. 3, for example, results in the subset {d, f}, and neither this subset
nor its complement is represented by a node in the tree.

Gordon and Shortliffe suggested the following procedure. First we com-
bine all the simple functions focused on nodes of the tree by Dempster’s
rule. Then we successively bring into the combination the simple support
functions focused on the complements, working down the tree. But when we
bring in one of the simple support functions focused on a complement, we
modify Dempster’s rule by replacing each intersection of focal elements by
the smallest subset in the tree that contains it. The final result depends, in
general, on the order in which the simple support functions focused on com-
plements are brought in, but Gordon and Shortliffe conjectured that if we
bring these simple support functions in as we work down the tree, then the
result will approximate the result that we would get using Dempster’s rule
correctly.

We have found that Gordon and Shortliffe’s approximation is usually very
good when the degrees of support for the simple support functions are drawn
at random from a uniform distribution. It is easy to construct examples, how-
ever, where the approximation is poor. Consider the tree in Fig. 4, and suppose
that we have three items of evidence. One of these indicates fairly strongly
that a patient’s disease is in I, while the other two indicate very strongly that
it is not f and not g. More precisely, we have three simple support functions
to combine:

Bel1 focused on I, with Bel1(I) = 0.8,
Bel2 focused on F̄ , with Bel2(F̄ ) = 0.99,
Bel3 focused on Ḡ, with Bel3(Ḡ) = 0.99.

Combining these by Dempster’s rule, we obtain a belief function Bel = Bel1⊕
Bel2 ⊕ Bel3, with Bel(H) ≈ 0.91, corresponding to the judgment that the

H

F G

I

Θ

Fig. 4. A smaller tree of diseases
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positive evidence for I represented by Bel1 is overwhelmed by the negative
evidence represented by Bel2 and Bel3. If, however, we combine using Gordon
and Shortliffe’s procedure, then we obtain, Bel(H) = 0.

Another shortcoming of Gordon and Shortliffe’s procedure is that it assigns
degrees of belief only to the subsets of Θ that correspond to nodes in the tree.
It does not assign degrees of belief to the complements of these nodes. Thus
it does not allow us to assign plausibilities to the nodes. (Recall that the
plausibility of A, Pl(A), is equal to 1 − Bel(Ā).) Nor, for example, does it
assign a degree of belief to the subset {d, f} in Fig. 3. Since {d, f} is not
a natural class of diseases, it may be rare for evidence to support this class
without supporting either d or f alone. But such a situation is conceivable;
it would arise, for example, if one item of evidence weighed strongly against
E and another weighed strongly against G. If this did happen, we would
want it to come to our attention, so that we would know to look for further
evidence that might help us decide which of these two diseases the patient
really has.

Gordon and Shortliffe used the term “hierarchical hypothesis space” to
emphasize that they were interested only in hypotheses corresponding to nodes
of a tree. Since we think it is appropriate to be interested in degrees of belief for
a broader class of hypotheses, we use instead the term “hierarchical evidence.”
This term reflects the assumption that the evidence bears directly only on
hypotheses in the tree, but it leaves open the possibility that we might want
to calculate degrees of belief for other hypotheses as well.

3 The Interaction of Hierarchical Evidence

In this section we derive some mathematical facts about the interaction of
hierarchical evidence. In the next section we show how these facts enable us
to implement Dempster’s rule efficiently.

Here, as in the preceding section, we assume that we are working with a
finite tree such as the one in Fig. 3. We denote by A the collection of all the
nodes below Θ—i.e., all the nodes except Θ itself. If B is directly below A, we
say that B is A’s daughter and A is B’s mother. In order to avoid trivialities,
we assume that every node that is not a terminal node has more than one
daughter. We call a set of nodes that consists of all the daughters of a given
nonterminal node a sib. We denote by SA the sib consisting of the daughters
of A.

We suppose that for each node A in A we have one simple support function
focused on A and another focused on the complement Ā. Here, as in our
discussion of Barnett’s technique, we begin by combining these two simple
support functions. Then for each node A in A we have a single dichotomous
belief function BelA with the dichotomy {A, Ā}. We assume that BelA(A)
and BelA(Ā) are both strictly less than one, but we allow either or both to
be zero.
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For any node A in the tree, we denote by Bel↓A the orthogonal sum of
BelB for all nodes B that are strictly below A. In Fig. 3, for example, Bel↓H =
BelD ⊕ BelE , and

Bel↓I = BelF ⊕ BelG ⊕ Bel↓G
= BelF ⊕ BelG ⊕ BelA ⊕ BelB ⊕ BelC .

If A is a terminal node, then Bel↓A is vacuous. Our purpose, of course, is to
calculate values of Bel↓Θ = ⊕{BelA|A ∈ A}.

For each node A in A, we denote by Bel�A the orthogonal sum of BelB for
all nodes B in A that are neither below A nor equal to A. Thus

Bel↓Θ = Bel↓A ⊕ BelA ⊕ Bel♦A. (23)

Lemma 1. Suppose P is a partition of Θ, and P ∈ A ∩ P. Then (Bel↓P )P =
(Bel↓P ){P,P̄}.

Proof. The belief function BelA has only A, Ā, and Θ as focal elements. If
A ⊆ P , then each of these focal elements either contains P̄ or else is contained
in P . A focal element S of Bel↓P is obtained by intersecting such focal elements
and hence must also either contain P̄ or else be contained in P . If S contains
P̄ but is not equal to P̄ , then SP = S{P,P̄} = Θ. If S is equal to P̄ , then
SP = S{P,P̄} = P̄ . If S is contained in P , then SP = S{P,P̄} = P . In any
case, SP = S{P,P̄}. 	

Lemma 2. Suppose P is a partition of Θ, A ∈ A, and Ā ∈ P. Then
(Bel�A)P = (Bel�A){A,Ā}.

Proof. Again, BelB has only B, B̄, and Θ as focal elements. If B ∈ A and
B � A, then B is either disjoint from A or else contains A, and hence each
focal element of BelB either contains A or else is contained in Ā. Any focal
element S of Bel�A is the intersection of such focal elements and hence must also
contain A or else be contained in Ā. If S is equal to A, then SP = S{A,Ā} = S.
If S contains A but is not equal to A, then SP = S{A,Ā} = Θ. If A is contained
in Ā, then SP = S{A,Ā} = Ā. In any case, SP = S{A,Ā}. 	

Lemma 3. Suppose P is a partition of Θ. Then P discerns the interaction
relevant to itself among the belief functions in {Bel↓P |P ∈ A ∩ P}.

Proof. SupposeA∩P = {P1, . . . , Pn}, and let Si be a focal element of Belpi for
i = 1, 2, . . . , n. Fix an element P of P , and suppose Si∩P 	= ∅ for i = 1, . . . , n.
We must show that S1 ∩ · · · ∩ Sn ∩ P 	= ∅.

By the proof of Lemma 1, Si either contains P̄i or else is contained in
Pi. Since P is a partition, Pi, and P are either disjoint or equal. If they are
disjoint, then since Si ∩ P 	= ∅, Si cannot be contained in Pi; instead it must
contain P̄i, and hence it must contain P .
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At most one of the Pi can equal P . If none equal P , then all the Si contain
P , and hence S1 ∩ · · · ∩ Sn ∩ P = P . If one, say Pj , does equal P , then

S1 ∩ · · · ∩ Sn ∩ P = Sj ∩

⎡

⎣
⋂

i�=j
(Si ∩ P )

⎤

⎦

= Sj ∩ P.

In either case, S1 ∩ · · · ∩ Sn ∩ P 	= ∅. 	

Since the partition P carries BelP for each P ∈ A∩ P , we can strengthen
Lemma 3 to the statement that P discerns the interaction relevant to itself
among the belief functions in

{BelP |P ∈ A ∩ P} ∪
{
Bel↓P |P ∈ A ∩ P

}
.

Consider, for example, the partition SA∪{Ā}, where A is a nonterminal node
in A. This partition discerns the interaction relevant to itself among

{BelB|B ∈ SA} ∪
{
Bel↓B|B ∈ SA

}
.

Since Bel↓A is the orthogonal sum of these belief functions, it follows that

(
Bel↓A

)

SA∪{Ā}
= ⊕

{
(BelB)SA∪{Ā} ⊕

(
Bel↓B

)

SA∪{Ā}
|B ∈ SA

}
.

This can be written more simply as

(
Bel↓A

)

SA∪{Ā}
= ⊕

{
BelB ⊕

(
Bel↓B

)

{B,B̄}
|B ∈ SA

}
;

(BelB)SA∪{Ā} = BelB (24)

because BelB is carried by SA ∪ (Ā}, and
(
Bel↓B

)

SA∪{Ā}
=

(
Bel↓B

)

{B,B̄}

by Lemma 1. It should be borne in mind that if the element B of SA is a ter-
minal node, then Bel↓B is vacuous, and the orthogonal sum BelB⊕(Bel↓B){B,B̄}
reduces to BelB.

The reasoning of the preceding paragraph applies to the case where A is
the topmost node Θ, except that in this case the partition is simply SΘ, not
SΘ ∪ {Θ̄}. So

(
Bel↓Θ

)

SΘ

= ⊕
{

BelB ⊕
(
Bel↓B

)

{B,B̄}
|B ∈ SΘ

}
. (25)
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Formulas (24) and (25) tell us that in order to find for A and her immediate
daughters the degrees of belief resulting from all the evidence bearing on
nodes below A, it is sufficient to consider each daughter separately. We find
the degrees of belief for and against each daughter resulting from evidence
bearing directly on it and on nodes below it, and then we combine the results
for the different daughters.

Lemma 4. Suppose A is a nonterminal element of A. Then the partition
SA ∪ {Ā} discerns the interaction relevant to itself between Bel↓A and Bel�A.

Proof. Suppose S1 is a focal element of Bel↓A, and S2 is a focal element of
Bel�A. Then S1 either contains Ā or is contained in A, while S2 either contains
A or is contained in Ā. Table 1 lists the four possibilities and shows what can
happen when S1∩S2 is intersected with an element P of SA∪ (Ā}. Inspection
of the table shows that if S1∩P 	= ∅ and S2∩P 	= ∅, then S1∩S2∩P 	= ∅. This
establishes that SA ∪ (Ā} discerns the interaction relevant to itself between
Bel↓A and Bel�A. 	

Since BelA is carried by SA ∪ {Ā}, Lemma 4 can be strengthened to the
statement that SA ∪ {Ā} discerns the interaction relevant to itself among
Bel↓A, BelA, and Bel�A. So from (23) we can obtain

(
Bel↓Θ

)

SA∪{Ā}
=

(
Bel↓A

)

SA∪{Ā}
⊕ (BelA)SA∪{Ā} ⊕

(
Bel♦A

)

SA∪{Ā}
. (26)

Since BelA is carried by {A, Ā}, and since
(
Bel♦A

)

SA∪{Ā}
=

(
Bel♦A

)

{A,Ā}

by Lemma 2, (26) reduces to
(
Bel↓Θ

)

SA∪{Ā}
= (Bel↓A)SA∪{Ā} ⊕ BelA ⊕ (Bel�A){A,Ā}. (27)

This formula tells us that evidence from above A and down other branches
affects our degrees of belief about the daughters of A only inasmuch as it
affects our degrees of belief for and against A itself.

Table 1. Verifying the discernment

P = Ā P ∈ SA

S1 ⊇ Ā, S2 ⊇ A S1 ∩ S2 ∩ P = S2 ∩ P S1 ∩ S2 ∩ P = S1 ∩ P

S1 ⊆ A, S2 ⊇ A S1 ∩ S2 ∩ P = S1 ∩ P = ∅
S1 ⊆ A, S2 ⊆ Ā

S1 ⊇ Ā, S2 ⊆ Ā S1 ∩ S2 ∩ P = S2 S1 ∩ S2 ∩ P = S2 ∩ P = ∅
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In the next section, we will have occasion to use two consequences of (27):
(
Bel↓Θ

)

{A,Ā}
=

(
Bel↓A

)

{A,Ā}
⊕ BelA ⊕ (Bel�A){A,Ā} (28)

and
(
Bel↓Θ

)

{B,A−B,Ā}
=

(
Bel↓A

)

{B,A−B,Ā}
⊕ BelA ⊕ (Bel�A){A,Ā} (29)

for every B in SA. These formulas follow from (27) because both the par-
tition {A, Ā} and the partition {B,A − B, Ā} carry the belief function
BelA ⊕ (Bel�A){A,Ā}. Whenever a partition carries a belief function, it dis-
cerns the interaction relevant to itself between that belief function and any
other belief function.

4 Implementing Dempster’s Rule

We now present our algorithm for calculating Bel↓Θ(A) for A in A. We first
present the algorithm in general terms and explain how it is justified by the
results of the preceding section. We then give detailed formulas for the actual
calculations. We conclude with a complexity analysis and a comparison of the
complexity with that of Gordon and Shortliffe’s algorithm.

The algorithm can be broken down into three states. In the first stage
we begin with sibs of terminal nodes, combine the belief functions attached
to them to find degrees of belief for and against their mothers, then do the
same for the mothers’ mothers, and so on, until we have a dichotomous belief
function attached to each each daughter of Θ to obtain the values of Bel↓Θ for
these daughters. In the third stage we use information stored as we moved up
the tree to move back down, calculating further values of Bel↓Θ as we go.

4.1 First stage

Recall that we begin with a dichotomous belief function BelA attached to each
node A of A.

Choose a sib of terminal nodes, and let A denote its mother. According
to (24), (

Bel↓A
)

SA∪{Ā}
= ⊕{BelB|B ∈ SA} . (30)

Since BelB is dichotomous with dichotomy {B, B̄}, and since B is an atom of
the partition SA ∪ {Ā}, Barnett’s technique can be used to calculate values
of the orthogonal sum in this formula. We use it to calculate Bel↓A(A) and
Bel↓A(Ā) – i.e., to find (Bel↓A){A,Ā}.

We now compute BelA⊕ (Bel↓A){A,Ā}. This is easy, since both (Bel↓A){A,Ā}
and BelA are dichotomous with dichotomy {A, Ā}. We discard BelA and store
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in its place both (Bel↓A){A,Ā} and BelA ⊕ (Bel↓A){A,Ā}. This means that we
store four numbers at A : Bel↓A(A), Bel↓A(Ā), (BelA⊕Bel↓A)(A), and (BelA⊕
Bel↓A)(Ā).

After we have completed the procedure of the two preceding paragraphs
for every sib of terminal nodes, we temporarily prune these terminal nodes
from the tree, as it were, so that the mothers of the original sibs of terminal
nodes are not themselves terminal nodes. We then repeat the procedure with
the sibs of terminal nodes we now see, except that instead of (30), we now
use (24),

(
Bel↓A

)

SA∪{Ā}
= ⊕

{
BelB ⊕

(
Bel↓B

)

{B,B̄}
|B ∈ SA

}

to calculate Bel↓A(A) and Bel↓A(Ā) for the mother A of what are now termi-
nal sibs. (Of course, we really used (24) in the first round, too. When we
wrote BelB instead of BelB ⊕ (Bel↓B){B,B̄} in (30) above, we were just taking
advantage of the fact that Bel↓B is vacuous when B is terminal.)

We continue this process until we have reached the daughters of the the
topmost node Θ. We then have (Bel↓A){A,Ā} and BelA⊕ (Bel↓A){A,Ā} stored at
every node A in A.

4.2 Second stage

Recall (25),

(
Bel↓Θ

)

SΘ

= ⊕
{

BelB ⊕
(
Bel↓B

)

{B,B̄}
|B ∈ SΘ

}
.

We apply Barnett’s technique to this formula to calculate Bel↓Θ(A) and
Bel↓Θ(A) for each A in SΘ. Knowing these two numbers amounts to knowing
(Bel↓Θ){A,Ā}. We store them at A, along side the four numbers already there.

4.3 Third stage

Now consider a particular daughter A of Θ. We want to calculate Bel↓Θ(B) and
Bel↓Θ(B̄) for each daughter B of A. We can do this using (24), (28), and (29).

Consider first (28):
(
Bel↓Θ

)

{A,Ā}
=

(
Bel↓A

)

{A,Ā}
⊕ BelA ⊕ (Bel�A){A,Ā} .

All the belief functions in this formula are dichotomous with dichotomy
{A, Ā}, and (Bel↓Θ){A,Ā} and (Bel↓A){A,Ā} are stored at A. So we can eas-
ily find BelA ⊕ (Bel�A){A,Ā} by division.
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Now consider (24) again. We have already applied Barnett’s technique to
this formula to calculate Bel↓A(A) and Bel↓A(Ā). We now apply it again to
calculate Bel↓A(B), Bel↓A(B̄), Bel↓A(A − B), and Bel↓A(B ∪ Ā) for each B in
SA. This gives us the belief function (Bel↓A){B,A−B,Ā}. (Actually, as we shall
see in the next section, we do not need to calculate Bel↓A(A−B).)

Now consider (29):
(
Bel↓Θ

)

{B,A−B,Ā}
=

(
Bel↓A

)

{B,A−B,Ā}
⊕ BelA ⊕ (Bel�A){A,Ā} .

We have just found BelA ⊕ (Bel�){A,Ā} and (Bel↓A){B,A−B,Ā}. So we can use
(29) to calculate Bel↓Θ(B) and Bel↓Θ(B̄). (Barnett’s technique cannot be used
here, since (Bel↓A){B,A−B,Ā} is not dichotomous. But since the partition we
are working with is only a trichotomy, a brute force application of Dempster’s
rule involves little computation.)

We have just seen how to go from Bel↓Θ(A) and Bel↓Θ(Ā) to Bel↓Θ(B) and
Bel↓Θ(B̄) for the daughters B of A. This process can be repeated for the
daughters of each B, and so on, until we have calculated Bel↓Θ(C) and Bel↓Θ(C̄)
for every node C in the tree.

Usually, of course, we will not be interested in Bel↓Θ(C) and Bel↓Θ(C̄) for
every node C in the tree. Once we have seen that Bel↓Θ(B) is very small, we
know that Bel↓Θ(C) will be at least as small for every descendant C of B,
and so we may not want to go to the trouble of finding these values. We may
decide to look at descendants of B only if Bel↓Θ(B) is greater than 0.5, say.
Since two disjoint sets cannot both have degree of belief greater than 0.5, this
decision will result in our moving down the tree along just one path, which
may stop before reaching a terminal node.

4.4 Details of the algorithm

The numerical calculations that our algorithm requires can be described by
formulas, and we can group these formulas into six subroutines.

The following notation will allow us to write these formulas concisely. For
each node A in A, we set

A+
0 = BelA (A) ,

A+
↓ = Bel↓A (A) ,

A+ = (BelA ⊕ Bel↓A) (A) ,
A+

� = (BelA ⊕ Bel�A) (A) ,
A+
Θ = Bel↓Θ (A) ,

A−
0 = BelA

(
Ā
)
,

A−
↓ = Bel↓A

(
Ā
)
,

A− = (BelA ⊕ Bel↓A)
(
Ā
)
,

A−
� = (BelA ⊕ Bel�A)

(
Ā
)
,

A−
Θ = Bel↓Θ

(
Ā
)
,

(If A is a terminal node, then Bel↓A is vacuous, and therefore A+
↓ = A−

↓ =
0, A+ = A+

0 , and A− = A−
0 .) For each node B other than Θ and its daughters,

we set
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B+
A = Bel↓A (B) ,

B∗
A = Bel↓A

(
B ∪ Ā

)
,

B−
A = Bel↓A (B) ,

where A is B’s mother.
Recall that the first stage of our algorithm begins with the computation

of (Bel↓A){A,Ā} for mothers of sibs of terminal nodes. Subroutine 1 specifies
how this is done. This is followed by the calculation of BelA ⊕ (Bel↓A){A,A},
by Subroutine 2. After these operations have been completed for every node
A whose daughters are all terminal nodes, we pretend to prune all these ter-
minal nodes from the tree, and we repeat the process with the new sibs of
terminal nodes, and so on. Each round uses Subroutine 1 followed by Subrou-
tine 2. We continue until we have calculated (Bel↓A){A,Ā} for the the daughters
A of Θ.

At the second stage we apply Barnett’s technique to (25) to find Bel↓Θ(A)
for A ∈ SΘ. This is Subroutine 3.

In the second stage, we go back down the tree. When we go from A to its
daughters, we first find BelA ⊕ (Bel�A){A,Ā} using (28); this is Subroutine 4.
Then we return to formula (24) and calculate Bel↓A(B), Bel↓A(B̄) and Bel↓A(B∪
Ā) for each B in SA; this is Subroutine 5. Finally, we use (29) to calculate
Bel↓Θ(B) and Bel↓Θ(B̄) for each B in SA; this is Subroutine 6. (Alternatively,
to minimize storage, we may execute Subroutines 5 and 6 for a particular B
in SA, then for another, and so on.)

In summary, we repeatedly cycle through Subroutines 4, 5 and 6 as we
move up the tree, we execute Subroutine 3 once at the top of the tree, and
then we repeatedly cycle through Subroutines 4, 5 and 6 as we move back
down.

Subroutine 1. Calculating A+
↓ and A−

↓ from B+ and B− for B in SA;

A+
↓ = 1−K, A−

↓ = K
∏

B∈SA

B−/
(
1−B+

)
,

where
K−1 = 1 +

∑

B∈SA

B+/
(
1−B+

)
.

Subroutine 2. Calculating A+ and A− from A+
0 , A

−
0 , A

+
↓ , and A−

↓ :

A+ = 1−K
(
1−A+

0

)(
1−A+

↓
)
, A− = 1−K

(
1−A−

0

) (
1−A−

↓
)
,

where
K−1 = 1−A+

0 A
−
↓ −A−

0 A
+
↓ .

Subroutine 3. Calculating A+
Θ and A−

Θ for A in SΘ from A+ and A− for
A in SΘ:
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A+
Θ = 1−K

⎛

⎜⎜⎜⎜⎜⎝
1 +

∑

B ∈ SΘ
B 	= A

B+/
(
1−B+

)

⎞

⎟⎟⎟⎟⎟⎠
−

∏

B ∈ SΘ
B 	= A

B−/
(
1−B+

)
,

A−
Θ = 1−K

(
1−A−)

/
(
1−A+

)
.

where
K−1 = 1 +

∑

B∈SΘ

B+/
(
1−B+

)
−

∏

B∈SΘ

B−/
(
1−B+

)
.

Subroutine 4. Calculating A+
� and A−

� from A+
Θ, A

−
Θ, A

+
↓ , and A−

↓ ;

A+
� = 1−K

(
1−A+

Θ

)
/(1−A+

↓ ), A−
� = 1−K

(
1−A−

Θ

)
/
(
1−A−

↓
)
,

where

K−1 =
1−A+

Θ

1−A+
↓

+
1−A−

Θ

1−A−
↓
− 1−A+

Θ −A−
Θ

1−A+
↓ −A−

↓
.

Subroutine 5. Calculating B+
A , B

−
A , and B∗

A from C+ and C− for C in SA:

B+
A = 1−K

⎛

⎜⎜⎜⎜⎜⎝
1 +

∑

C ∈ SA
C 	= B

C+/
(
1− C+

)

⎞

⎟⎟⎟⎟⎟⎠
,

B−
A = 1−K

(
1−B−)

/
(
1−B+

)
,

B∗
A = 1−K

⎛

⎜⎜⎜⎜⎜⎝
1 +

∑

C ∈ SA
C 	= B

C+/
(
1− C+

)
−

∏

C ∈ SA
C 	= B

C−/
(
1− C+

)

⎞

⎟⎟⎟⎟⎟⎠
,

where
K−1 = 1 +

∑

C∈SA

C+/
(
1− C+

)
.

Subroutine 6. Calculating B+
Θ and B−

Θ from A+
↓ , A

−
↓ , A

+
� , A

−
� , B

+
A , B

−
A

and B∗
A, where B is a daughter of A:

B+
Θ = K

(
A+

�
(
B∗
A −A−

↓
)

+
(
1−A+

� −A−
�
)
B+
A

)
,

B−
Θ = 1−K

(
1−A−

�
) (

1−B−
A

)
,

where
K−1 = 1−A+

↓ A
−
� −A−

↓ A
+
� .
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4.5 Miscellaneous comments

(1) The constant K in Subroutine 5 is the same as the constant K in Sub-
routine 1. Recognition of this fact will save computation on the way back
down the tree, since we store Bel↓A(A) = 1−K on our way up the tree. It
is probably most efficient, in fact, to store K−1 or

K−1 − 1 =
∑

B∈SA

B+/
(
1−B+

)

instead of Bel↓A(A).
(2) Each sum or product in Subroutine 5 differs from the corresponding prod-

uct in Subroutine 1 only by the omission of a single term or factor. So if
we save the sums and products from Subroutine 1, we can obtain those
in Subroutine 5 by subtraction and division. This may be advantageous
when the sib sizes are large.

(3) In our description of the procedure for moving up the tree, we specified
that Bel↓A(A) and Bel↓A(Ā) should be calculated first for those A whose
daughters are all terminal, then for those A whose daughters are either
terminal or else have only terminal daughters, and so on. In fact, however,
we have more freedom of choice than this. In order to calculate Bel↓A(A)
and Bel↓A(Ā) it is necessary only that these quantities should already have
been calculated for each nonterminal daughter of A.

(4) We could move up the tree faster if we were to calculate (Bel↓A){A,Ā} for
disjoint A in parallel. A similar opportunity for parallelism occurs when
we move back down the tree, provided we want to move down all the
branches.

(5) We set out to calculate only Bel↓Θ(A) for all A in A. As it turned out, we
also calculated Bel↓Θ(Ā), since this was necessary for calculating the values
of Bel↓Θ for A’s daughters. (This means we can calculate the plausibility of
A, Pl↓Θ(A) = 1−Bel↓Θ(Ā).) A glance at (24) and (27) makes it clear that
we can also calculate Bel↓Θ(B) for any B that is in the field (SA ∪ {Ā})∗
for some node A. In general, however, there will remain many subsets B
of subsets B of Θ for which our method is not helpful. It example, help
us calculate Bel↓Θ({d, f}) in Fig. 3.

(6) We have used Barnett’s technique in Subroutines 1, 3, and 5. (Subroutine 2
can also be regarded as an application of Barnett’s technique, but there is
really no distinction between Barnett’s technique and brute-force calcula-
tion of an orthogonal sum when we are working with a single dichotomy.)
However, we have used this technique only on the partitions S−

A ∪ (Ā}.
If the sibs SA are all relatively small—if, say, no sib contains more than
three or four daughters—then those calculations would be manageable
even without Barnett’s technique. Thus, the efficiency of our algorithm is
mainly due not to Barnett’s technique but to the fact that we are able to
break the overall computation down into local computations.
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4.6 Complexity analysis

It is clear from our description of the algorithm that the amount of arithmetic
involving a particular node does not depend on the size of the tree. It depends
only on the number of the node’s daughters, and it increases linearly with the
number of daughters. (Subroutine 1, for example has a product with a factor
for each daughter and a sum with a term for each daughter.) It follows that the
computational complexity of the algorithm is linear in the number of nodes
in the tree.

We can make a closer complexity analysis if we assume that the number of
daughters in a sib (the branching factor) is constant throughout the tree. Let f
denote the branching factor. Let n denote the number of sibs or, equivalently,
the number of nonterminal nodes. Then we can expect a + bf arithmetic
operations for each sib, or n(a + bf) altogether, where a and b are positive
constants.

This formula clarifies the role of Barnett’s technique in our algorithm.
Barnett’s technique is responsible for the linearity with respect to the sib size
f , while the localization of the computation is responsible for the linearity
with respect to the number of sibs, n. If we did not use Barnett’s technique,
the computational complexity would be exponential in f but stll proportional
to n. In place of n(a+ bf), we would have n exp(a+ bf).

Instead of talking about the number of arithmetic operations per sib, we
might wish to talk about the number per node. Since there are nf + 1 nodes
altogether, this is

n (a+ bf)
nf + 1

≈ n(a+ bf)
nf

=
a

f
+ b. (31)

Alternatively, we might wish to talk about the number of operations per
terminal node, since the number of terminal nodes is the size of our frame.
Since there are nf − n + 1 terminal nodes, the number of operations per
terminal node is

n (a+ bf)
nf − n+ 1

≈ n (a+ bf)
n (f − 1)

=
a

f − 1
+

bf

f − 1
. (32)

Both (31) and (32) are greatest for binary trees (f = 2) and tend towards b
as f increases. (There is no paradox here. When f is large, most nodes are
terminal nodes.)

The formula a + bf for the number of operations per sib can be verified
empirically. We have verified it using a lisp implementation in a variety of
trees, with f ranging up to 5 and n ranging up to 30,000. The fit was excellent,
with 99.8% of the variance explained. The least squares estimates were a = 158
and b = 44. (Strictly speaking, the counts on which these estimates were based
are counts of arguments in operations rather than counts of operations. Thus
an addition of k terms counts as k, and the division of one number by another
counts as 2.)
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As we mentioned in Sect. 4.3, it is often possible to save computation by
moving down only some of the branches in the third stage. Since Subroutine 5
involves the greatest computation, the savings can be substantial.

4.7 Comparison with Gordon and Shortliffe’s algorithm

Gordon and Shortliffe [4] do not give details for the implementation of their
algorithms. We have found, however, that it can also be implemented in linear
time. The particular implementation we have used is analogous to the imple-
mentation of our own algorithm; it involves movements up and down the tree.
We have found that this implementation of Gordon and Shortliffe’s algorithm
is comparable in complexity to our algorithm. In all the trees we checked it
required fewer arithmetic operations than our algorithm, but never fewer than
half as many.

The details of our implementation of Gordon and Shortliffe’s algorithm
are nearly as complicated as the details of our algorithm, and it is possible
that a more efficient implementation might be found.

5 Generalizations

In this article, we have retained Gordon and Shortliffe’s assumption that
the belief functions being combined are simple support functions focused on
nodes or their complements. The essence of our computational scheme can
be retained, however, whenever each belief function is carried by a sib (more
precisely, by a partition SA ∪ {Ā} for some node A). Under this more gen-
eral assumption, Barnett’s technique is no longer available, and the amount
of arithmetic is exponential in the sib size, but it remains proportional to
the number of sibs. An interesting special case occurs when each belief func-
tion is conditionally Bayesian—i.e., when the belief function BelA carried by
SA ∪ {Ā} satisfies

BelA (B|A) + BelA
(
B̄|A

)
= 1

and
BelA

(
B|Ā

)
+ BelA

(
B̄|Ā

)
= 1

for every element B of the field (SA∪{Ā})∗. In this case, the result of combin-
ing all the belief functions is Bayesian, and the computations can be simplified;
the amount of arithmetic is again linear rather than exponential in the sib
size. This case has been studied by Pearl [7].

A further generalization is to replace diagnostic trees with general trees of
partitions or variables. We need only a “Markov” property: a given node in the
tree should discern the interaction among the belief functions on the different
branches of tree separated by the node. The problem of propagating belief
functions in such Markov trees is discussed by Shenoy and Shafer [14] and by
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Shafer, Shenoy, and Mellouli [13]. The Bayesian special case is discussed by
Pearl [8].

The generalization to networks of variables has been studied by Kong [5];
see also Mellouli, Shafer, and Shenoy [6]. The last chapter of Kong [5] is of
particular interest; it shows how the algorithm of this article can be general-
ized, without loss of computational efficiency, to the case where a patient may
have more than one disease.
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Some Characterizations of Lower Probabilities
and Other Monotone Capacities through

the use of Möbius Inversion

Alain Chateauneuf and Jean-Yves Jaffray

Abstract. Monotone capacities (on finite sets) of finite or infinite order (lower
probabilities) are characterized by properties of their Möbius inverses. A necessary
property of probabilities dominating a given capacity is demonstrated through the
use of Gale’s theorem for the transshipment problem. This property is shown to be
also sufficient if and only if the capacity is monotone of infinite order. A character-
ization of dominating probabilities specific to capacities of order 2 is also proved.

Key words: Decision theory; Lower probabilities; Belief functions;
Capacities; Möbius inversion; Representation of uncertainty

1 Introduction

Dempster (1967) and Shafer (1976, 1981) have proposed a representation of
uncertain environments which entails assigning a ‘lower probability’ (Demp-
ster) or ‘degree of belief’ (Shafer) to every event – or proposition. Their
model requires the lower probability (belief) function, which is, in general,
not additive, to possess a weaker property: monotonicity of order K, for all
K. This requirement is perfectly justified in some situations, such as the fol-
lowing example given by Dempster: suppose that there is a probability π(x)
of receiving a message ‘Bx’, x ∈ X , which informs one that event Bx obtains,
in which case any event A such that Bx ⊂ A also obtains; thus, although a
given event A is not a probabilized event, one can assert that it is at least
as likely to obtain as any event with probability f(A) = ΣB⊂Am(B), where
m(B) = Σ{x∈X: Bx=B} π(x). The lower probability function f can indeed be
shown to be monotone of order K for all K (for short: ∞-monotone).

However, it is easy to give other examples where partial information is best
described by a function with weaker properties. In particular, consider the case
where all probabilities of a given set P are compatible with the available data.
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Function f = InfP∈PP is in this case the natural ‘lower probability’ function.
However f is not, in general, monotone of order K, for all K; f is nonethe-
less always monotone of order 1, and often monotone of superior orders (see
Examples 6 and 7). Decision theorists, such as Kyburg (1974), Levi (1980),
Walley and Fine (1979, 1982), Wolfenson and Fine (1982), and Papamarcou
and Fine (1986) have studied this general form of lower probabilities.

Fortunately, many of the properties of ∞-monotone lower probabilities
are shared by all functions which are monotone of order 2. This has been
shown not only by decision theoreticians but also, independently, by other
authors, who met with these functions in their own fields of research: pure
mathematicians Choquet (1953), Revuz (1955), Dellacherie (1971) and Anger
(1971, 1977); statisticians Huber (1973, 1976) and Huber and Strassen (1973);
game theorist Shapley (1971); and specialists of matröıd theory Edmonds
(1970) and Bixby et al. (1985).

Our aims, in this paper, are: (i) to determine which properties are specific
to each category of monotone functions; (ii) to show that the use of Möbius
inversion – a transformation applied by Dempster and Shafer – is not limited
to belief functions, although inverses of other functions are not in that case
non-negative; (iii) to characterize, in particular, members of each category of
functions by properties of their Möbius inverses; (iv) to produce, using Möbius
inversion and certain classic findings (such as Gale’s theorem for the trans-
shipment problem), both new findings and easier demonstrations of former
ones. Potential applications of these results to decision making are discussed
in §4.

Like Dempster and Shafer (and game or matröıd theorists), we shall only
consider functions defined on 2Θ, with Θ a finite set. The notations used
are basically those of Shafer (1976), in particular: |A| is the cardinal of set
A;A\B = {θ ∈ Θ : θ ∈ A, θ 	∈ B}; Ā = Θ\A;B 	⊂ A means that B ∩ Ā 	= ∅;
a summation such as ‘

∑
B⊂Am(B)’ is short for ‘

∑
{B∈2Θ:B⊂A}m(B)’; etc;

by convention,
∑

∅
· · · = 0.

We also use standard notations of probability theory: f(X ≥ x) for f{θ ∈
Θ : X(θ) ≥ x}, etc. . .

2 Elementary Properties of Monotone Capacities
and their Möbius Inverses

Let Θ be a finite non-empty set and let A = 2Θ (set of all subsets of Θ), and
A∗ = A\{∅}. A mapping f : A → R (actually: A → [0, 1]) is a (normalized)
capacity whenever

f (∅) = 0; f (Θ) = 1; f (A1) ≤ f (A2) for all A1, A2 ∈ A such that A1 ⊂ A2.
(1)
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The last property in (1) is monotonicity in the usual sense or 1-monotonicity;
furthermore, given an integer K ≥ 2, a mapping f : A → R is K-monotone
(short for: monotone of order K) if and only if

f

(
K⋃

k=1

Ak

)
≥

∑

I ⊂ {1, . . . , K}
I �= ∅

(−1)|I|+1 f

⎛

⎝
⋂

k∈I
Ak

⎞

⎠ , for all Ak ∈ A, 1 ≤ k ≤ K.

(2)

By using the fact that the Ak’s are not necessarily distinct, the first part of the
following proposition can be easily proven; its second part is straightforward.

Proposition 1. (i) If a mapping f is K-monotone for some K ≥ 2, then f
is also K ′-monotone for 2 ≤ K ′ ≤ K.

(ii) If, moreover, f(∅) = 0 and f({θ}) ≥ 0 for all θ ∈ Θ, it is also 1-monotone
and f ≥ 0.

On the other hand, lower order monotonicities do not imply higher order
monotonicities (see Example 3), and a mapping which is K-monotone for all
K ≥ 2 is said to be ∞-monotone (short for: monotone of infinite order).

Note that probabilities are the particular instances of ∞-monotone capac-
ities for which equality obtains in (2) for all K (Poincaré’s equalities).

To any mapping f : A → R another mapping m : A → R can be associ-
ated by

m (A) =
∑

B⊂A
(−1)|A\B| f (B) for all A ∈ A. (3)

This correspondence proves to be one-to-one, since conversely,

f(A) =
∑

B⊂A
m (B) for all A ∈ A. (4)

The validity of (4) is proven by Shafer ([1976, Ch. 2, §7] (his proof is
recalled in the Appendix), who calls the correspondence Möbius inversion
(see Rota, 1964).

Capacities can then be characterized as follows:

Proposition 2. f is a capacity if and only if its Möbius inverse satisfies

m (∅) = 0;
∑

B∈A
m (B) = 1;

∑

{θ}⊂B⊂A
m (B) ≥ 0, for all A ∈ A, all θ ∈ A.

(5)
In particular, it is necessary that m({θ}) ≥ 0, for all θ ∈ Θ.

Proof. By (3) and (4), the two equalities are equivalent to f(∅) = 0 and
f(Θ) = 1. For the inequalities, note that 1-monotonicity holds if and only if
it holds for pairs A1 = A\{θ}, A2 = A.
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K-monotone mappings can be characterized as follows (this proof is a
direct adaptation of the proof of Theorem 2.1 in Shafer (1976, p. 51)).

Proposition 3. Let f,m : A → R, and suppose that f and m are Möbius-
inverse; then, f is K-monotone (K integer, K ≥ 2) if and only if

∑

B ⊂
⋃K
k=1 Ak

B 	⊂ Ak, all k

m (B) ≥ 0 for Ak ∈ A, 1 ≤ k ≤ K. (6)

Proof. To every B ∈ A, let us associate

I (B) = {k : 1 ≤ k ≤ K and B ⊂ Ak} .
∑

I⊂{1,...,K}
I �= ∅

(−1)|I|+1 f

⎛

⎝
⋂

k∈I

Ak

⎞

⎠ =
∑

I ⊂ {1, . . . ,K}
I �= ∅

(−1)|I|+1
∑

B ⊂ ⋂
Ak

k ∈ I

m (B)

=
∑

I(B) �=∅

m (B)
∑

I ⊂ I (B)

I �= ∅

(−1)|I|+1 =
∑

I (B) �= ∅

m (B)

⎡

⎣1 −
∑

I⊂I(B)

(−1)|l|
⎤

⎦ =
∑

I(B)�=∅

m (B) ,

by Lemma 2.1 in Shafer [1976, p. 47] (see Appendix). Further,

f

(
K⋃

k=1

Ak

)
=

∑

B ⊂
⋃K
k=1 Ak

I (B) = ∅

m (B) +
∑

B ⊂
⋃K
k=1Ak

I (B) 	= ∅

m (B)

=
∑

B ⊂
⋃K
k=1 Ak

B 	⊂ Ak, all k

m (B) +
∑

I(B) �=∅

m (B) .

It is now obvious that the proposition holds. 	

From Proposition 3, it can be easily deduced that:

Corollary 1. (i) If f is K-monotone and 2 ≤ |A| ≤ K, then m(A) ≥ 0.
(ii) f satisfying f(∅) = 0 is a non-negative ∞-monotone mapping if and only

if m is itself non-negative.

Proof. For (i), use Ak = A\{θk}, where A = {θ1, . . . , θK′}, K ′ ≤ K, in (6);
for (ii) use (i) and Proposition 1. 	

Note also that f is a probability if and only if m(B) ≥ 0 when |B| =
1, m(B) = 0 otherwise, and ΣB∈Θm(B) = 1.

A simpler characterization, which is similar to (5) for 1-monotonicity, can
be given:
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Proposition 4. Let f,m: A → R, and suppose that f and m are Möbius-
inverse; then f is K-monotone (K integer, K ≥ 2) if and only if

∑

C⊂B⊂A
m (B) ≥ 0, for all A ∈ A and C ∈ A, 2 ≤ |C| ≤ K. (7)

Proof. (7) is obviously implied by (6), since one can always take
C = {θ1, . . . , θ1} with 2 ≤ l ≤ K, A1 = A\{θ1}, A2 = A\{θ2}, . . . , Al =
A\{θl}, Al+1 = · · · = AK = Al so that A =

⋃K
k=1 Ak, and, for B ⊂ A, C ⊂ B

is equivalent to B 	⊂ Ak, 1 ≤ k ≤ K.
Conversely, let us show that (7) implies (6). Let A1, Ak, . . . , AK ∈ A and

suppose that B ⊂ A =
⋃K
k=1 Ak and B 	⊂ Ak for k = 1, . . . ,K, which is

equivalent to the existence of

θ(1) ∈ A\A1 = E1, θ
(2) ∈ A\A2 = E2,..., θ

(K) ∈ A\AK = EK

such that
θ(1), θ(2), . . . , θ(K) ∈ B.

Let us choose enumeration orders

E1 =
{
θ
(1)
1 , . . . , θ

(1)
L1

}
, . . . , EK =

{
θ
(k)
1 , . . . , θ

(K)
LK

}
,

and endow E = E1 ×E2 × · · · ×EK with the lexicographical ordering L ≤. If
(θ(1)
l1
, . . . , θ

(K)
lK

) is the first element of E for L ≤ satisfying

C =
K⋃

k=1

{
θ
(k)
Ik

}
⊂ B,

then B must be a subset of

Al1,...,lK =
{
θ
(1)
l1
, . . . , θ

(1)
L1

}
∪ · · · ∪

{
θ
(K)
IK

, . . . , θ
(K)
LK

}
∪A

∖ K⋃

1

Ek;

further if

C′ =
K⋃

k=1

{
θ
(k)
l′k

}
⊂ B ⊂ Al′1,...,l′k

then, necessarily, l′1 = l1, . . . , l
′
K = lK ; therefore sets

{
B ∈ A :

K⋃

k=1

{
θ
l
(k)
k

}
⊂ B ⊂ Al1,...,lK

}
,

1 ≤ lk ≤ Lk, 1 ≤ k ≤ K, form a partition of
{
B ∈ A : B ⊂

K⋃

k=1

Ak, B 	⊂ Ak, k = 1, . . . ,K

}
;

thus the first member of (6) can be divided into a sum of non-negative terms.	
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Note that if K > 2, condition (7) in Proposition 4 cannot be restricted to
subsets C such that |C| = K, as shown by Example 1.

Example 1. Θ = {θ1, θ2, θ3, θ4}. Let the Möbius inverse, m, of capacity f
satisfy: m(Θ) = 1

4 ,m({θ1, θ2, θ3}) = − 1
2 ,m({θ1, θ2}) = 5

4 . Condition (7) is
satisfied for every subset C such that |C| = 4, however f is not 4-monotone
since Σ{θ1,θ2,θ3}⊂B⊂Θm(B) = − 1

4 . 	

For 2-monotone mappings, however, i.e. mappings f such that

f (A1 ∪A2) + f (A1 ∩A2) ≥ f (A1) + f (A2) for all A1, A2 ∈ A,

Propositions 3 and 4 have the following simple implication:

Corollary 2. Let f, m: A → R, and suppose that f and m are Möbius inverse.
The following statements are equivalent:

(i) f is 2−monotone;

(ii)
∑

B ⊂ A1 ∪A2

B 	⊂ A1, B 	⊂ A2

m (B) ≥ 0 for all A1, A2 ∈ A; (8)

(iii)
∑

{θ1,θ2}⊂B⊂A
m (B) ≥ 0 for all A ∈ A and all θ1, θ2 ∈ A, θ1 	= θ2.

(9)

3 Characterization of the Probabilities Dominating
Monotone Capacities

3.1 A Necessary Condition for Dominance

Any probability P (weakly) dominating a given capacity f , i.e., satisfying

P (A) ≥ f (A) for all A ∈ A, (10)

is simply related to f ’s Möbius inverse, as shown by the following result which
generalizes a result of Dempster [1967, §2]:

Proposition 5. Let f, m, P: A → R, where f is a capacity; m, its Möbius
inverse; and P, a probability dominating f. There exists then a weight function

λ :
⋃

B∈A∗
{(B, θ) : θ ∈ B} → R satisfying.

λ ≥ 0 and
∑

θ∈B
λ (B, θ) = 1 for all B ∈ A∗, (11)
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such that P is identical to measure Pλ determined by

Pλ ({θ}) =
∑

B⊃{θ}
λ (B, θ)m (B) for all θ ∈ Θ, (12)

and
Pλ (A) =

∑

θ∈A
Pλ({θ} for all A ∈ A. (13)

Proof. Let us show that the property to be demonstrated can simply be
restated as a network-flow property, which results from Gale’s (1960, p. 149)
feasibility theorem for the transshipment problem.

Let us indeed consider the transshipment problem on a capacitated net-
work consisting of: a set of sources E = {eB : B ∈ A,m(B) > 0} with supply
m(B) at B ∈ E ; a set of sinks Θ ∪ S, where S = {sB : B ∈ A,m(B) < 0},
with demand P ({θ}) at θ ∈ Θ and demand −m(B) at sB ∈ S; arcs, with
infinite capacities, joining a source eB ∈ E to a sink θ ∈ Θ, or a sink θ ∈ Θ to
another sink sB ∈ S, if and only if θ ∈ B (see Figure 1).

Note that there is no excess supply, since
∑

θ∈Θ
P ({θ}) = 1 =

∑

B∈A
m (B) =

∑

eB∈E
m (B)−

∑

sB∈S
(−m (B)) ;

thus, a feasible flow, ϕ, has to saturate the supply and demand constraints:
∑

θ∈B
ϕ (eB, θ) = m (B) for all eB ∈ E , (14)

∑

B⊃{θ},eB∈E
ϕ (eB, θ) = P ({θ}) +

∑

B⊃{θ},sB∈S
ϕ (θ, sB, ) for all θ ∈ Θ, (15)

∑

θ∈B
ϕ (θ, sB) = −m (B) forall SB ∈ S. (16)

To any feasible flow ϕ one can associate a function λ partially defined by:

λ (B, θ) =

{
ϕ(eB ,θ)
m(B) for m (B) > 0
ϕ(θ,sB)
−m(B) for m (B) < 0

}
and θ ∈ B;

choosing, for B ∈ A∗ and m(B) = 0, arbitrary λ(B, θ)’s satisfying (11), λ
shall, in fact, satisfy (11) for all B ∈ A∗; moreover, it follows directly from
(15) that P ({θ}) = Pλ({θ}), given by (12).

Thus, all we need prove is the existence of a feasible flow in the network.
According to Gale’s theorem, this amount to checking that, for each partition
{N , N̄ } of the set of nodes, k(N̄ ,N ) ≥ d(N ), where k(N̄ ,N ) is the sum of
the capacities of the arcs joining a node in N̄ to a node in N , and d(N ) is the
net demand in N (i.e., the difference between the sum of the demands and
the sum of the supplies at the various nodes in N ).
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supply

0

0

1/2

eθ

θ2 θ3 θ4 Θθ1
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1/3 1/6

demand

demand

α

Fig. 1. An illustration of Proposition 5 based on Example 2

This inequality is obviously satisfied when k(N̄ ,N ) = +∞, i.e., when there
exists eB ∈ E ∩ N̄ and θ ∈ B ∩ N , or sB ∈ S ∩ N and θ ∈ B ∩ N̄ .

In the alternative case, k(N̄ ,N ) = 0, it can be noted: first, that eB ∈ E
and B ∩ N 	= ∅ imply that eB ∈ E ∩ N ; secondly, that sB ∈ S ∩ N implies
that B ⊂ N , hence that B ∩ N 	= ∅ (since necessarily B 	= ∅ when sB ∈ S);
therefore,

d (N ) =
∑

sB∈S∩N
(−m (B)) +

∑

θ∈Θ∩N
P ({θ})−

∑

eB∈S∩N
m (B)

≤
∑

sB ∈ S
B ∩ N 	= ∅

(−m (B)) + P (Θ ∩ N )−
∑

eB ∈ E
B ∩ N 	= ∅

m (B)

= P (Θ ∩ N )−
∑

B∩N �=∅

m (B) = 1− P
(
Θ ∩ N̄

)
− [1− f

(
Θ ∩ N̄

)
] ≤ 0.

	
Example 2.

Θ = {θ1θ2, θ3, θ4} ; f {∅} = 0; f ({θ1}) = f ({θ2}) = 0; f ({θ3}) = f ({θ4}) =
1

3
;

f ({θ1, θ2}) = 0, f ({θ3, θ4}) =
1

2
, f ({θi, θj}) =

1

3
otherwise;

f ({θ1, θ2, θ3}) = f ({θ1, θ2, θ4}) =
1

3
; f ({θ1, θ3, θ4}) = f ({θ2, θ3, θ4}) =

1

2
; f

(
Θ

)
= 1;

thus f is a capacity, but is not 2-monotone

(f ({θ3, θ4}) + f (∅) < f ({θ3}) + f ({θ4})) .

Its Möbius inverse, m, satisfies
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m ({θ3})=m ({θ4})=
1
3
,m ({θ3, θ4})=−1

6
,m (Θ) =

1
2
,m (B) = 0 otherwise

hence E = {e{θ3}, e{θ4}, eΘ} and S = {s{θ3,θ4}.
Probability P , defined by P ({θ1}) = 0, P ({θ2}) = 1

6 , P ({θ3}) = 1
3 and

P ({θ4}) = 1
2 , dominates f , and P = Pλ for any weight function λ satisfying

for some α ∈ [0, 1
6 ] : λ({θ3}, θ3) = λ({θ4}, θ4) = 1;

λ ({θ3, θ4} , θ3) = 6α, λ({θ3, θ4} , θ4) = 1− 6α;λ (Θ, θ1) = 0,

λ (Θ, θ2) =
1
3
, λ (Θ, θ3) = 2α and λ (Θ, θ4) =

2
3
− 2α.

Note that, on the other hand, not all Pλ’s defined by (11), (12) and (13)
dominate f : for example, if λ({θ3, θ4}, θ3) = 1 and λ(Θ, θ4) = 1, then
Pλ({θ3}) = 1

6 <
1
3 = f({θ3}). 	

The set of probabilities dominating a capacity may even be empty:

Example 3.

Θ = {θ1, θ2, θ3} ; f (∅) = 0; f ({θi}) = 0, all i; f
({

θi, θj
})

=
3

4
, all i, j, f (Θ) = 1.

Dominance requires in particular P ({θ1}) ≤ 1
4 , P ({θ2}) ≤ 1

4 and P ({θ1, θ2})
≥ 3

4 ; yet some Pλ’s are probabilities, since f ’s Möbius inverse, m, satisfies
m({θi, θj}) = 3

4 , all i, j, and m(Θ) = − 5
4 , m(B) = 0 otherwise, hence Pλ is a

probability for λ({θi, θj}, θ) = 1
2 , θ = θi or θj , and λ(Θ, θ) = 1

3 , all θ. Note
that f , which is not 2-monotone, is super-additive, i.e., f(A∪B) ≥ f(A)+f(B)
whenever A ∩B = ∅. 	

Let: P≥ be the set of all probabilities dominating capacity f, Λ be the
set of all weight functions satisfying (11), and MΛ be the set of measures Pλ
associated to some λ by (12) and (13).

Proposition 5 merely asserts that P≥ ⊂MΛ. We shall determine under
what conditions the converse, P≥⊃MΛ, is also true. Obviously, a first require-
ment is that measures Pλ be probabilities; let us examine this point.

Proposition 6. Let f be a capacity; m its Möbius inverse; then, all measures
in MΛ (i.e., defined by (11), (12) and (13)), are probabilities if and only if

m ({θ}) +
∑

B ⊃ {θ}
B 	= {θ}

Min {m (B) , 0} ≥ 0, for all θ ∈ Θ. (17)

Proof. Since f is a capacity, m satisfies (5); thus, for any Pλ ∈MΛ,
∑

θ∈Θ
Pλ ({θ}) =

∑

θ∈Θ

∑

B⊃{Θ}
λ (B, θ)m (B)

=
∑

B∈A∗
m (B)

∑

θ∈B
λ (B, θ) =

∑

B∈A∗
m (B) = 1.
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We need at this point only demonstrate that Pλ ∈ MΛ implies Pλ({θ}) ≥ 0
for all θ ∈ Θ if and only if (17) is satisfied.

For any Pλ ∈MΛ and any θ ∈ Θ,

Pλ ({θ})=m (θ)+
∑

B ⊃ {θ}
m (B) < 0

λ (B, θ)m (B)+
∑

B ⊃ {θ} , B 	= {θ}
m (B) > 0

λ (B, θ)m (B) ;

hence, since 0 ≤ λ(B, θ) ≤ 1,

Pλ ({θ}) ≥ m ({θ}) +
∑

B ⊃ {θ}
m (B) < 0

m (B) = m ({θ}) +
∑

B ⊃ {θ}
B 	= {θ}

Min{m (B) , 0};

It is thus straightforward that (17) is a sufficient condition for the nonnega-
tivity of Pλ. The necessity of (17) results from the fact that the two members
of the last inequality become equal if λ is chosen such that:

λ (B, θ) = 1 for B ⊃ {θ} ,m (B) < 0,
λ (B, θ) = 0 for B ⊃ {θ} , B 	= {θ} ,m (B) > 0.

	
It can be easily checked that (17) holds in Example 2 but does not hold

in Example 3, nor in the following example, where f is 2-monotone:

Example 4.

Θ {θ1, θ2, θ3, θ4} ; f (∅) = f ({θi}) = 0, all i : f ({θi; θj}) =
1
6
, all i, j;

f ({θi, θj , θk}) =
1
3
, all i, j, k; f (Θ) = 1.

Its Möbius inverse, m, satisfies m({∅)} = m({θi}) = 0, all i; m({θi, θj}) = 1
6 ,

all i, j; m({θi, θj , θk}) = − 1
6 , all i,j,k ; m(Θ) = 2

3 ; it is easily checked, directly
or by using (5) and (9), that f is a 2-monotone capacity; it is however not
3-monotone since triplets have negative masses. (17) does not hold, since

m ({θ1}) +
∑

B ⊃ {θ1}
B 	= {θ1}

Min {m (B) , 0} = −1
2
.

Indeed, for λ1 satisfying

λ1 ({θ1.θj} , θ1)= 0, all j, λ1 ({θ1, θj , θk, } , θ1)= 1, all j, k and λ1 (Θ, θ1) = 0,

Pλ1 ({ θ1 } ) = −1
2
.
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3.2 Characterization of the Probabilities Dominating
an ∞-monotone Capacity

For capacities which are ∞-monotone, (17) is obviously satisfied since their
Möbius inverses are non-negative; thus all measures in MΛ are probabili-
ties, which fact, however, can also be deduced from the following proposition
(Dempster, 1967):

Proposition 7. For ∞-monotone capacities, P≥ ⊃MΛ; in other terms, if f
is an ∞-monotone capacity, and m its Möbius inverse, every measure satis-
fying (11), (12) and (13) dominates f , and is a probability.

Proof. Let Pλ ∈ MΛ and A ∈ A.

Pλ (A) =
∑

θ∈A
Pλ ({θ}) =

∑

θ∈A

(
∑

B�θ
λ (B, θ)m (B)

)

=
∑

B∈A∗
m (B)

∑

θ∈A∩B
λ (B, θ)

=
∑

B ⊃ A
B 	= ∅

m (B) +
∑

B∩Ā�=∅

m (B)
∑

θ∈B∩A
λ (B, θ) ; (18)

Since m(∅) = 0, the first term to the right is equal to f(A); since m ≥ 0 for
∞-monotone mappings, the second term is non-negative; thus,

Pλ (A) ≥ f (A) ≥ 0.

Further since
Pλ (Θ) =

∑

B⊂Θ
m (B) = 1,

Pλ is a probability.

In fact, the property in Proposition 7 characterizes capacities which are
∞-monotone, since:

Proposition 8. Let f be a capacity, m its Möbius inverse; if P≥ ⊃MΛ,
i.e., if every measure satisfying (11), (12) and (13) dominates f, then f is
∞-monotone.

Proof. Suppose that f is not ∞-monotone. By Corollary 1 (ii), there then
exists B0 ∈ A such that m(B0) < 0; by Proposition 2, |B0| ≥ 2; let thus
θ1, θ2 ∈ B0. Take any A ∈ A such that θ1 ∈ A and θ2 ∈ Ā, and let λ ∈ Λ
satisfy λ(B0, θ1) = 1 and, for every B 	= B0 such that B ∩ Ā 	= ∅,

∑

θ∈B∩Ā
λ (B, θ) = 1

(
hence,

∑

θ∈B∩A
λ (B, θ) = 0

)
.
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By (18), Pλ(A) = f(A)+m(B0) < f(A), and, therefore, Pλ does not dominate
f . 	

Propositions 5, 7 and 8 together imply:

Corollary 3. Let f be a capacity. Then P≥ = MΛ if and only if f is
∞-monotone.

Therefore, if f is a 2-monotone capacity, but is not ∞-monotone, P≥ is a
proper subset of MΛ, even when all members of MΛ are probabilities as in
the following example:

Example 5. Given Θ, f , and m of Example 4, and probability Q characterized
by Q({θi}) = 1

4 , all i, consider the mapping f ′ = 2
3Q+ 1

3f , i.e. A "→ f ′(A) =
2
3Q(A) + 1

3f(A). Its Möbius inverse, m′, therefore satisfies m′ = 2
3μ + 1

3m,
where μ is the inverse of Q : m′({θi}) = 2

3 ·
1
4 = 1

6 , all i, and m′(B) = 1
3m(B)

for |B| > 1; hence, (17) holds for f ′, and Pλ ≥ 0, for every λ ∈ Λ; however for
λ1 of Example 3, Pλ1({θ1}) = 0 < f ′({θ1}) = 1

6 . 	

3.3 Characterization of the Probabilities Dominating
a 2-monotone Capacity

Let us then try to characterize, for a 2-monotone capacity, subset P≥ of MΛ,
i.e., those members of MΛ which are probabilities dominating that capacity.

To do so, let us first associate with any capacity f a certain family of
probabilities, defined as follows: let Σ be the set of the permutations of all
the elements in Θ; given a generic element of Σ,

S = (θi1 , . . . , θil , . . . , θiL) , L = |Θ| ,

let us denote by Sl, 0 ≤ l ≤ L the subsets of Θ defined by Sl = {θil , . . . , θil}
for l ≥ 1, and S0 = ∅. A measure PS can be defined by

PS ({θil}) = f (Sl)− f (Sl−1) , for 1 ≤ l ≤ L. (19)

and its (implied) additivity property. It is straightforward that, since f is a
capacity, PS is a probability and satisfies

PS (Sl) = f (Sl) , for 1 ≤ l ≤ L. (20)

We shall denote by PΣ the set of probabilities equal to Ps for some S ∈ Σ. It
is obvious that PΣ cannot be empty, but is a singleton when f is a probability.
The following property of PΣ will later be useful:

Lemma 1. Let f be a capacity. Given a decreasing sequence, (An, 1 ≤ n ≤
N), of elements in A, there exists a permutation S ∈ Σ, such that probability
PS satisfies

PS (An) = f (An) , for 1 ≤ n ≤ N. (21)
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Proof. There exists at least one enumeration S of Θ such that An = S|An|, 1 ≤
n ≤ N (enumerate successively the elements of AN , AN−1\AN , . . . , A1\A2,
Θ\A1). (21) then follows from (20).

Proposition 9. For 2-monotone capacities, PΣ ⊂ P≥ ⊂MΛ. In other terms,
if f is a 2-monotone capacity and m its Möbius inverse, then, for every S ∈ Σ,
probability PS, defined by (19), dominates f, and thus belongs to MΛ (Propo-
sition 5); more precisely PS = Pλ, where Pλ satisfies (12) and (13), for λ
(satisfying (11)) defined by: for every B ∈ A∗, λ(B, θS(B)) = 1, where θS(B)
is the last element of B in permutation S.

Proof. Let λ be defined as in the preceding statement. For every l, 1 ≤ l ≤ L,

Pλ ({θil}) =
∑

{B⊃θil}
λ (B, θil)m (B) ;

hence,

Pλ ({θil}) =
∑

θS(B)=θil

m (B) =
∑

B ⊂ Sl

B �⊂ Sl−1

m (B) = f (Sl) − f (Sl−1) = PS ({θil}) ;

thus Pλ = PS .
Moreover, for any A ∈ A,

PS (A) = Pλ (A) =
∑

θS(B)∈A
m (B) =

∑

B⊂A
m (B) +

∑

B 	⊂ A
θS (B) ∈ A

m (B)

= f (A) +
∑

1 ≤ l ≤ L
θl ∈ A

∑

B 	⊂ A
θS (B) = θl

m (B)

= f (A) +
∑

1 ≤ l ≤ L
θl ∈ A

∑

B ⊂ (A ∩ Sl) ∪ Sl−1

B 	⊂ Sl−1, B 	⊂ A ∩ Sl

m (B) ≥ f (A)

since, according to (8), f being 2-monotone, the other terms are non-negative.
Thus PS ∈ P≥. 	
Remark 1. (i) Proposition 9 implies that P≥ is not empty when f is 2-

monotone.
(ii) The proof of Proposition 9 shows that, for all capacities, PΣ ⊂MΛ.

The relations between PΣ and P≥ for 2-monotone capacities can be spec-
ified further; this however will require the preliminary proof of the following
important result, due to Dempster (1967), and also derived, in a more general
context, by Huber and Strassen (1973):
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Proposition 10. Let f be a 2-monotone capacity. For any mapping X : Θ→
R, with image

X (Θ) = {x1, . . . , xn, . . . xN} , xn ≥ xn−1 for 2 ≤ n ≤ N.

the infimum over P≥ of the mathematical expectation

EP (X) =
∑

θ∈Θ
X (θ)P ({θ})

is attained, for some PS ∈ PΣ, and its value is

Inf
P∈P≥

EP (X) =
N∑

n=2

(xn − xn−1) f (X ≥ xn) + x1. (22)

Proof. For every probability P ,

EP (X) =
∑

θ∈Θ
X (θ)P ({θ})

=
N∑

n=2

(xn − xn−1)P (X ≥ xn) + x1.

The right side of equality (22) is obviously a lower bound of EP (X) for
P ∈ P≥, i.e., for P dominating f .

Moreover, since sets An = {θ : X(θ) ≥ xn}, 1 ≤ n ≤ N , form a decreasing
sequence, it results from Lemma 1 that there exists a probability PS ∈ PΣ
and hence, by Proposition 9, PS ∈ P≥, such that

PS (X ≥ xn) = f (X ≥ xn) , for all n, 1 ≤ n ≤ N.

	

From expression (22), another relation can be derived which involves,
instead of f , its Möbius inverse m. Its validity for ∞-monotone capacities
has already been proven by Shafer (1981).

Corollary 4. Let f be a 2-monotone capacity and m its Möbius inverse. The
infimum over P≥ of the mathematical expectation of any mapping X : Θ→ R

is attained and its value is

Inf
P∈P≥

EP (X) =
∑

B∈A
xn(B)m (B) , (23)

where xn(B) = Minθ∈BX(θ).
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Proof. By (22),

Inf
P∈P≥

EP (X) =
N∑

n=2

(xn − xn−1)
∑

B⊂{θ:X(θ)≥xn}
m (B) + x1

=
∑

B∈A
m (B)

n(B)∑

n=2

(xn − xn−1) + x1=
∑

B∈A
m (B) · xn(B) − x1+x1.

	
Remark 2. (i) In the particular case of ∞-monotone capacities, where m ≥ 0

and P≥ =MΛ, (23) follows directly from

Inf
P∈P≥

EP (X) = Inf
λ∈Λ

⎡

⎢⎣
∑

θ∈Θ
X (θ)

∑

B⊃{θ}
λ (B, θ)m (B)

⎤

⎥⎦

=
∑

B∈A∗
m (B) Inf

⎧
⎨

⎩
∑

θ∈B

λ (B, θ) ·X (θ) :
∑

θ∈B

λ (B, θ) = 1;λ (B, θ) ≥ 0, all θ

⎫
⎬

⎭ .

(ii) It results from the proofs of Propositions 10 and Corollary 4, that, for any
capacity f , the right members of (22) and (23) are equal, and that their
common value, E0

f (X), satisfies

Inf
P∈P∑

EP (X) ≤ E0
f (X) ≤ Inf

P∈P≥
EP (X) .

Propositions 9 and 10 state properties which in fact characterize 2-
monotone capacities, as shown by the proposition below.

Proposition 11. Let f be a mapping: A → R. The following statements are
equivalent:

(i) f is a 2-monotone capacity.
(ii) For every pair A1, A2 ∈ A such that A1 ⊃ A2, there exists a probability

P, dominating f, and satisfying P (A1) = f(A1) and P (A2) = f(A2).
(iii) There exists a triplet x1, x2, x3 ∈ R, x1 < x2 < x3, such that for every

mapping X : Θ → {x1, x2, x3} there exists a probability P, dominating f,
such that

EP (X) = (x3 − x2) f (X ≥ x3) + (x2 − x1) f (X ≥ x2) + x1.

Proof. By Proposition 9 and Lemma 1, (i) implies (ii); by Proposition 10, it
also implies (iii). Conversely, let us first note that (iii) implies (ii), since, to
A1 ⊃ A2, one can associate X satisfying X(A2) = x3, X(A1\A2) = x2 and
X(Ā1) = x1. Thus, the desired equalities follow from P ≥ f and

(x3 − x2)P (A2) + (x2 − x1)P (A1) + x1 = EP (X)
= (x3 − x2) f (A2)

+ (x2 − x1) f (A1) + x1.
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Finally, let us show that (ii) implies (i): f is a capacity, since, when A1 ⊃
A2, f(A1) ≥ f(A2) results from P (A1) ≥ P (A2), and, moreover, pair ∅, Θ
can be used to prove that f(∅) = 0 and f(Θ) = 1. And last, given A1, A2 ∈ A,
there exists P ≥ f such that

P (A1 ∪A2) = f (A1 ∪A2) and P (A1 ∩A2) = f (A1 ∩A2) ;

hence,

f (A ∪A2) + f (A1 ∩A2) = P (A1 ∪A2) + P (A1 ∩A2)
= P (A1) + P (A2) ≥ f (A1) + f (A2)

and therefore f is 2-monotone. 	

Proposition 12. A capacity f is 2-monotone if and only if PΣ ⊂ P≥.

Proof. The ‘only if’ statement is contained in Proposition 9. Conversely, given
A1, A2 ∈ A, A1 ⊃ A2, Lemma 1 asserts the existence of S ∈ Σ such that
PS(A1) = f(A1), and PS(A2) = f(A2); thus if PΣ ⊂ P≥, PS has all the
properties required by (ii) in Proposition 11; hence f is 2-monotone. 	

The relation between PΣ and P≥ for 2-monotone capacities can be
described more precisely, provided every probability P is identified with vector

(P ({θ1}) , . . . , P ({θl}) , . . . , P ({θL})) ,

i.e. an element of the simplex of R
L. With this identification, P≥ as a subset

of the simplex characterized by linear inequalities (10), becomes a bounded
convex polyhedron; in particular, P≥ is the convex closure of its profile, i.e. of
the finite set of its extreme points (Krein-Milman theorem, see Berge, 1965,
Chap. 8). We shall prove that:

Proposition 13. If capacity f is 2-monotone, then PΣ is the profile of P≥.

Proof. (i) Let us first show that, for every S ∈ Σ, PS is an extreme point
of P≥. Suppose, on the contrary, that PS = αP ′ + (1 − α)P ′′ for some
α ∈ (0, 1), and P ′, P ′′ ∈ P≥, P ′ 	= P ′′. For every Sl, 1 ≤ l ≤ L, P (Sl) =
f(Sl), P ′(Sl) ≥ f(Sl) and P ′′(Sl) ≥ f(Sl), hence P ′(Sl) = P ′′(Sl) =
f(Sl) = P (Sl), and therefore, for

1 ≤ l ≤ L, P ′ ({θil}) = P ′′ ({θil}) = f (Sl)− f (Sl−1) = P ({θil}) ;

thus P ′ = P ′′ = P , a contradiction.
(ii) Conversely, let us show that PΣ contains every extreme point of P≥.

Suppose, on the contrary, that P is an extreme point of P≥ and that
P 	∈ PΣ . Let C be the convex closure of the finite set PΣ : C is closed
and C ⊂ P≥; since P is an extreme point of P≥, and P 	∈ PΣ , necessarily
P 	∈ C; hence, since C is a closed convex set, P can be strictly separated
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from C (Berge, 1965, second separation theorem, p. 171; Karlin, 1959,
Vol. 1, Lemma 13.1.1., p. 397), i.e. there exists a = (a1, . . . , al, . . . , aL) 	= 0
such that

L∑

l=1

a1P ({θl}) <
L∑

l=1

alP
′ ({θl}) , for all P ′ ∈ C.

On the other hand, Proposition 10 implies that to X defined by X(θl) =
al, 1 ≤ l ≤ L, one can associate some PS ∈ PΣ such that

L∑

l=1

alPS ({θl}) = EPS (X) ≤ EP ′′ (X) =
L∑

l=1

alP
′′ ({θl}) for all P ′′ ∈ P≥,

contradicting the preceding inequality, since P ∈ P≥ and PS ∈ C. 	

Proposition 12 is due to Ishiishi (1981), who completed the ‘only if’ state-
ment of Shapley (1971). Proposition 13 was originally proved by Dempster
(1967) for ∞-monotone capacities and extended by Shapley (1971) to 2-
monotone capacities (in the language of game theory, a 2-monotone capacity
is a convex game and P≥ is the core of the game). A similar result is proved
by Edmonds (1970) and Bixby et al. (1985) for matröıd polyhedra.

Remark 3. Möbius inversion, which has been our main tool in this paper, does
not exist in the case where Θ is infinite. However, as noted by Shafer (1979),
Choquet’s (1953) theory of capacities provides the suitable tools for studying
the infinite case, and, in actual fact, already contains generalizations of some
of the preceding results.

3.4 Concave Extensions of 2-monotone Capacities

2-monotone capacities are also called convex set-functions. Shapley (1971)
justifies this denomination by showing that some of their properties are sim-
ilar to properties of convex functions. However, the natural extension of a
2-monotone capacity, f , to a function, F , defined on a vector space leads, in
fact, as we shall see, to a concave function.

Let X be the vector space generated by the indicator functions IB of events
B ∈ A; a generic element X ∈ X is defined by

θ 
 X (θ) =
∑

j∈J
αjIBj (θ) ,

and denoted by X = Σj∈JαjIBj . However, the same X is the linear combi-
nation of diverse sets of indicator functions; in particular, every X ∈ X has a
unique representation

X =
N∑

n=2

(xn − xn−1) IAn + x1IΘ,
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where xn > xn−1 for all n, and events A1 = Θ and An, 2 ≤ n ≤ N , form a
decreasing sequence.

Define mapping F : X → R by

X → F (X) =
N∑

n=2

(xn − xn−1) f (An) + x1.

Since F (IA) = f(A) for A ∈ A, F becomes an extension of f , when A is
identified with {IA, A ∈ A}, a subset of X.

It is obvious that F is positively homogeneous of order 1, i.e., F (λX) =
λF (X) for λ ≥ 0; thus, f is concave if and only if it is superadditive,
i.e., F (X ′ +X ′′) ≥ F (X ′) + F (X ′′). Since, by (22), for any X ∈ X, F (X) =
InfP∈PEP (X), the last inequality results from an elementary property of
infima.

4 Applications to Decision Making

Many statistical decision problems can be expressed as parametric problems,
in which a sample distribution, Pω, depends on a parameter ω only known to
belong to some set Ω.

In other decision problems, in which the information is subjective rather
than objective, decision makers often feel that they are only able to ascribe
probability intervals to events, such as ‘the probability of event E is at least
equal to p and at most equal to q’. In both cases, there exists a set P0 of
probabilities compatible with the available information.

Let a decision be identified with a mapping X : Θ→ R, with X(θ) equal
to the consequence (or its utility) resulting from that decision when θ obtains.

Decision criteria which are suited to the uncertainty situations just
described include among others, Wald’s (1971) Maximin criterion, SupX∈X

InfP∈P′ EP (X), and the more general criterion, SupX∈X
υ(InfP∈P0 EP (X),

SupP∈P0
EP (X)). This last criterion, which allows for varying degrees of pes-

simism, has been given an axiomatic justification in Cohen and Jaffray (1985).
Since SupP∈P0

EP (X) = −InfP∈P0 EP (−X), both criteria demand the same
exact or approximate calculation, that of InfP∈P0 EP (X).

Let f = InfP∈P0 P.f is obviously a capacity; let m be its Möbius inverse;
then, according to Proposition 10, Corollary 4 and Remark 2,

E0
f (X)

L∑

l=2

(xl − xl−1) f (X ≥ xl) + x1 =
∑

B∈A
xn(B) ·m (B)

≤ Inf
P∈P≥

EP (X) ≤ Inf
P∈P0

EP (X) . (24)

Thus expressions (22) and (23) provide us with an easy calculation of a lower
bound for InfP∈P0 EP (X).
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Unfortunately, it seems difficult to determine if this lower bound is attained
or not: we know that the first inequality in (24) becomes an equality if and only
if f is 2-monotone; however, the similar property for the second inequality does
not depend on f ’s order of monotonicity as shown by the following examples.

Example 6.

Θ = {θ1, θ2, θ2} ;P0 = {P1, P2} with P1 ({θ1}) =
1
4
, P1 ({θ2}) =

1
2
,

P1({θ3}) = 1
4 and P2({θ1}) = 1

3 , P2({θ2}) = 1
6 and P2({θ3}) = 1

2 . To f =
InfP∈P0 P = Min{P1, P2} corresponds a Möbius inverse m satisfying:

m ({θ1}) =
1
4
,m ({θ2}) =

1
6
,m({θ3}) =

1
4
;m ({θ1; θ2}) =

1
12
,

m ({θ1, θ3}) = 0, m ({θ2, θ3}) =
1
4
,

andm(Θ) = 0; thus f is∞-monotone; however, forX({θ1}) = 2, X({θ2}) = 1
and X({θ3}) = 0,

Inf
P∈P≥

EP (X) =
3
4
<

5
6

= Inf
P∈P0

EP (X) .

	

Example 7. Let Θ = {θ1, θ2, θ3, θ4} and let P0 = {P1, P2, P3}, with

P1 ({θ2}) = P1 ({θ3}) =
1
2
, P2 ({θ1}) =

1
6
, P2 ({θ2}) =

1
4
, P2 ({θ3}) =

1
3
,

P2 ({θ4}) =
1
4
P3 ({θ1}) =

1
6
, P3 ({θ2}) =

1
3
, P3 ({θ3}) = P3 ({θ4}) =

1
4
.

f = InfP∈P0 P satisfies

f ({θ1}) = f ({θ4}) = 0, f ({θ2}) = f ({θ3}) =
1
4
; f ({θ1, θ4}) = 0,

f ({θ2, θ4}) = f ({θ3, θ4}) =
1
2
, f ({θ1, θ2}) = f ({θ1, θ3}) =

5
12
,

f ({θ2, θ3}) =
7
12

; f ({θ1, θ2, θ3}) =
3
4
, f ({θ2, θ3, θ4}) =

5
6
,

f ({θ1, θ2, θ4}) = f ({θ1, θ3, θ4}) =
1
2
.

f is not 2-monotone since

f ({θ1, θ2, θ3}) + f ({θ1}) =
3
4
<

5
6

= f ({θ1, θ2}) + f ({θ1, θ3}) .

Indeed, for S = (θ3, θ4, θ1, θ2), PS 	∈ P≥, since, by (19),
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PS ({θ1}) = 0, PS ({θ2}) =
1
2
, PS ({θ3}) = PS ({θ4}) =

1
4
,

hence PS({θ1, θ3}) < f({θ1, θ3}).
For X defined by X(θ1) = 1, X(θ2) = 0, X(θ3) = 3 and X(θ4) = 2,

EPS (X) = E0
f (X) =

15
12
,

whereas

Inf
P∈P0

EP (X) =
17
12

= Inf
P∈P≥

EP (X) ,

(P ∈ P≥ implies 3 P ({θ3}) + 2P ({θ4}) + P ({θ1})

= 2P ({θ3, θ4}) + P ({θ1, θ3}) ≥ 2f ({θ3, θ4}) + f ({θ1, θ3}) =
17
12

).

	

Appendix

The following results and proofs are extracts from Shafer (1976), which are
needed to make this paper self-contained.

Lemma 2. (p. 47). If A is a finite set then

∑

B⊂A
(−1)|B| =

{
1 if A = ∅

0 otherwise.

Proof. Obvious if A = ∅. When A = {θ1, . . . , θi, . . . , θn} 	= ∅,
∑

B⊂A
(−1)|B| = (−1)|∅| +

∑

i

(−1)|{θi}| +
∑

i<j

(−1)|{θi,θj}| + . . .+ (−1)|A|

=
(
n
0

)
−

(
n
1

)
+

(
n
2

)
+ . . .+ (−1)n

(
n
n

)
= (1− 1)n = 0.

	

Lemma 3. (p. 48). If A is a finite set and B ⊂ A, then

∑

B⊂C⊂A
(−1)|C| =

{
(−1)|A| if A = B

0 otherwise.

Proof. Follows from Lemma 2, since
∑

B⊂C⊂A
(−1)|C| =

∑

D⊂A\B
(−1)|B∪D| = (−1)|B| ∑

D⊂A\B
(−1)|D|

.
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Lemma 4. (p. 48). Suppose Θ is a finite set and f and g are functions on
2Θ. Then

f (A) =
∑

B⊂A
g (B) for all A ⊂ Θ (25)

if and only if

g (A) =
∑

B⊂A
(−1)|A\B|f (B) for all A ⊂ Θ (26)

Proof. Both implications follow by simple calculations using Lemma 3.

(i) If (I) holds, then
∑

B⊂A
(−1)|A\B|

f (B) = (−1)|A| ∑

B⊂A
(−1)|B|

f (B)

= (−1)|A| ∑

B⊂A
(−1)|B| ∑

C⊂B
g (C)

= (−1)|A| ∑

C⊂A
g (C)

∑

C⊂B⊂A
g (−1)|B|

= (−1)|A|
g (A) (−1)|A| = g (A) .

(ii) If (II) holds, then
∑

B⊂A
g (B) =

∑

B⊂A

∑

C⊂B
(−1)|B\C|

f (C)

=
∑

C⊂A
(−1)|C|

f (C)
∑

C⊂B⊂A
(−1)|B|

= (−1)A f (A) (−1)|A| f = f (A) .
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Axioms for Probability and Belief-Function
Propagation∗

Prakash P. Shenoy and Glenn Shafer

Abstract. In this paper, we describe an abstract framework and axioms under
which exact local computation of marginals is possible. The primitive objects of the
framework are variables and valuations. The primitive operators of the framework
are combination and marginalization. These operate on valuations. We state three
axioms for these operators and we derive the possibility of local computation from
the axioms. Next, we describe a propagation scheme for computing marginals of a
valuation when we have a factorization of the valuation on a hypertree. Finally we
show how the problem of computing marginals of joint probability distributions and
joint belief functions fits the general framework.

1 Introduction

In this paper, we describe an abstract framework and present axioms for
local computation of marginals in hypertrees. These axioms justify the use
of local computation to find marginals for a probability distribution or belief
function when the probability distribution or belief function is factored on
a hypertree. The axioms are abstracted from the belief-function work of the
authors (e.g., Shenoy and Shafer [30], Shenoy, Shafer and Mellouli [33], Shafer,
Shenoy, and Mellouli [26]), but they apply to probabilities as well as to belief
functions.

In the probability case, the factorization is usually a factorization of a joint
probability distribution, perhaps into marginals and conditionals. Probability
factorizations sometimes arise from causal models, which relate each variable
to a relatively small number of immediate causes; see e.g., Pearl [20]. Proba-
bility factorizations can also arise from statistical models; see e.g., Darroch,
Lauritzen and Speed [6]. Belief-function factorizations generally arise from the

∗ Research for this article has been partially supported by NSF grant IRI-8610293
and a Research Opportunities in Auditing grant 87-135 from the Peat Marwick
Foundation. A condensed version of this paper previously appeared in the Pro-
ceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence in 1988.
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decomposition of evidence into independent items, each involving only a few
variables. We represent each item of evidence by a belief function and combine
these belief functions by Dempster’s rule [23].

It is shown in Shenoy [28] that Spohn’s [35, 34] theory of epistemic beliefs
also fits in the abstract framework described here. Furthermore, the axiomatic
framework described here is extended in Shenoy and Shafer [32, 31] to include
constraint propagation and optimization using local computation.

We first present our general axiomatic framework and then explain how
it applies to probabilities and belief functions. Before we can present the
axiomatic framework, we need to review some graph-theoretic concepts. We
do this in Sect. 2. We present the framework in Sect. 3. We apply it to prob-
abilities in Sect. 4 and to belief functions in Sect. 5.

2 Some Concepts from Graph Theory

Most of the concepts reviewed here have been studied extensively in the
graph theory literature (see Berge [2], Golumbic [11], and Maier [18]). A num-
ber of the terms we use are new, however - among them, hypertree, con-
struction sequence, branch, twig, bud, and Markov tree. A hypertree is what
other authors have called an acyclic (Maier [18]) or decomposable hyper-
graph (Lauritzen, Speed and Vijayan [16]). A construction sequence is what
other authors have called a sequence with the running intersection property
(Lauritzen and Spiegelhalter [17]). A Markov tree is what authors in database
theory have called a join tree (see Maier [18]). We have borrowed the term
Markov tree from probability theory, where it means a tree of variables in
which separation implies probabilistic conditional independence given the sep-
arating variables. For a fuller explanation of the concepts reviewed here, see
Shafer and Shenoy [25].

As we shall see, hypertrees are closely related to Markov trees. The vertices
of a Markov tree are always hyperedges of a hypertree, and the hyperedges of
a hypertree can always be arranged in a Markov tree.

Hypergraphs and Hypertrees. We call a non-empty set H of non-empty sub-
sets of a finite set χ a hypergraph on χ. We call the elements of H hyperedges.
We call the elements of χ vertices.

Suppose t and b are distinct hyperedges in a hypergraph H, t∩ b 	= φ, and
b contains every vertex of t that is contained in a hyperedge of H other than
t; if X ∈ t and X ∈ h, where h ∈ H and h 	= t, then X ∈ b. Then we call
t a twig of H, and we call b a branch for t. A twig may have more than one
branch.

We call a hypergraph a hypertree if there is an ordering of its hyperedges,
say h1h2 . . . hn, such that hk is a twig in the hypergraph {h1, h2, . . . , hk} when-
ever 2 ≤ k ≤ n. We call any such ordering of the hyperedges a hypertree con-
struction sequence for the hypertree. We call the first hyperedge in a hypertree
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W X

Z

Y

W YX Z

H1:

H3:

H2:

W

Y

X

Z

Fig. 1. Some hypergraphs on {W, X, Y, Z}. The hypergraph H1 is a hyper
tree, all of its hyperedges are twigs, and all six orderings of its hyperedges
are hypertree construction sequences. The hypergraph H2 is a hypertree, hyper-
edges {W, X} and {Y, Z} are twigs, and there are only four hypertree construc-
tion sequences: {W, X}{X, Y }{Y, Z}, {X, Y }{W, X}{Y, Z}, {X, Y }{Y, Z}{W, X},
and {Y, Z}{X, Y }{W, X}. The hypergraph H3 is not a hypertree and it has no
twigs

construction sequence the root of the hypertree construction sequence. Fig-
ure 1 illustrates hypergraphs, hypertrees, twigs and construction sequences.

Figure 1 illustrates hypergraphs, hypertrees, twigs and construction
sequences.

If we construct a hypertree by adding hyperedges following a hypertree
construction sequence, then each hyperedge we add is a twig when it is added,
and it has at least one branch in the hypertree at that point. Suppose we
choose such a branch, say β(h), for each hyperedge h we add. By doing so, we
define a mapping β from H−{h1} to H, where h1 is the root of the hypertree
construction sequence. We will call this function a branching for the hypertree
construction sequence.

Since a twig may have more than one branch, a hypertree construc-
tion sequence may have more than one branching. In general, a hypertree
will have many construction sequences. In fact, for each hyperedge of a
hypertree, there is at least one construction sequence beginning with that
hyperedge.

Hypertree Covers of Hypergraphs. We will justify local computation under
two assumptions. The joint probability distribution function or the joint
belief function with which we are working must factor into functions each
involving a small set of variables. And these sets of variables must form a
hypertree.

If the sets of variables form instead a hypergraph that is not a hyper-
tree, then we must enlarge it until it is a hypertree. We can talk about this
enlargement in two different ways. We can say we are adding larger hyper-
edges, keeping the hyperedges already there. Or, alternatively, we can say we
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are replacing the hyperedges already there with larger hyperedges. The choice
between these two ways of talking matters little, because the presence of
superfluous twigs (hyperedges contained in other hyperedges) does not affect
whether a hypergraph is a hypertree, and because the computational cost
of the procedures we will be describing depends primarily on the size of the
largest hyperedges, not on the number of the smaller hyperedges (Kong [15],
Mellouli [19]).

Formally, we will say that a hypergraph H∗ covers a hypergraph H if for
every h in H there is an element h∗ of H∗ such that h∗ ⊇ h. We will say
that H∗ is a hypertree cover for H if H∗ is a hypertree and it covers H.
Figure 2 shows a hypergraph that is not a hypertree and a hypertree cover
for it.

Finding a hypertree cover is never difficult. The hypertree {χ}, which
consists of the single hyperedge χ, is a hypertree cover for any hypergraph on
χ. Finding a hypertree cover without large hyperedges, or finding a hypertree
cover whose largest hyperedge is as small as possible, may be very difficult.
How to do this best is the subject of a growing literature; see e.g., Rose [21],
Bertele and Brioschi [3], Tarjan and Yannakakis [36], Kong [15], Arnborg,
Corneil and Proskurowski [1], Mellouli [19], and Zhang [39].

Trees. A graph is a pair (V,E), where V is a nonempty set and E is a set
of two-element subsets of V. We call the elements of V vertices, and we call
the elements of E edges.

Suppose (V,E) is a graph. If {v, v′} is an element of E, then we say that
v and v′ are neighbors. We call a vertex of a graph a leaf if it is contained in
only one edge, and we call the other vertex in that edge the bud for the leaf. If
v1v2 . . . vn is a sequence of distinct vertices, where n > 1, and {vk, vk+1} ∈ E
for k = 1, 2, . . . , n− 1, then we call v1v2 . . . vn a path from v1 to vn.

We call a graph a tree if there is an ordering of its vertices, say v1v2 . . . vn
such that vk is a leaf in the graph ({v1, v2, . . . , vk},Ek) whenever 2 ≤ k ≤ n,
where Ek is the subset of E consisting of those edges that contain only vertices
in {v1, v2, . . . , vk}. We call any such ordering of the vertices a tree construction

A

T

S

L
B

E

X
D

A

T

S

L
B

E

X
D

Fig. 2. Left: A hypergraph that is not a hypertree. Right: A hypertree cover for
it obtained by adding hyperedges {S, L, B} and {L, E, B} and removing hyperedges
{S, L} and {S, B}
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sequence for the tree. We call the first vertex in a tree construction sequence
the root of the tree construction sequence. Note that in a tree, for any two
distinct vertices vi and vj , there is a unique path from vi to vj .

If we construct a tree following a tree construction sequence starting with
the root and adding vertices, then each vertex we add is a leaf when it is
added, and it has a bud in the tree at that point. Given a tree construction
sequence and a vertex v that is not the root, let β(v) denote the bud for
v as it is added. This defines a mapping β from V − {v1} to V, where v1
is the root. We will call this mapping the budding for the tree construction
sequence.

The budding for a tree construction sequence is analogous to the branching
for a hypertree construction sequence, but there are significant differences.
Whereas there may be many branchings for a given hypertree construction
sequence, there is only one budding for a given tree construction sequence. In
fact, there is only one budding with a given root.

Markov Trees. We have just defined a tree as a pair (V,E), where V is
the set of vertices, and E is the set of edges. In the case of a Markov tree,
the vertices are themselves non-empty sets. In other words, the set V is a
hypergraph. In fact, it turns out to be a hypertree.

Here is our full definition. We call a tree (H,E) a Markov tree if the
following conditions are satisfied: (i) H is a hypergraph; (ii) If {h, h′} ∈ E,
then h ∩ h′ 	= φ; and (iii) If h and h′ are distinct vertices, and X is in both h
and h′, then X is in every vertex on the path from h to h′.

This definition does not state that H is a hypertree, but it implies that
it is:

Proposition 1. (i) If (H,E) is a Markov tree, then H is a hyper-
tree. Any leaf in (H,E) is a twig in H. If h1h2 . . . hn is a tree construc-
tion sequence for (H,E), with β as its budding, then h1h2 . . . hn is also
a hypertree construction sequence for H, with β as a branching. (ii) If H
is a hypertree, h1h2 . . . hn is a hypertree construction sequence for H, and
β is a branching for h1h2 . . . hn, then (H,E) is a Markov tree, where E
= {(h2, β(h2)), . . . , (hn, β(hn))}; h1h2 . . . hn is a tree construction sequence
for (H,E), and β is its budding.

See Shafer and Shenoy [25] for a proof of Proposition 1. The key point
here is the fact that a leaf in the Markov tree is a twig in the hypertree. This
means that as we delete leaves from a Markov tree (a visually transparent
operation), we are deleting twigs from the hypertree.

If (H,E) is a Markov tree, then we call (H,E) a Markov tree representative
for the hypertree H. As per Proposition 1, every hypertree has a Markov tree
representative. Most hypertrees have more than one. Figure 3 shows three
Markov tree representations for the hypertree in Fig. 2.



504 P. P. Shenoy and G. Shafer

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

Fig. 3. If we choose {L, E, B} as the root for the hypertree in Fig. 2, then {L, E, B}
must serve as the branch for {T, L, E}, {E, B, D}, and {S, L, B}, and {T, L, E} must
serve as the branch for {A, T}. This leaves only {E, X}, which can use {L, E, B},
{T, L, E}, or {E, B, D} as its branch. It follows that the hypertree has exactly
three Markov tree representations, which differ only in where the leaf {E, X} is
attached

3 An Axiomatic Framework for Local Computation

In this section, we describe a set of axioms under which exact local computa-
tion of marginals is possible.

In Sect. 3.1, we describe an axiomatic framework for local computa-
tion of marginals. The primitive objects of the framework are variables and
valuations. The framework has two primitive operators, combination and
marginalization. These operate on valuations. We state three axioms for these
operators.

In Sect. 3.2, we show how local computation can be used to marginalize
a factorization (of a valuation) on a hypergraph to the smaller hypergraph
resulting from the deletion of a twig. Once we know how to delete a twig, we
can reduce a hypertree to a single hyperedge by successively deleting twigs.
When we have reduced a factorization on a hypertree to a factorization on a
single hyperedge, it is no longer a factorization; it is simply the marginal for
the hyperedge.
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In Sect. 3.3, we shift our attention from a hypertree to the Markov tree
determined by a branching for the hypertree. Using this Markov tree, we
describe more graphically the process of marginalizing to a single hyperedge.
Our description is based on the idea that each vertex in the tree is a processor,
which can operate on valuations for the variables it represents and then send
the result to a neighboring processor. In Sect. 3.4, we generalize this idea to
a scheme of simultaneous computation and message passing that produces
marginals for all the vertices in the Markov tree.

3.1 The Axiomatic Framework

The primitive objects of the framework are a finite set of variables, and a set
of valuations. The framework has two primitive operators: combination and
marginalization. These operate on valuations.

Variables and Valuations. Let χ be a finite set. The elements of χ are
called variables. For each h ⊆ χ, there is a set Vh. The elements of Vh are
called valuations on h. Let V denote ∪{Vh | h ⊆ χ}, the set of all valuations.

In the case of probabilities, a valuation on h will be a non-negative, real-
valued function on the set of all configurations of h (a configuration of h is
a vector of possible values of variables in h). In the belief-function case, a
valuation is a non-negative, real-valued function on the set of all subsets of
configurations of h.

Proper Valuations. For each h ⊆ χ, there is a subset ph of Vh whose
elements will be called proper valuations on h. Let p denote ∪{ph | h ⊆ χ},
the set of all proper valuations. The notion of proper valuations is important
as it will enable us to define combinability of valuations.

In the probability case, a valuation H on h is said to be proper if the
values of the function H are not zero for all configurations of h. In the belief
function case, a valuation H on h is said to proper if the values of the function
H are not zero for all non-empty subsets of configurations of h.

Combination. We assume there is a mapping ⊗ : V × V → V, called
combination, such that (i) If G and H are valuations on g and h respectively,
then G ⊗ H is a valuation on g ∪ h; (ii) If either G or H is not a proper
valuation, then G⊗H is not a proper valuation; and (iii) If G and H are both
proper valuations, then G⊗H may or may not be a proper valuation.

If G ⊗ H is not a proper valuation, then we shall say that G and H are
not combinable. If G⊗H is a proper valuation, then we shall say that G and
H are combinable and that G⊗H is the combination of G and H .

Intuitively, combination corresponds to aggregation. If G and H represent
information about variables in g and h, respectively, then GH represents the
aggregated information for variables in g ∪ h. In the probability case, com-
bination corresponds to pointwise multiplication. In the belief function case,
combination corresponds to Dempster’s rule.

Marginalization. We assume that for each h ⊆ χ, there is a mapping
↓ h : ∪{Vg | g ⊇ h} → Vh, called marginalization to h, such that (i) If G
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is a valuation on g and h ⊆ g, then G↓h is a valuation on h; (ii) If G is a
proper valuation, then G↓h is a proper valuation; and (iii) If G is not a proper
valuation, then G↓h is not a proper valuation.

We will call G↓h marginal of G for h.
Intuitively, marginalization corresponds to narrowing the focus of a valua-

tion. If G is a valuation on g representing some information about variables in
g, and h ⊆ g, then G↓h represents the information for variables in h implied by
G if we disregard variables in g−h. In both the probability and belief-function
cases, marginalization corresponds to summation.

The Problem. We are now in a position to describe the problem. Suppose
H is a hypergraph on χ. For each h ∈ H, we have a proper valuation Ah on h.
First, we need to determine if the proper valuations in the set {Ah | h ∈ H}
are combinable. If the answer is in the affirmative then let A denote the proper
valuation ⊗{Ah | h ∈ H}. Second, we need to find the marginal of A for each
X ∈ χ.

If χ is a large set of variables, then computation of A↓{X} by first comput-
ing the joint valuation A on χ and then marginalizing A to {X} will not be
possible. For example, if we have 50 variables and each variable has 2 possible
values, then we will have 250 possible configurations of χ. Thus in the prob-
ability case, computing A will involve finding 250 values. And in the belief
function case, computing A will involve finding 2250

values. In either case, the
task is infeasible. We will state axioms for combination and marginalization
that make it possible to use local computation to determine if the given proper
valuations are combinable and to compute A↓{X} for each X ∈ χ if they are.

We will assume that these two mappings satisfy three axioms.

Axiom A1 (Commutativity and associativity of combination): SupposeG,H,
K are valuations on g, h, and k respectively. Then G ⊗H = H ⊗G, and
G⊗ (H ⊗K) = (G⊗H)⊗K.

Axiom A2 (Consonance of marginalization): Suppose G is a valuation on g,
and suppose k ⊆ h ⊆ g. Then (G↓h)↓k = G↓k.

Axiom A3 (Distributivity of marginalization over combination): Suppose G
and H are valuations on g and h, respectively. Then (G ⊗H)↓g = G ⊗
(H↓g∩h)

One implication of Axiom A1 is that when we have multiple combinations of
valuations, we can write it without using parenthesis. For example, (. . . ((Ah1 ⊗
Ah2) ⊗ Ah3) ⊗ . . . ⊗ Ahn) can be written simply as ⊗{Ahi | i = 1, . . . , n}
without indicating the order in which the combinations are carried out.

Factorization. Suppose A is a valuation on a finite set of variables χ, and
suppose H is a hypergraph on χ. If A is equal to the combination of valuations
on the hyperedges of h, say A = ⊗{Ah | h ∈ H}, where Ah is a valuation on
h, then we say that A factorizes on H.

If we regard marginalization as a reduction of a valuation by deleting
variables, then axiom A2 can be interpreted as saying that the order in which
the variables are deleted does not matter.
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Axiom A3 is the crucial axiom that makes local computation possible.
Axiom A3 states that computation of (G⊗H)↓g can be accomplished without
having to compute G⊗H .

3.2 Marginalizing Factorizations

In this section, we learn how to adjust a factorization on a hypergraph to
account for the deletion of a twig. This can be accomplished by local compu-
tations, computations involving only the valuations on the twig and a branch
for the twig. This elimination of a twig by local computation is the key to the
computation of marginals from a factorization on a hypertree, for by succes-
sively deleting twigs, we can reduce the hypertree to a single hyperedge.

Suppose H is a hypergraph on χ, t is a twig in H, and b is a branch for
t. The twig t may contain some vertices that are not contained in any other
hyperedge in H. These are the vertices in the set t−b. Deleting t from H means
reducing H to the hypergraph H−{t} on the set χ′ = χ−(t−b) = ∪(H−{t}).

Suppose A is a valuation on χ, suppose A factors on H, and suppose we
have stored A in factored form. In other words, we have stored a valuation
Ah for each h in H, and we know that A = ⊗{Ah | h ∈ H}. Adapting
this factorization on A on H to the deletion of the twig t means reducing it
to a factorization of A↓χ′

on H − {t}. Can we do this? Yes. The following
proposition tells us that if A factors on H, then A↓χ′

factors on H−{t}, and
the second factorization can be obtained from the first by a local computation
that involves only t and a branch.

Proposition 2. Under the assumptions of the preceding paragraph,

A↓χ′
= (Ab ⊗A ↓t∩b

t )⊗ (⊗{Ah | h ∈ H− {t, b}}) (1)

where b is any branch for t. Thus the marginal A↓χ′
factors on the hypergraph

H− {t}. The valuation on b is combined with A ↓t∩b
t , and the valuations on

the other elements of H− {t} are unchanged.
Proposition 2 follows directly from axiom A3 by letting G = ⊗{Ah | h ∈

H− {t}} and H = At.
This result is especially interesting in the case of hypertrees, because in

this case repeated application of (1) allows us to obtain A’s marginal on any
particular hyperedge of H. If we want the marginal on a hyperedge h1, we
choose a construction sequence beginning with h1, say h1h2 . . . hn. Suppose
χk denotes h1 ∪ . . .∪ hk and Hk denotes {h1, h2, . . . , hk} for k = 1, . . . , n− 1.
We use (1) to delete the twig hn, so that we have a factorization of A↓χn−1 on
the hypertree Hn−1. Then we use (1) again to delete the twig hn−1, so that
we have a factorization of A↓χn−2 on the hypertree Hn−2. And so on, until we
have deleted all the hyperedges except h1, so that we have a factorization of
A↓χ1 on the hypertree H1− i.e., we have the marginal A↓h1 . At each step, the
computation is local, in the sense that it involves only a twig and a branch.
Note that such a step-wise computation of the marginal of A for h1 is allowed
by axiom A2.
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3.3 Computing Marginals in Markov Trees

As we learned in Sect. 2, the choice of a branching for a hypertree determines
a Markov tree for the hypertree. We now look at our scheme for computing
a marginal from the viewpoint of this Markov tree. This change in viewpoint
does not necessarily affect the implementation of the computation, but it gives
us a richer understanding. It gives us a picture in which message passing,
instead of deletion, is the dominant metaphor, and in which we have great
flexibility in how the message passing is controlled.

Why did we talk about deleting the hyperedge hk as we marginalized hk’s
valuation to the intersection with its branch β(hk)? The point was simply to
remove hk from our attention. The “deletion” had no computational signif-
icance, but it helped make clear that hk and the valuation on it were of no
further use. What was of further use was the smaller hypertree that would
remain were hk deleted.

When we turn from the hypertree to the Markov tree, deletion of twigs
translates into deletion of leaves. But a tree is easier to visualize than a hyper-
tree. We can remove a leaf or a whole branch of a tree from our attention
without leaning so heavily on metaphorical deletion. And a Markov tree also
allows another, more useful, metaphor. We can imagine that each vertex of
the tree is a processor, and we can imagine that the marginal is a message
that one processor passes to another. Within this metaphor, vertices no longer
relevant are kept out of our way by the rules guiding the message passing, not
by deletion.

We cover a number of topics in this section. We begin by reviewing our
marginalization scheme in the hypertree setting and seeing how its details
translate into the Markov tree setting. We formulate precise descriptions of
the operations that are carried out by each vertex and precise definitions of
the messages that are passed from one vertex to another. Then we turn to
questions of timing - whether a vertex uses a message as soon as it is received
or waits for all its messages before it acts, how the order in which the vertices
act are constrained, and whether the vertices act in serial or in parallel. We
explain how the Markov tree can be expanded into an architecture for the
parallel computation, with provision for storing messages as well as directing
them. We explain how this architecture handles updating when inputs are
changed. And finally, we explain how our computation can be directed by a
simple forward-chaining production system.

Translating to the Markov Tree. We now translate our marginalization
scheme from the hypertree to the Markov tree.

Recall the details in the hypertree setting. We have a valuation A on χ,
in the form of a factorization on a hypertree H. We want the marginal for
the hyperedge h1. We choose a hypertree construction sequence with h1 as its
root, say h1h2 . . . hn, and we choose a branching β for h1h2 . . . hn. On each
hyperedge hi, we have a valuation Ahi . We repeatedly apply the following
operation:
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Operation H. Marginalize the valuation now on hk to β(hk). Change
the valuation now on β(hk) by combining it by this marginal.

We apply Operation H first for k = n, then for k = n − 1, and so on,
down to k = 2. The valuation assigned to h1 at the end of this process is the
marginal on h1.

We want now to redescribe Operation H, and the process of its repeated
application, in terms of the actions of processors located at the vertices of the
Markov tree (H,E) determined by the branching β.

The vertices of (H,E) are the hyperedges h1, h2, . . . , hn. We imagine that
a processor is attached to each of the hi. The processor attached to hi can
store a valuation defined on hi, can compute the marginal of this valuation to
hj , where hj is a neighboring vertex, can send the marginal to hj as a message,
can accept a valuation on hi as a message from a neighbor, and can change
the valuation it has stored by combining it by such an incoming message.

The edges of (H,E) are {hn, β(hn)}, {hn−1, β(hn−1)}, . . . , {h3, β(h3)},
{h2, h1}. When we move from hn to β(hn), then from hn−1 to β(hn−1), and
so on, we are moving inwards in this Markov tree, from the outer leaves to the
root h1. The repeated application of Operation H by the processors located
at the vertices follows this path.

In order to recast Operation H in terms of these processors, we need some
more notation. Let Curh denote the valuation currently stored by the pro-
cessor at vertex h of (H,E). In terms of the local processors and the Curh,
Operation H becomes the following:

Operation M1. Vertex h computes Cur ↓h∩β(h)
h , the marginal of Curh

to β(h). It sends Cur ↓h∩β(h)
h as a message to vertex β(h). Vertex β(h)

accepts the message Cur ↓h∩β(h)
h and changes Curβ(h) by multiplying it by

Cur ↓h∩β(h)
h .
At the outset, Curh = Ah for every vertex h. Operation M1 is executed

first for h = hn, then for h = hn−1, and so on, down to h = h2. At the end of
this propagation process, the valuation Curh1 , the valuation stored at h1, is
the marginal of A on h1.

An Alternative Operation. Operation M1 prescribes actions by two proces-
sors, h and β(h). We now give an alternative, Operation M2, which is executed
by a single processor. Since it is executed by a single processor, Operation M2

will be easier for us to think about when we discuss alternative control regimes
for the process of propagation.

Operation M2 differs from Operation M1 only in that it requires a processor
to combine the messages it receives all at once, rather than incorporating them
into the combination one by one as they arrive. Each time the Operation M1

is executed for an h such that β(h) = g, the processor g must change the
valuation it stores by combining it by the incoming message. But if processor
g can store all its incoming messages, then it can delay the combination until
it is its turn to marginalize. If we take this approach, then we can replace
Operation M1 with the following:
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Operation M2a. Vertex h combines the valuation Ah with all the
messages it has received, and it calls the result Curh. Then it computes
Cur ↓h∩β(h)

h , the marginal of Curh to h ∩ β(h). It sends Cur ↓h∩β(h)
h as a

message to β(h).
Operation M2a involves action by only one processor, the processor h.

When Operation M2a is executed by hn, there is no combination, because
hn, being a leaf in the Markov tree, has received no messages. The same is
true for the other leaves in the Markov tree. But for vertices that are not
leaves in the Markov tree, the operation will involve both combination and
marginalization.

After Operation M2a has been executed by hn, hn−1, and so on down
to h2, the root h1 will have received a number of messages but will not yet
have acted. To complete the process, h1 must combine all its messages and its
original valuation Ah1 , thus obtaining the marginal A↓h1 . We may call this
Operation M2b:

Operation M2b. Vertex h combines the valuation Ah with all the mes-
sages it has received, and it reports the result to the user of the system.

So Operation M2 actually consists of two operations. Operation M2a is
executed successively by hn, hn−1, and so on down to h2. Then Operation
M2b is executed by h1.

Operation M2 simplifies our thinking about control, or the flow of compu-
tation, because it allows us to think of control as moving with the computation
in the Markov tree. In our marginalization scheme, control moves from one
vertex to another, from the outer leaves inward towards the root. If we use
Operation M2, then a vertex is computing only when it has control.

Formulas for the Messages. We have described verbally how each vertex
computes the message it sends to its branch. Now we will translate this ver-
bal description into a formula that constitutes a recursive definition of the
messages. The formula will not make much immediate contribution to our
understanding, but it will serve as a useful reference in the next section, when
we discuss how to extend our scheme for computing a single marginal to a
scheme for computing all marginals.

Let Mh→β(h) denote the message sent by vertex h to its bud. Our descrip-
tion of Operation M2a tells us that

Mh→β(h) = Cur
↓h∩β(h)

h

where
Curh = Ah ⊗ (⊗{Mg→β(g) | g ∈ H & β(g) = h})

Putting these two formulas together, we have

Mh→β(h) = (Ah ⊗ (⊗{Mg→β(g) | g ∈ H & β(g) = h}))↓h∩β(h) (2)

If h is a leaf, then there is no g ∈ H such that h = β(g), and so (2)
reduces to
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Mh→β(h) = A
↓h∩β(h)
h (3)

Formula (2) constitutes a recursive definition of Mh→β(h) for all h, except-
ing only the root h1 of the budding β. The special case (3) defines Mh→β(h)

for the leaves; a further application of (2) defines Mh→β(h) for vertices one
step in towards the root from the leaves; a third application defines Mh→β(h)

for vertices two steps in towards the root from the leaves; and so on.
We can also represent Operation M2b by a formula:

A↓h = Ah ⊗ (⊗{Mg→β(g) | g ∈ H and β(g) = h}) (4)

Storing the Messages. If we want to think in terms of Operation M2, then
we must imagine that our processors have a way to store incoming messages.

Figure 4 depicts an architecture that provides for such storage. The figure
shows a storage register at vertex g for each of g’s neighbors. The registers
for neighbors on the side of g away from the goal vertex are used to store
incoming messages. The register for the neighbor in the direction of the goal
vertex is used to store the vertex’s outgoing message. The registers serve as
communication links between neighbors; the outgoing register for one vertex
being the incoming register for its neighbor in the direction of the goal vertex.

The message Mg→β(g), which vertex g stores in the register linking g to
its bud, is a valuation on g∩β(g). It is the marginal for the bud of a valuation
on g.

Flexibility of Control. Whether we use operation M1 or M2, it is not nec-
essary to follow exactly the order hn, hn−1, and so on. The final result will
be the same provided only that a processor never send a message until after
it has received and absorbed all the messages it is supposed to receive.

This point is obvious when we look at a picture of the Markov tree. Con-
sider, for example, a Markov tree with 15 vertices, as in Fig. 5. The vertices
are numbered from 1 to 15 in this picture, indicating a construction sequence
h1h2 . . . h15. Since we want to find the marginal for vertex 1, all our messages

f

h g e

M 
f→β(f)

M 
g→β(g) M 

e→β(e)

Fig. 4. A typical vertex processor g, with incoming messages from vertices f and e
and outgoing message to h; here g = β(f) = β(e) and h = β(g)
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Fig. 5. A tree with 15 vertices

will be sent towards vertex 1, in the directions indicated by the arrows. Our
scheme calls for a message from vertex 15 to vertex 3, then a message from
vertex 14 to vertex 6, and so on. But we could just as well begin with messages
from 10 and 11 to 5, follow with a message from 5 to 2, then messages from
12, 13, and 14 to 6, from 6 and 15 to 3, and so on.

Returning to the metaphor of deletion, where each vertex is deleted when
it sends its message, we can say that the only constraint on the order in which
the vertices act is that each vertex must be a leaf when it acts; all the vertices
that used it as a branch must have sent their messages to it and then been
deleted, leaving it a leaf.

The different orders of marginalization that obey this constraint corre-
spond, of course, to the different tree construction sequences for (H,E) that
use the branching β.

So far, we have been thinking about different sequences in which the ver-
tices might act. This is most appropriate if we are really implementing the
scheme on a serial computer. But if the different vertices really did have
independent processors that could operate in parallel, then some of the ver-
tices could act simultaneously. Figure 6 illustrates one way this might go for
the Markov tree of Fig. 2. In step 1, all the leaf processors project to their
branches. In step 2, vertices 4, 5, and 6 (which would be leaves were the orig-
inal leaves deleted) project. And so on.

If the different processors take different amounts of time to perform Oper-
ation M2 on their inputs, then the lock-step timing of Fig. 6 may not provide
the quickest way to find the marginal for h1. It may be quicker to allow a
processor to act as soon as it receives messages from its leaves, whether or not
all the other processors that started along with these leaves have finished.

In general, the only constraint, in the parallel as in the serial case, is
that action move inwards towards the root or goal, vertex h1. Each vertex
must receive and absorb all its messages from vertices farther away from
h1 before sending its own message on towards h1. (In terms of Fig. 4, each
processor must wait until all its incoming registers are filled before it can



20 Axioms for Probability and Belief-Function Propagation 513

Step 5

08

08

04

01

09

07

02

03

15

05

10

11

06

14

13

12

Step 1

08 04

01

09

07

02

03

15

05

10

11

06

14

13

12

Step 2

08 04

01

09

07

02

03

15

05

10

11

06

14

13

12

Step 3

08 04

01

09

07

02

03

15

05

10

11

06

14

13

12

Step 4

04

01

09

07

02

03

15

05

10

11

06

14

13

12

Fig. 6. An example of the message-passing scheme for computation of the marginal
of vertex 1

compute a message to put in its outgoing register.) If we want to get the
job done as quickly as possible, we will demand that each processor go to
work as quickly as possible subject to this constraint. But the job will get
done eventually provided only that all the processors act eventually. It will
get done, for example, if each processor checks on its inputs periodically or at
random times and acts if it has those inputs [20].

If we tell each processor who its neighbors are and which one of these
neighbors lies on the path towards the goal, then no further global control
or synchronization is needed. Each processor knows that it should send its
outgoing message as soon as it can after receiving all its incoming messages.
The leaf processors, which have no incoming messages, can act immediately.
The others must wait their turn.

Updating Messages. Suppose we have completed the computation of A↓h1 ,
the marginal for our goal vertex. And suppose we now find reason to change
A by changing one or more of our inputs, the Ah. If we have implemented the
architecture just described, with storage registers between each of the vertices,
then we may be able to update the marginal A↓h1 without discarding all the
work we have already done. If we leave some of the inputs unchanged, then
some of the computations may not need to be repeated.
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Unnecessary computation can be avoided without global control. We sim-
ply need a way of marking valuations, to indicate that they have received any
needed updating. Suppose the processor at each vertex h can recognize the
mark on any of its inputs (on Ah, our direct input, or on any messageMg→β(g)

from a vertex g that has h as its bud), and can write the mark on its own
output, the message Mh→β(h). When we wish to update the computation of
A↓h1 , we put in the new values for those Ah we wish to change, and we mark
all the Ah, both the ones we have changed, and the others, which we do not
want to change. Then we run the system as before, except that a processor,
instead of waiting for its incoming registers to be full before it acts, waits
until all its inputs are marked. The processor can recognize when an input is
marked without being changed, and in this case it simply marks its output
instead of recomputing it.

Of course, updating can also be achieved with much less control. As Pearl
[20] has emphasized, hardly any control at all is needed if we are indifferent to
the possibility of wasted effort. If we do not care whether a processor repeats
the same computations, we can forget about marking valuations and simply
allow each processor to recompute its output from its inputs periodically or
at random times. Under these circumstances, any change in one of the Ag will
eventually be propagated through the system to change A↓h1 .

A Simple Production System. In reality, we will never have a parallel com-
puter organized precisely to fit our problem. Our story about passing messages
between independent processors should be thought of as metaphor, not as a
guide to implementation. Implementations can take advantage, however, of
the modularity the metaphor reveals.

One way to take advantage of this modularity, even on a serial computer,
is to implement the computational scheme in a simple forward-chaining pro-
duction system. A forward-chaining production system consists of a working
memory and a rule-base, a set of rules for changing the contents of the mem-
ory. (See Brownston et al. [4] or Davis and King [7].)

A very simple production system is adequate for our problem. We need a
working memory that initially contains Ah for each vertex h of (H,E), and a
rule-base consisting of just two rules, corresponding to Operations M2a and
M2b.

Rule 1: If Ah is in working memory and Mg→β(g) is in working
memory for every g such that β(g) = h, then use (3) to compute
Mh→β(h), and place it in working memory.

Rule 2: If Ah1 is in working memory and Mg→β(g) is in working
memory for every g such that β(g) = h1, then use (4) to compute
A↓h1 , and print the result.

Initially, there will be no Mg→β(g) at all in working memory, so Rule 1
can fire only for h such that there is no g with β(g) = h− i.e., only for h that
are leaves. But eventually Rule 1 will fire for every vertex except the root h1.
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Then Rule 2 will fire, completing the computation. Altogether, there will be
n firings, one for each vertex in the Markov tree.

Production systems are usually implemented so that a rule will fire only
once for a given instantiation of its antecedent; this is called refraction [4]. If
our simple production system is implemented with refraction, there will be no
unnecessary firings of rules; only the n firings that are needed will occur. Even
without refraction, however, the computation will eventually be completed.

Since refraction allows a rule to fire again for a given instantiation when
the inputs for that instantiation are changed, this simple production system
will also handle updating efficiently, performing only those recomputations
that are necessary.

3.4 Simultaneous Propagation in Markov Trees

In the preceding section, we were concerned with the computation of the
marginal on a single vertex of the Markov tree. In this section, we will be con-
cerned with how to compute the marginals on all vertices simultaneously. As
we will see, this can be done efficiently with only slight changes in architecture
or rules.

Computing all the Marginals. If we can compute the marginal of A on one
hyperedge in H, then we can compute the marginals on all the hyperedges in
H. We simply compute them one after the other. It is obvious, however, that
this will involve much duplication of effort. How can we avoid the duplication?

The first point to notice in answering this question is that we only need
one Markov tree. Though there may be many Markov tree representatives
for H, any one of them can serve for the computation of all the marginals.
Once we have chosen a Markov tree representative (H,E), then no matter
which element h of H interests us, we can choose a tree construction sequence
for (H,E) that begins with h, and since this sequence is also a hypertree
construction sequence for H, we can apply the method of Sect. 3.4 to it to
compute A↓h.

The second point to notice is that the message passed from one vertex to
another, say from f to g, will be the same no matter what marginal we are
computing. If β is the budding that we use to compute A↓h, the marginal on
h, and β′ is the budding we use to compute A↓h′

, and if β(f) = β′(f) = g,
then the message Mf→β(f) that we send from f to g when computing A↓h is
the same as the message Mf→β′(f) that we send from f to g when computing
A↓h′

. Since the value of Mf→β(f) does not depend on the budding β, we may
write Mf→g instead of Mf→β(f) when β(f) = g.

If we compute marginals for all the vertices, then we will eventually com-
pute both Mf→g and Mg→f for every edge {f, g}. We will compute Mf→g

when we compute the marginal on g or on any other vertex on the g side of
the edge, and we will compute Mg→f when we compute the marginal on g or
on any other vertex on the g side of the edge.
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We can easily generalize the recursive definition of Mg→β(g) that we gave
in Sect. 3.5 to a recursive definition of Mg→h for all neighbors g and h. To do
so, we merely restate (2) in a way that replaces references to the budding β
by references to neighbors and the direction of the message. We obtain

Mg→h = (Ag ⊗ (⊗{Mf→g | f ∈ (ηg − {h})}))↓g∩h (5)

where ηg is the set of all g’s neighbors in (H,E). If g is a leaf vertex, then (5)
reduces to Mg→h = A ↓g∩h

g .
After we carry out the recursion to compute Mg→h for all pairs of neigh-

bors g and h, we can compute the marginal of A on each h by

A↓h = Ah ⊗ (⊗{Mg→h | g ∈ ηh}) (6)

The General Architecture. A slight modification of the architecture shown
in Fig. 4 will allow us to implement the simultaneous computation of the
marginals on all the hyperedges. We simply put two storage registers between
every pair of neighbors f and g, as in Fig. 7. One register stores the message
from f to g; the other stores the message from g to f .

Figure 8 shows a more elaborate architecture for the simultaneous compu-
tation. In addition to the storage registers that communicate between vertices,
this figure shows registers where the original valuations, the Ah, are put into
the system and the marginals, the A↓h, are read out.

In the architecture of Fig. 4, computation is controlled by the simple
requirement that a vertex g must have messages in all its incoming regis-
ters before it can compute a message to place in its outgoing register. In the
architecture of Fig. 5, computation is controlled by the requirement that a
vertex g must have messages in all its incoming registers except the one from
h before it can compute a message to send to h.

This basic requirement leaves room for a variety of control regimes. Most
of the comments we made about the flexibility of control for Fig. 4 carry over
to Fig. 8.

In particular, updating can be handled efficiently if a method is provided
for marking updated inputs and messages. If we change just one of the input,
then efficient updating will save about half the work involved in simply reper-
forming the entire computation. To see that this is so, consider the effect of
changing the input Ah in Fig. 8. This will change the message Mg→f , but

Mf→g

Mg→f

gf

Fig. 7. The two storage registers between f and g
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f

g

e

h

A↓h 

Ah

Ag

Ae

Af

Mg→h

Mg→e

Me→g

Mf→g

Mg→f

Mh→g

A↓g 

A↓e 

A↓f 

Fig. 8. Several vetices, with storage registers for communication between themselves
and with user

not the message Mf→g. The same will be true for every edge; one of the two
messages will have to be recomputed, but not the other.

It may be enlightening to look at how the lock-step control we illustrated
with Fig. 6 might generalize to simultaneous computation of the marginals for
all vertices. Consider a lock-step regime where at each step, each vertex looks
and sees what messages it has the information to compute, computes these
messages, and sends them. After all the vertices working are done, they look
again, see what other messages they now have the information to compute,
compute these messages, and send them. And so on. Fig. 9 gives an example.
At the first step, the only messages that can be computed are the messages
from the leaves to their branches. At the second step, the computation moves
inward. Finally, at step 3, it reaches vertex 2, which then has the informa-
tion needed to compute its own marginal and messages for all its neighbors.
Then the messages move back out towards the leaves, with each vertex along
the way being able to compute its own marginal and messages for all its
other neighbors as soon as it receives the message from its neighbor nearest
vertex 2.

In the first phase, the inward phase, a vertex sends a message to only one
of its neighbors, the neighbor towards the center. In the second phase, the
outward phase, a vertex sends k − 1 messages, where k is the number of its
neighbors. Yet the number of messages sent in the two phases is roughly the
same, because the leaf vertices participate in the first phase and not in the
second.
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Fig. 9. An example of the message-passing scheme for simultaneous computation
of all marginals

There are seven vertices in the longest path in the tree of Fig. 9. When-
ever the number of vertices in the longest path is odd, the lock-step control
regime will result in computation proceeding inwards to a central vertex and
then proceeding back outwards to the leaves. Whenever this number is even,
there will instead be two central vertices that send each other messages simul-
taneously, after which they both send messages back outwards towards the
leaves.

If we really do have independent processors for each vertex, then we do
not have to wait for all the computations that start together to finish before
taking advantage of the ones that are finished to start new ones. We can
allow a new computation to start whenever a processor is free and it has the
information needed. On the other hand, we need not require that the work be
done so promptly. We can assume that processors look for work to do only at
random times. But no matter how we handle these issues, the computation
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will converge to some particular vertex or pair of neighboring vertices and
then move back out from that vertex or pair of vertices.

There is exactly twice as much message passing in our scheme for simulta-
neous computation as there was in our scheme for computing a single marginal.
Here every pair of neighbors exchange messages; there only one message was
sent between every pair of neighbors. Notice also that we can make the compu-
tation of any given marginal the beginning of the simultaneous computation.
We can single out any hyperedge h (even a leaf), and forbid it to send a mes-
sage to any neighbor until it has received messages from all its neighbors. If
we then let the system of Fig. 9 run, it will behave just like the system of
Fig. 6 with h as the root, until h has received messages from all its neighbors.
At that point, h can compute its marginal and can also send messages to
all its neighbors; the second half of the message passing then proceeds, with
messages moving back in the other direction.

The Corresponding Production System. Implementing simultaneous com-
putation in a production system requires only slight changes in our two rules.
The following will work:

Rule 1′: If Ag is in working memory, and Mf→g is in working
memory for every f in ηg − {h}, then use (5) to compute Mg→h, and
place it in working memory.

Rule 2′: If Ah is in working memory, and Mg→h is in working
memory for every g in ηh, then use (6) to compute A↓h, and print the
result.

Initially, there will be no Mf→g at all in working memory, so Rule 1′ can
fire only for g and h such that ηg − {h} is empty - i.e., only when g is a leaf
and h is its bud. But eventually Rule 1′ will fire in both directions for every
edge {g, h}. Once Rule 1′ has fired for all the neighbors g of h, in the direction
of h, Rule 2′ will fire for h. Altogether, there will be 3n− 2 firings, two firings
of Rule 1′ for each of the n− 1 edges, and one firing of Rule 2′ for each of the
n vertices.

As the count of firings indicates, our scheme for simultaneous computation
finds marginals for all the vertices with roughly the same effort that would be
required to find marginals for three vertices if this were done by running the
scheme of Sect. 3.5 three times.

4 Probability Propagation

In this section, we explain local computation for probability distributions.
More precisely, we show how the problem of computing marginals of joint
probability distributions fits the general framework described in the previous
section.

For probability propagation, proper valuations will correspond to
potentials.
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Potentials. We use the symbol WX for the set of possible values of a
variable X , and we call WX the frame for X . We will be concerned with
a finite set χ of variables, and we will assume that all the variables in χ have
finite frames. For each h ⊆ χ, we let Wh denote the Cartesian product of WX

for X in h; Wh = ×{WX | X ∈ h}. We call Wh the frame for h. We will refer
to elements of Wh as configurations of h. A potential on h is a real-valued
function on Wh that has non-negative values that are not all zero. Intuitively,
potentials are unnormalized probability distributions.

Projection of configurations. In order to develop a notation for the com-
bination of potentials, we first need a notation for the projection of config-
urations of a set of variables to a smaller set of variables. Here projection
simply means dropping extra coordinates; if (w, x, y, z) is a configuration of
{W,X, Y, Z}, for example, then the projection of (w, x, y, z) to {W,X} is sim-
ply (w, x), which is a configuration of {W,X}. If g and h are sets of variables,
h ⊆ g, and x is a configuration of g, then we will let x↓h denote the projection
of x to h.

Combination. For potentials, combination is simply pointwise multiplica-
tion. If G is a potential on g, H is a potential on h, and there exists an
x ∈Wg∪h such that

G(x↓g)H(x↓h) > 0 (7)

then their combination, denoted simply by GH , is the potential on g∪h given
by

(GH)(x) = G(x↓g)H(x↓h) (8)

for all x ∈ Wg∪h. If there exists no x ∈ Wg∪h such that G(x↓g)H(x↓h) > 0,
then we say that G and H are not combinable.

Intuitively, if the bodies of evidence on which G and H are based are
independent, then G⊕H is supposed to represent the result of pooling these
two bodies of evidence. Note that condition (7) ensures that GH defined in (8)
is a potential. If condition (7) does not hold, this means that the two bodies
of evidence corresponding to G and H contradict each other completely and
it is not possible to combine such evidence.

It is clear from the definition of combination of potentials that it is com-
mutative and associative (axiom A1).

Marginalization. Marginalization is familiar in probability theory; it means
reducing a function on one set of variables to a function on a smaller set of
variables by summing over the variables omitted.

Suppose g and h are sets of variables, h ⊆ g, and G is a potential on g.
The marginal of G for h, denoted by G↓h, is the potential on h defined as
follows: ∀x ∈Wh,

G↓h(x) =
{

Σ{G(x,y) | y ∈ Wg−h} h is a proper subset of g
G(x) h = g
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It is obvious from the above definition that marginalization operation for
potentials satisfies axiom A2.

Since multiplication distributes over addition, it is easy to show that com-
bination and marginalization for potentials satisfy axiom A3. Thus all axioms
are satisfied making local computation possible.

A number of authors who have studied local computation for probabil-
ity, including Kelly and Barclay [14], Cannings, Thompson and Skolnick [5],
Pearl [20], Shenoy and Shafer [30], and Lauritzen and Spiegelhalter [17], have
described schemes that are variations on the basic scheme described in Sect. 2.
Most of these authors, however, have justified their schemes by emphasizing
conditional probability. We believe this emphasis is misplaced. What is essen-
tial to local computation is a factorization. It is not essential that this factor-
ization be interpreted, at any stage, in terms of conditional probabilities. For
more regarding this point, see Shafer and Shenoy [25].

We would like to make two important observations for the case of proba-
bility propagation. First note that it is sufficient, in order for a potential A to
factor on H, that A be proportional to a product of arrays on the hyperedges.
Indeed, if

A ∝ Π{Ah | h ∈ H}

where Ah is a potential on h, then a representation of the formA = Π{Ah | h ∈
H} can be obtained simply by incorporating the constant of proportionality
into one of the Ah. In practice, we will postpone finding the constant of
proportionality until we have marginalized A to a hyperedge using the scheme
described in Sect. 2.

The second observation relates to conditioning joint probability distribu-
tions. Suppose a probability distribution P represents our assessment of a
given body of information, and we have been computing marginals of P from
the factorization

P = Π{Ah | h ∈ H} (9)

where H is a hypertree on χ. Suppose we now observe the values of some of
the variables in χ; say we observe Y1 = y1, Y2 = y2, and so on up to Yn = yn.
We change our assessment from P to P |f=y where f = {Y1, . . . , Yn}, y =
{y1, . . . , yn}, and P |f=y denotes the joint probability distribution conditioned
on the observations. Can we adapt (9) to a factorization of P |f=y? Yes, we can.
More precisely, we can adapt (9) to a factorization of a potential proportional
to P |f=y, and this, as we noted in our first observation, is good enough. The
adaptation is simple. It follows from the definition of conditional probability
that

P |f=y ∝ BY1=y1 . . . BYn=yn Π{Ah | h ∈ H}

where BYi=yi is the indicator potential for Yi = yi on {Yi} defined as follows:
∀x ∈WYi ,
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BYi=yi(x) =
{

0 x 	= yi
1 x = yi

.

We will now illustrate our propagation scheme using a simple example.
An Example. This example is adapted from Shachter and Heckerman [22].

Consider three variables D, B and G representing diabetes, blue toe, and glu-
cose in urine, respectively. The frame for each variable has two configurations.
D = d will represent the proposition diabetes is present (in some patient) and
D = ∼d will represent the proposition diabetes is not present. Similarly for
B and G. Let P denote the joint probability distribution for {D,B,G}. We
will assume that diabetes causes blue toe and glucose in urine implying that
variables B and G are conditionally independent (with respect to P ) given D.
Thus we can factor P as follows.

P = PDPB|DPG|D (10)

where PD is the potential on {D} representing the marginal of P for D,
PB|D is the potential for {D,B} representing the conditional distribution of
B given D, and PG|D is the potential for {D,G} representing the conditional
distribution of G given D. For example, PB|D(d, b) represents the conditional
probability of the proposition B = b given that D = d. Thus P factors on
the hypertree {{D}, {D,B}, {D,G}}. Since we would like to compute the
marginals for B and G, we will enlarge the hypertree to include the hyperedges
{B} and {G}. It is easy to expand (10) so that we have a factorization of P on
the enlarged hypertree - the potentials on these additional hyperedges consist
of all ones. Suppose that the potentials PD, PB|D, and PG|D are as shown in
Table 1.

The enlarged hypertree and a Markov tree representation are shown in
Fig. 10.

Suppose we propagate the potentials using the scheme described in Sect. 2.
The results are as shown in Fig. 11. For each vertex h, the input potentials
are shown as Ih and the output potentials are shown as Oh. All the messages
are also shown. Note that the output potentials have been normalized so that
they represent marginal posterior probabilities.

Table 1. The potential tables

P D P B|D P G|D

d .1 d,b .014 d, g .9
∼d .9 d,∼b .986 d,∼g .1

∼d,b .006 ∼d, g .01
∼d,∼b .994 ∼d,∼g .99
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B
G

D

{D, B}

{B}

{D}

{G}

{D, G}

Fig. 10. The hypertree and a Markov tree representation

Now suppose we observe that the patient has blue toe. This is represented
by the indicator potential for B = b. The other potentials are the same as
before. If we propagate the potentials, the results are as shown in Fig. 12.

Note that the posterior probability of the presence of diabetes has increased
(from .1 to .2059) and consequently the presence of glucose in urine has also
increased (from .0990 to .1932). Now suppose that after the patient is tested
for glucose in urine, the results indicate that there is an absence of glucose in
urine. This information is represented by the indicator potential for G =∼g.
The other potentials are as before. If we propagate the potentials, the results
are as shown in Fig. 13.

Note that the posterior probability of the presence of diabetes has decreased
(from .2059 to .0255). This concludes our example.

{D,B} {D,G}

{G}{B}

{D}

M{B}→{D,B}

M{D,B}→{B}

M{G}→{D,G}

M{D,G}→{G}

M{D}→{D,G}

M{D,G}→{0}

M{D}→{D,B}

M{D,B}→{D}

I{B,D} = PB|D

  d,b      .0140 
  d,~b    .9860 
~d,b      .0060 
~d,~b    .9940

  d,g      .9000 
  d,~g    .1000 
~d,g      .0100 
~d,~g    .9900

  d    .1000 
~d    .9000

I{D} = PD

I{D,G} = PGID

I{B}
I{G}O{B}

O{D}

O{G}

  d    .1000 
~d    .9000

  d   1.0000 
~d   1.0000

  d   1.0000 
~d   1.0000

  d    .1000 
 ~d   .9000

  b   1.0000 
~b   1.0000

  b   1.0000 
~b   1.0000

  b    .0068 
~b    .9932

  b    .0068 
~b    .9932

  g   1.0000 
~g   1.0000

  g   1.0000 
~g   1.0000

  d    .1000 
~d    .9000

  g    .0990 
~g    .9010

  g    .0990 
~g    .9010

Fig. 11. The initial propagation of potentials
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{D,B} {D,G}

{G}{B}

{D}

M{B}→{D,B}

M{D,B}→{B}

M{G}→{D,G}

M{D,G}→{G}

M{D}→{D,G}M{D}→{D,B}

M{D,B}→{D}

I{B,D} = PB|D

  d,b      .0140 
  d,~b    .9860 
~d,b      .0060 
~d,~b    .9940

  d,g      .9000 
  d,~g    .1000 
~d,g      .0100 
~d,~g    .9900

  d    .1000 
~d    .9000

I{D} = PD

I{D,G} = PGID

I{B}
I{G}O{B}

O{D}

O{G}

  d    .2059
~d    .7941

  d    .0140 
~d    .0060

  d    .1000 
~d    .9000

  b    1.000 
~b    0.000

  b    1.000 
~b    0.000

  b    .0068 
~b    .9932

  b    1.000
~b    0.000

  g    1.000 
~g    1.000

  g    1.000 
~g    1.000

M{D,G}→{D}

  d    1.000 
~d    1.000

  d    .0014 
~d    .0054

  g    .0013 
~g    .0055

  g    .1932 
~g    .8068

Fig. 12. The results of propagation after the presence of blue toe is observed

{D,B} {D,G}

{G}{B}

{D}

M{B}→{D,B}

M{D,B}→{B}

M{G}→{D,G}

M{D,G}→{G}

M{D}→{D,G}M{D}→{D,B}

M{D,B}→{D}

I{B,D} = PB|D

  d,b      .0140 
  d,~b    .9860 
~d,b      .0060 
~d,~b    .9940

  d,g      .9000 
  d,~g    .1000 
~d,g      .0100 
~d,~g    .9900

  d    .1000 
~d    .9000

I{D} = PD

I{D,G} = PGID

I{B}
I{G}O{B}

O{D}

  d    .2055
~d    .9745

  d    .0140 
~d    .0060

  d    .0100 
~d    .8910

  b    1.000 
~b    0.000

  b    1.000 
~b    0.000

  b    .0055 
~b    .8955

  b    1.000
~b    0.000

  g    0.000 
~g    1.000

O{G}

  g    0.000 
~g    1.000

  g    0.000 
~g    1.000

M{D,G}→{D}

  d    .1000 
~d    .9900

  d    .0014 
~d    .0054

  g    .0013 
~g    .0055

Fig. 13. The results of propagation after the observation that patient does not have
glucose in urine

5 Belief-Function Propagation

In this section, we explain local computation for belief functions. More pre-
cisely, we show how the problem of computing marginals of a joint belief
function fits the general framework described in Sect. 2.

For belief-function propagation, proper valuations correspond to either
probability mass assignment functions, belief functions, plausibility functions
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or commonality functions. For simplicity of exposition, we will describe belief-
function propagation in terms of superpotentials which are unnormalized basic
probability assignment functions.

Basic Probability Assignment Functions. Suppose Wh is the frame for a
subset h of variables. A basic probability assignment function (bpa function)
for h is a non-negative, real-valued function m on the set of all subsets of
Wh such that m(φ) = 0 and Σ{m(a) | a ⊆ Wh} = 1. Intuitively, m(a)
represents the degree of belief assigned exactly to a (the proposition that the
true configuration of h is in the set a) and to nothing smaller. A bpa function
is the belief function equivalent of a probability mass assignment function
in probability theory. Whereas a probability mass function is restricted to
assigning probability masses only to singleton configurations of variables, a
bpa function is allowed to assign probability masses to sets of configurations
without assigning any mass to the individual configurations contained in the
sets.

Superpotentials. Suppose h is a subset of variables. A superpotential for h
is a non-negative, real-valued function on the set of all subsets of Wh such that
the values of non-empty subsets are not all zero. Given a superpotential H
on h, we can construct a bpa function H ′ for h from H as follows: H ′(φ) = 0,
and H ′(a) = H(a)/Σ{H(b) | b ⊆ Wh,b 	= φ}.Thus superpotentials can be
thought of as unnormalized bpa functions. Superpotentials correspond to the
notion of proper valuations in the general framework.

Projection and Extension of Subsets. Before we can define combination
and marginalization for superpotentials, we need the concepts of projection
and extension of subsets of configurations.

If g and h are sets of variables, h ⊆ g, and g is a non-empty subset of Wg,
then the projection of g to h, denoted by g↓h, is the subset of Wh given by
g↓h = {x↓h | x ∈ g}.

For example, If a is subset of W{W,X,Y,Z}, then the marginal of a to {X,Y }
consists of the elements of W{X,Y } which can be obtained by projecting ele-
ments of a to W{X,Y }.

By extension of a subset of a frame to a subset of a larger frame, we mean
a cylinder set extension. If g and h are sets of variables, h ⊆ g, h 	= g, and h
is a subset of Wh, then the extension of h to g is h×Wg−h. If h is a subset
of Wh, then the extension of h to h is defined to be h. We will let h↑g denote
the extension of h to g.

For example, if a is a subset of W{W,X}, for example, then the vacuous
extension of a to {W,X, Y, Z} is a×W{Y,Z}.

Combination. For superpotentials, combination is called Dempster’s rule
[8, 9]. Consider two superpotentials G and H on g and h, respectively. If

Σ{G(a)H(b) | (a↑(g∪h)) ∩ (b↑(g∪h)) 	= φ} 	= 0 (11)

then their combination, denoted by G⊕H , is the superpotential on g∪h given
by
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G⊕H(c) = Σ{G(a)H(b) | (a↑(g∪h)) ∩ (b↑(g∪h)) = c} (12)

for all c ⊆Wg∪h. If

Σ{G(a)H(b) | (a↑(g∪h)) ∩ (b↑(g∪h)) 	= φ} = 0

then we say that G and H are not combinable.
Intuitively, if the bodies of evidence on which G and H are based are

independent, then G⊕H is supposed to represent the result of pooling these
two bodies of evidence. Note that (11) ensures that G ⊕ H defined in (12)
is a superpotential. If (11) does not hold, this means that the two bodies of
evidence corresponding to G and H contradict each other completely and it
is not possible to combine such evidence.

It is shown in Shafer [23] that Dempster’s rule of combination is commuta-
tive and associative. Thus combination for superpotentials satisfies axiom A1.

Marginalization. Like marginalization for potentials, marginalization for
superpotentials corresponds to summation.

Suppose G is a superpotential for g and suppose h ⊆ g. Then the marginal
of G for h is the superpotential G↓h for h defined as follows: ∀a ⊂ Wh,

G↓h(a) = Σ{G(b) | b ⊆Wg such that b↓h = a}.

It is easy to see that marginalization for superpotentials satisfies axiom A2.
In Shafer and Shenoy [25], it is shown that the above definitions of marginaliza-
tion and combination for superpotentials satisfies axiom A3. Thus all axioms
are satisfied making local computation possible.

Propagation of belief functions using local computation has been studied
by Shafer and Logan [24], Shenoy and Shafer [30], Shenoy et al. [33], Kong
[15], Dempster and Kong [10], Shafer et al. [24], Mellouli [19], and Shafer
and Shenoy [25]. Shafer et al. [27], Shenoy [29], Zarley [37], Zarley et al.
[38], Shenoy [28, 29], and Hsia and Shenoy [12, 13] discuss applications and
implementations of these propagation schemes.
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Generalizing the Dempster–Shafer Theory
to Fuzzy Sets

John Yen

Abstract. With the desire to manage imprecise and vague information in evidential
reasoning, several attempts have been made to generalize the Dempster–Shafer (D–
S) theory to deal with fuzzy sets. However, the important principle of the D–S theory,
that the belief and plausibility functions are treated as lower and upper probabilities,
is no longer preserved in these generalizations. A generalization of the D–S theory in
which this principle is maintained is described. It is shown that computing the degree
of belief in a hypothesis in the D–S theory can be formulated as an optimization
problem. The extended belief function is thus obtained by generalizing the objective
function and the constraints of the optimization problem. To combine bodies of
evidence that may contain vague information, Dempster’s rule is extended by 1)
combining generalized compatibility relations based on the possibility theory, and
2) normalizing combination results to account for partially conflicting evidence. Our
generalization not only extends the application of the D–S theory but also illustrates
a way that probability theory and fuzzy set theory can be integrated in a sound
manner in order to deal with different kinds of uncertain information in intelligent
systems.

1 Introduction

EVIDENTIAL REASONING, which is the task of inferring the likelihood of
some hypotheses by collecting and combining relevant evidence for or against
these hypotheses, is central to many computer systems that help users in deci-
sionmaking, diagnosis, pattern recognition, and speech understanding. The
problem of evidential reasoning is complicated by information being conveyed
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by a piece of evidence is often not only uncertain, but also imprecise, incom-
plete, and vague. For example, a sensor’s output may indicate that a flying
object is about 50 miles from Los Angeles and that it belongs to a general
class of missiles. But the sensor gives no further information about the spe-
cific type of the missile. Therefore, an evidential reasoning mechanism that
can cope with all these different kinds of uncertainties in a sound manner is
highly desirable.

Previous work on evidential reasoning has been largely based on three
theoretical frameworks: the Bayesian probability theory, the Dempster–Shafer
(D–S) theory of evidence, and the fuzzy set theory. These frameworks differ in
their strengths and weaknesses. The Bayesian probability theory has a well-
developed decision-making theory, but it requires precise probability judg-
ments. Hence, it is weak in representing and managing imprecise information.
To cope with this weakness, a Bayesian approach often needs to transform
a piece of imprecise evidence into a precise one by using additional assump-
tions [1]. The D–S theory is based on probability theory, yet it allows proba-
bility judgments to capture the imprecise nature of the evidence. As a result,
degrees of likelihood are measured by probability intervals, as opposed to
point probabilities in the Bayesian approaches. One of the weaknesses of the
D–S theory is that its decision theory is still a research topic [2]. The fuzzy
set theory focuses on the issue of representing and managing vague informa-
tion such as “the temperature is high” or “the missile is about 50 miles from
Los Angeles.” One of its strengths is its possibility theory as a foundation for
dealing with imprecise data. Although the fuzzy set theory is still somewhat
controversial at this point, it has been used successfully to solve many complex
real-world problems. For example, Hitachi has used fuzzy control to develop
an automatic train operation system for Sendai’s municipal subway [3].

In this paper, we describe an approach that addresses the issue of man-
aging imprecise and vague information in evidential reasoning by combining
the D–S theory with the fuzzy set theory. Although several researchers have
extended the D–S theory to deal with vague information [4]–[7], their exten-
sions have not been able to preserve an important principle in the D–S theory:
that the belief and the plausibility measures are lower and upper probabili-
ties. Viewing this, we generalize the D–S theory in a way that preserves this
principle. We achieve this by first generalizing the fundamental constructs of
the theory and then deriving other extensions to the theory from these gen-
eralizations. The primitive constructs that have been generalized are 1) the
compatibility relation, which relates the evidence to the hypotheses, and 2)
the objective function and the constraints of the optimization problem, which
compute the belief and the plausibility functions. From these generalized basic
components, we derive the belief function, the plausibility function, and the
rule of combination for the generalized theory of evidence. Finally, we dis-
cuss the relationship between Shafer’s consonant support functions and the
possibility distributions based on our generalized framework.
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2 The Problem

The problem we want to solve in this paper can be described as follows.
Suppose X and Y are two variables that take their possible values from two
spaces, S and T , respectively. The space S is an evidence space that consists of
a set of mutually exclusive and exhaustive evidential elements. The space T is
a hypothesis space that is formed by a set of mutually exclusive and exhaustive
hypotheses. A body of evidence for the hypothesis space T is constituted by
(1) a set of rules that associate evidential elements to hypotheses in the form of

if X = si then Y is Ai

where si is an evidential element and Ai is a fuzzy subset of T , and (2) a
probability distribution of the evidence space S. Our objective is to answer
questions like “What is the likelihood that Y is B given a collection of bodies
of evidence?” where B is a fuzzy subset of T .

To illustrate this, let us consider a computer system that infers the age of
a person based on various information about the person. Such a system may
contain two bodies of evidence, one regarding the boldness of the person, the
other about whether he/she likes punk rock. The rules for these two bodies
of evidence are listed below.

if the person is bold, then his age is NOT YOUNG.
if the person is not bold, then his age is UNKNOWN.
if the person likes punk rock, then his age is YOUNG.
if the person does not like punk rock, then his age is UNKNOWN.

where not young and young are fuzzy subsets of the interval [0, 100]. Sup-
pose the system is given the following probability judgments about a person
named John:

P (bold) = 0.8,
P (likes punk) = 0.4,

P (not bold) = 0.2,
P (does not like punk) = 0.6,

The system is asked to determine how likely it is that John is a middle-aged
person.

The important characteristic about the problem being considered here is
that it contains both probabilistic information and vague information (e.g.,
young, middle-aged). The Dempster–Shafer theory has been shown to solve a
special case of this problem where Ai and B are crisp sets [4]. Hence, we will
briefly describe the basics of the D–S theory before we discuss previous work
and our approach in generalizing the theory.

3 Basics of the Dempster–Shafer Theory

The Dempster–Shafer theory originated from the concept of lower and upper
probability induced by a multivalued mapping [8]. Glenn Shafer further
extended the theory in his book [9].
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A multivalued mapping from space S to space T associates each element
in S with a set of element in T , i.e., Γ : S → 2T . The image of an element
s in S under the mapping is called the granule of s, denoted as G(s). The
multivalued mapping can also be viewed as a compatibility relation between
the spaces S and T . A compatibility relation C between S and T characterizes
the possibilistic relationship between their elements. An element s of S is
compatible with an element t of T if it is possible that s is an answer to S
and t is an answer to T at the same time [10] and the granule of s is the set
of all elements in T that are compatible with s.

G (s) = {t|t ∈ T, sCt} .

Given a probability distribution of space S and a compatibility relation
between S and T , a basic probability assignment (BPA) of space T , denoted
by m : 2T → [0, 1], is induced:1

m (A) =

∑
G(si)=A

p (si)

1−
∑

G(si)=φ

p (si)
(1)

where the subset A is also called a focal element.
The probability distribution of space T , which is referred to as the frame

of discernment, is constrained by the basic probability assignment, but in
general, it is not uniquely determined by the BPA. The belief measure and
the plausibility measure of a set B are, respectively, the lower probability
and the upper probability of the set subject to those constraints. These two
quantities are obtained from the BPA as follows:

Bel (B) =
∑

A⊂B
m (A) (2)

Pls (B) =
∑

A⊂B �=φ
m (A) . (3)

Hence, the belief interval [Bel(B), Pls(B)] is the range of B’s probability.
An important advantage of the D–S theory is its ability to express

degrees of ignorance. In the theory, the commitment of belief to a subset
does not force the remaining belief to be committed to its complement,
i.e., Bel(B) + Bel(Bc) ≤= 1. The amount of belief committed to neither
B nor B’s complement is the degree of ignorance. Consequently, the theory
provides a framework within which disbelief can be distinguished from a lack
of evidence for belief.

1 If we assume that T does not map any element of the space E to the empty set,
the denominator (i.e., the normalization factor in 1) becomes one.
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If m1 and m2 are two BPA’s induced by two independent evidential
sources, the combined BPA is calculated according to Dempster’s rule of
combination:

m1 ⊕m2 (C) =

∑
Ai∩Bj=c

m1 (Ai)m2 (Bj)

1−
∑

Ai∩Bj=φ

m1 (Ai)m2 (Bj)
. (4)

The basic combining steps that result in Dempster’s rule are discussed in
Sect. 5.6.

4 Previous Work

Zadeh was the first to generalize the Dempster-Shafer theory to fuzzy sets,
based on his work on the concept of information granularity and the theory of
possibility [4], [11]. A possibility distribution, denoted by Π, is a fuzzy restric-
tion that acts as an elastic constraint on the values of a variable [12], [13].
Zadeh first generalized the granule of a D–S compatibility relation to a condi-
tional possibility distribution. Then he defined the expected certainty, denoted
by EC(B), and the expected possibility, denoted by EΠ(B), as a generalization
of D–S belief and plausibility functions:

EΠ(B) =
∑

i

m (Ai) sup (B ∩Ai)

EC (B) =
∑

i

m (Ai) inf (Ai ⇒ B) = 1− EΠ(Bc)

where Ai denotes fuzzy focal elements induced from conditional possibility
distributions, sup(B∩Ai) measures the degree that B intersects with Ai, and
inf(A ⇒ B) measures the degree to which Ai is included in B. It is easy to
verify that the expected possibility and the expected certainty reduce to the
D–S belief and plausibility measures when all Ai and B are crisp sets.

Following Zadeh’s work, Ishizuka, Yager, and Ogawa have extended the
D–S theory to fuzzy sets in slightly different ways [5]–[7]. They all extend D–
S’s belief function by defining a measure of inclusion I(A ⊂ B), the degree to
which set A is included in set B, and by using the following formula, similar
to Zadeh’s expected certainty EC(B).

Bel(B) =
∑

Ai

I(A ⊂ B)m(Ai)

Their definitions of the measures of inclusion are listed as follows.
Ishizuka:

II (A ⊂ B) =
minx [1, 1 + (μB (x)− μA (x))]

maxx μA (x)
. (5)
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Yager:
IY (A ⊂ B) = minx [μĀ (x) ∨ μB (x)] . (6)

Ogawa:

IO (A ⊂ B) =

∑
i

min [μA (xi) , μB (xi)]
∑
i

μB (xi)
. (7)

Based on Zadeh’s expected certainty, Ishizuka and Yager arrive at different
inclusion measures by using different implication operators in fuzzy set theory.
Ogawa uses relative sigma count, which is analogous to conditional probability
in spirit, to compute the degree of inclusion.

In order to combine two mass distributions with fuzzy focal elements,
Ishizuka extended Dempster’s rule by taking into account the degree of inter-
section of two sets, J(A,B).

m1 ⊕m2 (C) =

∑
Ai∩Bj=c

J (Ai, Bj)m1 (Ai)m2 (Bj)

1−
∑
i,j

(1− J (AiBj))m1 (Ai)m2 (Bj)
(8)

where

J (A,B) =
maxx [μA∩B (x)]

min [maxx μA (x) ,maxx μB (x)]
.

There are four problems with these extensions. First, the belief functions
sometimes are not sensitive to significant changes in focal elements because
degrees of inclusion are determined by certain “critical” points due to the use
of “min” and “max” operators. Second, the definitions of “fuzzy intersection
operator” and “fuzzy inclusion operator” are not unique. Consequently, it
is difficult to choose the most appropriate definition for a given application.
Third, although expected possibility and expected certainty (or, equivalently,
expected necessity) degenerate to Dempster’s lower and upper probabilities
in the case of crisp sets, it is not clear that this is a “necessary” extension.
Fourth, the generalized formula for combining evidence is not well justified.

5 Our Approach

Instead of directly modifying the formulas in the D–S theory, we generalize
the primitive constructs of the theory and derive other extensions to the the-
ory from these generalizations. We first generalize the compatibility relation
in the D–S theory to a joint possibility distribution. Then, we formulate the
linear programming problems that compute the belief measures and the plau-
sibility measures. By extending the objective function and the constraints of
the optimization problem, we obtain the formula for computing belief function
in the generalized framework. We also extend Dempster’s rule of combination
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by generalizing its steps in 1) combining the compatibility relations and 2)
normalizing the combination result to account for the partial conflict between
pieces of evidence. Finally, we achieve the commutativity of the extended
Dempster rule by postponing its normalization step.

5.1 Generalizing the Compatibility Relation to a Possibility
Distribution

In the Dempster–Shafer theory, the compatibility relation is limited to black-
and-white answers. For example, given the question of whether s and t could
be answers to S and T respectively, the compatibility relation may record only
that the given situation is completely possible (i.e., (s, t) is in the relation C)
or completely impossible (i.e., (s, t) is not in C). In general, however, the
possibility that both s and t are answers to S and T is a matter of degree. To
cope with this, we generalize Shafer’s compatibility relation to a fuzzy relation
that records joint possibility distribution of the spaces S and T .

Definition 1. A generalized compatibility relation between the spaces S and
T is a fuzzy relation C : 2S×T → [0, 1] that represents the joint possibility
distribution of the two spaces, i.e.,

C (s, t) = ΠX,Y (s, t)

where X and Y are variables that take values from the space S and the space
T , respectively.

Shafer’s compatibility relation is a special case of our fuzzy relation in
which possibility measures are indicated by either zeros or ones.

In fuzzy set theory, if the relationship of two variables X and Y is char-
acterized by a fuzzy relation R and the value of variable X is A, the value of
variable Y can be induced using the composition operation, which is defined as:

μA◦R (y) = max
x
{min [μA (x) , μR (x, y)]}

So, we use the composition rule to generalize the definition of granule.

Definition 2. Given a generalized compatibility relation C : 2S×T → [0, 1],
the granule of an element s of S, denoted as G(s), is defined to be the com-
position of the singleton {s} and C, which turns out to be the possibility dis-
tribution conditioned on s, i.e.,

G (s) = {s} ◦ C = Π(Y |X=s).

Hence, we generalize granules to conditional possibility distributions just
as Zadeh did; however, our approach is more general than Zadeh’s approach
because we go one step further to generalize the compatibility relation to
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a joint possibility distribution. As we will see in Sect. 5.6, the general-
ized compatibility relation is important for justifying our generalization of
Dempster’s rule.

Given a probability distribution of the space S and a joint possibility dis-
tribution between space S and space T such that the granules of S’s elements
are normal fuzzy subsets,2 a basic probability assignment (BPA) m to T is
induced using 1. Adopting the terminology of the D–S theory, we call a fuzzy
subset of T with nonzero basic probability a fuzzy focal element. A fuzzy
basic probability assignment (BPA) is a BPA that has at least one fuzzy focal
element.

5.2 The Optimization Problem for Computing the Belief Function

As a basis for the following discussions, this section formulates the linear
programming problems implicitly solved by the belief function. This serves
as a foundation upon which we can generalize various basic components of
the optimization problem (e.g., the objective function, the constraints) that
correspond to basic concepts underlying the belief function.

Pls(B) and Bel(B) are the upper and lower probabilities of a set B under
the constraints imposed by a basic probability assignment. Therefore, the
belief function can be obtained by solving the following optimization problem:

LP1—min
∑

xi∈B

∑

j

m (xi : Aj)

subject to the following constraints:

m (xi : Aj) ≥ 0, i = 1, · · · , n; j = 1, · · · , 1 (9)
m (xi : Aj) = 0, ∀xi 	∈ Aj (10)

∑

i

m (xi : Aj) = m (Aj) j = 1, · · · , 1. (11)

The variable m(xi : Aj) denotes the probability mass allocated to xi from
the basic probability of a focal element Aj . The objective function simply
computes the total probability of the set B where the inner summation gives
the probability of an element xi. The inequality constraint, specified by (9),
states the nonnegativity of probability masses. Equation (10) prohibits the
basic probability of a focal from being assigned to any elements outside the
focal. Equation (11) expresses that all the probability mass assigned by a focal
should add up to its basic probability. It follows, from (9) and (11), that the
upper bound on m(xi : Aj) is m(Aj).

Since the distributions of focals’ masses do not interact with one another,
they can be optimized individually to reach a global optimal solution. Hence,
2 A fuzzy subset A is normal if supxμA(x) = 1. The assumption that all focal

elements are normal is further discussed in Sect. 5.6).
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we partition the linear programming problem LP1 into subproblems, each one
of which concerns the allocation of the mass of a focal element. The optimal
value of the original problem LP1 is the sum of the subproblems’ solutions. A
subproblem for LP1 is formulated as follows:

LP1j— min
∑

xi∈B
m (xi : Aj)

subject to the following constraints:

m (xi : Aj) ≥ 0
m (xi : Aj) = 0, xi 	∈ Aj

∑

i

m (xi : Aj) = m (Aj) .

The linear programming problem for computing the plausibility of set B
differs only in the direction of optimization. It is formulated as LP2 as follows:

LP2— max
∑

xi∈B

∑

j

m (xi : Aj) subject to(9)− (11).

Like LP1, the linear programming problem LP2 can be partitioned into l
subproblems, each of which finds an optimal distribution of a focal’s mass to
make a maximum contribution to the belief in B.

The optimal solutions of the minimization subproblem LP1j and the max-
imization subproblem LP2j are denoted as m∗(B : Aj) and m∗(B :Aj) respec-
tively. Adding the optimal solutions of subproblems, we get B’s belief measure
and plausibility measure as shown below.

Bel (B)
∑

Aj⊆T
m∗ (B : Aj) . (12)

Pls (B)
∑

Aj⊆T
m∗ (B : Aj) . (13)

It is easy to show that the optimal solutions of the subproblems are the
following:

m∗ (B : Aj) =

{
m (Aj) if Aj ⊂ B

0 otherwise
(14)

m∗ (B : Aj) =

{
m (Aj) if Aj ⊂ B 	= φ

0 otherwise
. (15)

Equations (2) and (3), the formulas for calculating D–S belief and plausi-
bility, thus follow directly from (12)–(15).
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5.3 Generalizing Objective Functions

Philippe Smets has shown that the belief measure of a fuzzy set B, given
a nonfuzzy basic probability assignment, can be obtained by computing the
lower bound on the expected value of B’s membership function [14]. Here
we show that the same result can be obtained by modifying the objective
functions of the optimization problems, discussed in Sect. 5.2, to account for
the membership degree of the fuzzy set B.

The objective function of LP1 and LP2 computes the probability of a crisp
set B. If B is a fuzzy subset of the frame of discernment, its probability is
defined as

P (B) =
∑

xi

P (xi)× μB (xi)

in fuzzy set theory. We can thus generalize the objective function to
∑

xi

∑

j

m (xi : Aj)× μB (xi) .

Based on this generalization of the objective functions and the following the-
orem, we get the belief function of fuzzy sets for a nonfuzzy basic probability
assignment.

Theorem 1. Suppose A is a nonfuzzy focal element. The maximum and min-
imum probability masses that can be allocated to a fuzzy set B from A are

m∗ (B : A) = m (A)× inf
x∈A

μB (x) (16)

m∗ (B : A) = m (A)× sup
x∈A

μB (x) . (17)

Proof. m∗(B : A) is the optimal solution to the following linear programming
problem:

min
∑

x

m (x : A)× μB (x)

subject to the following constraints:

m (x : A) ≥ 0
m (x : A) = 0 ∀x 	∈ A
∑

x

m (x : A) = m (A) .

An optimal solution of this simple linear programming problem can be
obtained by assigning all the mass of A to an element of A that has the lowest
membership degree in B. Thus, we have m∗(B : A) = m(A) × infx∈AμB(x).
Equation (17) can be proved in a similar way.
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From (12), (13), (16), and (17), we obtain the following formula for com-
puting the belief and plausibility of fuzzy sets from a crisp basic probability
assignment:

Bel (B) =
∑

Aj⊆T
m (Aj)× inf

x∈Aj

μB (x)

Pls (B) =
∑

Aj⊆T
m (Aj)× sup

x∈Aj

μB (x) .

Thus, we have shown that Smets’ generalization of the D–S belief function
is a result of generalizing the objective function of the optimization problem
that the belief function is solving.

5.4 Representing the Probabilistic Constraints of Fuzzy Focal
Elements Through Decomposition

To deal with fuzzy focal elements, we decompose them into nonfuzzy focal
elements whose probabilistic constraints have been discussed in Sect. 5.2. A
fuzzy focal element has two components: a fuzzy subset of the frame of dis-
cernment and the probability mass assigned to the subset. In this section, we
first describe how a fuzzy set can be decomposed into nonfuzzy sets. Then we
define the decomposition of a fuzzy focal element.

An α-level set of A, a fuzzy subset of T , is a crisp set denoted by Aα that
comprises all elements of T whose grade of membership in A is greater than
or equal to α:

Aα = {x|μA (x) ≥ α}

A fuzzy set A may be decomposed into its level-sets through the resolution
identity [15]:

A =
∑

α

αAα

where the summation denotes the set union operation and αAα denotes a
fuzzy set with a two-valued membership function defined by

μαAα
(x) = α for x ∈ Aα

μαAn
(x) = 0 elsewhere.

The importance of resolution identity is best described by Zadeh [15]: “The
resolution identity provides a convenient way of generalizing various concepts
associated with nonfuzzy sets to fuzzy sets” [15]. In fact, this is the underlying
basis for many of the definitions of fuzzy set operations [16], [17].

In order to decompose a fuzzy focal element, we also need to decompose
the focal’s basic probability and distribute it among the focal’s level-sets.
Obviously, the decomposition has to satisfy two conditions:
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1) The decomposed basic probabilities must add up to the basic probability
assigned to the fuzzy focal.

∑

α

m (Aα) = m (A)

2) The decomposed basic probabilities must not be negative.

m (Aα) � 0.

Using Dubois and Prade’s observation on the relationship between possibility
distribution (i.e., membership function of a fuzzy focal) and nonfuzzy conso-
nant focals [18], we reach a decomposition of the fuzzy focal’s basic probability
that satisfies the two conditions stated above.

Dubois and Prade have shown that if a BPA is a set of nested focal ele-
ments, A1 ⊃ A2 · · · ⊃ An, they can be related to the possibility distribution
induced, denoted as Poss(x), as follows:3

m (Ai) = πi − πi−1 (18)

where πi = infx∈Ai poss(x), π0 = 0, and πn = 1. This result can be directly
applied to decompose a fuzzy focal element whose basic probability value is
one (i.e., m(A) = 1) because the α-level sets of A form a set of nested focal
elements. Since infx∈Aαi

poss(x) = αi, the πi in (18) becomes the alpha value
αi of the level sets. Thus, we get

m (Aαi
) = αi − αi−1. (19)

We extend this idea to decompose fuzzy focal elements with arbitrary prob-
ability mass (i.e., 0 ≤ m(A) ≤ 1) by multiplying the focal’s mass with the
right-hand side of (19). Formally, the decomposition of a fuzzy element is
defined as follows.

Definition 3. The decomposition of a fuzzy focal element A is a collection of
nonfuzzy subsets such that 1) they are A’s α-level sets that form a resolution
identity, and 2) their basic probabilities are

m (Aαi
) = (αi − αi−1)×m (A) i = 1, 2, · · · , n (20)

where α0 = 0 and αn = 1.

When the focal element is a crisp set, its decomposition is the focal itself
because the decomposition contains only one level set, which corresponds to
the membership degree “one.” The relationship between the decomposition
of a fuzzy focal element and Shafer’s consonant focals is discussed further in
Sect. 6.1.
3 We have paraphrased Dubois and Prade’s results for the convenience of our dis-

cussion.
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The probabilistic constraint of a fuzzy focal is defined to be that of its
decomposition, which is a set of nonfuzzy focals. Since we already know how
to deal with nonfuzzy focals, decomposing a fuzzy focal into nonfuzzy ones
allows us to calculate the belief functions that are constrained by the fuzzy
focals.

Definition 4. The probability mass that a fuzzy focal A contributes to the
belief (and plausibility) of a fuzzy subset B is the total contribution of A’s
decomposition to B’s belief (and plausibility), i.e.,

m∗ (B : A) =
∑

α

m∗ (B : Aα) (21)

m∗ (B : A) =
∑

α

m∗ (B : Aα) . (22)

5.5 Computing the Belief Function

Based on generalizing the objective function and expressing the probabilistic
constraints of fuzzy focal elements through their decompositions, we are able
to derive the following formula for computing the belief function and the
plausibility function.

Bel (B) =
∑

A

m (A)
∑

αi

[αi − αi−1]× inf
x∈Aai

μB (x) (23)

Pls (B) =
∑

A

m (A)
∑

αi

[αi − αi−1]× sup
x∈Aai

μB (x) . (24)

It is also trivial to show that the derived formulas preserve the follow-
ing important property of the D-S theory: The belief of a (fuzzy) set is the
difference of one and the plausibility of the set’s complement.

1) An Example: The following example illustrates how one applies the for-
mula described in Sect. 5.5 for computing the belief function. Suppose the
frame of discernment is the set of integers between 1 and 10. A fuzzy basic
probability assignment consists of two focal elements A and C:

A = {0.25/1, 0.5/2, 0.75/3, 1/4, 1/5,
0.75/6, 0.5/7, 0.25/8}

C = {0.5/5, 1.6, 0.8/7, 0.4/8}

where each member of the list is in the form of μA(xi)/xi. We are interested
in the degree of belief and the degree of plausibility of the fuzzy subset B:

B = {0.5/2, 1/3, 1/4, 1/5, 0.9/6, 0.6/7, 0.3/8} .

The decomposition of fuzzy focal A consists of four nonfuzzy focals:
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A0.25 = {1, 2, · · · , 8} with mass 0.25×m (A)
A0.5 = {2, 3, · · · , 7} with mass 0.25×m (A)
A0.75 = {3, 4, · · · , 6} with mass 0.25×m (A)
A1 = {4, 5} with mass 0.25×m (A)

and the decomposition of fuzzy focal C also consists of four nonfuzzy focals:

C0.4 = {5, 6, 7, 8} with mass 0.4×m (C)
C0.5 = {5, 6, 7} with mass 0.1×m (C)
C0.8 = {6, 7} with mass 0.3×m (C)
C1 = {6} with mass 0.2×m (C)

Let us denote infx∈Aαi
μB(x) as fB,A(αi). So, we have

m∗ (B : A)
= m (A)× [0.25× fB,A (0.25) 0.25× fB,A (0.5)
+ 0.25× fB,A (0.75) + 0.25× fB,A (1)]
= m (A)× [0.25× 0 + 0.25× 0.5 + 0.25× 0.9 + 0.25× 1]
= 0.6×m (A)

m∗ (B : C)
= m (C)× [0.4× fB,C (0.4) 0.1× fB,C (0.5)
+ 0.3× fB,C (0.8) + 0.2× fB,C (1)]
= m (C)× [0.4× 0.3 + 0.1× 0.6 + 0.3× 0.6 + 0.2× 0.9]
= 0.54×m (C)

Thus, we have
Bel (B) = 0.6 m (A) + 0.54 m (C)

Similarly, we can calculate the plausibility of B:

Pls (B) = m (A) + 0.86 m (C)

2) A Comparison with Alternative Approaches: In this section, we will use
the example discussed in Sect. 5.5-1 to compare our approach with the
alternative fuzzy evidential reasoning methods discussed in Sect. 4. The
degrees of belief in the fuzzy set B computed using these methods are
listed as follows:

Ishizuka : bal(B) =0.75 m (A) + 0.8 m (C) .
Yager : bal(B) =0.5 m (A) + 0.6 m (C) .

Ogawa : bal(B) =0.8962 m (A) + 0.434 m (C) .
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We will compare how these results are changed in response to a change
of fuzzy focal element. More specifically, we change the membership function
of the fuzzy focal element A in three different ways. First, we increase the
gradient of μA(x) for 1 ≤ x ≤ 3 while keeping μA(2) unchanged. The modified
focal element, denoted as A′, is

A′ = {0.166/1, 0.5/2, 0.833/3, 1/4, 1/5, 0.75/6, 0.5/7, 0.25/8}.

Second, we modify A into A′′ by increasing the gradient of μA(x) for 1 ≤ x ≤ 3
while preserving the membership value μA(1):

A′ = {0.25/1, 0.75/2, 1/3, 1/4, 1/5, 0.75/6, 0.5/7, 0.25/8}.

Finally, we get A′′′ by decreasing the membership value μA(1) while main-
taining the membership values of other points:

A′′ = {0/1, 0.5/2, 0.75/3, 1/4, 1/5, 0.75/6, 0.5/7, 0.25/8}.

Since only the focal element A has been changed, we can analyze the
impact to the belief function by comparing the contributions of the focal
element A and its variations to the degree of belief in B. Table 1 lists the
portion of each modified focal’s mass that contributes to B’s belief measure
(i.e., the ratio m∗(B : A)/m(A)) for each fuzzy evidential reasoning method.

Table 2 shows how Bel(B) computed by different methods change as the
focal element A changes in three ways. As shown in the table, Yager’s method
is insensitive to any of the three changes in the focal’s membership func-
tion; Ishizuka’s method is insensitive to a change from A to A′′; and Ogawa’s
approach is insensitive to a change from A to A′′′. Our approach is sensitive
to all three kinds of changes in the focal’s membership function.

This comparison indicates that previous approaches to generalizing the
Dempster–Shafer model to fuzzy sets are not always responsive to a change
of the focal element. In general, Ishizuka’s belief function and Yager’s belief
function are insensitive to a focal element’s change unless it results in a change
of the “critical point,” a point whose membership value is the minimal value
in (5) and (6) for computing the inclusion measure, i.e.,

μA (xI) = min
x

[1, 1 + (μB (x)− μA (x))]

μA (xY ) = min
x

[μĀ (x) ∨ μB (x)]

Table 1. The Contribution to Bel(B) from the Focal Element A and its Variations

Focal Elements Yager Ishizuk Ogawa Yen

A 0.5 0.75 0.8962 0.6
A′ 0.5 0.834 0.9119 0.6252
A′′ 0.5 0.75 0.9434 0.5
A′′′ 0.5 1 0.8962 0.675
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Table 2. Changes to Bel(B) Due to Changes in the Focal Element A

Changes of Focal
Element A

Yager Ishizuk Ogawa Yen

A → A′ unchanged increased increased increased
A → A′′ unchanged unchanged increased decreased
A → A′′′ unchanged increased unchanged increased

where xI and xY denote the critical points for Ishizuka’s inclusion measure
and Yager’s inclusion measure respectively. In our example, the critical points
for Yager’s inclusion measure IY (A ⊂ B) and Ishizuka’s inclusion measure
II(A ⊂ B) are xY = 2 and xI = 1 respectively. As the focal element A changes
to A′, the critical point for Yager’s inclusion measure remains the same. As
a result, Yager’s belief measure of the fuzzy subset B remains unchanged.
Similarly, a change from A to A′′ does not change the critical point xI . Hence,
Ishizuka’s belief measure of B remains the same in this case.

Ogawa’s belief measure of a fuzzy subset B is not responsive to a change
in the focal element’s membership function unless the intersection between
the focal and the fuzzy subset B is different. Since the intersection A ∩ B is
the same as A′′′ ∩ B, Ogawa’s belief measure of B remains unchanged when
the focal A changes to A′′′.

A surprising result of this comparison is that a change from A to A′′

increases Ogawa’s belief measure, but decreases ours. This can be explained
as follows. Ogawa’s measure of inclusion is based on the sigma count of A∩B
relative to the sigma count of B. Since the intersection of A′′ and B is a fuzzy
superset of the intersection of A andB, Ogawa’s measure of inclusion increases
as the focal change from A to A′′. However, our belief measure in B decreases
because the level set of A′′ at membership degree 0.75 contributes less to the
belief measure Bel(B) than A’s level-set at 0.75 does (i.e., fB,A′′(0.75) = 0.5
is less than fB,A(0.75) = 0.9) while the contributions of all other level sets
remain the same.

In summary, the comparison above indicates that our method for com-
puting the belief function of fuzzy sets is more responsive to any change to
a focal element’s membership function than previous approaches are. More-
over, a change in our belief measure can always be explained in terms of
a change in the underlying probabilistic constraints imposed by the focal
elements.

5.6 Generalizing Dempster’s Rule of Combination

Dempster’s rule combines the effects of two independent evidential sources,
denoted as R and S, on the probability distribution of a hypothesis space,
denoted as T . The rule can be viewed as a result of three steps.
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1) Combine the compatibility relations. A combined compatibility relation
between the product space R × S and T can be constructed from the
compatibility relation between R and T and the one between S and T
using the following principle:

rCt and sCt⇒ [r, s]Ct

where r, s, t, and [r,s] denote elements of R, S, T, and R×S respectively.
As a result, the granule of [r,s] under the combined multivalued mapping
is the intersection of the granule of r and the granule of s, i.e.,

G ([r, s]) = G (r) ∩G (s) . (25)

This explains why focal elements of different evidential sources are inter-
sected in Dempster’s rule.

2) Compute joint probability distributions of the combined evidential source.
Since R and S are assumed to be independent, the joint probability dis-
tribution of the space R×S can be computed from the probability distri-
bution of each individual space:

P ([r, s]) = P (r)× P (s)

3) Normalize the combined basic probability assignment. Having obtained the
probability distribution of R × S and the compatibility relation between
R×S and T from the two previous steps, Dempster’s rule follows directly
from (1), which includes a normalization process to discard probability
mass assigned to the empty set.

Two generalizations must be made to Dempster’s rule before it can be
used to combine fuzzy BPA’s in our generalized framework: 1) the first step
above has to be extended to allow the combination of fuzzy compatibility
relations; and 2) the normalization step needs to consider subnormal fuzzy
focal elements that result from combining fuzzy compatibility relations.

1) Combination of Fuzzy Compatibility Relations: By employing the nonin-
teractiveness assumption in possibility theory, we generalize (25) in order
to perform fuzzy intersection to obtain granules of the combined compati-
bility relation. A compatibility relation in our generalized D-S framework,
as discussed in Sect. 5.1, is a joint possibility distribution. Thus, we have

C (r, t) =
∏

X,Z

(r, t) and C (s, t) =
∏

Y,Z

(s, t) (26)

where X, Y, and Z are variables that take values from the spaces R, S, and
T , respectively. Let W be a variable that takes values from the space R× S.
The combined fuzzy compatibility relation can be expressed as

C ([r, s], t) =
∏

W,Z

([r, s], t) =
∏

X,Y,Z

(r, s, t) .
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Marginal possibility distributions ΠX,Z and ΠY,Z are the projection of joint
possibility distribution on Y and X respectively, [12] i.e.,

∏

Y,Z

(s, t) = min
r

∏

X,Y,Z

(r, s, t)

∏

X,Z

(r, t) = min
s

∏

X,Y,Z

(r, s, t) .

Hence, the joint possibility distribution is bounded by the marginal possibility
distributions: ∏

X,Y,Z

(r, s, t) ≤
∏

Y,Z

(s, t) ∧
∏

X,Z

(r, t)

where ∧ denotes the minimum operator. By employing the assumption that
the variables Y, Z and X, Z are noninteractive, a concept analogous to the
independence of random variables, we obtain the following joint possibility
distribution: ∏

X,Y,Z

(r, s, t) =
∏

Y,Z

(s, t) ∧
∏

X,Z

(r, t) .

Thus, the combined fuzzy compatibility relation is

C ([r, s] , t) = C (r, t) ∧ C (s, t) . (27)

For a fixed pair of r and s, applying (27) to all possible elements in T gives
us the following relationship between conditional possibility distributions:

∏

(Z|W=[r,s])

=
∏

(Z|X=r)

∩
∏

(Z|Y=s)

where ∩ denotes the fuzzy intersection operator. Equivalently, the granule of
the pair [r, s] under the combined compatibility relation defined in (27) is the
fuzzy intersection of G(r) and G(s):

G ([r, s]) = G (r) ∩G (s)

2) Normalizing Subnormal Fuzzy Focal Elements: An important assumption
of our work is that all focal elements are normal. We avoid subnormal
fuzzy focal elements because they assign probability mass to the empty
set. For example, suppose A is a fuzzy subset of the frame of discernment
{x0, x1, x2, x3, x4}, characterized by the membership function

A {0/x0, 0.1/x1, 0.2/x2, 0.1/x3, 0/x4} .

Let the basic probability value of the set A be “a”. The decomposition of this
focal element A is:
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A0.1 = {x1, x2, x3} with mass 0.1× a

A0.2 = {x2} withmass 0.1× a

A1 = φ with mass 0.8× a

In general, the probability mass assigned to the empty set by a subnormal
fuzzy focal A is the basic probability assigned to the decomposed focal of A
that is constructed from A’s α-level set at the degree of membership one:

[
1−max

x
μ (x)

]
×m (A) .

Although we have assumed that the focal elements of fuzzy BPA’s are all
normal, the intersections of focals may be subnormal. Hence, the combination
of fuzzy BPA’s should deal with the normalization of subnormal fuzzy focal
elements. To do this, we need to normalize the two components of a fuzzy focal
element: the focal itself, which is a subnormal fuzzy set, and the probability
mass assigned to the focal.

It is straightforward to normalize the focal. Suppose A is a subnormal
fuzzy set characterized by the membership function μA(x). A’s normalized
set, denoted as Ā, is characterized by the following membership function.

μĀ (x) =
μA (x)

max
x

μA (x)
= k × μA (x)

where k is the normalization factor

k = 1/max
x

μA (x) .

The criterion for normalizing the probability mass of a subnormal focal is
that the probabilistic constraints imposed by the subnormal focal should be
preserved after the normalization. Since we use the decomposition of a focal
to represent its probabilistic constraint, this means that the probability mass
assigned to a decomposed focal should not be changed by the normalization
process. Since the αi cut of the subnormal focal becomes the kαi cut of the
normalized focal, the probability mass assigned to them should be the same:

m (Aαi
) = m

(
Ākαi

)
. (28)

From this condition, we can derive the relationship between m(Ā) and m(A)
as follows. The left-hand side of (28) can be rewritten as

m (Aαi
) = m (A) (αi − αi−1) .

The right-hand side of (28) can be rewritten as

m
(
Ākαi

)
= m

(
Ā
)
(kαi − kαi−1) = km

(
Ā
)
(αi − αi−1) .
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It follows from the three equations above that the mass of the normalized
focal is reduced by a factor reciprocal to the ratio by which its membership
function is scaled up:

m
(
Ā
)

= m (A) /k.

The remaining mass (1 − 1/k)m(A) is the amount assigned to the empty set
by the subnormal fuzzy focal and, hence, should be part of the normalization
factor in the generalized Dempster’s rule.

We summarize our approach to normalize a subnormal focal element into
three steps:

a) Scale up the membership function so that its peak (i.e., highest member-
ship degree) is one.

b) Reduce the basic probability using a ratio reciprocal to the scaling factor
of the first step.

c) Assign the basic probability lost during the second step to the empty set.

3) A Generalized Rule of Combination: Commutativity is an important
requirement for any evidence combination rule, because it is highly desir-
able to have the effect of the aggregated evidence independent of the order
of combination. It is well known that Dempster’s rule is commutative [9,
p. 62]. Our normalization step discussed in Sect. 5.6-2 is not commuta-
tive because it modifies the membership functions of the focal elements’
subnormal intersections. To solve this problem, we first show that the nor-
malization process in Dempster’s rule can be postponed without changing
the combination result. Then, we describe our generalized combining rule
where the normalization process is postponed to achieve commutativity.

Normalization in Dempster’s rule does not have to apply after each com-
bining operation. It can be postponed to a later point without changing the
result. More specifically, several BPA’s in the D–S theory can be combined
without normalization, and the normalized combined bpa can be obtained by
applying the normalization process to the unnormalized combined BPA at the
end. In the following discussion, we use the symbol ⊗ to denote Dempster’s
rule without normalization (i.e., the denominator in (4) is one), the letter “N”
to denote the normalization process, and the primed letter m′ to denote the
unnormalized BPA. Fig. 1 and Fig. 2 show two ways to apply Dempster’s rule:
combine BPA’s with immediate normalization, or combine BPA’s with post-
poned normalization. To show that they obtain the same result, we consider
three BPA’s of a frame of discernment: m1, m2, and m3. We want to show
that applying normalization after the three BPA’s are combined without nor-
malization yields the same result as using Dempster’s rule in the conventional
way to combine them, i.e.,

(m1 ⊕m2)⊕m3 = N [(m1 ⊕m2)⊕m3] (29)
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Fig. 1. Combination of evidence with immediate normalization

We first expand the result of combining the first two BPA’s using Demp-
ster’s rule.

m1 ⊕m2 (C) =
m′

12 (C)
1− k12

where
m′

12 (C) =
∑

A∩B=C

m1 (A)m2 (B) (30)

and
k12 =

∑

A∩B=φ

m1 (A)m2 (B) (31)

The left-hand side of (29) thus becomes

(m1 ⊕m2)⊕m3 (E) =

1
1−k12

∑
C∩D=E

m′
12 (C)m3 (D)

1− 1
1−k12

∑
C∩D=φ

m′
12 (C)m3 (D)

Substituting m′
12(C) with the right-hand side of (30), we get

=

1
1−k12

∑
A∩B∩D=E

m1 (A)m2 (B)m3 (D)

1− 1
1−k12

∑
A∩B∩D=φ,A∩B �=φ

m1 (A)m2 (B)m3 (D)

Fig. 2. Combination of evidence with postponed normalization
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Multiplying both the numerator and the denominator by 1− k12, we have

=

∑
A∩B∩D=E

m1 (A)m2 (B)m3 (D)

1− k12 −
∑

A∩B∩D=φ,A∩B �=φ
m1 (A)m2 (B)m3 (D)

.

Substituting k12 with the right-hand side of (31), we get

=

∑
A∩B∩D=E

m1 (A)m2 (B)m3 (D)

1−
[

∑
A∩B∩D=φ

m1 (A)m2 (B) +
∑

A∩B∩D=φ,A∩B �=φ
m1 (A)m2 (B)m3 (D)

]

Since ΣDm3(D) = 1, we can reformulate the normalization factor:

=

∑
A∩B∩D=E

m1 (A)m2 (B)m3 (D)

1 −
[

∑
A∩B∩D=φ,A∩Bφ

m1 (A)m2 (B)m3 (D) +
∑

A∩B∩D=φ,A∩B �=φ

m1 (A)m2 (B)m3 (D)

]

Finally, we get

=

∑
A∩B∩D=E

m1 (A)m2 (B)m3 (D)

1−
∑

A∩B∩Dφ
m1 (A)m2 (B)m3 (D)

= N [(m1 ⊕m2)⊕m3] .

Hence, we have shown that the normalization step in Dempster’s rule can be
delayed without changing the result of combination.

Our generalized rule of combination consists of two operations: a cross-
product operation and a normalization process. Fuzzy BPA’s are first com-
bined by performing the following generalized cross product:

m′
12(C) = m1 ⊕m2 (C) =

∑

A∩B=C

m1 (A)m2 (B) . (32)

where ∩ denotes the fuzzy intersection operator and C is an unnormalized
intersection of focal elements, which could be a subnormal fuzzy subset of
the frame of discernment. The empty set is a special kind of subnormal focal
elements. To compute the normalized combined BPA (e.g., for computing its
belief function), we apply the following normalization process (discussed in
Sect. 5.6-2) to the unnormalized combined BPA:

N [m′] (D) =

∑
C̄=D

max
xi

μC (xi)m′ (C)

1−
∑
C⊂T

(
1−max

x1
μC (xi)

)
m′ (C)

. (33)
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For example, if we need to combine three bpa’s of the frame of discernment
T , the result of combination is computed by first combining the three bpa’s
without normalization using (32), and then normalizing the final result:

m1 ⊕m2 ⊕m3 = N [(m1 ⊕m2)⊕m3] .

It is obvious that the generalized cross-product operation is commutative, e.g.,

N [(m1 ⊕m2)⊕m3] = N [m1 ⊕ (m2 ⊕m3)] .

Thus, through delaying the normalization process, we are able to combine
fuzzy BPA’s in an order-independent fashion.

In the special case where there are only two fuzzy BPA’s to be combined,
the combined BPA using the generalized Dempster’s rule of combination is

m1 ⊕m2 (C) = N [m1 ⊕m2] (C)

=

∑

(A∩B)=C

max
xi

μA∩B (xi)m1 (A)m2 (B)

1−
∑
A,B

(
1−max

xi

μA∩B (xi)
)
m1 (A)m2 (B)

. (34)

The normalization process (i.e., (33)) generalizes the notion of conflict-
ing evidence in the D–S theory to that of partially conflicting evidence. In
Dempster’s original rule, two pieces of evidence are either in conflict (i.e., the
intersection of their focals is empty) or not in conflict at all (i.e., the inter-
section of their focals is not empty). In our generalized combining rule, two
pieces of evidence are partially in conflict if the intersection of their focals is
subnormal. The degree of conflict is measured by the difference between one
and the peak (i.e., the maximum value) of the focal’s membership function.
The case of peak being zero corresponds to the case of total conflict in the
D–S theory.

Our extension to Dempster’s rule differs from Ishizuka’s extension (dis-
cussed in Sect. 4) in its handling of subnormal intersections of focal elements.
Ishizuka’s degree of intersection J(A,B) becomes maxxi μA∩B(xi) in (34)
when both fuzzy set A and fuzzy set B are normal; therefore, it is analo-
gous to the factor that scales down the basic probability in the normalization
step of our approach. While we use the reciprocal of the factor to scale up the
membership function of the focals’ intersection, Ishizuka does not normalize
the intersection. More importantly, Ishizuka’s approach appeals to intuition
without rigorous justification, whereas our approach is derived from the prin-
ciple that the normalization step should preserve the relative probabilistic
constraints imposed by focal elements, whether it is normal or not.4

4 Obviously, the absolute probabilistic constraints of non-empty focal elements are
not preserved by the normalization process because their basic probabilities are
increased by the normalization factor (i.e., the denominator in (33)).
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One of the most controversial issues regarding Dempster’s rule of com-
bination has been its normalization process. Zadeh, for instance, has ques-
tioned the validity of discarding the probability mass assigned to the empty
set because the probability mass is an indication of the degree of conflict
between the evidential sources that are combined [19]. However, to be consis-
tent with axioms of probability theory, the probability of empty set has to be
zero. In our approach, this dilemma is solved by delaying the normalization
process. By computing the unnormalized BPA of the frame of discernment,
our generalized rule of combination is able to use the basic probability of the
empty set as a measure of the degree of conflict, which influences the credi-
bility of the combined evidential sources. In the meantime, we can obtain the
normalized BPA, which is needed for computing the belief function, by apply-
ing the normalization step to the unnormalized BPA. Hence, the generalized
Dempster’s rule not only allows the combination of vague evidential opin-
ions, but also provides information regarding the credibility of the combined
opinion.

6 Discussion

6.1 Consonant Focals and Fuzzy Focals

Several authors have discussed the similarity between possibility distribution
and one specific instance of the D–S plausibility function called consonant
support function—when the focal elements are nested, i.e., when they can be
arranged in order so that each focal is contained in the following one [10].
Based on this observation, we have defined the probabilistic constraint of a
fuzzy focal to be that of a set of consonant crisp focals in Sect. 5.4. Here, we
will focus on the differences between the consonant focal elements and the
fuzzy focal element.

A set of consonant focal elements differs from a fuzzy focal element in
two important ways. First, consonant focal elements are more restrictive in
the kinds of fuzzy evidential support they can represent. More specifically,
they are limited to representing single vague evidential support. A fuzzy basic
probability assignment (BPA), however, may consist of several fuzzy focal
elements. Hence, it can express multiple fuzzy evidential supports. Second,
each fuzzy focal element is induced by single evidential elements, while con-
sonant focals are induced by several evidential elements that form an infer-
ential evidence [9]. This difference between fuzzy focals and consonant focals
explains their different comoination results. The combination of two conso-
nant BPA’s is a result of combining their evidential elements pairwise. There-
fore, the combined focals are, in general, no longer consonant. However, the
combination of two fuzzy focal elements, which involves the combination of
underlying fuzzy compatibility relations, always yields another fuzzy focal
element.
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Due to these significant differences between fuzzy focals and consonant
crisp focals, we should emphasize that we do not view fuzzy focal ele-
ments as identical to consonant crisp focals. In other words, the decompo-
sition of a fuzzy focal element is not equivalent to the fuzzy focal itself.
A fuzzy focal and its decomposition are only equivalent in the probabilis-
tic constraints they imposed on the probability distribution of the frame of
discernment.

7 Conclusion

We have described a generalization of the Dempster–Shafer theory to fuzzy
sets. Rather than generalizing the formula for computing belief function, we
generalize the basic constructs of the D–S theory: the compatibility rela-
tions, the objective functions of the optimization problem for calculating belief
functions, and the probabilistic constraints imposed by focal elements. As a
result, we can compute the lower probability (i.e., the belief function) directly
from these generalized constructs. Moreover, by employing the noninteractive
assumption in possibility theory, we have modified Dempster’s rule to combine
evidence that may be partially in conflict.

Our approach offers several advantages over previous work. First, the
semantics of the D–S theory is maintained. Belief functions are treated as
lower probabilities in our extension. Second, we avoid the problem of “choos-
ing the right inclusion operators” faced by all previous approaches. Third, the
generalized belief function is determined by the whole membership function
of the focal element, not just by some critical points as used in some of the
previous work. Any change of the membership function of a focal element is
directly reflected in a change of the focal’s probabilistic constraint, which in
turn affects the belief function. Fourth, the generalized rule of combination
provides information about the degree of conflict between the evidence com-
bined by delaying the normalization step in original Dempster’s rule. Finally,
our generalization is well-justified using possibility theory and probability the-
ory. Therefore, it serves as a bridge that brings together the Dempster–Shafer
theory and fuzzy set theory into a hybrid approach to reasoning under various
kinds of uncertainty in intelligent systems.
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Bayesian Updating and Belief Functions

Jean-Yves Jaffray

Abstract. In a wide class of situations of uncertainty, the available information
concerning the event space can be described as follows: There exists a true proba-
bility that is only known to belong to a certain set P of probabilities; moreover, the
lower envelope f of P is a belief function, i.e., a nonadditive measure of a particular
type, and characterizes P , i.e., P is the set of all probabilities that dominate f . This
is in particular the case when data result from large-scale sampling with incom-
plete observations. This study is concerned with the effect of conditioning on such
situations. The natural conditioning rule is here the Bayesian rule: there exists a
posterior probability after the observation of event E, and it is known to be located
in PE, the set of conditionals of the members of P . An explicit expression for the
Möbius transform φE of fE in terms of φ, the transform of f , is found and Fagin and
Halpern’s earlier finding that the lower envelope fE of PE is itself a belief function
is derived from it. However, fE no longer characterizes PE (not all probabilities
dominating fE belong to it), unless f satisfy further stringent conditions that are
both necessary and sufficient. The difficulties resulting from this fact are discussed
and suggestions to cope with them are made.

1 Introduction

Consider a situation of uncertainty in which the existence of a probability
measure, P , on the events can be hypothesized but, data being imprecise, P
is only known to belong to some set of probability measures P . This kind
of situation is typically met in large-scale sampling with incomplete or vague
observations.

Suppose that a certain event, E, is observed. It is natural to conclude
that the true probability measure now belongs to the set, PE , formed by the
conditionals of the members of P with respect to E. This change-over from
P to PE , is called (convex) Bayesian updating by Kyburg [6].
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In the case of sampling and, more generally, in all situations in which P is
generated by a random set, P is characterizable by its lower envelope f , since
P can be retrieved as the set of all probability measures which dominate f .
Moreover, f is then necessarily a belief function [14].

The idea of representing such situations of uncertainty P by belief func-
tions f is attractive, since these are more mathematically tractable. The intro-
duction of belief functions with this interpretation is called the lower proba-
bility approach by Shafer [14].

The question then arises whether the representation property is preserved
by Bayesian updating, or not. The only eligible candidate for representing PE
being its lower envelope, fE , this question amounts to the following twofold
one: is fE a belief function and does it characterize PE?

The first part of the question has already been answered affirmatively by
Fagin and Halpern [6]. The aim of this paper is to present a thorough study
of the properties of fE and PE, which provides an alternative proof of Fagin
and Halpern’s result, shows the answer to the second part of the question to
be negative and, more precisely, defines the stringent conditions under which
fE does characterize PE .

The paper is organized as follows. In Sect. 2, we briefly recall some basic
properties of belief functions. Section 3 defines Bayesian updating in this
context and explores some ramifications. In Sect. 4, we provide illustrative
examples that highlight some of the differences between Bayesian updating
and the updating rule that is an integral part of Dempster–Shafer belief func-
tion theory, the so-called Dempster conditioning rule. Section 5 derives an
explicit expression for the Möbius transform φE of fE in terms of the Möbius
transform φ of f , and it immediately follows as a corollary that fE is a
belief function. In Sect. 6, the relationship between the structure of P and
PE is studied, and necessary and sufficient conditions found for the rep-
resentability of PE by fE. Difficulties resulting from the imperfect repre-
sentation of PE by fE are examined and an alternative representation is
considered.

2 Definition and Properties of Belief Functions
and Related Objects

Let X be the finite set of states of nature, A = 2X the set of events, and L
the set of all probability measures on (X ,A).

A belief function [14] is a mapping f : A → R (actually: A → [0, 1])
satisfying

f (∅) = 0; f (X ) = 1 (1)
A ⊆ B ⇒ f (A) ≤ f (B) , ∀A,B ∈ A (2)
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and

f

(
k⋃

i=1

Ai

)
≥

∑

I ⊆ {1, 2, · · · , k}
I 	= ∅

(−1)|I|+1
f

(
⋂

i∈I
Ai

)
,

∀Ai ∈ A, ∀k ≥ 2. (3)

A mapping F : A → [0, 1] associated with a belief function f by

F (A) = 1− f (Ac) , for All A ∈ A (4)

is a plausibility function.
Any mapping f : A → R has a Möbius transform [13] φ : A → R defined by

φ (A) =
∑

B⊆A
(−1)|A\B|

f (B) , ∀A ∈ A (5)

which characterizes f since

f (A) =
∑

B⊆A
φ (B) , ∀A ∈ A (6)

Note that
F (A) =

∑

B∩A �=∅
φ (B) , ∀A ∈ A (7)

Shafer [14] defines a basic probability assignment (BPA) on A as a mapping
φ : A → [0, 1] satisfying

φ (∅) = 0;
∑

A∈A
φ (A) = 1 (8)

and proves the following proposition.

Proposition 1. A mapping f : A → R is a belief function if and only if its
Möbius transform φ is a BPA.

The focal set of a belief function f is B = {B ∈ A : φ(B) 	= 0} and
C = ∪B∈BB is its core. Real numbers λ(B, x), B ∈ B, x ∈ B, satisfying

λ (B, x) ≥ 0, ∀ x ∈ B, and
∑

x∈B
λ (B, x) = 1, ∀ B ∈ B, (9)

define a probability measure Pλ ∈ L by

Pλ ({x}) =
∑

B∈B,B⊇{x} λ (B, x)φ (B) , ∀ x ∈ X (10)
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where Pλ is called an allocation of BPA φ.
On the other hand, a probability measure P ∈ L is said to be compatible

with f (or to dominate f) when

P (A) ≥ f (A) , ∀ A ∈ A

(for short: P ≥ f). As proven by Strassen [18], we get the following.

Proposition 2. A probability measure P ∈ L is compatible with a belief func-
tion f if and only if P is an allocation of f ’s Möbius transform φ.

By considering suitable allocations, it can then easily be shown that:

Proposition 3. For every decreasing sequence of events (Ai, l ≤ i ≤ m) there
exists a probability measure P compatible with belief function f and such that

P (Ai) = f (Ai) , for 1 ≤ i ≤ m.

Introducing the set of all probability measures dominating f :

Pf = {P ∈ L : P ≥ f} (11)

a straightforward corollary of Proposition 3 can be stated as follows.

Corollary 1. Let f be a belief function; then

1) f = inf
P∈Pf

P

(
short for : f (A) = inf

P∈Pf

P (A) , for all A ∈ A
)

(12)

and, more precisely, for every A ∈ A, there exists P ∈ Pf such that P (A) =
f(A);

2) For all A,B ∈ A such that A ∩ B = ∅, there exists P ∈ Pf such that
P (A) = f(A) and P (B) = F (B).

3 Belief Function Representation of Uncertainty
and Bayesian Updating

3.1 Representation of Uncertainty Situations by Belief Functions

Let data concerning the events be completely summarized by the specification
of P , a nonempty subset of L. In other words, suppose a true probability
measure be known to exist and to be located in P , but no member of P be
more likely to be the true one than another member (complete ignorance on
the location of P in P).

In general, P is not characterizable by its lower envelope

f = inf
P∈P

P, (13)
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since the set that can be retrieved from f , by (11), is the set of all compatible
measures, Pf , which may strictly contain P . Furthermore, f is not necessarily
a belief function (see, e.g., Examples 6 and 7 in Chateauneuf and Jaffray [2]).

However, in a broad class of situations, the set P of probability measures
that are consistent with data is generated by a random set [10] and thus its
lower envelope f = infP∈P P automatically satisfies the following: 1) f is a
belief function; and 2) P = Pf , i.e., P = {P ∈ L : {P ≥ f}.

This is in particular the case whenever data are collected by large-scale
sampling in an imprecise or incomplete way [8].

Note that, by Corollary 1, 1) and 2) imply that f = infP∈P P .
Whenever 1) and 2) are valid, the situation of uncertainty described by P

can be represented by its lower envelope, belief function f .

Remark 1. Belief functions were originally introduced by Dempster ([3], [4]) in
relation with random sets (see Sect. 3.4). This framework was later abandoned
by Shafer who favored a purely subjective evaluation of the belief in an event.
Dempster–Shafer theory is thoroughly developed in [14]; it is also described in
Pearl [11, ch. 9] (with a particular interpretation). Shafer’s [15] presentation
of its own point of view and discussion of various interpretations, and Pearl’s
[12] critical remarks (with comments by others in the field) might also be
found instructive.

3.2 Bayesian Updating

Given an initial situation characterized by set P , let an event E be observed.
Provided

P (E) > 0, ∀ P ∈ P (14)

the conditional probability measure P given E, denoted PE , is well defined,
for every P ∈ P , on the subalgebra of events:

AE = {A ∈ A : A ⊆ E} (15)

by Bayes rule:

PE (A) =
P (A)
P (E)

, ∀ A ∈ AE . (16)

In accordance with the interpretation of the initial information, the new
situation of uncertainty, after the observation of E, can be summarized by

PE =
{
PE ∈ LE : P ∈ P

}
(17)

(LE denotes the set of all probability measures on (E,AE)). The transforma-
tion P "→ PE is called Bayesian updating.1

1 Spies [17] presents a justification of the same conditioning rule based on the theory
of conditional objects.
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3.3 Belief Function Representation and Bayesian Updating

When the initial situation of uncertainty is representable by a belief function
f , i.e., when assumptions 1) and 2) are satisfied, the question arises whether
PE , which describes the new situation of uncertainty after event E has been
observed, can itself be represented by a belief function.

Note that PE is defined if and only if f(E) > 0, since, by Corollary 1, this
condition is equivalent to (14).

As already remarked in Sect. 3.1, the only candidate for representing PE
is its lower envelope

fE = inf
Q∈PE

Q = inf
P∈P

PE . (18)

There exists a simple relation, first noticed by Dempster [3], between the lower
envelopes f and fE.

Proposition 4. Given belief function f on A and event E ∈ A such that
f(E) > 0, let P = {P ∈ L : P ≥ f} and fE = infP∈PPE. Then

fE (A) =
f (A)

f (A) + F (E\A)
=

f (A)
f (A) + 1− f (A ∪ Ec) , ∀ A ∈ A

E (19)

moreover: 1) for every A ∈ A, there exists P ∈ P such that PE(A) = fE(A);
and 2) if f(A) > 0 and F (E\A) > 0, then

PE (A) = fE (A) if P (A) = f (A) and P (E\A) = F (E\A) .

Proof. Let A ∈ AE . By definition

fE (A) = inf
P∈P

P (A)
P (A) + P (E\A)

.

If f(A) = 0, there exists, by Corollary 1, P ∈ P such that P (A) = 0; thus
fE(A) = 0, (19) holds, and 1) is true.

If f(A) > 0 and F (E\A) = 0, then P (E\A) = 0 for all P ∈ P ; thus
fE(A) = 1, (19) holds, and 1) is true.

In the remaining case, f(A) > 0 and F (E\A) > 0. Since P (A) >
0 for all P ∈ P , fE(A) = [1 + supP∈P(P (E\A))/(P (A))]−1; moreover,
(P (E\A))/(P (A)) ≤ (F (E\A))/(f(A)) for all P ∈ P and the equality is
achieved if and only if P (A) = f(A) and P (E\A) = F (E\A). To complete
the proof, it is sufficient to remark that Corollary 1 asserts the existence of
P ∈ P with these properties.

3.4 Relation with Dempster’s Rule

Dempster–Shafer theory [3], [4], [14] uses a different updating rule, Dempster’s
conditioning rule.



22 Bayesian Updating and Belief Functions 561

There is a possible justification of Dempster’s rule, based on the random
set interpretation of belief functions. In this interpretation, information comes
from sources emitting random messages. A unique source emitting message
“x ∈ B” with probability φ(B) generates belief f(A) = ΣB⊆Aφ(B) that
x ∈ A.

Suppose now that, beside this first source, there is a second one, emit-
ting message “x ∈ E” with certainty, and that messages must be consistent,
i.e., B′ = B∩E cannot be empty. Then, the probability of receiving messages
jointly asserting that “x ∈ B′” given that messages are always consistent (an
event that has probability

∑
B ∈ B

B ∩ E �= ∅
φ(B) = F (E)) is

ψE (B′) =
1

F (E)

∑

B ∈ B
B ∩E = B′

φ (B) . ∀ B′ ∈ AE\ {∅} . (20)

This message distribution generates belief function gE given by

gE (A) =
f (A ∪ Ec)− f(Ec)

1− f (Ec)
=
F (E)− F (E\A)

F (E)
∀ A ∈ AE (21)

(note that gE is defined as soon as F (E) > 0).
Clearly, gE is different from fE in general. More precisely, as observed by

Dempster [3] and Kyburg [6], it follows from (19) and (21), and inequality
f(A ∪ Ec) ≥ f(A) + f(Ec), that gE ≥ fE.

In fact, Dempster’s rule f "→ gE records the effect of additional infor-
mation, whereas the Bayesian rule corresponds to the selection of relevant

Fig. 1.
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Fig. 2.

information. For example, gE would describe updated knowledge after learn-
ing that a human population studied only consists of children and PE would
answer the question “what is known concerning children?”

Thus Dempster’s rule and the Bayesian rule address different problems and
should not be opposed. It is nonetheless clear, at least in the lower probability
interpretation of belief functions, that the appropriate rule of conditioning
proper is the Bayesian rule.

4 Examples

In Sect. 5, we shall prove that fE is indeed a belief function by using Proposi-
tion 1; more precisely, we shall construct a certain BPA, φE , derived from the
Möbius transform, φ, of f , and prove that φE is really the Möbius transform
of fE by merely checking the validity of (6).

The relation between φE and φ is more intricate than that between ψE

and φ (relation (20)) and will be best understood by first studying a few
examples. Their analysis will clarify the difference between the Bayesian rule
and Dempster’s rule.

Example 1 shows that Bayesian conditioning requires that, for B ∈ B
that meets both E and EC , weight φ(B) be transferred, not to B ∩ E as in
Dempster’s rule, but to larger subsets of C ∩E.

Example 2 further indicates that, in Bayesian conditioning, where there is
only one set B′′ ∈ B that meets both E and EC , its weight φ(B′′) is allocated
to sets B′ ∪ (B′′ ∩ E), where B′ ∈ B and B′ ⊆ E, proportionally to weights
φ(B′), thus taking into account correctly the renormalization factor of Bayes’
rule. However, when several members of B meet both E and EC , the real
location becomes involved as shown by a third example.
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Fig. 3.

Moreover the second and third examples exhibit sets of conditional mea-
sures PE, which are proper subsets of PEfE = {Q ∈ LE : Q ≥ fE}, and,
thereby prove that 2) is not satisfied in general.

Note: In the examples, we use abridged notations such as x1x2x3 for
{x1, x2x3} and thus B = {x1, x2, x3} for B = {{x1}, {x2, x3}}, etc.

Example 1. χ = x1x2x3; P = {P ∈ L : P (x1) = 1/3}; thus P = Pf , where
f is given by f(x1) = 1/3, f(x2) = f(x3) = 0, f(x1x2) = f(x1x3) =
1/3 and f(x2x3) = 2/3; hence f is a belief function since, by (5): B =
{x1, x2x3}, φ(x1) = 1/3 and φ(x2x3) = 2/3.

For E = x1x2, f(E) = 1/3, F (E) = 1, and PE = {Q ∈ LE : 1/3 ≤
Q(x1) ≤ 1}; thus fE(x1) = 1/3 and fE(x2) = 0, and fE is a belief function
since, by (5), φE(x1) = 1/3, φE(x2) = 0 and φE(E) = 2/3, hence φE ≥ 0. It
is obvious here that PE = PEfE .

Note that Dempster’s rule would lead to gE, characterized by BPA ψE

such that ψE(x1) = 1/3 and ψE(x2) = 2/3; thus gE is the probability measure
defined by gE(x1) = 1/3 and gE(x2) = 2/3, and is only compatible with itself.

Example 2. χ = x0x1x2x3. P = {P ∈ L : P (x0) = 1/12, P (x1) = 1/4};
thus P = Pf , where f is given by f(x0) = 1/12, f(x1) = 1/4, f(x2) =
f(x3) = 0, f(x0x1) = 1/3, f(x0x2) = f(x0x3) = 1/12, f(x1x2) =
f(x1x3) = 1/4, f(x2x3) = 2/3, f(x1x2x3) = 11/12, f(x0x2x3) = 3/4 and
f(x0x1x3) = f(x0x1x2) = 1/3; hence f is a belief function since, by (5),
B = {x0, x1, x2x3}, φ(x0) = 1/12, φ(x1) = 1/4, and φ(x2x3) = 2/3.

For E = x0x1x2, f(E) = 1/3, F (E) = 1, and PE = {Q ∈ LE :
Q(x0) = α,Q(x1) = 3α, 1/12 ≤ α ≤ 1/4}. Hence fE(x0) = 1/12, fE(x1) =
1/4, fE(x2) = 0, fE(x0x1) = 1/3, fE(x0x2) = 1/4, and fE(x1x2) = 3/4,
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and fE is a belief function since, by (5), BE = {x0, x1, x0x2, x1x2} with
φE(x0) = 1/12, φE(x1) = 1/4, φE(x0x2) = 1/6, and φE(x1x2) = 1/2.
PE is only a proper subset of PEfE , since PEfE = {Q ∈ LE : Q(x0) ≥

1/12, Q(x1) ≥ 1/4, Q(x0x2) ≥ 1/4, Q(x1x2) ≥ 3/4}, and Q ∈ LE defined
by Q(x0) = 1/12, Q(x1) = 3/4 and Q(x2) = 1/6 belongs to the latter set but
not to the former since Q(x1) 	= 3Q(x0).

Note that Dempster’s rule would lead to gE, characterized by BPA ψE

such that ψE(x0) = 1/12, ψE(x1) = 1/4, and ψE(x2) = 2/3; thus gE is the
probability measure defined by gE(x0) = 1/12, gE(x1) = 1/4 and gE(x2) =
2/3 and is only compatible with itself.

Example 3. x = x1x2x3x4x5. P = {P ∈ L : P (x2x5) = 1/2, P (x3x4) = 1/4};
thus P = Pf , where f is given by f(x1) = 1/4, f(xj) = 0 for j 	= 1, f(x1xj)
= 1/4 for j 	= 1, f(x2x3) = f(x2x4) = 0, f(x2x5) = 1/2, f(x3x4) =
1/4, f(x3x5) = f(x4x5) = 0, f(x1x2x3) = f(x1x2x4) = f(x1x3x5) =
f(x1x4x5) = 1/4, f(x1x2x5) = 3/4, f(x1x3x4) = 1/2, f(x2x3x4) =
1/4, f(x2x3x5) = f(x2x4x5) = 1/2, f(x3x4x5) = 1/4, f(x2x3x4x5)
= 3/4 f(x1x3x4x5) = 1/2, f(x1x2x4x5) = f(x1x2x3x5) = 3/4, and f(x1x2

x3x4) = 1/2; hence f is a belief function since, by (5), B = {x1, x2x5, x3x4},
φ(x1) = 1/4, φ(x2x5) = 1/2, and φ(x3x4) = 1/4.

For E = x1x2x3, f(E) = 1/4, F (E) = 1, and PE = {Q ∈ LE : Q(x1) =
k, Q(x2) = αk, Q(x3) = βk, k = (1 + α + β)−1, 0 ≤ α ≤ 2, 0 ≤ β ≤ 1}.
Hence, fE(x1) = 1/4, fE(x2) = fE(x3) = 0, fE(x1x2) = 1/2, fE(x1x3) =
1/3, and fE(x2x3) = 0, and fE is a belief function, since, by (5), BE =
{x1, x1x2, x1x3, E}, with φE(x1) = φE(x1x2) = 1/4, φE(x1x3) = 1/12, and
φE(E) = 5/12.

Here again, PE ⊂ PEfE , since for Q(x1) = 1/4, Q(x2) = 2/3, Q(x3) =
1/12, Q ∈ PEfE and Q 	∈ PE . Note also that Dempster’s rule would lead to gE ,
characterized by BPA ψE such that ψE(x1) = ψE(x3) = 1/4 and ψE(x2) =
1/2; thus gE is the probability measure defined by gE(x1) = gE(x3) = 1/4
and gE(x2) = 1/2, and is only compatible with itself.

Thus Bayesian conditioning seems to require that, when exactly two mem-
bers B′′

1 and B′′
2 of B meet both E and Ec, the proportion of weight φ(B′′

1 ),
which would have been allocated to (B′′

1 ∩E)∪B′′
2 , had B′′

2 be a subset of E,
be in fact allocated to sets B′ ∪ ((B′′

1 ∩E)∪ (B′′ ∩E) = B′ ∪ ((B′′
1 ∪B′′

2 )∩E),
where B′ ∈ B and B′ ⊆ E; moreover, in the light of Example 2, the allocation
should be proportional to φ(B′), when there is more than one B′ (which is
not the case in Example 3).

Let us finally add that, like Dempster’s rule, Bayes’ rule clearly requires a
normalization factor 1/(F (E)) when F (E) < 1.

In the following theorem, it is proven that the general relation between φ
and φE is indeed that suggested by the examples.
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5 Lower Envelopes of Sets of Probability Measures
Remain Belief Functions after Conditioning

Theorem 1. Let f be a belief function on A, and F the associated plausibility
function; let φ be its Möbius transform, B its focal set, and let P = {P ∈ L :
P ≥ f}. Let event E of A satisfy f(E) > 0, and consider PE = {PE ∈
LE : P ∈ P}, where PE denotes the conditional of P given E; then the lower
envelope, fE = infQ∈PEQ, of PE is a belief function.2

Moreover: 1) The focal set, BE, of fE is related to B and E as follows:
let B′ = {B′ ∈ B : B′ ⊆ E},B′′ = {B′′ ∈ B : B′′ ∩ E 	= ∅ and B′′ ∩ Ec 	=
∅}, K = |B′′|, and let set of finite sequences of events T (B) be defined, for
all B ∈ AE , by

T (B) = {T = (B′, B′′
1 , B

′′
2 , · · · , B′′

k ) :
B = B′ ∪ [(B′′

1 ∪B′′
2 ∪ . . . ∪B′′

k ) ∩ E] ,
B′ ∈ B′, B′′

� ∈ B′′, all B′′
� distinct,

! = 1, 2, · · · , k, 0 ≤ k ≤ K}; (22)

then BE = {B ∈ AE : T (B) 	= ∅}. 2) The Möbius transform, φE , of fE is the
BPA defined by

φE (B) =
∑

T∈T (B)

m (T ) , ∀ B ∈ BE (23)

where, for T = (B′, B′′
1 , B

′′
2 , · · · , B′′

k ), (24) results.

m (T ) =

φ (B′) × φ (B′′
1 ) × φ (B′′

2 ) × · · · × φ (B′′
k )

F (E)
[
F (E) − φ (B′′

1 )] [F (E) − φ (B′′
1 ) − φ (B′′

2 )] × · · · ×
[
F (E) −∑k

�=1 φ (B′′
� )

]]

(24)

Proof. 1) According to (6), φE , defined by (23) and (24) on BE, and equal
to zero elsewhere, is the Möbius transform of fE if and only if

fE (A) =
∑

B⊆A
φE (B) =

∑

B⊆A

∑

T∈T (B)

m (T ) , ∀ A ∈ AE . (25)

or, equivalently, by (19), if and only if
2 Fagin and Halpern [6] have already given a proof of this result. However our proof

(found independently), although based on the same idea as theirs, is quite differ-
ent, since we find the explicit expression (23) and (24) of the Möbius transform
φE of fE , which drastically simplifies the rest of the proof. There is another proof,
by Zhang [20], which does not involve Möbius inversion.
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f (A)
f (A) + F (E\A)

=
∑

B⊆A

∑

T∈T (B)

m (T ) , ∀ A ∈ AE . (26)

Let us prove the validity of relation (26) for any A ∈ AE .
2) Given A ∈ AE , the double summation on the right-hand side of (26) can

be reexpressed as
∑

B′∈B′(A)

∑

(B′′
1 ,B

′′
2 ,··· ,B′′

k )∈S(∅)
m (B′, B′′

1 , B
′′
2 , · · · , B′′

k ) ,

where B′(A) = {B′ ∈ B′ : B′ ⊆ A} and S(∅) is the set of all finite
sequences of distinct events of B′′(A) = {B′′ ∈ B′′ : B′′ ∩ E ⊆ A}, since
B = B′ ∪ [(B′′

1 ∪B′′
2 ∪ · · · ∪B′′

k ) ∩E] ⊆ A iff B′ ⊆ A and B′′
� ∩E ⊆ A, for

1 ≤ ! ≤ k.
Since B′(A) = ∅ implies that f(A) = fE(A) = 0, hence that (26) is valid, it
will be assumed henceforth that B′(A) 	= ∅, but only that |B′′(A)| = L ≥ 0.

3) In order to further decompose the summation, let us define subsets of L(∅)
with a common initial sequence of length 1 ≤ ! ≤ L,

S (B′′
1 , B

′′
2 , · · · , B′′

� ) =
{(

B1
′′
, B2

′′
, · · · , Bk

′′) ∈ S (∅) :

k ≥ ! and Bj
′′

= B′′
j , 1 ≤ j ≤ !}.

and denote the corresponding partial summation of weights, for a given
B′ ∈ B′(A):

S (B′, B′′
1 , B

′′
2 , · · · , B′′

� )
∑

=
(B1

′′,B′′
2 ,··· ,B′′

k )∈S(B′′
1 ,B′′

2 ,··· ,′′,··· ,B′′
	 )

m(B′,B′′
1 ,B′′

2 ,··· ,B′′
	 )

(27)

in particular, S(B′) corresponds to S(∅), so that (26) becomes

f (A)
f (A) + F (E\A)

=
∑

B′∈B′(A)

S(B′) (28)

We shall calculate S(B′) by induction:
4) Let (B′′

1 , B
′′
2 , · · · , B′′

L) be a given ordering of B′′(A), and let B′ be a given
event of B′(A).
Every sequence of events in S(B′′

1 , B
′′
2 , · · · , B′′

� ), 0 ≤ ! ≤ L − 1, except
(B′′

1 , B
′′
2 , · · · , B′′

� ), has at least a (!+ 1)th term, B′′
j , where !+ 1 ≤ j ≤ L;

therefore

S (B′, B′′
1 , B

′′
2 , · · · , B′′

� ) = m (B′, B′
1, B

′′
2 , · · · , B′′

� )

+
L∑

j=�+1

S
(
B′, B′′

1 , B
′′
2 , B

′′
2 , · · · , B′′

� , · · · , B′′
� , B

′′
j

)
.

for 0 ≤ ! ≤ L− 1. (29)
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This induction formula has a unique solution

S (B′, B′′
1 , B

′′
2 , · · · , B′′

� ) =m (B′, B′′
1 , B

′′
2 , · · · , B′′

� )

·
F (E)−

∑�
j=1 φ

(
B′′
j

)

F (E)−
∑L

j=1 φ
(
B′′
j

) ,

for 0 ≤ ! ≤ L (30)

since (α) S(B′, B′′
1 , B

′′
2 , · · · , B′′

L) = m(B′, B′′
1 , B

′′
2 , · · · , B′′

L) (β) If (30)
holds at order (!+ 1), then, by (24):

m (B′, B′′
1 , B

′′
2 , ·, B′′

� ) +
L∑

j=�+1

S
(
B′, B′′

1 , B
′′
2 , ·, B′′

� , B
′′
j

)

= m (B′, B′′
1 , B

′′
2 , ·, B′′

� )

⎡

⎣1 +
L∑

j=�+1

φ
(
B′′
j

)

F (E)−
∑L

j=1 φ
(
B′′
j

)

⎤

⎦

= m (B′, B′′
1 , B

′′
2 , · · · , B′′

� )
F (E)−

∑�
j=1 φ

(
B′′
j

)

F (E)−
∑L
j=1 φ

(
B′′
j

)

and thus (30) also holds at order !.
In particular, for ! = 0, (30) states that

S (B′) = m (B′)
F (E)

F (E)−
∑L

j=1 φ
(
B′′
j

)

=
φ (B′)

F (E)−
∑L
j=1 φ

(
B′′
j

) . (31)

5) It remains only to compare

∑

B′∈B′(A)

S (B′) =

∑
B′∈B′(A) φ (B′)

F (E)−
∑L

j=1 φ
(
B′′
j

)

and
f (A)

f (A) + F (E\A)

It is straightforward that the numerator is equal to f(A); as for the denom-
inator:

F (E)−
L∑

j=1

φ
(
B′′
j

)
= F (E)− [f (A ∪ Ec)− f (Ec)− f (A)]

= f (A) + F (E\A) .
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Thus, (28) or, equivalently (25), holds for all A ∈ AE , and φE is the
Möbius transform of f ; moreover, since φE is nonnegative, it is a BPA, and
fE is a belief function.

Examples 1, 2, and 3 (continued): Let us illustrate Theorem 1 with the
preceding examples (abridged notations are still used).

Example 4. B′ = {x1}; B′′ = {x2x3}; BE = {x1, x1x2}.

m (x1) = φ (x1) = 1/3;m (x1, x2x3) =
φ (x1)φ (x2x3)
1− φ (x2x3)

= 2/3.

φE (x1) = m (x1) = 1/3 and φE (x1x2) = m (x1, x2x3) = 2/3.

Example 5. B′ = {x0, x1}; B′′ = {x2x3}; BE = {x0, x1, x0x2, x1x2}.

m (x0) = φ (x0) = 1/12;m (x0, x2x3) =
φ (x0)φ (x2x3)
1− φ (x2x3)

= 1/6;

m (x1) = φ (x1) = 1/4;m (x1, x2x3) =
φ (x1)φ (x2x3)
1− φ (x2x3)

= 1/2.

φE (x0) = m (x0) = 1/12;φE (x0x2) = m (x0, x2x3) = 1/6;

φE (x1) = m (x1) = 1/4;φE (x1x2) = m (x1, x2x3) = 1/2.

Example 6. B′ = {x1}; B′′ = {x2x5, x3x4}; BE = {x1, x1x2, x1x3;E}.

m (x1) = φ (x1) = 1/4;m (x1, x2x5)

=
φ (x1)φ (x2x5)
1− φ (x2x5)

= 1/4;

m (x1, x3x4) =
φ (x1)φ (x3x4)
1− φ (x3x4)

= 1/12;

m (x1, x2x5, x3x4) =
φ (x1)φ (x2x5)φ (x3x4)

[1− φ (x2x5)] [1− φ (x2x5)− φ (x3x4)]
= 1/4;

m (x1, x3x4, x2x5) =
φ (x1)φ (x3x4)φ (x2x5)

[1− φ (x3x4)] [1− φ (x3x4)− φ (x2x5)]
= 1/6.

φE (x1) = m (x1) = 1/4;φE (x1x2) = m (x1, x2x5)
= 1/4;

φE (x1x3) = m (x1, x3x4) = 1/12;

φE (E) = m (x1, x2x5, x3x4) +m (x1, x3x4, x2x5)
= 5/12

�
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Remark 2. Since conditional probability PE only exists for P (E) > 0, Bayes’
rule has only been defined for f(E) > 0 and not, as in Dempster’s rule, for
F (E) > 0.

It is however possible to argue that, when f(E) = 0 and F (E) > 0,
the set of conditional probabilities considered should be PE∗ = {PE : P ∈
P and P (E) > 0}, the observation of E excluding almost surely the possibility
that the true probability satisfy P (E) = 0.

It is easily seen that the lower envelope, fE∗ of PE∗ , is the elementary belief
function with unique focal element B∗ = ∪B∈B′′(B ∩E) and that PE∗ = PEf∗.

Thus the natural extension of Bayes’ rule to the f(E) = 0, F (E) > 0 case
satisfies 1) and 2).

6 On the Representation of Sets of Conditional
Probability Measures by Their Lower Envelopes

Example 2 demonstrates that Bayesian conditioning in general preserves nei-
ther 2) nor the representability of PE by fE . Nevertheless it does not preclude
that the property 2) might be preserved for a class of belief functions contain-
ing, in addition to the additive ones (the probability measures) for which
the property is trivial, other interesting families of belief functions. However
the main result in this section (Theorem 2 below) shows this hope to be
futile.

Theorem 2. Let f be a belief function on A and Pf = {P ∈ L : P ≥ f}. The
following statements are equivalent.

S1) There exists E ∈ A, such that f(E) > 0 and that

PE =
{
PE ∈ LE : P ∈ Pf

}

and PEfE = {Q ∈ LE : Q ≥ fE = infQ∈PE Q} satisfy PE ⊂ PEfE .
S2) There exist A1, A2 ∈ A such that:

1) f(A1 ∩A2) > 0;
2) f(A1 ∪A2) < 1; and
3) f(A1 ∪A2) + f(A1 ∩A2) > f(A1) + f(A2).

The formulation of condition S2) and the last part (part 3) of the proof
of Theorem 2 given later (after some preliminary results), are adapted from
ideas of Chateauneuf [1].

Lemma 1. Let f be a belief function on A = 2X . Then Pf = {P ∈ L : P ≥
f}, identified to a subset of the simplex of R

n, n = |X |, is a bounded convex
polyhedron.



570 J. Jaffray

Moreover, its extreme points are probability measures PS , S = (xi1 , xi2 ,
· · · , xin) ∈

∑
, set of all permutations of X , defined by

PS(S�) = f(S�) for S� = {xi1 , xi2 , · · · , xi	}, 1 ≤ ! ≤ n− 1 (32)

A proof of this lemma, which is basically a corollary of Proposition 3, can be
found, e.g., in Chateauneuf and Jaffray [2].

Since fE = infP≥f PE is a belief function when f is one, Lemma 1 in
particular applies to PEfE = {Q ∈ LE : Q ≥ fE}. As for its subset PE, let us
first note, with Kyburg [6], that it is convex, which results from the following:

Lemma 2. Let E ∈ A and Pj ∈ L be such that Pj(E) > 0, j = 1, 2, · · · ,m.
Then

Q =
m∑

j=1

βjP
E
j , βj ≥ 0 for j = 1, 2, · · · ,m,

m∑

j=1

βj = 1,

if and only if

Q = PE , with P =
m∑

j=1

αjPj and

αj =
βj/Pj (E)
m∑
j=1

βj/Pj (E)
, for j = 1, 2, · · · ,m. (33)

Proof. The conditional of P =
∑m

j=1 αjPj is given by

PE (A) =
P (A)
P (E)

=

∑m
j=1 αjPj (A)

∑m
j=1 αjPj (E)

=

∑m
j=1 αjPj (E)PEj (A)
∑m

j=1 αjPj (E)
.

Thus PE =
∑m

j=1 βjP
E
j with

βj =
αjPj (E)∑m
j=1 αjPj (E)

, for j = 1, 2, · · · ,m. (34)

Moreover, it is easily seen that relations (33) and (34) are reciprocals. The
lemma is now straightforward.

Further information on the structure of PE is provided by Lemma 3.

Lemma 3. Let f be a belief function on A = 2X and Pf = {P ∈ L : P ≥ f}.
Let E ∈ A be such that f(E) > 0. Then, PE = {PE ∈ LE : P ∈ Pf},
identified to a subset of the simplex of R

L, L = |E|, is a bounded convex
polyhedron.
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Moreover, its extreme points are conditionals of extreme points of Pf .

Proof. By Lemma 1,

Pf =
{
P =

∑

S∈Σ

αSPS : αS ≥ 0, for S ∈
∑

, and
∑

S∈Σ

αS = 1

}

By Lemma 2,

PE =

{
Q =

∑

S∈Σ

βSP
E
S : βS =

αSPS (E)∑
S∈Σ αSPS (E)

,

αS ≥ 0, for S ∈ Σ, and
∑

S∈Σ

αS = 1

}

=

{
Q =

∑

S∈Σ

βSP
E
S : βS ≥ 0, for S ∈ Σ,

and
∑

S∈Σ

βS = 1

}
.

which shows that 1) PE is a bounded convex polyhedron; and 2) the set of
its extreme points is a subset of {PES , S ∈ Σ}. �

Proof of Theorem 2:

1) Let us first use the preceding lemmata to derive necessary and sufficient
conditions on P for the validity of equality PE = PEfE when E ∈ A is
such that f(E) > 0.
Since PE is a convex subset of PEfE , a bounded convex polyhedron, PE
is equal to PEfE if and only if every extreme point of PEfE belongs to PE .
By Lemma 1, the extreme points of PEfE are the probability measures
PS′ ∈ LE , S′ = (xi1 , xi2 , · · · , xiL) ∈ Σ′, set of all permutations of E,
determined by

PS′ (S′
�) = fE (S′

�) , for S′
� = {xi1 , xi2 , · · · , x�} , 1 ≤ ! ≤ L− 1. (35)

Thus PE = PEfE if and only if, for every S′ ∈ Σ′, there exists P ∈ Pf
such that

PE (S′
�) = fE (S′

�) , for 1 ≤ ! ≤ L− 1. (36)

According to Proposition 4, (36) is satisfied, if and only if

P (S′
�) = 0, when f (S′

�) = 0, i.e., for 1 ≤ ! ≤ L1 (37a)

and
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P (S′
�) = f (S′

�) and P (E\S′
�) = F (E\S′

�) , (37b)

when f(S′
�) > 0 and F (E\S′

�) > 0, i.e., for L1 < ! ≤ L2.
(Note that their properties uniquely define L1 and L2, that 0 ≤ L1 ≤
L2 ≤ L− 1 and that there is no condition for L2 ≤ ! ≤ L− 1).
Thus PE = PEfE if and only if, for every S′ ∈ Σ′ there is P ∈ Pf satisfy-
ing (37).

2) Let us now show that (S1)⇒ (S2).
It follows from Part (1) than when (S1) is true, there exists E ∈ A, with
f(E) > 0, and S′ ∈ Σ′ such that no P ∈ Pf satisfies (37).
However, according to Proposition 3, there exists P ∈ Pf such that

P (S′
�) = f (S′

�) = f (S′
�) , for 1 ≤ ! ≤ L2,

and

P
(
S′
L2
∪ Ec

)
= f

(
S′
L2
∪ Ec

)
or, equivalently,

P
(
E\S′

L2

)
= F

(
E\S′

L2

)
; (38)

thus, since P cannot satisfy (37), it must be that L1 < L2 − 1 and

P
(
E\S ′̄

�

)
< F

(
E\S ′̄

�

)
, for some L1 < !̄ < L2. (39)

From (38) and (39), it results then that

f
(
S′
L2

)
− f

(
S ′̄
�

)
= P

(
S′
L2

)
− P

(
S ′̄
�

)
= P

(
E\S ′̄

�

)
− P

(
E\S′

L2

)

< F
(
E\S ′̄

�

)
− F

(
E\S′

L2

)
= f

(
S′
L2
∪ Ec

)
− f

(
S ′̄
� ∪ E

c
)
.

It is straightforward that for A1 = S′
L2

and A2 = S ′̄
�
∪ Ec, hence for

A1 ∩A2 = S ′̄
�

and A1 ∪A2 = S′
L2
∪ Ec, (S2)’s requirements are satisfied.

3) Let us finally prove that, conversely (S2) ⇒ (S1). Given A1 and A2

satisfying (S2)’s requirements, let B1 = A1 ∩ A2, B2 = A2, and E =
(A1 ∩A2) ∪ Ac1. Necessarily B1 ⊂ B2 and, therefore, there exists S′ ∈ Σ′

and !1 < !2 such that B1 = S′
�1

and B2 = S′
�2

. It follows moreover from
(S2) that

f
(
S′
�i

)
> 0 and F

(
E\S′

�i

)
> 0, for i = 1, 2.

Thus any P ∈ Pf and satisfying (37) must, in particular, satisfy

P (B1) = f (B1) , P (B2) = f (B2) , P (E\B1)
= F (E\B1) , and P (E\B2) = F (E\B2)

which are the same as

P (A1 ∩A2) = f (A1 ∩A2) , P (A2)
= f (A2) , P (Ac1) = F (Ac1) (⇔ P (A1) = f (A1))
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and

P (Ac1 ∩Ac2) = F (Ac1 ∩Ac2) (⇔ P (A1 ∪A2) = f (A1 ∪A2)) .

These relations however imply

F (A ∪A2) + f (A1 ∩A2) = P (A1 ∪A2) + P (A1 ∩A2)
= P (A1) + P (A2) = f (A1) + f (A2)

which contradicts (3). There is therefore no such P in Pf , hence, by Part
(1), PE ⊂ PEfE and (S1) is true.

Theorem 2 shows that only “almost” additive belief functions f have the
property that PE is representable by fE for all E. In particular, it is worth
noticing that necessity functions [5], [19], which are defined as mappings A →
[0, 1] satisfying f(A ∩ B) = inf(f(A), f(B)), all A, B ∈ A, or, equivalently,
as belief functions with consonant, i.e. nested, focal elements, can only satisfy
property (S1) of Theorem 2 when |B| ≤ 3.

It can be concluded from Theorem 2 that, when the situation after condi-
tioning is summarized by fE (which represents PEfE but not PE), there may
exist an important loss of information. One of the unpleasant consequences of
this loss concerns iterated conditioning is Corollary 2.

Corollary 2. Let f be a belief function on A and Pf = {P ∈ L : P ≥ f}.
Statements (S1) and (S2) of Theorem 2 are both equivalent to statement (S3).
There exist E1, E2 ∈ A, with E2 ⊂ E1 and f(E2) > 0, such that (fE1)E2 	=
fE2 .

Proof. 1) For any B ⊆ E2, there exists (by Proposition 4), P ∈ Pf such that
fE2(B) = PE2(B) = (PE1)E2(B) ≥ (fE1)E2(B). Thus (S3) states the
existence of some B ⊆ E2 such that fE2(B) > (fE1)E2(B).
(S1) and (S2) being equivalent, we shall prove that (S3) ⇒ (S1) and
(S2)⇒ (S3).

2) Suppose (S3) is true. There exists (by Corollary 1) Q ∈ PE1 such that
QE2(B) = (fE1)E2(B); however, Q 	∈ Pε1 since the existence of P ∈ Pf
such that Q = PE1 would imply fE2(B) ≤ (PE1)E2(B) = QE2(B). Thus
(S1) is true.

3) If (S2) is true, define E1 = A2∪Ac1, E2 = (A1∩A2)∪ (Ac2∩Ac1), and B =
A1 ∩A2 (thus B U Ec1 = A1, B U (E1\E2) = A2, and B∪Ec2 = A1 ∪A2).
By relation (19):

fE2 (B) =
f (B)

f (B) + 1− f (B ∪ Ec2)
=

f (A1 ∩A2)
f (A1 ∩A2) + 1− f (A1 ∪A2)

.

Similarly, from
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(
fE1

)E2 (B) =
fE1(B)

fE1 (B) + 1− fE1 (B ∪ (E1\E2))

fE1 (B) =
f (B)

f (B) + 1− f (B ∪ Ec1)

and
fE1 (B∪ (E1\E2)) =

f (B∪ (E1\E2))
f (B∪ (E1\E2)) + 1− f (B∪Ec2)

it follows that (see equation at the bottom of the page).
Therefore, fE2(B) > f (E1)E2(B) since [f(A1 ∩A2) + 1− f(A1)] [f(A2) +
1− f(A1 ∪A2)]−1 > 1, if and only if inequality (3) of (S2) holds.

We shall use Example 2 again to illustrate the possible loss of informa-
tion resulting from iterated conditioning, and the consequences of this loss in
decision making.

Example 2 (continued): Since Property (S2) is satisfied by A1 = xox3 and
A2 = xox2, let us take E1 = xox1x2(= E), E2 = xox1 and B = xo. It is
easily seen that PE2 is a singleton, fE2 being the probability measure defined
by fE2(xo) = 1/4 and fE2(x1) = 3/4. Thus PE2(xo) is exactly given by a
direct calculation, but not by an iterated one since it follows from relation
(19) applied to fE1 = fE that (fE1)E2(xo) = 1/10 and (fE1)E2(x1) = 1/2,
which only locates pE2(xo) in interval [1/10, 1/2].

(
fE1

)E2
(B) =

f (A1 ∩ A2)

f (A1 ∩ A2) + [1 − f (A1 ∪ A2)] [f (A1 ∩ A2) + 1 − f (A1)] [f (A2) + 1 − f (A1 ∪ A2)]−1

Consider then a decision maker (DM) who uses the MAXMIN-EU criterion
(i.e., choses the decision that maximizes the smallest expected utility (EU)
consistent with his information) and can, at any time, abandon the status quo
(utility level zero) for decision d characterized by utility levels

u (d (xo)) = 11, u (d (x1)) = −2, u (d (x2)) = u (d (x3)) = −1.

In the initial state of information, the DM should prefer the status quo, since
the EU offered by d is independent of P in P and equal to (−1/4). Given
E1, updating rule f "→ fE1 (i.e., P "→ PE1) does not exclude probability Q
defined by Q(xo) = 1/12, Q(x1) = 3/4, and Q(x2) = 1/6, which associates an
EU equal to (−3/4) with d, and thus makes the status quo seem preferable.
On the other hand, the correct updating rule, P "→ PE1 shows d to secure
EU level 1/12 and thus to be the better decision. Finally, given E2, updating
rule fE1 "→ (fE1)E2 only shows d to secure EU level (−7/10) (achieved when
PE2(xo) = 1/10), whereas the true EU level is in fact known and equal to
5/4, making d better than the status quo.
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Conclusion

It follows from Theorem 2 that there exists no conditioning rule for belief
functions that is also consistent with the lower envelope interpretation of
belief functions.

The fact that the conditional belief function fE does not correctly repre-
sent the situation of uncertainty given E, does not make it useless. First, fE

indicates the exact range of the conditional probability pE(A) of every event
A. Second, fE is useful for approximate calculations. For example, the “Cho-
quet integral”

∫
Y dfE provides a lower bound of inf

Q ∈ PE

∫
Y dQ. Note that

this calculation only requires the knowledge of φE which, due to Theorem 1,
can be directly deduced from φ, and that φ is often the original data (rather
than f). Still the systematic use of fE for representing (approximately) PE
must be rejected on account of undesirable properties like (S3) of Corollary 2.
As a matter of fact, Smets [16] has proven that Dempster’s rule f "→ gE (see
21) is the only rule possessing the iterated conditioning consistency property

(
gE1

)E2 = qE2 for E2 ⊆ E1

(and satisfying some other mild requirements; see also recent results by Gilboa
and Schmeidler [7]); however gE does not in general represent PE .

There are however other ways of representing PE. In particular, by using
the fact that P is the set of all allocations of φ (see (8), (9), and Proposition
2), one can describe PE as the set of all PEλ such that

PEλ (A) =
Pλ (A)
Pλ (E)

=

∑
x∈A

λ(B,x)φ(B)∑
B∈B,B⊇{x}

∑
x∈E

λ(B,x)φ(B)∑
B∈B,B⊇{x}

∀ A ∈ AE

a ratio of two linear forms with respect to the variables, the unknown weights
λ(B, x). An alternative representation that uses f instead of φ is simply

PE =
{
Q ∈ LE : Q (A) =

P (A)
P (E)

∀ A : P ∈ L, P ≥ f

}
.

These representations are promising since they make standard optimization
techniques relevant for solving decision problems. For example, evaluating

min
Q ∈ PE EQY , for a given r.v.Y., amounts in both cases to solving a fractional
program (or the equivalent linear program). Results obtained by these rep-
resentations will be presented in “Dynamic decision making with belief func-
tions” (in prep.)
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Belief-Function Formulas for Audit Risk

Rajendra P. Srivastava and Glenn R. Shafer

Abstract. This article relates belief functions to the structure of audit risk and pro-
vides formulas for audit risk under certain simplifying assumptions. These formulas
give plausibilities of error in the belief-function sense.

We believe that belief-function plausibility represents auditors’ intuitive under-
standing of audit risk better than ordinary probability. The plausibility of a state-
ment, within belief-function theory, measures the extent to which we lack evidence
against the statement. High plausibility for error indicates only a lack of assurance,
not positive evidence that there is error. Before collecting, analyzing, and aggregat-
ing the evidence, an auditor may lack any assurance that a financial statement is
correct, and in this case will attribute very high plausibility to material misstate-
ment. This high plausibility does not necessarily indicate any evidence that the
statement is materially misstated, and hence, it is inappropriate to interpret it as a
probability of material misstatement.

The SAS No. 47 formula for audit risk is based on a very simple structure for
audit evidence. The formulas we derive in this article are based on a slightly more
complex but still simplified structure, together with other simplifying assumptions.
We assume a tree-type structure for the evidence, assume that all evidence is affir-
mative and that each variable in the tree is binary. All these assumptions can be
relaxed. As they are relaxed, however, the formulas become more complex and less
informative, and it then becomes more useful to think in terms of computer algo-
rithms rather than in terms of formulas (Shafer and Shenoy 1988).

In general, the structure of audit evidence corresponds to a network of variables.
We derive formulas only for the case in which each item of evidence bears either
on all the audit objectives of an account or on all the accounts in the financial
statement, as in Fig. 1, so that the network is a tree. Usually, however, there will
be some evidence that bears on some but not all objectives for an account, on some
but not all accounts, or on objectives at different levels; in this case, the network
will not be a tree.

We assume that all evidence is affirmative because this is the situation treated
by the SAS No. 47 formula and because belief-function formulas become significantly
more complex when affirmative and negative evidence is combined. This complexity
is due primarily to the renormalization involved in Dempster’s rule for combining
belief functions.
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The variables in the network or tree represent various audit objectives, accounts,
and the financial statement as a whole. We assume these variables are binary. For
example, we assume that an account either is or is not materially misstated. This
assumption is clearly too restrictive for most audit practice. Often, for example, an
auditor must consider immaterial errors in individual accounts that could produce
a material error in the financial statement when they are aggregated.

We derive formulas for plausibility of material misstatement at three levels: the
financial statement level, the account level, and the audit objective level. The formula
at the audit objective level resembles the SAS No. 47 formula,1 but the formulas at
the other two levels are significantly different. Because our model does distinguish
evidence gathered at the three different levels, audits based on our formulas are
sometimes significantly more efficient2 than audits based on the SAS No. 47 model
or on the simpler Bayesian models.

Key words: Audit risk, Belief functions, Planning model, Evaluation model

The remainder of this article is divided into seven sections and two appen-
dices. In Sect. 1, we review the existing literature on the audit-risk model. In
Sect. 2, we review the structure of various types of audit evidence. In Sect. 3,
we review the belief-function treatment of audit evidence and discuss using
1 With the evidential structure that we consider in this article, we obtain plau-

sibility formulas that are closer in form to the SAS No. 47 formula than to
Bayesian formulas (Leslie 1984). This is because the belief-function theory per-
mits an auditor to have belief, say 0.6, based on the procedures performed, that
a given objective is met, without having to assign the remaining 0.4 of his or her
belief to whether the objective has been met or not. This unassigned belief, 0.4,
in the case, represents the plausibility that the objective is not met.
Those accustomed to Bayesian thinking may prefer to express judgments about
the effectiveness of procedures in terms of conditional probabilities for detection
of error, given the presence or absence of such error. In our view, such condi-
tional probabilities are only one way of expressing intuitive judgments that may
alternatively be expressed in terms of belief functions. We would express our
intuitive judgments as conditional probabilities only if we intended to carry out a
completely Bayesian analysis. We would express our intuitive judgments directly
in terms of m-values if we intended to carry out a belief-function analysis. It is
possible, nonetheless, to express intuitive judgments in terms of conditional prob-
abilities and then to translate these conditional probabilities into belief functions.
There is some arbitrariness involved in the translation, but it can be carried out
in such a way that the Bayesian approach becomes a special case of the belief-
function approach (Shafer 1982). If we combine the belief function representing
the conditional probabilities with a Bayesian prior using Dempster’s rule, we will
obtain the appropriate Bayesian posterior.

2 In general, the more accurately we model the structure of audit evidence, the more
effective and efficient we can expect the audit to be. However, it is also important
to recognize that if the necessary inputs to a more accurate model cannot be
estimated accurately by the auditor, decreases in audit effort mandated by the
model can decrease audit effectiveness.
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belief-function plausibility to represent audit risk. In Sect. 4, we discuss the
combination of beliefs (or m-values) at each level of the financial statement.
This combination corresponds to aggregating the evidence that bears directly
on the objectives at those levels. In Sect. 5, we present total plausibility for-
mulas (i.e., belief-function formulas for the total audit risk) and numerical
examples. In Sect. 6, we highlight the limitations of our formulas and sug-
gest future directions for research. In Sect. 7, we summarize our results. We
review the propagation of belief functions in a tree in appendix A, and we use
these results to derive the belief-function formulas for the total audit risk in
appendix B.

1 Review of the Literature

Here we will review the existing literature on audit risk formulas and the diffi-
culties involved in interpreting the numbers in these formulas as probabilities.

Although the model of SAS No. 47 (AICPA 1983) has been used for plan-
ning purposes since June 1984, controversy about its applicability for planning
and evaluation has persisted. Graham points out, for example, that “overall
assessments of audit risk for the financial statements taken as a whole are usu-
ally impractical for audit planning and engagement control” (1985a, 14), since
inherent and control risks can vary from one account to another and from one
class of transactions to another. Graham further suggests that the audit-risk
model should be decomposed into components that determine audit risk for
management assertions related to each account balance (accounts receivable,
inventory, etc.) or class of transactions (purchases, sales, etc.). Cushing and
Loebbecke (1983) argue that the SAS No. 47 model provides no guidance
on aggregating risks associated with various account balances, and Kinney
(1989) has demonstrated recently that the model has properties that may
significantly understate achieved audit risk.

Bayesian models have also been discussed in the literature for risk aggre-
gation (see, e.g., Kinney 1984; Leslie 1984). The simplest Bayesian models
do not consider different levels of the account, but Boritz and Jensen (1985)
discuss the hierarchical structure of audit evidence and propose ways to com-
bine such evidence by using probabilities to represent risks. Also, in discussing
their assertion-based approach to auditing, Leslie et al. (1986) recognized the
importance of the structure of audit evidence and emphasized that assurances
from various items of evidence should be assessed at the management asser-
tion level of the account and then combined. They considered the relationship
between various accounts (e.g., accounts receivable depends on sales and cash
receipts) in the aggregation process, but they assumed that the different items
of evidence for different accounts were independent.3

3 Leslie et al. (1986) assume Poisson error rates, and they base their analysis on
assurance factors, which represent Poisson parameters. They do not explicitly
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At a qualitative level, there has been increasing recognition of the impor-
tance of the structure of evidence and its relation to various audit objectives
in assessing control risk. In SAS No. 55 entitled “The Auditor’s Responsibil-
ity for Assessing Control Risk” (AICPA 1988a, par. 3), we find the following
statement:

After obtaining this understanding, the auditor assesses control risk
for the assertions embodied in the account balance, transaction class,
and disclosure components of the financial statements.

Although the AICPA has not yet required auditors to consider individual
audit objectives when assessing other risks (e.g., inherent risk and detection
risk), it appears that many are already doing so (Graham 1985a–1985e).

Boritz and Wensley (1990) have used the structure of audit evidence to
develop their computer system for audit planning and evaluation, but their
system uses heuristic rules rather than formal theory to combine uncertainties.
Since such heuristics have been seen to fail in complex systems (Buchanan and
Shortliffe 1984), we believe that more needs to be done to develop theoretical
methods of combination that take account of the complexity of the structure
of audit evidence.

We advance belief functions as a basis for this theoretical development
because we believe that the usefulness of the Bayesian approach is limited by
divergences between the intuitive and Bayesian interpretations of audit risk.
For example, according to SAS No. 47, if an auditor decides not to consider
inherent factors, then the inherent risk is set equal to 1. Since a probability of
1 means certainty, this seems to be saying that it is certain that the account is
materially in error. But this is not what the auditor has in mind when deciding
not to depend on inherent factors. The auditor’s intention is represented better
by a belief-function plausibility of 1 for material error, which says only that
the auditor lacks evidence based on inherent factors.

In a less extreme situation, the auditor may believe, on the basis of inherent
factors, that the account is fairly stated and yet be unwilling to rely on these
factors past a certain point. In this case, the auditor may, as SAS No. 47
suggests, assign a value less than the maximum, say 70 percent, to inherent
risk. If interpreted in probability terms, this number says that the inherent
factors give a 30 percent chance that the account is not materially misstated
and a 70 percent chance that it is materially misstated. This suggests that
the evidence is negative, contrary to the auditor’s intuition. The probability
interpretation is even more confusing if the auditor sets the inherent risk at
50 percent. What does this mean? Does it mean that the auditor is completely
ignorant about the state of the account, or does it mean there is more evidence
that the account is not being materially misstated than when only 30 percent
assurance was assumed?

assume the independence of different items of evidence, but this assumption
appears to be the justification for their practice of summing individual assur-
ance factors to obtain an overall level.
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Belief functions, since they permit uncommitted belief, allow us to inter-
pret the auditor’s choices in a straightforward way. When the auditor sets
the risk at 70 percent, a 30 percent degree of support from inherent factors is
claimed, leaving 70 percent of the auditor’s belief uncommitted. In this case,
material misstatement has 70 percent plausibility, but absence of material
misstatement has 100 percent plausibility. When the auditor sets the risk at
50 percent, stronger support from inherent factors is claimed. In this case,
the plausibility of material misstatement is reduced to 50 percent, while the
plausibility of no material misstatement remains at 100 percent.

We believe that belief functions provide a flexible and adaptable way to
combine evidence from a variety of sources (Akresh et al. 1988). One aspect of
this flexibility is that, when the belief functions representing individual items
of evidence are probability measures, the belief-function analysis reduces to a
Bayesian analysis (Shafer and Shenoy 1990).

2 The Structure of Audit Evidence

As we have seen, neglect of the structure of audit evidence has been a prob-
lem in some risk models. Before developing belief-function formulas we must,
therefore, specify carefully the kind of structure we are considering.

We will adopt the structure currently assumed in auditing standards
(AICPA 1988a; see also, e.g., Arens and Loebbecke 1988), with some simpli-
fications. The standards generally divide audit evidence into four categories:
(1) general knowledge about inherent risk, (2) evidence from analytical proce-
dures, (3) knowledge of control factors and accounting systems, and (4) tests
of details of balances. Within each general category, further structure arises
because of the relevance of different items of evidence to different accounts
and different objectives. In the following subsections, we review the structure
within each of the four categories.

General Knowledge about Inherent Risk

In this category, we include general knowledge about risk factors that lie
outside of the accounting system and also outside of the auditor’s control.
Examples include economic, political, business and regulatory environments,
experience from the prior year’s audit, management philosophy and style,
organizational structure, and audit committee (see SAS No. 55 for more exam-
ples). Also included in this category are factors that make individual accounts
more or less susceptible to error, such as the complexity of transactions, the
volume of transactions processed, the susceptibility of assets to defalcation,
and related party transactions. Such factors are important for the auditor’s
planning decisions, since the extent, nature, and timing of tests will depend
on the auditor’s assessment of the effect of these factors on the individual
accounts and on the financial statement as a whole.
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Some inherent factors affect entire financial statements, whereas others
affect only certain accounts or classes of transactions. Some affect only a par-
ticular audit objective for an account or a class of transactions. Information
about the competence and integrity of management, for example, will affect
the entire financial statement. The auditor will have a higher level of assurance
about the financial statement when management is of recognized competence
and integrity than when management is known to have been involved previ-
ously in irregularities. In contrast, an auditor auditing a newspaper publisher
realizes that libel suits against newspapers are common and will treat this
knowledge as evidence affecting only accrued-contingent liability. The nature
and complexity of an individual account (e.g., susceptibility to defalcation,
volume of transactions, non-routine transactions, account balance based on
management’s judgment) also may affect only that account. As an example
of evidence that affects only a certain audit objective, we might cite infor-
mation about ralated party transactions from the minutes of board meetings.
This information affects only the disclosure and classification objectives of the
accounts involved in the transaction.

In summary, we see that evidence about inherent factors can bear on the
financial statement at three different levels: (1) the financial statement level,
(2) the individual account or class of transactions level, and (3) the audit
objective level for individual accounts or classes of transactions. See Fig. 1 for
details.

Analytical Procedures

Recently, the AICPA published SAS No. 56 (AICPA 1988b), requiring audi-
tors to use analytical procedures on all audit engagements. According to SAS
No. 56 (par. 2),

Analytical procedures are an important part of the audit process
and consist of evaluations of financial information made by a study of
plausible relationships among both financial and non-financial data.
Analytical procedures range from simple comparisons to the use of
complex models involving many relationships and elements of data.

The statement proposes that analytical procedures be used for the follow-
ing purposes (par. 4):

1. To assist the auditor in planning the nature, timing and extent of other
auditing procedures.

2. As a substantive test to obtain evidential matter about particular asser-
tions related to account balances or class of transactions.

3. As an overall review of the financial information in the final review
stage of the audit.

According to SAS No. 56, the expected effectiveness and efficiency of an
analytical procedure depends on (1) the nature of the audit objectives, (2)
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Fig. 1. An evidential network
Note: A rounded rectangle represents a variable (variables being the financial state-
ments as a whole, various accounts, and the related audit objectives). A rectangle
represents an item of audit evidence. The evidence is connected to a variable that
it directly supports. A circle with “&” implies that the variable on the left is true
if and only if the variables on the right of the circle are true

the plausibility and predictability of the relationship, (3) the reliability and
availability of the data used to develop the expectation, and (4) the precision
of the expectation.

Like general knowledge about inherent factors, analytical procedures can
provide assurance at various levels. The more common analytical procedures
seem to provide assurance at either the account level or the audit objective
level. A comparison of the previous year’s accounts payable with the current
period’s accounts payable provides assurance for the accounts payable balance
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as a whole. A comparison of the previous year’s ratio of bad debt expense
to accounts receivable balance with the current year’s ratio would bear on
collectibility of accounts receivable, a valuation objective.

In the present article, for the purpose of completeness, we will assume
analytical procedures to be effective at all three levels: (1) the financial state-
ment level, (2) the account or class of transactions level, and (3) the audit
objective level for accounts or classes of transactions. When certain items of
evidence are not to be considered in an audit, then those items are eliminated
by setting the corresponding plausibilities to 1 (see the discussion in Sect. 5).

Control Factors and Accounting Systems

We include in this category all items of evidence related to accounting systems,
control procedures, and tests of transactions. A test of controls typically bears
on the audit objective level of an individual account, while a test of trans-
actions typically bears on the audit objective level of a class of transactions.
Controls built into a cost accounting system, for example, bear on the valua-
tion objective of inventory, while the use of prenumbered bills of lading and
sales invoices periodically accounted for bears on the completeness objective
of sales.

Tests of Details of Balances

Tests of details of balances bear primarily on the audit objective level. Since
it is costly to obtain this type of evidence, the auditor minimizes the need for
it by maximizing the assurance to accounts and audit objectives from other
sources.

Some tests of details balance bear on only one audit objective, while others
may bear on more than one. A review of the minutes of board meetings to
check whether receivables have been factored bears only on the ownership
objective of accounts receivable, but confirmations of accounts receivable by
customers provide assurance for both the existence and valuation objectives.
In general, such assurances may vary in strength from objective to objective.
For example, confirmation of accounts receivable may provide a higher level
of support for the existence objective than for the valuation objective.

When an item of evidence bears equally on all the objectives of an account
or all the accounts of the financial statement, we can represent it within a tree
structure by linking it directly to the account or the financial statement, as
the case may be. But when a test provides support to more than one audit
objective, say, but not equally to all the objectives at once, we obtain a network
of variables that is not a tree, and this makes the derivation of formulas
cumbersome. The formulas given here are based on the assumption that the
network is a tree, but they can be used as approximations in the non-tree
case. One way to use them as approximations is to treat the evidence as if it
consisted of independent items of evidence bearing on the different objectives.
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The formula for the total audit risk (i.e., total plausibility of error) at the
audit objective level will still be valid (i.e., it maintains its multiplicative
form; see Sect. 5) when we do this, but the formulas at the account level and
the financial statement level will provide only a conservative estimate of the
total risk (i.e., plausibility of error). For example, suppose that confirmations
of accounts receivable yield 0.9 level of assurance that both existence and
valuation objectives are met. If we treat this as two items of evidence, one
giving 0.9 degree of support for existence and one giving 0.9 for valuation,
then our formulas give a total assurance, for the two objectives jointly, of
0.9 × 0.9 = 0.81, corresponding to a risk (plausibility of error) of 0.19. But
the correct value for the assurance is 0.9, corresponding to a risk of 0.1.

3 Belief-Function Approach to Audit Evidence

In this section, we review the belief-function approach to representing uncer-
tainties in audit evidence. The belief-function framework involves three related
representations for beliefs concerning a topic: the belief function (Bel), the
plausibility function (PL), and the basic probability assignment (m). As we
will explain, the basic probability assignment is often convenient for express-
ing initial judgments, but the plausibility function is useful for expressing final
judgments about audit risk.

The basic probability assignment is also called the m-function, and its val-
ues are called m-values (Shafer 1976). The basic difference between m-values
and probabilities is that probabilities are assigned to individual elements of a
frame,4 say Θ, whereas m-values are assigned to a subset of elements of the
frame. The sum of all the m-values for all the subsets of the frame Θ is 1.
Formally, the m-function assigns a number m(B) to each subset B of Θ such
that m(∅) = 0(∅ being the empty set) and:

∑

B⊆Θ
m (B) = 1.

There are two ways to obtain m-values on a frame: (1) they may be
assigned directly by the decision maker on the basis of subjective judgment
and (2) they may be derived from a compatibility relationship between a
frame with known probabilities and the frame of interest.5 We will use the
first approach to discuss our example.

Suppose the auditor has performed a set of analytical procedures appro-
priate to account ‘A’ and finds no discrepancy or errors in the account. On
4 We call an exhaustive and mutually exclusive set of possible answers to a question

a frame. We will often use the symbol Θ to represent the frame in which we are
interested. In the case of a yes-no question, the frame has only two elements;
Θ = {yes, no}, or Θ = {a = account ‘A’ is not materially misstated, ∼ a =
account ‘A’ is materially misstated}, etc. But, in general, a frame may be a very
large set, for its question may have many possible answers.

5 In general, if we want to make probability judgments about the elements of a
frame Θ for which we have no probability measures, we can do so by relating the
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the basis of this observation, the auditor feels that the evidence is positive
and provides a medium level of support, say 0.6, to ‘a’ that the account is
not materially misstated.6 However, at the same time, the auditor feels that
there is nothing to indicate that the account is materially misstated (∼a).
This means that 0.6 degree of support is assigned to ‘a’, 0 to ‘∼a’, and the
remaining 0.4 is the ignorance assigned to the entire frame Θ = {a,∼ a};
that is,

mPA (a) = 0.6,mPA (∼a) = 0, and mPA (a,∼a) = 0.4,

where the subscript PA stands for analytical procedures at the account level.
The above set of m-values represents affirmative evidence.7

elements of Θ to the elements of the frame S for which we have knowledge of its
probability distribution. This relationship is called the compatibility relationship.
The basic idea is that each probability P(s), where s is an element of S, should
contribute to a degree of belief in the subset Γ(s) of Θ consisting of elements with
which s is compatible. If several s items have the same Γ(s)—in other words,
Γ(s) is equal to B for several s items—then the probabilities of all these will
contribute to our degree of belief that the answer to the question considered by
Θ is somewhere in B. For each subset B of Θ, let m(B) be the total probability
for all the s items whose Γ(s) is equal to B:

m(B) =
∑

Γ(s)=B

P(s).

It follows from this formula that:
∑

B⊆Θ

m(B) = 1,

and
m(∅) = 0,

where ∅ is the empty set.
6 As a general convention, we will use capital letters to denote names of accounts

or audit objectives (nodes) and small letters in script to represent their values.
7 Affirmative evidence implies that the evidence directly supports the assertion to

a certain degree and provides no support for its negation. In our example, we
have mPA(a) = 0.6, mPA(∼ a) = 0, and mPA({a,∼ a}) = 0.4, which implies
that we have direct evidence that ‘a’ is met with 0.6 degree of support and no
evidence that ‘a’ is not met.
Negative evidence implies that the evidence directly supports the negation of the
assertion and provides no support for the assertion, i.e.,

mPA(a) = 0, mPA(∼a) = 0.4, and mPA({a,∼a}) = 0.6.

A mixed item of evidence can be defined as an item that provides some support
for the assertion and some for its negation, i.e.,

mPA(a) = 0.5, mPA(∼a) = 0.3, and mPA({a,∼a}) = 0.2.
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As mentioned earlier, we will consider only affirmative evidence in our
derivation of audit risk formulas. Although the approach of aggregating evi-
dence discussed in this article is valid for any type of evidence, use of affir-
mative evidence avoids the renormalization procedure8 in aggregating various
items of evidence and thus yields simple analytical formulas.

Let us go back to our example of analytical procedures discussed above
and express the auditor’s judgment about the level of support obtained (or to
be obtained when planning the audit) from the procedures for account ‘A’ in
terms of algebraic expressions:

mPA (a) = 1−APRA, (1)
mPA (∼ a) = 0, (2)

and
mPA ({a,∼ a}) = APRA, (3)

where APRA represents a number. Equation (1) implies that the analyti-
cal procedures performed by the auditor for account ‘A’ provide assurance
that the account is not materially misstated with (1 − APRA) degree of
support.

Belief Functions and Plausibility Functions

In general, the total belief in a subset B of the frame Θ is given by:

Bel (B) =
∑

X⊆B
m (X) , (4)

where X represents a set of elements of Θ, and the plausibility of B is given by:

PL (B) =
∑

B∩X �=∅

m (X) = 1−Bel (∼ B) . (5)

8 Consider two independent items of evidence with m1 and m2 representing the
m-values on a frame Θ. By Dempster’s rule (Shafer 1976), the combined m-value
for a subset A of frame Θ is:

m(A) = K−1Σ{m1(B1)m2(B2)|B1 ∩ B2 = A, A �= ∅},
where K is the renormalization constant;

K = 1 − Σ{m1(B1)m2(B2)|B1 ∩ B2 = ∅}.
The second term in K represents the conflict between the two items of evidence.
If the conflict term is 1, i.e., if the two items of evidence exactly contradict each
other, then K = 0 and, in such a situation, the two items of evidence are not
combinable. In other words, Dempster’s rule cannot be used when K = 0.
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Intuitively, the plausibility of B is the degree to which B is plausible in the
light of the evidence—the degree to which we do not disbelieve B or assign
belief to its negation ∼ B. Complete ignorance or lack of opinion about B is
represented by Bel(B) = 0 and PL(B) = 1.

Consider again the numerical example discussed above. We have mPA(a) =
0.6, mPA(∼ a) = 0, and mPA(a,∼ a) = 0.4. From (4) and (5), we obtain:

BelPA (a) = mPA (a) = 0.6,

BelPA (∼ a) = mPA (∼ a) = 0,

BelPA ({a,∼ a}) = mPA (a) + mPA (∼ a) + mPA (a,∼ a) = 0.6 + 0 + 0.4 = 1.0,

and

PLPA (a) = 1−BelPA (∼ a) = 1,
PLPA (∼ a) = 1−BelPA (a) = 1− .06 = 0.4.

The intuitive meaning of BelPA(a) = 0.6 is that the auditor has direct evi-
dence from analytical procedures relevant to account ‘A’ that ‘a’ is true with
0.6 degree of support (i.e., the account is not materially misstated with degree
0.6). BelPA(∼ a) = 0 means that the auditor has no evidence from analytical
procedures that the account is materially misstated (i.e., ∼ a is true).

Let us now consider PLPA(a) = 1. What does it mean? We know that
analytical procedures provide no belief to ∼ a(BelPA(∼ a) = 0). Since there
is no support committed to just ∼ a all the probability mass could be assigned
to a, which implies that PLPA(a) = 1. Similarly, since BelPA(a) = 0.6
(i.e., 0.6 degree of belief is directly committed to a), the remaining amount
0.4 of uncommitted probability mass could be assigned to ∼ a; that is,
PLPA(∼ a) = 0.4.

Going back to the m-values in (1)–(3), we obtain the following beliefs and
plausibilities:

BelPA (a) = 1−APRA,BelPA (∼ a) = 0, and BelPA ({a,∼ a}) = 1, (6)

and
PLPA (a) = 1, and PLPA (∼ a) = APRA. (7)

The plausibility function, PLPA(∼ a) = APRA, has an important inter-
pretation. It provides a non-frequentist interpretation of the auditing concept
of risk. This is a measure of how risky we feel it would be to stop with this
evidence. According to the analytical procedures performed at the account
level, we have (1−APRA) degree of belief that a is true, leaving a plausibility
of PLPA(∼ a) = APRA that the account is materially misstated. This is the
audit risk associated with the analytical procedures performed at the account
level (see Table 1 for definitions of other risks).

This plausibility interpretation of audit risk is conceptually in agreement
with the thought process of the auditor when planning an audit. For example,
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Table 1. List of symbols and their definitions

Propositions
a – Account ‘A’ is not materially misstated.

∼ a – Account ‘A’ is materially misstated.
f – The financial statement, F , is not materially misstated.

∼ f – The financial statement, F , is materially misstated.
ao – There is no material misstatement related to objective ‘O’ of account

‘A’.
∼ ao – There is material misstatement related to objective ‘O’ of account ‘A’.

m-Functions, Belief Functions, and Plausibility Functions
mA(•) – m-values at the level of account A for the proposition(s) in the argument.
mF (•) – m-values at the level of the financial statement for the proposition(s) in

the argument.
mAO(•) – m-values at the level of the audit objective O of account A for the

proposition(s) in the argument.
mCO(•) – m-values obtained from internal controls and accounting systems at the

audit objective level for the proposition(s) in the argument.
mDO(•) – m-values obtained from detailed test of balance at the audit objective

level for the proposition(s) in the argument.
mIA(•) – m-values obtained from inherent factors at the account level for the

proposition(s) in the argument.
mIO(•) – m-values obtained from inherent factors at the audit objective level for

the proposition(s) in the argument.
mIF (•) – m-values obtained from inherent factors at the financial statement level

for the proposition(s) in the argument.
mPA(•) – m-values obtained from analytical procedures performed at the account

level for the proposition(s) in the argument.
mPF (•) – m-values obtained from analytical procedures performed at the financial

statement level for the proposition(s) in the argument.
mPO(•) – m-values obtained from analytical procedures performed at the audit

objective level for the proposition(s) in the argument.
Belx(•) – A belief function, x represents various indices as described above in the

case of m .
PLx(•) – A plausibility function, x again represents various indices as described

in the case of m .

Plausibility Functions for Material Misstatements
(i.e., Audit Risks∗ in Belief-Function Framework)

IRAO – Plausibility of material misstatement in objective ‘O’ of account ‘A’
obtained from inherent factors at ‘O’ of ‘A’, or the risk (in the belief-
function framework) associated with inherent factors at ‘O’ of account
‘A’.

CRAO – Control risk (plausibility of material misstatement on the basis of inter-
nal controls and accounting systems) for account ‘A’ at audit objective
‘O’.

APRAO – The risk associated with analytical procedures performed at the audit
objective level.

(Continued)
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Table 1. (Continued)

DRAO – The risk associated with detailed test of balance for account ‘A’ at objec-
tive ‘O’.

ARAO = IRAOAPRAOCRAODRAO, audit risk at the audit objective level when
considering only the items of evidence that directly support the audit
objective ‘O’ of account ‘A’.

IRA – The risk associated with inherent factors at the account level.
APRA – The risk associated with analytical procedures performed at the

account level.
IRF – The risk associated with inherent factors at the financial statement level.

APRF – The risk associated with analytical procedures performed at the financial
statement level.

ARt
AO = IRF APRF IRAAPRAARAO, total audit risk at the objective level con-

sidering all the items of evidence.

ARt
A = IRF APRF IRAAPRA

[
1 −∏

O

(1 − ARAO)

]
, total audit risk at the

account level considering all the items of evidence.

ARt
F = IRF APRF

[
1 −∏

A

(1 − ARA)

]
, total audit risk at the financial state-

ment level.
∗ Note that we have used the term “risk” for plausibility of material misstatement
in the table and also in the text.

if the auditor plans an audit of an account to obtain an overall assurance of
0.95 (i.e., Bel(a) = 0.95) that the account is not materially misstated then, in
plausibility terms, it means that the auditor is planning the audit at the 0.05
level of plausibility for material error in the account (i.e., PL(∼ a) = 0.05). In
other words, if the auditor had to stop after obtaining 0.95 level of assurance
that ‘a’ was true, then the evidence gathered up to that point would suggest
that ‘∼ a’ is plausible with degree 0.05; that is, there is a maximum risk of
0.05 that the account is materially misstated.9

In general, Bel(B) ≤ PL(B) for every subset B of our frame Θ. If we
believe B, then we think B is plausible, but the converse is not necessarily
true. A zero plausibility for a proposition means that we are sure that it is
false (like a zero probability in the Bayesian theory), but a zero degree of belief
for a proposition means only that we see no reason to believe the proposition.

Similar explanations can be given to the m-values, belief functions, and
plausibility functions for the other seven items of evidence presented in

9 Here is another example. Suppose the evidence gathered up to this point gives us
the following m-values: m(a) = 0.95, m(∼ a) = 0.02, m({a,∼ a}) = 0.03.
From (4) and (5), we obtain Bel(a) = 0.95, PL(a) = 0.98, Bel(∼ a) =
0.02, PL(∼ a) = 0.05. This means that we have 0.95 degree of belief that ‘a’
is true and 0.02 degree of belief that ‘∼ a’ is true. However, the plausibility of
‘∼ a’ is 0.05, which means that if we had to stop at this point, we would be taking
a maximum risk of 0.05 that ‘∼ a’ is true although the belief in ‘∼ a’ is only 0.02.
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Table 2. The individual m-values given in Table 2 combined with Demp-
ster’s rule (see fn. 8) will give us the overall belief that the financial statement
is fairly presented. Since these m-values are defined at different nodes in an
evidential network (e.g., see Fig. 1), combining them becomes a problem of
propagating m-values (or belief functions) through the network. We have dis-
cussed this problem in a working paper10 and have summarized the results in
appendix A.

4 m-Values Directly Defined at Each Node

To combine all the evidence in Fig. 1, we need to combine the m-values
given in Table 2. There are eight sets of m-values (four at the audit objective
level, two at the account level, and two at the financial statement level; see
Table 2). Combining these m-values, in general, is very complex. However,
the process is simplified if we proceed in two steps. First, we combine the
m-values directly bearing on each node in Fig. 1. For example, we combine
the m-values obtained from the four items of evidence at the audit objective
level. Similarly, the total m-values bearing directly at the account level and
the financial statement level will be the combination of two m-values defined
at each level. Second, we propagate the above m-values obtained at each
node using the results of appendix A. In the following paragraphs, we discuss
the first step and provide analytical formulas for the resultant m-values at
each level.

m-Values at the Financial Statement Level

We assume that the two items of evidence directly bearing at the financial
statement level are: (1) inherent factors and (2) analytical procedures (see
fig. 1). We further assume that these items of evidence are affirmative in
nature. The corresponding m-values are given in Table 2. Since there is no
conflict among the evidence, we obtain the following values directly defined
at the financial statement level using Dempster’s rule (see fn. 8):

mF (f) = mIF (f) mPF (f) + mIF (f) mPF ({f,−f}) + mIF ({f,∼ f}) mPF (f)

= (1 − IRF ) (1 − APRF ) + (1 − IRF ) APRF + IRF (1 − APRF )

= 1 − IRFAPRF , (8)

mF (∼ f) = mIF (∼ f) mPF (∼ f) + mIF (∼ f) mPF ({f,∼ f})

+ mIF ({f,∼ f}) mPF (∼ f) = 0, (9)

and

mF ({f,∼ f}) = mIF ({f,∼ f})mPF ({f,∼ f}) = IRFAPRF , (10)

10 This paper is available on request from the authors.
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From the above results, one can generalize that if the frame consists of
only two elements, such as f , and ∼ f , and the m-values for ∼ f are zero for
all the evidence, then the combined m-value for ∼ f will be zero, irrespective
of the number of items of evidence, and the combined m-value for the entire
frame {f,∼ f} will be the product of its m-values from each item of evidence.

m-Values at the Account Level

As shown in Fig. 1, we consider two items of evidence at the account level:
(1) inherent factors and (2) analytical procedures. Again, it is assumed that
these items of evidence are affirmative in nature, and the corresponding
m-values are given in Table 2. The combined m-values are similar to those
in (8) through (10):

mA (a) = 1− IRAAPRA, (11)
mA (∼ a) = 0, (12)

and
mA ({a,∼ a}) = IRAAPRA, (13)

m-Values at the Audit Objective Level

In general, there are four items of evidence at the audit objective level (see
Fig. 1). Again, assume that they are all affirmative in nature. Then the cor-
responding m-values can be given as in Table 2. We want to combine all the
m-values obtained from these items of evidence. Since the m-values for ∼ ao
for all the evidence are assuumed to be zero, the combined m-value for ∼ ao
is zero (see [9]), that is,

mAO (∼ ao) = 0. (14)

Also, as seen in (10), since there is no conflict (i.e., K = 1 in Dempster’s
rule: see fn. 8), the combined m-value for the entire frame {ao,∼ ao} is equal
to the product of the m-values for the frame from each item of evidence,
that is,

mAO ({ao,∼ ao}) = mIO ({ao,∼ ao})mPO ({ao,∼ ao})
×mco ({ao,∼ ao})mDO ({ao,∼ ao})

= IRAOAPRAOCRAODRAO. (15)

Let us define a new term, ARAO, for convenience as:

ARAO = IRAOAPRAOCRAODRAO. (16)

From (14) through (16) and the definition of m function, we obtain:
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mAO (ao) = 1−mAO (∼ ao)−mAO ({ao,∼ ao}) (17)
= 1−ARAO.

The corresponding belief and plausibility functions are (from [4] and [5]):

BelAO (ao) = 1−ARAO,

BelAO (∼ ao) = 0, and BelAO ({ao,∼ ao}) = 1,
PLAO (ao) = 1,

and
PLAO (∼ ao) = ARAO. (18)

Thus, ARAO is the total plausibility for ∼ ao at the audit objective level.
It is interesting to note from (16) and (18) that the total plausibility at the

audit objective level for ∼ ao is the product of the individual plausibilities
for ∼ ao (see Table 2). As discussed earlier in Sect. 3, plausibility is one
interpretation of audit risk. So (18) along with (16) represents the audit risk
model at the audit objective level without considering any other evidence at
the account level or the financial statement level. This formula is similar to
that of SAS No. 47. However, it is incomplete as an overall model for the audit
risk because it does not include evidence at the other levels.

In the remainder of this article, we develop analytical formulas for the
overall plausibility of material misstatement in the financial statement and
the account and compare and contrast them with the SAS No. 47 formula.
Since we have now determined the m-values directly defined at each node
of Fig. 1, we can use the results of appendix A to derive our formulas (see
appendix B for details).

5 Audit-Risk Formulas in the Belief-Function Framework

In this section, we give formulas for the overall plausibility of material mis-
statement at various levels of the financial statement. These formulas have
been derived in appendix B.

Total Audit Risk (Plausibility of Material Misstatement) at the
Financial Statement Level

We have the following expression for total plausibility of material misstate-
ment at the financial statement level (B-7):

PLtF (∼ f) = ARtF = IRFAPRF

[
1−

∏

A

(1−ARA)

]
, (19)

where ARA and ARAO are defined in (B.4) and (16), respectively, as:
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ARA = IRAAPRA

[
1−

∏

o

(1−ARAO)

]
, (20)

and
ARAO = IRAOAPRAOCRAODRAO. (21)

Also, the total belief that the financial statement is fairly presented is given
by (B.7):

BeltF (f) = 1− IRFAPRF

[
1−

∏

A

(1−ARA)

]
. (22)

Equation (19) represents total plausibility of material misstatement in the
financial statement or total audit risk, ARtF , at the financial statement level.
The total belief that the financial statement is not materially misstated is
given by (22). It should be noted that the algebraic form of (19) is very
different from the formula discussed in SAS No. 47 or the Bayesian model.
Unlike the audit risk model of SAS No. 47 or the Bayesian model, (19) takes
into consideration all the evidence at all the levels of the financial statement.
It also differs from SAS No. 47, of course, in the interpretation. Here, we
interpret audit risk as a plausibility, not as a probability.

Total Audit Risk (Plausibility of Material Misstatement) at the
Account Level

From (B.11), we have the following expression for total plausibility of material
misstatement at the account level:

PLtA (∼ a) = ARtA = IRFAPRF IRAAPRA

[
1−

∏

o

(1−ARAO )

]
, (23)

and the total belief that the account ‘A’ is not materially misstated as:

BeltA (a) = 1−ARtA = 1− IRFAPRF IRAAPRA

[
1−

∏

o

(1−ARAO)

]
,

(24)
Here, (23) represents total plausibility of material misstatement or total audit
risk, ARtA, at the account level. The total belief or assurance that the account
is not materially misstated is given by (24). It is again the result of aggregating
all the evidence at the account level, whether the evidence is coming from
the audit objective level, the financial statement level, or directly bearing
on the account. It again differs from the Bayesian or SAS No. 47 formula.
In (23), we find that ARtA is the product of three types of plausibilities: (1)
plausibility arising from inherent factors (i.e., the inherent risk, IRF IRA), (2)
plausibility arising from analytical procedures (i.e., the analytical procedure
risk, APRFAPRA), and (3) plausibility arising from the evidence at the audit
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objective level for the account (i.e., the combined audit risk, [1 − Πo(1 −
ARAO)]). The third term represents 1 minus the level of support obtained
from the procedures performed at the audit objective level. If no procedures
are performed at that level, which means ARAO = 1, then the support is zero
and the third term equals 1. We will give a numerical example later.

Total Audit Risk (Plausibility of Material Misstatement) at the
Audit Objective Level

The total plausibility of material misstatement and total belief at the audit
objective level are given by (B.15) and (B.17):

PLtAO (∼ ao) = ARtAO = IRFAPRF IRAAPRAARAO; (25)

BeltAO (ao) = 1− IRFAPRF IRAAPRAARAO. (26)

Equation (25) represents the total plausibility that the audit objective
‘AO’ will not be met when all the evidence at various levels has been aggre-
gated. The total belief that the objective will be met is given by (26). As seen
in (25), the total risk at the audit objective level is the product of three terms,
(IRFAPRF ), (IRAAPRA), and (IRAOAPRAOCRAODRAO), each defined
at different levels. This formula resembles the multiplicative formula of SAS
No. 47 if we separate the risks associated with inherent factors and analytical
prodcedures:

ARtAO = (IRF IRAIRAO) (APRFAPRAAPRAO) (CRAODRAO) . (27)

The first factor in (27) determines the overall risk associated with inherent
factors. Similarly, the second term represents the overall risk associated with
analytical procedures performed at all levels. The third term is the product of
control risk and detection risk. We must repeat that, although (27) is similar
to the SAS No. 47 model, our interpretation of the risk is very different.

Numerical Example

Suppose we have only five accounts on the balance sheet and each account has
five objectives. Suppose the auditor has gathered and evaluated all the relevant
inherent factors at the level of the financial statement and the account and has
assigned the following values for the respective plausibilities of material mis-
statement or risks: IRF = 0.7 and IRA = 0.6 for all the accounts. Also assume
that the auditor has performed analytical procedures for various accounts and
assigned a plausibility of material misstatement or risk of 0.4 to these proce-
dures, but has not performed any analytical procedures at the financial state-
ment level. Thus, APRA = 0.4 for all the accounts and APRF = 1. These
values result in a total plausibility of error or risk at the financial statement
level of 0.52, that is, ARtF = 0.52 (Table 3). This implies that, on the basis of
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evidence accumulated at the financial statement level and the account level,
the auditor finds that the financial statement is not materially misstated with
a belief or assurance of 0.48. This information would help the auditor plan a
more efficient audit than is possible with the SAS No. 47 approach.

Let us now assume that the auditor plans to proceed to the detailed level
and considers the following steps: (1) collect and evaluate inherent factors at
the audit objective level, (2) perform analytical procedures at the audit objec-
tive level if appropriate, (3) study and evaluate client’s accounting systems and
control procedures and perform test of transactions, and (4) perform direct
test of balance. The results of the auditor’s judgment are shown in terms of
plausibilities of material misstatement or risks as inputs in tables 4 through 7.

In Table 4, we see that there is almost no impact of inherent factors at
the audit objective level on ARtF and ARtA. However, ARtAO reduces from
16.8 percent to 11.8 percent. Consideration of analytical procedures at the
audit objective level reduces ARtF to 50 percent, ARtA to 15.7 percent, and
ARtAO to 7.1 percent, as shown in Table 5. When accounting systems and
control procedures are included in the model, the total plausibility of material
misstatement (i.e., the total risk at various levels) is further reduced. ARtF =
28 percent, ARtA varies between 6.0 and 10.1 percent, and ARtAO between 1.4
and 2.8 percent (see Table 6).

At this stage, the auditor decides about the extent, timing, and nature of
the detailed test of balance so as to obtain the overall plausibility of material
misstatement at 0.05 or an overall assurance of 0.95. As shown in Table 7, for
the level of risk given in the table for each audit objective from the correspond-
ing detailed test of balance, we obtain the desired 0.95 level of assurance or
belief that the financial statement is not materially misstated (i.e., an overall
plausibility or total audit risk of 0.05). The risks at the other levels vary as
follows: ARtA varies between 1.0 and 1.4 percent, and ARtAO varies between
0.2 and 0.3 percent (see Table 7).

It is important to note that consideration of the structure of evidence in
our plausibility models makes the audit process more efficient. In other words,
the auditor will plan less extensive tests at the audit objective level when the
evidence at the financial statement level and account level is positive. One
should keep in mind that certain required procedures at the detailed level
must be performed; the evidence at the financial and account levels would
affect only the extent of testing. As seen from Table 8, when the evidence
at the account level and the financial statement level is not included in the
plausibility model (as done in SAS No. 47 for the audit risk model), the total
plausibility of material misstatement or the total audit risk at the financial
statement level is high (ARtF = 29 percent) or the total belief that the financial
statement is not materially misstated is low (0.71). Thus, without an explicit
treatment of the evidence at the financial statement level and the account
level, the auditor will always under-estimate the overall assurance and will
collect more evidence than necessary at the detail level.
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6 Limitations of the Models

We must emphasize that there are strong limitations on the applicability of
the formulas we have derived, limitations that are shared by the SAS No. 47
formula and existing Bayesian formulas.

First, since we have considered only binary variables, we have distinguished
only whether an account is materially misstated or not. We have not distin-
guished between material misstatement due to overstatement or understate-
ment. This limitation will make the audit process less efficient. For example,
if there are two accounts, one materially overstated and the other materially
understated by the same amount, and the auditor feels that the combination
of the two accounts is fairly stated because of the off-setting errors, the present
approach will suggest that the combination is materially misstated and hence
lead to inefficiency.

Second, we have not considered immaterial errors in individual accounts
that might add up to a material error in the whole financial statement. This
will also make the audit less efficient.

Third, we have assumed that each account or audit objective is equally
important. This assumption may make the audit process less efficient because
the auditor may still have to obtain a high level of assurance for an unimpor-
tant audit objective.

We have already mentioned other limitations due to our simplifying
assumptions. We considered only a tree-type evidential structure, and only
affirmative evidence is considered. As we have already explained, it may be
feasible to derive formulas with these assumptions relaxed to some extent, but
an algorithmic approach to the more complex case is probably preferable.

When discussing the increased efficiency possible with more accurate rep-
resentation of the structure of the audit evidence, we must always bear in
mind that the decrease in audit effort that is implied by plans based on such
structure can decrease audit effectiveness if the inputs to the model cannot be
estimated accurately by auditors who employ it. We think this gives another
advantage to the belief-function approach over the Bayesian approach, since
the Bayesian approach demands, in general, probability judgments that may
not be available or meaningful.

Conclusion

This article has used the structure of audit evidence currently assumed in
auditing standards. We have represented this structure by a network of vari-
ables; including variables that represented the financial statement as a whole,
various accounts, and various audit objectives of each account. For simplicity,
we have considered only tree-type evidential structures and only variables
with two possible values.
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We have used the belief-function framework to relate audit risk to plau-
sibility of material misstatement and have derived formulas11 for the total
plausibility at the three levels: financial statement level, account level, and
audit objective level. The formula for the total plausibility of material mis-
statement at the audit objective level resembles the formula of SAS No. 47.
The total plausibility of material misstatement associated with inherent fac-
tors is the product of risks at the financial statement level, the account level,
and the audit objective level. Similarly, the plausibility of error associated
with analytical procedures is the product of risks at the three levels.

The formulas at the other two levels are significantly different from the
SAS No. 47 model. Unlike the SAS No. 47 model or the Bayesian model, all
the formulas developed in this article aggregate all the evidence obtained from
procedures performed at various levels of the account.

It must be emphasized that interpretation of audit risk in this article is
significantly different from the probability interpretation used in the audit-
ing literature. For example, in the belief-function framework, the detection
risk, DRAO, is the plausibility that objective ‘O’ of account ‘A’ is materially
misstated, whereas the SAS No. 47 model interprets DRAO as the probability
that the auditor’s procedures will fail to detect material misstatements related
to objective ‘O’ of account ‘A’, given that the internal control procedures have
failed to prevent or detect and correct such misstatements.

The formulas derived here provide an audit planning tool that can be
used to determine the level of assurance to be obtained from various sources
to achieve a desired level of overall assurance or an overall plausibility of
material misstatement. Unlike the SAS No. 47 formula, these formulas take
into consideraion all the items of evidence gathered by the auditor, whether
that evidence bears on the objective level, the account level, or the financial
statement level. Thus, our approach provides an improvement over the SAS
No. 47 model for planning an efficient audit and evaluating the results.

There are many other issues that need to be addressed, including (1) the
level of testing needed for a desired level of support or belief, (2) the level of
support or belief obtained from a given statistical result of a test procedure
for different variables, (3) how to integrate belief aggregation with the cost
of evidence gathering to obtain the most effective and efficient audit strategy,
and (4) whether a belief-function approach to planning and evaluation of an
audit is cost effective. All of these issues require further research.

7 Appendix A Propagation of m-Values
in an “And” Tree

Propagation of beliefs (or m-values) in a network is quite complex. Exten-
sive work on this topic is reported in the artificial intelligence literature. To
11 As Boritz and Wensley (1990) has shown, almost identical expressions for the

overall audit risk can be obtained with probability theory.
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mention a few studies, the work by Shafer (1976, 1986), Shafer and Shenoy
(1988, 1990), Shenoy and Shafer (1988, 1990), Zarley et al. (1988), and Shenoy
(1989) is important for this purpose.

We will summarize results of propagation of beliefs in an “and” tree. These
results will be useful in deriving analytical formulas in appendix B. There are
two important directions for propagation for the overall aggregation of beliefs
in an “and” tree. One direction is from the subobjectives to the main objective.
The second direction is to propagate to a given subobjective from the main
objective and the other subobjectives. The details of this work are given in a
working paper that is available from the authors on request.

Propagation of m-Values from Audit Objectives to the Respective
Accounts

Here, we summarize the results of propagation of m-values in an “and” tree
(Fig. 1) from subobjectives to the main objectives, that is, from audit objec-
tives to corresponding accounts or from accounts to the financial statement.
In the case of propagation from audit objectives (AOs) to an account ‘A’, one
obtains the following values:

m′
A−all AO (a) =

n∏

i=1

mAOi (aoi) , (A.1)

m′
A−all AO (∼ a) =

n∑

i=1

mAOi (∼ aoi)
n∏

j �=i
mAOj (aoj)

+
n∑

i=1

n∑

j �=i
mAOi (∼ aoi)mAQj (∼ aoj)

×
n∏

k �=i,k �=j
mAOk

(aok)

+ . . .+ . . .+
n∏

i=1

mAOi (∼ aoi)

+
n∑

i=1

mAOi (∼ aoi)
n∏

j �=i
mAOi ({aoj ,∼ aoj})

+
n∑

i=1

n∑

j �=i
mAOi

(∼ aoi)mAOj
(∼ aoj)

×
n∏

k �=j,k �=i
mAOk

(|aok,∼ aok|) + . . .+

+
n∑

j=1

n∏

i�=i
mAOi (∼ aoi)mAOi

({aoj ,∼ aoj}) , (A.2)
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and

m′
A−all AO ({a,∼ a}) = 1−m′

A−all AO (a)−m′
A−all AO (∼ a) . (A.3)

These values may look very complex but they are intuitive. For exam-
ple, (A.1) represents the propagated m-value for the state ‘a’ that the account
‘A’ is not materially misstated. This value is equal to the product of all the
m-values defined at each audit objective for ‘ao’ that the objective is met.
This result is similar to the probability rule giving the probability that the
account is not materially misstated as equal to the product of the individual
probabilities that the audit objectives are met provided the “and” relationship
is valid.

Equation (A.2) is also intuitive. It represents the resultant m-value for
‘∼ a’ received from all its audit objectives. The account is materially misstated
when at least one or all of the objectives are not met. There are several
situations that contribute to this condition: (1) at least one of the objectives
is not met but the rest have been met, (2) all the objectives are not met,
and (3) at least one of the objectives is not met but we have no knowledge
whether the rest have been met or not. The first two terms in (A.2) represent
the first situation. The third term represents the second situation. The last
three terms represent the third situation.

For affirmative items of evidence (i.e., for mA(∼ a) = 0 and mAOj

(∼ aoj) = 0 for all j), (A.2) reduces to the following simple form:

m′
A−all AO (∼ a) = 0, (A.4)

while (A.1) and (A.3) remain unchanged.

Propagation of m-Values to a Given Subobjective from the Main
Objective and the Other Subobjectives

In this section, we want to summarize the results of propagation to a given
subobjective from the main objective and the other subobjectives. For exam-
ple, the m-values propagated to a given audit objective AOi from account ‘A’
and the remaining audit objectives can be given by:

m′
AOi−A & all other AO′s (aoi) = K−1

i mA (a)
n∏

j �=i

[
1−mAOj (∼ aoj)

]
, (A.5)

m′
AOi−A & all other AO′s (∼ aoi) = K−1

i mA (∼ a)
n∏

j �=i
mAOj (aoj) , (A.6)

m′
AOi−A & all other AO′s ({aoi,∼ aoi}) = 1−m′

AOi−A & all other AO′s (aoi)
−m′

AOi−A & all other AO′s (∼ aoi) , (A.7)

where Ki is the renormalization constant that can be written as Ki = [1 −
mA(a)Ci] and Ci is given by:
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Ci =
n∑

j �=i
mAOj (∼ aoj)

n∏

k �=j
mAOk

(aok)

+
n∑

j �=i

n∑

k �=j
mAOj

(∼ aoj)mAOk
(∼ aok)

n∏

l �=j,l �=k
mAOi

(aoi)

+ . . .+ . . .+
n∏

j �=i
mAOi (∼ aoj)

+
n∑

j �=i
mAOj

(∼ aoj)
n∏

k �=j
mAOk

({aok,∼ aok})

+
n∑

j �=i

n∑

k �=i
mAOi

(∼ aoj)mAOk
(∼ aok)

×
n∏

l �=i,l �=j
mAOi ({aol,∼ aol}) + · · ·+

+
n∑

j �=i

n∏

k �=j
mAOk

(∼ aok)mAOj ({aoj ,∼ aoj}) . (A.8)

Again, the above equations may appear complex but the results are intu-
itive. For example, the m-value expressed in (A.5) represents that the audit
objective AOi is met if account ‘A’ is not materially misstated (mA(a) 	= 0)
and the other audit objectives are either met or their status is unknown
(mAOj (∼ aoj) < 1). Equation (A.6) is easier to understand. It tells us
that there is finite support for the audit objective’s not having been met if
the account is found to be materially misstated but the other audit objec-
tives have been met. The renormalization constant, Ki, in (A.5) through
(A.7) represents 1 minus the conflict term. In general, the conflict term
is defined as the sum of all the products of m-values of the sets of ele-
ments whose inter-section is a null set. In our case, conflict will occur
when there is a finite support that the account is not materially misstated
(mA(a) 	= 0) and at least one of the other audit objectives is not met
(Ci 	= 0).

In the case of affirmative items of evidence (i.e., mA(∼ a) = 0 and
mAOj (∼ aoj) = 0 for all j), which is the case assumed in the present work,
the renormalization constant becomes 1 and (A.5) and (A.6) reduce to:

m′
AO,−A & all other AO′s (aoi) = mA (a) , (A.9)

m′
AO,−A & all other AO′s (∼ aoi) = 0, (A.10)

while (A.7) remains unchanged. From (A.9), we find that, in the case of affir-
mative items of evidence, when m-values propagate to a given subobjective
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from the main objective and the other subobjectives, the m-values received by
the subobjective are not a function of the m-values of the other
subobjectives.

8 Appendix B Derivation of Plausibility Formulas
or Audit Risk Formulas

In this appendix, our main objective is to derive formulas for plausibility of
material misstatement (i.e., audit-risk formulas; see fn. 2) within the belief-
function framework for an evidential network (an “and” tree) given in Fig. 1.
To achieve this objective, we need to aggregate all the items of evidence in
Fig. 1. As discussed earlier, the process of combining various m-values in a
network is, in fact, a process of propagating m-values through the network of
variables. We will use the general results presented in appendix A to derive
the audit risk formulas in the following sections. As mentioned earlier, the
following assumptions are made in the derivation of the formulas.

First, each node (variable, such as an account or audit objective) in the
tree is assumed to be a binary variable. In fact, the variables in an “and” tree
are binary by definition. The general approach of aggregating evidence by
using the belief-function framework is still valid for nonbinary variables, but
the analytical formulas for such cases will be intractable. Second, each item
of evidence is assumed to be affirmative in nature (i.e., the evidence provides
positive support to the assertion and no support to its negation).

Financial Statement Level

The objective here is to derive a formula for the total plausibility of material
misstatement or audit risk, at the financial statement level. This is achieved
by combining all m-values that are either defined directly at the financial
statement node (F ) or have been propagated to F from all other nodes in
the network (see Fig. 2). We will proceed with the propagation process in two
steps. First, we will consider propagation from audit objectives (AO’s) to an
account (A) and then combine these values from the audit objectives with the
m-values at the account. Second, we propagate the resultant m-values from
various accounts to the financial statement node and combine them with the
m-values at the financial statement level. This process will yield the desired
audit risk (plausibility of material misstatement) formula.

For the first step above, as an illustration, let us consider propagation
of m-values defined at the three audit objectives of account ‘A3’ in Fig. 2
to the account. These m-values are the result of combining all four items of
evidence at the audit objective level and are given, in general terms, in (14)
through (4). When these m-values are propagated to account A3, we obtain
the following values using (A.1), (A.3), and (A.4):
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Account A1
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= {a1,∼ a1}
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Fig. 2. Propagation of m-values from audit objectives and accounts to the financial
statement
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m′
A3−all O′s of A3

(a3) =
3∏

i=1

mA3Oi (a3Oi) =
3∏

i=1

(1−ARA3Oi) ,

m′
A3−all O′s of A3

(∼ a3) = 0,

m′
A3−all O′s of A3

({a3oi,∼ a3Oi}) = 1−
3∏

i=1

(1−ARA3Oi) , (B.1)

where ARAO’s are defined as in (16).
The next step is to combine the above m-values with mA3 at the account,

as defined in general terms in (11) through (13), before propagating it to F .
Since there is no conflict in the two sets of m-values at the account level and
there also is no support for ∼ a3, the combined values when using Dempster’s
rule becomes:

m′′
A3 (a3) = 1 − m′′

A3 ({a3,∼ a3}) = 1 − IRA3APRA3

[
1 −

3∏

i=1

(1 − ARA3O1 )

]
,

m′′
A3 (∼ a3) = 0,

m′′
A3 , ({a3,∼ a3}) = mA3 ({a3,∼ a3}) m′

A3−all O′s of A3
({a3,∼ a3})

= IRA3APRA3

[
1 −

3∏

i=1

(1 − ARA3O1 )

]
. (B.2)

In general, one can write the above result for any account ‘A’ in an “and”
tree similar to that in Fig. 1 as:

m′′
A (a) = 1−m′′

A ({a,∼ a}) = 1− IRAAPRA

[
1−

∏

O

(1−ARAO)

]
,

m′′
A (∼ a) = 0,

m′′
A ({a,∼ a}) = IRAAPRA

[
1−

∏

O

(1−ARAO)

]
. (B.3)

Let us define a new term, ARA, for simplicity as:

ARA = IRAAPRA

[
1−

∏

O

(1−ARAO)

]
. (B.4)

To combine all the items of evidence at F , we propagate the m-values
in (B.3) to F (see Fig. 2). Using (A.1), (A.3), and (A.4), we can write these
values, in general form, as:
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m′
F−all A′s (f) =

∏

A

m′′
A (a) =

∏

A

(1−ARA) ,

m′
F−all A′s (∼ f) = 0,

m′
F−all A′s ({f,∼ f}) = 1−

∏

A

(1−AR′
A) . (B.5)

Now, to complete the process, the above m-values are combined with
mF at F as defined in (8) through (10). Using Dempster’s rule to combine
m′
F−all A′s in (B.5) and mF , we obtain the total m-values as:

mt
F (f) = 1−mt

F ({f,∼ f}) = 1− IRFAPRF

[
1−

∏

A

(1−ARA)

]
.

mt
F (∼ f) = 0,

mt
F ({f,∼ f}) = mF ({f,∼ f})m′

F−all A′s ({f,∼ f})

= IRFAPRF

[
1−

∏

A

(1−ARA)

]
. (B.6)

This yields the following values for beliefs and plausibilities that are of
interest (using [4], [5], and [B.6]):

BeltF (f) = 1− IRFAPRF

[
1−

∏

A

(1−ARA)

]
.

BeltF (∼ f) = 0,

PLtF (∼ f) = ARtF = IRFAPRF

[
1−

∏

A

(1−ARA)

]
. (B.7)

Since we termed plausibility of error as audit risk, the desired formula for
the audit risk is given by AR′

F in (B.7), where:

ARA = IRAAPRA

[
1−

∏

O

(1−ARAO)

]

as defined in (B.4) and ARAO = IRAOAPRAOCRAODRAO as defined in (16).

Accounts Level

In this section, we derive a formula for the total plausibility of material mis-
statement, or the total audit risk, at the account level. Similar to the procedure
for deriving the formula for the financial statement level, this derivation com-
bines the eight items of evidence: four at the audit objective level, two at the
account level, and two at the financial statement level. This will be achieved
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by propagating m-values from F , from the audit objectives, and from other
accounts to the desired account. We will use the relationships developed in
appendix A.

Let us consider, for the purpose of illustration, account A3 in Fig. 3. The
m-values received by A3 from the audit objectives were determined in the
previous section ([B.1]). The m-values received from the financial statement
node is given below (use [8]-[10], [A.7], [A.9], and [A.10]):

m′
A3−F & all other A′s (a3) = mF (f) = 1− IRFAPRF ,

m′
A3−F & all other A′s (∼ a3) = 0,

m′
A3−F & all other A′s ({a3,∼ a3}) = 1−mF (f) = IRFAPRF , (B.8)

Similar m-values will be received by the other accounts. At A3, we now
have three m-values: mA, defined at A3([11]-[13]), m′

A3−F & all other A′s as
given in (B.8), and m′

A3−all O′s of A3
in (B.1). We combine these m-values

using Dempster’s rule, which yields the following total m-values:

mt
A3

(a3) = 1− IRFAPRF IRA3APRA3

[
1−

3∏

i=1

(1−ARA3O1)

]
,

mt
A3

(∼ a3) = 0,

mt
A3
, ({a3 ∼ a3}) = IRFAPRF IRA3APRA3

[
1−

3∏

i=1

(1−ARA3O1)

]
.

(B.9)

In general, one can write (B.9) as:

mt
A (a) = 1− IRFAPRF IRA, APRA

[
1−

∏

O

(1−ARAO)

]
,

mt
A (∼ a) = 0,

mt
A ({a,∼ a}) = IRFAPRFIRAAPRA

[
1−

∏

O

(1−ARAO)

]
. (B.10)

These values yield the following beliefs and plausibility values (using [4],
[5], and [B.10]):

BeltA (a) = 1− IRFAPRF IRAAPRA

[
1−

∏

O

(1−ARAO)

]
,

BeltA (∼ a) = 0,

PltA (∼ a) = ARtA = IRFAPRF IRAAPRA

[
1−

∏

O

(1−ARAO)

]
. (B.11)

Since the total plausibility in ∼ a represents the total audit risk, ARtA
in (B.11) is the desired formula at the account level.
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Fig. 3. Propagation of m-values from the financial statement and audit objectives
to the accounts
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Audit Objective Level

In this section, we want to combine, again, all the items of evidence in
a network in Fig. 1, but at the audit objective level. First, we propa-
gate m-values from the financial statement node to the accounts. As an
illustration, we consider first propagation of mF to A3 (see Fig. 4). This
yields m′

A3−F & all other A′s given in (B.8). As a second step, we combine
m′
A3−F & all other A′s with m3 at A3 ([11]–[13]). The result of combination

yields m′′
A3

:

m′′
A1

(a) = 1− IRFAPRF IRA1APRA1 ,

m′′
A1

(∼ a) = 0,
m′′
A1

({a,∼ a}) = IRFAPRF IRA1APRA1 . (B.12)

These m-values are propagated to the various audit objectives. We use
(A.7), (A.9), and (A.10) for this purpose. For audit objective A3O2, the result
of propagation yields m′

A1O2−A1 & all other O′s of A1
:

m′
A1O2−A1 & all other O′s of A1 (a3O2) = m′′

A1 (a3) = 1 − IRFAPRF IRA1APRA1 ,

m′
A1O2−A1 & all other O′s of A1 (∼ a3O2) = 0,

m′
A1O2−A1 & all other O′s of A1 ({a3O2 ∼ a3O2}) = IRFAPRF IRA1APRA1 .

(B.13)

As shown in Fig. 4, we have two m-values at each audit objective. For
objective O2 of account A3, we have m′

A1O2−A1 & all other O′s ofA1
in (B.13)

and mA1O2 in (14) through (4). We combine these values using Dempster’s
rule, which yields the total m-values at the audit objective level. This repre-
sents an aggregation of all the items of evidence bearing on various levels.

mt
A1O2

(a3O2) = 1− IRFAPRF IRA1APRA1ARA1O2 ,

mt
A1O2

(∼ a3O2) = 0,

mt
A1O2

({a3O2,∼ a3O2}) = IRFAPRF IRA1APRA1ARA1O2 . (B.14)

From (4) and (5), one obtains the following values for beliefs and plausi-
bilities for any audit objective AO:

BeltAO (aO) = 1− IRFAPRF IRAAPRAARAO, (B.15)

BeltAO (∼ aO) = 0, (B.16)

PLtAO(∼ aO) = ARtAO = IRFAPRF IRAAPRAARAO. (B.17)

Equation (B.17) is the desired formula for this case.
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Fig. 4. Propagation of m-values from the financial statement and accounts to the
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Decision Making Under Dempster–Shafer
Uncertainties

Ronald R. Yager

Abstract. We are concerned here with the problem of selecting an optimal alter-
native in situations in which there exists some uncertainty in our knowledge of the
state of the world. We show how the Dempster–Shafer belief structure provides a
unifying framework for representing various types of uncertainties. We also show how
the OWA aggregation operators provide a unifying framework for decision making
under ignorance. In particular we see how these operators provide a formulation of
a type epistemic probabilities associated with our degree of optimism.

Key words: Decision making, Dempster–shafer theory, Uncertainty

1 Introduction

The problem of decision making under uncertainty is a very important issue.
In this problem we are concerned with the selection of an appropriate decision
alternative, in the face of uncertainty with respect to the environment. The
uncertainty manifests itself in that a different payoff is obtained for differ-
ent states of nature. In this paper we provide a general formulation of this
type of decision making. The Dempster–Shafer evidential structure[1, 2] plays
a crucial role in providing a unifying framework for representing the uncer-
tainty. The Ordered Weighted Averaging (OWA) operators[3] play a central
role in providing a unifying framework for aggregation. The introduction of
these OWA operators provides a more general formulation than that used by
Yager[4, 5] in his previous work on decision making in the face of evidential
knowledge.

We first discuss the classic problem of decision making under risk and
ignorance.[6] In the environment of decision making under ignorance, we dis-
cuss the role of the decision maker’s attitude in the selection of the procedure
used to find the overall value associated with a particular alternative. In this
environment we have a collection of possible outcomes, payoffs, but no prob-
ability associated with them. The value of this collection is determined by
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how optimistic or pessimistic the decision maker feels. We then show how the
OWA operators provide a general framework for determining the value of a
collection of outcomes.

We next show how the Dempster–Shafer belief structure provides a suitable
framework for representing, in a unified manner, the information a decision
maker may have in regards to the state of nature.

Finally we provide a methodology for selecting optimal alternatives in
situations in which our knowledge about the uncertainty is contained in a
Dempster–Shafer belief structure. The problem of making a decision in this
environment is very important and has been considered by some authors.
[4, 5, 7, 8, 9, 10]

2 Decision Making Under Uncertainty

Consider the following matrix provided to a decision maker:

S1 . . . Sj . . . Sn

A1

...
Ai
...
Aq

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 . . . C1j . . . C1n

...
...

...
Ci1 . . . Cij . . . Cin
...

...
...

Cq1 . . . Cqj . . . Cqn

⎤

⎥⎥⎥⎥⎥⎥⎦

In the above each Ai corresponds to a possible action (alternative) avail-
able to the decision maker. Each Sj corresponds to a possible value of the
variable called the state of nature. Cij corresponds to the payoff to be received
by the decision maker if he selects action Ai and the state of nature is Sj .
The problem faced by the decision maker is to select the action which gives
him the optimum payoff.

Since the payoff to the decision maker depends upon the state of nature
his procedure for selecting the best alternative depends upon the type of
knowledge he has about the state of nature. In the literature dealing with this
problem,[6] three different decision making environments have been identified:
decision making under certainty, decision making under risk and decision mak-
ing under ignorance.

In decision making under certainty the decision maker knows exactly what
is the state of nature. In this case the course of action is straightforward, he
selects the alternative that has the maximum payoff for this state of nature.

In decision making under risk it is assumed that we have a probability
distribution over the state of nature. In this case we know for each Sj , Pj the
probability that Sj is the state of nature. The standard procedure in this case
is to use expected values:
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1. For each alternative Ai we calculate Ci =
∑

j Cij×Pj , its expected payoff.
2. Select as the optimal alternative, A∗, the one which has the largest

expected payoff,
C∗ = MaxiCi.

It should be noted that decision making under certainty can be seen as a
special case of decision making under risk. In particular, if we know that Sa
is the state of nature, then we can consider Pa = 1.

In the third environment, decision making under ignorance, we assume no
knowledge about the state of nature other than that it is an element in some
set S = {S1, S2, . . . , Sn}.

The methodology used in the selection of the optimal alternative in this
environment requires the assumption of a particular decision attitude by the
decision maker. Among the decision attitudes discussed in the literature are
the following:[6]

1) Pessimistic attitude—Using this strategy the decision maker selects for
each alternative the worst possible outcome and then selects the alterna-
tive that has the best worst. This strategy is sometimes called the maxi-
mum strategy.

2) Optimistic attitude—Under this strategy, the decision maker selects for
each alternative the best possible outcome and then selects the alternative
that has the best best. This strategy is called the maximax strategy.

3) Hurwicz Approach—In this approach the decision maker selects a value
α ∈ [0, 1]. Then for each alternative he takes a weighted average of the
optimistic and pessimistic value

H = α ∗Opt.+ (1− α) ∗ Pess.

He then chooses the alternative which has the highest H value.
4) Normative Approach—In this approach for each alternative the decision

maker sums the payoffs across all possible outcomes and then selects the
alternative with the highest total.

In the case of the decision making under ignorance the decision process is
as follows:

1) For each Ai calculate Vi = F (Ci1, Ci2, . . . , Cin). We note that F is
some aggregation function whose form depends upon the decision makers
assumed attitude.

2) Select the alternative A∗ such that V ∗ = Maxi[Vi].

The following table provides the F function for the four strategies
discussed.

STRATEGY AGGREGATION FUNCTION
Pessimistic F (Ci1, Ci2, . . . Cin) = Minj [Cij ]
Optimistic F (Ci1, Ci2, . . . Cin) = Maxj [Cij ]
Hurwicz F (Ci1, Ci2, . . . Cin) = α ∗Maxj [Cij ] + (1 − α)Minj [Cij ]
Normative F (Ci1, . . . Cin) =

∑
j Cij
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3 A General Approach to Alternative Selection
Under Ignorance

In this section we shall suggest a general formulation to the optimal alternative
selection problem under ignorance. This approach will be based upon the
ordered weighted averaging (OWA) operators introduced by Yager.[3] We shall
see that this general approach allows the four previously discussed methods
as special cases.

In suggesting a general approach to alternative selection one should be
concerned that it satisfies certain properties which one can consider as ratio-
nal. A first criteria is that of Pareto optimality. This condition requires that
given two alternatives A and B, where A has at least as high a payoff as B
for each state of nature, then B should not be more preferred than A. A sec-
ond condition is that it should treat the states of nature uniformily. Another
desirable, though not necessary, requirement, is that the aggregation across
the states of nature be an averaging like operator in the sense that if for a
given alternative all the states of nature have the same payoff, a, then the
overall value of that alternative should be a. Yager[3] introduced a new type
of aggregation operator called OWA operators. He also suggested some exten-
sions of these operators.[11] O’Hagan[12] has investigated their use in expert
systems.

Definition 1. An ordered weighted averaging operator (OWA) of dimension
n is a function

F : Rn → R

that has associated with it a weighting vector W ,

W =

⎡

⎢⎢⎢⎣

W1

W2

...
Wn

⎤

⎥⎥⎥⎦

such that

1) wi ∈ [0, 1]
2) Σiwi = 1

and for any set of values a1, . . . , an

F (a1, . . . , an) =
∑

i

(wi ∗ bi)

where bi is the ith largest element in the collection a1, a2, . . . , an.
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Example 1. If

W =

⎡

⎢⎢⎣

0.3
0.4
0.2
0.1

⎤

⎥⎥⎦

then F (10, 0, 20, 30) = (0.3)∗30 + (0.4)∗20 + (0.2)∗10 + 0.1∗0 = 19.

It should be noted that the weights in the OWA operator are associated
with a position in the ordered arguments rather than a particular argument.

It is our suggestion that the OWA operators provide a family of operators,
parameterized by W , which can be used to help in the selection of optimal
alternatives in the face of ignorance. In particular we can use these operators
to provide the aggregated value for each alternative. We can calculate Vi =
F (Ci1, Ci2, . . . , Cin) where F is an OWA aggregation operator. We then select
the alternative that has the highest V value.

First we note that for any W the OWA aggregation operation satisfies the
condition of pareto optimality. In particular if

aj � dj for all j = 1, . . . , n

then
F (a1, . . . , an) � F (d1, . . . , dn) .

Next we shall show that the four methods previously discussed are special
cases of OWA operators.

1) Pessimistic Attitude: If we select W∗ where

W∗ =

⎡

⎢⎢⎢⎣

0
0
...
1

⎤

⎥⎥⎥⎦

then F∗(a1, . . . , an) = Minj [aj ], which is the aggregation rule used in the
pessimistic strategy.

2) Optimistic Attitude: If we select W ∗ where

W ∗ =

⎡

⎢⎢⎢⎣

1
0
...
0

⎤

⎥⎥⎥⎦

then F ∗(a1, . . . , an) = Maxj [aj ] which is what is used in the optimistic
strategy.
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3) Hurwicz Strategy: If we select

WH =

⎡

⎢⎢⎢⎢⎢⎣

α
0
...
0

1− α

⎤

⎥⎥⎥⎥⎥⎦

then FH(a1, . . . , an) = α∗Max[aj ] + (1 − α)∗Min[aj ]. This is exactly the
formulation used in the Hurwicz strategy.

4) Normative approach: If we select

WN =

⎡

⎢⎢⎢⎣

1/n
1/n
...

1/n

⎤

⎥⎥⎥⎦

then we get FN (a1, . . . , an) = 1/nΣiai. This function is essentially the
normative strategy.

We should note that the pessimistic and optimistic strategies provide
limiting classes of OWA operators. It can be easily shown[3] that for any
OWA operator F and any set of arguments (a1, . . . , an) that F∗(a1, . . . , an) �
F (a1, . . . , an) � F ∗(a1, . . . , an).

Yager[11] suggested a semantics that can be associated with the OWA
aggregation procedure in this framework of decision making under ignorance.
This semantics will provide a unifying interpretation of this operation. Yager
suggests that we can view the OWA weights as a kind of probability distri-
bution. In particular we can view wi as the probability that the ith best thing
will happen. We recall that the weights have the properties of a probability
distribution in that each wi lies in the unit interval and the sum of the wi’s
is one. From this interpretation we see that the aggregation associated with
each particular alternative can be seen as the expected value under this prob-
ability distribution. If Ci1, Ci2, . . . , Cin are payoffs corresponding to each of
the states of nature under the selection of alternative Ai then b1, . . . bj are the
ordered set of these payoffs. Then if w1, . . . , wn are the OWA weights inter-
preted as probabilities of the jth best thing happening under any selection of
alternative we see that

V =
∑

j

wj ∗ bj

is the expected payoff in this case. Thus the OWA aggregation provides a
kind of expected value similar to that used in decision making under risk. The
difference between the two situations is that in later, decision making under
risk, we have assigned a probability pi to each particular state of nature Si. In
decision making under ignorance the probabilities, the weights, are assigned
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not to a particular state of nature, but to the preference ordered position of
the payoff. Using this interpretation we can see that the pessimistic strategy
is effectively a situation in which a probability of one is assigned to the worst
thing happening given any selection of alternative. In the optimistic approach
we are assuming a probability of one is assigned to the possibility of the best
thing happening. In the normative case we are assuming equal probability for
each of the preference positions. The Hurwicz strategy effectively assigns a
probability α that the best thing will happen and 1− α probability that the
worst thing will happen.

Yager[3] introduced a number of measures associated with the weights of
an OWA operator, we briefly describe these. Assume W is a set of weights
then the measure of Optimism associated with these weights is defined as

Opt (W ) =
n∑

j=1

wj ∗ hn (j)

where hn(j) = (n− j)/(n− 1).
We note that Opt(W ∗) = 1,Opt(W∗) = 0,Opt(Wn) = 0.5 and Opt

(WH) = α.
A second measure associated with these weights is a measure of entropy

or dispersion

DISP (W ) = −
∑

j

wj ln (wj) .

We should note that the larger the Disp(W ) the more the payoffs play a
role in the determination of F. O’Hagan[12] has studied these measures in
considerable detail.

A question that naturally arises, is, how does a decision maker obtain the
weights he is going to use in solving a particular problem? At the fundamental
level, the answer is that he subjectively decides, just as he does in deciding to
be pessimistic or optimistic or normative. The most straightforward way of
obtaining the weights is for the decision maker to directly select the values of
the weights. In doing this, if he chooses to allocate, the allotted total of one,
to weights near the top of the vector, he can be seen as being optimistic. If
he allocates the weights to elements near the bottom he is being pessimistic.

An alternative method of selecting the weights has been suggested by
O’Hagan.[8] With this approach the decision maker subjectively decides upon
his coefficient of optimism β. He then inputs this value into a mathemati-
cal programming problem which is used to obtain the weights that have an
appropriate degree of optimism while maximizing the dispersion.

The mathematical programming problem is
Maximize:

∑

j

wj ln (wj) (entropy)
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Subject to:
∑

j

(hn (j) ∗ wj) = β

∑

j

wj = 1

wj � 0 for all j = 1, . . . , n.

This approach is closely related to the maximum entropy method used in
probability theory.

One benefit of this approach is that we can consistently provide for weights
corresponding to a given β for various different cardinalities of OWA opera-
tors.

4 A General Framework for Representing Uncertainty

Earlier we suggested that there were two distinct situations with respect to
the knowledge about the state of nature, risk and ignorance. Actually we also
discussed certainty but we suggested that this was a special case of risk, one
in which the probability of some outcome is one. It actually can also be seen
as a special case of ignorance where the set S consists of only one element.

In this section we introduce a more general framework for the represen-
tation of uncertainty. This scheme is called the Dempster-Shafer theory of
evidence.[1, 2] We shall show that the two cases, risk and ignorance, are
special cases of this more general formulation. In addition to being able to
capture these classic formulations of our knowledge about uncertain envi-
ronments the Dempster-Shafer structure allows us to represent various other
forms of information a decision maker may have about the state of nature.
The Dempster-Shafer framework has proved to be an important and useful
tool in the development of expert systems.[13, 14, 15, 16]

A belief structure m on the set Y consists of a collection of non-empty
subsets Bi of Y and an associated set of weights m(Bi) such that:

1) m(Bi) > 0
2) Σim(Bi) = 1.

The subsets Bi are called the focal elements of the belief structure.
The original formulation for these belief structures was suggested by

Dempster[1] in the framework of multi-valued mappings. The semantics asso-
ciated with this original formulation will provide useful for our future dis-
cussion. Let X be a set on which there exists a probability distribution such
that pi = prob({xi}). Let Y be another set, called the frame of discernment.
We further assume that there exists a relationship R, called the compatibility
relation, on X × Y . This relationship connects elements in X with those in
Y . The semantics of this relationship is that, if (x, y) ∈ R then the value y
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is an acceptable value for Y if x is the value of X . Our concern here is the
determination of the value on the frame space Y . Given any xi ∈ X we can
associate with this element a subset Bi ⊂ Y such that Bi = {y|(xi, y) ∈ R}.
Bi is a focal element and is the set of outcomes of Y which are compatible
with xi. In this environment we can see that the occurrence of the outcome
xi induces an outcome on Y which is in the subset Bi. Furthermore we note
that pi is the probability associated with the outcome Bi, it is m(Bi). The
following example illustrates the Dempster-Shafer environment.

Example 2. Assume we have a lottery in which we sell ten tickets. If Joe buys
three tickets, Bob buys 5 tickets and Ed buys two tickets then it is obvious that
the probability of each winning is given by Prob(Joe)= 0.3, Prob(Bob)=0.5
and Prob(Ed)=0.2. However our concern is not with who is the winner but
with the color of the hat that the winner is wearing. The following information
is known about the hats owned by the various people:

Red Blue Black Yellow Green

Joe 1 0 1 1 1
Bob 0 1 1 1 0
Ed 1 0 0 0 0

In the above table a one indicates that a particular color hat is owned by
an individual. However, we don’t know how many hats an individual has of
a given color, nor do we know how an individual chooses which hat he shall
wear. In this situation the focal elements are:

BJoe = {red, black, yellow, green}
BBob = {blue, black, yellow}
BEd = {red} .

In this case we can say there is a 0.3 probability that the set BJoe will be
used as the set from which the hat is chosen, 0.5, that the set BBob is used
and 0.2 probability that the set BEd is used.

A very appealing feature of this belief structure is that it can be used
to represent in a unified manner various types of uncertainty we previously
discussed. In the following we shall let Y be the set of possible states of nature.

If the belief structure consists of n focal elements such that Bi = {yi},
each focal element is a singleton, then we essentially have the decision making
under risk environment where m(Bi) = Pi = Prob{yi}.

If our belief structure has only one focal element B, where m(B) = 1, then
we essentially have the decision making under ignorance environment.

In addition to these two basic formulations of our knowledge the Dempster–
Shafer formulation allows us to capture other more sophisticated forms of
knowledge.
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If our knowledge of state of nature is such that we know that there is a
probability p that the state of nature lies in the set A and 1− p that it lies in
not A then we can represent this by a belief structure with two focal elements
as follows:

B1 = A m(B1) = p

B2 = Ā m(B2) = 1− p.

A closely related belief structure is one in which

B1 = A m(B1) = p

B2 = Y m(B2) = 1− p.

With this belief structure we are essentially saying that the probability of A
is at least p.

The essential point of this section is that the use of the Dempster-Shafer
belief structure provides a unifying method for representing our knowledge
about the state of nature in decision making problems.

5 Decision Making with Belief Structures

The Dempster-Shafer belief structures have proven to be a very useful rep-
resentation scheme for expert and other knowledge based systems. In many
cases the knowledge provided by these types of expert systems is in the form
of a belief structure. A problem that is of considerable interest is that of
selecting an appropriate course of action, alternative, in situations in which
our knowledge about the state of nature is in the form of a belief structure. In
this section we shall bring all the pieces together to provide a unified approach
to decision making under uncertainty. This work provides a generalization of
the ideas discussed by Yager.[4, 5]

Assume we have a decision problem in which we have a collection of q
alternatives, we denote the set of alternatives as A = {A1, . . . , Aq}. In addition
we assume the payoff depends upon the value of a variable which we call the
state of nature. We assume the value of this variable is some element in the
set S, where S = {S1, . . . , Sn}. We further assume that Cij is the payoff to
the decision maker if he selects alternative Ai and the state of nature is Sj .
In addition we assume our knowledge of the state of nature is captured in
terms of a belief structure m on S. The focal elements of m are B1, . . . , Br
and associated with each of these is a probability mass value m(Bi). The
problem of concern is to select the alternative which maximizes the payoff to
the decision maker.

The procedure for the determination of the best alternative is an extension
of the previously described methods. It combines the schemes used for both
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decision making under risk and ignorance. We shall call this decision making
under uncertainty. In a manner similar to decision making under risk we obtain
a generalized expected value, Ci, for each alternative Ai. However, in obtaining
this expected value we use the weights associated with the focal elements as
the probabilities. The second step is to select the alternative which has the
largest generalized expected value.

The generalized expected value, Ci, for a given alternative, Ai, is obtained
using the evidential knowledge. The knowledge contained in the belief struc-
ture tells us that m(Bk) is the probability that Bk will be the set that will
determine the state of nature. In particular

Ci =
r∑

k=1

V (Ai, Bk) ∗m(Bk) .

In the above V (Ai, Bk), which we shall denote as Vik, is the payoff we get
when we select alternative Ai and the state of nature lies in Bk. Thus we see
that Ci is essentially the expected value of the payoffs under Ai.

The determination of the value Vik can be seen as equivalent to the problem
of decision making under ignorance. In particular for a given Ai and the
knowledge that the state of nature lies in Bk we end up with a collection
of possible payoffs. We shall let Mik denote the collection (bag) of payoffs
that can occur under Bk. In this case each element Sj in Bk contibutes one
element to Mik, its payoff under Sj , hence Mik = 〈Cij |Sj ∈ Bk〉. In order
to determine the value of Vik from Mik we use the procedure developed for
decision making under ignorance. First we obtain from the decision making
his measure of optimism α. This measure of optimism is then used to solve
the mathematical program problem described earlier to obtain the weights
for the OWA vectors. Actually we must solve this problem for each different
cardinality of Mik.

Using these weights we can find Vik = F (Mik) where F is an OWA operator
whose weights are determined above for a degree of optimism α and cardinality
of Mik.

The following summarizes the operations, assuming we have obtained the
payoff matrix, the belief function m about the state of nature and the decision
makers degree of optimism, α.

1) Solve for each different cardinality of focal elements the mathematical
programming problem with the degree of optimism α. This gives us a
collection of weights to be used in OWA aggregation.

2) For each alternative i do the following:
a) For each focal element, Bk, find Mik, the collection of payoffs corre-

sponding to that focal element.
b) For each Mik calculate, using the appropriate OWA operator, Vik =

F (Mik).
c) Calculate Ci =

∑
k Vik ∗m(Bk).

3) Select the alternative which has its highest Ci as the optimal alternative.
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The following example illustrates the procedure.

Example 3. Assume the payoff matrix is as follows

S1 S2 S3 S4 S5

A1 7 5 12 13 6
A2 12 10 5 11 2
A3 9 13 3 10 9
A4 6 9 11 15 4

Assume that our knowledge of the state of nature consists of the following
belief structure, m:

Focal element
B1 = {S1, S3, S4}
B2 = {S2, S5}
B3 = {S1, S2, S3, S4, S5}

Weights
0.6
0.3
0.1

We shall assume that the decision maker has a degree of optimism of
0.75. Solving the appropriate mathematical programming[12] problems we
obtain the weights associated with the OWA operators for various numbers
of arguments under the optimism value of 0.75:

No. of arguments w1 w2 w3 w4 w5

2 0.75 0.25
3 0.62 0.27 0.11
4 0.52 0.27 0.14 0.07
5 0.46 0.26 0.15 0.08 0.05

We recall Mik is the collection of payoffs that are possible if we select alter-
native Ai and the focal element Bk occurs. We next calculate the bags Mik.

M11 = 〈7, 12, 6〉, M12 = 〈5, 13〉, M13 = 〈7, 5, 12, 3, 6〉,M21 = 〈12, 5, 2〉,
M22 = 〈10, 11〉, M23 = 〈12, 10, 5, 11, 2〉, M31 = 〈9, 3, 9〉,M32 = 〈13, 10〉,
M33 = 〈9, 13, 3, 10, 9〉, M41 = 〈6, 11, 4〉, M42 = 〈9, 15〉,M43 = 〈6, 9, 11, 15, 4〉.

Next we calculate Vik, using the ordered weighting average operation: We
recall that

Vik = F (Mik) .

V11 = (0.62) ∗ 12 + (0.27) ∗ 7 + (0.11) ∗ 6 = 9.99
V12 = (0.75) ∗ 13 + (0.25) ∗ 5 = 11
V13 = (0.46) ∗ (13) + (0.26) ∗ 12 + (0.15) ∗ 7 + (0.08) ∗ 6 + (0.04) ∗ 5 = 10.88
V21 = 0.62 ∗ 12 + 0.27 ∗ 5 + 0.11 ∗ 2 = 9.01
V22 = 0.75 ∗ 111 + 0.25 ∗ 10 = 10.75
V23 = 0.46 ∗ 12 + 0.26 ∗ 11 + 0.15 ∗ 10 + 0.08 ∗ 5 + 0.05 ∗ 2 = 10.38
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V31 = 0.62 ∗ 9 + (0.27) ∗ 9 + (0.11) ∗ 3 = 8.34
V32 = 0.75 ∗ 13 + 0.25 ∗ 10 = 12.25
V33 = 0.46 ∗ 13 + 0.26 ∗ 10 + 0.15 ∗ 9 + 0.08 ∗ 9 + 0.05 ∗ 3 = 10.8
V41 = 0.62 ∗ 11 + (0.27) ∗ 6 + (0.11) ∗ 4 = 8.88
V42 = 0.75 ∗ 15 + 0.25 ∗ 9 = 13.5
V43 = 0.46 ∗ 15 + 0.26 ∗ 11 + 0.15 ∗ 9 + 0.08 ∗ 6 + 0.05 ∗ 4 = 11.79

Finally we use these values to obtain the generalized expected value for
each alternative:

Ci = Vi1m (B1) + Vi2 ∗m (B2) + Vi3 ∗m (B3) = 0.6 ∗ Vi1 + 0.3 ∗ Vi2 + 0.1∗Vi3
C1 = 10.382 C2 = 9.67 C3 = 9.759 C4 = 10.557.

Given the above information the optimal choice is alternative A4.

6 Conclusion

In this paper we have introduced a general approach to decision making with
uncertain information. This methodology can be seen to provide a technique
to augment the applications of the Dempster–Shafer theory in expert systems
applications by providing a basis for making decisions. A number of possi-
ble connections exist between this approach and an approach suggested by
Quiggin[17] and that of Jaffray[9] which merit future investigation. It can be
shown that this approach satisfies most of the desirable properties of rational
decision making, it is symmetric and Pareto optimal.
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Belief Functions: The Disjunctive Rule
of Combination and the Generalized

Bayesian Theorem∗

Philippe Smets

Abstract. We generalize the Bayes’ theorem within the transferable belief model
framework. The Generalized Bayesian Theorem (GBT) allows us to compute the
belief over a space Θ given an observation x ⊆ X when one knows only the beliefs
over X for every θi ∈ Θ. We also discuss the Disjunctive Rule of Combination
(DRC) for distinct pieces of evidence. This rule allows us to compute the belief over
X from the beliefs induced by two distinct pieces of evidence when one knows only
that one of the pieces of evidence holds. The properties of the DRC and GBT and
their uses for belief propagation in directed belief networks are analysed. The use of
the discounting factors is justfied. The application of these rules is illustrated by an
example of medical diagnosis.

Key words: Belief functions, Bayes’ theorem, Disjunctive rule of
combination

1 Introduction

This paper presents the Disjunctive Rule of Combination (DRC) and the Gen-
eralized Bayesian Theorem (GBT) within the framework of the transferable
belief model, a model for quantifying beliefs using belief functions. Their use
is illustrated by a typical application in the domain of the medical diagnostic
process.

Suppose Bel1 : 2Ω → [0, 1] is a belief function induced on the frame of
discernment Ω by a piece of evidence E1. Suppose Bel2 : 2Ω → [0, 1] is a
belief function induced on the same frame of discernment Ω by another piece
of evidence E2. Suppose E1 andE2 are distinct pieces of evidence (Shafer 1976,

∗ This work has been partially funded by CEC-ESPRIT II Basic Research Project
3085 (DRUMS) And the Belgian National Incentive-Program for Fundamental
Research in Artificial Intelligence.
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Smets 1988, Smets 1992c). Shafer introduced Dempster’s rule of combination
to compute:

Bel12 = Bel1 ⊕Bel2

whereBel12 is the belief function induced on Ω by the conjunction ‘E1 andE2’.
We present a combination rule, the DRC, that permits the derivation of

the belief function induced on Ω by the disjunction of two pieces of evidence.
It corresponds to a situation where you could assess your belief on Ω if E1 were
true, your belief on Ω if E2 were true, but you only know that the disjunction
‘E1 or E2’ is true.

As an example of an application of the DRC, consider the medical diagnosis
process. Let X be the domain of symptoms, each x ∈ X being a particular
symptom. Let Θ be the domain of diseases, each θi in Θ being a particular
disease. The diseases θi are so defined that they are mutually exclusive and
exhaustive. Suppose we have assessed our belief over the symptoms for every
disease θi and we want to assess our belief over the symptoms knowing only
that the patient has either disease θ1 or disease θ2. This is the case when it
is known that all the diseases excepting θ1 and θ2 can be excluded. The DRC
provides the solution when the a priori belief over θ1 and θ2 is vacuous. Its
extension to the case where there is a non-vacuous a priori over θ1 and θ2

can also be obtained.
Simultaneously with the DRC, we derive the GBT. Bayes’ theorem is cen-

tral for probabilistic inference. In the medical diagnostic process considered,
let P (x|θi) be the probability of the symptoms given each diagnostic θi ∈ Θ,
and let our a priori belief over Θ be quantified by the probability distribution
function P0. After observing the symptom x ⊆ X , the probability distribution
on Θ is updated into P (θi|x), the a posteriori probability distribution on Θ,
by the application of Bayes’ theorem:

P (θi|x) =
P (x|θi)P0(θi)∑
j P (x|θj)P0(θj)

∀θi ∈ Θ.

In other words, from the probability over X given each θi ∈ Θ (and the a
prior probability on Θ), Bayes’ theorem allows us to derive the probability
over Θ given any x ⊆ X .

The GBT is a generalization of Bayes’ theorem where all conditional prob-
abilities are replaced by belief functions and the a priori belief function on
Θ is vacuous. A further generalization for non-vacuous a priori belief on Θ is
also presented.

The use of the GBT for medical diagnosis resolves the problem of how to
select uncommitted a priori probabilities on Θ that can represent the absence
of any a priori commitment towards any disease. The vacuous belief that
characterizes a state of total ignorance is used on the disease space Θ. Such
a state of ignorance cannot be represented within probability theory; indeed
total ignorance means that any strict subset of the disease set Θ should receive
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the same degree of belief. No probability function can describe such a belief
state once |Θ| > 2, as the same probability should be given to every θi, but
also to every θi ∪ θj ....(any strict subset of Θ)

1.1 Belief Propagation in Directed Networks

Belief networks described by Shafer et al (1987) are undirected hyper-graphs.
Hyper-nodes represent sets of variables (e.g., the symptoms and the diseases)
and hyper-edges are weighted with belief functions defined on the product
space of the variables represented by the nodes attached to the hyper-edges.
In Pearl’s approach (Pearl, 1988) - concerning only probability functions -
the edges are directed and weighted by the conditional probabilities over (the
variables represented by) the child node given (the variables represented by)
the parent nodes.

In this paper, we provide the tools necessary to use belief functions (instead
of probability functions) in directed graphs similar to those considered by
Pearl. An edge between a parent node Θ and a child node X will be weighted
by conditional belief functions over X for each value θi of Θ. Our approach is
less general than Shafer’s, but we feel that in practice the loss of generality is
not important. Indeed we agree with Pearl (1988) who argues that it is more
“natural” and “easier” to assess conditional probabilities (and conditional
beliefs) over X given θi than the joint probabilities (and beliefs) over the
space X × Θ, and that in most real life cases only conditional beliefs will be
collected.

The DRC can be used for forward propagation in directed networks. Con-
sider two parent nodes, Θ and Ψ , of node X and the conditional belief func-
tions BelX(.|θi) and BelX(.|ψj) on X given each θi ∈ Θ and given each
ψj ∈ Ψ . The conjunctive rule of combination provides the belief function on
X given “θi and ψj”. The disjunctive rule of combination provides the belief
function on X given “θi or ψj”.

The GBT can be used for backward propagation of beliefs in directed
networks between a child node X and its parent node Θ. Given the conditional
belief over X given each θi ∈ Θ, the GBT computes the belief induced on Θ
for any x ⊆ X .

1.2 Content

In Sect. 2, we define the Principle of Minimal Commitment, the Generalized
Likelihood Principle and the concept of Conditional Cognitive Independence.
The first formalizes the idea that one should never give more belief to some-
thing than is justified. The second formalizes the idea that the belief induced
by a disjunction of several pieces of evidence is a function of the beliefs induced
by each piece of evidence. The third extends the idea of stochastic indepen-
dence to belief functions.
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In Sect. 3, we derive the DRC and the GBT. In Sect. 4, we show that they
can also be derived through constructive approaches based on the Principle
of Minimal Commitment. In Sect. 5, we present some properties of the GBT
and some of its limitations. We show in particular that the GBT becomes the
classical Bayes’ theorem when all the belief functions happen to be probability
functions. In Sect. 6, we present the use of the DRC and the GBT for the
propagation of beliefs in directed belief networks. In Sect. 7, we present an
example of the use of the DRC and GBT for a medical diagnosis problem. In
Sect. 8, we summarize the major results and conclude.

1.3 Historical Notes

Smets (1978) derived initially both the DRC and the GBT by the technique
presented in Sect. 4. Most theorems described here are proved in Smets (1978).
The GBT was also presented in Smets (1981, 1986, 1988), discussed at full
length in Shafer (1982). The DRC was presented in Moral (1985), Dubois and
Prade (1986a, 1988), Smets (1988) and Cohen et al. (1987). The present paper
not only details both rules and many of their properties, but it also provides
normative requirements that justify them.

2 Belief Functions

We present some necessary material concerning belief functions and proceed
to expound the following three principles: the Principle of Minimal Commit-
ment, the Generalized Likelihood Principle and the Conditional Cognitive
Independence. Belief functions are used to quantify someone’s beliefs. They
cover the same domain as subjective probabilities, but do not use the addi-
tivity axiom required for probability measures. The existence of ‘basic belief
masses’ (bbm) allocated to subsets of a frame of discernment Ω is postulated.
For A ⊆ Ω, the bbm m(A) quantifies the portion of belief that supports A
without supporting any strict subset of A, and that could be transferred to
subsets of A if further information justifies it. This model is at the core of the
transferable belief model, our interpretation of Dempster-Shafer theory
(Smets, 1988, 1990, Smets and Kennes 1994, Smets 1991). Our results can be
easily transferred to other interpretations of Dempster-Shafer theory, like the
hints theory (Kohlas, 1990) or the context model (Gebhardt and Kruse, 1993)

2.1 Background

Let Ω be a finite non empty set called the frame of discernment. The
mapping Bel : 2Ω → [0, 1] is an (unnormalized) belief function iff there
exists a basic belief assignment (bba) m : 2Ω → [0, 1] such that:

∑

A⊆Ω

m(A) = 1
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and
Bel(A) =

∑

B⊆A;B �=∅
m(B).

Note that Bel(∅) = 0. The values of m(A) for A in Ω are called the basic
belief masses (bbm). m(∅) may be positive; when m(∅) = 0 (hence Bel(Ω) =
1), Bel is called a normalized belief function. In Shafer’s presentation, he
asserts that m(∅) = 0, or equivalently that Bel(Ω) = 1, and consequently,
belief combination and conditioning are normalized by dividing the results
by appropriate scaling factors. The difference between Shafer’s definition and
ours was introduced when we considered the difference between the open-world
and closed-world assumptions (Smets 1988). The nature of m(∅) > 0 is fully
discussed in Smets (1992b).

Our presentation is developed under the open-world assumption, as
described in the transferable belief model. However the whole presentation
is still valid under the more restrictive assumption of a closed-world.

Belief functions are in one-to-one correspondence with plausibility func-
tions Pl : 2Ω → [0, 1] and commonality functions q : 2Ω → [0, 1] where for
all A ⊆ Ω, A 	= ∅,

Pl(A) = Bel(Ω) −Bel(A) and Pl(∅) = 0

q(A) =
∑

A⊆B
m(B) and q(∅) = 1

where A is the complement of A relative to Ω.
A vacuous belief function is a normalized belief function such that

Bel(A) = 0, ∀A 	= Ω. It quantifies our belief in a state of total ignorance as
no strict subset of Ω receives any support.

Suppose Bel quantifies our belief about the frame of discernment Ω and we
learn that A ⊆ Ω is false. The resulting conditional belief function Bel(. �

�
A)

is obtained through the unnormalized rule of conditioning (see remark
1 for the use of �

� for the unnormalized conditioning. Bel(B �
�A) can be read

as the (degree of) belief of B given A or the belief of B in a context where A
holds):

m(B �
�A) =

∑

X⊆A
m(B ∪X) if B ⊆ A ⊆ Ω 2.1

= 0 otherwise

Bel(B �
�A) = Bel(B ∪A) −Bel(A) ∀B ⊆ Ω

Pl(B �
�A) = Pl(A ∩B) ∀B ⊆ Ω

The origin of this relation is to be found in the nature of the transfer-
able belief model itself. A mass m(B) given to B is transferred by condi-
tioning on A to A ∩ B. Other justifications can also be advanced. Bel(. �

�
A)

is the minimal commitment specialization of Bel, such that Pl(A �
�A) = 0
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(Klawonn and Smets 1992). It can also be derived as the minimal commitment
solution where Bel(“B �

�
A”) is considered to be the belief in the conditional

object “B �
�
A” (Nguyen and Smets, 1993). Note that these derivations are

obtained without ever considering the concept of ‘combination of distinct
pieces of evidence’, hence without requiring any definition of the notions of
distinctness, combination and probability).

Consider two belief functions Bel1 and Bel2 induced by two distinct pieces
of evidence on Ω. The belief function Bel12 that quantifies the combined
impact of the two pieces of evidence is obtained through the conjunctive
rule of combination: Bel12 = Bel1 ∩©Bel2 where ∩© represents the con-
junctive combination operator. Its computation is based on the basic belief
assignment m12:

m12(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ Ω. 2.2

Expressed with the commonality functions, it becomes:

q12(A) = q1(A)q2(A).

It can also be represented as: (Dubois and Prade (1986b) proved the relation
for m12.)

m12(A) =
∑

B⊆Ω

m1(A �
�
B)m2(B)

Bel12(A) =
∑

B⊆Ω

Bel1(A �
�
B)m2(B) 2.3

Pl12(A) =
∑

B⊆Ω

Pl1(A �
�
B)m2(B)

q12(A) =
∑

B⊆Ω

q1(A �
�B)m2(B)

Note that no normalization factor appears in these rules.

Remark 1. Definitions and symbols. Almost all authors working with belief
functions consider only normalized belief functions, whereas we consider
mainly unnormalized belief functions. In order to avoid confusion, we pro-
pose to keep the names of Dempster’s rule of conditioning and Dempster’s
rule of combination for the normalized forms of conditioning and conjunctive
combination, as was introduced by Shafer (1976). For the unnormalized rules,
we propose to use the names of unnormalized rule of conditioning for 2.1,
conjunctive rule of combination for 2.2 and disjunctive rule of combination
for the rule introduced in Sect. 3.
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We also propose to use the following symbols to represent these operations.

Dempster’s rule of conditioning: | Bel(A|B)
unnormalized rule of conditioning: �

� Bel(A �
�B)

Dempster’s rule of combination: ⊕ Bel12 = Bel1 ⊕Bel2
conjunctive rule of combination: ∩© Bel12 = Bel1 ∩©Bel2
disjunctive rule of combination: ∪© Bel12 = Bel1 ∪©Bel2

The difference betwen the elements of the two pairs (|, �
� ) and ( ⊕, ∩©)

results only from the normalization factors applied in | and ⊕. ∪© does not
have a specific counterpart in Shafer’s presentation (indeed onceBel1 andBel2
are normalized, Bel1 ∪©Bel2 is also normalized). Note that Bel(. �

�
B) could be

a normalized belief function. In fact �
� is a generalization of |.

Remark 2. Notation. Given two spaces Θ and X , we write BelX(. �
�
θ) and

PlX(. �
� θ) to represent the belief and plausibility functions induced on space X

in a context where θ ⊆ Θ is the case, and BelX×Θ, PlX×Θ to represent belief
and plausibility functions on the space X ×Θ. We write x∩ θ as a shorthand
for the intersection of the cylindrical extensions of x ⊆ X and θ ⊆ Θ over
the product space X × Θ (i.e., x ∩ θ means cyl(x) ∩ cyl(θ)). Similarly x ∪ θ
means cyl(x) ∪ cyl(θ)... Subscripts of Bel and Pl represent their domain and
are omitted when there is no ambiguity as in Bel(x �

� θ), Bel(θ),...

Remark 3. Our notation will not distinguish between elements like θi where
θi ∈ Θ and their corresponding singleton {θi} ⊆ Θ. The context should always
make it clear which is intended, and the notation is seriously lightened.

The following lemmas will be useful:

Lemma 1. If Pl : 2Ω → [0, 1] is a plausibility function, then the corresponding
commonality function q is q(A) =

∑
B⊆A(−1)|B|+1Pl(B).

Proof. immediate by replacing Bel(B) by Pl(Ω) − Pl(B) in the relation
between q and Bel given in Shafer 1976, p. 41. QED

Lemma 2. ∀x ⊆ X , ∀θ ⊆ Θ, ∀θi ∈ θ: Pl(x �
� θ) ≥ Pl(x �

� θi).

Proof. Let cyl(x) and cyl(θ) be the cylindrical extensions of x and θ on the
space X × Θ. Then PlX(x �

�
θ) = PlX×Θ(cyl(x) �

�
cyl(θ)) = PlX×Θ(cyl(x) ∩

cyl(θ)) ≥ PlX×Θ(cyl(x) ∩ cyl(θk)) = PlX(x �
�
θk) where θk ∈ θ. QED

2.2 The Principle of Minimal Commitment

We introduce the Principle of Minimal Commitment. Given a belief function
derived on Ω, this principle induces the construction of new belief functions 1)
on refined spaces Ω’ where every element of Ω is split into several elements
of Ω’ and 2) on extended spaces Ω”, where Ω” contains all the elements
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of Ω and some new elements. These two processes are called the vacuous
extension and the ballooning extension, respectively. In this paper, the
vacuous extension transforms a belief function over Θ into a belief function
over X×Θ and the ballooning extension transforms a conditional belief func-
tion BelX(. �

�
θi) defined on X for θi ∈ Θ into a new belief function overX×Θ.

In order to understand the Principle of Minimal Commitment, we must
consider the meaning of Bel(A) and Pl(A). Within the transferable belief
model, the degree of belief Bel(A) given to a subset A quantifies the amount
of justified specific support to be given to A, and the degree of plausibility
Pl(A) given to a subset A quantifies the maximum amount of potential specific
support that could be given to A.

Bel(A) =
∑

∅�=X⊆Ω

m(X) Pl(A) =
∑

A∩X �=∅
m(X) = Bel(Ω) −Bel(A).

We say specific because m(∅) is neither included in Bel(A) nor in Pl(A).
The bbms m(X) included in Bel(A) are only those given to the subsets of A
that are not subsets of A. m(∅) is not included because ∅ is a subset of both
A and A.

We say justified because we include in Bel(A) only the bbms given to sub-
sets of A. For instance, consider two distinct elements x and y of Ω. The bbm
m({x, y}) given to {x, y} could support x if further information indicates this.
However given the available information the bbm can only be given to {x, y}.

We say potential because the bbm included in Pl(A) could be transferred
to non empty subsets of A if some new information could justify such a trans-
fer. It would be the case if we learn that A is impossible. After conditioning
on A, note that Bel(A �

�A) = Pl(A). Large plausibilities given to all subsets
reflect the lack of commitment of our belief; we are ready to give a large belief
to any subset.

Consider now the case where there is ambiguity about the amount of
plausibility that should be given to the subsets of Ω. The ambiguity could be
resolved by giving the largest possible plausibility to every subsets.

The Principle of Minimal Commitment formalizes this idea: one should
never give more support than justified to any subset of Ω. It satisfies a form
of scepticism, noncommitment, or conservatism in the allocation of belief. In
spirit, it is not far from what probabilists attempt to achieve with the maxi-
mum entropy principle. The concept of commitment was already introduced
to create an ordering on the set of belief functions defined on a frame of
discernment Ω (see Moral 1986, Yager 1986, Dubois and Prade 1986a, 1987,
Delgado and Moral 1987, Kruse and Schwecke 1990, Hsia 1991).

To define the principle, let Pl1 and Pl2 be two plausibility functions on Ω
such that:

Pl1(A) ≤ Pl2(A) ∀A ⊆ Ω. 2.4

We say that Pl2 is no more committed than Pl1 (and less committed if
there is at least one strict inequality). The same qualification is extended to
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the related bbas and belief functions. The least committed belief function is
the vacuous belief function (m(Ω) = 1). The most committed belief function
is the contradictory belief function (m(∅) = 1).

The principle of minimal commitment indicates that, given two
equally supported beliefs, only one of which can apply, the most appropriate is
the least committed.

For unnormalized belief functions, the principle is based on the plausibility
function. The inequalities 2.4 expressed in terms of belief functions become:

Bel1(A) +m1(∅) ≥ Bel2(A) +m2(∅) ∀A ⊆ Ω. 2.5

To define the principle by requiring that:

Bel1(A) ≥ Bel2(A) ∀A ⊆ Ω 2.6

is inappropriate as seen in the following example. Let: Bel1(A) = 0, ∀A 	= Ω,
and Bel1(Ω) = .7. If Bel2 is a vacuous belief function, it is less committed
than Bel1. It is not the case that Bel2(A) ≤ Bel1(A), ∀A ⊆ Ω. However, one
has Pl1(A) = .7 ≤ Pl2(A) = 1, ∀A ⊆ Ω as required.

Under the closed-world assumption, the principle can be similarly defined
with plausibility inequalities 2.4 or belief function inequalities 2.6. The last
definition is historically the oldest. This explains why we maintain the “Min-
imal Commitment” name even though it could be argued that the principle
would be better named the principle of “maximal plausibility” or “maximal
scepticism”.

The Principle of Minimal Commitment is not used to derive the DRC and
the GBT in Sect. 3. However during the constructive derivations of the GBT
in Sect. 4, we will encounter plausibility functions Pl whose values are known
only for a set F of subsets of Ω. In most cases, one can build a plausibility
function Pl∗ such that Pl∗(A) = Pl(A), ∀A ⊆ F and Pl∗ is nevertheless
known everywhere on Ω. This is achieved by committing the largest possible
plausibility to every subset of Ω that is not an element of F . This application of
the principle of minimal commitment is translated into the following property.

The Principle of Minimal Commitment for partially defined plau-
sibility functions. Let F be a set of subsets of a frame of discernment Ω, and
let Pl be a plausibility function whose value is known only for those subsets
of Ω in F . Let P be the set of all the plausibility functions Pl′ on Ω such
that Pl′(A) = Pl(A) for all A in F . The maximal element Pl∗ of P , when it
exists, is the plausibility function Pl∗ such that ∀Pl′ in P : Pl∗(B) ≥ Pl′(B),
∀B ⊆ Ω.

Two special cases of the principle will be used here: the vacuous extension
and the “ballooning” extension.

1) Let Ω be a frame of discernment and let Pl be defined for every subset
of Ω. Let Ω’ be a refinement1 R of Ω. The plausibility function Pl′ on Ω’
1 The mapping R from Ω to Ω’ is a refinement if every element of Ω is mapped by

R into one or more elements of Ω’ and the images R(ω) of the elements ω of Ω
under the refinement R partition Ω’.
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induced by Pl that satisfies the Principle of Minimal Commitment is the
vacuous extension of Pl on Ω via R. Its bbms are defined as follows (Shafer
1976, p. 146 et seq.). Let m and m′ be the bbas underlying Pl and Pl′. Then
m′(R(A)) = m(A), ∀A ⊆ Ω, and m′(B) = 0 otherwise.

2) Let Θ and X be two finite spaces, BelX(. �
�
θ) be a conditional belief

function onX given some θ ∈ Θ and Bel∗ be the set of belief functions BelX×Θ
over space X ×Θ such that their conditioning given θ is equal to BelX(. �

� θ).
The element of Bel∗ that satisfies the Principle of Minimal Commitment is
the belief function Bel∗X×Θ such that:

Bel∗X×Θ((cyl(x) ∩ cyl(θ)) ∪ cyl(θ)) −Bel∗X×Θ(cyl(θ)) = BelX(x �
� θ)

where cyl(x) and cyl(θ) are the cylindrical extensions of x and θ on the space
X ×Θ, and Bel∗X×Θ(cyl(θ)) = mX(∅ �

� θ). It can be informally rewritten as:

Bel∗X×Θ(x ∪ θ) = BelX(x �
� θ) +mX(∅ �

� θ).

We call this transformation between Bel and Bel∗ the deconditional-
ization process (Smets 1978). Bel∗ is called the “ballooning extension”
of Bel(x �

� θ) on X × Θ as each mass m(x �
� θ) is given after deconditional-

ization to the largest subset of X × Θ so that its intersection with cyl(θ)
is the set cyl(x) ∩ cyl(θ) (see Fig. 1). Shafer (1982) called Bel∗ the ‘condi-
tional embedding’ of Bel(x �

�
θ). (Note the similarity between this ballooning

extension and the passage from a conjunction cyl(x) ∩ cyl(θ) to a material
implication cyl(x) → cyl(θ).)

2.3 Conditional Cognitive Independence

In our derivation of the GBT and the DRC, we need to determine the belief
induced by two ‘independent’ observations given the belief induced by each
observation. The concept of ‘independence’ is defined as follows. Let X and
Y be two spaces from which we collect observations (pieces of evidence).

Fig. 1. Ballooning of the bbm m(x2∪x3 �

�

θ2) (dark area) onto X ×Θ (shaded area).
The white dots correspond to the 16 elements of X × Θ
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The two variables X and Y are said to be ‘independent’ if the knowledge
of the particular value taken by one of them does not change our belief about
the value that the second could take, i.e. BelX(A �

�
y) = BelX(A �

�
y′), ∀A ⊆

X, ∀y, y′ ∈ Y, y 	= y′ and BelY (B �
�x) = BelY (B �

�x′), ∀B ⊆ Y, ∀x, x′ ∈
X,x 	= x′.

We use this concept of independent observations in order to derive the
DRC and the GBT as we claim that two independent observations induce
two belief functions that can be combined by the conjunctive rule of combi-
nation. More specifically, suppose a set Θ = {θi : i = 1...n} of contexts θi.
Suppose we collect two observations that are independent whatever the con-
text θi. Such two observations are said to be conditionally independent. Each
observation induces a belief on Θ and constitutes thus a piece of evidence
relative to Θ. We claim that two observations that are conditionally indepen-
dent constitute two pieces of evidence relative to Θ that are distinct. The
satisfaction of that claim was often asked for, it motivated the development
of the GBT in Smets (1978), and authors complain of its non satisfaction
by other attempts to define an equivalent of the GBT (e.g. see Halpern and
Fagin, 1990).

Once that claim is admitted, the properties underlying the concept of
Cognitive Independence, detailled here below, are deduced as a spin-off of the
DRC. But in fact the concept of independent observations is already sufficient
to deduce the properties underlying the concept of Cognitive Independence
within the TBM, therefore without regard to the DRC and the GBT.

In the transferable belief model framework, the concept of two independent
variables X and Y translates as follows: the ratio of the plausibilities on X
should not depend on y ⊆y :

PlX(x1 �
�
y)

PlX(x2 �
� y)

=
PlX(x1)
PlX(x2)

∀x1, x2 ⊆ X, ∀y ⊆ Y. 2.7

As PlX(x �
�
y) = PlX×Y (x ∩ y), the independence requirement becomes:

PlX×Y (x1 ∩ y)
PlX×Y (x2 ∩ y)

=
PlX(x1)
PlX(x2)

∀x1, x2 ⊆ X, ∀y ⊆ Y.

These ratio constraints imply that (the proof is given under lemma 4 in
the appendix):

PlX×Y (x ∩ y) = PlX(x)PlY (y) ∀x ⊆ X, ∀y ⊆ Y. 2.8

Two variables (X and Y ) that satisfy this requirement are said to satisfy
the Cognitive Independence property. This definition was introduced in
Shafer (1976, p. 150). It extends the classical stochastic independence.

The Cognitive Independence concept can be extended in a straighforward
manner when the plausibility functions are conditonal plausibility functions.
If the two variables X and Y are independent in each context θi, for all
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θi ∈ Θ, then they satisfy the Conditional Cognitive Independence (CCI)
property if:

PlX×Y (x ∩ y �
� θi) = PlX(x �

� θi)PlY (y �
� θi) ∀x ⊆ X, ∀y ⊆ Y, ∀θi ∈ Θ 2.9

The previous independence definitions are based on plausibility functions.
They could have been based as well on belief functions. Two variables X and
Y are CCI iff the ratio of their belief functions satisfy the dual of (2.7)

BelX(x1 �
� y)

BelX(x2 �
� y)

=
BelX(x1)
BelX(x2)

∀x1, x2 ⊆ X, ∀y ⊆ Y. 2.10

In fact, both definitions are equivalent as (2.7) is equivalent to (2.10). A proof
is given in the appendix (see lemma 5).

2.4 The Generalized Likelihood Principle

In order to derive the DRC and the GBT, we need to generalize the likelihood
principle within the transferable belief model. It simply postulates that the
belief function induced by the disjunction of two pieces of evidence is only
a function of the belief functions induced by each piece of evidence. We will
build PlX(. �

� θ) on X for any subset θ of Θ, even though we only know the
conditional plausibility functions PlX(. �

�
θi) over X , ∀θi ∈ Θ.

To help in understanding the principle, we present the likelihood principle
as described in probability theory. The likelihood l(θi|x) (sometimes called
the relative plausibility) of the “single” hypothesis θi, ∀θi ∈ Θ, given the data
x ⊆ X is defined as being equal to the conditional probability p(x|θi) of the
data x given the single hypothesis θi (Edwards, 1972)

l(θi|x) = p(x|θi).

The likelihood of the disjunction θ ⊆ Θ of several single hypotheses θi, i =
1, 2...k where θ = {θ1, θ2, . . . , θk} is defined as a function of the likelihoods of
the single hypotheses θi ∈ θ:

l(θ|x) = f({l(θi|x) : θi ∈ θ})

where f is the maximum operator ( f(a, b, ..) = max(a, b, ...) ). The link
between the likelihood functions extended to disjunction of hypotheses and
possibility functions (Zadeh, 1978, Dubois and Prade, 1985) was shown in
Smets (1982).

A form of this principle was already proposed in Shafer (1976, p. 239)
when he studied statistical inference in the context of belief functions. He
proposed to define Pl(θ|x) = maxθi∈θ Pl(θi|x). This solution is not satisfac-
tory for statistical inference, as it does not satisfy Requirement R1 in Sect. 3,
a requirement which satisfaction is often asked for (Smets 1978, Halpern and
Fagin, 1990).
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The likelihood principle is defined for probability functions. We broaden
it into the Generalized Likelihood Principle applicable to plausibility
function within the transferable belief model:

∀θ ⊆ Θ, ∀x ⊆ X,P l(x �
� θ) depends only on {Pl(x �

� θi), P l(x �
� θi) : θi ∈ θ}.

The maximum operator is not assumed. The need of both Pl(x �
�
θi) and

Pl(x �
� θi) reflects the non additivity of the plausibility functions.

The origin of the Principle can be justified by requiring that:

1. Pl(x �
�
θ) is the same after the frame X has been transformed by coarsening

into the frame with only two elements: x and x. This explains why only
those values of Pl(. �

�
θi) for x and x are used.

2. the values of Pl(x �
� θj) for θj /∈ θ are irrelevant to the values of Pl(x �

� θ).
Hence only the θi ∈ θ are used.

3 The Disjunctive Rule of Combination
and the Generalized Bayesian Theorem

We proceed with the derivation of the DRC and the GBT. Let X and Θ
be two finite non empty sets. Suppose all we know about X is represented
initially by the set {BelX(. �

� θi) : θi ∈ Θ} of belief functions BelX(. �
� θi) on

X . We only know the beliefs on X when we know which element of Θ holds.
We do not know these beliefs on X when we only know that the prevailing
element of Θ belongs to a given subset θ of Θ. The DRC permits to build the
belief function BelX(. �

�
θ) on X for any θ ⊆ Θ.

Simultaneously we derive the GBT that permits to build BelΘ(. �
�x) for

any x ⊆ X from the conditional belief functions BelX(. �
�
θi), as the DRC and

the GBT are linked through the relation:

PlX(x �
� θ) = PlΘ(θ �

�x), ∀θ ⊆ Θ, ∀x ⊆ X.

The derivation of the DRC and the GBT is based on the following ideas.
Let X and Y be two frames of discernment. For each θi ∈ Θ, let BelX(. �

�
θi)

quantify our belief on X given θi, and BelY (. �
� θi) quantify our belief on Y

given θi. θi can be interpreted as a context. We assume there is no other
knowledge about X and Y except these conditional belief functions on X and
Y known for each θi ∈ Θ. It implies among others that we do not have any
a priori belief on Θ, i.e. we have the vacuous a priori belief function Bel0 on
Θ (this condition will be relaxed in Sect. 5).

Suppose we learn then that x0 ⊆ X holds. What is the belief function
BelΘ(. �

�
x0) on Θ induced by the knowledge of the conditional belief functions

BelX(. �
� θi), ∀θi ∈ Θ, and of the fact that x0 holds? As we assume that every

state of knowledge induces a unique belief on any variable, the belief function



646 P. Smets

BelΘ(. �
�x0) on Θ exists and is unique. Hence BelΘ(. �

�x0) is a function F of x0

and the BelX(. �
�
θi) for θi ∈ Θ:

BelΘ(. �
�x0) = F (x0, {BelX(. �

� θi) : θi ∈ Θ}).

Similarly if we learn that y0 ⊆ Y holds, the belief function BelΘ(. �
�
y0) on

Θ is a function F of y0 and the BelY (. �
�
θi) for θi ∈ Θ:

BelΘ(. �
� y0) = F (y0, {BelY (. �

� θi) : θi ∈ Θ}).

Finaly, if we learn that the joint observation (x0, y0) ⊆ X × Y , x0 ⊆
X, y0 ⊆ Y , is the case, we could build the belief function BelΘ(. �

�x0, y0) on
Θ based on (x0, y0) if we knew the conditional belief functions BelX×Y (. �

�
θi)

for θi ∈ Θ:

BelΘ(. �
�x0, y0) = F ((x0, y0), {BelX×Y (. �

� θi) : θi ∈ Θ}).

Suppose the observations x0 ⊆ X and y0 ⊆ Y are conditionaly inde-
pendent whatever context θi ∈ Θ holds. The conditional independence of X
and Y implies that the observations x0 and y0 are two distinct pieces of evi-
dence relative to Θ. Each piece of evidence induces a belief on Θ: BelΘ(. �

�x0)
and BelΘ(. �

�
y0). The belief BelΘ(. �

�
x0, y0) that x0 and y0 jointly induce on

Θ can be obtained by the conjunctive rule of combination: BelΘ(. �
�
x0, y0) =

BelΘ(. �
�x0) ∩©BelΘ(. �

� y0).
In Requirement R, we ask that the belief function BelΘ(. �

�
x0, y0) induced

on Θ by two pieces of evidence x0 and y0 that corespond to two indepen-
dent observations x0 ⊆ X and y0 ⊆ Y is the same as the belief function
BelΘ(. �

�
x0) ∩©BelΘ(. �

�
y0) on Θ computed by the conjunctive combination of

the individual belief functions BelΘ(. �
�x0) and BelΘ(. �

� y0). We also ask that
PlX(. �

�
θ), PlY (. �

�
θ) and PlX×Y (. �

�
θ), θ ⊆ Θ, satisfy the Generalized Likeli-

hood Principle.
Requirement R. Given

• three frames of discernment X , Y and Θ.
• our knowledge onX , Y andΘ is represented by BelX(. �

�
θi) andBelY (. �

�
θi),

∀θi ∈ Θ.
• X and Y are conditionally independent given θi, ∀θi ∈ Θ
• ∀x ⊆ X and ∀y ⊆ Y , there is a function F such that

BelΘ(. �
�x) = F (x, {BelX(. �

� θi) : θi ∈ Θ})
BelΘ(. �

� y) = F (y, {BelY (. �
� θi) : θi ∈ Θ})

BelΘ(. �
�
x, y) = F ((x, y), {BelX×Y (. �

�
θi) : θi ∈ Θ})

Then:
Requirement R1:

BelΘ(. �
�
x, y) = BelΘ(. �

�
x) ∩©BelΘ(. �

�
y).
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Requirement R2:

PlX(x �
� θ) = g({PlX(x �

� θi), P lX(x �
� θi) : θi ∈ θ}) ∀x ⊆ X, ∀θ ⊆ Θ

PlY (y �
� θ) = g({PlY (y �

� θi), P lY (y �
� θi) : θi ∈ θ}) ∀y ⊆ Y, ∀θ ⊆ Θ

PlX×Y (w �
�
θ)=g({PlX×Y (w �

�
θi), P lX×Y (w �

�
θi) :θi ∈ θ})∀w ⊆ X × Y, ∀θ ⊆ Θ.

The functions F and g will be deduced from Requirement R in Theorems 1
to 4. This allows us to build:

1. BelX(. �
� θ) and BelY (. �

� θ), θ ⊆ Θ, (the DRC)
2. BelΘ(. �

�
x) and BelΘ(. �

�
y), (the GBT) and

3. BelX×Y (. �
�
θ), θ ⊆ Θ, (the CCI),

from the set of conditional belief functionsBelX(. �
� θi), and BelY (. �

� θi), θi ∈ Θ.
The derivation of the DRC and the GBT are presented successively, first

when the belief functions BelX(.|θi), and BelY (.|θi), θi ∈ Θ, are normalized
(i.e. BelX(X |θi) = 1 and BelY (Y |θi) = 1), then when they are not. The CCI
is a by-product of the DRC derivation. All proofs are given in the appendix.
We present only the formulas for BelX(. �

�
θ), θ ⊆ Θ, and BelΘ(. �

�
x), x ⊆ X ,

(and their related Pl,m and q functions). The same formulas can be written
for BelY (. �

�
θ), θ ⊆ Θ and BelΘ(. �

�
y), y ⊆ Y .

Theorem 1. The Disjunctive Rule of Combination, normalized beliefs. Given
the Requirement R and its antecedents.

Given BelX(X |θi) = 1 and BelY (Y |θi) = 1, ∀θi ∈ Θ. Then ∀θ ⊆ Θ,
∀x ⊆ X ,

BelX(x|θ) = BelX(x �
�
θ) =

∏

θi∈θ
BelX(x|θi) 3.1

PlX(x|θ) = PlX(x �
� θ) = 1 −

∏

θi∈θ
(1 − PlX(x|θi) 3.2

mX(x|θ) = mX(x �
� θ) =

∑

(∪i:θi∈θxi)=x

∏

i:θi∈θ
mX(xi|θi) 3.3

The relation 3.3 shows the dual nature of the conjunctive and disjunctive
rules of combination (Dubois and Prade, 1986a). Suppose two belief functions
with their basic belief assignments m1 and m2 on Ω. When combined, the
product m1(A)m2(B), A ⊆ Ω, B ⊆ Ω, is allocated to A∩B in the conjunctive
rule of combination, and to A∪B in the disjunctive rule of combination. One
has ∀C ⊆ Ω:

1) conjunctive rule of combination (CRD)

m1 ∩©m2(C) =
∑

A∩B=C

m1(A)m2(B)

q1 ∩©q2(C) = q1(C)q2(C)
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2) disjunctive rule of combination (DRC)

m1 ∪©m2(C) =
∑

A∪B=C

m1(A)m2(B)

Bel1 ∪©Bel2(C) = Bel1(C)Bel2(C)

The ∩ and ∪ operators encountered in the relations for the basic belief
assignments explain the origin of the symbols ∩© and ∪©. These relations show
also the dual role of Bel and q. Indeed Bel(C) is the sum of the basic belief
masses given to the subsets of C and q(C) as the sum of the basic belief masses
given to the supersets of C (beware of the comments after theorem 3).

Once the DRC is known, the GBT is derived thanks to the relation:

PlΘ(θ �
�
x) = PlX(x �

�
θ) ∀θ ⊆ Θ, ∀x ⊆ X

as confirmed by the equality between 3.2 and 3.5.

Theorem 2. The Generalized Bayesian Theorem, normalized beliefs. Given
the Requirement R and its antecedents. Given BelX(X |θi) = 1 and
BelY (Y |θi) = 1, ∀θi ∈ Θ. Then ∀θ ⊆ Θ, ∀x ⊆ X,

BelΘ(θ �
�x) =

∏

θi∈θ
BelX(x|θi) −

∏

θi∈Θ
BelX(x|θi) 3.4

BelΘ(θ|x) = K.BelΘ(θ �
�x)

PlΘ(θ �
�
x) = 1 −

∏

θi∈θ
(1 − PlX(x|θi)) 3.5

PlΘ(θ|x) = K.P lΘ(θ �
�x)

qΘ(θ �
�x) =

∏

θi∈θ
PlX(x|θi) 3.6

qΘ(θ|x) = K.qΘ(θ �
�
x)

where

K−1 = 1 −
∏

θi∈Θ
BelX(x|θi) = 1 −

∏

θi∈θ
(1 − PlX(x|θi)).

As announced the CCI is derived as a by-product of the DRC. Note that 3.2
and 3.5 are identical, reflecting the equality between PlX(x �

� θ) and PlΘ(θ �
�x).

Lemma 3. the Conditional Cognitive Independence. Under theorem 1 condi-
tions:

PlX×Y (x ∩ y �
�
θi) = PlX(x �

�
θi)PlY (y �

�
θi) ∀x ⊆ X, ∀y ⊆ Y, θi ∈ Θ.
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We proceed with the derivation of the DRC and the GBT when the initial
conditional belief functions are not normalized. Given a belief function Bel :
2Ω → [0, 1], we define a function b : 2Ω → [0, 1] such that b(A) = Bel(A) +
m(∅). This b function is the real dual of the commonality function q. The
real difference between theorems 1-2 and 3-4 concerns the computation of
BelX(x �

� θ) and BelΘ(θ �
�x).

Theorem 3. The Disjunctive Rule of Combination, general case.

Given the Requirement R and its antecedents. Then ∀θ ⊆ Θ, ∀x ⊆ X ,

bX(x �
� θ) =

∏

θi∈θ
bX(x �

� θi) 3.7

BelX(x �
�
θ) = bX(x �

�
θ) − bX(∅ �

�
θ) 3.8

PlX(x �
�
θ) = 1 −

∏

θi∈θ
(1 − PlX(x �

�
θi)) 3.9

mX(x �
�
θ) =

∑

(∪i:θi∈θxi)=x

∏

i:θi∈θ
mX(xi �

�
θi) 3.10

The real dual of q is b, not Bel: indeed in the disjunctive rule of combi-
nation one multiplies the b functions, not the Bel functions. b(C) is the sum
of the basic belief masses given to the subsets of C, including ∅. Another way
to see the dual nature of the DRC and CRC consists in building the ‘comple-
mentary’ basic belief assignment m : 2Ω → [0, 1] of a basic belief assignment
m : 2Ω → [0, 1] with m(A) = m(A) for every A ⊆ Ω. Then b(A) = q(A)
(Dubois and Prade, 1986a).

Theorem 4. The Generalized Bayesian Theorem, general case.

Given the Requirement R and its antecedents. Then ∀θ ⊆ Θ, ∀x ⊆ X ,

bΘ(θ �
�x) =

∏

θi∈θ
bX(x �

� θi) 3.11

BelΘ(θ �
�
x) = bΘ(θ �

�
x) − bΘ(∅ �

�
x) 3.12

PlΘ(θ �
�x) = 1 −

∏

θi∈θ
(1 − PlX(x �

� θi)) 3.13

qΘ(θ �
�x) =

∏

θi∈θ
PlX(x �

� θi) 3.14

4 Constructive Derivations of Theorems 3 and 4 Results

In theorems 3 and 4 we derive the DRC and the GBT from general principles
(see (Smets 1978)). These relations can also be obtained in a constructive way



650 P. Smets

by the application of the Principle of Minimal Commitment. We present three
different ways to derive both the DRC and the GBT. These constructions help
in understanding the nature of the solutions.

4.1. For each θi ∈ Θ, build the ballooning extension Bel
(i)
X×Θ of BelX(. �

�
θi)

on X ×Θ. Combine these belief functions Bel(i)X×Θ by the conjunctive rule of
combination. Let BelX×Θ = Bel

(1)
X×Θ ∩©Bel(2)X×Θ ∩© . . . ∩©Bel(n)

X×Θ be the result-
ing belief function on X ×Θ. Let ω ⊆ X ×Θ and let xi be the projection of
ω ∩ cyl(θi) on X . Then

BelX×Θ(ω) =
∏

θi∈Θ
bX(xi �

� θi) −
∏

θi∈Θ
bX(∅ �

� θi)

mX×Θ(ω) =
∏

θi∈Θ
mX(xi �

�
θi)

qX×Θ(ω) =
∏

θi∈Θ
qX(xi �

�
θi)

(all proofs are given in Smets 1978, p. 163 et seq.)
The relations of Theorems 3 and 4 are obtained by conditioning BelX×Θ

on cyl(x) or cyl(θ) and marginalizing the results on X or Θ.
Suppose the conditional belief functions BelX(.|θi) are normalized for all

θi ∈ Θ, then any subset of X × Θ whose projection on Θ is not Θ itself
receives a zero belief, i.e. the only knowledge of the normalized conditional
belief functions BelX(. �

�
θi) induces a vacuous belief on Θ.

4.2. Theorems 3 and 4 results can also be derived by individually con-
sidering the ballooning extension Beli of each conditional belief function
BelX(. �

�
θi), i = 1, 2...n, (n = |Θ|), on space X ×Θ. Then the Beli are condi-

tioned on x ⊆ X . The marginalization on Θ of the resulting conditional belief
function is the (normalized) simple support function with basic belief masses

m(θi �
�
x) = BelX(x �

�
θi) +mX(∅ �

�
θi)

m(Θ �
�x) = BelX(X �

� θi) −BelX(x �
� θi)

The conjunctive combination of these simple support functions on Θ obtained
for each θi ∈ Θ are the relations 3.11 to 3.13.

4.3. Finally one can also consider that each θi, (i = 1, 2...n), is the value of a
variable Θi that can take only two values: θi and θi. Given BelX(. �

� θi), apply
the Principle of Minimal Commitment to build the belief function on the space
X×Θi (i.e. build the ballooning extension). Then vacuously extend these belief
functions obtained on each X ×Θi onto the space X ×Θ1 ×Θ2 × . . .×Θn by
again applying the Principle of Minimal Commitment (i.e. build their vacuous
extensions on X × Θ1 × Θ2 × . . . × Θn). Combine all these belief functions
on X × Θ1 × Θ2 × . . . × Θn by the conjunctive rule of combination and call
the resulting belief function BelXn. Let Θ be the space whose elements τ i



25 Disjunctive Rule of Combination and Generalized Bayesian Theorem 651

are the intersections (of the cylindrical extensions) of the complements of all
θν : ν 	= i and θi: so τ i = θ1 ∩ θ2...∩ θi...∩ θn. Condition BelXn on the space
X × Θ. The belief function induced on that space X × Θ is the same as the
one deduced in Sect. 4.1.

Note that the belief function BelX on X induced by the conditioning of
BelXn on θ1 ∩ θ2.... ∩ θn is the belief function one would have derived by
applying the conjunctive rule of combination to the individual conditional
belief functions: BelX = BelX(. �

�
θ1) ∩©BelX(. �

�
θ2) ∩© . . . ∩©BelX(. �

�
θn).

5 Properties of the GBT

5.1. Assume there exists some a priori belief Bel0 over Θ distinct from
the belief induced by the set of conditional belief functions BelX(. �

�
θi), θi ∈ Θ.

Combining Bel0 with the belief function induced on the space X×Θ leads to
a generalization of the DRC. By (2.3)

BelX(x) =
∑

θ⊆Θ
m0(θ)BelX(x �

� θ) 5.1

=
∑

θ⊆Θ
m0(θ)(

∏

θi∈θ
bX(x �

� θi) −
∏

θi∈θ
bX(∅ �

� θi)) 5.2

PlX(x) =
∑

θ⊆Θ
m0(θ)PlX(x �

�
θ) 5.3

=
∑

θ⊆Θ
m0(θ)(1 −

∏

θi∈θ
(1 − PlX(x �

� θi))) 5.4

Proof. The solution is obtained by ∩©-combining the vacuous extension ofBel0
on X ×Θ with BelX×Θ and marginalizing them on X , using then BelX(x �

�
θ)

as given by 3.8. The full proof is given in Smets 1978, p. 178. QED

Equations 5.1 and 5.3 are particular cases of 2.3. They can be used to
speed up computation of beliefs in beliefs networks.

To obtain the belief function induced on Θ given some x ⊆ X , we ∩©-
combine Bel0 with the belief function deduced on Θ by the GBT. The results
are the same as those obtained if we combine the vacuous extension of Bel0
with the belief function BelX×Θ induced on X ×Θ by the set of conditional
belief functions BelX(. �

�
θi), θi ∈ Θ (see section 4.1) and then condition the

result on x. (Proofs in Smets 1978, p. 177)

5.2. Assume we have some belief BelX0 on X . The GBT becomes

BelΘ(θ) =
∑

x⊆X
mX0(x)BelΘ(θ �

�x) 5.5

where BelΘ(θ �
�x) is given by 3.11.
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Proof. build the vacuous extension of BelX0 on X × Θ, ∩©-combine it with
BelX×Θ as derived in Sect. 4.1., and marginalize the result on Θ. QED

Note that (5.5) enables the backward propagation of belief based on doubt-
ful observations.

5.3. If each BelX(. �
� θi) happens to be a probability function P (.|θi) on

X, then the GBT for |θ| = 1 becomes:

PlΘ(θ �
�
x) = P (x|θ) ∀x ⊆ X.

That is, on the singletons θ of Θ, PlΘ(. �
�
x) reduces to the likelihood of θ

given x. The analogy stops there as the solutions for the likelihood of subsets
of Θ are different (see Sect. 2.4).

If, furthermore, the a priori belief on θ is also a probability function P0(θ),
then the normalized GBT becomes:

BelΘ(θ|x) =

∑
θi∈θ P (x|θi)P0(θi)∑
θi∈Θ P (x|θi)P0(θi)

= P (θ|x)

i.e. the (normalized) GBT reduces itself into the classic Bayesian theorem,
which explains the origin of its name.

5.4. Assume BelX(. �
�
θ) is known not on each singleton of Θ, but on the

elements of a partition of Θ. Then redefine Θ by creating the coarsening Θ’
of Θ such that the elements of Θ’ are the elements of the partition of Θ and
proceed as before on the space Θ’.

5.5. Assume BelX(. �
�
θ) is known on subsets of Θ which are not mutu-

ally exclusive. For instance assume one knows BelX(. �
� θ1), BelX(. �

� θ2) and
BelX(. �

� θ1 ∪ θ2). We must determine whether BelX(. �
� θ1 ∪ θ2) is compatible

with the Generalized Likelihood Principle (accepting some a priori belief on
Θ) i.e., does there exist some a priori belief function Bel0 on Θ such that for
all x ⊆ X :

BelX(x �
� θ1 ∪ θ2) = m0(θ1)BelX(x �

� θ1) +m0(θ2)BelX(x �
� θ2)

+m0(θ1 ∪ θ2)(bX(x �
�
θ1)b(x �

�
θ2) − b(∅ �

�
θ1)b(∅ �

�
θ2))

(see Sect. 5.1.). A m0 must be found that satisfies these constraints. This
search will not always be successful in which case the DRC and the GBT
do not apply. Failure reflects the fact that BelX( �

�
θ1 ∪ θ2) is based on more

information than the one represented by BelX(. �
� θ1), BelX(. �

� θ2) and some
Bel0. Difficulties can also appear when there are several solutions m0 that
satisfy the constraints. We will not discuss them further here as, fortunately,
in typical cases, BelX(. �

� θ) is known for the singletons θ of Θ (or for subsets
θ of Θ that constitutes a partition of Θ). Then both the DRC and the GBT
apply.
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5.6. When one has an a priori belief function BelX0 onX , one could compute

Bel∗Xi = BelX(. �
� θi) ∩©BelX0

for each θi, i.e. our belief over X that combines both pieces of evidence,
the one related to the θi and the one related to the prior on X . But it is
erroneous to use the Bel∗Xi in the GBT directly. Indeed, Bel∗Xi and Bel∗Xj ,
i 	= j, do not result from distinct pieces of evidence as they share the same a
priori BelX0. The correct computation consists in isolating each BelX(. �

�
θi),

ballooning them on X ×Θ, ∩©-combining them and marginalizing them on X
and then ∩©-combining the result with BelX0. Through this technique, each
piece of evidence is taken into consideration once and only once.

5.7. Discounting a Belief Function Consider an evidence that induces a
normalized belief function BelΩ on Ω. When the evidence as a whole is itself
affected by some uncertainty (unreliability), Shafer (1976, p. 251 et seq.) sug-
gested ‘discounting’ BelΩ in order to take this new uncertainty into account.
Let 1−α be the degree of trust (reliability) in the evidence as a whole, where
0 ≤ α ≤ 1. The discounted belief function BelαΩ on Ω is defined by Shafer
(1976 p. 251) such that :

∀A ⊆ Ω, A 	= Ω, BelαΩ(A) = (1 − α)BelΩ(A)
and BelαΩ(Ω) = BelΩ(Ω) = 1

Shafer considers this concept of discounting as simple and useful but did not
explain the origin of within his theory. It can be explained using the same
ideas as those that lead to the GBT.

Let E be a frame with two elements E and E , where E means ‘I know
the evidence’, and E means ‘I do not know the evidence’. Assume that these
are the only pieces of evidence available. By definition, the belief function
BelΩ(.|E) induced on Ω by E is BelΩ. The belief function BelΩ(.|E) induced
by on Ω is vacuous: not knowing an evidence leaves us in a state of total
ignorance. Thus for each element in E , one has a belief over Ω : BelΩ(.|E) =
BelΩ(.) and BelΩ(.|E) is the vacuous belief function. Lemma 2 shows that
BelΩ(.|E or E) is vacuous as BelΩ(.|E) is vacuous (and this irrespective of
the DRC).

Let 1 − α be my degree of belief over E that E holds (i.e. my degree of
belief that the source of the evidence E is reliable). So one has the bba over
E with mE(E) = 1 − α and mE(E) = α.

Let Bel∗Ω be the belief induced on Ω by the conditional belief functions
BelΩ(.|E), BelΩ(.|E) and BelΩ(.|E or E), and the prior bba mE on E . The
application of (5.1) leads to

Bel∗Ω(A) = mE(E)BelΩ(.|E) +mE(E)BelΩ(.|E) +mE(E)BelΩ(.|E or E)
= (1 − α)BelΩ(A) ∀A ⊆ Ω, A 	= Ω
= 1 A = Ω
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Hence Bel∗Ω = BelαΩ . The relation is always true as it is derived from (5.1)
which always holds and not from (5.2) which is derived from the GBT. The
discounted belief function BelαΩ can thus be justified within the TBM.

Informally, the discounted belief function BelαΩ results from the idea that
I have a degree of belief (1 − α) that E is a legitimate (reliable) piece of
evidence, in which case my belief on Ω is quantified by BelΩ. The remaining
bbm α is given to the fact thet E might be but is not necessarily a legitimate
piece of evidence, in which case my belief on Ω can be quantified by any belief
function, including BelΩ. In such a state of ignorance, the Principle of Minimal
Commitment justifies the use of the vacuous belief function to quantify my
belief on Ω. BelαΩ results from the combination of the initial belief function
BelΩ on Ω and the belief built on E .

Discounting can also be seen as the result of the impact of a meta-belief
over the set B of belief functions on Ω. It fits with a very special but important
case of a general theory of meta-beliefs. α is the meta-bbm (the basic belief
mass related to the meta-belief function) given to the particular element BelΩ
of the set B of belief functions on Ω. 1-α is the meta-bbm given to B itself.
The discounting operation corresponds to the collapse of the meta-beliefs over
the set of belief functions on Ω into a belief function on Ω.

6 Belief Networks

We now introduce some possible applications of the GBT and the DRC. All
belief functions considered here are induced by distinct pieces of evidence.

Consider the simplest directed belief network with two nodes Θ and X
representing binary variables. The weights on the edge are the conditional
plausibility functions on X given θ and θ.

Θ > X∣∣∣∣
Pl(x �

�
θ) Pl(x �

�
θ) Pl(x ∪ x �

�
θ)

Pl(x �
� θ) Pl(x �

� θ) Pl(x ∪ x �
� θ)

∣∣∣∣

Forward propagation: Assume there is some basic belief masses on Θ:m(θ),
m(θ) and m(θ ∪ θ). Then we can compute the plausibility induced on X by
5.4:

Pl(x) = m(θ)Pl(x �
� θ) +m(θ)Pl(x �

� θ)

+m(θ ∪ θ)(1 − (1 − Pl(x �
�
θ))(1 − Pl(x �

�
θ)))

Pl(x) = m(θ)Pl(x �
�
θ) +m(θ)Pl(x �

�
θ)

+m(θ ∪ θ)(1 − (1 − Pl(x �
� θ))(1 − Pl(x �

� θ)))

Pl(x ∪ x) = m(θ)Pl(x ∪ x �
� θ) +m(θ)Pl(x ∪ x �

� θ)

+m(θ ∪ θ)(1 − (1 − Pl(x ∪ x �
�
θ))(1 − Pl(x ∪ x �

�
θ)))
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Backward propagation: Should we receive a plausibility on X instead, we
could compute the belief on Θ by (3.3)

Pl(θ) = m(x)Pl(x �
�
θ) +m(x)Pl(x �

�
θ) +m(x ∪ x)Pl(x ∪ x �

�
θ)

Pl(θ) = m(x)Pl(x �
� θ) +m(x)Pl(x �

� θ) +m(x ∪ x)Pl(x ∪ x �
� θ)

Pl(θ ∪ θ) = m(x)(1 − (1 − Pl(x �
� θ))(1 − Pl(x �

� θ)))

+m(x)(1 − (1 − Pl(x �
� θ))(1 − Pl(x �

� θ)))

+m(x ∪ x)(1 − (1 − Pl(x ∪ x �
�
θ))(1 − Pl(x ∪ x �

�
θ)))

Propagation in both directions: Should one receive both a belief BelΘ on
Θ and a belief BelX on X, then

• for the X node: apply forward propagation using BelΘ and the conditional
plausibilities and ∩©-combine the result with BelX .

• for the Θ node: apply backward propagation using BelX and the condi-
tional plausibilities and ∩©-combine the result with BelΘ.

Notice the strong symmetry between the above two sets of formula; it reflects
the fact that unnormalized conditional plausibilities are symmetrical in their
two arguments. Computing the corresponding belief function is immediate.
Computing the corresponding basic belief masses or the commonality function
should be done with the Fast Moebius Transform (Kennes and Smets 1990)
to optimize computation time.

For more complicated acyclic belief networks, the computation is similar.
Each node stores the beliefs induced by its immediate neighbours. Once a node
X indicates that its belief has changed, it propagates its new belief to all its
neighbours. Each neighbour updates the belief induced by X by ∩©-combining
with its stored beliefs, using commonality functions for efficiency reasons.
They then propagate the updated belief to Y ’s neighbours that have not yet
been updated. This propagation is in fact identical to the one encountered in
Shafer, Shenoy and Mellouli’s algorithm (Shafer et al. 1987). The advantage of
our method is that storage on the edge is smaller (at most |Θ|2|X| values) and
propagation between nodes is accelerated. The only weakness of our method is
that it does not cover all possible belief functions between two variables, it is
restricted to those belief functions that can be represented through the set of
conditional belief functions, thus a subset of the set of all belief functions. We
believe that this loss of generality is not serious, as far as most natural cases
correspond to those where only the conditional belief functions are received.
Finally, our computation is faster and requires less memory than the Shafer-
Shenoy-Mellouli algorithm.

7 Example

In order to illustrate the use of the GBT and the DRC, we consider an example
of a medical diagnosis process. Let Θ = {θ1, θ2, θω} be a set of diseases with
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Table 1. Conditional beliefs (Bel) and bbm (m) on the symptoms x ⊆ X within
each of the mutualy exclusive and exhaustive diagnosis θ1, θ2 and θω ∈ Θ. The right
part of the table presents the beliefs (and bbm) on X given the disease is either θ1

or θ2

{θ1} {θ2} {θω} {θ1, θ2}
X m Bel m Bel m Bel m Bel

{x1} .0 .0 .0 .0 .0 .0 .00 .00
{x2} .0 .0 .0 .0 .0 .0 .00 .00
{x3} .5 .5 .2 .2 .0 .0 .10 .10
{x1, x2} .2 .2 .6 .6 .0 .0 .12 .12
{x1, x3} .0 .5 .1 .3 .0 .0 .05 .15
{x2, x3} .0 .5 .1 .3 .0 .0 .05 .15
{x1, x2, x3} .3 1.0 .0 1.0 1.0 1.0 .68 1.00

three mutually exclusive and exhaustive diseases. θ1 and θ2 are two ‘well
known’ diseases, i.e. we have some beliefs on what symptoms could hold when
θ1 holds or when θ2 holds. θω corresponds to the complement of {θ1, θ2}
relative to all possible diseases. θω represents not only all the ‘other’ diseases
but also those not yet known. In such a context, our belief on the symptoms
can only be vacuous. What do we know about the symptoms caused by a still
unknown disease? Nothing of course, hence the vacuous belief function.

We consider two sets X and Y of symptoms with X = {x1, x2, x3} and
Y = {y1, y2}. Tables 1 and 2 present the beliefs over X and Y when each of
the individual diseases holds. They also show the beliefs over the symptoms
when we only know that either θ1 or θ2 holds. They are derived from theorem
3. The beliefs translate essentially the facts that θ1 ‘causes’ (supports) x3

and y2, and θ2 ‘causes’ x2 or x3 (without preference) and y1. When we only
know that θ1 or θ2 holds, then we have a balanced support over X , and some
support in favor of y1.

Table 3 presents the beliefs induced on Θ by the individual observation of
symptom x3 or of symptom y2, respectively. We assume that the symptoms are
independent within each disease, hence the GBT can be applied. The indepen-

Table 2. Conditional beliefs (Bel) and bbm (m) on the symptoms y ⊆ Y within
each of the mutualy exclusive and exhaustive diagnosis θ1, θ2 and θω ∈ Θ. The right
part of the table presents the beliefs (and bbm) on Y given the disease is either θ1

or θ2

{θ1} {θ2} {θω} {θ1, θ2}
Y m Bel m Bel m Bel m Bel

{y1} .1 .1 .6 .6 .0 .0 .12 .12
{y2} .7 .7 .0 .0 .0 .0 .00 .00
{y1, x2} .1 .9 .4 1.0 1.0 1.0 .88 1.00
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Table 3. Left part: the basic belief masses (m) and the related commonality
functions (q) induced on Θ by the observation of symptom x3 or of symptom y2.
Right part, the basic belief masses (m) and the related belief function (Bel),
plausibility function (P l) and commonality function (q) induced on Θ by the joint
observation of x3 and y2

�

�

x3 �

�

y2 �

�

x3, y2

Θ m q m q m q Bel P l

{θ1} .00 .80 .00 .80 .00 .64 .00 .64
{θ2} .00 .40 .00 .60 .00 .24 .00 .24
{θω} .12 1.00 .08 1.00 .27 1.00 .27 1.00
{θ1, θ2} .00 .32 .00 .48 .00 .15 .00 .73
{θ1, θω} .48 .80 .32 .80 .49 .64 .76 1.00
{θ2, θω} .08 .40 .12 .60 .09 .24 .36 1.00
{θ1, θ2, θω} .32 .32 .48 .48 .15 .15 1.00 1.00

dence assumption means that if we knew which disease holds the observation
of one of the symptoms would not change our belief about the status of the
other symptom. The right half of table 3 presents the beliefs induced on Θ
by the joint observation of symptom x3 and of symptom y2. The beliefs are
computed by the application of theorem 4. The symptoms individually and
jointly support essentially {θ1, θω}. The meaning of Bel(θω �

�x3, y2) = 0.27
merits some consideration. It quantifies our belief that the joint symptoms x3

and y2 are neither ‘caused’ by θ1 nor by θ2. It supports the fact that the joint
observation is ‘caused’ by another disease or by some still unknow disease.
A large value for Bel(θω �

�
x3, y2) somehow supports the fact that we might

be facing a new disease. In any case it should induce us in looking for other
potential causes to explain the observations.

Table 4 presents the beliefs induced on {θ1, θ2} when we condition our
beliefs on Θ on {θ1, θ2}, or when we have some a priori belief onΘ. The results
are obtained by the application of the conjunctive rule of combination applied

Table 4. The basic belief masses (m) and the related (normalized) belief function
(Beln) induced on Θ by the joint observation of x3 and y2, and based on three
different a priori beliefs on Θ: an a priori that reject θω, a probabilistic a priori on
{θ1, θ2} and a simple support function on {θ1, θ2}

�

�

x3, y2 m(θ1, θ2) = 1 m(θ1) = .3 m(θ1) = .3
m(θ2) = .7 m(θ1, θ2) = .7

Θ m Beln m Beln m Beln
{} .30 .00 .70 .00 .32 .00
{θ1} .54 .77 .19 .63 .57 .84
{θ2} .06 .09 .11 .37 .04 .06
{θ1, θ2} .10 1.00 .00 1.00 .07 1.00



658 P. Smets

to the a priori belief on Θ and the belief induced by the joint observations.
The belief functions presented are normalized.

8 Conclusions

We have presented the GBT and the DRC built on the knowledge of a set
of conditional belief functions BelX(. �

� θ) on X for each θ in Θ where the θ’s
constitute a partition of Θ. Distinct beliefs on X and/or Θ can be included.
Beside the direct relevance of these theorems for inference and the combination
of distinct disjunctive pieces of evidence, they are also useful when building
belief networks: the assessment of conditional beliefs on X given each θ is
more natural and easier than the direct assessment of the joint belief on the
space X × Θ. The loss of generality does not appear to be of any practical
importance. In any case, even for the general one, one can always speed up
computation and reduce memory requirements thanks to 5.1 and 5.3 that are
always valid. Instead of storing the general belief function BelX×Θ, store the
set of conditional belief functions BelX(. �

� θ) ∀θ ⊆ Θ. The total amount of
stored data is at most 2|X|+|Θ| instead of 2|X|.|Θ|, a serious gain once |X | and
|Θ| become large.

The appropriate use of the GBT and the DRC resolves many of the prob-
lems that were raised in Pearl (1990) as supposedly counter-examples against
the Dempster-Shafer theory (see Smets (1992a) for an in-depth re-analysis of
these examples).

One should take care not to apply the GBT and the DRC blindly. The
Generalized Likelihood Principle is not always satisfied. Its applicability must
be verified. As a counterexample, consider a set of urns with ten balls
among which some (n) are white, the others black. Suppose an urn with
six white balls (n = 6). Let Bel(W �

�n = 6) be your belief that the next
ball extracted from that urn is white knowing there are 6 white balls. You
are free to give any value to Bel(W �

�n = 6). Hacking’s frequency principle
(Hacking 1965) supports that Bel(W �

�n = 6) should be 6/10. It provides a
reference scale to quantify beliefs, but any monotonous transformation could
be as good. Nevertheless Bel(W �

�n = 6) and Bel(W �
�n = 7) are related: once

Bel(W �
�
n = 6) is given, Bel(W �

�
n = 7) may not be smaller, (if you have

the least amount of coherence). Only in the world of “Absurdia” could one
accept that the knowledge of Bel(W �

�n = 6) does not induce any constraint
on the value of Bel(W �

�
n = 7). We accept - hopefully - that we are not living

in Absurdia. Hence Bel(W �
�
n = 6) and Bel(W �

�
n = 7) are related by extra

constraints and these constraints must be incorporated into the model. Apply-
ing blindly the GBT is such a context without due regard to the constraints
that exist between the conditional belief functions would lead to erroneous
answers.
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Appendix:

Lemma 4. If

PlX(x �
� z)

PlY (y �
�
z)

=
PlX(x)
PlY (y)

∀x ⊆ X, ∀y ⊆ Y, ∀z ⊆ Z,

then PlX(x �
�
z) = PlX(x)PlZ(z).

Proof. By hypothesis,
PlX(x �

� z)
PlX(x)

=
PlY (y �

� z)
PlY (y)

.

So these ratios do not depend on x (nor on y). Let the ratio be equal to f(z).
Hence PlX(x �

�
z) = PlX(x)f(z). As PlX(x �

�
z) = PlX×Z(x ∩ z) = PlZ(z �

�
x),

then f(z) = PlZ(z). QED

Lemma 5. Let X and Y be two frames of discernment. Let PlX and PlY be
plausibility functions over the frames of discernment X and Y , respectively.
Let PlX×Y be the plausibility function on X × Y such that: PlX×Y (x ∩ y) =
PlX(x)PlY (y). Then

BelX(x �
� y) = BelX(x)PlY (y) ∀x ⊆ X, ∀y ⊆ Y

and
BelX(x1 �

� y)
BelX(x2 �

�
y)

=
BelX(x1)
BelX(x2)

∀x1, x2 ⊆ X, ∀y ⊆ Y.

Proof. One has:

PlY (y) =
PlY (y)(PlX(X) − PlX(x))

PlX(X) − PlX(x)
=
PlX×Y (X ∩ y) − PlX×Y (x ∩ y)

BelX(x)

=
PlX(X �

�
y) − PlX(x �

�
y)

BelX(x)
=
BelX(x �

�
y)

BelX(x)

what proves the first equality. The second is then immediate. QED

Proof of Theorem 1:

LetX and Y be two finite spaces. Let {BelX(.�� θi), θi∈Θ} and {BelY (.�� θi), θi ∈
Θ}, be two sets of normalized belief functions on X and Y , respectively. Let
Pl(θ �

�x), q(θ �
�x) and Pl(θ �

� y), q(θ �
� y) be the plausibility and commonality

functions induced on Θ by the two distinct pieces of evidence x ⊆ X and
y ⊆ Y . Requirement R1 is:

q(θ �
�
x, y) = q(θ �

�
x).q(θ �

�
y) ∀θ ⊆ Θ A.1
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It becomes by lemma 1:
∑

θ′⊆θ
(−1)|θ

′|+1Pl(θ′ �
�x, y) =

( ∑

θ′⊆θ
(−1)|θ

′|+1Pl(θ′ �
�x)

)( ∑

θ′⊆θ
(−1)|θ

′|+1Pl(θ′ �
� y)

)

A.2
We analyse successively the cases |θ| = 1, 2 and n.
1) When |θ| = 1, A.2 becomes:

Pl(θ �
�x, y) = Pl(θ �

�x)Pl(θ �
� y)

or equivalently

PlX×Y (x ∩ y �
� θ) = PlX(x �

� θ)PlY (y �
� θ) A.3

So x and y are CCI (see Sect. 2.3).
2) Assume θ = θ1 ∪ θ2 with θ1,θ2 ∈ Θ, θ1 	= θ2. Fori = 1, 2, let

αi = PlX(x �
�
θi), γi = PlY (y �

�
θi), αi = PlX(x �

�
θi), γi = PlY (y �

�
θi),

fi = PlX×Y (x ∪ y �
� θi).

By A. 3, PlX×Y (x ∩ y �
�
θ1) = α1γ1 and PlX×Y (x ∩ y �

�
θ2) = α2γ2. By the

Generalized Likelihood Principle, there exists a g function such that

PlX(x �
� θ) = g(α1, α1, α2, α2)

and
PlX(y �

�
θ) = g(γ1, γ1, γ2, γ2)

Equation A. 2 becomes:

α1γ1 + α2γ2 − g(α1γ1, f1, α2γ2, f2) =

(α1 + α2 − g(α1, α1, α2, α2)).(γ1 + γ2 − g(γ1, γ1, γ2, γ2)) A.4

Let PlX(. �
�
θ1) be vacuous. Hence α1 = α1 = 1 and f1 = 1 as f1 =

PlX×Y (x ∪ y �
� θ1) ≥ PlX(x �

� θ1) = 1. One has also g(1, 1, α2, α2) = 1 as
PlX(x �

� θ) ≥ PlX(x �
� θ1) = 1.

Equation A.4 becomes:

γ1 + α2γ2 − g(γ1, 1, α2γ2, f2) = α2(γ1 + γ2 − g(γ1, γ1, γ2, γ2)

So g does not depend on its second parameter. Identically g does not depend
on its fourth parameter. Let: k(α, γ) = g(α, ., γ, .).

One has Pl(θ1∪θ2 �
�
x) = k(Pl(θ1 �

�
x), P l(θ2 �

�
x)), or identically, PlX(x �

�
θ1∪

θ2) = k(PlX(x �
�
θ1), P lX(x �

�
θ2)). Let PlX(x �

�
θ1) = 1. As PlX(x �

�
θ1 ∪ θ2) ≥

PlX(x �
� θ1) by lemma 2, then k(1, γ) = 1 = k(γ, 1) as k is symmetrical in its

arguments.
Let α1 = γ2 = 1. Then A.4 becomes:
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γ1 + α2 − k(γ1, α2) = (1 + α2 − 1).(γ1 + 1 − 1))

hence,
k(γ1, α2) = γ1 + α2 − α2γ1 = 1 − (1 − γ1)(1 − α2)

and

PlX(x �
�
θ)=k(α1, α2)=1−(1−α1)(1−α2)=1−(1−PlX(x �

�
θ1)).(1−PlX(x �

�
θ2)).

3) By iteration one gets PlX(x �
� θ). Assume θ = ∪ni=1θi where θi ∩ θj = ∅,

∀i 	= j. Assume

PlX(x �
� θ) = 1 −

∏

θi∈θ
(1 − PlX(x �

� θi)) = 1 −
n∏

i=1

(1 − αi).

Consider part 2 of the proof, but replace θ1 by θ and θ2 by θn+1. The proof
proceeds as in 2). One gets:

PlX(x �
� θ ∪ θn+1) = PlX(x �

� θ) + PlX(x �
� θn+1) − PlX(x �

� θ)PlX(x �
� θn+1)

= 1 −
∏

θi∈θ∪θn+1

(1 − PlX(x �
� θi)) A.5

The relation for BelX(x �
�
θ) and mX(x �

�
θ) are deduced from A.5. The results

are normalized. QED

Proof of theorem 2.

Derive directly from Pl(θ �
�
x) = PlX(x �

�
θ) and Bel(θ �

�
x) = Pl(Θ �

�
x)−Pl(θ �

�
x)

and normalize by dividing by Bel(Θ �
�x) QED.

Proof of theorem 3.

mX(∅ �
� θi) (and/or mY (∅ �

� θi)) might be non null. To see the impact of such
non null basic belief masses, enlarge the X space into X ’ where X ′ = X ∪ ω
where X ∩ ω = ∅. Apply the same proof as for theorem 1 with normalized
belief functions on X ′ and condition all results on X . As such conditioning is
idempotent, one can apply it at the level of PlX(. �

�
θ) or at the level of each

PlX(. �
�
θi). For all x ⊆ X , the plausibilities before and after conditioning are

the same. So the Generalized Likelihood Principle still applies for all x ⊆ X .
But after the conditioning has been applied, the functions PlX(. �

�
θi) are un-

normalized plausibility functions. QED

Proof of theorem 4.

Derive directly from Pl(θ �
�
x) = PlX(x �

�
θ) and Bel(θ �

�
x) = Pl(Θ �

�
x)−Pl(θ �

�
x).

QED.
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Representation of Evidence by Hints

Jürg Kohlas and Paul-André Monney

Abstract. This paper introduces a mathematical model of a hint as a body of
imprecise and uncertain information. Hints are used to judge hypotheses: the degree
to which a hint supports a hypothesis and the degree to which a hypothesis appears
as plausible in the light of a hint are defined. This leads in turn to support- and
plausibility functions. Those functions are characterized as set functions which are
normalized and monotone or alternating of order ∞. This relates the present work
to G. Shafer’s mathematical theory of evidence. However, whereas Shafer starts out
with an axiomatic definition of belief functions, the notion of a hint is considered here
as the basic element of the theory. It is shown that a hint contains more information
than is conveyed by its support function alone. Also hints allow for a straightforward
and logical derivation of Dempster’s rule for combining independent and dependent
bodies of information. This paper presents the mathematical theory of evidence for
general, infinite frames of discernment from the point of view of a theory of hints.

Key words: Hints, Evidence, Support functions, Plausibility functions,
Dempster’s rule

1 Hints—An Intuitive Introduction

Intuitively, a hint is a body of information relative to some question which
is in general imprecise in that it does not point to a precise answer but
rather to a range of possible answers. It is also often uncertain in the sense
that the information allows for several possible interpretations and it is not
entirely sure which is the correct one. There may be internal conflict within a
hint because different interpretations may lead to contradictory answers. Also
there can be external contradictions between distinct and different hints rela-
tive to the same question. The goal of this paper is to develop a mathematical
model of this intuitive notion of a hint and to study some of its basic proper-
ties. It takes as its starting point A. Dempster’s (1967) multivalued mapping
and develops into similar lines as G. Shafer’s (1976) mathematical theory of
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evidence. The theory will however be developed for the most general case and
not be limited to the case of finite frames as in Shafer’s book.

For an introduction and as a motivation the simpler case of finite hints
will first be discussed. Let Θ be an arbitrary finite set whose elements θ rep-
resent the possible answers to a given question which has to be considered.
One of the elements of Θ represents the true, but unknown answer. Θ is called
the frame of discernment. The subsets of Θ represent possible propositions
about the answer to the question considered. Let Ω denote the finite set of
possible interpretations of the information contained in the hint to be rep-
resented. One of the elements ω ∈ Ω must be the correct interpretation, but
it is unknown which one. However, not all possible interpretations are equally
likely. Thus, a probability p(ω) for the interpretations ω ∈ Ω is introduced.

Each possible interpretation ω restricts the possible answers within Θ
somehow. If ω is the correct interpretation, then the correct answer θ is known
to be within some nonempty subset Γ(ω) of Θ, the focal set of the interpre-
tation. Alternatively, for any possible interpretation ω, the family S of the
propositions (subsets of Θ) implied by the interpretation ω can be consid-
ered. S is simply the family of supersets of the focal set Γ(ω). It has thus
trivially the following properties:

(1) H ∈ S and H ⊆ H ′ imply H ′ ∈ S
(2) H1 ∈ S, H2 ∈ S imply H1 ∩H2 ∈ S.
(3) Θ belongs to S, ∅ does not belong to S.

In addition, the intersection of all implied sets of an interpretation equals
Γ(ω). Furthermore, for any possible interpretation, one can also look at the
family P of propositions which are possible under the interpretation. A subset
H ⊆ Θ is possible, when H intersects the focal set Γ (ω) of the interpretation.
Equivalently, H is possible, iff its complement is not implied, Hc /∈ S. P has
the following properties:

(1′) H ∈ P and H ⊆ H ′ imply H ′ ∈ P
(2′) H1 ∈ P , H2 ∈ P imply H1 ∪H2 ∈ P .
(3′) Θ belongs to P , ∅ does not belong to P .

Furthermore, if H ∈ S, then Hc /∈ S and thus S ⊆ P .
A hint is thus defined by a frame of discernment Θ to which it refers, a

set of possible interpretations Ω together with a probability p(ω) and finally
a multivalued mapping Γ from the set of interpretations into the frame Θ.
If the interpretation ω happens to be the correct one, then the answer to
the question considered is restricted to the set Γ(ω). So far, any hint H is a
quadruple (Ω, p,Γ, Θ).

If a proposition H ⊆ Θ is fixed as a hypothesis about the correct answer,
then it will be interesting to judge this hypothesis in the light of a hint H. Let
S(ω) and P(ω) denote the families of implied and possible propositions of an
interpretation ω. Then one can look at the subsets of interpretations under
which H is implied, u(H), or possible, v(H)
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u (H) = {ω ∈ Ω : H ∈ S (ω)}
υ (H) = {ω ∈ Ω : H ∈ P (ω)} (1)

A hypothesis H , which is implied or supported by many possible interpre-
tations, or more important, by very probable interpretations, is very credible
in the light of the hint. Also, if the hypothesis is possible under many inter-
pretations, or under very probable interpretations, then the hypothesis is very
plausible in the light of the hint. Thus, in order to measure the degree of
credibility or support sp(H) and the degree of plausibility Pl(H), the
probabilities of u(H) and v(H) can be considered:

sp (H) = P (u (H))
pl (H) = P (υ (H)) . (2)

The values sp(H) and Pl(H) are defined for all subsets of Θ. sp is called a
support (or belief) function and pl a plausibility function (or upper prob-
ability). These concepts were introduced by A. Dempster (1967) and exten-
sively studied by Shafer (1976) for finite frames of discernment.

The goal of this contribution is to study hints with respect to arbitrary,
especially infinite frames. To the best of our knowledge, only very few papers
study evidence theory in this general case (Goodman, Nguyen, 1985; Nguyen,
1978; Shafer, 1979; Strat, 1984) The case of belief functions on infinite frames
of discernment was in particular studied by Shafer (1979). In this paper belief
functions are axiomatically defined as Choquet capacities, monotone of order
∞. Using an integral representation theorem of Choquet (1953, 1969) an allo-
cation of probability for belief functions is derived. This concept provides
for an interpretation of the meaning of belief. However, with this interpreta-
tion, the definition of Dempster’s rule for the combination of belief functions
is less straightforward. In an unpublished paper G. Shafer (1978) defines first
product belief functions on a product space Θ× Θ and then Dempster’s rule
as a conditioning of the product belief function to the diagonal of Θ×Θ. This
seems somehow to be a detour. Hints on the other hand allow for a straight-
forward and logical derivation of Dempster’s rule for combining independent
and also dependent bodies of information.

Furthermore and more importantly, it will be seen that in the general case a
hint contains more information than is conveyed by its support function alone.
Therefore, hints cannot be combined on the base of their support functions
alone as proposed in Shafer’s paper (1978)! This would result in a loss of
information. This will be one of the main results of this paper. Another main
result is that support- and plausibility functions as defined by (2) can be
characterized as Choquet capacities, monotone of order ∞. The proof of this
result rejoins Shafer’s (1979) development and will only be sketched here.
Finally, a new inclusion relation between hints will be introduced in this paper
which generalizes a similar relation between support functions introduced by
Yager (1985, see also Dubois, Prade, 1986).



668 J. Kohlas and P. Monney

In Sect. 2 the general mathematical concept of a hint will be defined.
In Sect. 3 support- and plausibility functions will be introduced. A process of
refining hints is presented in Sect. 4. It leads to a relation of inclusion between
hints. Section 5 studies inclusion relations between hints which are equivalent
in the sense that they define partially the same support- and plausibility
functions. Finally, in Sect. 6, the combination of hints will be discussed and
Dempster’s rule derived. In particular, it will be shown that inclusion of hints
is maintained under Dempster’s rule. The results of this section show that
Dempster’s rule cannot be defined in terms of support functions only.

2 The Mathematical Model of Hints

The frame of discernment Θ is now an arbitrary set and in particular it can
be infinite. The set of possible interpretations Ω can then also be arbitrary.
However, Ω will be a probability space (Ω,A, P ) with a σ-algebra A and a
probability measure P on it. As before (Sect. 1) any possible interpretation
ω ∈ Ω restricts the possible answers in Θ somehow. It will be assumed here
that to any ω ∈ Ω a family S(ω) of implied propositions H ⊆ Θ, satisfying
conditions (1) to (3) of Sect. 1, is assigned. A family of subsets satisfying
conditions (1) to (3) of Sect. 1 is called a filter. The family P(ω) = {H ⊆ Θ :
Hc 	∈ S(ω)} of possible propositions satisfies conditions (1′) to (3′) of Sect. 1
above. A pair of such dual families R = (S, P) will be called a restriction.

A restriction R is called vacuous, if S contains only Θ (and P all subsets
of Θ except the empty set). A vacuous restriction does not restrict at all
the possible answers. It is used to represent the situation that, under some
interpretations, a hint contains possibly no information at all concerning the
question considered.

The set R = ∩{H : H ∈ S} is called the base of the restriction R. One
might wonder, whether S should not be closed under arbitrary intersections
and thus R ∈ S. This will not be assumed here — for reasons which become
clear later. However, a restriction R with R ∈ S will be called set-based,
because in this case S = {H ⊆ Θ : R ⊆ H} and P = {H ⊆ Θ : R ∩H 	= ∅}.
For a set-based restriction we write R = R. Similarly, if (2) and (2′) of Sect. 1
hold for countable families, the restriction will be called a σ-restriction.

To go back to the model of a hint, it will thus be assumed, that every
possible interpretation ω ∈ Ω has assigned a nonempty restriction Γ(ω) =
(S(ω),P(ω)) describing its implied and possible propositions. Γ is a map-
ping from Ω into the set R(Θ) of restrictions on Θ. This is a generaliza-
tion of the multivalued mappings considered by A. Dempster (1967). A hint
H is thus finally a quintuple H = (Ω,A, P,Γ, Θ) of elements as described
above.

A hint H = (Ω,A, P,Γ, Θ) is called set-focussed, iff its restrictions Γ(ω)
are set-based for all ω ∈ Ω. The bases of Γ(ω) are then called focal sets. If Θ is
a finite set, then all restrictions and thus all hints are set-based. But even in the
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general case many important classes of hints are set-focussed. For all ω ∈ Ω,
if Γ(ω) is either a fixed set-based restriction R or the vacuous restriction,
then the hint is called simple. If Γ(ω) equals the vacuous restriction for all
ω ∈ Ω, then the hint is called vacuous; it represents full ignorance about the
question at hand. If H is a set-focussed hint whose focal sets Γ(ω) all contain
only one single point θ(ω) of Θ, then the hint is called precise. A precise hint
corresponds essentially to a random variable (under reserve of the appropriate
measurability condition).

Restrictions are fundamental to the theory. In many respects they behave
like ordinary subsets of Θ. Especially the operation of intersection or con-
junction can be defined: If R1 and R2 are two restrictions known to hold
on Θ, then their conjunction forms a new restriction R = R1 ∩ R2 defined
by S = {H1 ∩H2 : H1 ∈ S1, H2 ∈ S2}. It is easily verified, that S is a filter
if ∅ does not belong to S. If ∅ ∈ S, then R1 and R2 are called contradic-
tory. If R1 = R1 and R2 = R2, then R1 ∩ R2 = R1 ∩ R2. In the same way,
the intersection is defined for arbitrary families of restrictions, not only for
finite ones.

In order to judge hypotheses H ⊆ Θ in the light of a hint H, the subset
u(H) of interpretations which imply H and the subset v(H) of interpretations
under which H is possible are defined as in (1). This defines mappings u and
v from the power set P(Θ) to the power set P(Ω). The following theorem lists
some of their elementary properties:

Theorem 1. (1) u(∅) = v(∅) = ∅.
(2) u(Θ) = v(Θ) = Ω.
(3) u(H) = v(Hc)c.
(4) v(H) = u(Hc)c.
(5) u(∩{Hi : i ∈ C}) = ∩{u(Hi) : i ∈ C}, where C is finite in general,

countable for hints with σ-restrictions Γ(ω), ω ∈ Ω, and arbitrary for
set-focussed hints.

(6) u(∪{Hi : i ∈ C}) ⊇ ∪{u(Hi) : i ∈ C} for an arbitrary C.
(7) v(∪{Hi : i ∈ C}) = ∪{v(Hi) : i ∈ C}, where C is finite in general,

countable for hints with σ-restrictions Γ(ω), ω ∈ Ω, and arbitrary for
set-focussed hints.

(8) v(∩{Hi : i ∈ C}) ⊆ ∩{v(Hi) : i ∈ C} for an arbitrary C.
(9) u(H ′) ⊆ u(H ′′) if H ′ ⊆ H ′′.

(10) v(H ′) ⊆ v(H ′′) if H ′ ⊆ H ′′.

Proof. (1) and (2) are trivial. By definition, v(H)c = {ω ∈ Ω : Hc ∈ S(ω)} =
u(Hc) and (4) is proved. (3) follows by applying (4) to Hc. (5): If ω ∈ u(Hi)
for all i ∈ C, then Hi ∈ S(ω), thus ∩{Hi : i ∈ C} ∈ S(ω) and therefore
ω ∈ u(∩{Hi : i ∈ C}). Inversely, ω ∈ u(∩{Hi : i ∈ C}) implies ∩{Hi : i ∈ C} ∈
S(ω), hence Hi ∈ S(ω) and ω ∈ u(Hi) for all i ∈ C. (6): If ω ∈ u(Hi) for some
i ∈ C, then Hi ∈ S(ω), thus ∪{Hi : i ∈ C} ∈ S(ω) and ω ∈ u(∪{Hi : i ∈ C}).
(7) and (8) are proved using (3),(4),(5) and (6) together with de Morgan laws.
(9) and (10) follow immediately from the definitions of u and v. Q.E.D.
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In view of (5) u is called a ∩ - homomorphism and in view of (7) v is called
a ∪ - homomorphism.

3 Support and Plausibility Functions

For a hint H = (Ω,A, P,Γ, Θ) the degree of support sp(H) and the degree
of plausibility Pl(H) are defined by (2) for any subset H of Θ for which
u(H) ∈ A and v(H) ∈ A respectively. Let Es be the class of all subsets H of
Θ for which u(H) ∈ A, i.e. for which the degree of support is defined. The
sets of Es are called s-measurable and Es is the domain of the set-function
sp. Similarly let Ep be the class of all subsets H ⊆ Θ for which v(H) ∈ A,
i.e. for which the degree of plausibility is defined. The sets of Ep are called
p-measurable and Ep is the domain of the set-function pl.

Note that there is a strong link between the support- and the plausibility
function. In fact, according to theorem 1 (4) and (3)

pl (H) = P (υ (H)) = P (u (Hc)c) = 1− sp (Hc)
sp (H) = P (u (H)) = P (υ (Hc)c) = 1− pl (Hc) (3)

whenever the corresponding probabilities are defined.

Theorem 2. (1) Es is a multiplicative class (i.e. closed under finite inter-
sections) or a σ-multiplicative class (closed under countable intersec-
tions) depending on whether Γ(ω), ω ∈ Ω are general restrictions or σ-
restrictions.

(2) Ep is an additive class (i.e. closed under finite unions) or a σ-additive
class (closed under countable unions) depending on whether Γ(ω), ω ∈ Ω
are general restrictions or σ-restrictions.

(3) Ep = {H ⊆ Θ : Hc ∈ Es}, Es = {H ⊆ Θ : Hc ∈ Ep} and ∅, Θ belong to
both Es and Ep.

Proof. (1) and (2) are direct consequences of theorem 1 (5) and (7) and the
fact that A is a σ-algebra. (3): H ∈ Es is equivalent to u(H) ∈ A, which is
equivalent to v(Hc) ∈ A (theorem 1 (3) and (4)) which finally is equivalent
to Hc ∈ Ep. ∅, Θ belong to Es and Ep because of theorem 1 (1) and (2).

Q.E.D.

Es and Ep are called dual classes of s- and p-measurable sets. If Ω is a finite
set, then all subsets of Θ are s- and p-measurable. However, in general Es and
Ep are strict subclasses of the power set of Θ. Let’s illustrate theorem 2 by
a simple, albeit somewhat pathological example: If (Ω,A, P ) is a probability
space and B ⊆ Ω a subset which does not belong to A,Γ(ω) = F ⊆ Θ for
all ω ∈ B,Γ(ω) = Θ otherwise, then Es contains all subsets of Θ which do
not contain F plus the set Θ. We have u(H) = ∅ for all H ∈ Es, H 	= Θ and
thus sp(H) = 0, unless H = Θ. Ep contains all subsets of Θ which are not
contained in F c plus ∅.
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Theorem 3. The support- and plausibility functionns of a hint H =
(Ω,A, P,Γ, Θ), sp: Es → [0, 1] and pl: Ep → [0, 1] respectively, satisfy the
following conditions:

(1) sp(∅) = pl(∅) = 0 and sp(Θ) = pl(Θ) = 1.
(2) sp is monotone of order ∞, i.e.

sp (E) ≥
∑{

(−1)|I|+1
sp (∩i∈IEi) : ∅ 	= I ⊆ {1, . . . , n}

}
(4)

for all n ≥ 1 and sets E,Ei ∈ Es, such that E ⊇ Ei; and pl is alternating
of order ∞, i.e.

pl (E) ≤
∑{

(−1)|I|+1
pl (∪i∈IEi) : ∅ 	= I ⊆ {1, . . . , n}

}
(5)

for all n ≥ 1 and sets E,Ei ∈ Ep, such that E ⊆ Ei.

Furthermore, if all Γ(ω), ω ∈ Ω are σ-restrictions, then the following
conditions hold:

(3) sp and pl are continuous, i.e. if E1 ⊇ E2 ⊇ . . . is a monotone decreasing
sequence of sets of Es, then

sp (∩∞
i=1Ei) = lim

i→∞
sp (Ei) (6)

and if E1 ⊆ E2 ⊆ . . . is a monotone increasing sequence of sets of Ep, then

pl (∩∞
i=1Ei) = lim

i→∞
pl (Ei) . (7)

Proof. (1) follows from theorem 1 (1) and (2). In order to prove (2) for the
support function, the well-known inclusion-exclusion formula of probability
theory, together with theorem 1 (5), (6) and (9) is used:

sp (E) = P (u (E)) ≥ P (u (∪{Ei : i = 1, 2, . . . , n}))
≥ P (∪ [u (Ei) : i = 1, 2, . . . , n])

=
∑{

(−1)|I|+1
P (∩i∈Iu (Ei)) : ∅ 	= I ⊆ {1, . . . , n}

}

=
∑{

(−1)|I|+1 P (u (∩i∈IEi)) : ∅ 	= I ⊆ {1, . . . , n}
}

=
∑{

(−1)|I|+1
sp (∩i∈IEi) : ∅ 	= I ⊆ {1, . . . , n}

}
.

Condition (2) for the plausibility function is proved in the same way or by
using (4) together with (3).
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E1 ⊇ E2 ⊇ . . . implies u(E1) ⊇ u(E2) ⊇ . . . (theorem 1 (9)) and
∩∞
i=1Ei ∈ Es (theorem 2 (1)). By the continuity of probabilities and

theorem 1 (5)

sp (∩∞
i=1Ei) = P (u(∩∞

i=1Ei))
= P (∩∞

i=1u(Ei))
= lim

i→∞
P (u (Ei)) = lim

i→∞
sp (Ei)

and condition (3) is proved.

Q.E.D.

Note that in particular set-focussed hints have continuous support-and
plausibility functions.

Does it make sense to define the degree of support for a hypothesis H ⊆ Θ
outside the class Es of s-measurable subsets? If u(H) ⊆ Ω is not measur-
able, the model of the hint H does not contain the necessary information to
determine the probability of the set of interpretations supporting H . But any
measurable set of interpetations A ⊆ Ω which is contained in u(H) is a sup-
port for H . Hence one may say that the unknown support for H must be at
least P (A), for any A ⊆ u(H) and A ∈ A. Thus, in the absence of further
information the support of H could be defined as

spe (H) = sup {P (A) : A ⊆ u (H) , A ∈ A} = P∗ (u (H)) (8)

where P∗ is the inner probability to P . This is an extension of the support
function sp onto the whole power set P(Θ) because the restriction of spe to
Es equals sp. We call spe the vacuous extension of sp to underline that no
information not contained in the hint (Ω,A, P,Γ, Θ) has been added.

By duality, we may also extend the plausibility functions pl from Ep to
P(Θ):

ple (H) = 1− spe (Hc) . (9)

This is similarly called the vacuous extension of pl. This name is justified
by the following proposition:

Theorem 4. The equality

ple (H) = inf {P (A) : A ⊇ υ (H) , A ∈ A} = P ∗ (υ (H)) (10)

holds. P ∗ is the outer probability to P.

Proof. From the definitions (8) and (9) and theorem 1 (4) it follows that

ple(H) = 1− spe (Hc)
= 1− sup {P (A) : A ∈ A, A ⊆ u (Hc)}
= 1− sup {P (A) : A ∈ A, u (Hc)c ⊆ Ac}
= inf {P (Ac) : A ∈ A, υ (H) ⊆ Ac}
= inf {P (A) : A ∈ A, v (H ) ⊆ A} .

Q.E.D.
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Furthermore, it turns out that spe and Ple satisfy also the conditions of
theorem 3.

Theorem 5. Let spe and Ple be the extended support- and plausibility func-
tions of a hint H = (Ω,A, P,Γ, Θ). Then

(1) spe and Ple are monotone and alternating of order ∞ respectively on
P(Θ).

(2) If Γ(ω) is a σ-restriction for all ω, then spe and Ple are also continuous.

The proof of this theorem will not be given here. It seems to be surprisingly
difficult and relies on the notion of an allocation of probability (Shafer, 1979).
See Kohlas (1990) for a proof of this theorem. The connection between inner
probability measures and support or belief functions have also been noted by
Ruspini (1987) and Fagin and Halpern (1989), see also Shafer (1990).

4 Refining Hints

A hint H = (Ω,A, P,Γ, Θ) can be refined in several respects by adding sup-
plementary information to it:

(1) The restrictions Γ(ω) associated with the interpretations ω may become
more precise: A restrictions (S′,P ′) is said to be more precise than (or
included in) a restriction (S, P) iff S′ ⊇ S (or equivalently P ′ ⊆ P), i.e.
if it implies more propositions and if less propositions are possible. We
write then (S′,P ′) ⊆ (S,P).

(2) Some interpretations which originally are considered as possible may
become known as impossible: The new set of possible interpretations
Ω′ becomes a subset of Ω. This implies also that the original proba-
bility P must be conditionned on Ω′. This leads to a new probability
space (Ω′,A′, P ′) of possible interpretations, where A′ = A ∩ Ω′ and
P ′(A) = P ∗(A ∩ Ω′)/P ∗(Ω′), provided that P ∗(Ω′) > 0. Note that Ω′ is
not necessarily measurable; P ′ is still a probability measure on A′ (Neveu,
1964).

(3) The probability measure P ′ on the set of possible interpretations Ω′ may
be extended from the σ-algebraA′ to a probability measure P ′′ on a larger
σ-algebra A′′ containing A′. Let’s note that in this case

P ′
∗ (A) ≤ P ′′ (A) ≤ P ′∗ (A) (11)

for all A ∈ A′′.
Thus, combining all three refining steps in the above sequence, a new,

refined hint H′′ = (Ω′′, A′′, P ′′, Γ′′, Θ) may be obtained, such that
Ω′′ ⊆ Ω,A′′ ⊇ A ∩ Ω′′, P ′′ is an extension to A′′ of the probability measure
P ′(A) = P ∗(A ∩Ω′′)/P ∗(Ω′′) on A∩Ω′′ and Γ′′(ω) ⊆ Γ(ω) for all ω ∈ Ω′′. In
this case we write H′′ ⊆ H and say that H′′ is included in or is finer than
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H (and H is coarser then H′′). Of course, many times not all three refining
steps are present; in particular often only step (1) or steps (1) and (3) are
considered. These particular cases correspond to Yager’s (1985) definition of
inclusion.

This notion of inclusion of hints leads to the following comparison of the
corresponding support- and plausibility functions:

Theorem 6. Let H′′ = (Ω′′,A′′, P ′′,Γ′′, Θ) and H = (Ω,A, P,Γ, Θ) be two
hints such that H′′ ⊆ H and with sp′′e , pl′′e and spe, ple as their respective
extended support- and plausibility functions. If k = P ∗(Ω′′), then

(1) spe(H) ≤ k · sp′′e (H) + (1− k) for all H ⊆ Θ
(2) Ple(H) ≥ k · pl′′e (H)for all H ⊆ Θ.

Proof. Let v′′(H) and v(H) be the subsets of interpretations of Ω′′ and Ω
respectively under which H is possible. Then clearly v′′(H) ⊆ v(H) ∩ Ω′′ by
the refining step (1).

Now, for any H ⊆ Θ,

ple (H) = P ∗ (υ (H)) ≥ P ∗ (υ (H) ∩ Ω′′) ≥ P ∗ (υ′′ (H)) = P ∗ (υ′′ (H) ∩ Ω′′) .

Let P ′(A) = P ∗(A ∩ Ω′′)/P ∗(Ω′′) for A ∈ A ∩ Ω′′ and P ′∗(A) denote
the outer probability measure with respect to P ′. Then it follows easily that
P ′∗(v′′(H) ∩ Ω′′) = P ∗(v′′(H) ∩ Ω′′)/P ∗(Ω′′) and hence

ple (H) ≥ P ′∗ (υ′′ (H) ∩ Ω′′)P ∗ (Ω′′) .

If P ′′∗(A) is the outer measure with respect to the probability measure
P ′′ on A′′, then clearly P ′∗(A) ≥ P ′′∗(A) for any A ⊆ Ω′′. Thus

ple (H) ≥ P ′′∗ (υ′′(H) ∩Ω′′)P ∗ (Ω′′) = P ′′∗ (υ′′ (H))P ∗ (Ω′′)
= pl′′e (H)P ∗ (Ω′′) = k · pl′′e (H) .

This proves (2).
By (9) we have

spe (H) = 1− ple (Hc) ≤ 1− k · pl′′e (Hc)
= 1− k · (1− sp′′e (H)) = k · sp′′e (H) + (1− k) .

This proves (1).

Q.E.D.

If only refining steps (1) and possibly (3) are present, then k = 1 and
[sp′′e (H), pl′′e (H)] ⊆ [spe(H), ple(H)].

To any hint H = (Ω,A, P,Γ, Θ) a vacuous hint V = (Ω,A, P,Γvac, Θ)
can be associated, where Γvac(ω) is the vacuous restriction for all ω. Clearly
Γ(ω) ⊆ Γvac(ω) for all ω and therefore we have always H ⊆ V .
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5 Families of Hints Related to a Support Function

A hint generates a support function sp on some multiplicative class Es. This
function has the properties (1) and (2), possibly (3) as stated in theorem 3. If
now sp is a function on a multiplicative class Es, satisfying conditions (1) and
(2) of theorem 3, is there always a hint which generates this support function?
The answer is affirmative. This is a consequence of an integral theorem of
Choquet (1953) as was noted by Shafer (1979). But it can easily be seen
that different hints may generate the same support function sp on Es, but
with different extensions spe to P(Θ). In fact, let (Ω,A, P ) be a probability
space and let B1, B2 be two different non-measurable subsets of Ω which have
different inner probabilities. Furthermore, let Θ be a frame of discernment
and F a strict subset of Θ. This allows to define two distinct hints Hi =
(Ω,A, P,Γi, Θ), i = 1, 2, where

Γi (ω) =

{
F if ω ∈ Bi
Θ otherwise.

For both hints, the class Es equals all subsets of Θ which do not contain F
plus the set Θ and the support functions of H1 and H2 coincide. But if sp1e

and sp2e denote their respective extended support functions, then

sp1e (F ) = P∗ (B1) 	= P∗ (B2) = sp2e (F ) .

Thus there exists a whole family of hints related to a support function sp
on Es. The goal of this section is to study this family of hints. In a similar
vain, Shafer (1979) studied various extensions of support (or belief) functions.
This section puts some of his results into the perspective of hints.

In the context of the theory of hints Choquet’s theorem can be stated as
follows:

Theorem 7. Let Es be a multiplicative class and sp: Es → [0, 1] a function
satisfying conditions (1) and (2) of theorem 3. Then there exists a hint whose
support function is sp. If furthermore Es is a σ-multiplicative class and sp
satisfies condition (3) of theorem 3 (continuity), then there exists a hint whose
restrictions are all σ-restrictions and whose support function is sp.

For a formal proof we refer to Choquet (1953) (see also Shafer, 1978 and
Kohlas, 1990). Let’s only describe the hint constructed in this proof: As set
of possible interpretations the set R(Es) of all filters on the multiplicative
class Es is selected. Note that to any restriction R = (S,P) in R(Θ) can be
associated a filter ϕ(R) = S ∩Es on Es. The maping ϕ from R(Θ) to R(Es) is
onto because for any filter F ∈ R(Es) the restriction Rc(F) ∈ R(Θ) defined
by its class of implied propositions S = {H ⊆ Θ: there is an E ∈ F such that
E ⊆ H} is in ϕ−1(F). This shows that {ϕ−1(F) : F ∈ R(Es)} is a partition of
R(Θ). Moreover,Rc(F) is the coarsest restriction in ϕ−1(F): if R′ ∈ ϕ−1(F),
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then R′ ⊆ Rc(F). Define Γ′′(F) = Rc(F) for any F ∈ R(Es). Then there
is according to Choquet (1953) a σ-algebra A′′ in R(Es) and a probability
measure P ′′ defined on it such that the hint (R(Es),A′′, P ′′,Γ′′, Θ) has sp as
support function.

Note that using ϕ the probability space (R(Es),A′′, P ′′) induces a proba-
bility space (R(Θ),A′, P ′). If we define Γc(R) = Rc(ϕ(R)), then the hint
(R(Θ),A′, P ′,Γc, Θ) generates clearly also the support function sp on Es.
Let uc(H), vc(H) be the functions (1) defined with respect to Γc and let
uc(Es), vc(Ep) (where Ep is the dual class to Es) be the images of Es and Ep
with respect to uc and vc respectively. By theorem 1 (5) and (7), uc(Es) is a
multiplicative class and vc(Ep) an additive class. Both uc(Es) and vc(Ep) are
contained in A′. Now, let Ac be the smallest σ-algebra containing uc(Es) and
vc(Ep); Ac is a subalgebra of A′. Let finally Pc be the restriction of P ′ to
Ac. Then the hint Hc = (R(Θ),Ac, Pc,Γc, Θ) still has sp on Es as support
function. This hint is called the canonical hint of the support function sp on
Es. We shall see that Hc is in some sense the coarsest hint which generates sp
on Es: among all hints generating sp, it contains the least information. This
will be formulated more precisely using the inclusion relation between hints
introduced in the previous section.

Thus, let H = (Ω,A, P,Γ, Θ) be any hint, which defines the support func-
tion sp on Es. More precisely, suppose that the class of s-measurable sets of
H contains Es and that on Es its support function equals sp. Hints which
define in this sense identical support functions on Es are called equivalent.
In order to compare equivalent hints among themselves and in particular
with the canonical hint, they must be represented with respect to an identical
set of possible interpretations. By the mapping Γ, the σ-algebra A and the
probability measure P can be transported to the set R(Θ) in the usual way:
Consider the σ-algebra A′ of all subsets B ⊆ R(Θ) for which Γ−1(B) ∈ A
and define a probability P ′ on A′ by P ′(B) = P (Γ−1(B)). This leads to an
equivalent hint (R(Θ),A′, P ′, id, Θ) where id stands for the identical mapping
id(R) = R. This is called the canonical representation of H. In particular,
note that this new hint defines the same extended support function sp′e as H.
In this sense H and its canonical representation Hcr contain exactly the same
information.

The following theorem states now that the canonical hint is the coarsest
hint among all equivalent hints with respect to a support function sp on Es.

Theorem 8. Let Hc be the canonical hint with respect to a support function
sp on a multiplicative class Es. If H is any equivalent hint with respect to this
support function and Hcr its canonical representation, then Hcr ⊆ Hc.

Proof. Both Hcr and Hc have the same set of possible interpretations R(Θ).
Moreover, clearly id(R) ⊆ Rc(ϕ(R)),A′ ⊇ Ac and the restriction of P ′ to Ac
equals Pc.

Q.E.D.
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As a consequence of this theorem, it follows that [spe(H), ple(H)] ⊆
[spce(H), plce(H)] for all H ⊆ Θ, if spce, plce denote the extended support
and plausibility functions of the canonical hint and spe, ple the extended sup-
port and plausibility functions of the hint H. Shafer (1979) studied extensions
of support functions and identified among others the minimal extension of a
support function sp on Es. It turns out that this minimal extension is in fact
as one expects the extension of the canonical hint with respect to sp on Es.

Theorem 9. If spce, plce are the extended support and plausibility functions
of the canonical hint Hc with respect to a support and plausibility function sp
and pl on a multiplicative class Es and its dual additive class Ep, then

spce (H) = sup
{∑{

(−1)|I|+1 sp (∩i∈IEi) : ∅ 	= I ⊆ {1, . . . , n}
}

:

Ei ⊆ H,Ei ∈ Es, i = 1, . . . , n;n = 1, 2, . . .
}
, (12)

plce(H) = inf
{∑{

(−1)|I|+1pl(∪i∈IEi) : ∅ 	= I ⊆ {1, . . . , n}
}

:

Ei ⊇ H,Ei ∈ Ep, i = 1, . . . , n;n = 1, 2, . . .
}
. (13)

Proof. Note that by theorem 1 (6) ∪ni=1uc(Ei) ⊆ uc(∪ni=1Ei). Furthermore

spce (H) = Pc∗ (uc (H))
≥ sup {Pc (∪ni=1uc (Ei)) : Ei ⊆ H,Ei ∈ Es, i = 1, . . . , n;n = 1, 2, . . .}

= sup
{∑{

(−1)|I|+1
Pc (∩i∈Iuc (Ei)) : ∅ 	= I ⊆ {1, . . . , n}

}
:

Ei ⊆ H,Ei ∈ Es, i = 1, . . . , n;n = 1, 2 . . .
}

= sup
{∑{

(−1)|I|+1
sp (∩i∈IucEi) : ∅ 	= I ⊆ {1, . . . , n}

}
:

Ei ⊆ H,Ei ∈ Es, i = 1, . . . , n;n = 1, 2 . . .
}

On the other hand, Shafer (1979) proves that the right hand side of (12)
defines indeed a support function spm on the power set P(Θ) satisfying the
conditions of theorem 7. There exists therefore a hint H′ which generates
this support function and let H′

cr its canonical representation. But theorem 8
implies that H′

cr ⊆ Hc and by theorem 6 spce(H) ≤ spcre(H) = spm(H) since
k = 1. Thus we obtain finally spce(H) = spm(H) which proves (12).

(13) is deduced from (12) using (3) and theorem 1 (3) and (4) together
with the de Morgan laws.

Q.E.D.

Theorem 9 together with theorems 6 and 8 show that spm is the smallest
support function which extends sp from Es to all of P(Θ).
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If the support function sp on a σ-multiplicative class Es is continuous
(satisfies condition (3) of theorem 3), then a canonical hint associated to
this support function can be constructed in a similar way with respect to
the set of σ-restrictions Rσ(Θ) on Θ. For any hint for which all restrictions
are σ-restrictions, a canonical representation with respect to Rσ(Θ) can be
defined along similar lines as above. Then two further results corresponding
to theorems 8 and 9 can be proved:

Theorem 10. Let Hc be the canonical hint with respect to a continuous
support function sp on a σ-multiplicative class Es. If H is any equivalent hint
with respect to this support function and Hcr its canonical representation, then
Hcr ⊆ Hc.

Theorem 11. If spce, plce are the extended support and plausibility functions
of the canonical hint Hc with respect to continuous support and plausibility
functions sp and pl on a σ-algebra Es = Ep, then

spce (H) = sup
{

lim
i→∞

sp (Ei) : E1 ⊇ E2 ⊇ . . . , Ei ∈ Es,∩Ei ⊆ H
}

(14)

plce (H) = inf
{

lim
i→∞

pl (Ei) : E1 ⊆ E2 ⊆ . . . , Ei ∈ Ep,∪Ei ⊇ H
}
. (15)

These theorems will not be proved here. The proofs develop along similar
lines as those of theorems 8 and 9. Note that for theorem 11 Shafer (1979)
showed that the right hand side of (14) is indeed a continuous support func-
tion. This theorem shows that it is the smallest continuous support function
which extends the continuous support function sp from Es to P(Θ).

6 Combining Hints

Let H1 and H2 be two hints relative to the same frame Θ and defined by
(Ω1,A1, P1,Γ1, Θ) and (Ω2,A2, P2,Γ2, Θ). The basic idea for the combination
of these hints into a combined body of information is that in each hint there
must be exactly one correct interpretation ωi, i = 1, 2 such that — looking
at both hints together — ω1 and ω2 must be simultaneously correct interpre-
tations. Hence (ω1, ω2) must be the correct combined correct interpretation.
Therefore, in order to combine the two hints H1 and H2 into one new com-
bined hint, we form first the product space of the combined interpretations
from the two hints (Ω1×Ω2,A1⊗A2, P

′) where P ′ is any probability measure
on A1⊗A2 reflecting the common likelihood of combined interpretations. The
two hints are called independent, if the interpretations of the two hints are
stochastically independent. Then P ′ is the product measure of P1 and P2.
This is the case which will be pursued here although other cases would be
equally possible.

If the combined interpretation (ω1, ω2) is the correct one, then the restric-
tion
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Γ (ω1, ω2) = Γ1 (ω1) ∩ Γ2 (ω2) (16)

must necessarily hold. Note that it is possible that Γ1(ω1) and Γ2(ω2) are
contradictory. Then ω1 and ω2 are called contradictory interpretations.

Define now

u′ (H) = {(ω1, ω2) ∈ Ω1 × Ω2 : H is implied by Γ (ω1, ω2)}
v′ (H) = {(ω1, ω2) ∈ Ω1 × Ω2 : H is possible under Γ (ω1, ω2)} . (17)

Theorem 1 — except (1) and (2) — clearly applies to u′ and v′; (1)
is replaced by v′(∅) = ∅ and (2) by u′(Θ) = Ω1 × Ω2. u′(∅) represents
the set of contradictory interpretation pairs. Such a pair can never be the
correct one because contradictions are not possible. Therefore contradictory
interpretations must be eliminated and the probability must be conditioned
on the event that there is no contradiction. Provided that u′(∅) is mea-
surable, i.e. u′(∅) ∈ A1 ⊗ A2 and P ′(u′(∅)) < 1, the new combined hint
H1 ⊕H2 = (Ω,A, P,Γ, Θ) can be formed, where

Ω = u′ (∅)c = υ′ (Θ) ,
A = u′ (∅)c ∩A1 ⊗A2,

P (A) = P ′ (A) /P ′ (u′ (∅)c)

and Γ is defined by (16) (and restricted to Ω). This way to combine hints is
called Dempster’s rule (A. Dempster (1967)).

Let u and v. be defined by (1) relative to the hint H1 ⊕H2. Then u(H) =
u′(H) ∩ Ω = u′(H)− u′(∅) and v(H) = v′(H).

Dempster’s rule may be extended even to the case where u′(∅) is not mea-
surable. In this case the conditional probability space (Ω,A, P ) can be consid-
ered, where (Ω,A) is defined as above and P (A) = P ′∗(A∩u′(∅)c/P ′∗(u′(∅)c),
provided that P ′∗(u′(∅)c) > 0. This leads to the combined hint H1 ⊕ H2 =
(Ω,A, P,Γ, Θ).

As before, we have u(H) = u′(H)∩Ω = u′(H)− u′(∅) and v(H) = v′(H).
Let Es and Ep be the classes of s- and p-measurable sets relative to the hint
H1⊕H2. Denote by E ′s and E ′p the classes of sets H such that u′(H) and v′(H)
are measurable with respect to A1⊗A2. From u′(H) ∈ A1⊗A2 it follows that
u(H) ∈ Ω∩A1⊗A2 and thus E ′s ⊆ Es. Similarly, because v′(H) ⊆ Ω, v′(H) ∈
A1 ⊗A2 implies v(H) ∈ Ω ∩A1 ⊗A2 or E ′p ⊆ Ep. If u′(∅) is measurable, then
E ′s = Es and E ′p = Ep.

The next theorem states that inclusion of hints is maintained under Demp-
ster’s rule:

Theorem 12. Let H1,H2,H′′
1 ,H′′

2 be four hints such that H′′
1 ⊆ H1 and H′′

2 ⊆
H2. Then H′′

1 ⊕H′′
2 ⊆ H1 ⊕H2.

Proof. Γ′′
1(ω1) ⊆ Γ1(ω1) and Γ′′

2(ω2) ⊆ Γ2(ω2) imply Γ′′
1(ω1) ∩ Γ′′

2(ω2) ⊆
Γ1(ω1) ∩ Γ2(ω2). This, together with Ω′′

1 ⊆ Ω1 and Ω′′
2 ⊆ Ω2 implies Ω′′ ⊆ Ω.

Also A′′
1 ⊇ A1 ∩ Ω′′

1 and A′′
2 ⊇ A2 ∩ Ω′′

2 imply that



680 J. Kohlas and P. Monney

A′′ = A′′
1 ⊗A′′

2 ∩ Ω′′ ⊇ (A1 ∩ Ω′′
1)⊗ (A2 ∩ Ω′′

2 ) ∩ Ω′′

= (A1 ⊗A2) ∩ (Ω′′
1 × Ω′′

2 ) ∩ Ω′′

= A1 ⊗A2 ∩Ω′′ = (A1 ⊗A2 ∩ Ω) ∩ Ω′′ = A ∩ Ω′′.

It remains to show that

P ′′ (A) = P ∗ (A) /P ∗ (Ω′′)

for any A ∈ A∩Ω′′. Let Q′′, Q denote the product measures of P ′′
1 and P ′′

2 and
P1 and P2 on the product spaces (Ω′′

1 ×Ω′′
2 , A′′

1 ⊗A′′
2) and (Ω1×Ω2,A1⊗A2)

respectively. Then by definition P ′′(A) = Q′′∗(A)/Q′′∗(Ω′′) for any A ∈ A ∩
Ω′′. It is thus sufficient to show that Q′′∗(A) = k · P ∗(A) for some constant k
independent of A.

To begin with, let’s suppose that the sets Ω′′
1 ,Ω

′′
2 ,Ω

′′ and Ω are measur-
able with respect to A1,A2,A and A1 ⊗ A2 respectively. Then P ′′(A) =
Q′′(A)/Q′′(Ω′′) and P ∗(A)/P ∗(Ω′′) = P (A)/P (Ω′′) for A ∈ A ∩ Ω′′ and we
must prove that Q∗(A) = k · P (A). Let XA denote the indicator function of
A. Then

Q′′ (A) =
∫
P ′′

1 (dω1)P ′′
2 (dω2)XA.

Because XA is a measurable function with respect to A, it is sufficient to
take the restrictions of the probability measures P ′′

1 and P ′′
2 to A1 and A2.

But there these probabilities are conditional probabilities such that

Q′′ (A) =
∫
P1 (dω1)P2 (dω2)XA/P1 (Ω′′

1)P2 (Ω′′
2)

= Q (A) /P1 (Ω′′
1 )P2 (Ω′′

2) = P (A) (Q (Ω) /P1 (Ω′′
1)P2 (Ω′′

2)) .

This proves the theorem in the case of measurable sets Ω′′
1 ,Ω

′′
2 ,Ω

′′ and
Ω. If Ω is not measurable, then there exists a measurable set Ω̄, containing
Ω, such that Q∗(Ω) = Q(Ω̄). If A ∈ A ∩ Ω, then Ā = A ∩ Ω̄ is measurable,
contains A, and Q∗(A) = Q(Ā).

Thus P (Ā) = P (A) for all A ∈ A ∩ Ω and Ω may be replaced by Ω̄ and
A∩Ω by A∩ Ω̄ without changing the relevant probability values. In this way
the case where some or all sets Ω′′

1 ,Ω
′′
2 ,Ω

′′ and Ω are not measurable can be
reduced to the former case. This proves the theorem.

Q.E.D.

In the case of theorem 12, the constant k appearing in theorem 6 equals
P ∗(Ω′′), where Ω′′ contains all combined interpretations (ω1, ω2) which are not
contradictory under H′′

1 ⊕H′′
2 . Some combined interpretations, which are not

contradictory under H1 ⊕H2 may however be contradictory under H′′
1 ⊕H′′

2 .
This accounts for the possible difference between Ω and Ω′′. If the situation
is such that Ω′′ = Ω, then k = 1 and [sp′′e (H), pl′′e (H)] ⊆ [spe(H), ple(H)].

Let V be the vacuous hint associated with H2. Then theorem 12 implies
that H1 ⊕ H2 ⊆ H1 ⊕ V . Similarily H1 ⊕H2 ⊆ V ⊕H2. As the combination
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of a hint with a vacuous hint does not add new information to the hint,
this result shows that a combined hint H1 ⊕ H2 is always finer than each
of the two hints H1 and H2 alone. And in particular, if sp is the support
function of H1 ⊕H2, then we have [spe(H), ple(H)] ⊆ [sp1e(H), pl1e(H)] and
[spe(H), ple(H)] ⊆ [sp2e(H), pl2e(H)], if H1 and H2 have no contradictory
interpretations.
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Combining the Results of Several Neural
Network Classifiers

Galina Rogova

Abstract. Neural networks and traditional classifiers work well for optical char-
acter recognition; however, it is advantageous to combine the results of several
algorithms to improve classification accuracies. This paper presents a combination
method based on the Dempster–Shafer theory of evidence, which uses statistical
information about the relative classification strengths of several classifiers. Numer-
ous experiments show the effectiveness of this approach. The method allows 15–30%
reduction of misclassification error compared to the best individual classifier.

Key words: Classifier, Neural network, Character recognition, The
Dempster–Shafer theory of evidence, Evidence

1 Introduction

Pattern recognition problems, such as classification of machine or handprinted
characters, are currently solved with acceptable accuracy by using traditional
classifiers or neural networks of different architectures and based on different
sets of features. We may suppose that many of them tend to make recognition
errors of different types; that is, they may be regarded as error independent.
It is easier in many cases to apply several error-independent classifiers to
the same recognition task and use their “error independence” to improve
recognition performance of a combined system instead of inventing a new
architecture or a feature extractor to achieve the same accuracy.

Recently, various combination techniques were proposed by different
authors, where majority voting scheme, neural net, Bayesian, and the
Dempster–Shafer theories were employed (Mandler and Schurmann, 1988; Xu,
Krzyzak, & Suen, 1991, 1992). It appears that using the Dempster–Shafer the-
ory of evidence is very productive, but the result depends considerably on a
function that is used as a basic probability assignment. Xu, Krzyzak, and Suen
(1992) applied the Dempster–Shafer theory of evidence to combine so-called
“syntactic classifiers” that produce only a class label as output. They used
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the recognition rate and the substitution rate of each individual classifier to
calculate basic probability assignments. On the other hand, neural networks
as well as a number of traditional classifiers generate an output vector that
can supply additional information on a “measurement level.” For this type
of classifier, posterior class-conditional probabilities can be calculated, pro-
viding a natural basic probability assignment. The calculation of posterior
probabilities, however, demands numerous approximations that pose very dif-
ficult problems, especially in the situation when the number of classes is large.

In this paper, we present two new sets of support functions for the calcu-
lation of evidences. They permit us to obtain a considerable improvement of
classification accuracy without complex computations.

2 The Dempster–Shafer Theory of Evidence

The Dempster–Shafer theory of evidence is a tool for representing and combin-
ing measures of evidences. This theory is a generalization of Bayesian reason-
ing and it is more flexible than Bayesian when our knowledge is incomplete,
and we have to deal with uncertainty and ignorance. We introduce its basic
concepts in this section, following Barnett (1981) and Shafer (1976).

Let Θ be a set of mutually exhaustive and exclusive atomic hypotheses,
Θ = {θ1, . . . , θK}. Θ is called the frame of discernment. Let 2Θ denote the
set of all subsets of Θ. A function m is called basic probability assignment if:

m : 2Θ → [0, 1] m (∅) = 0, and
∑

A⊆Θ
m (A) = 1. (1)

Whereas the probability theory assigns a measure of probability to atomic
hypotheses θi,m(A) represents belief in a not necessarily atomic hypothesis
A. For A 	= θi,m(A) reflects our ignorance because it is a belief we cannot
further subdivide among the subsets ofA. m(A) is a measure of support we are
willing to assign to a composite hypothesis A at the expense of support m(θi)
of atomic hypotheses θi. If for the frame of discernment Θ we set m(θi) 	= 0
for all θi and m(A) = 0 for all A 	= θi, we find ourselves in the situation of
probability theory with Σi m(θi) = 1 and m(θi) that may be regarded as a
probability of θi.

Because m(A)+m(¬A) ≤ 1, the amount of belief committed, neither to A
nor to compliment of A is the degree of ignorance. Therefore, the Dempster–
Shafer theory of evidence allows us to represent only our actual knowledge
“without being forced to overcommit when we are ignorant.”

If m is a basic probability assignment, then a function Bel : 2Θ → [0, 1]
satisfying:

Bel (B) =
∑

A⊆B
m (A) (2)
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is called a belief function. We can consider a basic probability assignment as
a generalization of a probability density function whereas a belief function is
a generalization of a probability function.

There is one-to-one correspondence between the belief function and the
basic probability assignment. If A is an atomic hypothesis, Bel(A) = m(A).

If m1 and m2 are basic probability assignments on Θ, their combination
or orthogonal sum, m = m1 ⊕m2, is defined as:

m (A) = C−1
∑

D∩B=A

m1 (B) ·m2 (D) , (3)

where

C =
∑

D∩B �=∅

m1 (B) ·m2 (D) ,m (∅) = 0, and A 	= ∅. (4)

Obviously, the combination rule may be generalized to combine multiple
evidence.

Because there is one-to-one correspondence between Bel and m, the
orthogonal sum of belief functions Bel = Bel1 ⊕Bel2 is defined in the obvi-
ous way.

Special kinds of Bel functions are very good at representing evidence.
These functions are called simple and separable support functions. Bel is a
simple support function if there exists an F ⊆ Θ called focus of Bel, such that
Bel(Θ) = 1 and

Bel (A) =

{
s 	= 0 if F ⊆ A and A 	= Θ

0 if F � A
, (5)

where s is called Bel’s degree of support.
A separable support function is either a simple support function or an

orthogonal sum of simple support functions. Separable support functions are
very useful when we want to combine evidences from several sources. If Bel is
a simple support function with focus F 	= Θ, then m(F ) = s,m(Θ) = 1 − s,
and m is 0 elsewhere.

Let F be a focus for two simple support functions with degrees of support
s1 and s2, respectively. If Bel = Bel1 ⊕Bel2 then m(F ) = 1 − (1 − s1)(1 −
s2),m(Θ) = (1− s1)(1− s2), and m is 0 elsewhere.

3 Classification

Assume that we have an unlabeled input vector x̄. Let N be the number of
different classifiers fn, n = 1, . . . , N . Also assume that each classifier produces
an output vector ȳn ∈ RK , ȳn = fn(x̄). Here K is the number of classes (in
case of character recognition, K = 10 for digit classifiers and K = 36 for
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alphanumeric classifiers). For an individual classifier we assign class j to the
input vector x̄ if yj = max1≤k≤K yk. This decision rule does not give us a
chance to say what the measure of confidence of our classification result is. For
example, the output vectors ȳ1 = (0, 0, 0, 1) and ȳ2 = (0.2, 0.2, 0.2, 0.202) both
yield the same class assignment, class 4, but the quality of this decision may
be considered quite poor for ȳ2. So, if we want to combine N classifiers, this
decision rule permits us to use the majority voting scheme only, which cannot
take into account the quality of each vote. Suppose that for each classifier
fn and each candidate class k, we calculated the value ek(ȳn) = ek(fn(x̄)),
which represents some measure of evidence for the proposition “ȳn is of class
k.” If we introduced these values in terms of the Dempster–Shafer theory we
could combine these evidences according to this theory and choose the class
with the highest evidence.

4 Existing Methods for Computation of Evidences

To calculate evidence for a neural network output, we might consider a pos-
terior probability of each class, given an output vector, as a basic probability
assignment. To estimate class-conditional probability distribution for all K
classes, we have to produce multidimensional distribution for output vector
given each class. For this purpose, K histograms for K-dimensional output
vectors of the training set have to be built. In these histograms, the bin size
should be small enough to yield sufficient precision. If the histogram has m
bins in each coordinate, the total number of bins, mK , is too large even for
a training set of substantial size. Such a histogram in practice cannot be
regarded as a realization of a continuous probability density function without
rather arbitrary simplifications and approximations.

Mandler and Schurmann (1988) used a combination method based on the
Dempster–Shafer theory for nearest neighbor classifiers with different distance
measures. Statistical analysis of distances between learning data and a num-
ber of reference points in the input space was carried out to estimate distri-
butions of intra- and interclass distances. These distributions were used to
calculate class-conditional probabilities that were transformed into evidences
and combined.

Attempts to apply a similar approach to neural network outputs brought
forward questions about a choice of reference vectors and a distance measure.
In addition, we would prefer to avoid approximations associated with estima-
tion of parameters of statistical models for intra- and interclass distances. We
shall present our method in the next section.

5 Proposed Method

Now we introduce a different method for calculation of evidences. We would
like these values to reflect the classification abilities of each classifier. It
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appears that sets of outputs {fn(x̄)}, n = 1, . . .N computed for the training
data can provide relevant information and we shall use it in our computations.

Let {x̄k} be a subset of the training data corresponding to a class k. Let
Ēn
k be the mean vector for a set {fn(x̄k)} for each classifier fn and each class

k. Ēn
k is a reference vector for each class k and dnk = φ(Ēn

k , ȳ
n) is a proximity

measure for Ēn
k and ȳn. We want the values of this function to vary between

1 and 0 with the maximum when output vector coincides with a reference
vector. We shall discuss a specific form for the function φ later. Now we need
to transform these proximity measures into evidences ek(ȳn).

Consider a frame of discernmentΘ = {θ1, . . . , θK}, where θk is the hypoth-
esis that “ȳn is of class k.” For any classifier fn and each class k, a proximity
measure dnk can represent evidence pro-hypothesis θk, and all dni , with i 	= k,
can represent evidences pro ¬θk or contra θk. We can use dnk as a degree of
support for a simple support function with focus θk. This yields the basic
probability assignment

mk (θk) = dnk and mk (Θ) = 1− dnk . (6)

In a similar manner, dni are degrees of support for simple support functions
with a common focus ¬θk, if i 	= k. The combination of these simple support
function with focus ¬θk is a separable support function with the degree of
support 1−Πi�=k(1− dnk ). The corresponding basic probability assignment is

m¬k (¬θk) =1−
∏

i�=k
(1− dnk ) and

m¬k (Θ) = 1−m¬k (¬θk) =
∏

i�=k
(1− dnk ) . (7)

Combining our knowledge about θk we obtain the evidence ek(ȳn) = mk ⊕
m¬k pro θk for class k and classifier n:

ek (ȳn) =
dnk

∏
i�=k (1− dni )

1− dnk

[
1−

∏
i�=k (1− dni )

] . (8)

Finally, evidences for all classifiers may be combined according to the
Dempster–Shafer rule to obtain a measure of confidence for each class k
for the input vector x̄ : ek(x̄) = ek(ȳ1) ⊕ . . . ⊕ ek(ȳN ). ek(ȳn), after an
appropriate normalization, can be considered as Bayesian evidence function
with nonzero basic probability assignments only on atomic hypotheses. Hence
ek(x̄) = CΠnek(ȳn), where C is the normalizing constant. Now we assign
class j to the input vector x̄ if ej = max1≤k≤K ek(x̄).

The major problem now is to find the most effective form of the function
φ. Several candidate functions for a proximity measure dnk for Ēn

k and ȳn were
considered:
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dnk = 1− ||Ēnk − ȳn||;
dnk = 1− ||Ēnk − ȳn||;
dnk = exp

(
−||Ēnk − ȳn||m

)
;

dnk =

(
1 + ||Ēn

k − ȳn||m
)−1

∑
1≤i≤K

(
1 + ||Ēn

i − ȳn||m
)−1 ;

dnk =
1

1 + ||Ēn
k − ȳn||m

; dnk = cosm (αnk ) ,

where αnk is the angle between Ēn
k and ȳn.

Of the functions tried, two were found to have the best performance on
validation sets. One of them is cos2(αnk ):

φ1

(
Ēnk , ȳ

n
)

=

(∑
1≤i≤k E

n
iky

n
i

)2

||Ēnk ||2||ȳnk ||2
(9)

The second one is a function based on the Euclidian distance between Ēn
k

and ȳn:

φ2

(
Ēn
k , ȳ

n
)

=

(
1 + ||Ēn

k − ȳn||2
)−1

∑
1≤i≤k

(
1 + ||Ēn

i − ȳn||2
)−1 . (10)

Our approach has a useful property of punishing overconfident, overtrained
classifiers: their averages of output activations over the training set will be
close to zero or 1, and this automatically means that both our proximity
measures will be smaller for “fuzzier” activation vectors corresponding to the
test data.

6 Experiments and Results

Our first experiment was conducted with handprinted digits from a private
data base. The training set contained 25,000 characters and the test set con-
tained 4000. Output activations of three classifiers were used. The first was
a two-hidden-layer neural network trained by back propagation with local
receptive fields (LRF) using direct bitmap input of 20× 30 pixels (Pawlicki,
1991). The two other neural networks used as input a set of units corre-
sponding to features extracted by projecting the original pixel input onto a
basis of Gabor wavelets (Shustorovich, 1994). One of them was a two-hidden-
layer neural network with 144 input units trained by back propagation with
LRF, the other was a one-hidden-layer neural network with 113 input units
trained by back propagation with global receptive fields (GRF). We refer
to these classifiers as Bitmap-LRF, Gabor-LRF, and Gabor-GRF, respec-
tively. The individual and combination results for digits are given in Tables 1
and 2. The proximity measures φ1 and φ2 are defined as in (9) and (10),
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Table 1. Performance of Individual Classifiers for Digits

Classifier Reject 0% Reject 5%

Gabor-LRF 95.7% 97.9%
Bitmap-LRF 94.7% 98.0%
Gabor-GRF 93.4% 96.0%

respectively. The combination of these three classifiers was not any better
than the combination of the best pair (Bitmap-LRF and Gabor-LRF), which
means that the third one could not add anything new to the combination of
the two.

Alphanumeric classifiers were trained using a data base contained 27,720
characters. The test set contained 12,960 characters. We used output activa-
tions of three classifiers: the above-mentioned Bitmap-LRF and two polyno-
mial classifiers, namely, a polynomial classifier with simple quadratic features
(SQF) and a polynomial classifier with “fuzzy” features (FF) (Anderson &
Gaborski, 1993). In both cases, the polynomial classifier is a combination
of the classical least square method and a neural network-type supervised
training algorithm. Characters are converted nonlinearly to feature vectors
using different quadratic polynomials of the pixels. We refer to these classi-
fiers as Poly-SQF and Poly-FF, respectively. The individual and combination
results for alphanumerics are shown in Tables 3 and 4. The proximity mea-
sures φ1 and φ2 are the same as those in Table 2. As we can see in the
tables, the best combination of classifiers allowed 30% reduction in error rates
for digits and 25% for alphanumerics compared to the best individual clas-
sifier. These results can be favorably compared with those of the majority
voting scheme. When applied to the outputs of all three digits, it decreased
misclassification error by 10% for corresponding testing set. The same result
was obtained when the scheme was used for all three alphanumeric classi-
fiers.

There is a very important question related to a problem of combination
of several classifiers. Suppose we have a set of classifiers of different architec-
tures and based on different sets of features. All these classifiers have different

Table 2. Performance of Combinations of Classifiers for Digits

Proximity Measure φ1 Proximity Measure φ2

Classifiers Reject 0% Reject 5% Reject 0% Reject 5%

Bitmap-LRF 96.4% 98.7% 97.0% 99.1%
Bitmap-LRF and Gabor-GRF 95.7% 98.2% 96.4% 98.5%
Gabor-LRF and Gabor-GRF 95.8% 98.2% 95.8% 98.5%
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Table 3. Performance of Individual Classifiers for Alphanumeric Characters

Classifier Reject 0% Reject 5%

Poly-SQF 83.7% 85.9%
Bitmap-LRF 86.1% 88.3%
Poly-FF 86.3% 88.5%

recognition power. The question is, which subset of these classifiers is the most
advantageous for the combination. Experiments with all our classifiers showed
that a better result is not necessarily achieved on the combination of classi-
fiers with better individual performance. In some cases it turns out that it is
more important to combine more “independent” classifiers than those with
better performance. For example, Table 2 shows that the combination of the
results of Gabor-GRF and Bitmap-LRF is the same as the combination of the
results of Gabor-GRF and Gabor-LRF in spite of the fact that the individual
performance of the latter is better. Apparently, different feature extractors
used during the preprocessing stage provide more independent results than
different architectures of neural networks.

More experiments were conducted for the U.S. Census Bureau/NIST First
OCR Systems Competition (1992). There were three categories of isolated
hand-printed characters: digits, and lowercase and uppercase letters. Three-
quarters of the NIST data base were used for training individual classifiers, and
the last quarter was divided between a validation set and an internal test set.
We entered the competition with combined algorithms in all three categories.
For digits and lowercase letters, we integrated the results of Bitmap-LRF,
Gabor-LRF, and Poly-FF classifiers. Gabor-LRF and Poly-FF were used for
uppercase letters. The combination of the algorithms decreases misclassifica-
tion error by 23% for digits, by 15% for uppercase, and by 25% for lowercase
letters (on our designated test) compared to the best individual algorithm
used in the combinations. The performance of the algorithms allowed East-
man Kodak Company to finish the competition among the tight group of
leaders.

Table 4. Performance of Combinations of Classifiers for Alphanumeric Characters

Proximity Measure φ1 Proximity Measure φ2

Classifiers Reject 0% Reject 5% Reject 0% Reject 5%

Poly-SQF and Poly-FF 87.4% 89.7% 87.4% 89.5%
Poly-SQF and Bitmap-LRF 88.9% 91.3% 88.8% 90.7%
Poly-FF and Bitmap-LRF 89.7% 92.1% 89.6% 90.4%
Poly-SQF and Poly-FF and
Bitmap-LRF

90.1% 92.4% 89.5% 91.4%
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The Transferable Belief Model∗

Philippe Smets and Robert Kennes

Abstract. Smets, P. and R. Kennes, The transferable belief model, Artificial Intel-
ligence 66 (1994) 191–234.

We describe the transferable belief model, a model for representing quantified
beliefs based on belief functions. Beliefs can be held at two levels: (1) a credal
level where beliefs are entertained and quantified by belief functions, (2) a pignistic
level where beliefs can be used to make decisions and are quantified by probability
functions. The relation between the belief function and the probability function
when decisions must be made is derived and justified. Four paradigms are analyzed
in order to compare Bayesian, upper and lower probability, and the transferable
belief approaches.

Key words: Belief function; Dempster–Shafer theory; quantified beliefs

1 Introduction

The aim of this paper is to present the transferable belief model (TBM) i.e. our
interpretation of the Dempster–Shafer model. The TBM is a model for repre-
senting the quantified beliefs held by an agent at a given time on a given frame
of discernment. It concerns the same concepts as considered by the Bayesian
model, except it does not rely on probabilistic quantification, but on a more
general system based on belief functions.

Since Shafer introduced his model based on belief functions in his book
[33], many interpretations of it have been proposed. Three main interpreta-
tions have been developed: the random set, the generalized Bayesian, and the
upper and lower probability interpretations. However, great confusion and
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the Belgian National Incentive-Program for Fundamental Research in Artificial
Intelligence.
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even blatant errors pervade the literature about the meaning and applicabil-
ity of these models [29, 47]. We personally develop a model for point-wise
quantified beliefs—the transferable belief model—and show how belief func-
tions can be used for such a quantification. Bayesian probability is the most
classical model for quantified beliefs. So our presentation focuses on compar-
ing the TBM with its real contender: the Bayesian model. In particular we
will discuss the problem of decision making within the TBM because it is
necessary to explain how the model is used in real situations where decisions
must be made, and because it is central to any Bayesian presentation. We
even argue that Dutch Books—a betting strategy that would lead to a sure
loss—cannot be raised against TBM users. In fact when decisions must be
made, we require that beliefs be quantified by probability functions in order
to avoid Dutch Books.

Several paradigms are analyzed in order to provide some insight into the
nature of the TBM. These paradigms are used to contrast the TBM solu-
tion with the Bayesian, upper and lower probabilities, likelihood and fidu-
cial solutions. The TBM is compared with random sets in [46], with possi-
bility functions in [41], and with upper and lower probabilities in [15, 38].
The major differences between these models can be found in the way updat-
ing/conditioning must be performed. Axiomatic justifications are not given
here but are developed in [49, 53].

We also argue in this paper that the TBM should not be considered as just
a generalized probability model: indeed there are no necessary links between
the TBM and any underlying probability model. Hence we dissociate ourselves
from Dempster’s model where some underlying probability is essential. Any
decisions as to the nature of Shafer’s model are left to Shafer himself (see [34]),
but in our opinion, the TBM is very close to what Shafer described in his book
[33]. In later work, Shafer creates confusion by speaking about random sets and
upper and lower probabilities interpretations. Recently Shafer [34] clarified his
position, rejected these interpretations and defended essentially the Dempster
interpretation based on the random codes (a one-to-many mapping with an
underlying probability distribution). We depart from this interpretation in
that we do not require any underlying probability distribution, even though
they may exist.

Not all interpretations of Dempster-Shafer theory are analysed here (see
[43]). We do not discuss the interpretation of a belief as being the probability
of a modal proposition [31] or the probability of provability [28].

Transferable Belief Model

The transferable belief model is based on:

• a two-level model: there is a credal level where beliefs are entertained and
a pignistic level where beliefs are used to make decisions (from pignus =
a bet in Latin [50]);
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• at the credal level beliefs are quantified by belief functions;
• the credal level precedes the pignistic level in that, at any time, beliefs are

entertained (and updated) at the credal level; the pignistic level appears
only when a decision needs to be made;

• when a decision must be made, beliefs at the credal level induce a proba-
bility measure at the pignistic level, i.e. there is a pignistic transformation
from belief functions to probability functions.

Bayesians do not consider an autonomous credal level. The introduction
of a two-level model would be useless if decisions were the same as those
derived within the Bayesian model. We will show in the “Mr. Jones” paradigm
(Sect. 4) that this is not the case. The introduction of a credal level therefore
is not merely an academic subtlety.

The TBM essentially fits with the model developed in Shafer’s book [33]
except for some differences and explanations such as:

• the complete dissociation from any necessary underlying probability model
that precedes the construction of the belief functions at the credal level,
as encountered in Dempster’s approach (we do not mean the pignistic
probabilities used at the pignistic level and that are derived from the belief
functions);

• the fundamental concept of transferable “parts of belief”;
• the two-level model and the pignistic transformation;
• the “open-world” and “closed-world” assumptions and the introduction of

the unnormalized belief functions [39];
• the precedence of the conditioning process over the combination process;
• the justification of Dempster’s rule of combination as the unique compo-

sitional rule to combine two belief functions [19, 20, 27, 40].

The TBM is Unrelated to a Probability Model

The TBM is intended to model subjective, personal beliefs, i.e. what the
Bayesians claim to be their domain of application. The major point of the
TBM is its complete dissociation from any model based on probability func-
tions. This contrasts with what has been done in some of Shafer’s more recent
publications that favor the random set interpretation [26, 35], and most pub-
lications on Dempster–Shafer’s model [2, 22]. The TBM is neither a random
sets model [46] nor a generalization of the Bayesian model nor of some upper
and lower probability (ULP) models [15]. It is another model whose aim is
to quantify someone’s degree of belief. The model is normative, supposedly
simulating the behavior of a reasonable and consistent agent, the “stat rat”
of Barnard (see discussion in [50, p. 26]).

To support our case that the TBM is different from the Bayesian model,
we present an example, the “Mr. Jones” case, that leads to different results
according to which model is used to analyse it. Such an example might provide
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a tool for discriminating between the two models: according to which result
fits your requirements, you can select the model.

Other examples have already been provided to show the difference between
the Bayesian model and the TBM. But their power of persuasion as a discrim-
inating tool is weak as the TBM answer can usually also be derived from a
Bayesian analysis. The interest of the “Mr. Jones” example is that the TBM
solution can only be obtained by a Bayesian analysis by introducing some
unpalatable assumptions.

Summary of the Content

The TBM is presented in Sect. 2. We then present a theory for decision making
(Sect. 3). That decisions are based on probability functions (and expected
utilities) is not disputed. Whenever a decision has to be made by an agent,
he/she constructs a probability distribution derived from the belief function
that describes his/her credal state. Bear in mind that the existence of such
a probability distribution when decisions are made does not imply that this
probability function quantifies our belief at the credal level (i.e. outside of any
decision context).

We show (1) the impact of a betting frame on bet, (2) how someone’s
betting behavior could be used to assess a belief function, (3) how conditioning
acts on the betting behavior, and (4) how Dutch Books are avoided.

We then proceed by analyzing several paradigms in detail. We know from
experience that these paradigms are very useful in appreciating the partic-
ularity of the TBM, especially when compared with other approaches. Each
paradigm enables the difference to be shown between the TBM and some of
its contenders.

In Sect. 4 we present the “Mr. Jones” example, a very pointed example that
shows the difference between the TBM approach and the Bayesian approach.

In Sect. 5, we present the “guards and posts” paradigm. It clarifies the
nature of the conditioning process in the TBM.

In Sects. 6 and 7, we present two other paradigms to illustrate situations
where the TBM leads to results different from those of its contenders: the
Bayesian model, the ULP model, the likelihood model, and fiducial model.
Some of these comparisons have also been attempted by Hunter [17] and
Laskey [23]. Other comparisons are presented in [43].

In Sect. 8, we discuss the origin of the basic belief assignment used in our
paradigms.

In Sect. 9, we show the difference between the credal level where someone’s
beliefs are quantified by belief functions and the pignistic level where “pignis-
tic” probabilities must be constructed. Revision of beliefs is performed at the
credal level by Dempster’s rule of conditioning, not at the pignistic level by
probability conditioning.

In Sect. 10, we conclude by answering some potential criticisms of the TBM.
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2 The Transferable Belief Model

2.1 The Model

The necessary background information on belief functions is summarized here-
after. A full description can be found in Shafer’s book [33]. A somehow revised
version appears in [39]. Further results on Bayes’ theorem and the disjunctive
rule of combination appear in [37, 48].

Let L be a finite propositional language, and Ω = {ω1, ω2, . . . , ωn} be
the set of worlds that correspond to the interpretations of L. Propositions
identify subsets of Ω. Let ( be the tautology and ⊥ be the contradiction.
For any proposition X , let [[X ]] ⊆ Ω be the set of worlds identified by X .
Let A be a subset of Ω, then fA is any proposition that identifies A. So A is
[[fA]], ∅ = [[⊥]], and Ω = [[(]]. By definition there is an actual world # and
it is an element of Ω. In L, two propositions A and B are logically equivalent,
denoted A ≡ B, iff [[A]] = [[B]].

Let Π be a partition of Ω. Given the elements of the partition Π , we build
R, the Boolean algebra of the subsets of Ω generated by Π . We call Ω the
frame of discernment (the frame for short). The elements of the partition Π
are called the atoms of R. Given R, the number of atoms in a set A ∈ R is
the number of atoms of R that are included in A. We call the pair (Ω,R) a
propositional space.

By abuse of language but for the sake of simplicity, we do not distinguish
between the subsets of Ω and the propositions that denote them. We use the
same notation for both of them. So the same symbol (like A, B, C, . . .) is
used for a subset of Ω and for any proposition that denotes that subset. The
standard Boolean notation is used. LetA,B ∈ R. Ā stands for the complement
of A relative to Ω. A ∪ B and A ∩ B denote the set-theoretic union and
intersection respectively of the (subsets denoted by the) propositions A and
B. A ⊆ B means that all the elements of A (the subset denoted by A) are
elements of B (the subset denoted by B) (or equivalently, that proposition A
implies the proposition B). Any algebra R defined on Ω contains two special
propositions: ( and ⊥ denoted by their corresponding sets Ω and ∅.

All beliefs entertained by You1 at time t about which world is the actual
world # are defined relative to a given evidential corpus (ECY

t ) i.e., the set
of pieces of evidence in Your mind at time t. Our approach is normative: You
is an ideal rational agent and Your evidential corpus is deductively closed.
The credal state on a propositional space (Ω,R) describes Your subjective,
personal judgment that # ∈ A for every proposition A ∈ R. By a classical
abuse of language, the actual world # is called the “true” world, and we say
that “A is true” or “truth is in A” to mean that # ∈ A. Your credal state
results from ECY

t that induces in You some partial beliefs on the propositions
of R (note that we did not say Ω). These partial beliefs quantify the strength

1 “You” is the agent that entertains the beliefs considered in this presentation.



698 P. Smets and R. Kennes

of Your belief that # ∈ A, ∀A ∈ R. It is an epistemic construct as it is relative
to Your knowledge included in Your evidential corpus ECY

t .
Basic Assumption. The TBM postulates that the impact of a piece of

evidence on an agent is translated by an allocation of parts of an initial unitary
amount of belief among the propositions of R. For A ∈ R, m(A) is a part of
the agent’s belief that supports A, i.e. that the actual world # is in A, and
that, due to lack of information, does not support any strict subproposition
of A.

The m(A)-values, A ∈ R, are called the basic belief masses and the m-
function is called the basic belief assignment.2

Let m : R→ [0, 1] with
∑

A∈R
m (A) = 1, m (∅) = 0.

Every A ∈ R such that m(A) > 0 is called a focal proposition. The difference
with probability models is that masses can be given to any proposition of R
instead of only to the atoms of R.

As an example, let us consider a somehow reliable witness in a murder case
who testifies to You that the killer is a male. Let α = 0.7 be the reliability
You give to the testimony. Suppose that a priori You have an equal belief
that the killer is a male or a female. A classical probability analysis would
compute the probability P (M) ofM whereM =“the killer is a male”. P (M) =
0.85 = 0.7 + 0.5 × 0.3 (the probability that the witness is reliable (0.7) plus
the probability of M given the witness is not reliable (0.5) weighted by the
probability that the witness is not reliable (0.3)). The TBM analysis will
give a belief 0.7 to M . The 0.7 can be viewed as the justified component
of the probability given to M (called the belief or the support) whereas the
0.15 can be viewed as the aleatory component of that probability. The TBM
deals only with the justified components. (Note: the Evidentiary Value Model
[9, 11] describes the same belief component, but within a strict probability
framework, and differs thus from the TBM once conditioning is introduced.)

If some further evidence becomes available to You and implies that B is
true, then the mass m(A) initially allocated to A is transferred to A ∩ B.
Hence the name TBM.

Continuing with the murder case, suppose there are only two potential
male suspects: Phil and Tom. Then You learn that Phil is not the killer. The
testimony now supports that the killer is Tom. The reliability 0.7 You gave
to the testimony initially supported “the killer is Phil or Tom”. The new
information about Phil implies that 0.7 now supports “the killer is Tom”.

The transfer of belief described in the TBM satisfies the so-called Dempster
rule of conditioning. Let m be a basic belief assignment on the propositional
space (Ω,R) and suppose the conditioning evidence tells You that the truth

2 Shafer speaks about basic probability masses and assignment. To avoid confusion,
we have banned the word “probability” whenever possible.
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is in B ∈ R, then the basic belief assignment m is transformed into mB : R→
[0, 1], where

mB (A) =

⎧
⎪⎨

⎪⎩

c
∑
X⊆B̄m (A ∪X) for A ⊆ B,

0 for A 	⊆ B,

0 for A = ∅,
(1)

where
c =

1
1−

∑
X⊆B̄m (X)

.

In this presentation we have assumed that one and only one element of Ω is
true (closed-world assumption). In [39] we generalized the model and accepted
that none of the elements could be true (open-world assumption). In that last
case, positive basic belief masses could be given to ∅ and the normalization
coefficient c in (1) is 1. The closed-world assumption is accepted hereafter.
The meaning of the basic belief mass given to ∅ is analyzed in [45].

Degrees of Belief and Plausibility

Given (Ω,R), the degree of belief of A, bel(A), quantifies the total amount of
justified specific support given to A. It is obtained by summing all the basic
belief masses given to proposition X ∈ R with X ⊆ A (and X 	= ∅)

Bel (A) =
∑

∅�=X⊆A
m (X) .

We say justified because we include in Bel(A) only the basic belief masses
given to subsets of A. For instance, consider two distinct atoms x and y
of R. The basic belief mass m({x, y}) given to {x, y} could support x if
further information indicates this. However given the available information
the basic belief mass can only be given to {x, y}. (Note that under open-
world assumption, m(∅) might be positive. The basic belief mass m(∅) should
not be included in Bel(A) nor in pl(A), as it is given to the subset ∅ that
supports not only A but also Ā. This is the origin of the specific support.)

The function Bel : R → [0, 1] is called a belief function. The triple
(Ω,R, Bel) is called a credibility space. Belief functions satisfy the follow-
ing inequalities [33]:

∀n ≥ 1, A1, A2, . . . , An ∈ R,
Bel (A1 ∪A2 ∪ . . . ∪An)

≥
∑

i

Bel (Ai)−
∑

i>j

Bel (Ai ∩Aj)

− · · · − (−1)nBel (A1 ∩A2 ∩ · · · ∩An) . (2)
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The degree of plausibility of A, pl(A), quantifies the maximum amount of
potential specific support that could be given to A ∈ R. It is obtained by
adding all those basic belief masses given to propositions X compatible with
A, i.e. such that X ∩A 	= ∅:

pl (A) =
∑

X∩A �=∅
m (X) = Bel (Ω)−Bel

(
Ā
)
.

We say potential because the basic belief masses included in pl(A) could be
transferred to non-empty subsets of A if new information could justify such a
transfer. It would be the case if we learn that Ā is impossible.

The function pl is called a plausibility function. It is in one-to-one cor-
respondence with belief functions. It is just another way of presenting the
same information and could be forgotten, except inasmuch as it provides a
convenient alternate representation of our beliefs.

Dempster’s rule of conditioning expressed with Bel and Pl is:

Bel (A|B) =
Bel

(
A ∪ B̄

)
−Bel

(
B̄
)

1−Bel
(
B̄
) , pl (A|B) =

pl (A ∩B)
pl (B)

.

Doxastical Equivalence

Besides the logical equivalence already mentioned, there is another concept
of equivalence related to Your evidential corpus ECY

t . Let [[ECY
t ]] represent

the set of worlds in Ω where all propositions deduced on Ω from ECY
t are

true. All the worlds in Ω that are not in [[ECY
t ]] are accepted as “impossible”

by You at time t. Two propositions A and B are said to be doxastically
equivalent for You at time t, denoted A ∼= B, iff [[ECY

t ]] ∩ [[A]] = [[ECY
t ]] ∩

[[B]]. Logical equivalence implies doxastic equivalence. This is important as
it implies that A and B should get the same support, the same degree of
belief. Hence the Consistency Axiom that expresses the equi-credibility of
doxastically equivalent propositions.

Consistency Axiom. Let us consider two credibility spaces (Ω,Ri, Beli),
i = 1, 2, that represent Your beliefs on two algebras R1 and R2 as induced by
Your ECY

t . Let A1 ∈ R1 and A2 ∈ R2. If A1
∼= A2, then Bel1(A1) = Bel2(A2).

This consistency axiom means that doxastically equivalent propositions
share the same degree of belief, which is required since they share the same
truth value. It also means that the belief given to a proposition does not
depend on the structure of the algebra to which the proposition belongs.
This consistency axiom is usually postulated for probability distributions,
when they quantify degrees of belief [21]. Here it is postulated only for those
functions that quantify beliefs at the credal level.

Total Ignorance

Total ignorance is represented by a vacuous belief function, i.e. a belief func-
tion such that m(Ω) = 1, hence Bel(A) = 0 ∀ A ∈ R, A 	= Ω, and Bel(Ω) =
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1. The origin of this particular quantification for representing a state of total
ignorance can be justified. Suppose that there are three propositions labeled
A, B, and C, and You are in a state of total ignorance about which is true.
You only know that one and only one of them is true but even their content is
unknown to You. You only know their number and their label. Then You have
no reason to believe any one more than any other; hence, Your beliefs about
their truth are equal: Bel(A) = Bel(B) = Bel(C) = α for some α ∈ [0, 1].
Furthermore, You have no reason to put more or less belief in A ∪B than in
C : Bel(A∪B) = Bel(C) = α (and similarly Bel(A∪C) = Bel(B ∪C) = α).
The vacuous belief function is the only belief function that satisfies equalities
like Bel(A∪B) = Bel(A) = Bel(B) = α. Indeed the inequalities (2) are such
that Bel(A∪B) ≥ bel(A)+Bel(B)−Bel(A∩B). As A∩B = ∅, Bel(A∩B) = 0.
The inequality becomes α ≥ 2α where α ∈ [0, 1] hence α = 0.

Remark 1. The TBM also includes a description of Dempster’s rule of com-
bination - a rule for the conjunctive combination of two belief functions that
somehow generalizes Dempster’s rule of conditioning. This rule is not used in
this presentation. An axiomatic justification of Dempster’s rule of combina-
tion within the TBM is given in [14, 19, 20, 40]. There also exists a disjunctive
rule of combination of two belief functions, which is described in [48].

Remark 2. It is important to note that the TBM includes two components:
one static, the basic belief assignment, and one dynamic, the transfer pro-
cess. Many authors on the Dempster–Shafer model consider only the basic
belief assignment and discover that the basic belief masses are probabilities
on the power set of Ω. But usually they do not study the dynamic component,
i.e. how beliefs are updated. Their comparisons are therefore incomplete, if
not misleading.

2.2 Refinements and Consistent Beliefs

Let us consider two propositional languages L1 and L2. It is always possi-
ble to build a common underlying propositional language L such that each
proposition of L1 (and of L2) is a proposition of L. Let Ω1, Ω2, and Ω be
the sets of worlds that correspond to the interpretations of L1, L2, and L,
respectively. Each world of Ω1 (and of Ω2) corresponds to a set of worlds
of Ω, and the images of the worlds of Ω1 (and of Ω2) constitute a partition
of Ω. Hence, whenever we describe two propositional spaces, we can always
use a common underlying Ω without loss of generality. In fact the concept in
a propositional space (Ω, R) that is important for this presentation is the
algebra R, not the set of worlds Ω. All beliefs are built on the algebras R, not
on Ω. The granularity of Ω is irrelevant once Ω is fine enough to allow for a
definition of the atoms of R (i.e., each atom of R contains at least one element
of Ω). Therefore, the definition of two propositional spaces (Ωi, Ri), i = 1, 2,
with different sets Ωi is equivalent to a definition of two propositional spaces
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(Ω, Ri), i = 1, 2, sharing the same Ω. From now on, we will not worry about
the Ω, they will be adapted such that each R is non-ambiguously defined.

Consider two propositional spaces (Ω, R1) and (Ω, R) (see the left half
of Fig. 1, where the elements of Ω are four individuals characterized by name
and age, the atoms of R1 are male and female and R is the power set of Ω).
Let Λ1 be a one-to-many mapping from R1 to R such that each atom of R1

is mapped on a proposition of R, the images of the atoms of R1 constitute a
partition of Ω, and this mapping is additive. Λ1 is called a refining from R1

to R. R is called a refinement of R1. R1 is called a coarsening of R (see [33,
p. 115]). For B ∈ R, let

Λ̄−1
1 (B) = ∪{A : A ∈ R1, Λ1 (A) ∩B 	= ∅} .

Let us consider two propositional spaces (Ω, Ri), i = 1, 2, and two refin-
ings Λi to a common refinement R. By construction, if B ∈ R is true (the
actual world # ∈ B), then Λ̄−1

1 (B) and Λ̄−1
2 (B) are true. The two credibility

spaces (Ω, Ri, Beli), i = 1, 2, are said to be consistent if there exists a belief
function Bel on R such that Beli(Λ̄−1

i (B)) = Bel(B) for all B ∈ R, i = 1, 2.

2.3 Least Committed Belief on R2 Induced by a Belief on R1

Let the credibility space (Ω, R1, Bel1) be induced by Your ECY
t . Let Λ be a

relation between R1 and a new algebra R2 defined on Ω such that Λ(ω) 	= ∅
for every atom ω of R1 and Λ(A ∪ B) = Λ(A) ∪ Λ(B) ∀ A,B ∈ R1. The
question is to construct a belief function Bel2 on R2, consistent with Bel1,
that conveys on R2 the same “information” as Bel1 does on R1. Let B be the
family of belief functions Bel on R2 consistent with Bel1. By the Consistency

Fig. 1. Example of two propositional spaces (Ω, Ri), i = 1, 2. Λi are the refinings
from Ri to R. Each circle is an atom. The atoms of R are those of a refinement
common to R1 and R2
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Axiom, one has Bel1(A) = Bel(B), for every pair (A, B) with A ∈ R1 and
B ∈ R2 such that A ∼= B. But this requirement does not provide the value of
Bel for those B ∈ R2 that are not doxastically equivalent to some A ∈ R1. The
Principle of Least commitment [16, 48] allows us to select the belief function
Bel∗ ∈ B such that Bel∗(B) ≤ Bel(B) ∀ B ∈ R2 ∀ Bel ∈ B. This principle
says that You should not give more support to a proposition than justified by
Bel1. It implies that Bel2 (and its basic belief mass m2) is related to Bel1
(and its basic belief mass m1) by:

∀ B ∈ R2 m2 (B) =
∑

A∈R1:Λ(A)=B

m1 (A) ,

where the sum is 0 when no A satisfies the constraint. bel2 is called the vacuous
extension of bel1 on R2 [33].

3 The Pignistic Probability Derived from a Belief
Function

3.1 The Generalized Insufficient Reason Principle

Let us give a context. Given the evidence available to You, the TBM claims
the existence of a belief function that describes Your credal state on the frame
of discernment.

Suppose a decision must be made based on this credal state. As is well
known, decisions will be coherent if the underlying uncertainties can be
described by a probability distribution defined on 2Ω [5]. Therefore, one must
find a rule that allows for the construction of a probability distribution from
a belief function in the case of forced decision. We only consider forced bets,
forced decisions, as is done classically by Bayesians. (The unforced decisions
considered in [12, 18, 50] concern ULP contexts.) The solution that will satisfy
behavior requirements introduced in Sect. 3.2 happens to be a generalization
of the Insufficient Reason Principle. Another justification can be found in [42].
This solution already appeared in [7, 51] but with no justification.

Let us consider a credibility space (Ω, R, bel) that describes Your beliefs
on R. Let A ∈ R and A = A1 ∪ A2 ∪ · · · ∪ An, where the Ai’s are distinct
atoms of R. The mass m(A) corresponds to that part of Your belief that
is restricted to A and that, due to lack of further information, cannot be
allocated to a proper subset of A. In order to build the probability distri-
bution needed for decision making (hence qualified as pignistic) on R, You
distribute m(A) equally among the atoms of A. Therefore, m(A)/n is given to
each Ai, i = 1, . . . , n. This procedure corresponds to the Insufficient Reason
Principle: if You must build a probability distribution on n elements, given a
lack of information, give a probability 1/n to each element. This procedure is
repeated for each mass m. Let BetP be the pignistic probability distribution
so derived. For all atoms x ∈ R,
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BetP (x) =
∑

x⊆A∈R

m (A)
|A| =

∑

A∈R
m (A)

|x ∩A|
|A| ,

where |A| is the number of atoms of R in A, and for B ∈ R,

BetP (B) =
∑

A∈R
m (A)

|B ∩A|
|A| .

Of course, BetP is a probability function, but we call it a pignistic probability
function to stress the fact that it is the probability function in a decision
context. The principle underlying this procedure is called the Generalized
Insufficient Reason Principle since the Insufficient Reason Principle has been
used at the level of each focal proposition of the belief function. As described
up to here it is only an ad hoc principle, but it can be justified by natural
behavior requirements.

3.2 Derivation of the Generalized Insufficient Reason Principle

Let us give a credibility space (Ω, R, Bel). Let m be the basic belief assign-
ment corresponding to bel. Let BetP (·; m) be the pignistic probability defined
on R. The parameter “m” is added in order to enhance the basic belief assign-
ment from which BetP is derived.

Assumption 1 ∀x atom of R, BetP (x; m) depends only on m(X) for x ⊆
X ∈ R.

Assumption 2 BetP(x; m) is continuous (or bounded) for each m(X), x ⊆
X ∈ R.

Assumption 3 Let G be a permutation defined on Ω. For X ⊆ Ω, let
G(X) = {G(x) : x ∈ X}. Let m′ = G(m) be the basic belief assign-
ment given to the propositions of Ω after the permutation has been per-
formed, that is for X ∈ R, m′(G(X)) = m(X). Then for any atom x of
R, BetP (x; m) = BetP (G(x); G(m)).

In other terms, BetP is invariant by permutations of Ω.

Assumption 4 Let (Ω,R, Bel) be the credibility space that describes Your
beliefs on R, such that it is known by You that # is not an element of the
atom X ∈ R (so ∀A ∈ R, A ∼= A ∪ X and Bel(A) = Bel(A ∪ X) by the
Consistency Axiom). Let us consider the credibility space (Ω′,R′, Bel′), where
Ω′ = Ω − X,R′ is the boolean algebra built from the atoms of R that are
not subset of X (so every element A of R′ is also an element of R, and
∀A ∈ R′, Bel′(A) = Bel(A) by the Consistency Axiom). Let BetP (x; m) and
BetP ′(x; m′) be the pignistic probabilities derived from Bel(m) and Bel′(m′),
respectively. Then for every atom x ∈ R′,

BetP (x; m) = BetP ′ (x; m′) ,
BetP (X ; m) = 0.
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The major assumption A1 says that BetP (x; m) may depend on Bel(x̄)
but not on the way the basic belief masses used to compute Bel(x̄) are dis-
tributed among themselves.

The three other assumptions are classical requirements. Assumption A2
could be weakened as one only needs that, for each m(X), x ∈ X,BetP (x; m)
is continuous in a point, or bounded, or measurable, or majorizable by a
measurable function on a set of positive measure (see [1, p. 142]).

Assumption A3 is the classical Anonymity Requirement: renaming the ele-
ments of Ω does not modify the probabilities. That m′(G(X)) = m(X) results
from the Consistency Axiom as G(X) ∼= X .

Assumption A4 only states that impossible atoms do not change the pig-
nistic probabilities.

Theorem 1. Let (Ω,R) be a propositional space and m be a basic belief
assignment on R. Let |A| be the number of atoms of R in A. Under assump-
tions A1 to A4, for any atom x of R

BetP (x;m) =
∑

x⊆A∈R

m (A)
|A| . (3)

Proof. Given in Appendix A.

The transformation defined by (3) is called the pignistic transformation.

Corollary 1. If Bel is a probability distribution P , then BetP is equal to P.

Example 1. The same pignistic transformation was derived in [42] by assuming
different requirements whose overall idea follows the next scenario. Let us
consider two friends of Yours, G and J . You know they will toss a fair coin
and the winner will visit You tonight. You want to buy the drink Your friend
would like to receive tonight: coke, wine, or beer. You can only buy one drink.
Let D = {coke, wine, beer}.

Let us suppose that BelG(d) ∀ d ⊆ D quantifies Your belief about the
drink G will ask for, should G come. Given BelG, You build Your pignistic
probability BetPG about the drink G will ask by applying the (still to be
deduced) pignistic transformation. You identically build the pignistic proba-
bility BetPJ based on BelJ , Your belief about the drink J will ask, should
J come. The two pignistic probability distributions BetPG and BetPJ are
in fact the conditional probability distributions about the drink that will be
drunk given that G respectively J comes. The pignistic probability distribu-
tions BetPGJ about the drink that Your visitor will ask is then

BetPGJ (d) = 0.5 BetPG (d) + 0.5 BetPJ (d) ∀ d ⊆ D.

You will use these pignistic probabilities BetPGJ(d) to decide which drink
to buy.
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But You could as well reconsider the whole problem and compute first
Your belief about the drink Your visitor (V ) would like to receive. In [42], we
show that such a belief is the average of BelG and BelJ :

BelV (d) = 0.5 BelG (d) + 0.5 BelJ (d) ∀ d ⊆ D.

Given BelV , You could then build the pignistic probability BetPV You should
use to decide which drink to buy. We proved that if BetPV and BetPGJ must
be equal, then the pignistic transformation must be the one given by the
Generalized Insufficient Reason Principle (relation (3)).

3.3 Betting Frames

Let us consider a credibility space (Ω,R0, Bel0). Before betting, one must
define a betting frame R on Ω, i.e. the set of atoms on which stakes will be
allocated. The granularity of this frame R is defined so that a stake could
be given to each atom independently of the stakes given to the other atoms.
For instance, if the stakes given to atoms A and B of R0 must necessarily
be always equal, both A and B belong to the same granule of R. The betting
frame R is organized so that the granules are the atoms of R, and R is the
result obtained by applying a sequence of coarsenings and/or refinements on
R0. Let us suppose the initial belief Bel0 is defined on R0. Then the belief
function Bel induced by Bel0 on R is (see Sect. 2.3):

∀ A ∈ R, Bel (A) = Bel0
(
Λ−1 (A)

)
,

where Λ is the transformation from R0 to R, and

∀ A ∈ R, Λ−1 (A) = ∪{X : X ∈ R0, Λ (X) ⊆ A} .

(See also [33, pp. 146–147].)
The pignistic probability BetP is then built from the belief function Bel

so derived on R.

Betting under Total Ignorance

To show the power of the TBM approach, let us consider one of those dis-
turbing examples based on total ignorance.

Let us consider two propositions denoted A1 and A2. You know that one
and only one proposition is true. But You don’t know what the two proposi-
tions are. You just know their number and their labels. You must bet on A1

versus A2. In the TBM, Your belief about the truth of A1 and A2 is described
by a vacuous belief function and the pignistic probabilities on the betting
frame {A1, A2} are

BetP (A1)−BetP (A2) =
1
2
.



28 The Transferable Belief Model 707

Let us now consider three propositions, denoted B1, B2, and B3. You
know that one and only one proposition is true. But You don’t know what
the three propositions are. You just know their number and their labels. You
must bet on B1 versus B2 versus B3. In the TBM, Your belief about the truth
of B1, B2, and B3 is described by a vacuous belief function and the pignistic
probabilities on the betting frame {B1, B2, B3} are

BetP ′ (B1) = BetP ′ (B2) = BetP ′ (B3) =
1
3
.

Now You learn that A1 is logically (hence doxastically) equivalent to B1 and
A2 is logically (doxastically) equivalent to B2 ∪ B3. Within the TBM, this
information will not modify Your beliefs and Your pignistic probabilities. If
You were a Bayesian, You must adapt Your probabilities as they must give
the same probabilities to A1 and B1. Which set of probabilities are You going
to update, and why, especially since it must be remembered that You have no
knowledge whatsoever about what the propositions are.

In a Bayesian approach, the problem raised by this type of example results
from the requirement that doxastically equivalent propositions should receive
identical beliefs, and therefore identical probabilities. Within the TBM, the
only requirement is that doxastically equivalent propositions should receive
equal beliefs (it is satisfied as Bel(A1) = Bel′(B1) = 0). Pignistic probabilities
depend not only on these beliefs but also on the structure of the betting frame,
hence BetP (A1) 	= BetP ′(B1) is acceptable as the two betting frames are
different.

In a betting context, the set of alternatives and their degrees of refinement
are relevant to the way Your bets are organized. Of course, if BetP (A1) = 1

2
had been a well-justified probability, then BetP ′(B1) would also have been
1
2 . But here BetP (A1) = 1

2 is based only on the knowledge of the number of
alternatives on which You can bet and nothing else. The difference between
BetP (A1) and BetP ′(B1) reflects the difference between the two betting con-
texts. Of course, as required, both A1 and B1 share the same degrees of
belief.

3.4 Assessing Degrees of Belief

Given a propositional space (Ω,R0), the assessment of Bel0(A) ∀ A ∈ R0

can be obtained from the betting behavior established on other algebras R
defined on Ω (or any refinement of Ω). Given such a betting frame R and
its corresponding pignistic probability BetP on R, one can determine the set
of belief functions S on 2Ω that would lead to BetP through (3) when the
betting frame is R. Construct various betting frames Ri on Ω and assess the
corresponding BetPi and Si. Note that the same evidence underlies all bets
and that the difference between the BetPi results only from the difference
between the structure of the betting frames Ri. Let us consider a refining Λ
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from R to R′. Then, given the Consistency Axiom, the relation between Bel
defined on R and Bel′ defined on R′ = 2Ω

′
is such that:

m′ (Λ (A)) = m (A) ∀ A ∈ R,
m′ (B) = 0, otherwise,

where Λ(A) = {Λ(x) : x ∈ A}. Bel′ is the vacuous extension of Bel from
R0 to 2Ω

′
[33, p. 146]. The strategy for defining various betting frames Ri

allows for the construction of a family of Si whose intersection contains only
one element, Bel0. An empty intersection would imply inconsistency between
the pignistic probabilities. The number of potential betting frames is large
enough to guarantee that a unique solution be obtained.

Example 2. Let us suppose that Ω0 = {a, b} where {a} = “John will come
tonight” and {b} = “John will not come tonight”. Let us consider the betting
frame R with atoms {a} and {b}, and Your pignistic probabilities on frame R:

BetP ({a}) =
4
9
, BetP ({b}) =

5
9
.

Suppose ψ and ψ̄ are two complementary but otherwise unknown propositions.
{a} ∩ ψ will occur if John comes tonight and proposition ψ is true. {a} ∩ ψ̄
will occur if John comes tonight and proposition ψ̄ is true. Let us consider
the betting frame R′ with atoms {a}∩ψ, {a}∩ ψ̄, and {b} and Your pignistic
probabilities on it:

BetP ′ ({a} ∩ ψ) = BetP ′ ({a} ∩ ψ̄
)

=
7
27
, BetP ′ ({b}) =

13
27
.

Then the unique solution for m0 is:

m0 ({a}) =
2
9
, m0 ({b}) =

3
9
, m0 ({a, b}) =

4
9
.

It solves the two linear equations derived from (3):

4
9

= m0 ({a}) +
1
2
m0 ({a, b}) ,

7
27

=
1
2
m0 ({a}) +

1
3
m0 ({a, b}) .

It might seem odd that {b} receives pignistic probabilities of 5
9 and 13

27 accord-
ing to the betting context. It reflects the fact that a large amount (4

9 ) of
Your initial belief was left unassigned (i.e. given to {a, b}). This example cor-
responds to a state in which You have very weak support for {a} and for
{b}. You are not totally ignorant as in Sect. 3.3.1, but still in a state of
“strong” ignorance. Part of BetP ({b}) = 5

9 is due to justified beliefs (3
9 ) but

the remainder results from a completely unassigned part of belief that You
distribute equally among the alternatives of Your betting frame.
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Wilson [52] showed that the set of pignistic probabilities that can be
obtained from a given belief function Bel on a frame R is equal to the
set of probability functions “compatible” with Bel and its associated plau-
sibility function Pl, i.e. the set of probability functions P on R such that
Bel(A) ≤ P (A) ≤ pl(A) ∀ A ∈ R. So whatever the betting frame, BetP (A) ≥
Bel(A) ∀A ∈ R. Suppose You ignore what the appropriate betting frame
is, You nevertheless know that, ∀ A ∈ R, the lowest bound of BetP (A)
is Bel(A). Therefore Bel(A) can then be understood as the lowest pig-
nistic probability one could give to A when the betting frame is not
fixed [12].

3.5 Conditional Betting Behaviors

Let us consider a credibility space (Ω,R, Bel) and let us suppose You learn
that proposition A ∈ R is true. Then Bel must be conditioned on A by
Dempster’s rule of conditioning and BetP is built from this conditional belief
function.

But a distinction must be made between the following two cases:

• suppose You know that A is true, then You condition Bel on A before
deriving BetP.

• Suppose You know that the bet will be cancelled if A is false, then You
derive BetP from the unconditioned Bel and condition BetP on A using
the classical probabilistic conditioning.

The first case corresponds to “factual” conditioning, the second to “hypo-
thetical” conditioning. In the factual case, A is true for every bet that
can be created. In the hypothetical case, A can be true in some bets, and
false in others. Pignistic probabilities obtained in these two contexts usu-
ally reflect the difference between the contexts: (A always true; A possi-
bly false). This distinction was already considered in 1931 by Ramsey who
noted that:

the degree of belief in P given Q . . . roughly expresses the odds at
which the subject would now bet on P , the bet only to be valid if
Q is true. . . .This is not the same as the degree to which he would
believe P , if he believed Q for certain: for knowledge of Q might
for psychological reasons profoundly alter his whole system of beliefs.
[30, p. 79]

Ramsey distinguished between a bet on P ∩ Q versus P̄ ∩ Q in a context
{P ∩Q, P̄ ∩Q, Q̄} and a bet on P versus P̄ when Q is known to be true, hence
in the context {P∩Q, P̄∩Q}. In the TBM, Ramsey’s allusion to “psychological
reasons” applies at the credal level: learning Q modifies our credal state, hence
of course our pignistic probabilities.

Note: Recent work by Dubois and Prade [8] has shown the difference
between two forms of conditioning: focusing and updating (which might better
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be called “revision”). Our factual conditioning seems to correspond to their
updating. Focusing is not considered here.

3.6 The Avoidance of Dutch Books

The pignistic probability we build on the betting frame from the underlying
belief guarantees that no static Dutch Book can be constructed. To construct
a Dutch Book, one implicitly defines the betting frame, i.e. the set of atoms
of the Boolean algebra built from all the options. The pignistic probabilities
are built using this betting frame and no Dutch Book can be constructed as
far as the bets are established according to a probability measure.

In order to show how Dutch Books are avoided, we reconsider the two bets
under total ignorance considered in Sect. 3.3.1. One could think of building
the following Dutch Book.3

Before knowing A1
∼= B1, You would accept to pay $0.45 for winning

$1 if A1 were true (as BetP (A1) = 0.5). (For any bet, You would
accept to pay up to $x with x = BetP (X) if You won $1 when X is
true.) You would also accept to pay $0.60 for winning $1 ifB2∪B3 were
true (as BetP ′(B2 ∪ B3) = 0.66). Given that You don’t know what
A1, A2, B1, B2, and B3 say, the two bets are acceptable together.
Now You learn that B2 ∪ B3 is true iff A2 is true. Therefore, by
accepting the two bets together, You commit Yourself to pay $(0.45+
0.60) = $1.05 for the certainty of winning $1. Hence a Dutch Book
has been built against You, as You will surely loose $0.05.

The argument is wrong because it does not take into due consideration the
problem of the betting frame. Once A1

∼= B1 is known, You will not accept
both bets simultaneously. Before accepting a bet, You must always build the
betting frame, i.e. You must establish the granularity, i.e. the list of elements
on which stakes can freely be allocated.

In the present case, once You know A1
∼= B1, You must decide if stakes on

B2 and B3 will always be the same or might vary. If they must always be the
same, then You use the betting frame {A1, A2} and reject the second bet. If
they might be different, then You use the betting frame {B1, B2, B3} and
reject the first bet. Dutch Books are thus avoided.

The existence of two types of conditioning does not permit the construc-
tion of a dynamic Dutch Book. If bets are based on “hypothetical” facts,
conditioning must then be performed by applying classical probability condi-
tioning. If bets are based on “factual” facts, then every bet must be organized
accordingly. Some atoms are definitively eliminated since they are impossi-
ble, conditioning is performed at the level of the belief function by applying
Dempster’s rule of conditioning, and BetP is derived from the conditional
belief function. Dutch Books can still be avoided as one cannot build a set

3 This example was suggested by P. Garbolino in [3].
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of bets where the “factual” fact is treated as unknown in some cases and
accepted in others. A “factual” fact is either known or unknown, but once it
is known, it is known for every bet. The difference between “hypothetical”
facts and “factual” facts is to be found in the fact that “factual” facts are
true for every bet, whereas hypothetical facts can be denied in some bets.

4 The Murder of Mr. Jones

4.1 The Problem

Big Boss has decided that Mr. Jones must be murdered by one of the three
people present in his waiting room whose names are Peter, Paul, and Mary.
Big Boss has decided that the killer on duty will be selected by a throw of a
dice: if it is an even number, the killer will be female; if it is an odd number, the
killer will be male. You, the judge, know that Mr. Jones has been murdered,
who was in the waiting room and about the dice throwing, but You do not
know what the outcome was and who was selected. You are also ignorant as
to how Big Boss would have decided between Peter and Paul in the case of
an odd number being observed. Given the available information, Your odds for
betting on the sex of the killer would be 1 to 1 for male versus female.

You then learn that should Peter not be selected by Big Boss, he would
necessarily have gone to the police station at the time of the killing in order
to have a perfect alibi. Peter indeed went to the police station, so he is not the
killer. The question is how You would bet now on male versus female: should
Your odds be 1 to 1 (as in the TBM) or 1 to 2 (as in the Bayesian model).

Note that the alibi evidence makes “Peter is not the killer” and “Peter has
a perfect alibi” equivalent. The more classical evidence “Peter has a perfect
alibi” would only imply P (“Peter is not the killer” | “Peter has a perfect
alibi”) = 1. But P (“Peter has a perfect alibi” | “Peter is not the killer”)
would stay undefined and would then give rise to further discussion, which
for our purpose would be useless. In this presentation, the latter probability
is also 1.

4.2 The TBM Approach

Let k be the killer. The waiting room evidence E0 and its resulting basic belief
assignment m0 are:

E0 : k ∈ Ω = {Peter, Paul, Mary}, R0 = 2Ω,
m0({Peter, Paul, Mary}) = 1.

The dice-throwing pattern (evidence E1) induces the following basic belief
assignment:

E1: dice experiment, R1 = {Male, Female},
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m1(Female) = 0.5,
m1(Male) = 0.5.

Combining E0 and E1 induces the basic belief assignment m01:

E01: E0 and E1, R01 = 2Ω,
m01({Mary}) = 0.5,
m01({Peter, Paul}) = 0.5.

The 0.5 belief mass given to {Peter, Paul} corresponds to the part of belief
that supports “Peter or Paul”, could possibly support each of them, but given
the lack of further information, cannot be divided more specifically between
Peter and Paul.

Suppose You had to bet on the killer’s sex. You would obviously bet on
Male = {Peter, Paul} versus Female = {Mary} at odds 1 to 1.

Peter’s alibi pattern (evidence E2) induces the basic belief assignment m2.

E2: A = “Peter went to the police station”
= “Peter has a perfect alibi”,

E2: k ∈ {Paul, Mary}, R2 = 2Ω,
m2({Paul, Mary}) = 1.

Conditioning m01 on E2 by Dempster’s rule of conditioning leads to m012:

E012: E01 and E2, R012 = 2Ω,
m012({Mary}) = m012({Paul}) = 0.5.

The basic belief mass that was given to “Peter or Paul” is transferred to Paul.
Your odds for betting on Male versus Female would now still be 1 to 1, as
before.

4.3 The Bayesian Solution

Suppose You were a Bayesian. Therefore Your degrees of belief are quanti-
fied by probability distributions and all pieces of evidence are taken in con-
sideration by adequately revising Your probability distributions through the
Bayesian conditioning processes.

Given E1, You build a probability distribution P1 on Ω = {Peter,Paul,
Mary}:

P1 (k ∈ {Mary}) = 0.5, P1 (k ∈ {Peter, Paul}) = 0.5.

You would also bet on male versus female the odds being 1 to 1.
When You learn E2, i.e. that Peter went to the police station, You condi-

tion P1 on {Paul, Mary} in order to compute P12, where

P12 (k ∈ {Mary}) = P1 (k ∈ {Mary} |k ∈ {Mary, Paul})
P1 (k ∈ {Mary})

P1 (k ∈ {Mary}) + P1 (k ∈ {Paul}) =
0.5

0.5 + x
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with x = P1(k ∈ {Paul}). But x is unknown. No evidence whatsoever has
been given about x.

Usually Bayesians encountering this problem will assume that x = 0.25
leading to a 1 to 2 odds. They obtain x = 0.25 by either applying the Insuffi-
cient Reason Principle or a symmetry argument or a minimum entropy argu-
ment on P1 to evaluate P1(k ∈ {Paul}). It is of course the most natural
assumption. . .but it is still an assumption extraneous to the available evi-
dence, and any other value in [0, 0.5] could as well be assumed. Any such
value would correspond to some a priori probability on Peter versus Paul,
which is not justified by any of the available pieces of evidence. All that is
known to You is that there were two men whose names were Peter and Paul,
and nothing else.

Another justification for x = 0.25 could be obtained as follows. Suppose
evidence E′

2: “if Paul were not the killer, he would go to the police station to
have a perfect alibi and Paul went to the police station”. E′

2 is E2 where Peter
and Paul interchange their role. A bet on male versus female should be the
same after evidence E2 where Peter and Paul interchange their role. A bet on
male versus female should be the same after evidence E2 and after evidence
E′

2. This symmetry requirement is satisfied only with x = 0.25. Therefore
Bayesians can hardly avoid the 1 to 2 odds. In the TBM, the requirement
that bets after E2 and after E′

2 should be the same is automatically satisfied:
the 0.5 mass that was given by m01 to “Peter or Paul” is transferred to “Paul”
under E2 and to “Peter” under E′

2 and the bets of male versus female remain
unchanged.

Our analysis of Mr. Jones’ case could be rephrased by saying that Big Boss
used a deck of 52 cards instead of a dice. Mary is the killer if the card is red,
the killer is male if the card is black. Peter is not the killer. In how many ways
could Big Boss have selected a card so that Paul is the killer? The answer is
not “any number between 0 and 26” as none of the cards had Paul written on
them. All black cards are identical, they all mean “male”. To introduce the
idea that some black cards could point to Paul, the others to Peter, would lead
to a ULP analysis as we would be in a context in which there is a probability
that Paul is the killer (the proportion of cards marked Paul) but we do not
know the value of such a proportion. This a another problem, different from
the one we have analyzed. The two problems should not be confused. The
difference between such ULP approach and the TBM is detailed in [8, 38, 43].

4.4 Conditional Bets

The example can be used to illustrate the difference between bets according to
the context in which the conditioning informationE2 is taken into account (see
Sect. 3.5). Before learning evidenceE2, if You want to bet on Paul versus Mary,
the betting frame is {Paul, Mary, Peter} and BetP (Paul) = BetP (Peter) =
0.25, BetP (Mary) = 0.5. To bet on Paul versus Mary corresponds then to
conditioning the pignistic probabilities BetP on ¬Peter, hence the resulting
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pignistic probabilities, BetP ′(Paul) = 1
3 and BetP ′(Mary) = 2

3 , and the 1 to
2 odds. After learning evidence E2, the betting frame is {Paul, Mary} and
You condition Bel01 on ¬Peter from which You derive Bel012, the pignistic
probabilities BetP (Paul) = 0.5 and BetP (Mary) = 0.5, and the 1 to 1 odds.

The difference results from Your openness to the fact that Peter might be
the killer before learning E2 and Your knowledge that Peter is not the killer
after learning E2.

5 The Guards and Posts Paradigm

We will present three paradigms: the guards and posts, the translators, and
the unreliable sensor paradigms. The first paradigm helps to explain the condi-
tioning process. The second paradigm shows that the TBM solution is funda-
mentally different from the ULP solution, but might lead to the mistaken idea
that the TBM is somehow related to likelihood theory. The third paradigm
shows that the TBM leads to a solution different from the Bayesian, the like-
lihood, and the fiducial solutions.

In each paradigm, the Bookean algebra R on which beliefs are defined is
the power set of Ω, the frame of discernment.

The Paradigm4

Suppose a military officer must organize guard duty in his camp. There are
three possible posts (π1, π2, and π3) but only one is to be occupied. There
are three soldiers who could be appointed for guard duty (S1, S2, and S3).
The officer will randomly select one of the three soldiers by tossing a dice.
Soldier S1 is selected if the dice outcome is 1 or 2, soldier S2 is selected if the
dice outcome is 3 or 4, and soldier S3 is selected if the dice outcome is 5 or 6.
Each soldier has a habit in that

• if selected, soldier S1 will always go to post π1 or π2.
• if selected, soldier S2 will always go to post π1 or π2 or π3.
• if selected, soldier S3 will always go to post π2.

Before the officer selects the soldier, each of them writes down on a piece of
paper where he will go if he is selected. As a result, there are six possible worlds
wi, i = 1, . . . , 6, where each world corresponds to one particular selection of
the posts (see left-hand column of Table 1). After the officer selects the guard,
there are 18 worlds (referred to as worlds wij if soldier Sj is selected in world
wi). You are about to attack the camp and You want to know which post is
occupied in order to avoid it. You know all the facts described up to here, but
You do not know which soldier was selected. What is Your belief about which
post is occupied? The frame of discernment Ω = {π1, π2, π3} and R = 2Ω.
Table 2 presents the degrees of belief for each set of posts. Initially the basic
4 This paradigm was suggested by Yen-Teh Hsia.
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Table 1. The set of six worlds that represent the six possible ways posts could be
selected by each soldier, and the post occupied in the eighteen possible worlds after
the soldier has been selected by the officer

Post
selected by
each soldier

Occupied post
according to the
selected soldier

Remaining
worlds after Case
1 conditioning

Remaining
worlds after Case
2 conditioning

World S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

w1 π1 π1 π2 π1 π1 π2 π1 π1 π2 π1 π1

w2 π1 π2 π2 π1 π2 π2 π1

w3 π1 π3 π2 π1 π3 π2 π1 π3 π2 π1 π3

w4 π2 π1 π2 π2 π1 π2 π1

w5 π2 π2 π2 π2 π2 π2

w6 π2 π3 π2 π2 π3 π2 π3

Worlds 1/3 1/3 1/3 18 worlds wij

wi probabilities of
being selected

where soldier Sj

is selected in wi

belief assignment on R is such that m({π1, π2}) = m({π1, π2, π3}) =
m({π2}) = 1

3 .
Two cases of conditioning can then be considered.
Case 1. The soldiers and You learn that post π2 is so unpleasant to occupy

that the soldiers will not select it if they can go elsewhere (it applies thus
to soldiers S1 and S2, but not S3). Hence the worlds w2, w4, w5, and w6

become impossible (Table 1). Table 2 presents Your beliefs about which post
is occupied. The 0.33 basic belief masses given initially to {π2}, {π1, π2},
and {π1, π2, π3} are transferred to {π2}, {π1}, and {π1, π3}, respectively.
Suppose You decide to bet on which post is occupied. The betting frame is
{π1, π2, π3}. The pignistic probability is BetP (π1) = 3

6 , BetP (π2) = 2
6 , and

BetP (π3) = 1
6 .

Table 2. Degrees of belief and their related basic belief masses for the paradigm of
Table 1. Before conditioning and after Case 1 and 2 conditionings

Initial state Case 1 Case 2
Posts m Bel m Bel m Bel

π1 0 0 0.33 0.33 0.5 0.5
π2 0.33 0.33 0.33 0.33 0 0
π3 0 0 0 0 0 0
{π1, π2} 0.33 0.66 0 0.66 0 0.5
{π1, π3} 0 0 0.33 0.66 0.5 1.0
{π2, π3} 0 0.33 0 0.33 0 0
{π1, π2, π3} 0.33 1.0 0 1.0 0 1.0
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Case 2. You are able to observe post π2 and it is empty. Hence, the selected
soldier had not selected π2 before being assigned guard duty. Thus the actual
world is not one of the worlds w2,2, w4,1, w5,1, w5,2, w6,1, w1,3, w2,3, w3,3,
w4,3, w5,3, and w6,3. After renormalization, basic belief masses of 0.5 are given
to {π1} and {π1, π3}. The betting frame is {π1, π3}. The pignistic probability
is BetP (π1) = 3

4 and BetP (π3) = 1
4 .

A probability solution could be derived if You accept that the 0.33 masses
given to each soldier are somehow distributed among the six possible worlds.
Suppose You accept an equal distribution. So each of the eighteen worlds
receives a probability of 1

18 . Case 1 conditioning would leave a probability of 1
6

to each of the six remaining worlds. The derived probabilities on {π1, π2, π3}
are P (π1) = 3

6 , P (π2) = 2
6 , and P (π3) = 1

6 , as in the TBM analysis. In Case
2 conditioning, the solutions differ: P (π1) = 5

7 and P (π3) = 2
7 .

Even without postulating the equi-distribution of the 0.33 basic belief
masses among the eighteen worlds wij , probabilists might be tempted to
defend the idea that the probabilities 0.33 used for the soldier selection do
not apply once the conditioning information of Case 2 is known. Indeed, they
could defend that the fact that π2 is not occupied somehow supports the
hypothesis that soldier S2 was selected. Hence, the updated probability P ′

should be such that P ′(S2) > P ′(S1). This is the basis of Levi’s criticisms
(see Sect. 8). The answer from the TBM point of view is that no probability
whatsoever is built on the wij space, only on the Sj space. So the fact that,
in Case 2, there are fewer remaining possible worlds for S1 than for S2 (3
versus 4) is irrelevant. Case 2 really is the case in which the TBM acquires its
originality when compared with the probability approach.

6 The Translator Paradigm

The Paradigm

Shafer and Tversky [36] have described a translator experiment to explain
Shafer’s theory. Let T = {ti : i = 1, 2, . . . , n} be a set of translators and
Ω = {cj : j = 1, 2, 3} be a set of messages that can be generated by a given
device. For each message cj ∈ Ω, the translator ti translates it into an element
of some given space Θ. Let fi(cj) denote the element of Θ obtained by the
translation performed by translator ti of the message cj . Table 3 presents
an example where Ω = {c1, c2, c3}, Θ = {θ, θ̄}, and T = {t0, . . . , t7}. The
crosses in the last three columns indicate the elements of Ω that are translated
into θ for each translator. So translator t1 translates c1 into θ and c2 and c3
into θ̄ : f1(c1) = θ, f1(c2) = f1(c3) = θ̄. Given θ ∈ Θ, let Ai ⊆ Ω be
the set of messages that are translated as θ by translator ti. In Table 3,
A1 = {c1}, A4 = {c1, c2}, . . .. Note that it was not said that Ai ∩ Aj = ∅
for i 	= j. Suppose that a message is selected in Ω (we do not say randomly
selected, see Sect. 8). Suppose that a translator is selected by a chance process
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Table 3. Translator paradigm with 8 translators ti, 3 messages cj , and 2 obser-
vations θ and θ̄. Columns 3–5 present the values of fi(cj). The last three columns
present the elements of Ω that are translated into θ for each translator

fi(cj) Given θ
T P (ti) c1 c2 c3 c1 c2 c3

t0 p0 θ̄ θ̄ θ̄ · · ·
t1 p1 θ θ̄ θ̄ × · ·
t2 p2 θ̄ θ θ̄ · × ·
t3 p3 θ̄ θ̄ θ · · ×
t4 p4 θ θ θ̄ × × ·
t5 p5 θ θ̄ θ × · ×
t6 p6 θ̄ θ θ · × ×
t7 p7 θ θ θ × × ×

among the set T of translators and independently of the selected message.
Let pi be the probability that translator ti is selected. You observe only θ,
the result of the transformation of the unknown message, but You ignore
which translator was selected. Furthermore You are totally ignorant of how
the message was selected. What can be said about Your beliefs Bel(c) for
c ⊆ Ω given that θ was observed?

TBM Analysis

With the TBM, the following basic belief masses are assumed on T ×Ω ×Θ:

m

⎛

⎝
⋃

t∈Θ

⋃

j∈Jτ

{(ti, τ , cj)}

⎞

⎠ = pi where Jτ = {j : fi (cj) = τ} . (4)

So p2 is allocated to {(t2, θ̄, c1), (t2, θ, c2), (t2, θ̄, c3)}, p5 is allocated to
{(t5, θ, c1), (t5, θ̄, c2), (t5, θ, c3)}, . . .. The origin of such an assignment is to
be found in Sect. 8.

Learning that θ is true, the transfer of the basic belief masses m by Demp-
ster’s rule of conditioning leads to the basic belief masses m∗ on T ×Ω×{θ}:

m∗

⎛

⎝
⋃

j∈Jθ

{(ti, θ, cj)}

⎞

⎠ = pi,

m′

⎛

⎝
⋃

j∈Jθ

{(ti, θ, cj)}

⎞

⎠ =
pi

1− p0
= p′i,

i.e. the weight pi is given to the messages that are indicated by the crosses
on the line ti in the columns “Given θ” (Table 3, right part). The knowledge
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that there are only eight translators (closed-world assumption) justifies the
normalization of the basic belief assignment m∗ into m′ by dividing m∗ by
1− p0.

By marginalization of m′ (i.e. Bel′) on Ω, one computes for c ⊆ Ω

Belθ (c) = Bel′

⎛

⎝
⋃

i

⋃

cj∈c
{(ti, θ, cj)}

⎞

⎠ =
∑

i∈I
p′i

with I = {i : f−1
i (θ) ⊆ c} and p′0 = 0.

For example: mθ({c1}) = p′1 and mθ({c1, c2}) = p′4. Table 4 presents the
values of Belθ(c) and plθ(c) for some c ⊆ Ω.

Bayesian Analysis

For a Bayesian analysis, one claims the existence of some P (cj), j = 1, 2, 3,
but their values are missing. One must compute:

P (cj |θ) =
P (θ|cj)P (cj)

P (θ)
.

One has:

P (θ|cj) =
∑

i

P (θ|ti, cj)P (ti|cj) =
∑

i∈I
pi

where I = {i : fi (cj) = θ}

because

P (θ|ti, cj) =

{
0, if fi (cj) = θ̄,

1, if fi (cj) = θ,

P (ti|cj) = pi

as the translators are selected independently of the message.
The ULPs for P (cj |θ) are computed by evaluating its extremes where

the P (cj) are allowed to vary on their domain. Let Δ be the set of all
vectors (x, y, z) where x, y, z ∈ [0, 1] and x + y + z = 1. The vectors

Table 4. Translator paradigm: TBM analysis

Ω Belθ(c) plθ(c)

{c1} p′
1 p′

1 + p′
4 + p′

5 + p′
7

{c1, c2} p′
1 + p′

2 + p′
4 p′

1 + p′
2 + p′

4 + p′
5 + p′

6 + p′
7

{c1, c2, c3} p′
1 + p′

2 + p′
3 + p′

4 + p′
5 + p′

6 + p′
7 p′

1 + p′
2 + p′

3 + p′
4 + p′

5 + p′
6 + p′

7
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(P (c1), P (c2), P (c3)) are the elements of Δ. The upper and lower conditional
probabilities P ∗ and P∗ for cj , given θ, are

P ∗ (cj |θ) = supΔ P (cj |θ) = supΔ
P (θ|cj)P (cj)∑
ν P (θ|cν)P (cν)

= 1,

P ∗ (cj |θ) = infΔ P (cj |θ) = infΔ
P (θ|cj)P (cj)∑
ν P (θ|cν)P (cν)

= 0,

This ULP solution provides no information and is different from the TBM
solution.

Dempster–Shafer Analysis

The Dempster–Shafer analysis of the paradigm leads to the same solution as
the TBM. But the origin of this solution is connected to probability theory
and open to criticisms about the appropriateness of the use of Dempster’s rule
of conditioning.

In Dempster–Shafer theory, it is postulated that there is a mapping M
from T to T ×Ω×Θ, that there is a probability distribution on T , and Bel(ω)
for ω ⊆ T×Ω×Θ is defined as the probability of M−1

∗ (ω) = {ti : M(ti) ⊆ ω}:

Bel (ω) = P
(
M−1

∗ (ω)
)
.

The knowledge that θ is true induces the adaptation of M into Mθ = M ∩
(T ×Ω × {θ}) and Bel is updated to:

Belθ (ω) = P
(
M−1
θ∗ (ω)

)
= P ({ti : Mθ (ti) ⊆ ω}) .

In the present paradigm, one has a.o. M(t4) = {(t4, c1, θ), (t4, c2, θ),
(t4, c3, θ̄)}, and P (M(t4)) = p4 is correct. Once θ is known, the mapping
M becomes Mθ = M ∩ (T ×Ω × {θ}); a.o. Mθ(t4) = {(t4, c1, θ), (t4, c2, θ)}),
and Bel(Mθ(t4)) = p′4 where the denominator is the normalization factor
related to the closed-world assumption (given θ, we know that t0 was not the
translator).

The problem with such a model is: why do we use p′i and not P (ti|θ) as it
should according to probability theory [24]? One has

P (ti|θ) ≈ P (θ|ti) pi = P ({cj : fi (cj) = θ} |ti) pi,

e.g. P (t1|θ) ≈ P (c1)p1, P (t4|θ) ≈ P ({c1, c2})p4, . . .. It is impossible to get
P (ti|θ) = P (ti) for all i. So the Dempster–Shafer solution cannot be obtained.

The difficulty with the paradigm lies in the fact that the values of P (ti|θ)
are unknown as the P (c)’s are unknown. Note that if one could assess P (ti|θ),
then P (c) could be deduced. In that case all problems would disappear. Each
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analysis, be it the TBM, the Dempster–Shafer, or any upper and lower prob-
abilities analysis, would lead to the Bayesian solution. But we are considering
the case where P (ti|θ) cannot be assessed since P (c) is completely unknown.
In the TBM, such a probability measure on T × Ω × Θ and the concept of
P (ti|θ) are neither assumed nor even defined. Once θ is known, the TBM
conditions the initial belief on T × Ω × {θ} by transferring the basic belief
masses.

Levi’s criticism of the Dempster–Shafer analysis is based on the assump-
tion that this last analysis represents a generalized Bayesian analysis, in which
case the concept of a probability on T ×Ω ×Θ is claimed. Once all relations
with probability theory are set aside, such grounds for criticism disappear (see
Remark 8.3).

The difference between the TBM and the Dempster–Shafer solutions resides
in the fact that the TBM is free from any underlying probability theory. The
probability information relative to the translators explained the origin of the
basic belief masses at the credal level. But apart from that, any concept of
probability is useless. A statement like

Belθ (c) ≤ P (c|θ) ≤ Plθ (c)

is meaningless since we never built any probability measure on the frame of
discernment Ω at the credal level, so the symbol P is undefined. (P (c|θ) should
not be confused with BetPθ(c) derived at the pignistic level.) Note that given
any belief function, one can build a set of compatible probability functions
such that

Bel (A) ≤ P (A) ≤ pl (A) ∀ A ∈ R.
This is just a mathematical property without any interpretation relevant to
the model (except for the comments at the end of Sect. 3.4).

The TBM could be viewed as a “purified” Dempster–Shafer model,
i.e. purified from any probabilistic connotation. Hence, it forestalls criticisms
aimed at the strange conditioning process encountered in the Dempster–Shafer
solution which is at odds with plain probability approaches.

It is interesting to note that

plθ (cj) = P (θ|cj) = l (cj |θ) ,
where l(cj |θ) is the likelihood of cj given θ. There are some analogies between
the TBM and likelihood theory. On the singletons of Ω, the two solutions are
equivalent here. The analogy between the likelihood solution and the TBM
solution is not always present as will be seen in the unreliable sensor paradigm.

7 The Unreliable Sensor Paradigm

The Paradigm

Let us consider a sensor with which You must check the temperature of a
preparation: either the temperature is “cold” (Cold) or “hot” (Hot). Under
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correct working conditions, the sensor answers are given by a lamp that is
“blue” (B) if the temperature is cold, and “red” (R) if the temperature is
hot. Unfortunately, the sensor is not reliable as its thermometer is sometimes
broken, in which case the sensor status can be B or R. In such a context, the
sensor answer (B or R) is unrelated to the real temperature (Cold or Hot).

The only information known by You is what is indicated on the box con-
taining the sensor: “Warning: the thermometer included in this sensor can be
broken. The probability that it is broken is 20%. When the thermometer is not
broken, the sensor is a perfectly reliable detector of the temperature situation.
When the thermometer is not broken: a blue light means the temperature is
cold, a red light means that the temperature is hot. When the thermometer
is broken, the sensor answer is unrelated to the temperature.”

You use the sensor and the light is red. What is Your degree of belief
Bel(Hot|R) that the temperature is hot given the red light is on?

Let Θ = {R, B}, Ω = {Cold, Hot}, T = {ThW, ThB} where ThW and
ThB mean “thermometer-sensor in working conditions” and “thermometer-
sensor broken”.

TBM Solution

The TBM solution consists in assuming that the masses 0.8 and 0.2 are allo-
cated on Θ ×Ω × T such that (see Fig. 2)

m ({(R, Hot, ThW) , (B, Cold, ThW)}) = 0.8,
m ({(R, Cold, ThB) , (R, Hot, ThB) ,

(B, Cold, ThB) , (B, Hot, ThB)}) = 0.2.

When You learn that the light is red (R), the masses are transferred such that

m′ ({(R, Hot, ThW)}) = 0.8,
m′ ({(R, Cold, ThB) , (R, Hot, ThB)}) = 0.2.

Marginalization on Ω provides:

BelR (Hot) = 0.8, belR (Cold) = 0.0,
P lR (Hot) = 1.0, plR (Cold) = 0.2.

Should You have any a priori knowledge about the risk that the temperature
is hot or cold, the credal equivalent of P (Hot) and P (Cold), it should be
combined with the present results by Dempster’s rule of combination.

8 Bayesian Solution

The Bayesian solution assumes P (ThW) = 0.8 and P (ThB) = 0.2. One also
has P (Hot|R, ThW) = 1 and P (Cold|B, ThW) = 1. Note that we do not
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Fig. 2. The unreliable sensor paradigm, basic belief assignment and impact of con-
ditioning on R

have P (R|ThB) = 0, the light can be red when the thermometer is broken.
Furthermore, when the thermometer is broken, the probability that the system
is Hot is independent from the sensor answer, and the thermometer is broken
independently of the status of the system: P (Hot|R, ThB) = P (Hot). Also
when the thermometer is in working condition (ThW), the probability that the
light is red is the probability that the temperature is hot (Hot): P (R|ThW) =
P (Hot). Then:

P (Hot|R) = P (Hot|R, ThW)P (ThW|R)
+ P (Hot|R,ThB)P (ThB|R)

=
1 · P (R|ThW)P (ThW)

P (R)
+
P (Hot)P (R|ThB)P (ThB)

P (R)

=
0.8 · P (Hot) + 0.2 · P (Hot)P (R|ThB)

P (R|ThW)P (ThW) + P (R|ThB)P (ThB)

=
P (Hot) (0.8 + 0.2 · P (R|ThB))
0.8 · P (Hot) + 0.2 · P (R|ThB)

.
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The real problem encountered by the Bayesians is not so much in assessing
P (Hot), which could be known in practice but P (R|ThB), i.e. the probability
that the light is red when the thermometer is broken. It is hard to imagine
a serious hypothesis for such an ill-defined probability. There are so many
ways for a thermometer to be broken that any particular value seems hardly
justified. Bayesians could go on by assuming such a value. . . but of course the
quality of their conclusions is strictly related to the quality of their assump-
tions.

Likelihood Solution

The likelihood solution l(Hot|R) = P (R|Hot) cannot be derived in this exam-
ple as we cannot assess P (R|Hot)

P (R|Hot) = P (R|ThW, Hot)P (ThW|Hot)
+ P (R|ThB,Hot)P (ThB|Hot)

= 1 · 0.8 + 0.2 · P (R|ThB) ,

and we are faced with the same problem as the Bayesians: what is P (R|ThB)?
In this example plR(Hot) = 1: it is different from l(Hot|R) (except if You can
defend P (R|ThB) = 1). Hence the TBM solution is not the likelihood solution.

Fiducial Solution

The TBM solution is also different from the fiducial solution. A fiducial anal-
ysis might consist in assuming:

P (R|Hot) = P (B|Cold) = 0.8,
P (B|Hot) = P (R|Cold) = 0.2,

in which case, whatever P (Hot),

P ({(R, Hot) , ((B, Cold)}) = 0.8,
P ({(B, Hot) , (R, Cold)}) = 0.2.

As we know that R is true, the 0.8 mass is transferred to (R, Hot) and the mass
0.2 to (R, Cold). Marginalization onΩ gives P (Hot|R) = 0.8 and P (Cold|R) =
0.2. The solution is similar to the TBM as far as Bel(Hot|R) is concerned,
but not as far as Bel(Cold|R) is concerned. The TBM does not provide any
support to Cold, whereas the fiducial model gives it a 0.2 support, hence the
difference between them.
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9 Origin of the Basic Belief Masses

In each paradigm, a certain probability is associated with a certain basic belief
mass. Such underlying probabilities are not necessary, as shown in Example
3.3, but they simplify our presentation. Should they have been omitted, the
origin of the basic belief masses might have been felt to be somehow mys-
terious. We explain now the link between the basic belief masses and the
probabilities when they exist.

Let (Ω,R) be a propositional space. Let us suppose that Your evidential
corpus ECY

t induces a belief on R such that there is a coarsening R′ of R on
which Your beliefs are described by a probability distribution P ′. To obtain
Your degrees of belief Bel′ on R′, only the frame R′ needs to be considered.
One gets: ∀ A ∈ R′, Bel′(A) = P ′(A), and

m′ (x) = P ′ (x) for all atoms x of R′,
m′ (A) = 0 for non atomic A of R′.

The numerical equality between Bel′ and P ′ can be justified by generalizing
Hacking’s Frequency Principle [13] to belief functions. The original principle
is: when the objective probability of an event A is p, then the subjective
probability of A is p. We just generalize it by requiring that the belief in A is
p when the probability of A is p (whatever the nature of the probability).

In our paradigms, the atoms of the coarsenings R′ are:

• in the murder of Mr. Jones: {Mary} and {Peter, Paul},
• in the guards and posts paradigm: the three soldiers,
• in the translator paradigm: the eight translators,
• in the unreliable sensor: the states ThW and ThB.

Problems appear once R is considered. Probabilists claim that the probability
P ′(x) given to atom x ∈ R′ is the sum of the probabilities P (y) given to the
atoms y of R that belong to Λ(x), where Λ is the refining from R′ to R
corresponding to the coarsening from R to R′:

P ′ (x) =
∑

y∈Λ(x)

P (y) .

Given ECY
t , this tells nothing about the value of P , You can only compute the

ULPs for the P (A)’s for A ∈ R or create P by using some general principles
(like the Insufficient Reason principle or Maximum Entropy Principle). The
major point about probability analyses is that the probabilists postulate the
existence of a probability distribution P on R—an item of information in fact
not included in ECY

t .
The TBM considers only the information in ECY

t , hence it does not postu-
late any probability distribution P on R. Nowhere in the paradigms are such
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functions P on R claimed. In practice to build Bel on R, we only allocate the
masses m′(x) to Λ(x) ∈ R:

m (Λ (x)) =

{
m′(x) for all atoms x ∈ R′,
0 otherwise.

Such allocation is justified by the Principle of Least Commitment [48]. This
principle translates the idea that You should not give more support to a
proposition than justified. The least committed belief function Bel induced by
Bel′ onR is the vacuous extension of Bel′ onR [33, p. 146]. Let B be the set of
belief functions Bel∗ defined on R such that Bel∗(X) = Bel′(X) ∀ X ∈ R′.
The vacuous extension Bel of Bel′ is the minimal element of B such that
Bel(A) ≤ Bel∗(A) ∀ A ∈ R, ∀Bel∗ ∈ B.

Remark 3. We selected paradigms for which there exists a probability distri-
bution on a coarsening because at least the numerical values given initially
to the basic belief masses can be explained. The evaluation of the basic belief
masses when there is no coarsening R′ on which a probability distribution can
be defined is discussed in Sect. 3.4.

Remark 4. The major difference between the TBM and probabilistic approa-
ches obviously lies in the way we create the beliefs on R knowing the belief
on R′. The TBM is based on what is available and nothing else, whereas
the probability analysis requires the existence of a probability distribution
on R. Consider the murder of Mr. Jones: in the case of a male killer
(odd number thrown) the TBM accepts that Peter is arbitrarily selected by
Big Boss whereas the probabilists claim that Peter is randomly selected by
Big Boss.

Remark 5. The non-existence of a probability distribution on R resolves the
problem raised by Levi [24]. Let us consider the translator paradigm. Once θ
is learnt, why don’t we condition the pi = p(ti) on θ and thus use p(ti|θ) as
should be the case in a bona fide probability analysis? The concept of p(ti|θ)
is valid iff one can describe a probability distribution at least on the space
T × Θ, which is not claimed in the TBM analysis. Hence, Levi’s criticism
does not apply to our model, but it does apply to some interpretations of the
Dempster–Shafer model (those with a ULP connotation).

10 Handling Evidence at the Credal Level

We shall now detail how evidence is handled in the TBM and Bayesian models.
The TBM is based on the following underlying model:

• Credal states that represent the impact of the evidential corpus ECY
t on

a boolean algebra R are described by belief functions on R.
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• Pieces of evidence are to be taken into consideration at the credal level,
conditioning being obtained via Dempster’s rule of conditioning, the rule
that underlies the TBM.

• Whenever a bet has to be established, the betting frame must be defined
and the credal state prevailing at that time t induces a pignistic probability
distribution on the elements of the bet.

In the case of the murder of Mr. Jones this schema becomes:

Credal
state

Pignistic
probability

In the Bayesian model, the same pattern reduces to:

Probability

The difference between the credal and pignistic levels is reminiscent of
the difference between thought and action, between “inference” (how belief is
affected by evidence) and “action” (which of several possible courses of action
seems best) [50, p. 1].

Which model fits “reality”? Justifications of the Bayesian model are based
on betting and decision arguments through the introduction of some require-
ments that lead to additive measures. But at the pignistic level, we also rep-
resent Your beliefs by a probability distribution, therefore we satisfy those
requirements. This does not mean that additivity also pervades the credal
level. No justifications are given by Bayesians for such requirements except
that they just do not distinguish between a credal and a pignistic level. Their
axioms always center on forced decisions (or preferences) but not on belief
itself. They relate to observable behaviors that reflect an underlying credal
state, not to the credal state itself.

To understand the difference between the two models, let us re-analyze in
detail the Bayesian solution for the case of Mr. Jones. Re-consider the formula:

P (killer is Mary|Peter′s alibi) =
1

1 + x

where
x = P (killer is Paul|dice = odd) .

The only way to arrive at a Bayesian solution which is identical to the
TBM solution is by postulating x = 1, i.e. that Big Boss will select Paul if an
odd number is thrown. This case does not fit in with the available evidence
(those in ECY

t ). The case x = 1 fits in with the case “Peter was not and
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could not have been the killer”, whereas the case x < 1 fits with the available
information: “Peter was not the killer but could have been”.

Intuitively, the real conceptual problem is to decide if, given Peter was not
the killer, the knowledge that Peter might or might not have been the killer is
relevant to the bet “Male versus Female”. Bayesians say it is, the TBM says
it is not.

Mathematically, the difference between the two solutions results from the
necessity, in the context of probability, to split the 0.5 probability given to
the males by the throwing of dice among the two males. Then later, the mass
given to Peter cannot be given back to Paul once the alibi for Peter becomes
available. Instead, in the TBM, the mass is not split, and is later transferred
as a whole to Paul.

11 Conclusions

An argument we encountered when comparing the respective merits of the
Bayesian model and the TBM runs as follows. Let us consider the case of
Mr. Jones. Let

M = “the male chosen is always Paul”.
B = “the TBM is true”.
P = “the Bayesian model is true”.
C = “the odds on male versus female are 1 to 1 once Peter’s alibi is available”.

One has to be careful not to use the following deceptive reasoning:

B implies C.
Assumption M is necessary in order to get C.
I dislike assumption M .
Therefore I dislike B.

The second proposition is wrong. The correct reasoning is:

B implies C.
If P, then assumption M is necessary in order to get C.
I dislike assumption M .
Therefore, if P , then I dislike B.

This is not sufficient to conclude that “I dislike B”.
For the case of Mr. Jones, the Bayesian approach leads to a bet on Male ver-

sus Female with the odds at 1 to 2 whereas the belief function approach leads
to a bet with the odds at 1 to 1. Which of the two is adequate is a matter
of personal opinion? We feel that 1 to 1 is adequate. Others might prefer 1 to 2.

The argument that the Bayesian approach is correct because it complies
with the probability theory is circular, hence useless. Description of credal
states can be done by at least two normative models: the classical Bayesian
and the TBM. Which of the two is correct cannot be established. It can only be
tested. As Smith [50, p. 1] stated: “beliefs are insubstantial mental processes
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and it is not easy to lay down generally acceptable principles according to
which our belief is ‘better’ than another.”

The interest of the “Mr. Jones” example lies in the fact that there is a
case where both theories lead to different results. As a result, this particular
example can be used as a test, a discriminating tool to distinguish between
the two models. That it would convince the Bayesians is not sure but we hope
here to have suggested some answers to Lindley’s challenge [25].

In summary, we have presented the TBM through the analysis of some
paradigms and the comparison of the TBM solutions with the classical
Bayesian solutions. The TBM aims at quantifying our degree of belief that a
given proposition is true (where “belief” could be renamed “support”, “assur-
ance”, “commitment”,. . .). We use belief as it is the most natural word even
though one could argue about the value of such a choice.

The principal assumption on which the TBM depends is the concept of
“parts of belief” supporting propositions and that due to a lack of further
information cannot support a more specific proposition. We showed how bet-
ting behaviors can be established by constructing pignistic probabilities, and
explained why Dutch Books cannot be constructed to disprove the TBM. The
semantics of our model are provided by its betting behavior. It is essentially
identical to the “exchangeable bets” semantics of the Bayesians. The differ-
ence lies in the way bets are adapted when the betting frames are changed.
The paradigms illustrate the model and allow us to enhance its originality in
comparison to the classical probability models. The two-level structure of our
belief (credal and pignistic) is detailed. The missing element of our presenta-
tion, a clear axiomatic justification of the TBM, is presented in a forthcoming
paper (see also [53]). The present paper concentrates on the presentation of
the model rather than its foundations.

Uncertainty is a polymorphous phenomenon [44]. There is a different math-
ematical model for each of its varieties. No single model fits all cases. The real
problems when quantifying uncertainty is to recognize its nature and to select
the appropriate model. The Bayesian model is only one of them. The TBM is
also only one of them. Each has its own field of applicability. Neither is always
better than the other [32]. As Fisher once put it:

La seule direction pratique qui nous est ouverte, est de concevoir
clairement le processus intellectuel exact d’une méthode et ensuite de
peser, considérer, critiquer et finalement décider si la méthode est ou
non acceptable, si j’ose dire, pour notre conscience scientifique.. . .[10,
p. 193]5

5 The only practical direction open to us is to conceive clearly the exact intel-
lectual process of a method and then to weight, consider, criticize and finally
decide whether or not the method is acceptable, if I dare say it, to our scientific
conscience. . ..



28 The Transferable Belief Model 729

Appendix A. Proof of Theorem 3.1

Let (Ω, R, Bel) be a credibility space and m the basic belief assignment
associated to Bel. Let A denote the set of atoms of R. Given Assumption A1,
there is a function f such that, for x ∈ A, BetP (x;m) = f({m(X) : x ⊆ X}).

Suppose Bel is such that there is an A ∈ R with m(A) > 0 and a pair of
atoms y and z ofR with y 	= z and y∩A = ∅, z∩A 	= ∅. Let 0 ≤ δ ≤ ε ≤ m(A).

Let m′ be the basic belief assignment on R such that m′(A) = m(A) −
ε, m′(y) = m(y) + ε − δ, m′(z) = m(z) + δ, and m′(B) = m(B) for all
B ∈ R, B 	= A, B 	= y, B 	= z. Let

g (x,A, ε) =

⎧
⎪⎨

⎪⎩

f (m(x), . . . ,m (A)− ε, . . .)− f (m (x) , . . . ,m (A) , . . .) ,
if x ⊆ A,

0, otherwise;

h (x, y, ε− δ) =

{
−f (m (y) + ε− δ, . . .) + f (m (y) , . . .) , if x = y,

0, ifx 	= y.

h (x, z, δ) =

{
−f (m (z) + δ, . . .) + f (m (z) , . . .) , if x = z,

0, ifx 	= z.

Since ∑

x∈A
BetP (x;m) =

∑

x∈A
BetP (x;m′) = 1,

we have ∑

x∈A
(BetP (x;m′)−BetP (x;m)) = 0.

Therefore, for the given A ∈ R,
∑

x∈A,x⊆A
g(x,A, ε) = h (y, y, ε− δ) + h (z, z, δ) . (A.1)

Since g(x, A, ε) is independent of δ for all x ⊆ A, h(y, y, ε− δ) + h(z, z, δ)
is also independent of δ. Let

h (y, y, ε− δ) + h (z, z, δ)− f (m (y) , . . .)− f (m (z) , . . .) = H (ε) ,
K (ε− δ) = −f (m (y) + ε− δ, · · · ) ,
L (δ)− f (m (z) + δ, . . .) .

The relation

h (y, y, ε− δ) + h (z, z, δ)
= −f (m (y) + ε− δ, . . .) + f (m (y) , . . .)− f (m (z) + δ, . . .)

+ f (m (z) , . . .)
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can be written as
H (ε) = K (ε− δ) + L (δ) .

It is a Pexider’s equation whose solutions for H, K, and L, given Assumption
A2, are linear in their argument [1, Theorem 1, p. 142]. Hence

f (m (z) , . . .) = α+ βm (z) ,

where α and β may depend on the basic belief masses given to the strict
supersets of z.

The important point up to here is that both h(y, y, ε− δ) + h(z, z, δ) is
linear in ε and does not depend on δ. Let h(y, y, ε− δ)+h(z, z, δ) = cε+ d.

The proof that g(x, A, ε) in (A.1) is linear in all its arguments m(·) is
based on the following procedure given for the case that A is the union of four
atoms y1, y2, y3, and y4. Let m(A) = a. For i, j, k = 1, 2, 3, 4, i 	= j 	=
k 	= i, let

xi =
{
m (yi ∪B) : B ⊆ Ā

}
,

xij =
{
m (yi ∪ yj ∪B) : B ⊆ Ā

}
,

xijk =
{
m (yi ∪ yj ∪ yk ∪B) : B ⊆ Ā

}
,

x1234 =
{
m (y1 ∪ y2 ∪ y3 ∪ y4 ∪B) : B ⊆ Ā, B 	= ∅

}
,

Then (A.1) becomes (the m(A)-term is put as first element of f and is not
included in x1234):

f (a− ε, x1, x12, x13, x14, x123, x124, x134, x1234)
− f (a, x1, x12, x13, x14, x123, x124, x134, x1234)+

f (a− ε, x2, x12, x23, x24, x123, x124, x234, x1234)
− f (a, x2, x12, x23, x24, x123, x124, x234, x1234)+

f (a− ε, x3, x13, x23, x34, x123, x134, x234, x1234)
− f (a, x3, x13, x23, x34, x123, x134, x234, x1234)+

f (a− ε, x4, x14, x24, x34, x124, x134, x234, x1234)
− f (a, x4, x14, x24, x34, x124, x134, x234, x1234)

= cε+ d.

Let xi = u, xij = υ, xijk = w, and x1234 = t for all i, j, k = 1, 2, 3, 4.
One gets:

4 (f (a− ε, u, υ, υ, υ, w,w,w, t) − f (a, u, υ, υ, υ, w,w,w, t))
= cε+ d;

hence f(a, u, υ, υ, υ, w,w,w, t) is linear in a.
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Keep all equalities as before except for x123 	= w, then:

3 (f (a− ε, u, υ, υ, υ, x123, w, w, t)− f (a, u, υ, υ, υ, x123, w, w, t))+
(f (a− ε, u, υ, υ, υ, w,w,w, t) − f (a, u, υ, υ, υ, w,w,w, t))

= cε+ d.

The second term in the left-hand side is linear in a, so the first term in the
left-hand side is also linear in a.

Suppose now x124 	= w, then

2 (f (a− ε, u, υ, υ, υ, x123, x124, w, t)− f (a, u, υ, υ, υ, x123, x124, w, t))+
(f (a− ε, u, υ, υ, υ, x124, w, w, t) − f (a, u, υ, υ, υ, x124, w, w, t))+
(f (a− ε, u, υ, υ, υ, w,w,w, t) − f (a, u, υ, υ, υ, w,w,w, t))

= cε+ d.

The second and third terms in the left-hand side are linear in a, hence so is
the first. Therefore, f is linear in a whatever the xijk-terms and x1234. We
drop them in the following relations about f .

Suppose x12 	= υ, then

2 (f (a− ε, u, x12, υ, υ)− f (a, u, x12, υ, υ))+
2 (f (a− ε, u, υ, υ, υ)− f (a, u, υ, υ, υ))

= cε+ d.

The second term in the left-hand side is linear in a, hence so is the first.
Suppose x13 	= υ, then

(f (a− ε, u, x12, x13, υ)− f (a, u, x12, x13, υ))+
(f (a− ε, u, x12, υ, υ)− f (a, u, x12, υ, υ))+
(f (a− ε, u, x13, υ, υ)− f (a, u, x13, υ, υ))+
(f (a− ε, u, υ, υ, υ)− f (a, u, υ, υ, υ))

= cε+ d.

The second, third, and fourth terms in the left-hand side are linear in a, hence
so is the first. Therefore f is linear in its first argument a whatever its other
arguments.

The general proof of the linearity of f in its arguments m(·) is obtained
by tediously generalizing this reasoning for any A. Let nX be the number of
atoms of A in X ∈ R. The proof is valid if nA < nΩ − 1, since we need at
least two atoms of R not in the set A used in the derivation.

Let F = {X : x ⊆ X}. The general solution can be written as:

f ({m (X) : x ⊆ X}) =
∑

G⊆F
β (G)

∏

Y ∈G
m (Y ) , (A.2)

where the β(G) might depend on the m(Y ) with nY ≥ nΩ − 1.
Suppose a belief function Bel with m(X) = 1−ω andm(Ω) = ω for X ∈ R

and nX < nΩ − 1. Then for all atoms x in X ,
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BetP (x;m) = β ({}) + β ({X}) (1− ω) + β ({Ω})ω
+ β ({X,Ω})ω (1− ω)

and for y not an atom of X ,

BetP (y;m) = β ({}) + β ({Ω})ω.

By adding these terms on the atoms of R, one gets:

1 = nΩβ ({}) + nXβ ({X}) (1− ω) + nΩβ ({Ω})ω
+ nXβ ({X,Ω})ω (1− ω) .

This being true for all ω in [0, 1], the coefficients of the terms in ω and ω2

must be zero. So

β ({X,Ω}) = 0,
nΩβ ({Ω}) = nXβ ({X}) ,
1 = nΩβ ({}) + nXβ ({X}) .

The same argument can be repeated in order to show that every coefficient
β(G) = 0, whenever there is more than one element in G. Relation (A.2)
becomes:

BetP (x;m) = β ({}) +
∑

x⊆X
β ({X})m (X) ,

where the β may depend on the basic belief masses given to those elements of
R with nΩ − 1 or nΩ atoms. We show that β does not depend on those basic
belief masses.

Let (Ω,R, Bel) be a credibility space. Suppose it is known (by You) that
the actual world # is not an element of the set B that contains two atoms
b1 and b2 of R. So ∀ A ∈ R, A ∼= A ∪X where X may be b1, b2, or b1 ∪ b2,
and Bel(A) = Bel(A ∪ X) by the Consistency Axiom. Let (Ω′,R′, Bel′) be
the credibility space where Ω′ = Ω −B, the set A′ of atoms of R′ is equal to
A − (b1 ∪ b2), and Bel′(A) = Bel(A) for all A ∈ R′. By construction, for all
Y ∈ R, nY ≥ nΩ − 1 and m(Y ) = 0. Let BetP (x; m) and BetP ′(x; m′), x
atom of R′, be the pignistic probabilities derived from Bel(m) and Bel′(m′).
The basic belief masses involved in the coefficients β are explicitly written.
One has:

BetP (x;m) = β ({} ; {m (Y ) : nY = nΩ − 1} ,m (Ω))

+
∑

x⊆X∈R
β ({X} ; {m (Y ) : nY = nΩ − 1} ,m (Ω))m (X)

= β ({} ; {0 : nY = nΩ − 1} , 0)

+
∑

x⊆X∈R′
β ({X} ; {0 : nY = nΩ − 1} , 0)m (X) ,
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where all terms m(X) are zero if nX ≥ nΩ − 1, or equivalently m(X) = 0 if
X 	∈ R′.

One also has:

BetP ′ (x;m′) =β ({} ; {m (Z) : nZ = nΩ′ − 1} ,m (Ω′))

+
∑

x⊆X∈R′
β ({X} ; {m (Z) : nZ = nΩ′ − 1} ,m (Ω′))m (X) .

By Assumption A4, BetP (x; m) = BetP ′(x; m′) for all atoms x of R′. Hence

β ({X} ; {m (Z) : nZ = nΩ′ − 1} ,m (Ω′))
= β ({X} ; {0 : nY = nΩ − 1} , 0) .

So β does not depend on the basic belief masses m(Z) for nZ ≥ nΩ′ − 1.
Furthermore, by Assumption A3, the coefficients β depend only on the

number of atoms in their arguments. Hence

BetP (x;m) = 1/nΩ − β ({Q}) + nΩβ ({Ω})
∑

x⊆X
m (X) /nX .

Let m(A) = 1 for A ∈ R and nA < nΩ−1. By Assumption A3, BetP (x; m) =
1/nA for every atom x that is a subset of A. It implies β({Ω}) = 1/nΩ. Hence

BetP (x;m) =
∑

x⊆X
m (X) /nX .
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[14] P. Hájek, Deriving Dempster’s rule, in: Proceedings IPMU’92, Palma de Mal-
lorca, Spain (1992) 73–75.

[15] J.Y. Halpern and R. Fagin, Two views of belief: belief as generalized probability
and belief as evidence, Artif. Intell. 54 (1992) 275–318.

[16] Y.-T. Hsia, Characterizing belief with minimum commitment, in: Proceedings
IJCAI-91, Sydney, Australia (1991) 1184–1189.

[17] D. Hunter, Dempster-Shafer versus probabilistic logic, in: Proceedings Third
Workshop on Uncertainty in Artificial Intelligence, Seattle, WA (1987) 22–29.

[18] J.Y. Jaffray, Application of linear utility theory for belief functions, in: B. Bou-
chon, L. Saitta and R.R. Yager, eds., Uncertainty and Intelligent Systems
(Springer, Berlin, 1988) 1–8.

[19] F. Klawonn and E. Schwecke, On the axiomatic justification of Dempster’s rule
of combination, Int. J. Intell. Syst. 7 (1990) 469–478.

[20] F. Klawonn and P. Smets, The dynamic of belief in the transferable belief
model and specialization-generalization matrices, in: D. Dubois, M.P. Wellman,
B. d’Ambrosio and P. Smets, eds., Uncertainty in AI 92 (Morgan Kaufmann,
San Mateo, CA, 1992) 130–137.

[21] H.E. Kyburg Jr, Objectives probabilities, in: Proceedings IJCAI-87, Milan,
Italy (1987) 902–904.

[22] H.E. Kyburg Jr, Bayesian and non-Bayesian evidential updating, Artif. Intell.
31 (1987) 271–293.

[23] K.B. Laskey, Beliefs in belief functions: an examination of Shafer’s canonical
examples, in: Proceedings Third Workshop on Uncertainty in Artificial Intelli-
gence, Seattle, WA (1987) 39–46.

[24] I. Levi, Consonance, dissonance and evidentiary mechanisms, in: P. Gärdenfors,
B. Hansson and N.E. Sahlin, eds., Evidentiary Value: Philosophical, Judicial



28 The Transferable Belief Model 735

and Psychological Aspects of a Theory (C.W.K. Gleerups, Lund, Sweden,
1983) 27–43.

[25] D.V. Lindley, The probability approach to the treatment of uncertainty in
artificial intelligence and expert systems, Stat. Sci. 2 (1987) 17–24.

[26] H.T. Nguyen, On random sets and belief functions, J. Math. Anal. Appl. 65
(1978) 531–542.

[27] H.T. Nguyen and P. Smets, On dynamics of cautious belief and conditional
objects, Int. J. Approx. Reasoning 8 (1993) 89–104.

[28] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (Morgan Kaufmann, San Mateo, CA, 1988).

[29] J. Pearl, Reasoning with belief functions: an analysis of compatibility, Int. J.
Approx. Reasoning 4 (1990) 363–390.

[30] F.P. Ramsey, Truth and probability, in: H.E. Kyburg and H.E. Smokler, eds.,
Studies in Subjective Probability (Wiley, New York, 1931) 61–92.

[31] E.H. Ruspini, The logical foundations of evidential reasoning, Tech. Note 408,
SRI International, Menlo Park, CA (1986).

[32] A. Saffiotti, An AI view of the treatment of uncertainty, Knowl. Eng. Rev. 2
(1988) 75–98.

[33] G. Shafer, A Mathematical Theory of Evidence (Princeton University Press,
Princeton, NJ, 1976).

[34] G. Shafer, Perspectives in the theory and practice of belief functions, Int. J.
Approx. Reasoning 4 (1990) 323–362.

[35] G. Shafer, P.P. Shenoy and K. Mellouli, Propagating belief functions in quali-
tative Markov trees, Int. J. Approx. Reasoning 1 (1987) 349–400.

[36] G. Shafer and A. Tversky, Languages and designs for probability, Cogn. Sci.
9 (1985) 309–339.
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A k-Nearest Neighbor Classification Rule
Based on Dempster-Shafer Theory

Thierry Denœux

Abstract. In this paper, the problem of classifying an unseen pattern on the basis
of its nearest neighbors in a recorded data set is addressed from the point of view of
Dempster-Shafer theory. Each neighbor of a sample to be classified is considered as
an item of evidence that supports certain hypotheses regarding the class membership
of that pattern. The degree of support is defined as a function of the distance between
the two vectors. The evidence of the k nearest neighbors is then pooled by means of
Dempster’s rule of combination. This approach provides a global treatment of such
issues as ambiguity and distance rejection, and imperfect knowledge regarding the
class membership of training patterns. The effectiveness of this classification scheme
as compared to the voting and distance-weighted k-NN procedures is demonstrated
using several sets of simulated and real-world data.

1 Introduction

In classification problems, complete statistical knowledge regarding the con-
ditional density functions of each class is rarely available, which precludes
application of the optimal Bayes classification procedure. When no evidence
supports one form of the density functions rather than another, a good solu-
tion is often to build up a collection of correctly classified samples, called the
training set, and to classify each new pattern using the evidence of nearby
sample observation. One such non-parametric procedure has been introduced
by Fix and Hodges [11], and has since become well-known in the Pattern
Recognition literature as the voting k-nearest neighbor (k-NN) rule. Accord-
ing to this rule, an unclassified sample is assigned to the class represented by
a majority of its k nearest neighbors in the training set. Cover and Hart [4]
have provided a statistical justification of this procedure by showing that,

This work was partially supported by EEC funded Esprit Project 6757 EMS
(Environmental Monitoring System).
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as the number N of samples and k both tend to infinity in such a manner
that k/N → 0, the error rate of the k-NN rule approaches the optimal Bayes
error rate. Beyond this remarkable property, the k-NN rule owes much of its
popularity in the Pattern Recognition community to its good performance in
practical applications. However, in the finite sample case, the voting k-NN
rule is not guaranteed to be the optimal way of using the information con-
tained in the neighborhood of unclassified patterns. This is the reason why
the improvement of this rule has remained an active research topic in the past
40 years.

The main drawback of the voting k-NN rule is that it implicitly assumes
the k nearest neighbors of a data point x to be contained in a region of rel-
atively small volume, so that sufficiently good resolution in the estimates of
the different conditional densities can be obtained. In practice, however, the
distance between x and one of its closest neighbors is not always negligible,
and can even become very large outside the regions of high density. This has
several consequences. First, it can be questioned whether it is still reason-
able in that case to give all the neighbors an equal weight in the decision,
regardless of their distances to the point x to be classified. In fact, given the
k nearest neighbors x(1), · · · , x(k) of x, and d(1), · · · , d(k) the corresponding
distances arranged in increasing order, it is intuitively appealing to give the
label of x(i) a greater importance than to the label of x(j) whenever d(i) < d(j).
Dudani [10] has proposed to assign to the ith nearest neighbor x(i) a weight
w(i) defined as:

w(i) =
d(k) − d(i)

d(k) − d(1)
d(k) 	= d(1) (1)

= 1 d(k) = d(1). (2)

The unknown pattern x is then assigned to the class for which the weights
of the representatives among the k nearest neighbors sum to the great-
est value. This rule was shown by Dudani to be admissible, i.e. to yield
lower error rates than those obtained using the voting k-NN procedure
for at least one particular data set. However, several researchers, repeat-
ing Dudani’s experiments, reached less optimistic conclusions [1], [16], [6].
In particular, Baily and Jain [1] showed that the distance-weighted k-NN
rule is not necessarily better than the majority rule for small sample size
if ties are broken in a judicious manner. These authors also showed that,
in the infinite sample case (N → ∞), the error rate of the traditional
unweighted k-NN rule is better than that of any weighted k-NN rule. How-
ever, Macleod et al. [15] presented arguments showing that this conclusion
may not apply if the training set is finite. They also proposed a simple exten-
sion of Dudani’s rule allowing for a more effective use of the kth neighbor in
the classification.

Apart from this discussion, it can also be argued that, because the weights
are constrained to span the interval [0, 1], the distance-weighted k-NN pro-
cedure can still give considerable importance to observations that are very
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dissimilar to the pattern to be classified. This represents a serious drawback
when all the classes cannot be assumed to be represented in the training set,
as is often the case in some application areas as target recognition in noncoop-
erative environments [5] or diagnostic problems [9]. In such situations, it may
be wise to consider that a point that is far away from any previously observed
pattern most probably belongs to an unknown class for which no informa-
tion has been gathered in the training set, and should therefore be rejected.
Dubuisson and Masson [9] call distance reject this decision, as opposed to the
ambiguity reject introduced by Chow [3] and for which an implementation in a
k-NN rule has been propoposed by Hellman [12]. Dasarathy [5] has proposed a
k-NN rule where a distance reject option is made possible by the introduction
of the concept of an acceptable neighbor, defined as a neighbor whose distance
to the pattern to be classified is smaller than some threshold learnt from the
training set. If there is less than some predefined number of acceptable neigh-
bors of one class, the pattern is rejected and later considered for assignment
to a new class using a clustering procedure.

Another limitation of the voting k-NN procedure is that it offers no obvious
way to cope with uncertainty or imprecision in the labelling of the training
data. This may be a major problem in some practical applications, as in
the diagnostic domain, where the true identity of training patterns is not
always known, or even defined, unambiguously, and has to be determined by
an expert or via an automatic procedure that is itself subject to uncertainty.
From a slightly different point of view, it may also be argued that patterns,
even correctly labelled, have some degree of “typicality” depending on their
distance to class centers, and that atypical vectors should be given less weight
in the decision than those that are truly representative of the clusters [14].
Fuzzy sets theory offers a convenient formalism for handling imprecision and
uncertainty in a decision process, and several fuzzy k-NN procedures have
been proposed [13], [14]. In this approach, the degree of membership of a
training vector x to each of M classes is specified by a number of ui, with the
following properties:

ui ∈ [0, 1] (3)
M∑

i=1

ui = 1. (4)

The membership coefficients ui can be given (e.g. by experts) or computed
using the neighbors of each vector in the training set [14]. The membership of
an unseen pattern in each class is then determined by combining the member-
ships of its neighbors. Keller et al. [14] have proposed a rule in which member-
ship assignment is a function of both the vector’s distance from its k nearest
neighbors, and those neighbors’ memberships in the possible classes. Beyond
an improvement in classification performance over the crisp k-NN procedure,
this approach allows a richer information content of the classifier’s output by



740 T. Denœux

providing membership values that can serve as a confidence measure in the
classification.

In this paper, a new classification procedure using the nearest neighbors
in a data set is introduced. This procedure provides a global treatment of
important issues that are only selectively addressed in the aforementioned
methods, namely: the consideration of the distances from the neighbors
in the decision, ambiguity and distance rejection, and the consideration
of uncertainty and imprecision in class labels. This is achieved by set-
ting the problem of combining the evidence provided by nearest neighbors
in the conceptual framework of Dempster-Shafer (D-S) theory. As will be
seen, this formalism presents the advantage of permitting a clear distinction
between the presence of conflicting information—as happens when a pattern
is close to several training vectors from different classes—and the scarcity of
information—when a pattern is far away from any pattern in the training
set, or close to patterns whose class memberships are not defined precisely.
In the following section, the basics of D-S theory are recalled. The applica-
tion to a new k-NN procedure is then described, and experimental results are
presented.

2 Dempster-Shafer Theory

Let Θ be a finite set of mutually exclusive and exhaustive hypotheses about
some problem domain, called the frame of discernment [19]. It is assumed
that one’s total belief induced by a body of evidence concerning Θ can be
partitioned into various portions, each one assigned to a subset of Θ. A basic
probability assignment (BPA) is a function m from 2Θ, the power set of Θ,
to [0, 1], verifying:

m (∅) = 0 (5)
∑

A⊆Θ
m (A) = 1. (6)

The quantity m(A), called a basic probability number, can be interpreted
as a measure of the belief that one is willing to commit exactly to A, and not
to any of its subsets, given a certain piece of evidence. A situation of total
ignorance is characterized by m(Θ) = 1.

Intuitively, a portion of belief committed to a hypothesis A must also be
committed to any hypothesis it implies. To obtain the total belief in A, one
must therefore add to m(A) the quantities m(B) for all subsets B of A. The
function assigning to each subset A of Θ the sum of all basic probability
numbers for subsets of A is called a belief function:

Bel (A) =
∑

B⊆A
m (B) . (7)
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Bel(A), also called the credibility of A, is interpreted as a measure of the total
belief committed to A. The subsets A of Θ such that m(A) > 0 are called the
focal elements of the belief function, and their union is called its core. The
vacuous belief function has Θ for only focal element, and corresponds to com-
plete ignorance. Other noticeable types of belief functions are Bayesian belief
functions, whose focal elements are singletons, and simple support functions,
that have only one focal element in addition of Θ.

It can easily be verified that the belief in some hypothesis A and the belief
in its negation Ā do not necessarily sum to 1, which is a major difference with
probability theory. Consequently, Bel(A) does not reveal to what extent one
believes in Ā, i.e. to what extent one doubts A, which is described by Bel(Ā).
The quantity Pl(A) = 1−Bel(Ā), called the plausibility of A, defines to what
extent one fails to doubt in A, i.e. to what extent one finds A plausible. It is
straightforward to show that:

Pl (A) =
∑

B∩A �=∅
m (B) . (8)

As demonstrated by Shafer [19], any one of the three functions m, Bel and Pl
is sufficient to recover the other two. This follows from the definition of Pl(A)
as 1−Bel(Ā), and:

m (A) =
∑

B⊆A
(−1)|A\B| Bel (B) . (9)

A BPA can also be viewed as determining a set of probability distributions
P over 2� satisfying:

Bel (A) ≤ P (A) ≤ Pl (A) (10)

for all A ⊆ Θ. For that reason, Bel and Pl are also called lower and upper
probabilities, respectively. This fundamental imprecision in the determination
of the probabilities reflects the “weakness”, or incompleteness of the avail-
able information. The above inequalities reduce to equalities in the case of a
Bayesian belief function.

Given two belief functions Bel1 and Bel2 over the same frame of discern-
ment, but induced by two independent sources of information, we must define
a way by which, under some conditions, these belief functions can be combined
into a single one. Dempster’s rule of combination is a convenient method for
doing such pooling of evidence. First, Bel1 and Bel2 have to be combinable,
i.e. their cores must not be disjoint. If m1 and m2 are the BPAs associated
with Bel1 and Bel2, respectively, this condition can also be expressed as:

∑

A∩B=∅
m1 (A)m2 (B) < 1. (11)

If Bel1 and Bel2 are combinable, then the function m : 2� "→ [0,1], defined by:
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m (∅) = 0 (12)

m (θ) =
∑

A∩B=θm1 (A)m2 (B)
1−

∑
A∩B=∅m1 (A)m2 (B)

θ 	= ∅ (13)

is a BPA. The belief function Bel given by m is called the orthogonal sum of
Bel1 and Bel2, and is denoted Bel1 ⊕ Bel2. For convenience, m will also be
denoted m1⊕m2. The core of Bel equals the intersection of the cores of Bel1
and Bel2.

Although Dempster’s rule is hard to justify theoretically, it has some
attractive features, such as the following: it is commutative and associa-
tive; given two belief functions Bel1 and Bel2, if Bel1 is vacuous, then
Bel1 ⊕ Bel2 = Bel2; if Bel1 is Bayesian, and if Bel1 ⊕ Bel2 exists, then
it is also Bayesian.

The D-S formalism must also be considered in the perspective of decision
analysis [2]. As explained above, under D-S theory, a body of evidence about
some set of hypotheses Θ does not in general provide a unique probability
distribution, but only a set of compatible probabilities bounded by a belief
function Bel and a plausibility function Pl. An immediate consequence is that
simple hypotheses can no longer be ranked according to their probability: in
general, the rankings produced by Bel and Pl will be different. This means
that, as a result of lack of information, the decision is, to some extent, inde-
terminate. The theory does not make a choice between two distinct strategies:
select the hypothesis with the greatest degree of belief—the most credible, or
select the hypothesis with the lowest degree of doubt—the most plausible.

This analysis can be extended to decision with costs. In the framework of
D-S theory, there is nothing strictly equivalent to Bayesian expected costs,
leading unambiguously to a single decision. It is however possible to define
lower and upper bounds for these costs, in the following way [7], [2]. Let M be
the number of hypotheses, and U be an M ×M matrix such that Ui,j is the
cost of selecting hypothesis θi if hypothesis θj is true. Then, for each simple
hypothesis θi ∈ Θ, a lower expected cost E∗[θi] and an upper expected cost
E∗[θi] can be defined:

E∗ [θi] =
∑

A⊆Θ
m (A) min

θj∈A
Ui,j (14)

E∗ [θi] =
∑

A⊆Θ
m (A) max

θj∈A
Ui,j . (15)

The lower (respectively: upper) expected cost can be seen as being generated
by a probability distribution compatible with m, and such that the density
of m(A) is concentrated at the element of A with the lowest (respectively:
highest) cost. Here again, the choice is left open as to which criterion should
be used for the decision. Maximizing the upper expected cost amounts to
minimizing the worst possible consequence, and therefore generally leads to
more conservative decisions. Note that, when U verifies:
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Ui,j = 1− δi,j (16)

where δi,j is the Kronecker symbol, the following equalities hold:

E∗ [θi] = 1− Pl ({θi}) (17)
E∗ [θi] = 1−Bel ({θi}) . (18)

In the case of {0, 1} costs, minimizing the lower (respectively: upper) expected
cost is thus equivalent to selecting the hypothesis with the highest plausibility
(respectively: credibility).

3 The Method

3.1 The Decision Rule

Let X = {xi = (xi1, · · · , xiP )|i = 1, · · · , N} be a collection on N P-dimensional
training samples, and C = {C1, · · · , CM} be a set of M classes. Each sample
xi will first be assumed to possess a class label Li ∈ {1, · · · ,M} indicating
with certainty its membership to one class in C. The pair (X ,L), where L is
the set of labels, constitutes a training set that can be used to classify new
patterns.

Let xs be an incoming sample to be classified using the information con-
tained in the training set. Classifying xs means assigning it to one class in
C, i.e. deciding among a set of M hypotheses: xs ∈ Cq, q = 1, . . . ,M . Using
the vocabulary of D-S theory, C can be called the frame of discernment of the
problem.

Let us denote by Φs the set of the k-nearest neighbors of xs in X , according
to some distance measure (e.g. the Euclidian one). For any xi ∈ Φs, the
knowledge that Li = q can be regarded as a piece of evidence that increases
our belief that xs also belongs to Cq. However, this piece of evidence does not
by itself provide 100% certainty. In D-S formalism, this can be expressed by
saying that only some part of our belief is committed to Cq . Since the fact
that Li = q does not point to any other particular hypothesis, the rest of
our belief cannot be distributed to anything else than C, the whole frame of
discernment. This item of evidence can therefore be represented by a BPA
ms,i verifying:

ms,i ({Cq}) = α (19)

ms,i (C) = 1− α (20)

ms,i (A) = 0 ∀A ∈ 2Θ\ {C, {Cq}} (21)

with 0 < α < 1.
If xi is far from xs, as compared to distances between neighboring points

in Cq, the class of xi will be considered as providing very little information
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regarding the class of xs; in that case, α must therefore take on a small
value. On the contrary, if xi is close to xs, one will be much more inclined to
believe that xi and xs belong to the same class. As a consequence, it seems
reasonable to postulate that α should be a decreasing function of ds,i, the
distance between xs and xi. Furthermore, if we note:

α = α0φq
(
ds,i

)
(22)

where the index q indicates that the influence of ds,i may depend on the class
of xs, the following additional conditions must be imposed on α0 and φq:

0 < α0 < 1 (23)
φq (0) = 1 (24)

lim
d→∞

φq (d) = 0. (25)

The first two conditions indicate that, even if the case of a zero distance
between xi and xs, one still does not have certainty that they belong to the
same class. This results from the fact that several classes can, in general, simul-
taneously have non zero probability densities in some regions of the feature
space. The third condition insures that, in the limit, as the distance between
xs and xi gets infinitely large, the belief function given by ms,i becomes vac-
uous, which means that one’s belief concerning the class of xs is no longer
affected by one’s knowledge of the class of xi.

There is obviously an infinitely large number of decreasing functions φ
verifying (24) and (25), and it is very difficult to find any a priori argument
in favor of one particular function or another. We suggest to choose φq as:

φq (d) = e−γqd
β

(26)

with γq > 0 and β ∈ {1, 2, · · · }. β can be arbitrarily fixed to a small value (1
or 2). Simple heuristics for the choice of α0 and γq will be presented later.

For each of the k-nearest neighbors of xs, a BPA depending on both its
class label and its distance to xs can therefore be defined. In order to make
a decision regarding the class assignment of xs, these BPAs can be combined
using Dempster’s rule. Note that this is always possible, since all the associated
belief functions have C as a focal element.

Let us first consider two elements xi and xj of Φs belonging to the same
class Cq. The BPA ms,(i,j) = ms,i ⊕ms,j resulting from the combination of
ms,i and ms,j is given by:

ms,(i,j) ({Cq}) = 1−
(
1− α0φq

(
ds,i

)) (
1− α0φq

(
ds,j

))
(27)

ms,(i,j) (C) =
(
1− α0φq

(
ds,i

)) (
1− α0φq

(
ds,j

))
(28)

If we denote by Φsq the set of the k-nearest neighbors of xs belonging to Cq,
and assuming that Φsq 	= ∅, the result of the combination of the corresponding
BPAs ms

q = ⊕xi∈Φs
q
ms,i is given by:
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ms
q ({Cq}) = 1−

∏

xi∈Φs
q

(
1− α0φq

(
ds,i

))
(29)

ms
q (C) =

∏

xi∈Φs
q

(
1− α0φq

(
ds,i

))
. (30)

If φsq = ∅, then ms
q is simply the BPA associated with the vacuous belief

function: ms
q(C) = 1.

Combining all the BPAs ms
q for each class, a global BPA ms = ⊕Mq=1m

s
q is

obtained as:

ms ({Cq}) =

ms
q ({Cq})

∏
r �=q

ms
r(C)

K
q = 1 · · · ,M (31)

ms (C) =

M∏
q=1

ms
q(C)

K
(32)

where K is a normalizing factor:

K =
M∑

q=1

ms
q ({Cq})

∏

r �=q
ms
r (C) +

M∏

q=1

ms
q (C) (33)

=
M∑

q=1

∏

r �=q
ms
r (C) + (1−M)

M∏

q=1

ms
q (C) . (34)

The focal elements of the belief function associated with ms are the classes
represented among the k-nearest neighbors of xs, and C. The credibility and
plausibility of a given class Cq are:

Bels ({Cq}) = ms ({Cq}) (35)
Pls ({Cq}) = ms ({Cq}) +ms (C) (36)

Therefore, both criteria produce the same ranking of hypotheses concern-
ing xs.

If an M ×M cost matrix U is given, where Ui,j is the cost of assigning an
incoming pattern to class i, if it actually belongs to class j, then lower and
upper expected costs are defined for each possible decision:

E∗ [Cq] =
∑

A⊆C
ms (A) min

Cr∈A
Uq,r (37)

=
M∑

r=1

ms ({Cr})Uq,r +ms (C) min
Cr∈C

Uq,r (38)
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E∗ [Cq] =
∑

A⊆C
ms (A) max

Cr∈A
Uq,r (39)

=
M∑

r=1

ms ({Cr})Uq,r +ms (C)max
Cr∈C

Uq,r. (40)

Note that minimizing the lower or upper expected cost do not necessarily
lead to the same decision, as can be seen from the following example. Let
us consider the problem of assigning an incoming sample xs to one of three
classes (M = 3). It is assumed that the consideration of the k-nearest neigh-
bors of xs has produced a BPA ms such that ms({C1}) = 0.2, ms({C2}) =
0, ms({C3}) = 0.4 and ms(C) = 0.4. The cost matrix is:

U =

⎛

⎝
0 1 1
1 0 1
1 2 0

⎞

⎠ .

The lower and upper expected costs are, in that case:

E∗ [C1] = 0.4 E∗ [C2] = 0.6 E∗ [C3] = 0.2
E∗ [C1] = 0.8 E∗ [C2] = 1.0 E∗ [C3] = 1.0.

Thus, C3 minimizes E∗, while C1 minimizes E∗.
However, in the case of {0,1} costs, that will exclusively be considered

henceforth, minimizing the lower (resp. upper) expected cost amounts to
maximizing the plausibility (resp. credibility). In that case, and under the
assumption that the true class membership of each training pattern is known,
both criteria therefore lead to the same decision rule D:

qsmax = arg max
p

ms ({Cp})⇒ D (xs) = qsmax (41)

where D(xs) is the class label assigned to xs.
Note that the consideration of the distances makes the probability of a tie

taking place much smaller than in the simple majority rule, whose relationship
with D can also be described by the following theorem:

Theorem 1. If the k nearest neighbors of a data point xs are located at the
same distance of xs, and if φ1 = φ2 = · · · = φM = φ, then the decision rule
D produces the same decision as the majority rule.

Proof. Let us denote by ! the distance between xs and all of its k nearest
neighbors xi ∈ Φs. For all q ∈ {1, . . . ,M}, ms

q is defined by:

ms
q ({Cq}) = 1− (1− α0φ (!))|Φ

s
q| (42)

ms
q (C) = (1− α0φ (!))|Φ

s
q| . (43)
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Thus:

ms ({Cq}) =

(
1− (1− α0φ (!))|Φ

s
q|
)

(1− α0φ (!))k−|Φ
s
q|

K
q ∈ {1, · · · ,M}

(44)

ms (C) =
(1− α0φ (!))k

K
. (45)

For any p and q in {1, · · · ,M} such that ms({Cq}) > 0, we have:

ms ({Cp})
ms ({Cq})

=
(1− α0φ (!))k−|Φ

s
p| − (1− α0φ (!))k

(1− α0φ (!))k−|Φs
q| − (1− α0φ (!))k

. (46)

Therefore:

ms ({Cp}) > ms ({Cq}) ⇔ k −
∣∣Φsp

∣∣ < k −
∣∣Φsq

∣∣ (47)

⇔
∣∣Φsp

∣∣ >
∣∣φsq

∣∣ . (48)

3.2 Reject Options

The decision rule D can easily be modified so as to include ambiguity and
distance reject options. The ambiguity reject option, as introduced by Chow [3]
consists in postponing decision-making when the conditional error of making
a decision given xs is high. This situation typically arises in regions of the
feature space where there is a strong overlap between classes. In that case, an
incoming sample xs to be classified will generally be close to several training
vectors belonging to different classes. Hence, this can be viewed as a problem
of conflicting information.

The distance reject option discussed in [9] corresponds to a different sit-
uation, where the point xs to be classified is far away from any previously
recorded sample, and is therefore suspected of belonging to a class that is not
represented in the training set. The problem here no longer arises from conflict
in the data, but from the weakness or scarcity of available information.

In our framework, the first case will be characterized by a BPA ms

that will be uniformly distributed among several classes. As a consequence,
both the maximum plausibility Pls({Cqs

max
}) and the maximum credibility

Bels({Cqs
max
}) will take on relatively low values. In the second case, most of

the probability mass will be concentrated on the whole frame of discernment
C. As a consequence, only Bels({Cqs

max
}) will take on a small value; as the

distance between xs and its closest neighbor goes to infinity, Bels({Cqs
max
})

actually goes to zero, while Pls({Cqmax}) goes to one.
As a result, it is possible to introduce ambiguity and distance reject options

by imposing thresholds Plmin and Belmin on the plausibility and credibil-
ity, respectively. The sample xs will be ambiguity rejected if Pls({Cqs

max
})
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< Plmin, and it will be distance rejected if Bels({Cqs
max
}) < Belmin. Note

that, in the case of {0.1} costs, these thresholds correspond to thresholds
E∗max and E∗

max on the lower and upper expected costs, respectively:

E∗max = 1− Plmin (49)
E∗

max = 1−Belmin. (50)

The determination of Plmin has to be based on a tradeoff between the prob-
abilities of error and reject, and must therefore be left to the designer of the
system. The choice of Belmin is more problematic, since no unknown class is,
by definition, initially included in the training set. A reasonable approach is to
compute Beli({Cqi

max
}) for each xi in the training set using the leave-one-out

method, and define a distinct threshold Belqmin for each class Cq as:

Belqmin = min
xi∈X ,Li=q

Beli
({
Cqi

max

})
. (51)

3.3 Imperfect Labelling

In some applications, it may happen that one only has imperfect knowledge
concerning the class membership of some training patterns. For example, in a
three class problem, an expert may have some degree of belief that a sample xi

belongs to a class C3, but still consider as possible that it might rather belong
to C1 or C2. Or, he may be sure that xi does not belong to C3, while being
totally incapable of deciding between C1 and C2. In D-S formalism, one’s
belief in the class membership of each training pattern xi can be represented
by a BPA mi over the frame of discernment C. For example, if the expert is
sure that xi does not belong to C3, has no element to decide between C1 and
C2, and evaluates the chance of his assessment being correct at 80%, then his
belief can be represented in the form of a BPA as:

mi ({C1, C2}) = 0.8 (52)

mi (C) = 0.2 (53)

with all remaining mi(A) values equal to zero.
The approach described in above can easily be generalized so as to make

use of training patterns whose class membership is represented by a BPA. If
xs is a sample to be classified, one’s belief about the class of xs induced by
the knowledge that xi ∈ Φs can be represented by a BPA ms, i deduced from
mi and ds, i:

ms,i (A) = α0φ
(
ds,i

)
mi (A) ∀A ∈ 2C\C (54)

ms,i (C) = 1−
∑

A∈2C\C
ms,i (A) (55)

where φ is a monotonically decreasing function verifying (24) and (25).
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As before, the ms, i can then be combined using Dempster’s rule to form
a global BPA:

ms = ⊕
xi∈Φs

ms,i (56)

Note that, while the amount of computation needed to implement Demp-
ster’s rule increases only linearly with the number of classes when the belief
functions given by the ms, i are simple support functions as considered in
Sect. 3.1, the increase is exponential is the worst general case. However, more
computationally efficient approximation methods such as proposed in [21]
could be used for very larger numbers of classes.

4 Experiments

The approach described in this paper has been successfully tested on several
classification problems. Before presenting the results of some of these exper-
iments, practical issues related to the implementation of the procedure need
to be addressed.

Leaving alone the rejection thresholds, for which a determination method
has already been proposed, and assuming an exponential form for φq as
described in (26), the following parameters have to be fixed in order to allow
the pratical use of the method: k, α0, γq, q = 1, · · · ,M and β.

As in the standard k-NN procedure, the choice of k is difficult to make a
priori. Although our method seems to be far less sensitive to this parameter
than the majority rule, a systematic search for the best value of k may be
necessary in order to obtain optimal results.

For the choice of α0 and γq, several heuristics have been tested. Good
results on average have been obtained with α0 = 0.95 and γq determined
seperately for each class as 1/dβq , where dq is the mean distance between two
training vectors belonging to class Cq.1 The value of β has been found to have
very little influence on the performance of the method. A value of β = 1 has
been adopted in our simulations.

The following examples are intended to illustrate various aspects of our
method, namely: the shape of the decision boundaries and reject regions for
simple two-dimensional data sets, the relative performance as compared to
the voting and distance-weighted k-NN rules for different values of k, and the
effect of imperfect labelling.

4.1 Experiment 1

The purpose of this experiment is to visualize the decision boundary and
the regions of ambiguity and distance reject for two different two-dimensional

1 This heuristic was suggested to me by Lalla Meriem Zouhal.
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data sets of moderate size. The first data set is taken from two Gaussian
distributions with the following characteristics:

μ1 =
(

1
0

)
μ2 =

(
−1
0

)

Σ1 = 0.25I Σ2 = I

where I is the identity matrix. There are 40 training samples in each class.
The second data set consists of two non-Gaussian classes of 40 samples

each separated by a non-linear boundary. Both data sets are represented in
Figs. 1–4, together with the lines of equal maximum credibility Bels({Cqs

max
})

and plausibility Pls({Cqs
max
}), for k = 9. As expected, the region of low plau-

sibility is concentrated in each case around the class boundary, allowing for
ambiguity reject, whereas small credibility values are obtained in the regions
of low probability density. The distance reject regions, as defined in Sect. 3.2,
are delimited by dotted lines.

For the first data set, the estimated error rate obtained using an inde-
pendent test set of 1000 samples is 0.084, against 0.089 for the voting 9-NN
rule. The corresponding results for the second data set and leave-one-out error
estimation are 0.075 for both methods.
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Fig. 1. Lines of equal maximum credibility (Bels({Cqs
max})) for k = 9 (Gaussian

data). Samples falling outside the region delimited by the dotted line are distance
rejected
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Fig. 2. Lines of equal maximum plausibility (P ls({Cqs
max})) for k = 9 (Gaus-

sian data)
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Fig. 3. Lines of equal maximum credibility (Bels({Cqs
max})) for k = 9 (non-Gaussian

data). Samples falling outside the region delimited by the dotted line are distance
rejected
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Fig. 4. Lines of equal maximum plausibility (P ls({Cqs
max})) for k = 9 (non-Gaussian

data)

4.2 Experiment 2

A comparison between the performances of the voting k-NN procedure, the
distance-weighted k-NN rule and our method was performed using one artifi-
cial and two real-world classification problems. In the majority rule, ties were
resolved by randomly selecting one of the tied pattern classes.

The first problem implies three Gaussian distributions in a three-
dimensional space, with the following characteristics:

μ1 =

⎛

⎝
1
1
1

⎞

⎠ μ2 =

⎛

⎝
−1
1
0

⎞

⎠ μ2 =

⎛

⎝
0
−1
1

⎞

⎠ .

Σ1 = I Σ2 = I Σ3 = 2I

Training sets of 30, 60, 120 and 180 samples have been generated using
prior probabilities (1/3, 1/3, 1/3). Values of k ranging from 1 to 25 have been
investigated. A test set of 1000 samples has been used for error estimation. For
each pair (N, k), the reported error rates are averages over 5 trials performed
with 5 independent training sets. The results are presented in Table 1 and
Figs. 5–8.

The second data set is composed of real-world data obtained by record-
ing examples of the eleven steady state vowels of English spoken by fifteen
speakers [8], [18]. Words containing each of these vowels were uttered once by
the fifteen speakers. Four male and four female speakers were used to build
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Table 1. Results of the Second Experiment (Gaussian Data, 1000 Test Samples) for
the Voting k-NN Rule (k-NN), The Distance-Weighted k-NN Rule (Weighted k-NN)
and Our Method (D-S): Best Error Rates (Means Over 5 Runs) with Corresponding
Values of k (Upper Numbers) and Average Error Rates Integrated Over the Different
Values of k (Lower Number)

Classification rule

k-NN weighted k-NN Dempster-Shafer

N = 30 0.326 (5) 0.299 (16) 0.267 (15)
0.397 0.338 0.306

N = 60 0.309 (8) 0.293 (21) 0.260 (23)
0.335 0.314 0.284

N = 120 0.296 (7) 0.277 (25) 0.254 (22)
0.306 0.300 0.280

N = 180 0.280 (18) 0.267 (14) 0.249 (23)
0.296 0.293 0.273

a training set, and the other four male and three female speakers were used
for building a test set. After suitable preprocessing, 568 training patterns
and 462 test patterns in a 10 dimensional input space were collected. Fig-
ure 9 shows the test error rates for the three methods with k ranging from
1 to 30.
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Fig. 5. Mean classification error rates for the voting k-NN rule (-), the distance-
weighted k-NN rule (-.) and our method (- -) as a function of k (Gaussian data,
N = 30)
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Fig. 6. Mean classification error rates for the voting k-NN rule (-), the distance-
weighted k-NN rule (-.) and our method (- -) as a function of k (Gaussian data,
N = 60)
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weighted k-NN rule (-.) and our method (- -) as a function of k (Gaussian data,
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Fig. 10. Mean classification error rates for the voting k-NN rule (-), the distance-
weighted k-NN rule (-.) and our method (- -) as a function of k (Ionosphere data)

The third task investigated concerns the classification of radar returns from
the ionosphere obtained by a radar system consisting of a phased array of 16
high-frequency antennas [17], [20]. The targets were free electrons in the iono-
sphere. Radar returns were manually classified as “good” or “bad” depending
on whether or not they showed evidence of some type of structure in the
ionosphere. Received signals were processed using an autocorrelation function
whose arguments are the time of a pulse and the pulse number. This pro-
cessing yielded 34 continuous attributes for each of the 351 training instances
collected. The classification results for different values of k are described in
Fig. 10. The figures shown are leave-one-out estimates of the error rates, com-
puted using the training data.

Not surprisingly, the performances of the two methods taking into account
distance information are better than that of the voting k-NN rule, for the
three classification problems investigated. Whereas the error rate of the vot-
ing k-NN rule passes by a minimum for some problem-dependent number of
neighbors, the results obtained by the two other methods appear to be much
less sensitive to the value of k, provided k is chosen large enough. Our method
clearly outperforms the distance-weighted approach on the Gaussian data sets
and the vowel recognition task. Both methods are almost equivalent on the
ionosphere data.
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4.3 Experiment 3

In order to study the behavior of our method in case of imperfect labelling,
the following simulation has been performed. A data set of 120 training
samples has been generated using the three Gaussian distributions of the
previous experiment. For each training vector xi, a number pi has been
generated using a uniform distribution on [0, 1]. With probability pi, the
label of xi has been changed (to any of the other two classes with equal
probabilities). Denoting by Li the new class label of xi, and assuming that
Li = q, then the BPA mi describing the class membership of xi has been
defined as:

mi ({Cq}) = 1− pi (57)

mi (C) = pi (58)

andmi(A) = 0 for all otherA ⊆ C. Hence,mi(C) is an indication of the reliabil-
ity of the class label of xi. Using the D-S formalism, it is possible to make use of
this information, by giving less importance to those training vectors whose class
membership is uncertain.This property canbe expected to result in a distinctive
advantage over the majority rule in a situation of this kind.

As can be seen from Fig. 11, our results support this assumption. The two
curves correspond to the voting k-NN rule and our method with consideration
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Fig. 11. Mean classification error rates for the voting k-NN rule (-) and our method
with consideration of uncertainty in class labels (- -), as a function of k (Gaussian
data, N = 120)
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of uncertainty in class labels. As before, the indicated error rates are averages
over 5 trials. The lowest rates achieved, as estimated on an independent test
set of 1000 samples, are 0.43 and 0.34, respectively. The percentages of per-
formance degradation resulting from the introduction of uncertainty in the
class labels are respectively 54% and 21%. These results indicate that the
consideration of the distances to the nearest neighbors and of the BPAs of
these neighbors both bring an improvement over the majority rule in that
case.

5 Conclusion

Based on the conceptual framework of D-S theory, a new non parametric
technique for pattern classification has been proposed. This technique essen-
tially consists in considering each of the k nearest neighbors of a pattern
to be classified as an item of evidence that modifies one’s belief concern-
ing the class membership of that pattern. D-S theory then provides a sim-
ple mechanism for pooling this evidence in order to quantify the uncertainty
attached to each simple or compound hypothesis. This approach has been
shown to present several advantages. It provides a natural way of modulating
the importance of training samples in the decision, depending on their near-
ness to the point to be classified. It allows for the introduction of ambiguity
and distance reject options, that receive a unified interpretation using the
concepts of lower and upper expected costs. Situations in which only imper-
fect knowledge is available concerning the class membership of some training
patterns are easily dealt with by labelling each recorded sample using basic
probability numbers attached to each subset of classes. Simulations using arti-
ficial and real-world data sets of moderate sizes have illustrated these dif-
ferent aspects, and have revealed in each case a superiority of the proposed
scheme over the voting k-NN procedure in terms of classification performance.
In two cases, the results obtained with our method were also better than
those obtained with the distance-weighted k-NN rule, while both methods
yielded similar results in a third experiment. It should be noted that these
results are obviously not sufficient to claim the superiority of our approach
for all possible data sets, although no counterexample has been encoun-
tered up to now. The comparison with the weighted or unweighted k-NN
rules in the infinite sample case is also an interesting, but so far unanswered
question.

Another particularity of the technique described in this paper is the quan-
tification of the uncertainty attached to the decisions, in a form that permits
combination with the outputs of complementary classifiers, possibly operat-
ing at different levels of abstraction. For example, given three classes C1, C2

and C3, one classifier may discriminate between class C1 and the other two,
while another one may help to discern C2 and C3. By combining the BPAs
produced by each of these classifiers, Dempster’s rule offers a way to assess
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the reliability of the resulting classification. This approach is expected to be
particularly useful in data fusion applications, where decentralized decisions
based on data coming from disparate sensor sources need to be merged in
order to achieve a final decision.
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Logicist Statistics II: Inference∗

Arthur P. Dempster

Abstract. A perspective on statistical inference is proposed that is broad enough
to encompass modern Bayesian and traditional Fisherian thinking, and interprets
frequentist theory in a way that gives appropriate weights to both science and math-
ematics, and to both objective and subjective elements. The aim is to inject new
thinking into a field held back by a longstanding lack of consensus.

1 Introduction

Was there ever a Fisherian cult in statistics? In the IMS presidential address
that preceded my Fisher Memorial Lecture by two days at the 1998 Joint Sta-
tistical Meetings in Dallas, Persi Diaconis conferred “guru” status on Fisher,
and used related terms such as “mysticism” and “cult”. I beg to differ. Cer-
tainly Fisher was held in awe by many, but his statistical following was never
as large, or organized, as those of present day advocates of “frequentist” and
“Bayesian” inferential theories. Nor are these conventional categories as mono-
lithic as the prominence of the labels suggests. Important ideas are involved,
but statisticians are scarcely divided into two schools that compete for hearts
and minds. For science, each methodology has obvious limitations, ambigu-
ities, and deficiencies. I argue that their associated prescriptions should be
absorbed into a broader and more complex outlook. Statistics needs a big-
ger toolbox of inferential methods, in fact a toolbox consistent with Fisher’s
thought.

Whereas research statisticians tend to call Fisher’s writing obscure, my
longheld sense has been that his ideas cohere easily with a simple perspective
that I am calling “logicist”. Fisher believed that the primary task of the prac-
ticing statistician is to get inside the mind of a research scientist facing a set of
challenging questions. Only then should he or she turn to mathematical ide-
alizations that represent aspects of a question under study and lead directly
∗ The 1998 COPSS R. A. Fisher Memorial Lecture, revised April 2002. Partial
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to answering carefully formulated and situation-specific questions involving
uncertainties. It was largely because so much statistical research came to be
dominated by exclusively mathematical discussions, with scarcely any ref-
erence to backgrounds in science, that Fisher became highly critical of the
direction of mathematical statistics. This circumstance has changed little. A
basic thesis of my presentation is that the logic of applied statistics is a logic
of scientific practice, with mathematics in a supporting role.

The world of scientific reasoning is fundamentally different from the world
of mathematical reasoning, being concerned with knowing and understanding
empirical phenomena. Science depends on both informal and supporting for-
mal reasoning about phenomena, including reasoning about uncertain aspects.
There is a major distinction between the roles of formal reasoning in science
and in mathematics, since the former rests on omnipresent connections with
specific features of the objective world, and continually uses these connec-
tions to motivate choices of what to record and what to compute. The worlds
of mathematics and science interact, often and successfully, but nevertheless
represent different cultures, speaking languages that overlap only in part.

In mathematics, an element or operation is understood to have a precise
place in a defined abstract structure. Not being consciously aware of math-
ematical abstraction, however, most nonmathematical scientists use informal
language when referring to mathematical entities such as stochastic models
or statistical inference procedures. In science, it is normal and necessary to
define terms and concepts through ordinary language, without recourse to
precise mathematics. In my presentation, the terms “logic”, “probability”,
and “independence” connote technical concepts that are partly scientific and
partly mathematical. Nonmathematical scientific semantics are acquired, as
we acquire most language, through repeated exposures that gradually build
understanding of subtle distinctions and contexts. In parallel, certain generally
understood mathematical representations are essential to a minimally com-
plete picture of formal statistical methods in daily use. Statistical sciences are
quantitative and formal, and hence inseparable from mathematics, at least to
the point of appreciating basic mathematics of data structures and probabil-
ity, including familiarity with related computations. It is equally essential to
internalize the scientific understanding that connects with formal statistical
modeling and inference.

Fisher’s career illustrates the complexities of bridging the two worlds. He
understood the substance and value of mathematics, and used mathematics to
make pathbreaking contributions to agricultural science and genetics, as well
as to core mathematical statistics. While drawing freely on his own formidable
mathematical talents, Fisher also warned against overemphasis on mathe-
matical theory, for example in teaching, where “there should be a nucleus
of teachers with practical experience in all departments teaching statistical
methods” (Fisher, 1960). His repeated statements on the practical limitations
of both frequentist and Bayesian theories were too easily dismissed, however,
due in part to his penchant for rude and dismissive polemics. Fisher’s scientific
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successes and communication failures hold lessons for anyone wishing to bring
science and mathematics into improved and mutually beneficial harmony.

Logicism, as I use the term, signifies principled and explicit reasoning
about specific scientific unknowns and uncertainties, whether the reasoning is
informal or formal. Nonignorable uncertainties are traditionally approached
in scientific discourse through informal and somewhat vague language applied
to premises, arguments, and conclusions. Fisher in his scientific writing used
informal language with a logical flavor, see for example Fisher (1955, 1956,
1960), but as a theoretician he understood that informal judgments can and
should often be supplemented with formal analysis. For example, rather than
tolerate sole reliance on expert perceptions that differential yields observed
in agricultural studies are or are not large enough to justify concluding that
experimental practices are effective, he proposed, implemented, and dissemi-
nated the methodology of randomized experimentation, together with formal
significance tests based on ANOVA models. As argued in Part I (Dempster,
1998b), the force of Fisher’s logic depends on statistical models being taken
seriously as tentative and idealized conceptions that link specific external
(objective) realities with incomplete and uncertain (subjective) knowledge of
those realities.

In contrast to logicism, the frequentist idealization of practice holds that a
statistician chooses and applies “procedures”, such as a testing or confidence
procedure, and reports numerical outputs. Interpretation is left to informal
judgment by a user assumed to have mathematical and contextual knowledge
and understanding of the meaning of long run properties associated with sam-
pling models. Fisher thought differently. In parallel with reporting numerical
or graphical outputs, such as a p-value from a significance test, or a plotted
likelihood, or a fiducial interval, he sought to convey a logical interpreta-
tion constituting a formal inference about the specific situation under study.
Such interpretations are of two basic types, described and analyzed below
using the labels “postdictive” and “predictive”. While not logic in the sense
of a highly structured mathematical system, the Fisherian system is formal
because its operations consist of precise algorithms applied to formal input
data, and depend on an assumed formal mathematical model of a specific
situation, including formal probabilistic representation of uncertainties. Infer-
ential statistical computation implements data-specific processes of formal
artificial reasoning from premises to conclusions.

In featuring Fisher’s attitudes, my goal is not to reestablish a Fisherian
school of inference, but rather to relate issues raised by Fisher to a broader
sweep of scientific thinking. One important necessity in my view is recognition
that complementarity of subjective and objective aspects of formal models
and modeling is as much about the deterministic “equations” of traditional
science as about the probabilistic models that dominate contemporary statis-
tics. I argue here for recognition of the subjective “you” of Good (1950) (or
“thou” of Savage (1962)) as an everpresent concominant of all scientific activ-
ity that seeks to make use of formal models. For example, if I use Newtonian
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mechanics to calculate the progress of an asteroid, it is implied that the for-
mal “you” in the mathematical model translates into advice for the real me,
that I may accept or question, and ultimately build upon for further study or
action.

I believe that the opposition to anything subjective that roils academic
statistics comes mainly from a tradition of mathematics teaching that was
largely conditioned by objectivist attitudes to the deterministic models that
have impressive credentials in physical and engineering sciences. This philos-
ophy of objectivity is, however, viable only in limited areas of hard science,
and only then by suppressing the ubiquitous “you”. A more catholic attitude
permits extended use of formal models in wider realms of science. Especially
important in contemporary practice are models, such as linear and nonlinear
Kalman filters and other “hidden Markov models” that capture practically
important uncertainties through integration of deterministic and probabilis-
tic formal analysis.

The mathematical side of probability is marvellous to behold, and remains
under active development after three centuries, but it is not an immediate
concern in this discussion. On the science side, what I am calling formal
subjective probability was taken seriously by leading 19th Century mathe-
maticians and scientists, such as Boole and Maxwell. As reviewed by Keynes
(1921) and Porter (1986) the subject was actively debated by leading British
academics in the latter half of the 19th Century. One position that emerged
from the controversies of that time is the now familiar stance that probabil-
ities meriting serious scientific consideration should have objective bases in
long run frequencies. Many scientifically important formal probabilities are
indeed approximately determined from observed quantities in well identified
formal data structures, and vastly more are indirectly obtained by computa-
tion from such empirical inputs. When interpreted informally, however, the
term probability is inseparable from logical interpretation as a measure of
someone’s uncertainty. Much is lost when probability is wholly converted
from an instrument of logic into an empirical concept little different from
a physical dimension or a population count. The richness of probabilistic
thinking depends on understanding the interaction of mathematical theory
with informal perceptions of uncertainties associated with precisely definable
outcomes.

In a mathematical framework, probabilistic thinking can be expressed as
applying to hypothetical examples, but in scientific applications it involves
quite specific objective phenomena and questions, such as whether the sur-
face climate of our planet will warm substantially in the next century
(Houghton et al, 2001). A key to the bridging problem is to build credi-
ble formal probabilistic representations, adding a hard skeleton to informal
judgments that are too often malleable and influenced by poorly analyzed
assumptions. Statistical applications of broad sense probability have been
too long held back by dated controversies over the obvious logical content of
probability.
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A simple schematic of logicist statistical inference identifies three aspects:

1. Two distinct modes of statistical inference exist, here referred to as S-
inference and P-inference, my abbreviations for “inference based on sam-
pling distributions”, and “inference based on posterior distributions”.
Both S-inference and P-inference are routinely used in daily practice, and
are only partially separable in their domains of application.

2. Both S-inference and P-inference rest on a common scientific concept of
probability abbreviated here to FSP for “Formal Subjective Probability”.
FSP was described and defended at length in Dempster (1998b). A numer-
ical instance of FSP is linked to the unknown truth of a defined objective
fact. “Formal” is used because every FSP is an element of a formal math-
ematical model of a specified objective situation. “Subjective” refers to
the circumstance that scientific interpretation of a numerical probability
is simply a degree of certainty of a subjectively imagined “you”. Along
with this interpretation goes understanding that a specific FSP represents
uncertainty tied to specific limited evidence or uncertain information con-
cerning the unknown truth of the defined objective fact. Good probabilis-
tic science, like any good science, requires credible and cogent evidence to
support an assumption, and a readiness to rethink in the face of conscious
and balanced arguments and data.

3. The motivating interpretation of FSP is forward-looking or “predictive”.
But when new information is judged to alter a previously understood
state of evidence sufficiently to invalidate a probability model, an original
predictive probability may no longer be “live” in the sense of retaining
validity for prediction. In particular, if the truth of a fact in question is
established or disproved with certainty by new evidence, as for example by
a precise and accurate observation, then the original probability is com-
pletely “dead”, and the term “postdictive” becomes a propos for its new
interpretation. S-inference is inference based on postdictive interpretation,
while P-inference is based on predictive interpretation.

My perception of statistical inference has developed over 40 plus years,
mostly in ways consistent with today’s presentation. A tour can be had from
Dempster (1964, 1968a, 1968b, 1971, 1974, 1976, 1983, 1990, 1997, 1998a,
1998b, 2002). My thinking about predictive inference is colored by the theory
of probabilistic reasoning variously referred in a spectrum of literatures as
“theory of belief functions”, or “Dempster-Shafer theory” that is fundamen-
tally logicist (Shafer, 1976, Kohlas amd Monney, 1995). While resting on a
concept of information combination from independent sources that general-
izes the conditioning mechanism of Bayesian logic, the D-S formulation further
extends Bayesian logic by admitting the common sense feature of allowing for-
mal predictive statements to express degrees of ignorance beyond probabilis-
tic uncertainty (Dempster 1966, 1967,1968a, 1968b, 1988). Just as Bayesian
logic is increasingly being pressed into service to cope with complexities of
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contemporary science, the natural D-S extension is likely to find application
in a widening range of scientific situations.

The remainder of the paper expands on the themes introduced above. I
continue in Sect. 2 with further comments on Fisher, followed by a discussion
of FSP in Sect. 3.The key concept of a parametric family of stochastic models
is analyzed in Sect. 4. Fisher’s terminology “forms of quantitative inference” is
reflected in the titles of Sects. 5 and 6 that describe the concepts of postdictive
and predictive reasoning, respectively. Some diverse commentary is collected
in Sect. 7, including a plea for consensus.

2 More on Fisher

Fisher was a distinguished scientist, of wide learning and a broad talents. In
statistics, he led through identifying, naming, and communicating important
inferential ideas, forged in direct contact with his own scientific work and that
of colleagues. His methods were often new at the time. Many remain central
to contemporary applied statistical practice. While Fisher left an unpolished
set of norms and principles for uncertain inference, I find that his understand-
ing easily encompasses frequentism and Bayesianism, and can evolve to meet
present and future problem-solving needs of statistical sciences.

My task here is to address aspects of Fisher inadequately represented in
critiques and evaluations that continue many decades after his death (Aldrich,
1997, Barnard, 1992, Dempster, 1998a, 1998b, Edwards, 1997, Efron, 1998,
Fienberg and Hinkley, 1980, Neyman, 1967, Rao, 1992, Savage, 1976, Zabell,
1989), in addition to a full length biography by his daughter Joan (Box 1978),
and scholarly collections of writings (Bennett 1971, 1990). Many appreciations
have described his ingenious and insightful derivations of sampling distribu-
tions, and his major contributions to the corpus of now standard design and
analysis tools. Instead, I focus on the way he understood probabilistic reason-
ing under uncertainty, because it defines the intellectual matrix in which his
better known innovative methods developed.

The inferential logic that is an integral part of statistical science was jump-
started by two major papers on “estimation” (Fisher, 1922, 1925). By isolat-
ing and naming concepts, including “specification”, “likelihood”, “efficiency”,
“sufficiency”, and “maximum likelihood”, Fisher gave substance and general-
ity, and ultimately wide recognition, to fundamental ideas surrounding statis-
tical information. By hindsight, a scattered and unfocused history of related
concepts can be traced over several earlier centuries, but Fisher put what I
am calling S-inference on the scientific map. Although he attempted to do the
same for P-inference with his “fiducial” argument (e.g., Fisher, 1930, 1935b,
1939, 1956, 1960), he did not achieve the coup that he may have hoped for.
The progress of P-inference has been slower and more controversial at every
step.
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Fisher’s innovations derived from natural genius interacting with Canta-
bridgian perceptions of mathematics as a servant of science. In particular, his
attitude to “probability” was more pragmatic than rigorous in the sense of
20th Century mathematics. His mathematical education occurred in an objec-
tivist environment, whence especially his early writing reflects prejudices of
his teachers, for example, in opposition to “inverse probability”, as Bayesian
posterior inference was often called at the time. But the understanding of
inference developed by the mature Fisher was much broader. Late in life, at a
time when he had mostly lost his audience, he wrote discussions of his concep-
tion of probability (Fisher, 1958, 1959). But even his admirers pay little heed
to his career-long repetition of terms such as “inductive inference”. Statisti-
cians should adopt Fisher’s embrace of probabilistic logic. First, however, it
is necessary that FSP be recognized and developed as an essential foundation
of statistical science.

3 Formal Subjective Probability

Like the mountain, FSP is there, and begs mastering before the practice of
statistical inference can be fully understood and made operational. Whereas in
a conventional view of the statistical scene different perspectives on probability
are adopted by frequentists and Bayesians, almost as defining characteristics
of the respective sects, I argue on the contrary that FSP identifies a common
foundation supporting viewpoints that are hard to reconcile only in the narrow
sense that they pose and answer different questions, but essentially within a
common framework.

In particular, FSP is a common support for both S-inference and
P-inference. A sampling distribution is a property of a formal stochastic
model, and describes the uncertainty of a formal user, the ubiquitous “you”,
looking forward to a “random” outcome not yet observed. Because the prob-
abilities specified by a typical sampling model are determined only after the
values of parameters are also specified, there are mysteries about where such
models come from, and more mysteries about the usefulness of an idea whose
fundamental interpretation depends on parameter values that are assumed
to be unknown. I return to these mysteries in Sect. 4. There is, however, no
mystery about the interpretation of a numerically determined sampling prob-
ability as characterizing uncertainty about a prospective sampling process. On
the other hand, P-inference involves similar prospective characterizations of
uncertainty referring to remaining unknowns after sample values are observed.
A switch from S-inference to P-inference does not imply a change in the mean-
ing of probabilities, only a change in the circumstances of application, some-
times accompanied by a switch from predictive to postdictive interpretation,
and sometimes indicating a need to recompute probabilities for predictive
interpretation. These are matters for professional judgment, not philosophical
dispute.
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Since S-inference and P-inference are the two principal branches of oper-
ational statistical inference, recognition of their dependence on the com-
mon conception called here FSP is enormously important as a major step
toward eliminating roadblocks to consensus among statisticians. Once FSP
is perceived as the sine qua non of statistical inference, its invisibility as
an explicit element of most statistical writing seems almost surreal. Because
Fisher implicitly saw FSP as a natural piece of the statistician’s technical
equipment, whereas Neyman steadfastly rejected it, the stage was set for pro-
tracted controversies and polemics that rumbled back and forth from about
1934 to Fisher’s death in 1962 (for example Fisher, 1934, 1935a, 1939, and
Neyman, 1935b, 1941, 1961), and beyond as Neyman continued to describe
and defend his position (Neyman, 1977). Neyman resorted to a combina-
tion of frequentism and behaviorism as his preferred way to retain part of
what FSP entails, while avoiding reference to mental processes or subjectivity
that he and his followers believed to be inconsistent with science. In Sect. 7,
I review Neyman’s “inductive behavior” philosophy from the perspective of
current realities, and argue that it is too narrow to support a full system
of inference, hence is unsuited to underlie scientific practice. Behavior can be
observed without reference to rational thought, but an explanation of behavior
that makes no reference to the agent drawing logical inferences from evidence
eliminates essential meaning. Logicism can rationalize behavior, but not vice
versa.

Here are salient features of the unifying concept of FSP:

1. Objective sources for FSP in repetitions are basic, but so are subjective
sources, including judgments about what to count to obtain a relevant
frequency probability, and about connections of FSP to formal reason-
ing about specific unknowns. By maintaining rigorous formal structures
and rules, along with informal professional standards of practice, formal
subjective reasoning transcends criticisms of being pseudoscience coming
from doctrinaire believers in purely objective science.

2. The important purely formal side of FSP is especially prominent in sta-
tistical literature, including much accumulated knowledge about practical
computation as well as justly admired abstract mathematics, but the con-
nections of FSP to informal reasoning and judgment are equally necessary
for uses in science and for decision-making.

3. Specificity is key to relating FSP to inference. To have meaning outside
an abstract mathematical structure, a specific numerical probability must
be associated with a unique real world situation whose uncertainty is
or was in play. A live FSP is predictively interpretable, and should be
a reflection of specific formalized evidence and information. A live FSP
must be revised when evidence and information change. A dead FSP can
only be interpreted postdictively.

4. Inferential computation fuses together empirical data and constructed
models, with both types contributing knowledge about an objective
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situation. Such computation, involving formal subjective probabilities, is
in effect a process in a formal logic of uncertainty.

Too many academics fixate on narrow aspects of FSP, such as “subjective
belief” FSP, or repeated copies of an FSP that make up a long run frequency,
or Fisherian FSP derived from a “hypothetical population” with “no recogniz-
able subsets” (Fisher, 1956, Cox, 1998), or for that matter a Dempster-Shafer
FSP based on a “frame of discernment” with an associated “basic probabil-
ity assignment” (Shafer, 1976). These are not separate or indeed separable
concepts.

4 What Is a “Family” of Stochastic Models?

In statistics the term “random variable” is by widespread convention inter-
preted to signify a quantity with an objective real world basis, or more
precisely with a value determined by a real world “random” process. The
assumption of an objective foundation implies that the value of a specific
random quantity is either directly obtainable from observations, at least in
principle, or is indirectly obtainable by recursive computation from values of
other quantities, both random and nonrandom, that can be traced back to
such observable-in-principle quantities. A random quantity may also be called
“stochastic”, a term more often applied to an evolving or spatial system. A
stochastic model typically has many random quantities assumed jointly “dis-
tributed” according to a “family” of multivariate probability measures, where
a family member is identified by fixing a point in a defined “parameter” space,
whence the term “parametric family”. In modern practice, modeling a situa-
tion of realistic complexity generally requires multiple varieties of randomness,
such as “hierarchical” randomness among and within populations, or random
trajectories and random fields over physical time and space. Several paramet-
ric families then appear simultaneously within a statistical model of a complex
system.

Theoretical statistics has been centered around the notion of parametric
families of probability measures for at least the 75 years since Fisher coined
the term “specification” for them, and put specifications at the center of his
theory of estimation. In what sense does a specification “specify” an applied
situation? A common but inadequate answer follows the rhetoric of random
processes. To wit, analysts are assumed to “know” that an “unknown” mem-
ber of an agreed family of random processes “generates” the empirical system
under study. Two questions dog this attitude. First, since the assumed exis-
tence of objective “randomness” in the data-generating process is dubious in
most situations where parametric models are applied, can one sensibly charac-
terize a basic task of scientific inference as being to “decide” among hypotheses
about such a process? And second, since much rides on the choice of family,
how does one come to knowledge of a working specification?
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Jakob Bernoulli introduced (see Todhunter, 1865 or or Stigler, 1986) what
is now called the binomial sampling model, or “Bernoulli trials”, and implicitly
with it the first precise example of S-inference. The parameter in his urn model
was an objective quantity, namely, the proportion of red balls in an urn known
to contain only red and black balls. But he was explicit that his motivation
for the model was to address the uncertain length of life of an individual of
a given age. The urn model represents a situation that has analogies to the
length of life question, but differs in that the specific choice of a relevant
underlying human population is ambiguous at best, unlike the urn model
situation. Similarly, when a few decades later Bayes introduced P-inference
the artificial illustration leading to his uniform prior distribution concerned
the objective stopping place of a ball randomly set in motion on a table. But
he too meant his method to address realistic inferential situations where the
binomial parameter is not easily objectified. The objective character of the
“binomial p” parameter in routine statistical applications is sometimes spelled
out precisely, as in close analogs of the urn model where a physical population
is identified. But in many other cases, such as in widespread applications of
logistic regression models, it is rare to have available an objective population
underlying random choices given each specified vector of values for predictor
variables.

The difficulty of assuming belief in an objective randomness that does not
exist can be resolved only by recognizing a different reality, namely, that infer-
ence rests on subjective choices creating a proxy for the external world, not
an approximation to a nonexistent objective process. The examples of uncer-
tain reasoning from proxies illustrated by Bernoulli and Bayes easily scale up
from their artificial examples to more general real world contexts that consti-
tute the basis of applied inferential practice. The first question raised above
is thus partially resolved because there is no need to believe in objective ran-
dom processes. It remains, however, to address what it might mean to estimate
parameter values, when it is understood that they lack objective existence.
The mystery surrounding the first question is only partially resolved.

The second question is also fundamental, and has no simple answer. The
truism that most acceptable formal probabilistic assumptions are at least
loosely traceable to empirical frequencies is only a start. Consider random
sampling from a normally distributed population, a parametric assumption
that is a close competitor to binomial sampling in the statistical modeling
sweepstakes. Unlike the binomial case, the normal model places a strong con-
dition on the contents of the hypothetical urn, namely that the numerical
values attached to each of the large number of balls in the urn are distributed
so that a normal plot of their values is effectively a straight line. The ques-
tion here concerns the prior assumption of such a specific parametric form.
My sense is that most statisticians rather casually believe that they can often
adopt parametric assumptions with little risk after plotting “the” data in ways
that create “checks” on the specification. There is, however, a basic issue to
consider. Data analysis can only address whether the particular “realized”
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family member associated with the sample data under analysis has a normal
or other assumed form, not whether inferential computations involving a large
cast of family members can be supported. Any parametric family assumption
that happens to include a normal population that fits the data well is equally
supported by a diagnostic such as an empirical normal plot.

So the second question remains: how to construct an empirical basis for
an adopted specification, such as that of sampling a normal population?
An acceptable answer, as far as it goes, is “use past experience with sim-
ilar situations”. Ideally, the statistician identifies and studies a collection
of similar situations, hoping to find empirical shapes lying within plausi-
ble model-checking tolerances of some member of a hypothesized family.
In practice, this prescription starts from a subjective judgment that cer-
tain situations encountered in the past are similar enough to the present
situation that it is reasonable to assume a common family, and proceeds
to an informal integration of what is known empirically about these sit-
uations to obtain a manageable and adequately inclusive family. In the
end, the working statistician informally assesses the available evidence and
takes a chance when pairing a precise parametric model with a particu-
lar new situation. Another possible use of a collection of past situations is
to aid construction of a Bayesian prior distribution that reflects variation
of parameter values across situations. Note, however, that using the col-
lection to motivate a prior distribution assumes that the particular situa-
tion under analysis is effectively randomly sampled from the collection, a
strong assumption going a step beyond motivating an assumed parametric
family.

Parameters appearing in practice are often described as having “fixed but
unknown” values. The “unknown” characterization is similarly understood
by Bayesian and non-Bayesian statisticians alike. The label “fixed” suggests,
however, that parameter values were determined by some objective nonran-
dom process. This harks back to the attitude that parameters are objective
scientific quantities, which attitude was characterized above as holding only
in limited special circumstances. When the concept of parameter is widened
to include its subjective role in a mixed subjective-objective theory of infer-
ence, the assumption of an objective “fixing” process evaporates. It is there-
fore important in practice to separate situations where parameters can be
assumed to have an objective basis from situations where by contrast they are
no more than logical constructs, since in the former case they are legitimate
final targets for P-inference, whereas in the latter case they have technical
roles only.

If it cannot be maintained that parameter values are objective properties
of data-generating mechanisms, then “chance” is no more than a label applied
to FSP in certain familiar situations like “games of chance” or “randomized”
statistical designs. The proposition that chance is a subtype of FSP brings
with it the corollary that parameters determining chances are likewise instru-
ments of logic, and resemble probabilities in that while sometimes identified
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with objective quantities they are not required to be such. Specified para-
metric families are in any case hypotheses constructed on the way to making
inferential assertions.

5 Forms and Principles of Postdictive Inference

When an outcome that was predicted to have occurred with specific proba-
bility p, is in fact observed to have occurred, and consequently has posterior
probability unity, then the “expired” original probability p can only be inter-
preted postdictively. Unless p is small, a postdictive interpretation has little
or no impact on the interpreter, but if p is small, such as p = .01, then one
may be entitled to register some surprise at the implied occurrence of of an
improbable event, and go from there to draw tentative conclusions, perhaps
about the effectiveness of a treatment in a randomized trial, or perhaps about
the inappropriateness of a model assumption. The logic of such an inference
is the essence of what Fisher calls a “test of significance”.

The logic of postdictive interpretation is notoriously slippery. Something
highly improbable always occurs in all but the most simple of observational
complexes. The odds against particular observed outcomes are typically astro-
nomical, so postdictive interpretation is typically restricted to “tail areas”.
But even here the question of what to select as a potential “extraordi-
nary” (Laplace, 1814) outcome is critical, especially if the outcome is selected
after preliminary inspection of data, as in Laplace’s example of randomly
ordered letters forming CONSTANTINOPLE. Fisher sometimes used the
term “proof” to describe the finding that a null hypothesis is postdictively
implausible, but proof in this sense is distinct from the mathematician’s con-
cept of formal proof. In particular, there is nothing in the logic that directly
supports any alternative hypothesis that is often implicitly accepted to replace
the null. Worse, there are countless examples where untrained users confuse
postdictive interpretation of a small tail area p with a posterior probability
that a null hypothesis holds, fallaciously implying that 1− p is the posterior
probability of some implicit alternative hypothesis.

Many good articles have warned against careless interpretation of Fish-
erian tests (e.g., Cox, 1977). In the end, however, the idea of postdictive
interpretation is simply the FSP-based version of the fundamental princi-
ple that science progresses through the use of data to falsify hypotheses so
is an inevitable element of the treacherous processes of improving scientific
knowledge through new hypotheses with extended life cycles. In this spirit,
Neyman and Egon Pearson invented a theory directed at aiding choices of
suitable Fisherian tests (Neyman and Pearson,1928). Fisher was hostile to
the Neyman-Pearson theory, unwisely in my opinion. He would have been
better advised to see it for what it is, namely, a theory that evaluates proce-
dures, not a replacement for the logic of significance testing. See also Sect. 7
below.



30 Logicist Statistics II: Inference 773

A concept that Fisher isolated, and thereby opened up for theoretical study
and direct and indirect roles in applications, is the fundamental concept of
“likelihood” that he originally defined (Fisher, 1922) essentially as the prob-
ability of what was observed (i.e., “the data”) as a function of undetermined
parameter values. There are many theoretical reasons, obvious ones from a
Bayesian perspective, and more subtle ones from the frequentist decision-
analytic perspective of Wald (1950), for recognizing the information-bearing
quality of the likelihood of observed data. Once the FSP interpretation of
stochastic models is recognized, however, it is evident that the direct inter-
pretation of an observed likelihood is postdictive.

As Fisher made clear, likelihoods permit sensible interpretation only as
ratios among the different parameter sets that are being compared. Specifi-
cally, observed likelihood provides relative probabilities of a set of outcomes
that are known to have occurred. If two hypotheses are compared this way,
and one is relatively unlikely, say only .01 as likely, as the other, then the
relatively unlikely outcome should be regarded with suspicion. Fisher gave
examples where likelihood functions were used to rule out parameter values
regarded as too unlikely relative to the maximum of the likelihood, the implicit
logic being postdictive as I use the term. Long ago I proposed extensions of
the postdictive logic of likelihood testing (Dempster, 1974). Similar procedures
were independently proposed more recently by Aitkin (1997). The appeal of
these procedures depends in an essential way on recognizing the connection
of likelihood to postdictive interpretation.

From the FSP perspective Neymanian confidence statements amount to a
separation of parameter value sets into those accepted and those rejected by
an associated family of significance tests. Fisher explicitly makes this point
already in 1935 correspondence (Fisher, 1935, p.187). Neyman of course had
something quite different in mind. When FSP is rejected, as Neyman advo-
cated, neither predictive nor postdictive interpretation has any meaning. A
consequence of frequentist dominance in academic statistics is that few if
any current textbooks make the predictive/postdictive distinction clear. They
cannot because FSP is not explicitly recognized. Many, perhaps most, users
mentally interpret confidence statements as predictive, when the formal model
supports only postdictive. While the frequentist “long run” interpretation pre-
ferred by Neyman and his followers is mathematically sound, it translates into
a logical statement about something in the real world only insofar as a specific
real world long run is identified. The typical user of a confidence statement
makes no effort to define a real world long run, because he or she is rarely
interested in a logical statement about any specific long run that might be
implicit in the frequentist justification of a reported confidence statement.
There is a further logical point to be made here, namely, that a “law of large
numbers” that underlies a deterministic inference about a long run is a math-
ematical statement with premises and conclusions. The conclusions cannot
have logical force unless the premises do also. Thus a claimed logical inference
about a long run is simply void unless the input random variables are allowed
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logical interpretation, something Neyman is at pains to deny. Surely, however
there is no magic whereby the consequences of assumptions acquire meaning
while the assumptions have none. It appears therefore that FSP can justify
inference about a long run, while frequentism alone cannot.

Bayesian adherents are also typically unenthusiastic about postdictive
interpretation, but since P-inference in practice rests on predictive interpre-
tation of FSP, it is possible at least to raise and debate the question in FSP
terms, as I often did with Jimmie Savage in the 1960s. He staunchly defended
his Bayesian decision-theoretic outlook, referring to the kinds of slipperiness
of postdictive logic alluded to above. In the more ecumenical attitudes of the
1990s, however, my sense is that some Bayesians at least are willing to think
about postdictive logic in Fisher’s terms, and even to see Fisher as a friend.
After all FSP is the basic thing, and postdictive logic is a commonplace form
of reasoning with FSP in the context of a specific uncertain judgment.

6 Forms and Principles of Predictive Inference

The term predictive applies to statements about a factual assertion whose
truth or falseness is objectively meaningful but is currently unknown to “you”.
Hence usage is not limited to predicting an unfolding future that cannot be
currently observed because defining events have not yet occurred. In my logi-
cist formulation, the formal “you” is assumed to be working with an FSP-
based model at the time predictive interpretations are made. The following
discussion contrasts three approaches to prediction. The main logicist option
available today for applied statistical practice is Bayesian inference, often
credited in its contemporary form to Bruno de Finetti. See Bernardo and
Smith (1994). I believe, however, that a more suitable paradigm is embodied
in the D-S theory introduced briefly in my introduction. D-S theory is logicist
in a fundamental way because it integrates nonprobabilistic “propositional”
logic with probabilistic reasoning. The third approach to prediction discussed
below is nonlogicist, and in some versions nonprobabilistic.

Historically, Bayesian predictive logic was well understood by many 19th
Century scientists, especially astronomers familiar with the writing of Laplace
and Gauss. Early advocates of nonlogicist frequency probability were also
active from about 1850 onward, engaging in controversy with proponents of
Bayesian “inverse” probability. In the 1920s and 1930s, Fisher and Neyman
attempted in different ways to address the fundamental puzzle of inference
from data “drawn” from parametric stochastic models. Their focus was on
S-inference, deliberately avoiding the controversial topic of Bayesian priors.
Fisher led with his theory of estimation, and then direct inference from like-
lihood, and finally, most controversially, his fiducial method introduced in
Fisher (1930). Neyman soon followed with “confidence” statements that he
originally conceived as making sense of Fisher’s fiducial method. Most statis-
ticians felt they could follow Neyman’s reasoning, but not Fisher’s, and in due
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course Fisher’s thinking on the subject was largely dismissed, and ignored in
teaching and practice. The fiducial method was, however, a source of D-S
theory.

My own view has long been that Fisher was asking the right question
by insisting on a predictive interpretation for predictive intervals. The the-
ory behind confidence regions provides ingenious and mathematically correct
answers to precisely formulated questions, but insofar as these answers have
logicist interpretations, these interpretations can only be postdictive. If the
task is defined as prediction, Fisher (1939) was on the right path, and Neyman
(1941) had indeed taken a wrong turn. I suggest that future generations need
to take a hard look with an open mind.

The Bayesian paradigm, as illustrated by many studies of complex phe-
nomena in the 1990s (e.g., Gilks et al, 1996) directs the user to set up a model
with a data structure that is detailed enough to adequately capture a set
of objective phenomena, and then to proceed to develop relations that allow
probability judgments about any and all objective unknowns specified in the
model. Although the data structure often reflects deterministic relations, as
in hierarchical classification structures, these are generally left implicit with-
out drawing attention to obvious expressions in terms of formal propositional
logic that parallels the predictive probabilistic logic. In Bayesian statistics,
the explicitly considered nonprobabilistic facts are “the data” and these are
combined with “prior” probabilistic relations via computation of conditional
probabilities, as laid down by Bayes’s rule. The habit of hiding propositional
relations while exposing probabilistic relations, is presumably due to the sup-
pressed recognition of logicism in the thinking of most statisticians, including
enthusiasts for modern Bayesian tools.

The core of Bayes’s remarkable contribution to the history of probability
lies in his perceptive double use of the concept of conditional probability, espe-
cially noteworthy because he had first to craft the rule in terms that made his
double application transparent. In the first application, the sampling density
of observables given a parameter is written down as a function of the unde-
termined parameter value. This conditional density is then multiplied by the
prior density of the parameter to form the joint marginal density of parameter
and observables. The second application reverses the role of parameter and
observables, but applies the same abstract rule to form the conditional density
of the parameter given values for the observables. My reason for laying out
this familiar story is to make plain that the concept of parametric family is
just as central to Bayes as it had been to Bernoulli 50 years earlier. Fisher in
the 1920s gave explicit names to concepts that Bayes and others through the
18th and19th Centuries had left implicit, calling the assumed sampling model
the “specification”, and renaming the density of the specification to be the
“likelihood” when the values of observables are fixed and substituted into the
sampling densities of the family.

It was part of the mindset of Fisher and many of his contemporaries,
as it had been for a preceding generation (e.g., Edgeworth, 1884) that a



776 A. P. Dempster

precondition for Bayesian analysis is an empirical basis for the requisite prior
distribution, an implication being that the usefulness of Bayes for science is
thereby strongly limited. The post Fisher era disputes between Bayesians and
Neymanians that reached a peak around 1960 turned mainly on the same issue
(Pearson, 1962). The issue here is real, but risks trivialization. The issue is not
that some priors are founded in data, while others are “made up” subjective
judgments. To accept a frequency basis for a specific prior, is to make a sub-
jective judgment of exchangeability of the specific situation with those making
up a population on which prior frequency probabilities are based. When one
such population presents, many others including superpopulations and sub-
populations generally come in its train, whence subjective judgmental choices
among populations are required. Frequency experience may also range from
hard data to softer memories, thus posing choices between soft experience that
is judged more relevant to the specific situation and hard data that is judged
less relevant. Finally, as noted already in Sect. 4, the empirical foundations
of parametric likelihood factors that are implicitly assumed by both Fisher
and frequentists to be more sound than that of many Bayesian prior factors
cannot be based only on the specific situation under analysis but also entail
acceptance of adequate model fit to a range of other situations. The lesson
is that all approaches to formal statistical reasoning implicitly assume a big
and somewhat vague family of unrealized situations that includes the specific
situation under analysis. As a matter of practice, the issue here may be less
important than it was several decades ago because serious Bayesian applica-
tions are generally based on models that are stitched together from layers of
parametric and hyperparametric models that often appear supportable sci-
entifically, while ultimate hyperpriors are often arguably unimportant within
plausible limits. There is little reason in any of this to question logicism.

The D-S perspective, as seen through my eyes, is based on the construc-
tion of a model with a formal data structure representing a defined piece of
an objective world of facts. Above the data structure sits a set of probabilistic
relations about which rather strong “independence” assumptions are made.
Although my original motivation was to put a coherent foundation under the
models and reasoning of Fisher’s fiducial method, it soon became clear that
the umbrella thus created includes Bayesian inference and propositional logic,
and various mixtures, within a logicist stew. Shafer (1976) was responsible
for lifting the theory beyond its narrow source in applications to paramet-
ric sampling theory, and may have inadvertently put up a barrier against
probabilists and statisticians by introducing wholesale new terminology such
as “frame of discernment”, “basic probability assignment” and “commonal-
ity function” for what are essentially a sample space, a probability measure
, and a characteristic function. Clearly, however, statistics was not ready for
these ideas 30 or 20 years ago, or even today. There have all along, however,
been pockets of interest in fields open to the “artificial intelligence” implicit
in logicist thinking. Among the jungle of proposals that accompany attempts
to reason formally about uncertainty, the D-S theory survives and I believe
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will grow and prosper. Detailed sorting out of the history, present state, and
prospects requires a further lengthy paper.

Probability models of all kinds are built up in most examples by hypoth-
esizing independent stochastic relations operating on different subsets of the
variables of a multivariate system. A typical big and complex probability
model is arrived at via “independence” assumptions. Independence has a pre-
cise meaning in the mathematics of probability theory, in terms of joint prob-
abilities being products of marginal probabilities. Most models, especially in
the hard sciences also have many nonprobabilistic relations, such as differential
equations governing physical processes of motion or energy flow. In addition
there are generally other nonprobabilistic logical statements, such as an asser-
tion that a subsystem “I” is part of a larger system “K”. These deterministic
relations possess another kind of “independence” in that they are generally
assumed to hold simultaneously, implying that they do not interfere with each
other, or indeed interfere with the assumed probability laws. The key idea driv-
ing D-S theory is that there is one overarching independence concept at work
both within and between the probabilistic and nonprobabilistic components
of the full model. This is mathematically represented by the simple (“Demp-
ster”) rule of combination central to my first papers on the subject (Dempster,
1966, 1967) which essentially unify propositional and probabilistic logic in a
coherent way.

D-S independence has a special role in relation to observations that is often
insufficiently heeded by users who focus mechanically on applying formal rules
of conditioning to data. The issue arises in various special manifestations of
the theory, including Fisher’s fiducial theory and standard Bayesian theory.
The essence of Fisher’s independence assumption is plain to see in the simplest
example of a fiducial argument. Suppose that an observable X is a measure-
ment of a quantity U , where measurement error E = X − U is assumed
distributed with a known density f(e). The mechanics of the argument is to
regard X as known, and to use the relation U = X − E together with the
density f(e) to deduce the fiducial distribution of U .

The independence assumption here is evidently that E is independent
of X . Most statisticians are programmed to think this is wrong, even a
grievous error, based I believe on the random mechanism attitude to proba-
bility, namely that “nature” somehow first fixed U and then independently
“drew” E at random. It is certainly a very fundamental part of informal
scientific thought to delve into the operational, causal nature of error mech-
anisms. But this important scientific activity is quite different from depend-
ing on belief in a nonexistent objective random mechanism. From a logi-
cist perspective, it is a deliberate judgment call in the course of model
construction to decide on a particular type of independence. The exam-
ple is too simple to convey the flavor of real modeling. In complex exam-
ples, it may not seem at all unreasonable to assume a Fisherian “pivotal
quantity” ( illustrated by E in the simple example) to be independent of
observables.
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D-S theory casts an unfamiliar light on Bayesian inference by noting that
when the latter is viewed as a special case (Dempster, 1968a) there is an
implicit assumption that the observables are independent of the other relations
assumed in the model. Bayes’s original definition of conditional probability has
long seemed to me too casual in that users are not cautioned on the implicit
independence assumption in Bayesian conditioning. It is not just observed
facts that matter, but also whether these facts interact with the evidence that
was used to construct a prior model. Data selection processes, for example,
can easily bias näıve Bayesian inferences. Before Bayesian conditioning can
be used, D-S independence of data and prior should be assessed and judged
credible.

Logicism can provide an anchor for procedures based on nonprobabilistic
heuristics. While logic and procedure are complementary (Dempster, 1968b),
and logic is an important source of procedures, in most of modern statistics
procedure is in effect used as a substitute for logic. For example, an area of
active research concerns “classification”, now often called “supervised machine
learning” in terms popularized by computer scientists. The task is to learn
from “training data” how to classify a statistical unit (object, person, etc.)
into one of a defined finite set of classes on the basis of an observed multivari-
ate vector of characteristic. In pure form, the learning is done by analyzing a
set of samples of observed vectors of units from each of the classes. A “val-
idation” data set is typically withheld from the training set, to be used for
assessing the properties of the estimated classification rule, free from biases
that would affect unadjusted assessment from the training data. Current inter-
est centers around an approach to improving classifier performance called
“boosting.”

My point in raising classification and boosting is to contrast nonlogicist
prediction with probabilistic logicism. It is premature to assess overall techni-
cal merit and importance of a field under rapid development, but the mindset
especially among computer scientists appears to be that perfect classification
is the goal. Failing that, maximizing correct classification rates on a range of
trial examples is the prime objective, recognizing that “overfitting” may bias
rates developed from training data alone unless adjusted from a validation set..
The objective when classifying a new unit is a discrete “decision” that is either
right or wrong, evaluated through percentages of correct choices averaged over
populations of assorted types. Nonprobabilistic boosting theory seeks bounds
on the performance of a classifier (Schapire et al, 1998), much as bounds can
be placed on the accuracy of a numerical algorithm. A mindset more conge-
nial to statisticians is to postulate an intrinsic probability limit to accuracy of
classification given stated data. Frequentist statisticians regard such probabil-
ities as objective quantities, defined as hypothetical population frequencies.
As is often the case, mysterious heuristics that work well are understandable
as approximations to frequentist Bayesian decision procedures (Freeman et
al, 2000). Carrying the argument one further step, full logicist justification
asks for the Bayesian assumption to be credible, in the sense of being “your”
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FSP representation of uncertainty, whence Bayesian posterior computation
automatically takes care of overfitting without recourse to a validation set.

My criticism here is basically that the applied statistician’s duty is not
primarily knowledge derived from mathematical assessment of procedures.
This is important work for academic theoreticians, but in actual practice
the need is for case by case evaluation of the science-based assumptions that
underlie the specifics of each inference and subsequent policy recommendation.
The machine learning literature, for example, is typically silent on the sources
of training and validation data sets, largely ignoring the detailed knowledge
and understanding of scientific context that are central to applied predictive
inference. While frequentist statistics provides tools to evaluate procedures, as
far as I can see only FSP provides a direct entree to situations where specific
uncertainties merit quantification. Denying FSP and associated probabilistic
inference in effect pulls the rug out from under the science.

7 End Notes: Models, Behavior, and Decisions

Formal models and related formal inferences are thin constructed overlays
on rich complexes of informal knowledge and understanding. They are tools
that should not be confused with the realities that they are designed to illu-
minate. Discussion about whether models and inferences are right or wrong
is misplaced. The issue is rather whether formal constructs accomplish the
goals for which they are intended, namely to support and quantify informal
judgments, always accompanied by specific concerns and safeguards against
overdependence on fallible and limited idealizations. Nevertheless, since real
people have only vague thoughts about uncertainty, they can derive major
benefits from carefully crafted crutches that draw on FSP. Ultimate scientific
reports necessarily use informal natural language to describe uncertainty, but
when accompanied by accurate perceptions of the implied meaning of formal
probabilistic inferences, including postdictive and predictive interpretations of
FSP, formal statistical inferences add valuable quantitative support to assess-
ments of uncertainty.

The approach described as proceduralism in Sect. 1 is quite different. The
proceduralist approach to inferential analysis consists of selecting and apply-
ing a procedure, then reporting results for interpretation by the user. Selecting
a procedure can be described as behavior, and hence can be rationalized as
having occurred as the result of a choice among alternative possible behaviors.
The decision to select and use a particular procedure is governed by demon-
strating desirable properties of the procedure. Neyman (1955, 1957) promoted
the term “inductive behavior” for this attitude to statistical analysis, where
his use of the term “inductive” was evidently designed to provide a counter-
weight to Fisher’s repeated use of the same term in relation to various styles
of probabilistic reasoning about data. It was also in tune with a widespread
belief in behaviorism as a philosophy of science, namely, the thesis that only
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phenomena that are objectively observed can be studied scientifically, and
hence we should attempt only to construct a statistical theory to guide deci-
sions that are a matter of objective record, not purely mental processes that
cannot be directly measured.

I believe that behaviorist philosophy is less heard from at present, now
that human brains can be observed more directly, and computer models move
closer to mimicking human reasoning capabilities, thus providing formal mod-
els of such reasoning. Historically, however, the concept of decision-theoretic
optimization of choices among procedures is a powerful metaphor for practice
that characterizes much of the fundamental development in mathematical
statistics that peaked about 1950. It has its roots in 18th Century discus-
sions of what constitutes the “best mean” (Todhunter, 1865). Fisher’s (1922,
1925) theory of estimation put point estimation on a modern track, especially
through its identification of “maximum likelihood estimation” and the asso-
ciated asymptotic “efficiency” concept. The Neyman-Pearson (1928) theory
of hypothesis testing put an analogous choice-of-procedure foundation under
Fisher’s significance testing methodology. Wald’s (1950) frequentist decision
theory created an inclusive framework for both estimation and hypothesis
testing, and included real world decisions, such as choices among different
rules to underlie investment decisions. Wald’s recognition of the “game against
nature” analogy, and his fundamental theorems about “minimax” and “admis-
sible” procedures that tied frequentist decision theory to “Bayesian decision
rules”, represent the high point of frequentist development.

There is a fundamental confusion at the root of statistical decision theory.
Does the term “decision” refer to making a choice among different procedures
for a class of applications, such as different procedures for testing a mathemat-
ically defined null hypothesis, as envisaged by inductive behavior? Or does it
refer to statistical “decisions” in the sense of outputs of procedures, such as
deciding to “accept” or “reject” a null hypothesis? Parallel questions concern
the role of stochastic model assumptions. Is an assumed model primarily used
to compute operating characteristics of different candidate procedures? Or is
it used to compute inferential statistics such as confidence coefficients or p-
values in a particular application of a specific procedure? The first of each of
these pairs of questions is much closer to development of mathematical theory
than it is to practice. As always in frequentist theory, there is no clear con-
nection between what the theory usefully and legitimately means concerning
long run outcomes, and how it helps convey a clear message about a specific
data analysis at hand.

In considering when decision theory is applicable, a distinction is appropri-
ate between the action of choosing and implementing one statistical procedure
over another, and the action of choosing one formula over another and actually
using it in daily life, for example, to determine what one decides is appropri-
ate to pay for a security. A cost function is required for decision-theoretic
analysis in both types of situation, but in the former case net cost is typically
represented as a “loss function” of convenience, such as an expected squared
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error or an expected misclassification rate, while actions carried out in the
real world have consequences that relate directly to costs with measurable
economic, social, or medical effects. It is arguable that only the latter type
constitutes an operationally meaningful application of decision theory. Either
way, there are strong arguments, ranging from Wald’s frequentist admissibility
theorem, to axiomatic arguments such as those of Savage (1954), suggesting
that if decisions must be made they ought to be made Bayesianly.

A difficulty with proceduralist decision theory is that users of statistical
methods do not always understand the arms length separation of proceduralist
advisors from in situ needs of scientists and professionals to draw inferences
and make choices in specific situations. Although Neyman and Pearson and
many distinguished theoreticians following them have been very clear in their
expositions about the frequentist meaning of Type 1 and Type 2 errors, the
statement that a hypothesis H is rejected at the .05 level is very widely misin-
terpreted by scientific users as meaning that there is probability .05 that the
null hypothesis is true and .95 that it is false. Tukey (1961) refers to this as
“badmandment number 100” and Lindley (1997) calls it “the fallacy of the
transposed conditional”. From the logicist perspective, the problem is that an
FSP that can legitimately be interpreted postdictively is being illegitimately
interpreted predictively, in large part because several generations of statistics
teaching have not explained the natural postdictive logic of S-inference.

The Bayesian school would prefer to get rid of S-inference completely. This
effort is futile, however, for we cannot replace Fisherian significance testing by
a purely Bayesian approach without compromising the entrenched principle
that science often advances by comparing observations against prior predic-
tions of those observations, which is after all exactly what Fisherian testing
does. Bayes factors (Kass and Raftery, 1995) offer one way to “select” a model,
by comparing marginal likelihoods averaged over prior distributions of param-
eters. An alternative when the focus is on comparing alternative parametric
forms is to use likelihoods in their original unaveraged form to compare dis-
tributions of parametric likelihoods in nonaveraged original forms (Aitkin,
1997, Dempster, 1974, 1997). Either or both of these methods may be used
to assess fit of data to prior predictions, depending on the question asked.
My preference is generally not to extend a Bayes factor ratio to a full Bayes
posterior of a pair of competing hypotheses, since this assumes that choice
of a mixture model with priors on the components has already been made.
Direct postdictive interpretation of a Bayes factor ratio is on its own capable
of supporting a modeling decision to drop a relatively “unlikely” component
model. Professional judgments can differ here, without much practical effect.

Fisher (1935b) remarked that his pretentious title “The logic of inductive
inference” might equally well have been “On making sense of figures”. I believe
that wider recognition of logicist inference offers a way forward for a statistics
profession that is steadily losing ground to newer technology-based specialties
strongly allied to computer science. We need to reassert leadership concerning
quantitative assessment of uncertainty. I believe that the logicist thinking
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surveyed here offer a common sense approach that absorbs methods seen by
too many colleagues as conflicting and contradictory. A healthy future for
statistical professions may depend on developing a critical mass that can break
down unnecessary roadblocks to unity.
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ematics at University Paris 1 Panthéon-Sorbonne ; he became professor at
University Paris 1 in 2000. His research areas are Mathematical Economics
and Decision Theory, where he is particularly interested in the non-additive
decision models.

Arthur P. Dempster (see pp. vii)

Thierry Denœux graduated in 1985 as an engineer from the Ecole Nationale
des Ponts et Chaussées in Paris, and received a doctorate from the same insti-
tution in 1989. Currently, he is Full Professor with the Department of Informa-
tion Processing Engineering at the Université de Technologie de Compiègne,
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Pure argument, 137–138, 140–144, 148,

156–157, 164, 171–172

Quod facile est in re, 121

Refining, 199, 205, 416–417, 668,
673–674, 702, 707, 724

Relative plausibility, 644
Resolution identity, 539–540
Root, 121, 318, 501, 503–504, 508–512,

514, 519, 780
(Dempster’s) rule of combination, 4,

15, 25, 28, 30–31, 119, 146, 186,
202–203, 205, 221, 255–257, 260,
265, 268–269, 272, 293, 356, 420,
425, 435, 437, 446, 449, 451, 526,

533–534, 544–552, 634, 638–639,
695, 701, 721, 741

Scorpion, 361–362, 365
Sentence space, 440–441, 446
Separable support function, 8–12,

22–23, 199, 204, 206, 411–417,
685, 687

Set-based, 668–669
Sigma algebra, 30, 436–437, 439,

443, 445
Simple evidence function, 206–210, 214
Simple support function(s), 7–10,

12, 204–206, 221–223, 237, 239,
250, 268, 294–296, 354–355,
369, 412–413, 415, 453, 457–458,
460–463, 474, 650, 657, 685, 687,
741, 749

Simplex of type, 51–52
Sine qua non, 768
S-measurable, 670, 672, 676
State of nature, 620–622, 624–626,

628–630
Stochastic, 105, 221, 242, 254–256,

258–259, 261, 269, 635, 643, 678,
762, 766–767, 769, 773–774, 777,
780

Strong inclusion, 389–393, 397,
406–408

Structures of the first kind, 40, 42, 55
Structures of the second kind, 40–42,

50–56
Subjective

certainty, 118, 134–135
probability, 18, 21, 117, 122, 272,

346–347, 352, 403, 724, 764–765,
767–769

Summarization, 426
Support set(s), 436, 441–443
Syllogism, 160, 164–169, 171–172, 223

Theory of hints, 31, 675, 792
Total

-evidence design, 21, 348, 350, 353,
357–362, 367–369

ignorance, 16, 75, 202, 384, 393, 634,
637, 653, 700–701, 706, 710, 740

Training set, 686, 688, 737–740, 743,
747–748, 752–753, 778



806 Subject Index

Truth

algebra, 30, 443–444
sets, 436–437, 442–446

Twig, 500–504, 507–508

Uncertainty

measure, 376–378
principle, 76, 98–99

Unnormalized rule of conditioning,
637–639

Upper
distribution function, 59
and lower conditional probabilities,

66–68, 71, 81–82, 719
probability(ies), 43, 48, 58–59, 75,

77, 81, 87, 90, 99, 105–107,
112, 184–185, 200, 437, 445,
531–532, 667

probability(ies) function, 184–185,
200, 437, 445

Vacuous
belief, 306, 634, 650

belief function, 7, 16, 22, 195, 202,
204, 206–207, 268, 275, 294, 323,
412–413, 453, 637, 641, 653–654,
656, 700–701, 706–707, 741, 745

bpa, 316
epistemic probability function, 443
extension, 11, 416–417, 525, 640–642,

651–652, 672, 703, 708, 725
(proper) valuation(s), 505–506, 519,

524–525
Variable(s), 13, 16, 26, 36, 39, 46, 49, 73,

225, 376, 381, 474–475, 500–501,
505–506, 520–522, 525, 531,
535, 545–546, 575, 584, 604–605,
609, 635, 643–645, 654–655, 770,
773, 777

Variate, 59, 61–62

Weight of (internal) conflict, 9–10,
22–23, 32, 208, 413, 416

Weight of evidence, 8–10, 18, 22, 269,
371, 412–413

σ-restriction, 668–671, 673, 675, 678
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