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Abstract. A main challenge in radiotherapy is to precisely take into ac-
count organs deformation and motion in order to adapt the treatment to
each patient. This is particularly important in lung cancer where breath-
ing leads to large displacements. In this work, breath holding techniques
(with Active Breath Control device - ABC) were used to reduce move-
ments during treatment. We study thorax and lung deformation between
different CT scans acquired at same and different breathing stages. We
developed non-rigid registration tools to evaluate for each patient the re-
producibility of ABC and to extract motion information for subsequent
dosimetric and modeling studies. First results show that ABC has a good
reproducibility, that vector fields can be used to detect pathological sit-
uations and that deformations due to breathing can be estimated.

1 Medical Context

Radiotherapy is one of the three main cancer treatment modalities, together
with surgery and chemotherapy. It consists in delivering a maximum dose of
X-rays to the tumor while sparing surrounding normal tissue. Physicians and
physicists begin to establish a Radiotherapy Treatment Planning (RTP) defining
the number of beams, their size, their shape, their tilt and the beam energy. This
RTP is computed from a computed tomography (CT) 3D scan of the patient. To
be efficient, the treatment is fractionated in several sessions (between 30 and 40).
During each session, the patient is setup on the table couch and the prescribed
dose is delivered according to the RTP.

A major difficulty is the daily patient setup reproducibility. Computed-aided
methods using control images are proposed (see for example [1,2]). Another
major difficulty is organ motion and deformation, particularly in the thorax
because of patient breathing. Currently in routine, large margins are added to
the target volume. A main challenge in radiotherapy is to take into account more
precisely this motion and to adapt the treatment to each patient.

One way to do is to use breath hold devices in order to immobilize the patient
during treatment. In our institution, two clinical studies which use ABC (Active
Breath Control, see [3]) have begun. ABC allows to block airflow under patient
control at a preset lung volume during either inspiration or expiration, thereby
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temporarily immobilizing breathing motion. The duration of the active breath-
hold is set such that the patient can comfortably maintain this breath holding.
Radiation will be turned on and off during this period. This system presents two
main interests. First, it leads to less tumor motion during irradiation. Secondly,
in inspiration, it increases the total lung volume, it decreases lung density and
thus it decreases the percentage of irradiated healthy lung [3,4].

The goal of this work is to study thorax and lung deformation between dif-
ferent CT scans acquired at same and different breathing stages. We developed
tools to evaluate for each patient the reproducibility of ABC and to extract mo-
tion information for subsequent dosimetric and modeling studies. Next section
presents non-rigid registration algorithm used for motion detection. Section 3
presents materials and methods. Section 4 shows some experiments and results.

2 Monomodal 3D Non-rigid Registration

2.1 State of the Art

The main goal of image registration techniques is the mapping of two or sev-
eral images. Many studies (see for example [5,6] for surveys) have focalized on
algorithms for non-rigid registration especially for medical images where the in-
formation of organ deformation is often vital for patient treatment. Methods
can be divided in two classes : sparse and dense. In the first one, deformation
is evaluated from a few set of control points with a deformation model such as
thin-plate spline [7,8]. In the second one, a displacement vector is computed at
each point leading to a dense deformation field. Here, we focus on monomodal
dense non-rigid registration.

In monomodal registration, the assumption is that there is no change in in-
tensity between a voxel of an image and its corresponding in the other. Dense
methods consist in a tradeoff between voxels matching and vector field regular-
ization. Continuum mechanics represents an inspiration source for medical image
registration. One image is a deformable body and the other is the deformed (ref-
erence) body. Similarity measure may be assimilated to the force field. Vector
field is regularized according to the equilibrium equation [9] or to alternative reg-
ularization energies [10,11]. Regularization can be applied on the velocity field,
leading to fluid registration [12,9] allowing large deformation recovery. Other
methods are based on optical flow theory [13,14] (under small displacements hy-
pothesis) or diffusion theory [15,16]. Thirion [17] proposed a well known method
related to optical flow, called “demons” which will be described latter.

Regarding lung deformation estimation, Fan [18] introduces a model for dense
lung warping between different breathing stages. It is based on interpolation of a
sparse vector field which is generated from manually selected control points and
surface mapping. The considered regularization is a linear combination of optical
flow constraint and anisotropic smoothness constraint derived from continuum
mechanics.
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2.2 Dense Vector Field Estimation

We use the “demons” algorithm of Thirion [17], modified by Cachier [19] because
it allows to retrieve small and large dense deformation fields. Moreover in our
case, the intensity conservation assumption is verified (images are monomodal
and are acquired in the same conditions). It is an iterative process consisting
of two steps: pairing and regularizing. At each iteration i, at each voxel x, a
displacement vector ui(x) is evaluated as eq. 1. I, J denotes the images, Ti

denotes the transformation at iteration i, ∇ denotes the gradient operator. The
deformation is evaluated in the gradient direction and it is directly proportional
to the intensity difference between I(x) and J(T (x)). Cachier introduced the
real parameter α (α > 0) in order to limit the displacement vector for small
gradients: the norm is thus bounded by 1/(2α).

ui(x) =
I(x) − J(Ti−1(x))

‖ ∇I ‖2 +α2(I(x) − J(Ti−1(x)))2
∇I (1)

Deformation field T is obtained from u by: Ti = smooth(Ti−1 + ui). At each
iteration the resulting transformation is regularized by a 3D Gaussian filter im-
plemented by Deriche recursive filters [20] which gives the advantage of a fast
computation: the Gaussian filter is separable and the recursive implementation
allows to have a fixed number of operations per displacement vector indepen-
dently of the width of the filter. Displacements are bounded by 1/(2α) at each
iteration, but the fact that each iteration starts from the previously found Ti−1,
can lead finally to larger displacements.

3 Materials and Methods

3.1 Materials

We used two sets of data. The first one consists in three 3D CT scans acquired
with ABC, where patients have been breath held at the same preselected phase in
the breathing cycle (about 70% of the vital capacity). Six patients were included
in this set (among 50 planned). In the second set patients have been breath held
at three different stages (with different levels according to the patient ability).
This set contains 2 patients (among 35 planned). Voxels values are encoded in
16 bits and expressed in Hounsfield units (related to density) in order to keep
significant information for evaluating the deformation field inside the lungs.

3.2 Methods

Masks extractions. In order to evaluate points displacement only in regions of
interest, we extracted two masks by thresholding and morphological tools. The
first one removed from initial images the voxels not belonging to the patient (sur-
rounding environment such that air, table). The second one considered voxels
belonging to the lung and separated trachea and right and left lung. The pro-
cedure started with an automatic threshold [21], then we performed connected
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components labeling and several erosions and controlled dilatation operations in
order to obtain voxels classification. The same automated procedure is applied
on each image in order to obtain comparable results.

(a) (b)

Fig. 1. Slices (axial (a) and coronal (b)) of segmented CT. Trachea, left and
right lungs are displayed with different gray levels. Patient masks boundaries
are displayed in white.

Demons’s parameters. We observed that a good compromise between the
convergence rate and the final error (sum of absolute differences) was obtained
for α ∈ [0.5, 0.65], leading to maximum vector displacement of [0.77, 1] voxel (by
iteration, final displacement can be larger). Gaussian variance was fixed at 1.0.
The stop criterion was fixed at 150 iterations. A multiresolution procedure was
also used; images were downsampled by linear interpolation (the number of slices
was preserved). We evaluated vector field at a resolution of 256 × 256 × 65 (1.9
mm in intra-plane direction and 5 mm inter-plane direction). Memory usage was
about 200 MB, time speed was about fifteen minutes for a complete registration
(without any optimization, on a Pentium 4 2.8 Ghz).

Pure deformation. Computed displacement between two scans is due to pa-
tient setup and organ motion. In order to evaluate only organ motion, we per-
formed the following procedure. We considered that the patient setup displace-
ment is reduced to a rigid transformation, which can be subtracted from the vec-
tor field obtained by the demons algorithm. We have experimented two methods
to find the rigid transformation. In the first one, we evaluated it with a rigid
registration algorithm [22] applied before demons’s algorithm (the non-rigid algo-
rithm started then from the founded rigid transformation). The second method
estimated the transformation after the demons’s algorithm. It consists in ex-
tracting from the vector field the closest rigid transformation. This is done by
an optimization algorithm that minimize the sum of differences (eq. 2) where R̃
denotes the global rigid deformation, R(x) denotes the rigid deformation for the
x point, T (x) denotes the deformation vector (given by demons algorithm) at
point x, d(a, b) is the distance between a and b, Ω denotes the region of interest
(which is defined as one of the masks previously described). Optimization is done
with the Powell-Brent method [23].
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R̃ = arg min
∑

x∈Ω

d(R(x), T (x)) (2)

4 Experiments and Results

4.1 Dataset 1: CT Hold at Same Breath Level

Vector fields were used to assess reproducibility of breath holding and detect
eventual errors. For each three images of a given patient, a vector field is com-
puted for each couple of images (each image is alternatively reference and de-
formable image), leading to 6 evaluations per patient (36 vector fields). Figure 2
shows representative histograms of the displacement vector norms computed in-
side the patient (top figure) and inside the lung (bottom figure). All patients
except one show small displacements (mean is 2.9 mm, median is 2.3 mm, stan-
dard deviation is 2.1 mm; such statistics are computed with 30 vector fields). In
this cases, breath holding was effective. However, patient 5 presents large dis-
placements (mean is 6.4 mm, median is 4.5 mm, standard deviation is 5.8 mm)
due to a right lower lobe atelectasis (collapse of part of a lung by blockage of the
air passages) which modified between acquisitions. In this case breath holding
with ABC must not be used because of the abnormality of the lung behavior.
So, vector field not only measures displacements but also can be used to detect
pathological situations.

Several acquisitions showed large setup errors (translation is greater than
34 mm in the rigid transformation), but subtracting such setup errors allows
to retrieve a pure measure of the deformation and to conclude that the breath
holding was effective.

Thanks to the binary masks, lung volume measurements were also performed
by counting the number of voxels inside trachea and left and right lung. Standard
deviation of lung volumes is between 40 and 91 ml, except for the patient with
atelectasis, where it is greater than 300 ml.

4.2 Dataset 2: CT Hold at Different Breath Level

Figure 3 shows subsampling (every 6 mm) of the vector field in two slices
(axial and sagittal). The vector field shows that patient’s back is quasi-rigid,
whereas thorax front part expenses. Main displacements concern the diaphrag-
matic cupola (vertical translation more than 30 mm). Displacements inside the
lung seem to be correctly estimated. There were few differences between the two
methods used to compute the rigid transformation (mean difference less than 0.5
mm), except for a patient with important increase in volume due to inspiration
which leads the rigid registration algorithm to fail.

Several points have a negative Jacobian, which means that the deformation
is locally non-invertible. This is due to the Gaussian regularization which do
not guaranty that the deformation is a homeomorphism. However, there are no
more than one hundred of points with negative Jacobian for dataset 1 and about
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Fig. 2. Histogram of displacement norms inside patient (top) and lung (bottom).
Patient 5 presents displacements larger than other patients. This is due to an
atelectasis.

50 000 for dataset 2 (1% among more than 4 millions of points) for a resolution of
256×256×65 (1.9 mm in intra-plane direction and 5 mm inter-plane direction).

5 Conclusion

In the quest to integrate motion and deformation information in radiation ther-
apy, we have presented a study allowing to estimate points displacement into
the thorax between CT scan acquired with breath hold. The proposed tool, a
non-rigid registration based on demons algorithm, allows to extract useful infor-
mation. By comparing vector fields between several acquisitions taken at same
breath hold level, it is possible to quantify organs displacement in order to adapt
margins for each patient in the treatment and to detect abnormal situations.
Points displacements between images acquired at different breath hold level will



776 V. Boldea, D. Sarrut, S. Clippe

(a) (b)

Fig. 3. Subsampled vector field overlaid with two slices (axial (a) and sagittal
(b)) of a CT scan. Vectors show movement due to inspiration. Intensity inside
lung seems to be uniform but this is only due to resampling for display purposed.

be used as input for dosimetric studies in order to estimate dose error obtained
with and without breath holding. Moreover, it will also be used for building an
accurate model of thorax movements in order to predict tumor and surrounding
organs displacements.

Further works are ongoing to propose systematic tests in order to validate
the use of breath holding techniques. We also plan to improve the model, to
integrate different deformation regularization according to the local densities, to
use non-rigid registration between more than two CT scans.
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