Majority Classification
by Means of Association Rules

Elena Baralis and Paolo Garza

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{baralis,garza}@polito.it

Abstract. Associative classification is a well-known technique for struc-
tured data classification. Most previous work on associative classification
based the assignment of the class label on a single classification rule. In
this work we propose the assignment of the class label based on simple
majority voting among a group of rules matching the test case.

We propose a new algorithm, L3, which is based on previously proposed
algorithm L3. L? performed a reduced amount of pruning, coupled with
a two step classification process. L3, combines this approach with the use
of multiple rules for data classification. The use of multiple rules, both
during database coverage and classification, yields an improved accuracy.

1 Introduction

Association rules [I] describe the co-occurrence among data items in a large
amount of collected data. Recently, association rules have been also considered
a valuable tool for classification purposes. Classification rule mining is the dis-
covery of a rule set in the training database to form a model of the data, the
classifier. The classifier is then used to classify appropriately new data for which
the class label is unknown [I2]. Differently from decision trees, association rules
consider the simultaneous correspondence of values of different attributes, hence
allowing to achieve better accuracy [24I819/14].

Most recent approaches to associative classification (e.g., CAEP [4], CBA
[9], ADT [14], and L? [2]) use a single classification rule to assign the class label
to new data whose label is unknown. A different approach, based on the use of
multiple association rules to perform classification of new data has been proposed
in CMAR [§], where it has been shown that this technique yields an increase
in the accuracy of the classifier. We believe that this technique can be applied
orthogonally to almost any type of classifier. Hence, in this paper we propose
L3,, a new algorithm which incorporates multiple rule classification into L?, a
levelwise classifier previously proposed in [2].

L3 was based on the observation that most previous approaches, when per-
forming pruning to reduce the size of the rule base obtained from association
rule mining, may go too far and discard also useful knowledge. We extend this

N. Lavra¢ et al. (Eds.): PKDD 2003, LNAI 2838, pp. 35-E8, 2003.
© Springer-Verlag Berlin Heidelberg 2003

36 Elena Baralis and Paolo Garza

idea to considering multiple rules to perform classification of new data. In this
paper, we propose L3,, a new classification algorithm that combines the lazy
pruning approach of L3, which has been shown to yield accurate classification
results, with a rule assignment technique that selects the class label basing its
decision on a group of eligible rules which are drawn either from the first or the
second level of the classifier.

The paper is organized as follows. Section Blintroduces the problem of asso-
ciative classification. In Section Bl we present the classification algorithm L3, by
describing both the generation of the two levels of the classifier and the classifica-
tion of test data by means of majority voting applied to its two levels. Section B
provides experimental results which validate the L3, approach. Finally, in Sec-
tion [} we discuss the main differences between our approach and previous work
on associative classification, and Section[6 draws conclusions.

2 Associative Classification

The database is represented as a relation R, whose schema is given by & distinct
attributes A; ... Ax and a class attribute C. Each tuple in R can be described as
a collection of pairs (attribute, integer value), plus a class label (a value belonging
to the domain of class attribute C). Each pair (attribute, integer value) will be
called item in the reminder of the paper. A training case is a tuple in relation
R, where the class label is known, while a test case is a tuple in R where the
class label is unknown.

The attributes may have either a categorical or a continuous domain. For cat-
egorical attributes, all values in the domain are mapped to consecutive positive
integers. In the case of continuous attributes, the value range is discretized into
intervals, and the intervals are also mapped into consecutive positive integer.
In this way, all attributes are treated uniformly.

A classifier is a function from Ay, ..., A, to C, that allows the assignment of
a class label to a test case. Given a collection of training cases, the classification
task is the generation of a classifier able to predict the class label for test cases
with high accuracy.

Association rules are rules in the form X — Y. When using them for
classification purposes, X is a set of items, while Y is a class label. A case d is
said to match a collection of items X when X C d. The quality of an association
rule is measured by two parameters, its support, given by the number of cases
matching X UY over the number of cases in the database, and its confidence
given by the the number of cases matching X UY over the number of cases
matching X. Hence, the classification task can be reduced to the generation of
the most appropriate set of association rules for the classifier. Our approach to
such task is described in the next section.

! The problem of discretization has been widely dealt with in the machine learning
community (see, e.g., [B]) and will not be discussed further in this paper.

Majority Classification by Means of Association Rules 37
3 Majority Classification

In this paper, we introduce the use of multiple association rules to perform
classification of structured data, in the levelwise classifier L? [2]. In L3, a lazy
pruning technique is proposed, which only discards “harmful” rules, i.e., rules
that only misclassify training cases. Lazy pruning is coupled with a two levels
classification approach. Rules that would be discarded by currently used pruning
techniques are included in the second level of the classifier and used only when
first level rules are not able to classify a test case.

Majority selection of the class label requires (a) selecting a group of good
quality rules matching the case to be classified, and (b) assigning the appropriate
class with simple majority voting among selected rules. To obtain a good quality
rule set in step (a), a wide selection of rules from which to extract matching
rules should be available. In Section Bl we describe how association rules are
extracted, while in section we discuss how the rules that form the model
of the classifier are selected. Finally, in Section the majority classification
technique is presented.

3.1 Association Rule Extraction

Analogously to L3, in L3, abundance of classification rules allows a wider choice
of rules both for rule selection when the classifier is generated, and for new case
classification. Hence, during the rule extraction phase, the support threshold
should be set to zero. Only the confidence threshold should be used to select
good quality rules. Unfortunately, no rule mining algorithm extracting rules
only with a confidence threshold is currently availabldd.

In L3, the extraction of classification rules is performed by means of an
adaptation of the well-known FP-growth algorithm [7], which only extracts as-
sociation rules with a class label in the head. Analogously to [§], we also perform
pruning based on x? (see below) during the rule extraction process.

3.2 Pruning Techniques and Classifier Generation

In L3, two pruning techniques are applied: x? pruning and lazy pruning. x? is
a statistical test widely used to analyze the dependence between two variables.
The use of x? as a quality index for association rules is proposed for the first time
in and is also used in [§] for pruning purposes. This type of pruning was not
performed in L3. However, we performed a large number of experiments, which
have shown that rules which do not match the y? threshold are usually useless
for classification purpose. Since the use of x? test heavily reduces the size of the
rule set, it may significantly increase the efficiency of the following steps without
deteriorating the informative content (quality) of the rule set after pruning. We
perform x? pruning during the classification rule extraction step.

2 Some attempt in this direction has been proposed in [13], but its scalability is unclear.

38 Elena Baralis and Paolo Garza

Even with x? pruning, if a low minimim support threshold is used, a huge
rule set may be generated during the extraction phase. However, most of these
rules may be useful [2]. The second pruning technique used in L3, is the lazy
pruning technique proposed in L3.

Before performing lazy pruning, a global order is imposed on the rule base.
Rules are first sorted on descending confidence, next on descending support,
then on descending length (number of items in the body of the rule), and finally
lexicographically on items. The only significant difference with respect to most
previous work ([8], [9]) is rule sorting on descending length. Most previous ap-
proaches prefer short rules over long rules. The reason for our choice is to give a
higher rank in the ordering to more specific rules (rules with a larger number of
items in the body) over generic rules, which may lead to misclassification. Note
that, since shorter rules are not pruned, they can be considered anyway.

The idea behind lazy pruning is to discard from the classifier only the
rules that do not correctly classify any training case, i.e., the rules that only
negatively contribute to the classification of training cases. To this end, after
rule sorting, we cover the training cases to detect “harmful” rules (see Figure[]),
using a database coverage technique. However, to allow a wider selection of rules
for majority classification, a different approach is taken in the generation of the
classifier levels. In L3, a training document is removed from the data set when
it is covered by ¢ rules, while in L? each training case is removed as soon as is
covered by one rule. Hence, by setting § = 1 the lazy pruning performed by L3,
degenerates in that of L3.

Lines 1-26 of the pseudocode in Figure Mshow our approach. The first rule r
in the sort order is used to classify each case d still in data (lines 3-11). Each case
d covered by r is included in the set r.dataClassified, and the counter d.covered
is increased. When d is covered by 0 rules (d.covered = 9), d is removed from
data (line 9). The appropriate counter of r is increased (lines 6-7), depending
on the correctness of the label.

After all cases in data have been considered, r is checked. If rule r only clas-
sified training cases wrongly (lines 12-18), then r is discarded, and the counter
of each case classified by r is decreased by one. Cases included in d.covered and
removed before (line 9), because covered by § rules, are included again in data
(line 15).

The loop (lines 2-20) is repeated for the next rule in the order, considering
the cases still in data. The loop ends when either the data set or the rule set are
empty. The remaining rules are divided in two groups (lines 21-26), which will
form the two levels of the classifier:

Level I which includes rules that have already correctly classified at least one
training case,

Level IT which includes rules that have not been used during the training phase,
but may become useful later.

Rules in each level are ordered following the global order described above.
Rules in level I provide a high level model of each class. Rules in level II,
instead, allow us to increase the accuracy of the classifier by capturing “special”

Majority Classification by Means of Association Rules 39

Procedure generateClassifier(rules,data,d)
1. r = first rule of rules;
2. while (data not empty) and (r not NULL) {

3. for each d in data {

4. if r matches d {

5. r.dataClassified = r.dataClassified U d;
6. if (d.class==r.class) r.right++;

7. else r.wrong++;

8. d.matched++;

9. if (d.matched==¢) delete d from data;
10. }

1.}

12, if rowrong>0 and r.right==0 {

13. delete r from rules;

14. for each d in r.dataClassified {

15. if (d.matched==49) data=data U d;
16. d.matched- -;

7.}

18. }

19. r=next rule from rules;

20.}

21. for each r in rules {
22, if r.right>0

23. levell = levell U r;
24. else

25. levelll = levelll U r;
26. }

Fig. 1. L3, classifier generation

cases which are not covered by rules in the first level. Even if the levels are used
similarly to L3, their size may be significantly different. In particular, the use of
0 generally increases the size of the first level, compared to the first level of L3.
Hence, L3, is characterized by a first level which is “more fat” that that of L. In
Section @it is shown that this technique may provide a higher accuracy than L3,
but the model includes more rules and is hence somewhat less readable as a high
level description of the classifier. However, we note that the readability of the
classifier generated by L3, is still better than that of non-associative classifiers
(e.g., Naive-Bayes [6]).

3.3 Classification

Majority classification is performed by considering multiple classification rules
to assign the class label to a test case. The first step is the selection of a group of
rules matching the given test case. When rules in the group yield different class
labels, a simple majority voting technique is used to assign the class label. The
size of the rule group (i.e., the maximum number of rules used to classify new

40 Elena Baralis and Paolo Garza

cases) may vary, depending on the number of rules matching the new case. It is
limited by an upper bound, defined by the parameter maz_rules.

This technique is combined with the two levels of the L? classifier. To build
a rule group, rules in level I of the classifier are first considered. If no rule in this
level matches the test case, then rules in level I are considered. Hence, rules in
a rule group are never selected from both levels.

When a new case is to be classified, the first level is considered. The algorithm
selects (at most) the first max_rules rules in the first level matching the case.
When at least one rule matches the case, the matching process stops either at
the end of the first level, or when the upper limit max_rules is reached.

Selected rules are divided in sets, one for each class label. Then, simple
majority voting takes place. The rule set with the largest cardinality assigns
the class label to the new case. A different approach, based on the evaluation of
a weight for each rule set using x? (denoted as x? —max), is proposed in CMAR
[8]. We performed a wide set of experiments which showed that the average
accuracy obtained by using this method is slightly lower than that given by the
simple majority technique described above, differently from what is reported in
[8]. The difference between our results and those reported in [§] may be due to
the elimination of redundand rules applied in CMAR and not in L3,.

If no rule in the first level matches the test case, then rules in level IT are con-
sidered. Both matching process and label assignment are repeated analogously
for this level.

We observe that the use of § > 1 during the lazy pruning phase is necessary
when using the simple majority technique described before to classify new cases.
Indeed, if ¢ is set to one, only few rules are included in the first level, which
becomes very thin. In this case, just a couple of rules may be available in the
first level for matching and majority voting, and the selection of the appropriate
class label may degenerate to the case of single rule classification.

L3, usually contains a large number of rules. In particular, the first level of
the classifier contains a limited number of rules, which during the training phase
covered some training cases. The cardinality of the first level is comparable to
the size of the rule set in CMAR, while most previous approaches, including L?
first level, were characterized by a smaller rule set. As shown in Section [, this
level performs the “heavy duty” classification of most test cases and provides a
general model of each class. By contrast, level I of the classifier usually contains
a large number of rules which are seldom used. These rules allow the classification
of some more cases, which cannot be covered by rules in the first level.

Since level I usually contains about 10%-10% rules, it can easily fit in main
memory. Thus, the main classification task can be performed efficiently. Level II,
in our experiments, included around 10°-10° rules. Rules were organized in a
compact list, sorted as described in Section[3:2} Level II of L? could generally be
loaded in main memory as well. Of course, if the number of rules in the second
level further increases (e.g., because the support threshold is further lowered to
capture more rules with high confidence), efficient access may become difficult.

Majority Classification by Means of Association Rules 41

4 Experimental Results

In this section we describe the experiments to measure accuracy and classifica-
tion efficiency for L3,. We compared L3, with the classification algorithms CBA
[@], CMAR [8], C4.5 [12], and with its previous version with single rule classifi-
cation L3 [2]. The differences between our approach and the above algorithms is
further discussed in Section Bl A large set of experiments has been performed,
using 26 data sets downloaded from UCI Machine Learning Repository [3]. The
experiments show that L3, achieves a larger average accuracy (+0.47% over the
best previous, i.e., L3), and has best accuracy on 10 data sets over 26.

For classification rule extraction the mininum support threshold has been set
to 1%, a standard value used by previous associative classifiers. For 5 data sets
(auto,hypo,iono,sick,sonar) the mininum support threshold has been set to 5%,
to limit the number of generated rules. The confidence constraint has not been
enforced, i.e., minconf=0. We have adopted the same technique used by CBA to
discretize continuous attributes. A 10 fold cross validation test has been used to
compute the accuracy of the classifier. All the experiments have been performed
on a 1000Mhz Pentium III PC with 1.5G main memory, running RedHat Linux
7.2.

Recall from Section [3 that the performance of L?V[depends on the values of
two parameters: § and max_rules. § is used during the training phase and sets the
maximal number of rules that can match a document. max_rules is used during
the classification phase and sets an upper bound on the size of the selected rule
group before voting. A huge amount of experiments has been performed, using
different values for the parameters § and mazx_rules. Unfortunately, it has not
been possible to find overall optimal values for the parameters. However, we have
devised values, denoted as default values, that yield a good average result, and
are sufficiently appropriate for every data set considered in the experiments. The
default values are § = 9, max_rules = 9. These values may be used for “normal”
classification usage, for any data set.

We report in Figure 2 the variation of accuracy with varying § for different
values of max_rules. For many data distributions, of which data set TicTac is
representative, accuracy tends to be stable after a given threshold for param-
eter values. Hence, default values and optimal values tend to be very close. A
different behavior is shown by data set Cleve, for which high accuracy is as-
sociated with very specific values of the parameters (e.g., optimal values are
0 = 2, max_rules = 9). For these exceptional cases, optimal values can only
be computed by running a vast number of experiments in which values of the
parameters are varied and average accuracy is evaluated on a ten fold. The value
pair that yields the best accuracy is finally selected. This technique requires fine
tuning for a specific data set and should be used only when very high accuracy
is needed.

Table[llcompares the accuracy of L3, with the accuracy of L?, C4.5, CBA and
CMAR, obtained using standard values for all the parameters. In particular, the
columns of Table[fare: (1) name of data set, (2) number of attributes, (3) number
of classes, (4) number of cases (records), (5) accuracy of C4.5, (6) accuracy of

42 Elena Baralis and Paolo Garza

100 M g g e
P % ﬂ
a7 X -
ey —&— Tic-tac max_niles=1
Eé / —#— Tictac max_nles=9
= = f —A Tictac max_rules=13
8 G4 —&— Cleve max_rues=1
<1: 95 —- Cleve max_rues=9
~
fa) —&— Cleve max_rues=13
- /:><:\
"
p \:é,/‘\
a3 i 4 \A‘
T—»
@ —— e
&l T T T T T T T T 1

T g 9 10 11 12 13
delta

Fig. 2. Variation of accuracy with varying ¢

CBA, (7) accuracy of CMAR, (8) accuracy of L3, (9) accuracy of L3, with
default values (6§ = 9, max_rules = 9, identical for all data sets), (10) accuracy
obtained using only the first level of L3, (always with default parameters), (11)
improvement in accuracy given by the second level of L3,, and (12) accuracy of
L3, with optimal values (different values of parameters for each data set).

L3,, with default values, has best average accuracy (+0.47% with respect to
L3) and best accuracy on 10 of the 26 UCI data sets. Only for 7 data sets the
accuracy achieved by L3, is lower than that achieved by L3, while for 15 data
sets the accuracy is larger. Hence, the use of majority voting can improve the
approach proposed by L3.

We ran experiments to separate the contribution in accuracy improvement
due to the use of multiple rules during the classification phase, and to the second
level. In particular, we compared the accuracy obtained by only using rules in
level T of L3, with the accuracy obtained by using both levels. The results of
the experiments are reported in Table [I. The related columns of Table [are:
(10) accuracy of L3, using only rules in the first level, (11) difference between
L3, with both levels (column (9)) and L3, with only first level (column (10)).
By considering only rules in the first level, L3, achieves best accuracy on 9 of the
UCI data sets, and has average accuracy higher than L3 (+0.25%). This result
shows the significant effect due to multiple rule usage in the first level.

The effect of the second level in L3, is definitely less relevant than in L3. We
observe an increase in accuracy given by the second level only in 8 data sets, and
the average increase in accuracy is +0.22%. The increase given by the second
level of L3 is more relevant [2]. In particular, for 20 data sets the second level
is useful, and an average accuracy increase of +1.67% is given by the use of the
second level. These results highlight that the second level is very useful when 0
is set to 1 (L3) and the first level is very thin. However, its contribution is less

Majority Classification by Means of Association Rules 43

Table 1. Comparison of L3, accuracy with respect to previous algorithms

Name |A[C| R [C4.5|CBA[CMAR| L° | L3; |Only |[Aece] L3,
default|I level optimal
values values

Anneal |38 6898 [94.897.9] 97.3 |96.2| 96.4 | 96.4 |0.00] 96.4

Austral |14] 2690 | 84.7 | 84.9| 86.1 | 85.7| 86.1 | 86.1 |0.00| 86.4

Auto™ |25/ 71205 [80.1]78.3] 78.1 [81.5| 78.5 | 76.6 [1.90] 81.5

Breast |10/ 2699 |95.096.3| 96.4 |95.9| 96.6 | 96.6 |0.00| 96.7

Cleve [13[2]303]78.2[82.8| 82.2 |82.5| 82.5 | 82.5 |0.00| 86.4

Crx |15 2690 | 84.9|84.7| 84.9 |84.4] 85.5 | 85.1 |0.40| 85.9

Diabetes | 8| 2| 768 | 74.2 | 76.7| 74.5 |75.8| 78.6 | 78.6 |0.00| 79.0

German |20 21000 72.3 [73.4| 74.9 | 73.8| 74.5 | 745 |0.00| 74.7

Glass |9]|7]|214|68.7|73.9| 70.1 [76.6| 75.7 | 75.7 |0.00| 76.6

Heart |13 2]270 | 80.8 | 81.9| 82.2 |84.4| 83.3 | 83.3 |0.00| 84.4

Hepatic |19] 2| 155 | 80.6 | 81.8 | 80.5 |81.9| 81.9 | 81.3 |0.60| 83.2

Horse [22] 2368]82.6|82.1| 82.6 |82.9] 82.1 | 81.8 |0.30| 83.2

Hypo™ [25] 23163[99.2]98.9] 98.4 [95.2] 97.5 | 97.5 [0.00] 97.5

Tono™ [34]21]351[90.0[92.3] 91.5 [93.2] 92.8 | 92.0 [0.80] 93.2

Iris | 4]|3]|150(95.3|94.7] 94.0 |93.3| 93.3 | 93.3 |0.00] 94.0

Labor |16|2| 57 |79.3[86.3| 89.7 |91.2| 96.5 | 96.5 |0.00| 96.5

Led7 |7|10[3200{73.5[71.9| 72.5 |72.0| 72.4 | 72.4 [0.00] 72.8

Lymph |18] 4148|735 |77.8| 83.1 |85.1] 84.5 | 83.8 |0.70| 85.1

Pima |8]|2]|768|75.5|72.9| 75.1 |78.4| 78.0 | 78.0 |0.00| 79.2

Sick™ [29] 2 |2800[98.5]97.0| 97.5 [94.7] 94.7 | 94.7 [0.00] 94.7

Sonar™ [60[2] 208 [70.2]77.5] 79.4 [78.9] 81.7 | 81.7 [0.00] 81.7

Tic-tac | 9|2]958]99.4]99.6| 99.2 |98.4]100.0]100.0|0.00| 100.0

Vehicle |18 4 | 846 | 72.6 | 68.7| 68.8 |73.1] 73.2 | 73.0 |0.20| 73.2

Waveform|21] 3 [5000] 78.1 | 80.0 | 83.2 | 82.1| 82.8 | 82.8 |0.00| 82.8

Wine |13/3[178[92.7[95.0| 95.0 |98.3| 98.9 | 98.3 [0.60| 98.9

Zoo |16/ 7]101]92.2]96.8| 97.1 |95.1| 97.0 | 97.0 |0.00| 97.0

[Average | | | [83.34[84.69] 85.22 [85.88]86.35[86.13[0.22] 86.84 |
(*) Minimum support threshold 5%

relevant for § > 1, when the first level is already rich enough to allow a good
coverage of test cases. The second level remains always useful to capture special
cases and allows a further increase in accuracy.

In column (12) of Table[d] are reported the accuracy results obtained by using
optimal values of the § and max_rules parameters for each data set. The effect
of fine tuning the parameters values is significant, since it yields an increase of
about +1% compared to L3, and 0.49% with respect to L‘;’w with default values.
Furthermore, the classifier shows best accuracy on 17 data sets.

Table 2] allows us to compare the structure and usage of the two levels for
L3 and L3, (with default values for the parameters). In order to analyze only
the effect of multiple rule selection on the size of the two levels, L? has been
modified to incorporate x? pruning. This allows us to observe the difference in

44 Elena Baralis and Paolo Garza

level size between L3, and L? due exclusively to the level assignment technique
based on multiple rule selection.

In Table B the comparison of the number of rules in the first level of L3
(column (3)) and of L3, (column (4)) shows that the first level of L3, is about
an order of magnitude larger. We performed other experiments, not reported
here, using different values for &, which showed that the first level of L3, is
approximately § times larger than the first level of L3. The only exception to
this rule is data set Wine, where the size of the first level in L3, and L? is
comparable. In this case, the second level becomes more useful, since rules in
the first level are not enough to cover all test cases. We can conclude that the
first level of L3, trades a reduced readability in favor of an increased accuracy
and the value of § allows to fine tune the tradeoff between these two features.

In Table @ is also reported the number of rules in the second level for L3
(column (5)) and L3, (column (6)). We observe that the second level of L3, is
usually slightly smaller than that of L3. This may be due to two different effects.
(1) The first level of L3, is larger and contains some rules that would have been
assigned to the second level of L3. This effect is particularly evident in the case
of data set Iris, where the total number of rules is rather small. In this case,
most rules migrate from the second level to the first level, leaving an almost
empty second level. (2) The multiple matching technique used for generating
the classifier causes L3, to analyze more rules, which L3 did not consider at all.
If these rules make only mistakes, they are pruned by L3,, but not by L? (L3
considers them unused and assigns them directly to the second level).

We also analyzed the performance of L3, during the classification of test data.
The classification time is not affected by the use of the second level, because it
is used rarely (see column(8) of Table[). The average time for classifying a new
case is about 1ms, and is comparable to that reported for L3. With respect to
memory usage, since the size of both levels is not dramatically different for L3,
and L3, the same considerations already reported in [2] hold also for L3,.

5 Previous Related Work

CMAR [8] is the first associative classification algorithm where multiple rules
are used to classify new cases. CMAR proposes a suite of different pruning
techniques: pruning of specialistic rules, use of the x? coefficient, and database
coverage. In L3, pruning based on the y? coefficient is adopted, but specialistic
rules are not pruned. Our database coverage technique is more tolerant, since
it allows more rules to cover the same training case. This effect depends on the
value of the § parameter, discussed in Section[dl A similar parameter is available
in CMAR (denoted as §), but its suggested value allows a lower number of rules
during the selection step. Hence, in CMAR useful rules may be pruned, thus
reducing the overall accuracy of the classifier. This problem has been denoted as
overpruning in [2]. Furthermore, we use simple majority voting to assign the final
class label to a test case, while in CMAR a more complex weighting technique

Majority Classification by Means of Association Rules 45

Table 2. Usage of the two levels

Name | R |Rules|Rules| Rules | Rules |Use of| Use of
I level|I level| II level | II level |1 level |11 level
L* | Ly L? Ly | Ly | Ly
Anneal | 898 | 38 358 | 169802 | 168851 | 99.44 | 0.56
Austral [690 | 152 | 1458 | 171638 | 159165 {100.00{ 0.00
Breast | 699 | 51 516 | 6241 5407 |100.00| 0.00

Cleve |303| 74 724 | 16481 | 14676 [100.00(0.00

Crx | 690 | 159 | 1422 | 341382 | 322675 | 99.57 | 0.43
Diabetes| 768 | 65 360 466 180 {100.00| 0.00
German [1000| 291 | 2420 | 62359 | 57786 [100.00| 0.00
Glass | 214 | 30 274 1385 1047 |100.00| 0.00
Heart | 270| 56 506 | 3449 2725 |100.00| 0.00
Hepatic | 155 | 31 313 | 185453 | 184757 | 98.71 | 1.29
Horse | 368 | 97 888 | 179345 | 177803 | 99.73 | 0.27
Iris 150 | 8 82 88 13 |100.00| 0.00
Labor | 57 13 85 209 119 (100.00 0.00
Led7 |3200| 75 318 1159 980 [100.00| 0.00
Lymph | 148 | 40 302 |1442098(1441055] 95.95 | 4.05
Pima | 768 | 64 362 472 174 {100.00{ 0.00
Tic-tac | 958 | 28 599 | 3258 2566 [100.00| 0.00
Vehicle | 846 | 180 | 1433 {2408341|2406231| 99.53 | 0.47
Wine |178| 8 11 | 122249122116 | 99.40 | 0.60
700 101 | 10 72 |1515389(1515288/100.00| 0.00

[Average| | [[[[99.63] 0.37

based on x?2 is proposed. Experiments show that our technique is both simpler
and more effective.

The L3, algorithm derives its two level approach from the L? algorithm
proposed in [Z] and enhances L? with the introduction of classification based on
multiple rules. However, introducing majority voting requires a larger first level,
which may reduce the readability of the model with respect to L3. Hence, the
selection of an appropriate value for the § parameter allows the fine tuning of
the richness of the first level. We observe that L? can be seen as a degenerate
case of L3,, when both § and maz_rules parameters are set to 1.

Associative classification has been first proposed in CBA [9]. CBA, based
on the Apriori algorithm, extracts only a limited number of association rules
(max 80000). Furthermore, it applies a database coverage pruning technique
that significantly reduces the number of rules in the classifier, thus losing relevant
knowledge. A new version of the algorithm has been presented [10], in which the
use of multiple supports is proposed, together with a combination of C4.5 and
Naive-Bayes classifiers. Unfortunately, none of these techniques addresses the
overpruning problem described in [2].

ADT [14] is a different classification algorithm based on association rules,
combined with decision tree pruning techniques. All rules with a confidence

46 Elena Baralis and Paolo Garza

greater or equal to a given threshold are extracted and more specific rules are
pruned. A decision tree is created based on the remaining association rules, on
which classical decision tree pruning techniques are applied. Analogously to other
algorithms, the classifier is composed by a small number of rules and prone to
the overpruning problem.

6 Conclusions

In this paper we have described L3,, an associative classifier which combines
levelwise classification with majority voting. This approach is a natural exten-
sion of the concept of exploiting rule abundance for associative classification,
initially proposed in [2]. In [2] rule abundance was only pursued when selecting
rules to form the classifier by performing lazy pruning. With L3, we extend the
same concept to the classification phase, by considering multiple rules for label
assignment. Experiments show that the adopted approach allows a good increase
in accuracy with respect to previous approaches. The main disadvantage of this
approach is the (slightly) reduced readability of the first level of the classifier,
which should provide a general model of classes.

References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets of
items in large databases. In SIGMOD’93 , Washington DC, May 1993.

2. E. Baralis and P. Garza. A lazy approach to pruning classification rules. In
1CDM’02, Maebashi, Japan, December 2002.

3. C. Blake and C. Merz. UCI repository of machine learning databases, 1998.

4. G. Dong, X. Zhang, L. Wong, and J. Li. CAEP: Classification by aggregating
emerging patterns. In Int. Conf. on Discovery Science, Tokyo, Japan, Dec. 1999.

5. U. Fayyad and K. Irani. Multi-interval discretization of continuos-valued attributes
for classification learning. In IJCAI’93, 1993.

6. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29:131-163, 1997.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In SIGMOD’00, Dallas, TX, May 2000.

8. W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In ICDM’01, San Jose, CA, November 2001.

9. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In KDD’98, New York, NY, August 1998.

10. B. Liu, Y. Ma, and K. Wong. Improving an association rule based classifier. In
PKDD’00, Lyon, France, Sept. 2000.

11. R. Motwani, S. Brin, and C. Silverstein. Beyond market baskets: Generalizing
association rules to correlation. ACM SIGMOD’97 , Tucson, Arizona, May 1997.

12. J. Quinlan. C4.5: program for classification learning. Morgan Kaufmann, 1992.

13. K. Wang, Y. He, D. W. Cheung, and F. Y. L. Chin. Mining confident rules without
support requirement. In CIKM’01, Atlanta, GA, November 2001.

14. K. Wang, S. Zhou, and Y. He. Growing decision trees on support-less association
rules. In KDD’00, Boston, MA, August 2000.

	1 Introduction
	2 Associative Classification
	3 Majority Classification
	3.1 Association Rule Extraction
	3.2 Pruning Techniques and Classifier Generation
	3.3 Classification

	4 Experimental Results
	5 Previous Related Work
	6 Conclusions
	References

