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Abstract. Developments in physical and biological technology have re-
sulted in a rapid rise in the amount of data available on the 3D structure
of protein-ligand complexes. The extraction of knowledge from this data
is central to the design of new drugs. We extended the application of
Inductive Logic Programming (ILP) in drug design to deal with such
structure-based drug design (SBDD) problems. We first expanded the
ILP pharmacophore representation to deal with protein active sites. Ap-
plying a combination of the ILP algorithm Aleph, and linear regression,
we then formed quantitative models that can be interpretated chemi-
cally. We applied this approach to two test cases: Glycogen Phosphory-
lase inhibitors, and HIV protease inhibitors. In both cases we observed a
significant (P < 0.05) improvement over both standard approaches, and
use of only the ligand. We demonstrate that the theories produced are
consistent with the existing chemical literature.

1 Introduction

Most drugs are small molecules (ligands) that bind to proteins [19]. When knowl-
edge of the 3D structure of the target protein is used in the drug design pro-
cess, the term structure-based drug design (SBDD) is used. Knowledge of the
co-crystallized protein-ligand complex structure is particularly important as it
shows how a drug interacts with its target. The binding of the ligand to its
target can be regarded as a key (ligand) fitting a lock (active site) (figure 1).
To ensure this complementarity, a potential candidate must be the right size
for the binding site, must have the correct binding groups to form a variety of
weak interactions and must have these binding groups correctly positioned to
maximize such interactions. These interactions are primarily hydrophobic and
electrostatic (hydrogen bonds, interactions between groups of opposite charges).
They are individually weak, but they lead if in sufficient number, to a strong
overall interaction (binding energy) enabling the ligand to bind to the target site
(also referred as activity). These general principles of drug interactions are now
well understood, but specific relations between molecular structure and function
are still too complex to be delineated from physico-chemical theory and semi-
empirical approaches are necessary. From the computational side[14], SBDD in-
volves two main sub-problems to design new active compounds: the prediction of
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Fig. 1. Schematic representation of a ligand binding a protein illustrating the comple-
mentarity of shape and property (left). Example of a three elements pharmacophore
(right) derived from the 3D structure of the ligand in the known ligand-protein complex
(left).

the most likely ligand mode binding conformation (docking) and the estimation
of the relative binding energy of a protein-ligand complex (scoring)[9].

The Protein Data Bank (PDB)[3] is the single worldwide repository for the
processing and distribution of 3D biological macromolecular structure data and
the number of co-crystallized protein-ligand complexes is rising exponentially
over the years. The state-of-the-art in SBDD is to use general propositional re-
gression functions that are designed to be applicable to any active sites (although
parameterized using only a small subset of the PDB). Predictions are not gen-
erally tuned for specific active sites [20]. Here we describe an Inductive Logic
Programming (ILP)/ Relational Data Mining (RDM) approach for SBDD based
on generalizing over examples of ligands bound to a specific active site.

The structural nature of many chemical structure-function/property rela-
tionships has proven to be well suited to Inductive Logic Programming (ILP)
[17]. We take the name of ILP to generalise all work in ILP and the related field
of Relational Data Mining. In drug design, ILP has been successfully applied to
model structure-activity relationships (SAR). Here the task was to obtain rules
that could predict biological activity or toxicity of compounds from their chem-
ical structure[12,16]. ILP is based on logical relations and differs from standard
chemoinformatics approaches that use attributes (molecular descriptor, molec-
ular field, etc) to encode the chemical information. For such problems, logic
provides a unified way of representing the relations between objects (atoms and
bonds). ILP systems have progressively been shown to be capable of handling
1[12], 2[16] and 3 dimensional[8,21] descriptions of the molecular structures, al-
lowing the development of compact and comprehendable theories. Moreover, ILP
has achieved the same predictive power or has significantly improved the tra-
ditional QSAR (Quantitative SAR) built using standard propositional learners
and statistical methods[15,16].

We take the next natural step in developing the ILP approach to drug design
by extending it to SBDD. The aim of this study is four-fold:
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– to explore how best to represent the relationship between ligand and protein
and how to adapt the ILP tools to suit our study.

– to test whether ILP can form accurate quantitative models of the binding
energy of ligands.

– to compare the ILP results with conventional 3D QSAR and SBDD pro-
grams.

– to examine the insight obtained from the ILP rules.

2 Methods and Materials

This section describes the complete process we employed to address our problem.
The methodology adopted for this study is organized as follows: 1) collect 3D
structural data from the PDB and their corresponding biological activities in
the literature; 2) transform the molecular structures into facts from a molecular
modelling package and extract the features of interest to build the background
knowledge; 3) form 3D structural features (pharmacophores) using ILP; 4) form
regression models using the pharmacophores and assess their predictive power.

2.1 Datasets

A complete description of the protein-ligand series is reported in section 3. While
the PDB gathers most of the structural data of biomolecular systems, there is no
unified way to distribute biological activities and structures directly to analysis
methods. A preprocessing step is necessary to clean the PDB files: isolation of
the ligand, addition of missing atoms or residues, removal of useless information,
etc. Despite the fact that the way ILP encodes chemical information is less
sensitive to the initial preparation of the complexes than other SBDD methods
(protonation state for example), extra care was required to form the proper
assignment of the atom types before building the Datalog program.

2.2 Background Knowledge and Its Representation

ILP systems use background knowledge to further describe problems. The back-
ground knowledge comprises our statements about the most relevant features
to explain the biological activity. This mainly involves using the most compre-
hensive and the most declarative representation to encode domain-dependant
information. The content of the background knowledge used for this study is
illustrated in figure 2.

In our representation, the three dimensional information is expressed in terms
of distances between atoms or structural groups (building blocks) giving the fi-
nal rule a pharmacophore like form. The concepts of (3D)pharmacophore and
pharmacophore elements are very important in medicinal chemistry: a pharma-
cophore is an arrangement of atoms or groups of atoms which influence dras-
tically the activity at a target receptor[19]. Pharmacophore representation ex-
presses the potential activity in a language familiar to medicinal chemists and
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Predicates related to the ligand (all arity 3):
hacc,hdon,alcohol,equiv_ether,six_ring,hetero_non_ar_6_ring,amide,
carbonyl,amine_0h,methyl,lipo_seg,ar_6c_ring,halogen,five_ring.
Predicates related to the protein (all arity 4):

prot_backc2,prot_cooh,prot_alcohol,prot_negcharge,prot_poscharge,
prot_amide,prot_guadinium,prot_lipo_seg.
Hydrogen bonding predicate: hb/4.
Water position predicate: water/3.

Fig. 2. General chemical knowledge defined in the background knowledge.

is easily convertible for searching compounds in chemical databases. A pharma-
cophore usually refers to the ligand only but, in the following, we apply this
definition to the active site as well.

The Prolog implementation requires facts that store the location of particular
groups and a predicate dist/4 which states the Euclidean distance in 3D space
between two groups. For example, the following conjunction,

hdonor(l10,1,A),methyl(l10,1,B),dist(A,B,6.3,1.0)

represents the fact that in the compound l10 in its conformation labelled 1,
there are a methyl group A and hydrogen bond donor B separated by 6.3 ± 1.0
Angstroms.

Pharmacophore mapping with ILP avoids the need of traditional 3D QSAR
and pharmacophore learning methods to prealign and superpose all the ligands
to a common extrinsic coordinate system. The requirement is forced by the
propositional nature of the traditional approaches[19]. ILP has the advantage
that it can directly use the intrinsic coordinate system of each complex.

Some ligands may also have more than one conformation (3D structure). This
is the problem which first highlighted the multiple instance problem, and most
propositional machine learning algorithms require major changes to deal with
it [13]. ILP has the advantage that it can naturally deal with multiple instance
problems.

Only a brief summary of the predicates used for this study is presented here.
A Prolog example of generating building blocks facts from molecular structure is
illustrated in [21]. The pharmacophore elements, available for the present SAR
analysis (figure 2) can be divided in the following two categories:

– Ligand related predicates state the position in 3D space of simple or com-
plex chemical groups providing, for example, the definition of methyl group
or aromatic rings. They can also encode some important physico-chemical
properties of the atoms or the building blocks, such as their ability to form
hydrogen bonds.

– The active site is described by integrating specific chemical knowledge re-
lated to a number of important amino acids and water molecules as well as
representing hydrogen bonds(hb/4 ) explicitly.
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2.3 Constructing Theories with Aleph

The learning algorithm used for this study is the ILP system Aleph[25]. This
algorithm follows the classic ILP search engine framework[6]: given a background
knowledge (i.e. relations describing the molecular structures), a set of examples
(i.e. training data) and a language specification for hypotheses, an ILP system
will attempt to find a set of rules that explain the examples using the background
knowledge provided. We chose Aleph because it can be easily tuned to suit
our learning system which proceeds by iterating through the following basic
algorithm:

– The training data is formed by dichotomising the data into two sets (positive
and negative) based on their biological activity. Because there is not a natural
cut-off to the predictor, an example is chosen from the training data and the
positive set comprises the molecules with the closest activity (1/3 of the
training data are used in this study). The rest of the examples (2/3 of the
molecules) are considered as negative examples.

– The most specific clause (bottom clause) that entails the above example is
then constructed within the language restrictions provided[22]. This is known
as the saturation step. The bottom clause prunes the search before it begins
by identifying all the potential clauses explaining the activity of the selected
molecule.

– The search is a refinement graph search: it proceeds along the space of clauses
(partially ordered by Θ-subsumption) between the specific hypothesis (bot-
tom clause) and the most general clause (empty body)[25]. We require a
complete search in order to find all the possible pharmacophores consistent
with the data.

– The new clause is added to the theory and the search is repeated until
all the examples are saturated once. Pharmacophores are, thus, learnt for
both highly and less active compounds. This contrasts with the usual ILP
framework where all examples made redundant are removed (cover removal
step[25]). Our aim is to use the rules as indicator variables to build quanti-
tative models and the compactness will be assured by the model rather than
by the ILP process.

2.4 Building QSAR Models

To combine the ILP pharmacophore into a regression model we used a vanilla in-
house multiple linear regression program. The predictive power of the model was
evaluated using leave-one-out cross-validation (involving the ILP and regression
steps). The results are presented using the squared correlation coefficient (R2

cv)
between the actual and the predicted value of the activity. This is the standard
measure in drug design. In the following, the activity is evaluated in logarithm
units of the inhibition constant (log(1/Ki)).

We compare the results of the ILP models with the use of two conventional
drug design approaches, CoMFA and a SBDD scoring function.
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CoMFA (Comparative Molecular Field Analysis[5]) is the most commonly
used 3D QSAR ligand-based approach[18]. The basic idea of CoMFA is to su-
perimpose ligands onto a common 3D grid, and then sample their electronic
structure at regular points (voxols). This has the benefit of transforming the
data into a propositional form, but relies on the (often false) assumption that
every molecule in the series interacts with the same target molecule and in the
same way (common receptor assumption)[18]. It can also be difficult to know how
best to superimpose molecules that do share much common structure. CoMFA
also has the drawback of producing thousands of correlated attributes which
requires the powerful PLS regression approach to avoid overfitting. In CoMFA,
neighbouring voxol attributes are generally highly correlated, yet this informa-
tion is thrown away. PLS can be used to partially regenerate this correlated
structure. In the following, we present the CoMFA analysis using the observed
ligand conformation in the protein-ligand complex (common receptor assump-
tion) within an optimized molecular field (superposition/translation).

As no general scoring function has been reported to date that is able to
predict binding affinities with a high degree of accuracy[10], we present results
with the most accurate approach, for each series under study, among five func-
tions available in the CScore module of Sybyl[1] to compare models including
information on the active site.

3 Results and Discussion

We report results obtained from our approach on two protein targets: the glyco-
gen phosphorylase b (GP) and the human immunodeficiency virus protease
(HIV-PR) enzymes. Chemical structures, inhibition data and predicted biologi-
cal activities can be accessed from
http://www.aber.ac.uk/compsci/Research/bio/dss/.

We chose to study GP and HIV-PR because: a significant amount of 3D in-
formation is available on them in the PDB, allowing an accurate validation of the
method; they have already been extensively studied, giving us the opportunity
to verify the meaning of the rules found by Aleph, and comparable published
models; the two datasets stand at two extreme points in SBDD problems. The
GP dataset is an homogeneous series of 3D structures with only slight mod-
ifications of the structure of ligands. This contrasts with the HIV-PR dataset
where the structures of the inhibitor, and to a lesser extent the protein sequence,
exhibit dramatic changes from one complex to the next.

3.1 Glycogen Phosphorylase b

The set of 51 co-crystallized inhibitors of the glycogen phosphorylase b has been
taken from the same SBDD project[23]. In this case, the chemical structure of the
GP inhibitors is homogeneous; meeting then the usual requirements of traditional
2D/3D QSAR (common receptor assumption). However, the CoMFA[5] analysis
on the 51 inhibitors leads to a poor predictive power (r2

cv=0.46, table 1). One
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would have thought that we should have been able to derive more physical
properties characterising ligand-receptor interaction but the best structure-based
binding energy function accuracy is only r2

cv=0.34 (FlexX[24], table 1).

Table 1. Models accuracies from the GP dataset.

Id. Method Accuracy (r2
cv)

1 CoMFA 0.46
2 FlexX 0.36
3 ILP: Ligand only 0.66
4 ILP: Ligand + water/3 0.74

+ H-bonds involving ligand and water

In the case of GP, ligands bind at the catalytic site buried deeply from
the surface of the enzyme and they stabilize an inactive form of the protein
mainly through specific hydrophilic interactions with the protein and some water
molecules. Water molecules are well known to play a significant role in stabilizing
protein-ligand complexes but they remain a challenge for many QSAR analyses
as their mobility violates the common receptor assumption. Table 1 also shows
a comparison between results where the background knowledge contains facts
only related to the ligand and where the background knowledge also contains
facts related to the water molecule position and all the possible hydrogen bonds
between the ligand, the active site and the molecules of water.

The results show that our ILP approach outperforms CoMFA and FlexX
(P < 0.005 for both cases). Addition of more informative knowledge regarding
the active site improves the predictive power of the model (P < 0.025). The
results demonstrate the need to explicitly include hydrophilic interactions in
forming a good predictor. The addition of the protein and water interaction
also makes the interpretation of the model easier, as they highlight the most
important features involved in the binding (see below). The resulting theory
and QSAR model are reported in figure 3. The first three (pharmacophores)
rules P1, P2 and P3 are overlaid with a highly active ligand to illustrate the
main features found by the hypothesis on the same figure. Taking into account
the relative homogeneity of the inhibitors, a close inspection of the rules found
by Aleph in experiment 3 found that all the key chemical groups are involved in
the final model. As shown in figure 3, ILP globally simplifies the interpretation.
Insight into the binding mechanism is outlined in two points:

– The amide group in the region 2 is a constant in the three rules (amide/3 ),
acting, though, as the basis for the construction of the three pharmacophores.
This not surprising as this group is associated with the high activity of the
series. Due to the high number of possible interactions in the region 1 and
3, the theory involves OH groups (alcohol/3, rules P2 and P3) rather than
explicit hydrogen bonds.

– The most surprising feature denoted by our method is related to the distal
part (region 4) of the active site. Most rules involve either the position of
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P1 : active(A) :-
hb(A,B,C,D),carbonyl(A,B,E),amide(A,B,F),dist(A,F,E,1.35,1.0),
dist(A,C,E,9.47,1.0),dist(A,D,E,10.77,1.0),dist(A,C,F,10.74,1.0),
dist(A,D,F,11.95,1.0).
P2 : active(A) :-
water(A,B,C),alcohol(A,B,D),alcohol(A,B,E),amide(A,B,F),
dist(A,C,D,14.56,1.0),dist(A,C,E,13.12,1.0),dist(A,D,E,5.98,1.0),
dist(A,F,D,4.63,1.0),dist(A,F,E,3.00,1.0),dist(A,C,F,11.12,1.0).
P3 : active(A) :-
water(A,B,C),water(A,B,D),alcohol(A,B,E),amide(A,B,F),
dist(A,C,D,4.83,1.0),dist(A,C,E,13.69,1.0),dist(A,D,E,14.38,1.0),
dist(A,F,E,4.80,1.0),dist(A,C,F,9.29,1.0),dist(A,D,F,9.75,1.0).
P4 : active(A) :-
water(A,B,C),alcohol(A,B,D),methylen(A,B,E),equiv_ether(A,B,F),
dist(A,C,D,12.50,1.0),dist(A,E,D,4.42,1.0),dist(A,C,E,8.72,1.0),
dist(A,C,F,10.03,1.0),dist(A,D,F,3.01,1.0),dist(A,E,F,1.84,1.0).

QSAR model : log(1/Ki) = 2.43 + 0.76*P1 + 0.91*P2 + 0.35*P3 - 0.49*P4
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Fig. 3. Theory from experiment 4, table 1 (top). 2D representation of the interaction
involved in the binding of the ligand (numbered 26 in [23]) found by our ILP approach
(bottom). Shaded circles/rectangles and open triangle outline the pharmacophore el-
ements involved in the theory. Intermolecular interactions between the inhibitor and
the binding site are represented with dashed lines.

two water molecules or an explicit hydrogen bond interaction with Arg292
(water/3 and hb/4 ). How could these interactions be involved in the binding
process? We found that [4] suggested that the presence of water overlapping
this region could explain a high inhibitory effect with a strong stabilization
of the enzyme in the 280’s loop.

3.2 Human Immunodeficiency Virus Protease

The second set concerns a series of inhibitors of the well studied human immun-
odeficiency virus protease. In this case, we are dealing with a series of diverse
ligands, some inhibitors are present in two conformations and some residues in
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Table 2. Models accuracies from the HIV-PR dataset.

Id. Method Accuracy (r2
cv)

1 CoMFA 0.58
2 ChemScore 0.35
3 ILP: Ligand only 0.62
4 ILP: Ligand + Active site 0.75

+ H-bonds involving the ligand + water/3

the protein may be mutated (i.e. the sequence of amino-acids can differ from one
structure to the next). The same process as for GP is reported in table 2.

In this case, the ILP structure based model (r2
cv=0.75) improves on the

CoMFA (r2
cv=0.58, P < 0.05) and the scoring function ChemScore[7] (r2

cv=0.35,
P < 0.001) prediction of the binding energy. The theory from experiment 4 (ta-
ble 2) is reported in figure 4. The first three rules P1, P2 and P3 are mapped
onto the highest active inhibitor (PDB code: 1hvj).

For HIV-PR, the structural requirements for highly active ligands can seen
upon two points of view:

– Polar interaction are highlighted by a specific hydrogen bond with Asp29
(region 3) and the need of a group (alcohol/3 in P3) able to interact with
Asp25 (region 1). This last amino acid is involved in the catalytic mechanism
of HIV-PR[2]. Finally, the carbonyl group (carbonyl/3 in P3) in region 2
interacts with the water molecule known to be crucial for the binding process.

– Hydrophobic interactions are more difficult to include in the background
knowledge as they are not as local as the hydrogen bonds, for example.
Nevertheless, they are implicitly involved in the theory. P1 and P2 largely
encode the relative orientation/position of four aromatic rings (mapped by
lipo seg/3 and six ring/3 ). The hydrophobic behaviour (prot lipo seg/3 ) of
the residues 81 and 84 (regions 4 and 5) are revealed to be important to
ensure these non polar contacts.

4 Conclusions

We have presented a new procedure for the formulation of accurate and easily
interpretable QSARs to predict binding energy within a series of protein-ligand
complexes. This extends the application of ILP in drug design to problems where
the structure of the binding protein is known. To form the models we used a
relational description of the molecular structure to find rules in the form of
pharmacophores, and linear regression to combine the pharmacophores into a
predictive model. We consider that the ILP approach was effective for the fol-
lowing reasons:

– the logical formalism is an effective representation for the diverse types of
knowledge required.
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P1 : active(A) :-
hb(A,B,C,D),lipo_seg(A,B,E),six_ring(A,B,F),dist(A,C,E,5.49,1.0),
dist(A,C,F,5.31,1.0),dist(A,D,E,7.22,1.0),dist(A,D,F,7.77,1.0).
P2 : active(A) :-
lipo_seg(A,B,C),prot_lipo_seg(A,B,84,D),six_ring(A,B,E),
dist(A,C,D,5.93,1.0),dist(A,C,E,4.88,1.0),dist(A,D,E,9.19,1.0).
P3 : active(A) :-
alcohol(A,B,C),carbonyl(A,B,D),prot_lipo_seg(A,B,81,E),
dist(A,C,D,5.30,1.0),dist(A,C,E,11.54,1.0),dist(A,D,E,8.67,1.0).
P4 : active(A) :-
carbonyl(A,B,C),pos_charge(A,B,D),prot_negcharge(A,B,29,E),
dist(A,C,D,9.23,1.0),dist(A,C,E,6.09,1.0),dist(A,D,E,9.61,1.0).

QSAR model : log(1/Ki) = 8.00 + 0.81*P1 + 0.43*P2 + 0.58*P3 - 0.90*P4
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Fig. 4. Theory from experiment 4, table 2 (top). 2D representation of the interaction
involved in the binding of 1hvj found by our ILP approach. The same notation as in
figure 3 is adopted.

– the coordinates of molecular structures can be used directly without the
superposition or prealignment prior to some traditional approaches.

– ILP deals naturally with the multiple instances problem and can find all
possible pharmacophore consistent with the background.

– the theories generated are compact and comprehensible in a language famil-
iar to scientists.

We have tested this approach on two qualitatively different datasets. In both
examples, the ILP models outperformed and yet were of equal complexity to
the results of traditional SBDD approaches. The ILP models were directly in-
terpretable by mapping the learned pharmacophore onto selected examples, and
these interpretations were consistent with previous reported analysis. The deriva-
tion of so-called receptor-based pharmacophore does not only improve the predic-
tive power of the models but allows the identification of key interaction hotspots.
In the case of GP, ILP has brought an unexpected insight into the binding mech-
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anism. Analysis of HIV-PR hypotheses shows that our approach could deal with
heterogeneous series of protein-ligand. Here, we used direct information from
the experimentally resolved structure of a similar protein-ligand complex to give
the clues to whereabouts in the active site the ligand binds and in what confor-
mation. Work is in progress to evaluate the applicability of our approach when
such information is unavailable or insufficient. Flexible docking techniques can
be used to explore the conformational space of the ligand within the active site
leading to a highly diverse docking solution set: either our ILP models can be
used to restrict the search space[11] or pharmacophores can be learnt from the
docking set.
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