
A Syntax-Directed Hoare Logic
for Object-Oriented Programming Concepts

Cees Pierik1 and Frank S. de Boer1,2

1 Institute of Information and Computing Sciences
Utrecht University, The Netherlands

2 CWI, Amsterdam, The Netherlands
{cees,frankb}@cs.uu.nl

Abstract. This paper outlines a sound and complete Hoare logic for a
sequential object-oriented language with inheritance and subtyping like
Java. It describes a weakest precondition calculus for assignments and
object-creation, as well as Hoare rules for reasoning about (mutually
recursive) method invocations with dynamic binding. Our approach en-
ables reasoning at an abstraction level that coincides with the general
abstraction level of object-oriented languages.

1 Introduction

The concepts of inheritance and subtyping in object-oriented programming have
many virtues. But they also pose challenges for reasoning about programs. For
example, subtyping enables variables with different types to be aliases of the
same object, and it destroys the static connection between a method call and its
implementation. Inheritance, without further restrictions, adds complexity by
permitting objects to have different instance variables with the same identifier.

This paper outlines a Hoare logic for a sequential object-oriented language
that contains all standard object-oriented features, including inheritance, sub-
typing and dynamic binding. The logic consists of a weakest precondition cal-
culus for assignments and object-creation, as well as Hoare rules for reasoning
about (mutually recursive) method invocations with dynamic binding. The re-
sulting logic is complete in the sense that any valid correctness formula can be
derived within the logic.

The Hoare logic presented in this paper is syntax-directed. By a syntax-
directed Hoare logic we mean a Hoare logic that is based on an assertion language
of the same abstraction level as the programming language. In particular, there
is no explicit reference to the object store in our assertion language, as opposed
to [1]. Moreover, our Hoare logic is based on a weakest precondition calculus
that consists of purely syntactical substitution operations.

Hoare introduced the axiom {P [e/x]} x := e {P} for reasoning about simple
assignments in his seminal paper [2]. A semantical variant would be

{P [σ{x := e}/σ]} x := e {P} ,

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 64–78, 2003.
c© IFIP International Federation for Information Processing 2003

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 65

Table 1. The syntax of cOOre.

Below, the operator op is an arbitrary operator on elements of a primitive type, and
m is an arbitrary identifier.

e ∈ Expr ::= null | this | u | e.x | (C)e | e instanceof C | op(e1, . . . , en)
y ∈ Loc ::= u | e.x

s ∈ SExpr ::= new C() | u.m(e1, . . . , en) | super.m(e1, . . . , en)
S ∈ Stat ::= y = e ; | y = s ; | S S | if (e) { S } else { S} | while (e) { S }

meth ∈ Meth ::= m(u1, . . . , un) { S return e ; }
main ∈ Main ::= main() { S }

exts ∈ Exts ::= ε | extends C
class ∈ Class ::= class C exts { meth∗ }

π ∈ Prog ::= class∗ main

where σ{x := e} denotes the state that results from σ by assigning σ(e) to
x. Here, the occurrence of σ shows the employed representation of the state,
and state updates like σ{x := e} reveal the encoding of the semantics. In the
original approach, assertions have the same abstraction level as the programming
language and hide all these details.

Another advantage of the syntax-directed approach can be explained by the
following example. Suppose we want to prove {y = 1} x := 0 {y = 1}. Using
our approach, this amounts to proving the implication y = 1 → y = 1. The
semantical approach requires proving σ(y) = 1 → σ{x := 0}(y) = 1. A theorem
prover must do one additional reasoning step in this case, namely resolving
that y is a different location than x. This step is otherwise encoded in the
substitution. The minor difference in this example leads to larger differences,
for example when reasoning about aliases. Our substitution operation precisely
reveals in which cases we have to check for possible aliases. Finally, observe that
the semantical approach requires an encoding of (elements of) the semantics of
the programming language in the theorem prover.

This paper is organized as follows. In Sect. 2 and 3 we introduce the pro-
gramming language and the assertion language. Section 4 and 5 describe the
weakest precondition calculus for assignments and object creation. In Sect. 6 we
give Hoare rules for reasoning about method calls. Related research is discussed
in the last section. The completeness proof and other details of the logic are
described in the full version of this paper [3].

2 The Object-Oriented Language

The language we consider in this paper (dubbed cOOre) contains all stan-
dard object-oriented features like inheritance and subtyping. For ease of read-
ing, we adopted the syntax of the corresponding subset of Java. The syntax of
cOOre can be found in Table 1.

The primitive types we consider are boolean and int. We assume given a
set C of class names, with typical element C. The set of types T is the union
of the set {int, boolean} and C. In the sequel, t will be a typical element of
T . The language is strongly-typed. By [[e]] we denote the (declared) static type

66 Cees Pierik and Frank S. de Boer

of expression e. The type of this is determined by its context. We will silently
assume that all expressions are well-typed.

By TVar we denote the set of local (or temporary) variables. Each class C
is equipped with a set of instance variables IVarC . We use u and x as typical
elements of the sets TVar and IVarC , respectively. The location y is either a local
variable or an instance variable. Instance variables belong to a specific object
and store its internal state. Local variables belong to a method and last as long
as this method is active. A method’s formal parameters are also local variables.

A program in cOOre is a finite set of classes and a main method which
initiates the execution of the program. A class defines a finite set of methods. A
method m consists of its formal parameters u1, . . . , un, a statement S, and an
expression e without side effect which denotes the return value. A clause class
C extends C ′ indicates that class C is a subclass of C ′. It implies that class C
inherits all methods and instance variables of class C ′.

The expression e.x refers to the instance variable x of object e as found in
class [[e]] or, if not present in IVar[[e]], the first occurrence of this variable in a
superclass of [[e]]. Observe that a class C can hide an inherited instance variable
x by defining another instance variable x. An expression e.x, with [[e]] = C,
will then refer to the new variable. The cast operator (C) in (C)e changes the
type of expression e to C. Thus it can be used to access hidden variables. For
example, ((C)this).x denotes the first occurrence of an instance variable x of
object this as found by an upward search starting in class C. This might be a
variable different from this.x. We assume that [[e]] in (C)e is a reference type.
An expression e instanceof C is true if e is non-null and refers to an instance
of (a subclass of) class C.

We have the usual assignments of expressions to variables. An assignment y =
new C() involves the creation of an object of class C. Note that the language does
not include constructor methods declarations. Thus an expression like new C()
will call the default constructor method, which will assign to all instance variables
their default value.

Observe that the callee of a method call can be denoted by a local variable
only. We assume that all methods are public. An assignment y = u.m(e1, . . . , en)
involves a call of method m of the object denoted by the local variable u. These
calls are bound dynamically to an implementation, depending on the class of
the object denoted by u. Calls of the form y = super.m(e1, . . . , en) are bound
statically. The corresponding implementation is found by searching upwards in
the class hierarchy for a definition of m, starting in the superclass of [[this]].

The language cOOre permits only side effects in the outermost operator.
This is a common restriction in Hoare logics that clarifies the presentation of the
logic. However, it is not essential. Early work by Kowaltowski already introduces
a general approach to side effects [4]. On the other hand, one could argue that the
restriction on side effects leads to more reliable programs. Gosling et al. remark:
‘Code is usually clearer when each expression contains at most one side effect,
as its outermost operation, and when code does not depend on exactly which
exception arises as a consequence of the left-to-right evaluation of expressions.’
[5, p. 305]

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 67

2.1 Semantics

In this section, we only describe the semantics of expressions because this suffices
to understand the rest of the paper. The semantics of cOOre is defined in terms
of a representation of the state of an object-oriented program and a subtype
relation.

By t � t′ we denote that t is a subtype of t′. The relation � is given by the
class definitions in the program. The declaration class A extends B implies
that A � B (where A � B denotes that class A is a direct subclass of class B).
In fact, the � relation is a partial function that defines the superclass of a class.
Therefore we will assume that F�(C) denotes the direct superclass of a class C.
The partial order � is the reflexive, transitive closure of the � relation. We say
that t′ is a proper subtype of t, denoted by t′ ≺ t, if t′ � t and t′ �= t.

We represent objects as follows. Each object has its own identity and belongs
to a certain class. For each class C ∈ C we introduce therefore the infinite set
OC = {C}× IN of object identities in class C (here IN denotes the set of natural
numbers). Let subs(C) be the set {C ′ ∈ C|C ′ � C}. By dom(C) we denote the
set (

⋃
C′∈subs(C) OC′

) ∪ {⊥}. Here ⊥ is the value of null. In general, ⊥ stands
for ‘undefined’. For t = int, boolean, dom(t) denotes the set of boolean and
integer values, respectively.

The internal state of an object o ∈ OC is a total function that maps the
instance variables of class C and its superclasses to their values. Let supers(C)
be the set {C ′ ∈ C|C � C ′}. The internal state of an instance of class C is an
element of the set internal(C), which is defined by the (generalized) cartesian
product ∏

C′∈supers(C)

(∏

x∈IVarC′

dom([[x]])
)

.

A configuration σ is a partial function that maps each existing object to its
internal state. We will assume that σ is an element of the set Σ, where

Σ =
∏

C∈C

(
IN ⇀ internal(C)

)
.

In the sequel, we will write σ(o) for some object o = (C, n) as shorthand
for σ(C)(n). In this way, σ(o) denotes the internal state of an object. It is not
defined for objects that do not exist in a particular configuration σ. Thus σ
specifies the set of existing objects. We will only consider configurations that are
consistent. We say that a configuration is consistent if no instance variable of an
existing object refers to a non-existing object.

The local context τ ∈ T specifies the active object and the values of the local
variables. Formally, T is the set

(
⋃

C∈C
dom(C)) ×

∏

u∈TVar

dom([[u]]).

The first component of any τ is the active object and the second component is
a function which assigns to every local variable u its value. The first component

68 Cees Pierik and Frank S. de Boer

Table 2. Evaluation of expressions.

E(null)(σ, τ) = ⊥
E(this)(σ, τ) = τ(this)

E(u)(σ, τ) = τ(u)

E(e.x)(σ, τ) =
{⊥ if E(e)(σ, τ) = ⊥

σ(E(e)(σ, τ))(resolve([[e]])(x))(x) otherwise

E((C)e)(σ, τ) =
{⊥ if E(e)(σ, τ) = (C′, n) and C′ �� C

E(e)(σ, τ) otherwise

E(e instanceof C)(σ, τ) =
{

false if E(e)(σ, τ) = ⊥
C′ � C if E(e)(σ, τ) = (C′, n)

E(op(e1, . . . , en))(σ, τ) =
{⊥ if e′

i = ⊥ for some i = 1, . . . , n
ōp(e′

1, . . . , e
′
n) otherwise,

where ōp denotes the fixed interpretation of op, and
e′

i = E(ei)(σ, τ), for i = 1, . . . , n.

will be ⊥ if there is no active object, which is the case during execution of the
main method. In the sequel, we denote the first component o of a local context
τ = 〈o, f〉 by τ(this) and f(u) by τ(u). Although the local state of the main
method can be 〈⊥, f〉, we will assume in other methods that the first element is
an existing object. A local state is consistent with a global configuration if all
local variables do not refer to non-existing objects. A state is a pair (σ, τ), where
the local context τ is required to be consistent with the configuration σ.

To find fields in an internal state we need a way to determine in which class
a field is declared. As explained above, the type of the quantifier e determines to
which field an expression e.x refers. We introduce a function resolve that yields
the class of the field to which the expression e.x refers given [[e]] and x. It is
defined as follows.

resolve(C)(x) =
{

C if x ∈ IVarC

resolve(F�(C))(x) otherwise

Expressions are evaluated relative to a subclass relation �, a configuration σ,
and a local context τ . The result of the evaluation of an expression e is denoted
by E(e)(σ, τ). The � relation is left implicit. The definition of E can be found in
Table 2.

3 The Assertion Language

The proof system is tailored to a specific assertion language called AsO (As-
sertion language for Object structures). The syntax of AsO is defined by the
following grammar.

l ∈ LExpr ::= null | this | u | z | l.x | (C)l | l1 = l2 | l instanceof C
| op(l1, . . . , ln) | if l1 then l2 else l3 fi

P, Q ∈ Ass ::= l1 = l2 | ¬P | P ∧ Q | ∃z : t(P)

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 69

Table 3. Evaluation of assertions.

L(z)(σ, τ, ω) = ω(z)

L(l1 = l2)(σ, τ, ω) =
{

true if L(l1)(σ, τ, ω) = L(l2)(σ, τ, ω)
false otherwise

L(if l1 then l2 else l3 fi)(σ, τ, ω) =




⊥ if L(ll)(σ, τ, ω) = ⊥
L(l2)(σ, τ, ω) if L(l1)(σ, τ, ω) = true
L(l3)(σ, τ, ω) if L(l1)(σ, τ, ω) = false

In the assertion language we assume a set of (typed) logical variables LVar
with typical element z. We include expressions of the form (C)l to be able to
access hidden instance variables. The use of l instanceof C will become clear
in Sect. 6. We sometimes omit the type information in ∃z : t(P) if it is clear
from the context.

The assertion language is strongly-typed similar to the programming lan-
guage. Logical variables can additionally have type t∗, for some t in the old set
of types T . This means that its value is a finite sequence of elements of dom(t).
Therefore dom(t∗) is the set of finite sequences of elements of dom(t).

Assertion languages for object-oriented programs inevitably contain expres-
sions like l.x and (C)l that are normally undefined if, for example, l is null.
However, as an assertion their value should be defined. We solved this problem
by giving such expression the same value as null. By only allowing the non-
strict equality operator as a basic formula, we nevertheless ensure that formulas
are two-valued. If we omit this operator the value is implicitly compared to true.
An alternative solution which is employed in JML [6] is to return an arbitrary
element of the underlying domain.

Logical expressions are evaluated relative to a subclass relation �, a config-
uration σ, a local context τ , and a logical environment ω ∈

∏
z∈LVar dom([[z]]),

which assigns values to the logical variables. The logical environment is restricted
similar to a local context: no logical variable is allowed to point to an object that
does not exist in the current configuration.

The result of the evaluation of an expression l is denoted by L(l)(σ, τ, ω).
Again, we leave the � relation implicit. The function L is similar to E for all
constructs that are present in cOOre. All new cases are listed in Table 3.

A formula ∃z : C(P) states that P holds for an existing instance of (a subclass
of) C or null. Thus the quantification domain of a variable depends not only
on the type of the variable but also on the configuration. Let qdom(t, σ) denote
the quantification domain of a variable of type t in configuration σ. We define
qdom(C, σ) = {o ∈ dom(C)|σ(o) is defined }∪{⊥}. A formula ∃z : C∗(P) states
the existence of a sequence of existing objects. Therefore, we define

qdom(C∗, σ) = {α ∈ dom(C∗)|∀n ∈ IN.α[n] ∈ qdom(C, σ)} .

Finally, we have qdom(t, σ) = dom(t) for t ∈ {int, boolean, int∗, boolean∗}.
The evaluation of a formula P can be defined similar to the evaluation of

a logical expression. The resulting value is denoted by A(P)(σ, τ, ω). The only

70 Cees Pierik and Frank S. de Boer

interesting case is A(∃z : t(P))(σ, τ, ω), which yields true if A(P)(σ, τ, ω{α/z}) =
true for some α ∈ qdom(t, σ) and false otherwise.

The standard abbreviations like ∀zP for ¬∃z¬P are valid. The statement
σ, τ, ω |= P means that A(P)(σ, τ, ω) yields true.

4 Assignments and Aliasing

This section shows how we model simple assignments by means of a substitu-
tion operation. The basic underlying idea as originally introduced in [2] is that
the assertion that results from the substitution has the same meaning in the
state before the assignment as the unmodified assertion in the state after the
assignment. In other words, the substitution computes the weakest precondition.

First we observe that given an assignment u = e, and a postcondition P , the
assertion P [e/u] obtained from P by replacing every occurrence of u by e is not
the weakest precondition. Subtyping combined with dereferencing is the cause of
this phenomenon. Subtyping allows u and e to have different types. This implies
that the substitution [e/u] might change the type of an expression l. The only
restriction imposed by the language is that [[e]] � [[u]].

To see where things go wrong, consider the following case. Suppose we have
two classes C1 and C2 such that C2 ≺ C1. Furthermore, assume that in each of
the two classes an instance variable x of type int is defined. Finally, suppose
that we have two local variables u1 and u2, such that [[u1]] = C1 and [[u2]] = C2.
Now consider the specification of the following assignment.

{u2.x = 3} u1 = u2; {u1.x = 3}

This specification is not valid. Clearly, we have that u1.x = 3[u2/u1] ≡ u2.x = 3
(denoting syntactical equality by ≡). But the expressions u1.x and u2.x point to
different locations, even if u1 and u2 refer to the same object, because the types
of u1 and u2 are different. A correct specification would be

{((C1)u2).x = 3} u1 = u2; {u1.x = 3} .

The above specification presents the key to the solution of this problem.
The result of the substitution [e/u] should be changed in such a way that the
types remain unchanged. This can be done by changing the result of u[e/u] to
cast?([[u]], e). The auxiliary function cast?(t, l) is defined as follows.

cast?(t, l) =
{

l if t is a primitive type
(t)l otherwise

All other cases of the substitution [e/u] correspond to the standard notion
of (structural) substitution. We will assume in the rest of this paper that a sub-
stitution of the form [e/u] corresponds to this modified substitution operation.
The following theorem states that P [e/u] is the weakest precondition of P with
respect to the assignment u = e.

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 71

Theorem 1. If [[e]] � [[u]] we have

σ, τ, ω |= P [e/u] if and only if σ, τ ′, ω |= P ,

where τ ′ denotes the local state that results from τ by assigning E(e)(σ, τ) to u.

The above theorem justifies the axiom {P [e/u]} u = e {P}. A crucial part
of the proof consists of showing type preservation of [e/u], that is, proving that
[[l[e/u]]] = [[l]].

For the same reason, the usual notion of substitution does not suffice for
an assignment e.x = e′. But such assignments are also complicated because of
possible aliases of the location e.x, namely expressions of the form l.x. It is
possible that l refers to the object denoted by e (before the assignment), which
implies that l.x denotes the same location as e.x and should be substituted by
e′. If l does not refer to object e no substitution should take place. If we cannot
decide between these possibilities by the form of the expression and their types,
a conditional expression is constructed which decides dynamically.

The definition of the substitution operation [e′/e.x] is straightforward in
most cases. The most interesting case is l.x[e′/e.x]. It results in one of the two
following expressions. If [[l]] � [[e]] or [[e]] � [[l]] and, moreover, resolve([[l]])(x) =
resolve([[e]])(x), we have

l.x[e′/e.x] ≡ if l[e′/e.x] = e then cast?([[l.x]], e′) else (l[e′/e.x]).x fi .

Otherwise, we simply have l.x[e′/e.x] ≡ (l[e′/e.x]).x. This can be explained as
follows. Note that if [[l]] �� [[e]] and [[e]] �� [[l]] then the expressions l and e cannot
refer to the same object, because the domains of [[l]] and [[e]] are disjoint. The
clause resolve([[l]])(x) = resolve([[e]])(x) checks if the two occurrences of x denote
the same instance variable. We define l.y[e′/e.x] ≡ (l[e′/e.x]).y if x and y are
syntactically different. The definition is extended to assertions in the standard
way.

As a simple example, we consider the assignment this.x = 0 and the postcon-
dition u.y.x = 1, where x and y are instance variables and u is a local variable.
Considering types, we assume in this example that [[u.y]] = [[this]] = C and
[[u]] = C ′. Applying the corresponding substitution [0/this.x] to the assertion
u.y.x = 1 results in the assertion

(if u.y = this then 0 else u.y.x fi) = 1 .

This assertion clearly is logically equivalent to ¬(u.y = this) ∧ u.y.x = 1.
The following theorem states that P [e′/e.x] is indeed the weakest precondi-

tion of the assertion P with respect to the assignment e.x = e′. Thus it justifies
the axiom {P [e′/e.x]}e.x = e′{P}. Its proof again requires showing type preser-
vation of the substitution.

Theorem 2. If [[e′]] � [[e.x]] and E(e)(σ, τ) �= ⊥ we have

σ, τ, ω |= P [e′/e.x] if and only if σ′, τ, ω |= P ,

where σ′(o)(resolve([[e]])(x))(x) = E(e′)(σ, τ), for o = E(e)(σ, τ), and in all other
cases σ agrees with σ′.

72 Cees Pierik and Frank S. de Boer

5 Object Creation

Next we consider the creation of objects. Our goal is to define a substitution
[new C/u] which computes the weakest precondition of the assignment u =
new C(). Note that an assignment e.x = new C() can be simulated by the
sequence of assignments u = new C(); e.x = u, where u is a fresh local variable.
The weakest precondition of an assignment e.x = new C w.r.t. postcondition P
is therefore P [u/e.x][new C/u], where u is a fresh local variable which does not
occur in P and e.

For certain logical expressions l we cannot define a weakest precondition
l[new C/u], because they refer to the new object, and there is no expression that
refers to this object in the state before its creation, because it does not exist
in that state. Therefore the result of the substitution must be left undefined in
some cases. However, we can define the substitution on any logical expression l
that is not of the form u, (C ′)u or if l1 then l2 else l3 fi with [[l2]] = [[l3]] ∈ C.
This suffices to define [new C/u] on any formula. We will do so by means of a
contextual analysis of the occurrences of u.

To simplify the definition of [new C/u] we start by rewriting logical expres-
sions into a normal form. This proceeds in two steps. Firstly, we remove all
occurrences of casts of conditional expressions by means of the following equiv-
alence.

(C)if l1 then l2 else l3 fi = if l1 then (C)l2 else (C)l3 fi

Secondly, we remove all expressions of the form (C ′)(C ′′)u. Observe that such an
expression is either equivalent to (C ′)u or (C ′)null, depending on the validity
of C � C ′′. In both steps we replace an expression by an expression of the same
type.

Due to space limitations we cannot give all cases of l[new C/u]. But we
trust that the general idea becomes clear by considering the following examples,
starting with l.x[new C/u]. In general, we have to give special attention to cases
where l[new C/u] may be undefined. Therefore we single out the case where
l ≡ u.

u.x[new C/u] ≡






false if [[u.x]] = boolean
0 if [[u.x]] = int
null otherwise

This example shows that we can find an equivalent expression even if the
substitution is undefined for l. The instance variables of a new object have their
default values after creation. These values depend on the types of the variables,
which is reflected by the above substitution. The case where l ≡ (C ′)u is similar,
but requires additionally checking if C � C ′ to predict if the cast will succeed.
If the cast fails, one can return null.

The other special case is that of a conditional expression. Suppose that
[[(if l1 then l2 else l3 fi).x]] = C ′. Then we define

(if l1 then l2 else l3 fi).x[new C/u]
≡ if l1[new C/u] then ((C ′)l2).x[new C/u] else ((C ′)l3).x[new C/u] fi .

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 73

In all other cases we have l.x[new C/u] ≡ (l[new C/u]).x.
The changing scope of a bound occurrence of a variable z ranging over ob-

jects, as induced by the creation of a new object, is captured as follows. We
define (∃z : C ′(P))[new C/u]

≡
{

(∃z : C ′(P [new C/u])) ∨ (P [(C ′)u/z][new C/u]) if C � C ′

∃z : C ′(P [new C/u]) otherwise.

The idea of the application of [new C/u] to (∃zP) is that the first disjunct
∃z(P [new C/u]) represents the case that P holds for an old object whereas the
second disjunct P [(C ′)u/z][new C/u] represents the case that the new object
itself satisfies P . The substitution [(C ′)u/z] consists of simply replacing every
occurrence of z by (C ′)u. The other cases of l[new C/u] and P [new C/u] can be
found in [3].

The following theorem states that P [new C/u] indeed calculates the weakest
precondition of P (with respect to the assignment u = new C()).

Theorem 3. Let [[u]] � C. Then we have

σ, τ, ω |= P [new C/u] if and only if σ′, τ ′, ω |= P ,

where σ′ is obtained from σ by extending the domain of σ with a new object
o = (C, n) �∈ qdom(C, σ) and setting its instance variables at their default values.
Furthermore, the resulting local context τ ′ is obtained from τ by assigning o to
the variable u.

6 Method Invocations

In this section we discuss the rules for method invocations. In particular, we will
analyze reasoning about dynamically bound method calls like in the statement
S ≡ y = u.m(e1, . . . , en). A correctness formula {P}S{Q} implies that Q holds
after the call independent of which implementation is executed. Therefore we
must consider all implementations of m that are defined in (a subclass of) [[u]],
and the implementation that is inherited by class [[u]] if it does not contain an
implementation of method m itself.

The challenge in this section is to show that our assertion language is able to
express the conditions under which an implementation is bound to a particular
call given the restriction imposed by the abstraction level. That is, by using
only expressions from the programming language. Secondly, we aim to define
and present the rules in such a way that their translation to proof obligations
in proof outlines for object-oriented programs is straightforward. For both these
reasons we cannot adopt the virtual methods approach as proposed in [1].

We first consider a statement of the form y = super.m(e1, . . . , en), because
this allows us to explain many features of our approach while postponing the
complexity of late binding. Suppose that the statement occurred somewhere
in the definition of a class C. Assume that searching for the definition of m
starting in the superclass of C ends in class C ′ with the following implemen-
tation m(u1, . . . , un) { S return e }. Then the invocation super.m(e1, . . . , en)

74 Cees Pierik and Frank S. de Boer

is bound to this particular implementation. The following rule for overridden
method invocations (OMI) allows the derivation of a correctness specification
for y = super.m(e1, . . . , en) from a correctness specification of the body S of
the implementation of m.

{P ′ ∧ I}S{Q′[e/return]} Q′[(C ′)this/this][f̄/z̄] → Q[return/y]
{P ′[(C ′)this, ē/this, ū][f̄/z̄]} y = super.m(e1, . . . , en) {Q}

(OMI)

The precondition P ′ and postcondition Q′ of S are transformed into corre-
sponding conditions of the call by the substitution [(C ′)this/this]. This sub-
stitution reflects the context switch. The active object is the same in both con-
texts, but its type differs. The substitution corrects this. It corresponds to the
standard notion of structural substitution, but should take place simultaneously
with the (also simultaneous) substitutions [ē/ū]. These substitutions model the
assignment of the actual parameters ē = e1, . . . , en to the formal parameters
ū = u1, . . . , un. Note that we have for every formal parameter ui and corre-
sponding actual parameter ei that [[ei]] � [[ui]]. So the simultaneous substitution
we mean here is the generalization of [e/u] as defined in Sect. 4. Except for the
formal parameters u1, . . . , un, no other local variables are allowed in P ′. We do
not allow local variables in Q′.

We cannot simply substitute y by the result value e in Q, because e may
refer to local variables of S that might clash with local variables of the caller.
Therefore we introduce a logical variable return. The substitution [e/return]
applied to the postcondition Q′ of S in the first premise models a (virtual)
assignment of the result value to the logical variable return, which must not
occur in the assertion Q. The related substitution [return/y] applied to the
postcondition Q of the call models the actual assignment of the return value to
y. The substitution corresponds to one of the enhanced notions of substitution
as defined in Sect. 4.

The assertion I in the precondition of S specifies the initial values of the local
variables of m (excluding its formal parameters): In cOOre we have u = false,
in case of a boolean local variable, u = 0, in case of an integer variable, and
u = null, for a reference variable.

Next we observe that the local state of the caller is not affected by the
execution of S by the receiver. For this reason we know that an expression that
only refers to local variables of the caller or the keyword this is constant during a
method call. Such an expression f is generated by the following abstract syntax.

f ::= null | this | u | (C)f | f1 = fn | f instanceof C | op(f1, . . . , fn)
| if f1 then f2 else f3 fi

A sequence of such expressions f̄ can be substituted for a corresponding sequence
of logical variables z̄ of exactly the same type in the specification of the body S.
Without these substitutions one cannot prove anything about the local state of
the caller after the method invocation.

Next, we analyze reasoning about method invocations that are dynamically
bound to an implementation like in the statement S ≡ y = u.m(e1, . . . , en). For
this purpose we first define some abbreviations.

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 75

Firstly, we formalize the set of classes that provide an implementation of a
particular method. Assume that methods(C) denotes the set of method identifiers
for which an implementation is given in class C. The function impl yields the
class that provides the implementation of a method m for objects of a particular
class. It is defined as follows.

impl(C)(m) =
{

C if m ∈ methods(C)
impl(F�(C))(m) otherwise

We can generalize the above definition to get all implementations that are
relevant to a particular domain. This results in the following definition.

impls(C)(m) = {C ′ ∈ C|impl(C ′′)(m) = C ′ for some class C ′′ with C ′′ � C} .

Thus the set impls([[u]])(m) contains all classes that provide an implementation
of method m that might be bound to the call u.m(e1, . . . , en).

Another important issue when reasoning about methods calls is which classes
inherit a particular implementation of a method. For that reason we consider
the subclasses of a class C that override the implementation given in class C.
We denote this set by overrides(C)(m). We have C ′ ∈ overrides(C)(m) if C ′ is a
proper subclasses of C with m ∈ methods(C ′) and there does not exist another
proper subclass C ′′ of C such that C ′ ≺ C ′′ and m ∈ methods(C ′′). With this
definition we can formulate the condition for an implementation of m in class C
to be bound to a method call u.m(e1, . . . , en). It is

u instanceof C ∧ ¬u ∈ overrides(C)(m) ,

where the latter clause abbreviates the conjunction
∧

C′∈overrides(C)(m)

¬(u instanceof C ′) .

We now have all building blocks for reasoning about a specification of the
form {P} y = u.m(e1, . . . , en) {Q}. Assume that impls([[u]])(m) = {C1, . . . , Ck}.
Let { Si return ei } be the body of the implementation of method m in class
Ci, for i = 1, . . . , k, and let ūi be its formal parameters. To derive a specification
for y = u.m(e1, . . . , en) we have to prove that for each implementation Si a
specification Bi ≡ {Pi∧Ii}Si{Qi[ei/returni]} holds. Moreover, this specification
should satisfy certain restrictions. First of all, the assertions Pi and Qi must
satisfy the same conditions as the assertions P and Q in the rule OMI. The
assertion Ii is similar to the assertion I in that rule. Secondly, the preconditions
of the implementations must be implied by the precondition of the call. That is,
we must prove the following implications.

P ∧ u instanceof Ci ∧ ¬u ∈ overrides(Ci)(m)

→ Pi[(Ci)u, ē/this, ūi][f̄/z̄] (�Pi)

76 Cees Pierik and Frank S. de Boer

Similarly, we have to check wether the postconditions of the implementations
imply the postcondition of the call. This requires proving the following formulas.

Qi[(Ci)u/this][f̄/z̄] → Q[returni/y] (�Qi)

The rule for dynamically-bound method invocations (DMI) then simply says
that all given implications should hold and, moreover, we have to derive the
specifications of the bodies.

�P1, . . . , �Pk B1, . . . ,Bk
�Q1, . . . , �Qk

{P} y = u.m(e1, . . . , en) {Q} (DMI)

The generalization of the rule for non-recursive method invocations to one
for recursive and even mutually recursive method invocations is a variant of the
classical recursion rule. The idea behind the classical rule is to prove correctness
of the specification of the body of the call on the assumption that the method
call satisfies its specification. Our rule for mutually recursive method invoca-
tions (MRMI) allows both dynamically bound method invocations and calls to
overridden methods in the recursion chain. To enable this it combines the rules
(OMI) and (DMI). The outline of the rule is as follows.

F1, . . . , Fr � B̄1, . . . , B̄r P̄1, . . . , P̄r Q̄1, . . . , Q̄r

F1
(MRMI)

The formulas F1, . . . , Fr are the specifications of the calls that occur in the
recursion chain. That is, we require that each Fj is a correctness formula about
a method invocation. As a naming convention, we assume that each Fj is of the
form

{Pj} yj = uj .mj(e
j
1, . . . , e

j
nj

) {Qj} or {Pj} yj = super.mj(e
j
1, . . . , e

j
nj

) {Qj} .

The formulas B̄j , for j = 1, . . . , r, denote sequences of correctness formulas about
all possible implementations of the call in Fj . B̄j contains only one element if
Fj concerns a call to an overridden method. The sequences P̄j and Q̄j are the
corresponding compatibility checks for the pre- and postconditions. Each element
in P̄j and Q̄j corresponds to the element at the same position in Fj .

Let us first consider the case where Fj is of the form

{Pj} yj = uj .mj(e
j
1, . . . , e

j
nj

) {Qj} .

Assume that impls([[uj]])(mj) = {C1, . . . , Ckj
}. Let { Si return ei } be the body

of the implementation of method mj in class Ci, for i = 1, . . . , kj , and let ūi be
its formal parameters. Then B̄j is the sequence containing, for i = 1, . . . , kj , the
correctness formulas {P ′

i ∧Ii}Si{Q′
i[ei/returni]}. The formula P̄j is the sequence

containing, for i = 1, . . . , kj , the implications

Pj ∧ uj instanceof Ci ∧ ¬uj ∈ overrides(Ci)(mj)
→ P ′

i [(Ci)uj , ēj/this, ūi][f̄/z̄i] .

A Syntax-Directed Hoare Logic for Object-Oriented Programming Concepts 77

And finally, Q̄j is the sequence containing, for i = 1, . . . , kj , the implications

Q′
i[(Ci)uj/this][f̄/z̄i] → Qj [returni/yj] .

On the other hand, if Fj is of the form {Pj} yj = super.mj(e
j
1, . . . , e

j
nj

) {Qj}
we can statically determine to which implementation this call is bound. Suppose
that it is bound to the implementation mj(u1, . . . , un){ S return e} in class C.
Then the sequence B̄j contains only the formula {P ′

j ∧ Ij} S {Q′
j [e/returnj]}.

The compatibility check P̄j is Pj → P ′
j [(C)this, ēj/this, ūj][f̄j/z̄j] and Q̄j is

Q′
j [(C)this/this][f̄j/z̄j] → Qj [returnj/yj]. In the formula P̄j , ēj = ej

1, . . . , e
j
nj

and ui = u1, . . . , un.

7 Conclusions

The main result of this paper is a syntax-directed Hoare logic for a language
that has all standard object-oriented features. The logic extends our work as
presented in [7, 8] by covering inheritance, subtyping and dynamic binding. We
prove that the proposed Hoare logic is (relatively) complete in the full paper [3].

In recent years, several Hoare logics for (sequential) fragments of object-
oriented languages, in particular Java, were proposed. However, the formal jus-
tification of existing Hoare logics for object-oriented languages is still under in-
vestigation. For example, completeness is still un open question for many Hoare
logics in this area (see, e.g., [1, 9]).

However, in [10], a Hoare logic for a substantial sequential subset of Java
is proved complete. This Hoare logic formalizes correctness proofs directly in
terms of a semantics of the subset of Java in Isabelle/HOL. Higher order logic
is used as specification language. As observed by the author this results in a
serious discrepancy between the abstraction level of the Hoare logic and the
programming language.

We are currently putting the finishing touch to a tool that enables the applica-
tion of our logic to larger test-cases. It supports the annotation of programs, fully
automatically computes the resulting verification conditions, and feeds them to
a theorem prover. We aim to make this tool publicly available soon.

Checking the verification conditions is in general not decidable. However, we
plan to investigate the isolation of a decidable subset of the present assertion
language which would still allow, for example, aliasing analysis. Future work also
includes the integration of related work on reasoning about abrupt termination
[11] and concurrency in an object-oriented setting [12].

Finally, we would like to give a compositional formulation of the logic pre-
sented in this paper which will be based on invariants that specify the externally
observable behavior of the objects in terms of the send and received messages.
We envisage the use of temporal logics as described in [13] for the formulation
of such invariants.

78 Cees Pierik and Frank S. de Boer

References

1. Poetzsch-Heffter, A., Müller, P.: A programming logic for sequential Java. In
Swierstra, S.D., ed.: ESOP ’99. Volume 1576 of LNCS. (1999) 162–176

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12 (1969) 576–580

3. Pierik, C., de Boer, F.S.: A syntax-directed Hoare logic for object-oriented pro-
gramming concepts. Technical Report UU-CS-2003-010, Institute of Information
and Computing Sciences, Utrecht University, The Netherlands (2003) Available at
http://www.cs.uu.nl/research/techreps/UU-CS-2003-010.html.

4. Kowaltowski, T.: Axiomatic approach to side effects and general jumps. Acta
Informatica 7 (1977) 357–360

5. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley
(1996)

6. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06u, Department of
Computer Science, Iowa State University (2003)

7. de Boer, F.S.: A wp-calculus for OO. In Thomas, W., ed.: FoSSaCS ’99. Volume
1578 of LNCS. (1999) 135–149

8. de Boer, F., Pierik, C.: Computer-aided specification and verification of annotated
object-oriented programs. In Jacobs, B., Rensink, A., eds.: FMOODS V, Kluwer
Academic Publishers (2002) 163–177

9. Reus, B., Wirsing, M., Hennicker, R.: A Hoare calculus for verifying Java real-
izations of OCL-constrained design models. In Hussmann, H., ed.: FASE 2001.
Volume 2029 of LNCS. (2001) 300–317

10. von Oheimb, D.: Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-
tation: Practice and Experience 13 (2001) 1173–1214

11. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt
termination. In Maibaum, T., ed.: FASE 2000. Volume 1783 of LNCS. (2000)
284–303

12. Abraham-Mumm, E., de Boer, F., de Roever, W., Steffen, M.: Verification for
Java’s reentrant multithreading concept. In: FoSSaCS ’02. Volume 2303 of LNCS.
(2002) 5–20

13. Distefano, D., Katoen, J.P., Rensink, A.: On a temporal logic for object-based
systems. In Smith, S.F., Talcott, C.L., eds.: FMOODS III, Kluwer Academic
Publishers (2000) 305–326

	1 Introduction
	2 The Object-Oriented Language
	2.1 Semantics

	3 The Assertion Language
	4 Assignments and Aliasing
	5 Object Creation
	6 Method Invocations
	7 Conclusions
	References

