
Managing the Performance Impact

of Administrative Utilities

Sujay Parekh1, Kevin Rose2, Joseph Hellerstein1, Sam Lightstone2,
Matthew Huras2, and Victor Chang2

1 IBM T.J. Watson Research Center
Hawthorne, NY, USA

{sujay,hellers}@us.ibm.com
2 IBM Toronto Lab

Toronto, ON, Canada
{krrose,light,huras,vicchang}@ca.ibm.com

Abstract. Administrative utilities (e.g., filesystem and database back-
ups, garbage collection in the Java Virtual Machines) are an essential
part of the operation of production systems. Since production work can
be severely degraded by the execution of such utilities, it is desirable to
have policies of the form “There should be no more than an x% degra-
dation of production work due to utility execution.” Two challenges
arise in providing such policies: (1) providing an effective mechanism
for throttling the resource consumption of utilities and (2) continuously
translating from policy expressions of “degradation units” into the ap-
propriate settings for the throttling mechanism. We address (1) by using
self-imposed sleep, a technique that forces utilities to slow down their pro-
cessing by a configurable amount. We address (2) by employing an online
estimation scheme in combination with a feedback loop. This throttling
system is autonomous and adaptive and allows the system to self-manage
its utilities to limit their performance impact, with only high-level policy
input from the administrator. We demonstrate the effectiveness of these
approaches in a prototype system that incorporates these capabilities
into IBM’s DB2 Universal Database server.

1 Introduction

The day-to-day operation of many important software systems involves the ex-
ecution of administrative utilities needed to preserve the system’s integrity and
efficiency. These administrative actions are distinct from the functions provided
by that system for its users. For example, services provided by database man-
agement systems to users are SQL parsing, construction of query plans, query
execution, and run time management of database resources. The administrative
utilities address recoverability (backup/restore), data reorganization and statis-
tics collection (among other things). In UnixTMsystems, cron jobs are often used
to do batch tasks such as recycling of log files. In Java Virtual Machines, garbage
collection is an asynchronous administrative utility. In distributed applications,

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 130–142, 2003.
c© IFIP International Federation for Information Processing 2003

Managing the Performance Impact of Administrative Utilities 131

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18
T

hr
up

ut
 (

tx
/s

ec
)

Time (sec)

WL only
WL + BACKUP
t = 600s

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

R
es

po
ns

e
T

im
e

(s
ec

)

Time (sec)

WL only
WL + BACKUP
t = 600s

Fig. 1. Performance degradation due to running utilities. Plots show time-series
data of throughput and response time measured at the client, averaged over a 60s
interval

there are “heart beats” that are used to verify that application components are
alive.

Such administrative utilities have the following characteristics: (1) their exe-
cution is essential to the integrity of the system; (2) however, they can severely
impair the performance of the user work (hereafter, referred to as production
work) if executed concurrently with that work. Hence, administrators typically
use overnight periods, holidays or scheduled downtimes to execute such tasks.
With the advent of 24×7 operation, such administrative windows are disappear-
ing, creating a significant problem for the system administrator. Therefore, it is
highly desirable to provide enforceable policies for regulating the execution of
utilities.

Fig. 1 demonstrates the dramatic performance degradation from running
a database backup utility while emulated clients are running a transaction-
oriented workload against that database. (Details of the testbed are discussed in
Sect. 4.1.) The throughput of the system without this backup utility (i. e. , work-
load only) averages 15 transactions per second (tps). When the backup utility
is started at t=600sec, the throughput drops to between 25–50% of the original
level, and a corresponding increase is seen in the response time. Moreover, over
the duration of the utility execution, its impact on the workload decreases (indi-
cating that the resource demands of the utility decrease). Thus, enforcing policies
for administrative utilities faces the challenge of dealing with such dynamics.

How should the impact of administrative utilities be managed? Low-level
approaches, such as assigning per-resource quotas or priorities for utilities (e. g. ,
I/O bandwidth quotas) are problematic, since it is a non-trivial problem to
determine the appropriate setting of these values. The required values may be
different for different resources, and also for different utilities. A higher-level
interface is required. Based on our understanding of the requirements of database
administrators, we believe that they are interested in policies which are expressed
in terms of degradation of production work. One form for such a policy is

132 Sujay Parekh et al.

Administrative Utility Performance Policy: There should be no more than
an x% performance degradation of production work as a result of executing
administrative utilities.

In these policies, the administrator thinks in terms of “degradation units” that
are normalized in a way that is fairly indepedent of the specific performance
metric (e.g., response time, transaction rate). It is implicit that the utilities
should complete as early as possible within this constraint, i. e. , the system
should not be unnecessarily idle.

There are two challenges with enforcing such policies.

Challenge 1: Provide a mechanism for controlling the performance degra-
dation from utilities.

We use the term throttling to refer to limiting the execution of utilities in
some way so as to reduce their performance impact. One example of a possible
throttling mechanism is priority, such as nice values in Unix systems (although
this turns out to be a poor choice, as discussed later).

Challenge 2: Continuously translate from degradation units (specified
in the policy) to throttling units (understood by the mechanism), even
when the system and load characteristics are changing.

Such translation is essential so that administrators can work in terms of their
policies, not the details of the managed system. The translation should be done
by the managed system itself so as to meet the administrative goals. Unfortu-
nately, accomplishing this translation is complicated by the need to distinguish
between performance degradation of the production work caused by contention
with the administrative utilities and changes in the production work itself (e.g.,
due to time-of-day variations).

We address the two challenges described above as follows. Our approach to
throttling employs a technique that we refer to as self-imposed sleep (SIS). By
SIS, we mean that the utility algorithm is modified to include points at which
the utility invokes an API that removes the utility from the dispatch queue for
a prescribed period of time. Our experience has been that it is relatively easy to
make these modifications to administrative utilities and that SIS is very effective
in practice. Our approach to translating degradation units into throttling units
uses a feedback-driven approach. This allows us to generate suitable throttling
values without a-priori knowledge of the mapping. Further, it allows the system
to adapt to changes in this mapping between the units.

There is a wide range of literature on scheduling and enforcing policies for
quality of service (QoS) or differentiated service. For example, reservation based
schedulers [1, 2] allocate fractions of bandwith on resources to applications. Such
schedulers may allow the administrative policy to be implemented, but these are
not readily available in popular commercial OSes. The solution we suggest here is
purely at the application level, and since it does not require any changes to the
OS, it can be “retrofitted” in most systems. The IBM workload management
(WLM) system [3] enforces performance policies for absolute response times

Managing the Performance Impact of Administrative Utilities 133

and velocity according to workload classes, by adaptively tuning allocations of
multiple resources. However, it is also deeply embedded in the OS, so it is not
generally usable.

The theme of our work is similar to the cycle-stealing work of Ryu &
Hollingsworth [4] who discuss mechanisms to allow “guest” applications to ex-
ecute on user workstations without a high performance penalty to the nor-
mal users. However, their mechanisms are focused mainly on CPU scheduling,
whereas the problem we face involves a multitude of resources. Our proposed
administrative policy has a similar form to that often used for real-time garbage
collection[5], which is that the application should be able to use the CPU for
a given fraction of the time (at some timescale). Again, this is a single-resource
scheduling problem, which is difficult to generalize to multiple resources. In [6],
the authors describe a time-based scheduler that uses fixed quanta for alternat-
ing GC and application execution, as opposed to work-based schedulers that
run the GC based on the amount of allocation. This scheme is similar in some
ways to our proposed SIS mechanism, except that in their case the quanta sizes
are fixed, whereas we seek to find the optimal quantum size to meet the policy
requirement.

The approach of using feedback control for administrative policies has also
been discussed in the literature. The work of Lu et al.[7] supports a policy of
maintaining relative performance levels between different classes of work for a
web server, and therefore the classes must share common performance units. In
our case, the utility work is not end-user oriented, so its performance metrics
are quite different than (and not comparable to) the production workload. The
current paper is a continuation of our previous work [8] in enforcing performance
policies by using feedback control to translate from high-level policy units into
system-level configuration settings. In this paper, the novel ideas include firstly
the design of a practical yet general control mechanism (the SIS scheme) and
secondly handling the problem where the policy is defined in terms of a quantity
which is not directly measurable.

The remainder of the paper is organized as follows. Sect. 2 describes the
SIS approach to throttling administrative utilities. Sect. 3 details the feedback
control techniques we use to translate from degradation units (as specified in
policies) to throttling units (as used to control administrative utilities). Sect. 4
presents the results of experiments using IBM’s DB2 Universal Database server
and an emulated user workload. Our conclusions are contained in Sect. 5.

2 Throttling Mechanism

The purpose of utilities throttling is to regulate the resource consumption of
utilities. It is desirable that the mechanism be sufficiently general so that it
applies to different operating systems and to utilities with different resource
consumption profiles (e.g., CPU bound, I/O bound).

One approach is to use operating system (OS) priorities, an existing capabil-
ity provided by all modern operating systems. Throttling could be achieved by

134 Sujay Parekh et al.

FUNCTION Utility()
BEGIN

WHILE (NOT done)
BEGIN

... do some work ...
SleepIfNeeded()

END
END

(a) Inserting SIS point

FUNCTION SleepIfNeeded()
BEGIN

(workTime, sleepTime) = GetThrottlingLevel() ;
timeWorked = Now() - workStart ;
IF (timeWorked > workTime)

SLEEP(sleepTime) ;
workStart = Now() ;

ENDIF
END

(b) SIS implementation

Fig. 2. High-level utility structure and sleep point insertion

making the utility threads less preferred than threads doing production work.
In principle, such a scheme is appealing in that it does not require modifications
to the utilities. However, it does require that the utility executes in a separate
dispatchable unit (process/thread) to which the OS assigns priorities. Also, a
priority-based scheme requires that access to all resources be based on the same
priorities. Unfortunately, the priority mechanisms used in most variants of Unix
and Windows only affect CPU scheduling. Such an approach has little impact
on administrative utilities that are I/O bound (e.g., backup).

Our approach is to use self-imposed sleep (SIS). SIS relies on another OS
service: a sleep system call which is parameterized by a time interval. Most
modern OSes provide some version of a sleep system call that makes the process
or thread not schedulable for the specified interval. Fig. 2 describes a throttling
API that uses this sleep service.

To elaborate, many administrative utilities are structured as an outer loop
that iterates over some object. For example, in DB2 BACKUP, the outer loop
iterates over low-level storage units to be written to the backup device; in garbage
collection [5], iteratation is done across memory addresses. Fig. 2(a) depicts how
this flow can be augmented by inserting a sleep point called SleepIfNeeded().
This is the first main piece of our throttling API.

As shown in Fig. 2(b), the control of utilities is regulated by two variables:
a workTime and a sleepTime. These values are in turn obtained by calling
GetThrottlingLevel(), which is discussed in Sect. 3.2. The sleep point ensures
that when it has been at least workTime seconds since the thread was last forced
to sleep, the thread sleeps for the prescribed sleepTime. In order to get the max-
imum benefit from this API, the sleep point must be inserted in each place where
some basic work unit is processed. Care must be taken that highly contended
resources (eg, locks) are not held during the execution of this API.

The sum of workTime and sleepTime constitutes the time between taking
actions that affect utility execution. We refer to this as the action interval.
Our approach forces the action interval to be a constant that is large enough
to encompass several iterations of the work loop of the utility. This value can
be either fixed by the system developer or determined at runtime. With a fixed

Managing the Performance Impact of Administrative Utilities 135

Baseline
Estimator

Compute
Impact

Baseline

Controller

Throttle Manager

Actual
Impact

+

–

Error

Degradation Estimator

Target
Utilities

Sensor

Admin Degradation
Limit

Throttling Level

Performance

Users

Fig. 3. Throttle Manager architecture details

action interval, the throttling level can now be described by one parameter: the
sleep fraction, defined as sleepTime

action interval , which will be a value between 0 and 1.
That is, if the sleep fraction is 0, the utility is unthrottled. If the sleep fraction
is 1, the utility is fully throttled.

3 Feedback Control for Policy Enforcement

The throttling mechanism by itself does not provide enforcement of any throt-
tling policy. The purpose of the feedback control system described here is to
translate degradation units (specified in the policy) into throttling units. More-
over, this system should also adapt quickly to changes in the resource require-
ments of utilities and/or production work. The system described here is targeted
towards supporting policies in the form of “x% performance degradation”.

The overall operation of our proposed automated throttling system is illus-
trated in Fig. 3. Administrators specify the degradation limit, which corresponds
to the x in the policy described in Sect. 1. The main component is the Throt-
tle Manager, which determines the throttling levels (i. e. , sleep fraction) for the
utilities based on the degradation limit as well as performance metrics from the
target system.

The internal architecture of the Throttle Manager is also shown in Fig. 3.
It consists of two main pieces: a Degradation Estimator and a Controller, which
are described below. The Throttle Manager operates in a loop starting with the
collection of performance metrics from the target system, and ending with the
computation of a new throttling level for the utilities. This loop is executed
periodically, at an interval which is related to the desired responsiveness of the
Throttle Manager. This interval is called the control interval.

3.1 Degradation Estimator

The Degradation Estimator component is used to continually estimate the perfor-
mance degradation due to utilities. It works in two stages, first utilizing a Baseline

136 Sujay Parekh et al.

Estimator to estimate the baseline, which is the performance of the system if
there were no utilities running. The baseline value is compared to the most recent
performance feedback to calculate the current degradation (as a fraction):

Degradation = 1− performance
baseline

A straightforward way to determine the baseline is to suspend all utilities for
a brief period and measure the performance during that period as the baseline.
This procedure may be repeated periodically to adjust for changing user work-
loads. Clearly, the responsiveness of the system to a sudden surge in workload
will be limited, since the throttling system may not be aware of an underlying
baseline change until the next measurement period. Moreover, the abrupt paus-
ing and resumption of the utilities may lead to undesirable short-term end-user
performance. Finally, such pauses during idle periods may be unnecessary and
hence lead to underutilized system resources.

Alternatively, we can leverage the SIS mechanism to provide a more respon-
sive Throttle Manager. The key observation is that at sleepTime=100%, the
system should behave as if the utility were not present. We collect datapoints
of the form < sleepTime, performance >. We will see below in Sect. 4.2 that for
BACKUP, sleepTime affects performance in a nearly linear fashion. This is true
of all utilities we have studied to this date. Hence, we perform adaptive curve
fitting to find the parameters θ of a static linear model (shown in Eqn. 1) of the
effect of sleepTime on the selected performance metric ; however, more complex
models (e. g. , autoregressive or non-linear) may be used if simple linear models
are not adequately accurate.

performance = f(sleepTime) = θ1 ∗ sleepTime+ θ0 (1)

Such a model can be projected to sleepTime=100% to yield an estimate of
the baseline. Since this estimate can be updated every action interval, it results
in a much more responsive system. We have found that using recursive least
squares with exponential forgetting provides reasonable results for the model fit.
Exponential forgetting allows the estimator to adapt when either the workload
changes or the impact of the utility on the workload changes (as for BACKUP).
Details on recursive least squares and similar techniques can be found in the
literature[9].

3.2 Controller

Given the current degradation level, the Throttle Manager must calculate throt-
tling levels for the utilities. Consider these observations

1. current degradation ≤ degradation limit , which is merely the semantics of
the throttling policy.

2. However, if current degradation < degradation limit , it means that resources
are not being used maximally since a larger degradation could be tolerated,
i. e. , utilities could be throttled less.

Managing the Performance Impact of Administrative Utilities 137

Together, they imply that to balance utility degradation and system utilization,
we want current degradation = degradation limit . As shown in Fig. 3, we define
the error as degradation limit − current degradation .

Because of the relatively straightforward effects of sleepTime on perfor-
mance, we use a standard Proportional-Integral (PI) controller from linear con-
trol theory[10] to drive this error quantity to zero, thereby enforcing the throt-
tling policy. A PI control structure is proven to be very stable and robust and is
guaranteed to eliminate any error in steady-state. It is used in nearly 90% of all
controller applications in the real world. A new throttling value at time k+1 is
computed as follows:

throttling(k + 1) = KP ∗ error(k) +KI ∗
k∑

i=0

error(i) (2)

In our implementation, this value is posted to shared memory, which is then
accessed by SIS implementation using the GetThrottlingLevel() call. This in-
terface allows the maximum flexibility to implement the Throttle Manager either
as an OS service, as an asynchronous thread within the target application, or as
a separate application.

This controller requires that we calibrate the two parameters KP and KI ,
which affect the aggressiveness of the controller. We choose a fixed KP and KI

for all utilities for the experiments in this paper, and we use a control interval
of 20 seconds. Using standard control-theoretic analysis, we can show that the
values we have used result in a theoretically stable system under the workloads
we have studied. We omit this discussion due to space constraints. In principle,
the values of these constants could also be determined at runtime. For example,
the policy may be augmented by including a desired reliability or variability
parameter, which can be combined with online system identification to determine
appropriate values for KP , KI and the control interval. These auto-tuning issues
will be explored in future work.

4 Empirical Assessments

4.1 Testbed Description

Our target system is a modified version of the IBM DB2 Universal Database v8.1
running on a 4-CPU RS/6000 with 2GB RAM, with the AIX 4.3.2 operating
system. To emulate client activity, we apply an artificial transaction processing
workload which is similar to the industry-standard TPC-C database benchmark.
This workload is considered our “production” load. The database is striped over
8 physical disks connected via an SSA disk subsystem. The utility we focus on
is an online BACKUP of this database. This backup is parallelized, consisting
of multiple processes that read from multiple tablespaces, and multiple other
processes that write to separate disks.

For most of the measurements shown here, the workload is run for an initial
warm-up period of 10 minutes to populate the buffer pools and other system

138 Sujay Parekh et al.

70 75 80 85 90 95 100 105 110 115 120
0

5

10

15

Priority

T
hr

ou
gh

pu
t

data
linear fit

(a) OS Priorities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Sleep Fraction

T
hr

ou
gh

pu
t

data
linear fit

(b) Sleep fraction

Fig. 4. Average performance at different throttling levels

structures. After this, the utility is invoked under various conditions. The number
of emulated users is kept constant for the duration of the run. We measure
performance metrics such as throughput, average transaction times, and system
utilizations for the entire run.

4.2 Comparing OS Priorities and SIS

Two throttling mechanisms are considered: OS priorities and SIS. To study their
effectiveness, we altered several database utilities. The details required to imple-
ment SIS are described in Sect. 2. To evaluate OS priorities, we use the same sleep
point concept as for SIS, except that instead of using workTime and sleepTime,
the process priority is set to the desired value.

In Fig. 4, we show the average throughput for the same workload (25 emu-
lated users) while BACKUP is run at different throttling levels. Each datapoint
represents the average performance over a 20-minute run where the throttling
level was kept constant at the indicated level. In Fig. 4(a), we study the effect
of using different OS priorities for the utility processes. On AIX, processes with
smaller priority values receive higher preference for scheduling. Accordingly, the
range of priorities for the utilities is varied between the priority of the production
processes (70) up to the system maximum (120). Thus, the utility is always given
less preference than the production work. In Fig. 4(b), we use the SISmechanism,
varying the sleep fraction from 0.0 to 1.0 across runs.

We see that OS priorities do not have much of an effect on throughput. To
understand why, we look at other metrics. On average, the system spends around
80% of its CPU cycles waiting for I/O, indicating that the system is not starved
for CPU cycles, and therefore lowering CPU priorities of I/O-bound processes
does not help.

On the other hand, SIS has a nearly linear effect in reducing the degradation
of the utility on the workload. Note further that at a sleep fraction of 1, the

Managing the Performance Impact of Administrative Utilities 139

0 500 1000 1500 2000 2500
0

5

10

15

20

T
hr

ou
gh

pu
t

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6
0.8

1

C
on

tr
ol

Time (sec)

Fig. 5. Effect of dynamically varying sleep fraction settings

utility is maximally throttled, hence the workload performance is close to the
no-utility case of Fig. 1. This justifies the extrapolation carried out in the Baseline
Estimator.

In Fig. 5, we study the dynamic effect of the control mechanism. This allows
us to understand factors like delays in effecting a new control value, and transient
behaviors like overshoot. The utility is started at 600sec, after which we vary the
throttling level in a sinusoid pattern, where each throttling level is maintained
for 60 seconds. We see that the sleep fraction is a nice effector for throttling
since it has an effect on the utility impact with almost no delay.

From an implementation standpoint, the SIS mechanism requires the admin-
istrative utility to be modified. Thus, it is usable mainly by the developers of the
utility or software system. In order to insert the SIS points, the main work phase
of the utility should be identifiable. This may prove problematic in cases of some
legacy systems where the source code is not available or not well understood.
However, for current or new software, the SIS mechanism gives developers the
ability to build a general and effective throttling capability into their systems.
The runtime overhead of this scheme (in terms of its effect on the workload)
is not detectable, especially since any amount of throttling is better than no
throttling at all.

4.3 Effectiveness of Feedback Control

We now evaluate whether the feedback control approach can effectively translate
an administrative degradation policy of 30% into appropriate settings for SIS.

We first show in Fig. 6(a) that the throttling system follows the policy limit
in the case of a steady workload generated by 25 emulated users. For comparison,
the workload performance as well as the effect of an unthrottled utility (from
Fig. 1) are also shown. While the average throughput without the BACKUP
running is 15.1 tps, the throughput with a throttled BACKUP is 9.4 tps –
a degradation of 38%, which is close to the desired 30%. Note how the throt-
tling system compensates for the decreasing resource demands of the utility by
lowering the sleep fraction (Fig. 6(c)), resulting in a throughput profile that is
more parallel to the no-utility case.

140 Sujay Parekh et al.

Steady Workload Workload surge

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

T
hr

up
ut

 (
tx

/s
ec

)

Time (sec)

Workload only
Throttled BACKUP
Unthrottled BACKUP

(a) Throughput

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

T
hr

up
ut

 (
tx

/s
ec

)

Time (sec)

No BACKUP
Throttled BACKUPUtility starts

More work
arrives

(b) Throughput

0 500 1000 1500 2000 2500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
le

ep
 fr

ac
tio

n

Time(sec)

(c) Throttling

0 500 1000 1500 2000 2500 3000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
le

ep
 fr

ac
tio

n

Time(sec)

(d) Throttling

Fig. 6. Effect of throttling a utility under a steady workload and a workload
surge with a 30% impact policy. The throughput data shown is averages over 1
minute intervals

To highlight the adaptive nature of this system, we consider a scenario where
there is a surge in the number of users accessing the database system while the
BACKUP utility is executing. We start with a nominal workload consisting
of 10 emulated users, and start the utility at 300 sec. At time 1500 sec, an
additional 15 users are added (thus, resulting in a total of 25 users). Fig. 6(b)
shows the throughput data for the surge, with the no-utility case (in the same
scenario) shown for reference. We see that the throttling system adapts when the
workload increases, reaching a new throttling level within 600sec. For this case,
the pre-surge average throughputs are 13.1 (workload only) and 8.37 (throttled
BACKUP) – a degradation of 36%. Analogously, the post-surge degradation is
19%. Note that the sleep fraction used (and the resultant throughput) towards
the latter half of the run is similar to the value seen for the steady-workload
case, indicating that the models learned by the Baseline Estimator are similar.

The responsiveness offered by the projection-based Baseline Estimator comes
at a cost of a small error (typically within 10% in our tests) in exactly satis-

Managing the Performance Impact of Administrative Utilities 141

fying the degradation policy. This error arises to a large degree from the er-
rors due to the real-time estimation in the Baseline Estimator. First, there is
some inherent inaccuracy in the projection method, as is evident from the pro-
jected value of 13.2 tps seen in Fig. 4(b), compared to the actual unthrottled
throughput of 15.1 tps. Second, the system stochastics cause the estimation of
degradation to be incorrect. As seen by the temporary drop in the sleep fraction
near t=1800sec in Fig. 6(c), this can cause the controller to violate the policy
requirements for a short time window. However, the adaptive estimation cor-
rects itself fairly quickly, so the longer-term behavior is still correct. If such
short-term violations are not desirable, we can adjust the forgetting factor in
the online estimator to increase the robustness at the expense of its adaptation
speed.

5 Conclusions and Future Work

Running utility functions against a production system can prove to be an ad-
ministrative nightmare. In this paper, we have provided one example of the
dramatic performance degradation from performing system maintenance tasks
while users are active on the system, a situation which is increasingly prevalent
in today’s 24x7 operations. We argue that the management burden can be eased
by a policy-based execution of utilities, based on limiting their performance im-
pact on the production workload. Our proposed SIS throttling mechanism proves
to be a convenient, portable and effective mechanism for throttling utilities. We
also demonstrate how a feedback control loop can be used to translate the policy
specification into actions in terms of the throttling mechanism. This throttling
system is autonomous and adaptive and thus allows the system to self-manage
its utilities to limit their performance impact, with only high-level policy input
from the administrator. Our prototype system implemented for utilities running
in the DB2 Universal Database achieves within 10% of the desired degradation
policy, both when workloads are steady and when they change. This is quite
reasonable given the stochastics in the system.

The architecture shown here can be easily adapted for use in other systems;
it is not specific to database management systems. The main requirement is that
the core of the work phase of the utility should be identifiable, so that the sleep
point can be inserted there. A secondary requirement is that the performance
metric of interest should be available to be measured; ideally it should be a server-
side metric which can be collected at frequent intervals without much overhead.

The results in this paper have focused on a single utility. While we cannot
claim that the specific controller proposed here would apply across all instances
of all utilities in all systems, we plan to investigate this generality further. The
solution we have described here computes a single throttling value for all utilities,
which may not be the most efficient. In the case of multiple utilities, it may
be advantageous to throttle utilities separately according to their individual
impacts on the workload. Our future work will address this issue as well. Finally,
while we have shown particular instantiations for the individual components of

142 Sujay Parekh et al.

our architecture (e. g. , a PI algorithm for the controller, recursive least squares
estimator, etc) which work well in combination, the exact choices of algorithms
and their parameterizations may need to be adjusted based on the target system.
We plan to investigate procedures to automate these steps as well, in particular
the determination of the controller parameters (since they can be dependent on
the target system).

References

[1] Bruno, J., Gabber, E., Özden, B., Silberschatz, A.: The Eclipse operating sys-
tem: Providing quality of service via reservation domains. In: Proceedings of the
USENIX 1998 Annual Technical Conference, New Orleans, LA (1998) 235–246 132

[2] Banga, G., Druschel, P., Mogul, J.C.: Resource containers: A new facility for re-
source management in server systems. In: Proceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, LA (1999)
45–58 132

[3] Aman, J., Eilert, C.K., Emmes, D., Yocom, P., Dillenberger, D.: Adaptive algo-
rithms for managing a distributed data processing workload. IBM Systems Journal
36 (1997) 132

[4] Ryu, K.D., Hollingsworth, J.K.: Exploiting fine-grained idle periods in networks of
workstations. IEEE Transactions on Parallel and Distributed Systems 11 (2000)
683–698 133

[5] Wilson, P.R.: Uniprocessor garbage collection techniques. In: Proceedings of the In-
ternational Workshop on Memory Management, Springer-Verlag (1992) 1–42 133,
134

[6] Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low over-
head and consistent utilization. In: Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press (2003)
285–298 133

[7] Lu, C., Abdelzaher, T.F., Stankovic, J.A., Son, S.H.: A feedback control architec-
ture and design methodology for service delay guarantees in web servers. Technical
Report CS2001-06, University of Virginia, Department of Computer Science (2001)
133

[8] Diao, Y, Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO
feedback control to enforce policies for interrelated metrics with application to
the Apache web server. In: Proceedings of Network Operations and Management.
(2002) 133

[9] Astrom, K.J., Wittenmark, B.: Adaptive Control. 2nd edn. Addison-Wesley Pub-
lishing Company (1994) 136

[10] Ogata, K.: Modern Control Engineering. 3rd edn. Prentice Hall (1997) 137

	Managing the Performance Impact of Administrative Utilities
	Introduction
	Throttling Mechanism
	Feedback Control for Policy Enforcement
	Degradation Estimator
	Controller

	Empirical Assessments
	Testbed Description
	Comparing OS Priorities and SIS
	Effectiveness of Feedback Control

	Conclusions and Future Work

