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Abstract. We describe a new statistical atlas of the heart consisting of atrias,
ventricles and epicardium. The atlas was constructed by combining information
on standard short-axis and long-axis cardiac MR images. The variablity of the
shape was modeled in the atlas by a statistical deformation model and by non-
parametric probability distributions. The atlas has been built from 16 subjects.

1 Introduction

Cardiac imaging has an established role in diagnosis of cardiac diseases. Currently
modern imaging modalities produce detailed anatomic and functional information of
the heart. Automated analysis of huge amounts of image data is usually a pre-requisite
for comprehensive quantitative analysis of cardiac images [1].

Many different types of atlases as well as different techniques to generate them have
been published for the brain [2,3,4,5] and for the heart [6,7]. In many atlases, the shape
variability has been also modeled. The most popular approach for modeling the shape
changes is the active shape model (ASM) [8] while the corresponding technique for mod-
eling the appearance is the active appearance model [9]. ASM defines a mean model and
its typical deformation modes on the basis of a training set. The deformation modes are
the eigenvectors of the covariance matrix determined for point-to-point correspondence
between the different models in the training set. Another approach to model the spatial
variability of 3-D points is parametric Gaussian shaped normal distributions in [2,3].

This paper concentrates on the shape modeling of the heart. To our knowledge sta-
tistical models have been built thus far only from ventricles and epicardium, and only
short-axis (SA) images have been utilized. Since the slice thickness is normally several
times larger than the pixel size in cardiac MR images, the resolution is poor in the di-
rection orthogonal to the slice. Therefore, the accurate localization of the ventricles in
the basal and apical levels has been difficult from SA images. In practice, the ventricle
models are simply cutted by a plane at some basal level. This certainly imposes some
inaccuracies to quantitative measures computed from the heart.

In this paper both short-axis and long-axis (LA) images were used to construct the
geometry of ventricles. LA images provide comprehensive information on the modeling
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Fig. 1. Segmentation flow-chart.

the basal and apical levels more accurately. In addition, atrias were also included in the
model. Mean shape and gray-scale models were constructed. Also the variablity of the
shape was modeled by statistical deformation models [10], closely related to ASMs, as
well as by a new non-parametric spatial probability distributions approach.

2 Methods

2.1 Materials

Sixteen healthy adult subjects were scanned twice using a 1.5 T Siemens Magnetom
Vision imager (Siemens, Erlangen, Germany) at the Department of Radiology in Helsinki
University Central Hospital (HUCH). During each imaging session SA and LA cine
images were aquired using a standard imaging protocol adopted for cardiac patients in
HUCH: SA images contained ventricles from valve level until the level where the apex
was still visible, and LA images contained atrias and ventricles. In practice, a slight
tilt compared to the standard LA view is used in HUCH in order to get the mitral and
tricuspidal valves to the same image slice. The pixel size was 1.4 × 1.4 mm for the SA
and LA images. The slice thickness was 7 mm for the SA images and 7 mm for the LA
images. The corresponding values for the slice separation were 15 mm and 10 mm. The
number of slices varied from 4 to 8 depending on the size of the heart. From 22 to 30
time points were taken for each section with a repetition time of 33 msec.

2.2 Segmentation

Atrias, ventricles and epicardium were manually segmented from the images. A software
tool, designed for interactively making 3-D deformations, was used.With it a triangulated
surface model was registered manually and non-rigidly to edges in the SA and LA image
volumes.

The SA and LA volumes were interpolated isotropic using a shape-based interpola-
tion algorithm before segmentation [11]. Thereafter, the prior model was manually de-
formed to a SA volume. After finishing the deformation in the SA volume, the deformed
model was transformed to the co-ordinate system of the corresponding LA volume and
the matching was continued in the LA volume. The deformed model was transferred
iteratively between the volumes until no deformations were needed. The procedure used
is shown in Fig. 1.

The rigid transformation, f , used to transform the model from the SA volume to the
LA volume (f−1 from LA to SA) was extracted from image file headers which contained
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Fig. 2. A segmentation result for one subject shown on a few slices. A triangulated model has
been superimposed on the SA volume (the top row) and on the LA volume (the bottom row). The
rigid transformation f was used to transfer the model to the co-ordinate system of the LA volume.

the orientation and the position of the slices relative to the patient’s anatomy. In practice,
eight points were chosen from the corners of the SA volume (cube) and their co-ordinates
in the LA volume were defined based on the header information. Thereafter, a marker-
based registration approach, i.e. the approach that minimized the distance between the
corresponding points in the SA and LA volumes, was used to define translation and
rotation.

Because all images were obtained at breath hold, we detected differences in the po-
sition of the heart between the breath holds. If the differences were not corrected, the
transformation derived from the image headers would not not produce good results. In
this study, movements were detected and corrected separately in each image volume.
Image sets orthogonal to original slice orientation were generated and the slices were
moved manually, if any abnormal discontinuities were detected in structures. However,
because of a separate clinical study, each subject was imaged twice, and the acquisition
containing less movement-based errors was selected for the model construction. In prac-
tice, the slice misalignements were corrected only from three subjects, and the other 13
were considered to contain no movements.

A segmentation result for one subject is shown in Fig. 2.

2.3 Construction of Mean Model

In the construction of the mean model, the approach proposed in [10] was followed. The
procedure is shortly summarized.

Instead of registering non-rigidly gray-scale volumes, as done in the original method,
segmented data was utilized. First, intensity volumes were created from surface data. In
these intensity volumes, each object was represented using one gray-level value. One
volume, volume V0, out of N volumes was chosen to be a reference model. Then, the
other volumes V1, V2, .., VN−1 were registered to the reference using translation, rotation
and isotropic scaling. The gradient minimization technique was used to maximize the
normalized mutual information [12] between the volumes.
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Next, the reference volume, V0, was non-rigidly registered to the coarsely registered
volumes V1, V2, .., VN−1 using a registration tool based on the normalized mutual infor-
mation and deformation spheres [13]. The program outputs a volumetric transformation
T : x �→ x′. The transformation vectors of the reference data points to volume Vi are
denoted by di, where i ∈ Ω and Ω = {1, 2, .., N − 1}.

The mean model was computed by applying the mean of the transformations di to
the reference model:

d =
∑

i∈Ω

di. (1)

The transformations from the mean model to the volumes Vi can be computed simply
d′

i = di − d.
The mean model generated is mean only in the sense of shape not appearance,

i.e. gray-scale. Although the emphasis in this paper is to model the variability of shape
not appearance, a mean model also for appearance was computed by averaging the
gray-scale volumes Vi voxel-by-voxel after applying the transformation −d′

i.

2.4 Modeling the Variability of Shape

The variability in the shape was modeled in two ways: statistical deformation models
(SDM) [10] and probability distributions of landmark points.

Statistical Deformation Models. In active shape models [8], typical deformation
modes are searched for the surface points. SDM defines the modes for the 3-D transfor-
mation T itself. In both cases, the change in model’s shape is written as follows:

d = d + Φb, (2)

where the matrix Φ consists of eigenvectors φk of the covariance matrix defined for
the vectors di, i.e. the deformation modes, and b is a vector containing weights for the
eigenvectors.

Probability Distributions. In most cases, the assumption of the ellipsoid-shaped
variability of landmarks is applicable, as assumed in parametric Gaussian shaped nor-
mal distributions [2,3]. However, if, for example, the twisting motion of the heart was
modeled, a Gaussian distribution would not present realistically the variability of land-
marks. In this paper, the distribution of a set of landmark points were modeled by
non-parametric probability functions pi(xi), where pi(x, y, z) is a probability that the
landmark i appears at the position (x, y, z), andxi = (xi, yi, zi) denotes the 3-D position
of the landmark point.

Since the heart contains only a few anatomic landmark points, a set of semi-landmarks
were used. In practice, an approximately uniformly distributed set of points Lwas chosen
from the surfaces of the mean model. The transformations d′

i applied to L define the
location of each landmark point in the volumes Vi. In practice, the probability map of
the landmark i is a volume, Wi, centered around the landmark in the mean volume. The
dimensions of Wi are large enough to contain the landmark i in all volumes Vi, i ∈ Ω.
If the number of the volumes Vi were high, the probability values could be accurately
estimated by computing the number of landmarks in each voxel and normalizing the
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(a)

(b)

Fig. 3. Mean a) SA images and b) LA images.

value by the total number of landmarks. Because the number of volumes in our database
is relatively low, we used Parzen windowing with a Gaussian kernel (σ = 5) before the
normalization [14].

3 Results

In Fig. 3, slices from the mean SA and LA volumes are shown. The images represent a
mean in the sense of shape and gray-scale.

Fig. 4 shows the first four modes for SDM. The weight bk for the mode k was ±3
√

λk

where λk is the eigenvalue of the eigenvector φk (Eq. 2).
Probability distributions for a set of landmark points are shown in Fig. 5a and b.

The figure shows the projection of the 3-D map to the 2-D slice level. We have also
implemented a software tool by which a user can study the spatial relationships between
landmarks. First, a user indicates a point qi in the vicinity of one landmark i (white
crosses in Fig. 5c and d). The maps show the spatial distribution of all landmark points
assuming that the landmark i would be close to the point qi. The landmark is considered
to be close to qi in the tool if its distance to qi is lower than a user-defined parameter r
(r ≈ 4 voxels and contained points only from three database subjects in Fig. 5c and d).

4 Discussion

In this paper, we described a 3-D statistical shape model of the heart including atrias,
ventricles and epicardium. The new approach, that combined information both from
standard SA and LA cardiac images, made possible the modeling of the atrias as well
as the basal and apical regions of the ventricles.

The shape variations were modeled in two ways: using SDM and using probability
distributions. A few deformation modes computed modeled mainly the global shape of
the objects. For comparison, we computed also the corresponding modes for active shape
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Fig. 4. First four deformation modes for SDM.

models. However, no big differences to SDM modes were detected. A new approach of
non-parametric probability distributions was also proposed. It can be used to inspect
visually the spatial distributions and correlations in shape. However, the database used
(16 datasets) was too small for accurate estimation and modeling of shape changes in
SDM and in probability maps.

In this study, the datasets were acquired using a standard protocol for cardiac patients.
The slice thickness could have been smaller to achieve a better spatial resolution and
the SA images could have contained also the atrias to get comprehensive information on
atrias. In addition, the dataset could have been volumetric in order to reduce problems
from patient movement. Although datasets were not optimal for the model construction,
the advantage in using standard sets is, however, that we do not need any specific imaging
protocols to increase the size of the database but all acquired datasets in HUCH can be
added to the database if no severe movement artifacts are present in images.

In future studies, we will apply the model in cardiac segmentation. The model can
be used to regulate the non-rigid transformation using the information on typical shape
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(a) (b)
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Fig. 5. Probability distributions shown on an a) SA slice and b) LA slice. Probability distributions
considering the landmark would be inside the circle for an c) SA slice and d) LA slice.

changes. In addition, because of small database we could not demonstrate the advantages
of the non-parametric approach to the approach using a Gaussian normal distribution.
It remains still open if the generalized probability distributions would provide any ad-
vantages for the study of shape changes in SA and LA images. Nevertheless, as we
extend the database and start to model the heart motion from cine data, we believe that
the normal distribution is not anymore general enough in modeling, for example, the
twisting motion of the heart.
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