Towards Behaviometric Security Systems:
Learning to Identify a Typist

Mordechai Nisenson?, Ido Yariv!, Ran El-Yaniv', and Ron Meir?

! Department of Computer Science
{yariv@vipe,rani@cs}.technion.ac.il
2 Department of Electrical Engineering
Technion - Israel Institute of Technology
{sm0ti@t2,rmeir@ee}.technion.ac.il

Abstract. We consider the problem of identifying a user typing on a
computer keyboard based on patterns in the time series consisting of
keyboard events. We develop a learning algorithm, which can rather ac-
curately learn to authenticate and protect users. Our solution is based
on a simple extension of the well known Lempel-Ziv (78) universal com-
pression algorithm. A novel application of our results is a second-layer
behaviometric security system, which continually examines the current
user without interfering with this user’s work while attempting to iden-
tify unauthorized users pretending to be the user. We study the utility of
our methods over a real dataset consisting of 5 users and 30 ‘attackers’.

1 Introduction

Many security systems rely on a single log-on entry, typically a password, for
access. Such systems can be compromised if the password is discovered, or is
easy to attack. Greater security is achieved by relying on a physical means of
identification, most often an access card (which may also include a One-Time-
Pad to generate secure passwords). But if the card is lost it too could become
a security risk. In general, all of these systems are vulnerable to an attacker
co-opting a user’s session; either by physically taking the place of the user,
or by some exploitable weakness in the system. Recently, biometric methods
have begun to appear in widespread use (see e.g. [1]). These typically rely on
fingerprints or retinal structure. While some biometric security methods are
considered rather safe, by and large these systems are only used for single log-
on, and require additional hardware.

A different class of identification methods can rely on patterns appearing in
a user’s behavior when interacting with a machine. Possible examples could be
driving a car, or interacting with a computer through typing, mouse control,
navigation patterns, and so on. Such behaviometric identification is different
from biometric identification in two respects'. On the one hand, behaviomet-
ric measurements can be intentionally biased (or corrupted) to some extent by

! The field dealing with measurements, theories and analysis of patterns in all aspects
of human behavior is called behaviometrics.

N. Lavra¢ et al. (Eds.): PKDD 2003, LNAT 2838, pp. 363-374, 2003.
© Springer-Verlag Berlin Heidelberg 2003

364 Mordechai Nisenson et al.

users who can control their behavior. On the other hand, unlike biometric mea-
surements, behaviometric readings can be done on a continuous basis without
interrupting or interfering with users’ activities. This possibility allows for cre-
ating a secondary security system, which is continually operated after log-on.
Such a system need not only be applicable to computers but to a wider array of
other devices as well; conceivably any device with a sufficiently complex input
system.

The aim of this study is to examine the question of whether a behaviometric
security method can be automatically learned by a machine. In particular, we
focus on the problem of typist identification. While being a particular instance of
behavior, we believe that typing can represent some essential and general issues
in behaviometric identification. Like other types of interactions with machines
it is suggested that every person types differently, not only having to deal with
typing method (e.g. touch typing), but more importantly with a person’s physical
and mental attributes. The size of one’s hands, length of one’s fingers, fine motor
skills, language skills, and knowledge of keyboard layout could all come into
play to affect how one types. Thus, identifying a typist is an interesting and
challenging problem worthy of behavior analysis.

Our solution to the learning of typist classifiers is based on a number of sim-
ple ideas, which combine well into an effective method. We represent sequences
of typing events as discrete sequences over finite (and rather small) alphabets,
and then use universal prediction machines (based on known universal compres-
sion algorithms) to generate probabilistic behaviometric models for users. Using
these models we then solve instances of single-class classification problems. We
describe the method and evaluate its performance over a real dataset collected
from various typists. Our examination provides a proof of concept indicating
that automatic learning of behaviometric identification of typists is a feasible
task.

2 Problem Setup and Preliminaries

With a security application in view (as mentioned above), we model the typist
identification problem as a single-class classification problem where we have a
training set of typing samples from one user v and we would like to construct
a classifier capable of distinguishing new typing sequences generated by u from
sequences generated by other users. Usually, in this single-class setting the other
samples (not from u) are referred to as outliers.

In general, a single-class classification formulation is required whenever it is
possible to acquire training examples of the target class (e.g. typing sequences
of the user u) but hard or impossible to collect examples of the outliers (e.g.
sequences of intruders). Thus, while the desired classifier is still binary and should
discriminate between the target and the outliers, only one side of the boundary is
supported by the data. Therefore single-class classification problems are harder
(and much less studied) than standard binary classification problems (see also
Section 6). The performance of a single-class classifier is best measured using

Towards Behaviometric Security Systems: Learning to Identify a Typist 365

standard statistical distinctions between error of the first type 01, giving the
proportion of target samples which are classified as outliers, and error of the
second type d2 measuring the proportion of outlier samples classified as target
samples. A plausible requirement, in the context of security systems, is that the
tradeoff between ¢; and J, is controlled by the user.

We now characterize more formally the typing sequences we consider. The
output generated when a user operates a keyboard is a sequence of events which
can be described as follows. Standard keyboards usually have 104 keys and the
keyboard outputs events when keys are pressed and released. Let K be the set
of keys on the keyboard (that is, |K| = 104). Each key can be in one of two
states: pressed or released. Let A = {press, release} be this set of states. A
keyboard event, e = (k,a), where k € K,a € A, occurs whenever a key is pressed
or released. Let E be the set of all keyboard events. Clearly, |E| = |K||A4| =
2|K| = 208. A sequence eq,e€q,...,e, of keyboard events is viewed as a time
series T1,xa,...,x, where x; = (e;,t;) and t; is the time recorded for the event
e;. Any such finite time series of keyboard events is called a sentence.

3 Typist Identification via Universal Prediction

The proposed solution to typist identification is based on universal prediction al-
gorithms for discrete sequences. In this section we first describe a transformation
of input sentences into a suitable representation for the use of such prediction
algorithms. We then describe the prediction algorithm, which is obtained by
extending a standard Lempel-Ziv compression algorithm.

3.1 Representation via Quantized Time Differentials

As described above each input sample is a time sequence (e1,t1), (e2,t2), ...,
(en,tn) of keyboard events. The exact times at which events take place are
of little value. Of much greater interest is the time differential between two
events. Not surprisingly (and as noted by others, e.g. [2]), these differentials
contain much of the discriminative information between typists. Setting A; =
tiv1 — t;, we transform the sentence into a sequence of its differentials so that
(ei t;) — (ei, Ay, ei41). The resulting sequence of triplets consisting of events
and differentials faithfully represents the time transitions between events which
are relevant to typist discrimination. However, we choose to use the following
slightly different differential representation which can be uniquely determined
from a triplet sequence.

(61; A1,82), teey (enfla Anflven) Ad 617A1;827A25 ey 6n—1, Anflaen-

This last representation (on the right-hand side) is simpler in the sense that
it has a smaller “alphabet” size. However, while the number of events is finite
the number of time differentials is not. First, unbounded differentials can be
avoided by specifying that all values larger than a specific A4, represent the
start of a new sentence (keystrokes that are minutes apart are unlikely to be

366 Mordechai Nisenson et al.

related in any fashion). Second, for a given a set of sentences D, emitted by
the typist u, which are to be learned, an additional transformation on the time
differentials is performed with the goal of limiting the number of time differentials
and smoothing over them. Fewer symbols make the data easier to learn, by
reducing statistical sparseness (and thus reducing variance). To accomplish this,
vector quantization [3] is used to cluster the time differentials into @ clusters,
with @ centroids ¢y, ¢z, ...cq. The time differentials then undergo the following
transformation:
A= " where c¢*=argmin|A —c¢.

ci
This transformation is used on all sentences that are to be learned or ranked
by the user’s model. Thus, the final makeup of a sentence is {ei, q1,€2,qa, ...,
dn—1,€n}, where g; € {c1,...,cq} represents some time differential A. Therefore,
the number of symbols in our alphabet is |F| + Q. Note that the number @ of
centroids becomes a parameter of the algorithm.

3.2 Lempel-Ziv Universal Prediction

Having represented a keyboard event sequence as a sequence of discrete symbols
over a finite alphabet, we can now use any universal prediction algorithm for dis-
crete sequences to generate conditional likelihood estimates of unseen sequences.
Specifically, given a set D,, of training sentences for user u, we use a universal
prediction algorithm to train a model M, which is then capable of estimating
Pr(z|D,), the conditional probability distribution of an unseen sentence z. Using
such conditional estimates we then solve the single-class classification problem.

There are a number of universal prediction algorithms whose empirical per-
formance for lossless text compressions is considered state-of-the-art. Notable ex-
amples are the context tree weighting method (CTW) [4], the Burrows-Wheeler
Transform (BWT) (see e.g. [5]) and variants of Prediction by Partial Matching
(PPM) [6]. For simplicity and for computational efficiency we compromise like-
lihood estimation accuracy and rely on the Lempel-Ziv algorithm (1278 [7]). In
particular, we use the prediction component of the 1z78 algorithm as described
in [8]. Besides being very simple and fast this algorithm enjoys performance
guarantees of various types (see e.g. [9]). We also propose two improvements to
the algorithm, which appear to increase its prediction accuracy.

The 1278 Universal Prediction is a one-pass algorithm. It builds a weighted
tree from sequences over a finite alphabet, and can assign probability estimates
to new sentences given such a tree. The 1z78 phrase tree holds a “dictionary” of
phrases parsed from the training sequence and is constructed by parsing input
sequences as follows. At each stage the algorithm parses the smallest prefix which
is not yet in the tree. For example, the string “ababbac” is parsed into: a, b, ab,
ba, c. This set of phrases can be viewed as a phrase tree such that each parsed
phrase is a path from the root to a leaf (see [8] for a detailed exposition).

As described in [8] the phrase tree can be extended to provide count statistics
by adding a counter to each node. These count statistics can be used to calculate
a probability estimate for traversing from a parent node to one of its children.

Towards Behaviometric Security Systems: Learning to Identify a Typist 367

Given a set of sequences, $1,..., Sk, emitted by some source (say the user
u), a parse tree with appropriate counter statistics can be constructed for all s;
(e.g. by concatenating the s; into one long sequence). The resulting statistical
model is denoted by M,,. M,, can be used to compute the conditional probability
Pr(z|M,) =~ Pr(x|s1,...,s;) of a new sequence z. This is done by traversing
down from the root according to the letters of x, and multiplying the probability
estimates of the traversals, until a leaf is reached. Then the traversal resumes
from the root. In practice, the normalized (negative) log-likelihood is used,

— 10g2 Pl”(i[:|Mu)

||

Vi(x, M,) = : (1)

This value is non-negative for all z and is 0 (for finite length strings) only when
Pr(z|M,) = 1, which is the ideal prediction for any sentence emitted by wu.

3.3 Improvements to Standard LZ Prediction

A major advantage of the 1z78 parsing technique is its speed. This speed is
possible by compromising a systematic consideration of all substrings. While
for very large training sets this compromise will not affect the results signifi-
cantly, for small training sets (and short test sequences) this results in sparser
and noisier statistics. We propose two simple modifications to the algorithm
which increase the number of phrases extracted and improve performance of the
1z78 estimation. The two modifications are termed input shifting, and back-shift
parsing.

Input shifting is used during the learning process to extract more phrases
from a sentence. Considering a sentence x = x5 - - - Ty, the sentence is parsed
once as described above. Then it is parsed s more times, where in the ith addi-
tional parsing we parse the suffix x;412;42 - - @, in the usual way (but starting
with the aggregated model constructed by previous parsings). The effect of input
shifting is to increase the number of phrases thus making the phrase tree larger.
As s grows so does the height of the tree as longer and longer phrases are parsed.
Note that by taking s = 0 we leave the 1z78 algorithm intact.

Another deficiency of the 1z78 algorithm is the loss of context when pars-
ing a sequence (and when calculating the likelihood of a sequence). Specifically,
each time the algorithm returns to the root (see description in Section 3.2) af-
ter parsing a phrase in a sequence, the entire context consisting of previous
symbols is lost. In order to remedy this, we propose a method which utilizes
the last m letters parsed to provide a prior context for the next phrase (tak-
ing m = 0 leaves 1z78 intact). This method, which we term Back-shift parsing
(BSP) seeks to achieve this by back-shifting m letters after parsing each phrase.
This approach is problematic for m > 1, however, since more letters may be
back-shifted than parsed (which occurs often in practice). This seriously im-
pedes progress and compromises speed, which is one of the advantages of 1z78.

368 Mordechai Nisenson et al.

We prevent this by requiring that the
m letters come from the last phrase
parsed. This slight change is imple-
mented by utilizing a “marker” as
described in Figure 1. The resulting
Back-Shift Parsing with a marker pre-

Initialization: marker = start of sentence

Repeat until no more phrases to be parsed:
phrase = next phrase parsed
(starting at marker)
add phrase to dictionary
if (length(phrase) > m)

marker = marker + length(phrase) - m

vents back-tracking beyond the marker
thus guaranteeing rapid progress. The
overall effect is to quickly build a tree
with no path shorter than m + 1 in
length, or to make the tree deeper
while minimally affecting its width.

BSP also affects the calculation of a probability estimate for an unseen sen-
tence. Instead of returning to the root after traversing to a leaf, the last m letters
traversed are first traced down from the root to some node v, and then the new
traversal begins from v (if v does not exist, then the new traversal continues
from the root instead).

The modified algorithm now has two parameters and is denoted by 1z78(s, m)
where s determines the number of input shifts and m determines the context
length for back-shifting. The following example shows the parsed phrases gener-
ated by some 1z78(s, m) algorithms for the sequence “ababbac”. Note that the
phrases appear in the order of their parsing.

Fig. 1. Pseudo-code for Back-Shift Pars-
ing (BSP) with a marker.

Algorithm|Phrases Parsed from “ababbac”

1z78(0,0) [{a,b,ab,ba,c}

1z78(1,1) |{a,ab,b,ba,abb,bac,c,bab,bb}

1z78(2,2) |{a,ab,aba,b,ba,bab,abb,bb,bba,bac,ac,babb,bbac,abba}

3.4 Single-Class Classification and Model Selection

Let D, = {S1,...,S,} be a training set of sentences emitted by u. Given a fixed
choice of the parameters s and m we use the 1z78(s,m) algorithm to build a
model M, = M(D,,s,m) for the user u (thus, for a particular user, a model
corresponds to a choice of s and m). This model can provide likelihood esti-
mates for unseen sentences. Given an unseen sequence x we should determine
whether Pr(z|M) is sufficiently large to “accept” x (alternatively, that V' (x, M,,)
is sufficiently small; see Eq. (1)). To this end, a cutoff point, or threshold ¢, is
necessary. We determine a threshold using the following leave-one-out method-
ology. For each training sentence S; in D,, we calculate the likelihood of S; given
a model trained on D,, excluding S;. More formally, for each S; € D, let

Vi=V(S;, M(D,\ {Si},s,m)) . (2)

Let pas and oy be the empirical average and standard deviation of the V;,
¢t =1,...,n. An ideal (but perhaps not achievable) threshold ¢ places all (fu-
ture) user’s sentences below the cutoff and attackers’ sentences above. Given
the evidence we have (the training sentences for u) we attempt to guarantee
results for the user by setting the threshold to ¢(M) = uar + koopn where k, is

Towards Behaviometric Security Systems: Learning to Identify a Typist 369

sufficiently large. Using Chebyshev’s inequality, for any k, we can provide for
u a confidence level as follows. For any random variable X whose mean and
standard deviation are p and o, respectively, a one-tailed version of Chebyshev’s
inequality [10] states that for any k > 0, Pr{X — u > ko} < # Consider-
ing future sentences emitted by w as observations of a random variable S and
taking pps and ops as estimates of the true mean and standard deviation of
the random variable V (S, M (s,m, D,,)), we have for any choice k, (and using
t(M) = pn + kyonr), Pr{V (S, M(s,m,D,)) > t(M)} < ﬁ Thus the confi-
dence level is 1 =8 =1—1/(1+k2) =k2/(1 + k2).

To summarize, our typist identification algorithm has four parameters: @,
the quantization level; m and s, the parameters of the improved 1z78 algorithm;
and k., which determines acceptance threshold. Our goal is to set values to these
parameters based only on the training set D,,.

Within a minimax setting, we choose the best model which maximizes the
likelihood of the “hardest” training sentence. Specifically, we take

M= i Vi 3
Iy ar%?lln{sri%aﬁb } (3)

This optimization determines values for the parameters @), m and s. The param-
eter k, is set such that the maximum V,,, value in (3) is just below the threshold
t(M7) and will be accepted by the model. Specifically, maxgep, Var (S, Dy) =
uny + kson and solving for k, we get

maxsep, Var: (S, Du) — piars

O'MZ

ke =

In addition to the above single-class setting we also consider a setting where
a (small) set of “attacker” sentences is available for training. Clearly, if such
a set of “outliers” is not very large, it is not likely to faithfully represent the
general statistics of outliers. However, it is interesting to investigate whether
this additional piece of information can be exploited to improve performance.
Although this problem is typically not a standard two-class problem, for the
rest of the paper we call this setting the ‘two-class’ setting. Denote by D, the
set of attacker sentences available for training. For each model M, let tp; (ko) =
war + koo where ups and opy are estimated as described above. The accuracy
of the model M with respect to the decision threshold is given by the ratio of
the number of correctly classified strings to the total number of strings,

~ H{Vi(x, M) |v <try(ks), €Dy} + [{a | V(x, M) >ty (ks), €D}
|Dy| + | Dal

A(M, ky)

Let ¢ be any limit on the desired accuracy (0 < e < 1), The robustness R.(M)
of the model M is defined as
R.(M) =

/ A(M, k)dk.
k>0 :A(M,k)>1—¢

370 Mordechai Nisenson et al.

That is, the robustness is the area below the accuracy curve viewed as a func-
tion of threshold magnitude. Note that in practice the robustness can be rather
accurately estimated using the average accuracy of the model over a number
of suitable k, representatives. Figure 2 depicts the accuracy curves of various
1z78(s,m) models. The areas enclosed by these curves and the 90% asymptote
are the e-robustness values of these models (with ¢ = 0.1).

Accuracy

Accuracy

Fig. 2. Accuracy as a function of threshold magnitude for various 1z78(s, m) models.
Areas above the 90% asymptote are robustness values. For example, Ro.1(12z78(0, 1))
and Ro.1(12z78(1,0)) are the largest robustness values in the left and right panels,
respectively.

The model M which maximizes robustness is selected in this two-class
setting and k, is set to maximize accuracy as measured over the training set
D, U D,. That is, k, = argmax; A(M}, k). Note that there may be more than
a single value which gives the maximum accuracy. In this case, there may be
several peaks in the accuracy curve. We note however that in practice a single
broad peak is typically observed. Whenever there is more than one maximum,
we heuristically choose the threshold as the midpoint of the widest peak.

4 Dataset and Experimental Setup

For evaluating the proposed algorithms a dataset of keyboard event sentences
was collected from 5 users and 30 attackers. We note that the recording of
keyboard events including their precise time stamps is not straightforward us-
ing user-level programs on most standard operating systems. Thus, a suitably
adapted system was constructed including a modified keyboard interrupt service
routine?. Each of the users and attackers typed several sentences. The user input
sequences were on average longer than the attackers’ input. The text typed by

2 In particular, a Linux system was used with all non-essential modules and services
removed or disabled. System calls were used to request unbuffered keyboard events.

Towards Behaviometric Security Systems: Learning to Identify a Typist 371

users corresponded to answers to open ended questions (e.g.“What did you do
today?”) and to a specific sentence (“To be or not to be. That is the question.”).
Additionally a (completely) free text section was also allowed. On average, each
user recorded 2551 + 1866 keystrokes. Each of the thirty “attackers” was asked
two open ended questions, and was required to type the specific sentence “To
be or not to be. That is the question.” They were also allowed to type in free
text. On average 660 & 597 keystrokes were logged for an attacker?. To maximize
the utility of this dataset, the sentences, both before learning and before testing,
were split into segments of 100 keystrokes (arbitrarily set). Additionally, all of
the attackers’ sentences (120 in total) were used to attack each model selected.

We selected a set of “feasible” parameter values for the models?. To maximize
evaluation accuracy we used the following leave-one-out protocol: For each user
u, each of the sentences in D, was in turn selected to be in the test set and the
rest of the sentences remained in the training set. Once a model was selected, it
was tested if the model can identify and accept the left out sentence.

For the two-class problem, where we wish to see if providing attacker data can
improve performance, the attackers were partitioned into two groups: a group of
10 attackers to be used for training (40 sentences), and a group of 20 attackers
for testing (80 sentences). Other than the partitioning of the attackers, testing
was identical to that of the single-class case, although the 10 attackers used for
training were not used for testing. One hundred cross-validation folds were made.

5 Experimental Results

We begin by considering the results obtained for the single-class setting. Table 1
specifies the results in the single-class setting. As can be seen, impressive per-
formance can be achieved by the system. The system performs well even when
limited information is available (for example, user 5), though performance, par-
ticularly in self identification, does slightly suffer. Table 2 shows the results for
the two-class experiments. Performance, on average, was similar to the single-
class results, though user 5 did have a marked decline in self identification suc-
cess. This does not seem to be dependent on the amount of data available, as user
1’s performance also dropped, though less significantly. Performance in terms of
successfully defending did improve, however, achieving perfect scores for nearly
all of the users, which resulted in a higher break-even point.

In addition, we examined the performance of the algorithm when models were
restricted to use the “pure” 1z78 algorithm (i.e. the 1z78(0, 0) model with @ and
k., still variable was trained with the same methodology), both for the single-
class and two-class problems. Due to space limitations we only report on the
estimated break-even points for these experiments which were 93.57 and 96.42
for the single-class and two-class problems, respectively. These results indicate

3 The complete dataset will be available at
http://www.cs.technion.ac.il/~rani/typist.

4 The particular values we tested are Q = 80, 90, 100, 110, 120 ; m =0, 1, 2, 3, 4; s
=0,1,2,3,4;and k; =0, 0.25, 0.5,0.75,. . .,10.

372 Mordechai Nisenson et al.

Table 1. Single-Class Results: Individual users, averages and estimated break-even
point (defined to be the harmonic mean of the averages).

User|# Keystrokes[# Sentences| # Self [Self ID (%) [# True| Defense(%)
“Attacks” Attacks

1 5344 13 114 97.37 + 2.79 1560 98.33 + 1.08
2 4156 16 90 97.78 + 8.53 1920 100.0 £ 0.63
3 1630 5 36 94.44 + 11.65 600 99.67 + 0.41
4 1076 5 23 91.3 £+ 10.85 600 99.33 + 0.97
5 548 5 14 92.86 + 9.58 600 97.0 £+ 3.82

[Averages [94.75 £ 2.51] [98.87 £ 1.09]

[Estimated Break-Even Point | 96.77 |

Table 2. Two-Class Results: Individual user, averages and break-even point. Results
are across all 100 cross-validation folds.

User|# Keystrokes[# Sentences| # Self [Self ID (%) [# True|[Defense(%)
“Attacks” Attacks

1 5344 13 11400 93.86 + 7.01 | 104000 | 100.0 + 0.0
2 4156 16 9000 100.00 £ 0.0 | 128000 | 100.0 &+ 0.0
3 1630 5 3600 97.22 + 11.45| 40000 | 100.0 £ 0.0
4 1076 5 2300 95.65 + 11.23| 40000 | 99.75 + 0.5
5 548 5 1400 85.71 + 17.2 | 40000 | 100.0 + 0.0

[Averages [94.49 £ 4.83] [99.95 £ 0.1]

[Estimated Break-Even Point | 97.14 |

that the 1z78(s, m) modifications have a significant advantage in the single-class
setting, particularly when there is little data available for training. For example,
for users 4 and 5, the estimated break-even points for the “pure” 1z78 algorithm
are 90.2 and 80.9, respectively. With our improvements the values obtained for
these users are 95.1 and 94.9, respectively.

6 Related Work

There is quite extensive literature on “keystroke dynamics” by attempting to
identify characterizing features in keystroke sequences. One of the earliest works
is [11], which introduce the use of “digraph times” in this context. For each pair
of keys typed, its digraph time is the interval between the pressing of the first key
and the pressing of the second. Many other works later use this basic idea or its
extensions to “trigraphs”, etc. Due to space limitations we limit the discussion
here to two of the most recent papers, which present the most impressive re-
sults to-date. The work presented in [2] uses a combination of digraph times and
keystroke latencies to generate feature vectors. Factor analysis is then used to
select discriminative features. Using a nearest neighbor approach together with
clustering, the authors examine the classification success rate of a number of
distance functions. On a dataset consisting of 63 users, the best results are ob-
tained using a Bayesian distance function. The stated results are approximately
92%. These results were obtained over a dataset where all users typed fixed text
selections from “a list of phrases”. There was also a free text component in this
study though results are not presented and are stated to be inferior. The recent
results of [12] consider again identifying typists of a fixed phrase. This phrase

Towards Behaviometric Security Systems: Learning to Identify a Typist 373

consists of 683 characters (which form 125 words). Using a fixed trigraph vector
representation the authors obtain very high accuracy using a heuristic distance
measure between trigraph vectors. Their best results for the single-class prob-
lem are 1.8% false alarm rate and 0.01% for “imposter pass” rate. The authors
also test higher order “graphs” and experiment with subsets of the fixed phrase.
While higher order graphs (e.g. 6-graphs) do not improve results, the use of
sub-phrases can drastically increase the false alarm rate (e.g. by taking 1/4 of
the phrase the false alarm rate increases to more than 12%). While these two
works indicate that very high precision can be obtained in recognizing keystroke
“signatures” over a fixed text, these methods fall short in handling free text,
particularly when little data is available. The main contribution of the present
work is in showing for the first time a new representation and algorithms that
can attain very high accuracy also for free text. The results we obtain (e.g. over
96% break-even for the single-class authentication problem) enable a practical
behaviometric security system for continual non-intrusive authentication, which
can handle any text. These results are not directly comparable to the above re-
sults. However, when considering sample sizes and accuracy, it appears that our
results may be significantly better than the results of [12]. Nevertheless, these
other results are obtained with an impressive database consisting of typed sen-
tences from 44 users and 110 attackers whereas our primarily free text dataset
consists of 5 users and 30 attackers.

As noted previously, the more challenging and perhaps common setting for a
security system as described here, is that of a single-class problem. This variant of
binary classification has various other jargon names, such as: novelty detection
outlier detection, one-class classification. For other approaches for setting the
boundary in single-class problems see e.g. [13-15].

7 Conclusions and Future Work

We have introduced an approach to modeling keystroke dynamics of users based
on using the universal Lempel-Ziv compression algorithm as a generator of the
predictive distribution of future strings, based on statistics collected from an
individual user. We use this predictive distribution in the context of single-
class learning, where particular values for the augmented Lempel-Ziv algorithm
are selected based on cross-validation. While previous work tended to focus on
fixed representations based on N-graphs which can be considered to be fixed
order Markov models, our representation allows for variable length contextual
information. As a result of this, our statistical model is capable of retaining more
robust statistics, possibly at the cost of increased space requirements.

Our method can be potentially improved in several ways. First, other univer-
sal prediction algorithms (such as CTW; see Section 3.2) could perhaps improve
prediction accuracy, at the expense of speed. Such a compromise may be unac-
ceptable for the particular application of continual non-intrusive authentication.

It may be interesting to investigate whether taking relative time-differentials
(rather than absolute time-differentials) can improve performance, perhaps by a

374 Mordechai Nisenson et al.

reduction of the variance caused by the variability in typing speeds of users. This
direction is particularly promising when considering the successful technique of
[12], which achieved impressive performance on a fixed text by ignoring absolute
differential times (but utilizing the relative sizes of trigraph times).

While our results are impressive, they can only be viewed as a proof-of-
concept due to the limited sample size, and the use of a single session for data
acquisition. Finally, an advantage of our techniques is that they are not specifi-
cally targeted to the keyboard, and can be easily extended to other devices.

References

1. V. Matyas Jr. and Z. Riha. Biometric authentication systems. Technical report,
ECOM-MONITOR, 2000.

2. F. Monrose and A.D. Rubin. Keystroke dynamics as a biometric for authentication.
Future Generation Computer Systems, 16(4):351-359, 2000.

3. A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, Boston, 1992.

4. F. M. J. Willems, Y. M. Shtarkov, and Tj. J. Tjalkens. The context-tree weighting
method: basic properties. IEEE Trans. Info. Theory, pages 653-664, 1995.

5. G. Manzini. The burrows-wheeler transform: Theory and practice. In Symposium
on Mathematical Foundations of Computer Science (MFCS ’99), volume 1672,
pages 34-47. Springer Verlag Lecture Notes in Computer Science, 1999.

6. J. G. Cleary and W. J. Teahan. Unbounded length contexts for PPM. The Com-
puter Journal, 40(2/3):67-75, 1997.

7. J.Ziv and A. Lempel. Compression of individual sequences via variable rate coding.
IEEE Transactions on Information Theory, 24:530-536, 1978.

8. G.G. Langdon. A note on the lempel-ziv model for compressing individual se-
quences. IEEE Transactions on Information Theory, 29:284-287, 1983.

9. M. Feder. Gambling using a finite state machine. IEEE Transactions on Informa-
tion Theory, 37:1459-1465, 1991.

10. D.R. Stirzaker G.R. Grimmett. Probability and Random Processes. Oxford Uni-
versity Press, third edition, 2002.

11. R. Gaines, W. Lisowski, , S. Press, and W. Shapiro. Authentication by keystroke
timing: Some preliminary results. Report R-256-NSF, Rand Corp., 1980.

12. F. Bergadano, D. Gunetti, and C. Picardi. User authentification through keystroke
dynamics. ACM Transactions on Information and System Security, 5(4):367-397,
2002.

13. C. Bishop. Novelty detection and neural network validation. IEEE Proceedings on
Vision, Image and Signal Processing, 141(4):217-222, 1994.

14. N. Japkowicz. Concept-Learning in the absence of counterexamples: an
autoassociation-based approach to classification. PhD thesis, Rutgers, New
Brunswick, 1999.

15. D.M.J. Tax. One-Class Classification. PhD thesis, The Delft University of Tech-
nology, 2001.

	1 Introduction
	2 Problem Setup and Preliminaries
	3 Typist Identification via Universal Prediction
	3.1 Representation via Quantized Time Di.erentials
	3.2 Lempel-Ziv Universal Prediction
	3.3 Improvements to Standard LZ Prediction
	3.4 Single-Class Classi.cation and Model Selection

	4 Dataset and Experimental Setup
	5 Experimental Results
	6 Related Work
	7 Conclusions and Future Work
	References

