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1 INRIA, BP93
2004 Route des Lucioles,

06902 Sophia Antipolis Cedex, France
altman@sophia.inria.fr

http://www-sop.inria.fr/mistral/personnel/Eitan.Altman/me.html
2 C.E.S.I.M.O., Facultad de Ingenieŕıa,

Universidad de Los Andes,
Mérida, Venezuela
tjimenez@ula.ve

Abstract. We study in this paper TCP performance over a static multi-
hop network that uses IEEE 802.11 protocol for access. For such networks
it has been shown in [6] that TCP performance is mainly determined by
the hidden terminal effects (and not by drop probabilities at buffers)
which limits the number of packets that can be transmitted simulta-
neously in the network. We propose new approaches for improving the
performance based on thinning the ACK streams that competes over the
same radio resources as the TCP packets. In particular, we propose a
new delayed ACK scheme in which the delay coefficient varies with the
sequence number of the TCP packet. Through simulations we show that
the ACK thinning allows to increase TCP throughput substantially more
than previous improvement methods.

1 Introduction

Various mobility-induced aspects of TCP performance over ad hoc networks have
been studied in the past, such as link breakage and routing failures and have
motivated proposals for improvements of TCP:
(1) ELFN (Explicit Link Failure Notification) [7,11]: This allows TCP to interact
with routing protocols and to freeze its timers when a route failure is detected
(2) Fixed RTO: An important source of degradation of TCP performance is the
exponential backoff of TCP during timeouts due to disconnections, which may
result in very long silence periods when connection is available again. In [5] it is
proposed to disable the exponential backoff.
(3) ATCP proposed in [10] does not change TCP but implements another layer
between the network and transport layers.
(4) TCP DOOR: TCP protocol is changed so as to be able to better react to
out-of-order packets that may occur frequently in Ad-hoc networks [17].
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(5) The ATRA framework [4]: consists of a set of MAC and routing layers mech-
anisms that reduce route failures, predict route failures before they occur and
minimize the latency for route error propagation.

Most of the above work is summarized in [12]. Other work has been devoted
to comparison of the performance of TCP under various Ad-Hoc protocols [3,5].

In this paper we focus on a static multihop network that uses the IEEE 802.11
protocol for access, see [6,15]. For such scenarios it has been shown in [6] that
TCP performance is mainly determined by the hidden terminal effects (and not
by drop probabilities at buffers) which limits the number of packets that can be
transmitted simultaneously in the network (this is called the ”spatial reuse”). In
particular, for the chain topology that we study in this paper, the spatial reuse
factor of the network has been shown in [6] to have some limit which was around
1/4, which means that given h nodes, only around h/4 can transmit packets
simultaneously. This allowed the authors to conclude that there is an optimal
size for the maximum window of TCP which is close to the value of h/4. Any
increase in the maximum window size results in decreasing TCP throughput,
although the loss in performance is not large (around 20%).

Two techniques have been proposed in [6] to improve the performance, one
based on RED type technique and the other on adaptive spacing at the link
layer. The reported gains in TCP throughput were between 5% and 30%.

In practice the number of nodes cannot be assumed to be known and can
also vary in time. Thus the value of the maximum window for TCP for optimal
operation may not be known, and we may have to use a large value for reasonable
performance in cases there is a possibility that the number of nodes is large. Our
first goal in this paper is to obtain a performance of TCP which is good for a
large range of number of nodes; this is not possible with standard TCP where
we know that good performance can be obtained only for a given number of
nodes n by fixing the maximum window size to around n/4. Our second goal
is to further obtain improvement in TCP performance with minimal changes in
TCP.

To that end, we observe that the bottleneck of the system is the spatial reuse:
the number of packets that can be transmitted simultaneously. Our aim is thus
to decrease the flow of ACKs so as to give more bandwidth to TCP data packets.
We note that although TCP ACKs are much smaller (40bytes) than TCP data
packets (typically between 500 bytes and 1kbyte), their transmission requires
the same signaling overhead of the 802.11 MAC, i.e. the RTS and CTS packets
that precede each transmission of a packet and an ACK packet (of the MAC
layer) for acknowledging successful transmission.

To reduce the ACK flow, we use the delayed ACK option of TCP, in which
an ACK is generated for every d TCP packets, with one exception: if the first
packet (of an expected group of d packets) arrives at the destination, then af-
ter some time interval (typically 100ms) if d packets have not yet arrived, then
an acknowledgement is generated without further waiting. The standard delayed
ACK option has the value d = 2 (see RFC 1122). We observe significant improve-
ment of standard delayed ACK with respect to the nondelayed option. This then
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Fig. 1. The chain topology

motivates us to modify the standard delayed ACK option and to take d > 2.
Using simulations in ns [1], we test this approach for both permanent as well
as short TCP connections. We show that this allows to increase TCP through-
put by around 50%, which is substantially more than the previous improvement
methods. We then propose a modification in the delayed ACK approach which
we call the ”dynamic delayed ACK”, where the parameter d gradually increases
with the sequence number of the acknowledged packet. This allows us to have
more ACKs when the window size is small, thus enabling to increase rapidly the
throughput, and less ACKs when the window is large (and during which TCP
is more vulnerable to losses).

The structure of the paper is as follows. We present in the next section the
simulation scenario. Then we present in Section 3 our findings on performance
of persistent TCP connections. In Section 4 we introduce our dynamic delayed
ACK modification; through simulations of short TCP connections, we compare
this proposal to standard TCP (without delayed ACK) and to TCP with delayed
ACK with different fixed parameters d. We end with a concluding section.

2 The Simulation Scenario

We use ns2 [1] to simulate the chain scenario of [6] that consists of n nodes over
a line separated by a distance of 200m, as seen in Figure 1. For each wireless
node, the transmission range is 250m, the carrier sensing range is 550m and the
interference range is about 550m.

We use the standard two-ray ground propagation model, the IEEE802.11
MAC, an omni-directional antenna model of ns [1] and an interface queue length
of 50 at each node. We tested the NewReno version of TCP, which is the most
deployed one. We tested four scenarios: 3,9,20 and 30 nodes. The cases of 3 and
9 nodes required 150 sec per simulation (to obtain stationary behavior). The
other cases required 1500 sec per simulation. A TCP data packet is taken to be
of size 1040 bytes. We used the AODV (Ad hoc On-Demand Distance Vector)
routing algorithm (see [14]) in our simulations.

3 Simulation Results for Persistent TCP Connections

3.1 Effect of Delayed Ack on TCP Throughput

Our simulation results for n = 9, 20 and 30 nodes are summarized in Figures
2-4, respectively. In all these cases the hidden terminal effect (rather than buffer
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Fig. 2. Throughput in pkt/sec for n = 9 as a function of the maximum window size
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Fig. 3. Throughput in pkt/sec for n = 20 as a function of the maximum window size

overflow) causes losses (the hidden terminal problem is well explained in [6]).
We shall later examine the case of n = 3 in which we do not have TCP losses.

We see that the standard Delayed Ack option (d = 2) slightly outperforms
the standard TCP (yet with another value of maximum window size) for n = 9,
and largely outperforms (more than 10%) the standard TCP for n = 30. A
further improvement is obtained by the Delayed Ack with d = 3 (for both n = 9
as well as n = 20). But the most important improvement that we see is that all
delayed ACK versions are better than the standard TCP for maximum window
sizes of more than 10, with the options of d = 3 or d = 4 outperforming the
standard delayed ACK option. For n = 9, the Delayed ACK version with d = 3
is seen to yield between 30% to 40% of improvement over standard TCP for
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Fig. 4. Throughput in pkt/sec for n = 30 as a function of the maximum window size

any maximum window sizes larger than 10; in that range it also outperforms
standard TCP by 20%-30% for n = 20 and by 6%−20% for n = 30. The version
d = 4 performs even better for n = 20 for maximum windows between 10 to 25.
An even better performance of delayed ACK can be obtained by optimizing over
the timer duration of the Delayed Ack options, as we shall see later.

Yet the most important conclusion from the curves is the robustness of the
Delayed Ack options. In practice, when we do not know the number of nodes,
there is no reason to limit the maximum window size to a small value, since this
could deteriorate the throughput considerably. When choosing large maximum
window, the delayed ACK versions considerably outperform standard TCP. They
achieve almost the optimal value that the standard TCP could achieve if it knew
the number of nodes and could choose accordingly the maximum window.

For a fixed small size of maximum window size, the Delayed Ack option does
not outperform the standard TCP version since most of the time, the window
size limits the number of transmitted TCP packets to less than d, which means
that the delayed ACK option has to wait until the timer (of 100ms by default)
expires before generating an ACK; during that time the source cannot transmit
packets.

Next, we plot the window size evolution for n = 9 for standard TCP and for
TCP with delayed ACK option with d = 3. The window size is sampled every
0.1 sec.

We see that although the maximum window size is 2000, the actual congestion
window does not exceed the value of 13. We see that from the figures that in
standard TCP, losses are more frequent and more severe (resulting in timeouts)
whereas the d = 3 version of delayed ACK does not give rise to timeouts.

In Figure 7 we present the evolution of the congestion window size for stan-
dard TCP with maximum window size of 3 for the case of 9 nodes. We know
from [6] that a maximum size of between 2 and 3 should indeed give optimal
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Fig. 7. Window size evolution for standard TCP (delayed ACK disabled) with 9 nodes
and maximum window size of 3

performance (and this is confirmed in Figure 2). We see in Figure 7 that there
are almost no losses (the window is seen to decrease only 4 times, in contrast to
a much larger number in previous figures). Note that the actual window size is
the minimum between the congestion window (depicted in the Figure) and the
maximum window size (whose value here is 3).

3.2 Varying the Delayed Ack Time Interval

In the previous Figures, all versions using delayed Acks had the default interval
of 100msec (as explained in the Introduction). Next, we vary the interval length
and check its impact on throughput, see Fig. 8. We consider the delayed ACK
version with d = 3.

We see that the default value performs quite well, although for small maxi-
mum windows, shorter intervals perform slightly better, whereas with large max-
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Fig. 8. The influence of Delayed Ack interval on TCP throughput, as a function of the
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Table 1. Number of transmitter packets during 149sec for n = 3 as a function of the
maximum window size

Standard TCP Delayed Ack Versions
WinMax Standard d = 2 d = 3 d = 4

3 6068 6602 6763 2699
2000 6094 6565 6779 6888

imum window, a larger interval (130ms) is slightly better. We tried to further
increase the time interval beyond 130ms but then the throughput decreased.

3.3 n = 3: No Hidden Terminals

Finally, we consider the case of n = 3 nodes. In that case the hidden terminal
phenomenon does not occur anymore (due to the RTS/CTS handshake mecha-
nism, see [6]), and we have not observed TCP losses during the simulation for
any value of window size. Even then, delayed ACKs can be used to improve con-
siderably the performance. This is illustrated in Table 1 that gives the number
of TCP packets successfully received within 149 sec for n = 3. Since there are no
losses, then as long as d is greater than the max window, we expect to improve
the performance as d gets larger, since TCP packets compete with less ACKs.
This is indeed confirmed in Table 1. The improvement that increases from 10%
to 15% as d grows from 2 to 4, does not depend on the maximum window (as long
as it is greater than d). However for d = 4 we see, as can be expected, that we
get a bad performance for a maximum window of 3, since the destination always
needs to wait till the 100ms interval of the Delayed Ack option expires in order
to send an ACK (since the windows allows for sending only 3 data packets).
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Fig. 9. Throughput in pkt/sec for n = 9 as a function of the maximum window size,
DSR (up) and DSDV (down) routing protocol

3.4 Other Routing Algorithms

As we already mentioned, TCP performance is affected by the fact they have to
share the channel with the ACK packets. But ACK are not the only packets that
compete for the radio channel. Also packets involved in route discovery and in
route maintenance take a share of the radio resources, so it is not surprising that
different ad-hoc routing algorithms may result in different performance of TCP
even in our simple static chain topology. We shall thus study TCP performance
under various routing protocols.

We repeat the simulations for n = 9 with the DSR (Dynamic Source Routing)
protocol [8] as well as for the DSDV (Destination-Sequenced Distance-Vector)
[13], and depict the throughput as a function of the maximum window sizes in
Figure 9.
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We make the following observations:

– In general, the throughputs obtained under AODV are of the same order as
under DSDV, and both are larger than under DSR.

– In DSR, a large degradation in throughput for standard TCP (without de-
layed ACK) is observed as the maximum window size increases from its best
value of 3. The degradation here is from around 13pkt/sec to 4.6pkt/sec (a
decrease by 65%) whereas for the AODV routing we obtained (as in [6]) a
degradation of only 40%.

– In DSDV, there is a very small degradation of the throughput for standard
TCP as the maximum window size increases from its best value of 4 (note
also that the best window size is 4, here which is slightly larger than in the
value of 3 obtained for the other routing protocols).

– For DSR, the improvement in TCP throughput with the delayed ACK ver-
sions of d = 3 and d = 4 with large maximum windows (which may be
necessary when we do not know ahead what the number of hops is) is even
larger than in AODV. It is almost twice that of standard TCP, where as
in the AODV it was around 1.5 times larger. In DSDV we also obtain an
improvement but it is lower than for AODV (around 17% of improvement).

4 Short TCP Transfers and Dynamic Delayed Ack

In a recent paper [9], the authors show that conclusions drawn from simulating
permanent TCP connections can be qualitatively quite different than those ob-
tained from simulations of transfers that have large time scale variability. The
latter is obtained by replacing the infinite source model by ones in which trans-
ferred files have heavy-tailed distributions.

4.1 Simulated Scenario

We use TCP connections whose size has a Pareto distribution. Recall that for
Pareto distribution, E[size] = βk/(β − 1) where β = 1.5 is our shape parameter
and where the average file size that we took is E[size] = 30kbytes; thus the
parameter k equals in our case to 10000. The complementary distribution of a
file size is Pr(size > s) = (k/s)β . The time between the end of a connection
till the beginning of the next connection has an exponential distribution with
average of half a second. This characterization of TCP sessions is compatible
with measured Internet traffic, see e.g. [16].

In addition to the throughput, we now consider the average session delay (the
time between the opening of a session till the last ack is received at the source).
This performance measure of course does not have a meaning in the previous
setting of a persistent TCP connection.

All simulations last 1500sec and use the AODV routing protocol. TCP data
packet sizes are again 1000bytes plus 40bytes of headers (for IP and TCP). We
used the same generators and seeds for simulations with different parameters so
as to have always the same input traces (sizes of file transfers and times between
transfers).
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4.2 The Dynamic Delayed Ack

We already saw in the previous section that the delayed ACK performs better
when the window size is large, since sufficiently packets arrive so that we do
not have to wait till the Delayed Ack time interval (of 100ms) expires before
generating an ACK.

We therefore introduce a modification of the Sink behavior in TCP that
is based on an adaptive version of the delayed ACK, in which the parameter
d changes dynamically according to the sequence number of the acknowledged
packet; it increases gradually from 1 to 4 as the sequence number increases. More
precisely, we define three thresholds: l1, l2, l3 such that d = 1 for packets with
sequence N numbers smaller than l1, d = 2 for packets with l1 ≤ N < l2, d = 3
for l2 ≤ N < l3 and d = 4 for l3 ≤ N .

This will then be tested in our framework of short TCP connections. Note
that we could expect TCP to perform even better if the decision on the size of
d could depend on the window size (and/or whether we are in slow start or in
congestion avoidance phase, as was proposed in [2]) rather than on the sequence
number. This would then allow to use dynamic delayed Acks also for persistent
TCP connections. However, this information is not available at the sink and
would require further complications that would either involve extra signaling
either at the transport layer or perhaps at a higher layer.

4.3 Simulation Results

We examine in this section the influence of different delay ACK schemes on
three performance measures of the TCP connections: the throughput, the losses
and the average session delay. The comparisons are done for various values of
maximum window sizes. We consider the case of 9 and 20 nodes respectively,
and depict the simulation results in figure 13.

The threshold that we used for the dynamic delayed Ack approach are
{2, 5, 9} which gave the best results for both throughput and delays and for
both n = 9 and n = 20 nodes. The dynamic Delayed Ack was only tested for
maximum window sizes of 10 or more for n = 9 and for 15 or more for n = 20
(as its goal is to be able to perform with large value of maximum window so as
to be useful when we have no knowledge that allows us to choose the optimal
value of the maximum window size).

In terms of throughput, we see in Figure 10 again that delayed ACK ap-
proaches have better performance than the standard TCP: any version of delayed
ACK gives better throughput than the standard TCP for maximum window size
larger than 7 (for n = 9) and larger than 10 (for n = 20). For large window sizes,
the new dynamic DelAck has the best performance. The standard delayed ACK
(d = 2) outperforms the standard TCP for any value of maximum window size
in the case of n = 20, and almost all values of maximum window size in the case
of n = 9.

Next, we consider the losses. We see from Figure 11 that almost for all values
of maximum window, the number of losses is largest for the case of standard
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Fig. 10. No. of transferred packets (not including retransmission) during 1500sec for
n = 9 (up) and n = 20 (down) as a function of the maximum window size

TCP, and it decreases in the delayed ACK versions as d increases. The smallest
number of losses are obtained in our dynamic DelAck scheme.

Next we observe the delay in Figures 12-13. We see that the standard delayed
ACK (d = 2) outperforms the standard TCP (without delayed ACK) for any
value of maximum window for both n = 9 and n = 20. For large window size,
the improvement is of around 18% for n = 9 and 22% for n = 20. Again, the best
performance is obtained by the dynamic DelAck scheme for maximum window
size larger than 10 (with n = 9) and larger than 20 (for n = 20).
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Fig. 11. No. of losses of packets during 1500sec for n = 9 (up) and n = 20 (down) as
a function of the maximum window size

5 Concluding Remarks

We have shown in this paper that Delaying Ack (as defined in RFC 1122)
improves the performance of TCP over static multi-hop networks that uses
IEEE802.11 as MAC. Increasing the number packets that are acknowledged by
an ACK to d > 2 (which is not recommended in RFC 1122) further improves
the throughput. The improvements are due to the fact that ACKs and TCP
packets contend over the same channel, so decreasing the throughput of ACK
can improve the throughput of TCP. When we do not know the number of nodes
in the system, we cannot limit the maximum window size to a small value, since
this could result in a dramatic decrease of throughput if the number of nodes is
large. Large values for maximum windows have to be used, for which the Delayed
Ack options with d > 2 have been shown to yield an improvement of between
20% to 40%.
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Fig. 12. Average session delay for n = 9 as a function of the maximum window size
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Fig. 13. Average session delay for n = 20 as a function of the maximum window size

Yet the advantage of more ACKs is that they allow to increase rapidly the
window size when it is small. Therefore further improvement can be expected
if the value of d increases with the window size. Since the window size is not
available at the sink, we proposed instead a dynamic DelAck scheme in which
the value d increases with the sequence number of the acknowledged packet. We
showed that its performances in terms of delay, loss probabilities and through-
put outperform those of delayed ACK schemes with fixed d for large values of
maximum window.
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