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Abstract. In general, support vector machines (SVM), when applied to text 
classification provide excellent precision, but poor recall. One means of cus-
tomizing SVMs to improve recall, is to adjust the threshold associated with an 
SVM. We describe an automatic process for adjusting the thresholds of generic 
SVM which incorporates a user utility model, an integral part of an information 
management system. By using thresholds based on utility models and the rank-
ing properties of classifiers, it is possible to overcome the precision bias of 
SVMs and insure robust performance in recall across a wide variety of topics, 
even when training data are sparse. Evaluations on TREC data show that our 
proposed threshold adjusting algorithm boosts the performance of baseline 
SVMs by at least 20% for standard information retrieval measures. 

1   Introduction 

Generic support vector machines (SVMs) [19] provide excellent performance on a 
variety of learning problems including: handwritten character recognition [8], face 
detection [15] and most recently text categorization [6]. However, when generic 
SVMs are applied to text classification1, their performance, while being competitive 
with other approaches (e.g., Rocchio, naïve Bayes) from a precision perspective, is 
not competitive from a recall perspective [6], [17].  

Several attempts have been made to improve the recall of SVMs while not ad-
versely affecting precision in a text classification context. The first category of such 
attempts falls under the label of uneven margin-based learning [12]. Here, a simple 
margin-based version of the perceptron learning algorithm is used to learn a model 
that has a pre-specified required positive and negative margin. The required positive 
and negative margins are heuristically determined using cross-validation on the train-
ing corpus. The second category of proposed SVM improvements for text classifica-
tion is cost-based and is also incorporated into the SVM learning algorithm. To 
counter the imbalance of positive training documents to negative training documents, 
                                                           
1 Text classification is a very active area of research and application in information manage-

ment and is concerned with assigning a document to one or more pre-specified categories or 
classes. 
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a higher cost is associated with the misclassification of positive documents than with 
negative documents [20]. Tuning the asymmetric misclassification cost can provide 
significant improvement, though this process can be prohibitively expensive. The 
final category of proposed SVM improvements for text classification is based on 
post-processing or thresholding the output value (or margin/score) of the learnt SVM. 
This is generally an inexpensive one-dimensional optimization problem which can 
lead to significant improvement in performance measures.  

This post-processing thresholding step is independent of the learning step. The 
critical step in thresholding is to determine the value, known as the threshold, at 
which a decision changes from labeling a document as positive to labeling a docu-
ment as negative. Many of the approaches to thresholding that have been developed 
in other fields (such as information retrieval) can be applied directly in thresholding 
the score output of SVMs. Though thresholding has received a lot attention in the 
information retrieval sub-field of adaptive filtering, optimizing thresholds remains a 
challenging problem. The main challenge arises from a lack of labeled training data. 
Due to limited amounts of training data, standard approaches to information retrieval 
use the same data for both model fitting (learning) and threshold optimization. Con-
sequently, this often biases the threshold to high precision, i.e., overfits the training 
data. 

The following provides a brief overview of information retrieval-based threshold-
ing approaches: Yang presents an empirical study of a variety of thresholding strate-
gies for text categorization using k nearest neighbors [22]; Zhai. et al. present a beta-
gamma thresholding algorithm for adaptive filtering, which has been adapted in the 
thresholding strategy proposed in this paper [23];  Zhang and Callan propose a maxi-
mum likelihood estimation of filtering thresholds [24]; Ault and Yang introduce a 
margin-based  local regression approach for predicting optimal thresholds for adap-
tive filtering [2]; Arampatzis describe a score-distributional threshold optimization 
approach [1]. 

Some of these IR approaches have been adapted already for thresholding SVMs. 
Cancedda et al. report one such approach to adjusting the threshold of SVMs based 
upon a Gaussian modeling process of the SVM scores (output value) for positive and 
negative documents for each category [3]. This Gaussian model is then used to gener-
ate sample document scores and an optimal threshold is set to the score corresponding 
to maximum utility on the cumulative utility curve for the generated labeled scores. 
This approach, combined with asymmetric learning, has led to huge improvements in 
recall and precision, though it is hard to discern how much improvement can be at-
tributed to the asymmetric cost learning strategy or to the thresholding strategy. This 
impact of adjusting the threshold will become clearer later in this paper when we 
show that it can boost significantly the performance of baseline SVMs for text classi-
fication.  

In this paper, we adapt a procedure of setting the threshold of the learnt SVM us-
ing the beta-gamma thresholding technique, developed previously for adaptive text 
filtering using information retrieval-based filters [22], a more challenging task than 
text classification. In addition, we present a novel and very cheap technique for se-
lecting the parameters of the threshold adjustment strategy automatically, based upon 
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cross fold validation. This paper is organized as follows: Section 2 describes the pro-
posed threshold adjustment algorithm after a brief overview of generic linear SVM 
modeling; Section 3 describes the experimental setup, detailing the explored variables 
and datasets used to evaluate the proposed approach; Section 4 presents the results of 
evaluations of the proposed approach and compares these to other approaches; Sec-
tion 5 presents some concluding remarks. 

2   Proposed Thresholding Approach 

The proposed threshold adjustment algorithm is performed immediately after learning 
an SVM. In this section, we first present some background material on SVMs and 
then present the proposed threshold adjusting algorithm. 

2.1   Support Vector Machines 

Though support vector machines (SVM) were originally introduced by Vapnik in 
1979 [19], and have provided state-of-the-art performance for a variety of learning 
problems (and in some cases better than state-of-the-art), it is only recently that they 
have gained popularity in the text retrieval and classification community. Geometri-
cally (for linear support vector machines), a learnt SVM model can be seen as a hy-
perplane that separates a set of positive examples (belonging to the positive class) 
from a set of negative examples (negative class). This is illustrated in Figure 1, where 
H is a hyperplane that separates positive class examples (denoted by “+”) and nega-
tive class examples (denoted by “-“). Mathematically a hyperplane can be represented 
as follows: 
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This can be written more succinctly in vector format as <W,X>+b =0. Here W is 
known as a weight vector and corresponds to the normal vector to the separating 
hyperplane, H, and X is an input vector or document. b denotes the perpendicular 
distance from the hyperplane to the origin. n represents the number of input variables, 
in the case of text, this can be viewed as the number of words (or phrases, etc.) that 
are used to describe a document. The classification rule for an unlabeled document, 
X, using a support vector machine with separating hyperplane (W, b), is as follows:  

 ( )bXWSignXClass += ,)(  (2) 
The distance from the hyperplane to the nearest positive or negative examples is 

known as the margin of the SVM. Learning a linear SVM can be simply thought of as 
searching for a hyperplane (i.e., the weights and bias values) that separates the data 
with the largest margin. As a result, learning for linearly separable data can be viewed 
as the following optimization problem: 
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where Xi is training example with label yi and ||W|| is the L2 norm of the weight vector 
(i.e, √(Σn

i=1(wi∗wi)). In the case of non-linear separablity, two alternative formulations 
have been proposed: one is based upon slack variables; and the other is based upon 
using non-linear kernels (see [20]for more details). The slack variable or soft formu-
lation of SVM learning [4] allows, but penalizes, examples that fall on the wrong side 
of the supporting hyperplanes (H+  and H-1 in Figure 1), i.e., false positives or false 
negatives. Different or asymmetric costs can be associated with false negatives and 
false positives. In practice, learning SVMs is more efficiently conducted in a dual 
space [19]. For our current study, two variations of the dual space Sequential Minimal 
Optimization (SMO) learning algorithm [16] were implemented and evaluated: 
SMOK1 and SMOK2, corresponding to modification 1 and modification 2, respec-
tively, as proposed by Keerthi et al. [7]. Our current implementation caters only for 
symmetric false positive and false negative costs. 

 

Fig. 1. A support vector machine in a two-dimensional input space, Word
1
×Word

2
, denoted by 

the hyperplane, H. Each document is associated with a category, (“+” or “-“). The support 
vectors correspond to the examples on the hyperplanes H

+1
 and H

-1
. 

2.2   Thresholding Adjusting Algorithm for SVMs 

Optimizing thresholds is a challenging problem because the limited amount of train-
ing available is generally required for training the base model, thereby, resulting in a 
situation where it is rare to have an independent sample solely for threshold optimiza-
tion. Standard approaches in text classification and retrieval use the same data for 
both model fitting (learning) and threshold optimization [22]. Consequently, this 
often biases the threshold to high precision, i.e., the threshold overfits the training 
data. SVM learning algorithms focus on finding the hyperplane that maximizes the 
margin since this criterion provides a good upper bound of the generalization error. 
Learning based on this criterion leads to models with very good ranking ability (dem-
onstrated empirically by the results in Section 4). However, the resulting separating 
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hyperplane tends to be too conservative (high precision oriented). The natural thresh-
old value for SVM learning and classification is zero (see Equation 2). Here, we pro-
pose to combine the powerful ranking ability of SVMs with the beta-gamma thresh-
olding algorithm [22] to reset the threshold of the learnt SVM in order to overcome 
this precision-oriented limitation. The powerful ranking ability of SVMs is only ex-
ploited for threshold adjustment, and is not used in classification (as each document is 
classified independently of each other). The beta-gamma thresholding algorithm 
relaxes the SVM threshold from zero, i.e., translates the SVM hyperplane towards the 
denser class (i.e., the class with more training data). In addition to adapting the beta-
gamma algorithm for adjusting the SVM threshold, we propose a novel means for 
setting the parameters of this algorithm – beta and gamma – using a cheap cross vali-
dation mechanism.  

We first present the core beta-gamma thresholding strategy, and subsequently de-
scribe how this can be used with cross validation to empirically determine the beta 
and gamma parameters. The beta-gamma thresholding strategy consists of the follow-
ing steps and uses as input a category label, C, a labeled dataset, T, of documents 
consisting of both positive and negative examples of C, a learnt SVM, M, that models 
the category C, β, the threshold adjustment parameter, and UtililtyMeasure, a utility 
measure that models the user’s expectations: 

SetSVMThresholdUsingBetaGamma(C, T, M, β, UtililtyMeasure) 
1. Rank the thresholding dataset, T, using the SVM, M, as scoring function, thereby yielding 

a ranked document list R consisting of tuples <Document
i
, SVMScore

i
>. 

2. Generate the cumulative utility curve for R, i.e., for each document in the ranked list R 
compute the cumulative utility using the utility measure UtililtyMeasure.  

3. Determine the rank or indices of the maximum utility point on the cumulative curve and 
the first zero utility point following the maximum utility point. Denote these respectively 
as i

Max
, and i

Zero
. Assign the variables θMax and θZero the output scores of the SVM, M, for 

the documents associated with the maximum and zero utility points respectively, i.e., the 
SVM scores of the documents at rank i

Max
, and i

Zero
. (See Figure 2 for a graphic illustration 

of this step.) 
4. Return the threshold, θ, which is calculated as follows: 

 Maxzero θββθθ )1( −+=  (4) 
 

In the procedure outlined above, β is either provided heuristically or determined 
using the beta-gamma cross-validation procedure outlined below. The following is a 
more sophisticated version of this threshold adjustment algorithm (Equation 4) that 
takes into account the number of positive training examples used in T: 
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In this equation,  p denotes the number of positive documents in the thresholding 
dataset, T. The γ component of this threshold relaxation formulation provides a 
mechanism to further relax the threshold based entirely upon β (Equation 4). This 
will have biggest impact on the threshold when there are very few documents. Once, 
again, as is the case for β, γ is either provided heuristically or determined using the 
beta-gamma cross-validation procedure outlined below.  
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Fig. 2. Determining θMax and θZero using a ranked list of training documents. 

Now, we outline a procedure based upon n-fold cross validation to automatically 
determine the values of β and γ in the threshold relaxation procedure. It consists of 
the following steps and uses as input a category label, C, a labeled dataset, T, of docu-
ments consisting of both positive and negative examples of C (for example, T could 
be a subset or the complete training dataset), a learnt SVM, M, that models the 
category C, β, the threshold adjustment parameter, UtililtyMeasure, a utility measure 
that models the user’s expectations, βs (valid values for β are positive or negative real 
numbers), the set of possible beta values, γs, the set of possible gamma values, and n, 
the number of folds that will be used in parameter selection. 

SelectOptimalSVMThreshold(C, T, M, UtililtyMeasure, βs, γs, n) 
1. Partition the data into n non-overlapping subsets of the data ensuring that both positive 

and negative documents are present in each fold or subset. 
2. Foreach each combination of β and γ values in βs and γs do steps 3 and 4 
3. Foreach fold n 

• Set Tn to the n-1 folds 
• Set θ = SetSVMThresholdUsingBetaGamma(C, Tn, M, β, γ, UtililtyMeasure) 
• Set Utilityβγ = Calculate the utility for M and the threshold, θ,  over the fold n. See 

Equation 6 for an explanation of how to use an adjusted threshold in conjunction 
with an SVM. 

4. Compute the average utility as follows: Utilityβγ= Utilityβγ/n 
5. End Foreach 
6. Calculate the optimal threshold, θOpt, using the β and γ combination that has the highest 

average utility Utilityβγ as follows: SetSVMThresholdUsingBetaGamma(C, T, M, β, γ, 
UtililtyMeasure) 

7. Return θOpt. 

The SVM classification rule is altered slightly as follows to accommodate the ad-
justed threshold: 

 ( )OptbXWSignXClass θ−+= ,)(  (6) 
For our experiments, we adapted the T10U linear utility measure (see Table 2) for 

threshold optimization, as this provides an intuitive user utility model that generally 
leads to improved recall and precision when used as a cost function in learning [17].  
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3   Experimental Setup 

This section describes the experimental variables, the experimental performance 
measures and the datasets used for this study. The parameters settings explored in the 
experiments reported in this paper are summarized in Table 1. All are pretty much 
self-explanatory, apart from how a document is represented. We represent a docu-
ment as a vector of terms that is derived as follows: we replace all numerical and 
punctuation characters by spaces and eliminate stop-words such as articles and prepo-
sitions, etc.; each term is associated with a TFxIDF weight, where TF denotes the 
frequency of a term in a document, and IDF is calculated based on the distribution of 
the term in the training corpus [18]. In all experiments the document vectors were 
normalized to unit length.  

In our analysis, we examined several information retrieval performance measures 
which are presented in Table 2 along with their definitions.  

Table 1. Learning decision variables and explored values. 

Decision Variable Explored Values 
Learning Algorithm SMOK2  
C (Upper bound for  
Lagrange multipliers) 

0.4, 0.8, 0.9, 1, 2, 5  

Tolerance 0.001  
Type of kernel Linear 
Sampling Ratio Used all training data 
Number of terms k Use all terms  
Term types  White space delimited tokens with numbers, punctuation, and 

stopwords removed 
Term weighting  TF_IDF  

 
 
For our current study, we have performed an evaluation of learning threshold ad-

justed SVM classifiers (TSVMs) on the following classification corpora: Reuters-
21578 ModApte split collection [10] and TREC2001 corpus [17]. The main reasons 
for choosing these corpora include the following: these corpora are commonly used in 
benchmarking text classification problems; the Reuters-21578 corpus is a manageable 
size thereby enabling extensive experimentation (without being computationally 
prohibitive). The details of each corpus are presented below. 

3.1   Reuters-21578 (ModApte Split) 
The Reuters-21578 collection contains 12,902 newswire stories that had been classi-
fied into 118 categories (e.g., corporate acquisitions, earnings, money market, grain, 
and interest) [10]. We followed the ModApte split in which 75% of the stories (9603 
stories) are used to build classifiers, while the remaining 25% (3299 stories) are used 
to test the accuracy of the resulting models in reproducing the manual category as-
signments. Only 90 categories are modeled in our experiments. These 90 categories 
were selected based upon having at least one training and one testing example. 
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Though only 90 categories were modeled, the examples belonging to the non-
modeled categories were used for training and testing. 

3.2   TREC 2001 Corpus 
The TREC 2001 Corpus, officially known as “Reuters Corpus, Volume, English Lan-
guage, 1996-08-20 to 1997-08-19”, contains one year of Reuters newswire stories in 
English, corresponding to 1.5 GB of data, or 810,000 news stories taken from the 
period August 1996 – August 1997. Each story has been assigned one or more cate-
gory labels from 84 possibilities. The training dataset is limited to the last 12 days of 
August 1996 (corresponding to approximately 23,000 examples); the remaining 11 
months are designated as test data. More information about this corpus can be found 
at http://about.reuters.com/researchandstandards/corpus [17].  

Table 2. Evaluation measures and their definitions, where R+, N+, R-, and N- are true positives, 
false positives, false negatives and true negatives respectively. 

Evaluation Measure Definition 
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4   Results and Empirical Observations 

In the case of all examined corpora, a topic-specific binary classifier was learned 
from the training data that models the topic (positive examples) and the not-topic 
(negative examples). The values explored for β were restricted to the following list: 
{-0.05, 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 
0.75, 0.8}, while γ was set to 100 (effectively disabled). The γ parameter was disabled 
after noticing no discernable improvement from using it in the context of classifica-
tion, though this parameter proved to be crucial in an adaptive text filtering context 
[22], where a topic is defined differently and its definition is adapted over time; usu-
ally a topic is defined in terms of a focused query and a small number of explicitly 
labeled documents; and its definition is refined over time upon receiving user feed-
back.  
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The proposed thresholding approach is compared against the following ap-
proaches: baseline (unthresholded) SVMs; other threshold adjusting SVM ap-
proaches; asymmetric (misclassification costs) SVMs; and traditional IR approaches. 

Figure 3 compares the results for the Reuters-21578 corpus between the threshold 
adjusted SVMs and baseline SVMs for each topic with respect to the T11SU evalua-
tion measure. For this graph of results, and for subsequent graphs of results, the hori-
zontal axis represents the topics (considered in a corpus), ranked in decreasing order 
of the number of positive training data available for that topic. This graph has two 
primary vertical or y axes; the left vertical axis corresponds the log (base 10) of num-
ber of training documents; the right vertical axis corresponds to the difference in 
performance for the indicated measure (T11SU in the case of Figure 3) between the 
threshold adjusted SVM (denoted as SVMThresh) and the baseline SVM. Positive 
bars for this measure correspond to an improvement in performance when threshold 
adjustment is used. Table 3 presents the macro-average results for precision, recall, 
Fbeta, and T11SU for the Reuters-21578 corpus. 
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Fig. 3. The difference in T11SU performance for the Reuters-21578 corpus. 

Table 3. A results comparison for the Reuters 87 ModApte corpus. 

Approach T11SU Fβ=0.5 Precision Recall 
CC Thresholded SVMs 0.61 0.57 0.64 0.48 

Linear SVM 0.54 0.48 0.58 0.33 

 
Overall, we can see that adjusting the threshold using the beta-gamma procedure 

boosts the performance of the baseline SVM on all examined evaluation measures at 
a macro level for the Reuter-21578 corpus (Table 3). Examining each topic from a 
T11SU perspective (Figure 3), we notice that the biggest improvement in T11SU 
performance comes from topics that have fewer than fifty positive training documents, 
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topics that have traditionally being very difficult to model. Overall, 80% of the topics 
have improved or have not been adversely affected by this procedure.  

Figure 4 compares the results for the TREC 2001 corpus between the threshold ad-
justed SVMs and baseline SVMs for each topic with respect to the T10SU evaluation 
measure. Table 4 presents the macro-average results for precision, recall, Fbeta, and 
T11SU for the TREC 2001 corpus. The K-NN result in Table 4 corresponds to a k 
nearest neighbor approach [2]. The IR result is achieved using traditional information 
retrieval filters [1]. The RBF SVM result in Table 4 was achieved using SVMs and 
radial basis kernels [13]. 
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Fig. 4. The difference in T10SU performance for the TREC2001 corpus. 

Table 4. A results comparison for the TREC2001 corpus. 

Approach T10SU Fβ=0.5 Precision Recall 

Asymmetric SVM [11] 0.41 0.60 0.75 0.45 

CC Thresholded SVMs 0.40 0.56 0.64 0.50 
K-NN [2] 0.32 0.49 0.63 0.36 

Linear SVM 0.31 0.50 0.75 0.31 

IR [1] 0.31 0.51 0.57 0.41 

RBF SVM [13] 0.28 0.46 0.55 0.44 

 
Adjusting the threshold of the SVM for the TREC2001 topics has boosted recall 

and therefore led to over 20% improvement in terms of T11SU performance over 
baseline SVMs (linear SVM), while not effecting precision. This performance is 
comparable with the best performer for this text classification task that was prepared 
by Lewis [11]. Lewis’s submission was generated using asymmetric SVMs. The fol-
lowing observations can be made when we compare evaluation measures for our 
threshold adjusted experiment and Lewis’s asymmetric run: first of all, due to the 
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expensive cross fold validation required for determining the asymmetric costs of the 
SVM learning, training Lewis’s asymmetric SVMs took two orders of magnitude 
more time to learn than our threshold adjusted SVMs (i.e., 500 hours for Lewis’s 
experiment versus 5 hours for our experiment); Lewis’s experiment with asymmetric 
SVMs provides 14% better precision than our threshold adjusted run; our threshold 
adjusted run provides 11% better recall than Lewis’s run; this would seem to suggest 
that asymmetric SVMs and adjusting the threshold are addressing two independent 
aspects of the problem, which if combined could boost performance even further.  

5   Conclusions 

We have presented a novel SVM threshold adjusting algorithm. It uses cross valida-
tion to automatically determine the optimal parameters for the beta-gamma algorithm, 
which are subsequently used to relax the threshold of the class model. The proposed 
approach boosts the recall performance of baseline SVMs for text classification, 
while not adversely affecting precision. The gain in performance for examined TREC 
corpora is over 20% for standard information retrieval measures when compared to 
baseline SVMs. The extra cost of performing this threshold adjustment is small, in 
that it is a one-dimensional optimization problem. Adjusting the threshold of SVMs is 
just one technique for boosting the performance of SVMs. Combining our threshold 
adjustment algorithm with other techniques, such as asymmetric cost-based learning 
of SVMs, should lead to even better performance. This is part of ongoing work. A 
more detailed comparison between the proposed approach and other thresholding 
approaches that have or can be applied to the task of threshold adjustment for SVMs 
is currently being carried out. In addition, since the proposed thresholding approach is 
independent of the learnt model, using it in conjunction with other types of models 
will also form an interesting aspect of future work.  
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