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Abstract. Proofs of security protocols typically employ simple abstrac-
tions of cryptographic operations, so that large parts of such proofs
are independent of cryptographic details. The typical abstraction is the
Dolev-Yao model, which treats cryptographic operations as a specific
term algebra. However, there is no cryptographic semantics, i.e., no the-
orem that says what a proof with the Dolev-Yao abstraction implies for
the real protocol, even if provably secure cryptographic primitives are
used.
Recently we introduced an extension to the Dolev-Yao model for which
such a cryptographic semantics exists, i.e., where security is preserved
if the abstractions are instantiated with provably secure cryptographic
primitives. Only asymmetric operations (digital signatures and public-
key encryption) are considered so far. Here we extend this model to
include a first symmetric primitive, message authentication, and prove
that the extended model still has all desired properties. The proof is a
combination of a probabilistic, imperfect bisimulation with cryptographic
reductions and static information-flow analysis.
Considering symmetric primitives adds a major complication to the orig-
inal model: we must deal with the exchange of secret keys, which might
happen any time before or after the keys have been used for the first time.
Without symmetric primitives only public keys need to be exchanged.

1 Introduction

Proofs of security protocols typically employ simple abstractions of crypto-
graphic operations, so that large parts of such proofs are independent of cryp-
tographic details, such as polynomial-time restrictions, probabilistic behavior
and error probabilities. This is particularly true for tool-supported proofs, e.g.,
[17,16,13,22,23,1,15,18].

The typical abstraction is the Dolev-Yao model [9]: Cryptographic opera-
tions, e.g., E for encryption and D for decryption, are considered as operators in
a term algebra where only certain cancellation rules hold. (In other words, one
considers the initial model of an equational specification.) For instance, encrypt-
ing a message m twice does not yield another message from the basic message
space but the term E(E(m)). A typical cancellation rule is D(E(m)) = m for all
m.
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However, there is no cryptographic semantics, i.e., no theorem that says what
a proof with the Dolev-Yao abstraction implies for the real protocol, even if prov-
ably secure cryptographic primitives are used. In fact, one can construct proto-
cols that are secure in the Dolev-Yao model, but become insecure if implemented
with certain provably secure cryptographic primitives [19]. Closing this gap has
motivated a considerable amount of research in security and cryptography over
the past few years, e.g., [14,20,3,12,21,8,5].

The abstraction we introduced in [5] achieved a major step towards clos-
ing this gap: We defined an ideal “cryptographic library” that offers abstract
commands for generating nonces and keys, for performing operations (signing,
testing, encrypting, decrypting) with these keys on messages, for dealing with
lists and arbitrary application data, and for sending and receiving messages.
The library further supports nested operations in the intuitive sense. The ideal
cryptographic library has a simple deterministic behavior, and cryptographic
objects are hidden at the interface, which makes it suitable as a basis for formal
protocol verification. While the original Dolev-Yao model was a pure, memory-
less algebra, our model is stateful, e.g., to distinguish different nonces and to
reflect that cryptographically secure encryption and signature schemes are typ-
ically probabilistic. Thus our ideal cryptographic library corresponds more to
“the CSP Dolev-Yao model” or “the Strand-space Dolev-Yao model” than the
pure algebraic Dolev-Yao model.

This ideal cryptographic library is implemented by a real cryptographic li-
brary where the commands are implemented by real cryptographic algorithms
and messages are actually sent between machines. The real system can be based
on any cryptographically secure primitives. Our definition of security is based
on the simulatability approach: security essentially means that anything an ad-
versary against the real system can achieve can also be achieved by an adversary
against the ideal system. This is the strongest possible cryptographic relation
between a real and an ideal system. The definition in particular covers active
attacks. In [5], our ideal and real cryptographic libraries were shown to fulfill
this definition. The general composition theorem for the underlying model [21]
implies that if a system that uses the abstract, ideal cryptographic library is
secure then the same system using the real cryptographic library is also secure.

Only asymmetric cryptographic primitives (public-key encryption, digital sig-
natures) are considered in [5], i.e., all primitives based on shared secret keys were
not included. The main contribution of this paper is to add an important sym-
metric primitive to the framework of [5]: message authentication. We present
abstractions for commands and data related to message authentication, e.g.,
commands for key generation, authentication, and authenticator testing, and we
present a concrete realization based on cryptographic primitives. We then show
that these two systems fulfill the simulatability definition if they are plugged
into the existing cryptographic library. The inclusion of symmetric primitives
and the sending of secret keys add a major complication to the original proof,
because keys may be sent any time before or after the keys have been used for
the first time. In particular, this implies that a real adversary can send mes-



Symmetric Authentication within a Simulatable Cryptographic Library 273

sages which cannot immediately be simulated by a known term, because the
keys needed to test the validity of authenticators are not yet known, but may
be sent later by the adversary. Without symmetric primitives only public keys
had to be exchanged, and the problem could be avoided by appropriate tagging
of all real messages with the public keys used in them, so that messages could
be immediately classified into correct terms or a specific garbage type [5]. Due
to lack of space, this paper only briefly sketches the proof; the complete proof
can be found in the full version of this paper [4].

Related Work. Abadi et. al. [3,2] started to bridge the abstraction gap by consid-
ering a Dolev-Yao model with nested algorithms specifically for symmetric en-
cryption and synchronous protocols. There, however, the adversary is restricted
to passive eavesdropping. Consequently, it was not necessary to choose a reactive
model of a system and its honest users, and the security goals were all formu-
lated as indistinguishability, i.e., if two abstract systems are indistinguishable by
passive adversaries, then this is also true for the two corresponding real systems.
This model does not yet contain theorems about composition or property preser-
vation from the abstract to the real system. The price we pay for the greater
applicability of reactive simulatability and for allowing active attacks is a much
more complicated proof.

Several papers extended this work for specific models of specific classes of
protocols. For instance, [11] specifically considers strand spaces, and within this
model information-theoretically secure primitives.

The recent definitions of simulatability for reactive systems come with more
or less worked-out examples of abstractions of cryptographic systems; however,
even with a composition theorem this does not automatically give a crypto-
graphic library in the Dolev-Yao sense, i.e., with the possibility to nest abstract
operations. For instance, the abstract secure channels in [21] combine encryption
and signatures in a fixed way, while the lower-level encryption subsystem used
in that paper, like the examples in [14], does not offer abstract, implementation-
independent outputs. The cryptographic primitives in [7,8] are abstract, but
do not support nested operations: ideal cryptographic operations are defined
through immediate interactions with the adversary, i.e., they are not local to
the party that performs them and the adversary learns the structure of every
term any honest party ever builds. The ideal system for signatures even reveals
every signed message to the adversary. Thus, by composing cryptographic oper-
ations already the ideal systems reveal too much information to the adversary;
thus they cannot be a sound basis for more complex protocols.

Our cryptographic library overcomes these problems. It supports nested op-
erations in the intuitive sense; operations that are performed locally are not
visible to the adversary. It is secure against arbitrary active attacks, and the
composition theorem allows for safely using it within the context of arbitrary
surrounding interactive protocols. This holds independently of the goals that one
wants to prove about the surrounding protocols.
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Fig. 1. Overview of the simulatability definition. A real system is shown on the left-
hand side, and an ideal system on the right-hand side. The view of H must be indis-
tinguishable.

2 Overview of Simulatability

We start with a brief overview of the underlying security notion of simulatability,
which is the basic notion for comparing an ideal and a real system. For the
moment, we only need to know that an ideal and a real system each consist of
several possible structures, typically derived from an intended structure with a
trust model. An intended structure represents a benign world, where each user
is honest and each machine behaves as specified. The trust model is then used to
determine the potentially malicious machines, i.e., machines which are considered
to be under control of the adversary. Moreover, the trust model classifies the
“security” of each connection between machines of the structure, e.g., that a
connection is authentic, but not secret. Now for each element of the trust model,
this gives one separate structure.

Each structure interacts with an adversary A and honest users summarized
as a single machine H. The security definition is that for all polynomial-time
honest users H and all polynomial-time adversaries A1 on the real system, there
exists an adversary A2 on the ideal system such that the honest users H cannot
notice the difference, as shown in Figure 1.

3 The Ideal System

For modeling and proving cryptographic protocols using our abstraction, it is
sufficient to understand and use the ideal cryptographic library described in this
section. Thus, applying our results to the verification of cryptographic proto-
cols does not presuppose specific knowledge about cryptography or probabilism.
The subsequent sections only justify the cryptographic faithfulness of this ideal
library.

The ideal cryptographic library offers its users abstract cryptographic op-
erations, such as commands to encrypt or decrypt a message, to make or test
a signature, and to generate a nonce. All these commands have a simple, de-
terministic behavior in the ideal system. In a reactive scenario, this semantics
is based on state, e.g., of who already knows which terms. We store state in a
“database”. Each entry of the database has a type (e.g., “signature”), and point-
ers to its arguments (e.g., a key and a message). This corresponds to the top
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level of a Dolev-Yao term; an entire term can be found by following the pointers.
Further, each entry contains handles for those participants who already know it.
The reason for using handles to make an entry accessible for higher protocols is
that an idealized cryptographic term and the corresponding real message have
to be presented in the same way to higher protocols to allow for a provably se-
cure implementation in the sense of simulatability. In the ideal library, handles
essentially point to Dolev-Yao-like terms, while in the real library they point to
cryptographic messages.

The ideal cryptographic library does not allow cheating by construction. For
instance, if it receives a command to encrypt a message m with a certain key,
it simply makes an abstract database entry for the ciphertext. Another user can
only ask for decryption of this ciphertext if he has handles to both the ciphertext
and the secret key. Similarly, if a user issues a command to sign a message, the
ideal system looks up whether this user should have the secret key. If yes, it
stores that this message has been signed with this key. Later tests are simply
look-ups in this database. A send operation makes an entry known to other
participants, i.e., it adds handles to the entry. Our model does not only cover
crypto operations, but it is an entire reactive system and therefore contains an
abstract network model.

In the following, we present our additions to this ideal system for capturing
symmetric authentication primitives, i.e., providing abstractions from authen-
tication keys and authenticators, and offering commands for key generation,
authentication, and verification. Both authenticators and authentication keys
can be included into messages that are sent over the network, which allows for
sharing authentication keys with other participants. Before we introduce our ad-
ditions in detail, we explain the major design decisions. For understanding these
decision, it might be helpful for readers not familiar with message authentication
to read Section 4.1 before, which contains the cryptographic definition of secure
authentication schemes.

First, we have to allow for checking if authenticators have been created with
the same secret key; as the definition of secure authentication schemes does not
exclude this, it can happen in the real system. For public-key encryption and
digital signatures, this was achieved in [5] by tagging ciphertexts respectively
signatures with the corresponding public key, so that the public keys can be
compared. For authenticators, this is clearly not possible as no public key exists
there. We solve this problem by tagging authenticators with an “empty” public
key, which serves as a key identifier for the secret key.

Secondly, as authentication keys can be exchanged between the users and the
adversary, it might happen that an authenticator is valid with respect to several
authentication keys, e.g., because the adversary has created a suitable key. Hence
it must be possible to tag authenticators with additional key identifiers during
the execution, i.e., authenticators are tagged with a list of key identifiers. This
list can also be empty which models authenticators from the adversary for which
no suitable key is known yet.
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Thirdly, we have to reflect the special capabilities an adversary has in the
real system. For example, he might be able to transform an authenticator, i.e., to
create a new authenticator for a message for which the correct user has already
created another authenticator. Such a transformation is not excluded in the
definition of secure authentication schemes, hence it might happen in the real
system. The ideal library therefore offers special commands for the adversary to
model capabilities of this kind.

3.1 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←”
for uniform random choice from a set. By x := y++ for integer variables x, y we
mean y := y + 1; x := y. The length of a message m is denoted as |m|, and ↓
is an error element available as an addition to the domains and ranges of all
functions and algorithms. The list operation is denoted as l := (x1, . . . , xj), and
the arguments are unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A
database D is a set of functions, called entries, each over a finite domain called
attributes. For an entry x ∈ D, the value at an attribute att is written x.att .
For a predicate pred involving attributes, D[pred ] means the subset of entries
whose attributes fulfill pred . If D[pred ] contains only one element, we use the
same notation for this element. Adding an entry x to D is abbreviated D :⇐ x.

3.2 Structures and Parameters

The ideal system consists of a trusted host THH for every subset H of a set
{1, . . . , n} of users, denoting the possible honest users. It has a port inu? for
inputs from and a port outu ! for outputs to each user u ∈ H and for u = a,
denoting the adversary.

The ideal system keeps track of the length of messages using a tuple L of
abstract length functions. We add functions ska len∗(k) and aut len∗(k, l) to L
for the length of authentication keys and authenticators, depending on a se-
curity parameter k and the length l of the message. Each function has to be
polynomially bounded and efficiently computable.

3.3 States

The state of THH consists of a database D and variables size, curhndu for
u ∈ H ∪ {a}. The database D contains abstractions from real cryptographic
objects which correspond to the top levels of Dolev-Yao terms. An entry has the
following attributes:

– x.ind ∈ INDS, called index, consecutively numbers all entries in D. The
set INDS is isomorphic to N; we use it to distinguish index arguments from
others. We use the index as a primary key attribute of the database, i.e., we
write D[i] for the selection D[ind = i].
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– x.type ∈ typeset identifies the type of x. We add types ska, pka, and aut to
typeset from [5], denoting secret authentication keys, “empty” public keys
that are needed as key identifier for the corresponding authentication keys,
and authenticators.

– x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many val-
ues ai are indices of other entries in D and thus in INDS. We sometimes
distinguish them by a superscript “ind”.

– x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which a user or
adversary u knows this entry. x.hndu = ↓ means that u does not know this
entry. The set HNDS is yet another set isomorphic to N. We always use a
superscript “hnd” for handles.

– x.len ∈ N0 denotes the “length” of the entry, which is computed by applying
the functions from L.

Initially, D is empty. THH has a counter size ∈ INDS for the current number
of elements in D. New entries always receive ind := size++, and x.ind is never
changed. For the handle attributes, it has counters curhndu (current handle)
initialized with 0, and each new handle for u will be chosen as ihnd := curhnd++.

For each input port p?, THH further maintains a counter stepsp? ∈ N0 initial-
ized with 0 for the number of inputs at that port, each with a bound boundp?.
If that bound is reached, no further inputs are accepted at that port, which is
used to achieve polynomial runtime of the machine THH independent of the en-
vironment. The underlying IO automata model guarantees that a machine can
enforce such bounds without additional Turing steps even if the adversary tries
to send more data. The bounds from [5] can be adopted without modification ex-
cept that the number of permitted inputs from the adversary has to be enlarged.
This is just a technical detail to allow for a correct proof of simulatability. We
omit further details and refer to the full version [4].

3.4 New Inputs and Their Evaluation

The ideal system has several types of inputs: Basic commands are accepted at
all ports inu?; they correspond to cryptographic operations and have only local
effects, i.e., only an output at the port outu? for the same user occurs and only
handles for u are involved. Local adversary commands are of the same type, but
only accepted at ina?; they model tolerated imperfections, i.e., possibilities that
an adversary may have, but honest users do not. Send commands output values
to other users. In the following, the notation j ← algo(i) for a command algo of
THH means that THH receives an input algo(i) and outputs j if the input and
output port are clear from the context. We only allow lists to be authenticated
and transferred, because the list-operation is a convenient place to concentrate
all verifications that no secret keys of the public-key systems from [5] are put
into messages.

For dealing with symmetric authentication we have to add new basic com-
mands and local adversary commands; the send commands are unchanged. We
now define the precise new inputs and how THH evaluates them based on its ab-
stract state. Handle arguments are tacitly required to be in HNDS and existing,
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i.e., ≤ curhndu , at the time of execution. The underlying model further bounds
the length of each input to ensure polynomial runtime; these bounds are not
written out explicitly, but can easily be derived from the domain expectations
given for the individual inputs.

The algorithm ihnd ← ind2hndu(i) (with side effect) denotes that THH deter-
mines a handle ihnd for user u to an entry D[i]: If ihnd := D[i].hndu �= ↓, it returns
that, else it sets and returns ihnd := D[i].hndu := curhndu++. On non-handles,
it is the identity function. ind2hnd∗

u applies ind2hndu to each element of a list.

Basic Commands. First we consider basic commands. This comprises opera-
tions for key generation, creating and verifying an authenticator, and extracting
the message from an authenticator. We assume the current input is made at port
inu?, and the result goes to outu !.

– Key generation: skahnd ← gen auth key(). Set skahnd := curhndu++ and

D :⇐ (ind := size++, type := pka, arg := (), len := 0);
D :⇐ (ind := size++, type := ska, arg := (ind − 1),

hndu := skahnd, len := ska len∗(k)).

The first entry, an “empty” public key without handle, serves as the men-
tioned key identifier for the secret key. Note that the argument of the secret
key “points” to the empty public key.

– Authenticator generation: authnd ← auth(skahnd, lhnd).
Let ska := D[hndu = skahnd ∧ type = ska].ind and l := D[hndu =
lhnd ∧ type = list].ind . Return ↓ if either of these is ↓, or if length :=
aut len∗(k, D[l].len) > max len(k). Otherwise, set authnd := curhndu++,
pka := ska− 1 and

D :⇐ (ind := size++, type := aut, arg := (l, pka),
hndu := authnd, len := length).

The general argument format for entries of type aut is (l, pka1, . . . , pkaj).
The arguments pka1, . . . , pkaj are the key identifiers of those secret keys for
which this authenticator is valid. We will see in Section 3.4 that additional
key identifiers for an authenticator can be added during the execution, e.g.,
because the adversary has created a suitable key. Such arguments are ap-
pended at the end of the existing list. An empty sequence of arguments pkai

models authenticators from the adversary for which no suitable secret key
has been received yet.

– Authenticator verification: v ← auth test(authnd, skahnd, lhnd).
If aut := D[hndu = authnd ∧ type = aut].ind = ↓ or ska := D[hndu =
skahnd ∧ type = ska].ind = ↓, return ↓. Otherwise, let (l, pka1, . . . , pkaj) :=
D[aut ].arg . If ska − 1 �∈ {pka1, . . . , pkaj} or D[l].hndu �= lhnd, then v :=
false, else v := true.
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The test ska− 1 ∈ {pka1, . . . , pkaj} is the lookup that the secret key is one
of those for which this authenticator is valid, i.e., that the cryptographic test
would be successful in the real system.

– Message retrieval: lhnd ← msg of aut(authnd).
Let l := D[hndu = authnd ∧ type = aut].arg [1] and return lhnd :=
ind2hndu(l) 1.

Local Adversary Commands. The following local commands are only ac-
cepted at the port ina?. They model special capabilities of the adversary. This
comprises authentication transformation, which allows the adversary to create
a new authenticator for a message provided that the adversary already has a
handle for another authenticator for the same message. This capability has to
be included in order to be securely realizable by cryptographic primitives, since
the security definition of authentication schemes does not exclude such a trans-
formation.

If an authenticator is received from the adversary for which no suitable key
has been received yet, we call the authenticator (temporarily) unknown. In the
real system, this means that no user will be able to check the validity of the
authenticator. In the ideal system, this is modeled by providing a command for
generating an unknown authenticator. Such an authenticator can become valid
if a suitable secret key is received. A command for fixing authenticators takes
care of this. Finally, we allow the adversary to retrieve all information that we
do not explicitly require to be hidden, e.g., arguments and the type of a given
handle. This is dealt with by a command for parameter retrieval.

– Authentication transformation: trans authnd ← adv transform aut(authnd).
Return ↓ if aut := D[hnda = authnd ∧ type = aut].ind = ↓. Otherwise let
(l, pka1, . . . , pkaj) := D[aut ].arg , set trans authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l, pka1),
hnda := trans authnd, len := D[aut ].len).

– Unknown authenticator: authnd ← adv unknown aut(lhnd).
Return ↓ if l := D[hnda = lhnd ∧ type = list].ind = ↓ or length :=
aut len∗(k, D[l].len) > max len(k). Otherwise, set authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l), hnda := authnd, len := length).

Note that no key identifier exists for this authenticator yet.
– Fixing authenticator: v ← adv fix aut validity(skahnd, authnd).

Return ↓ if aut := D[hnda = authnd ∧ type = aut].ind = ↓ or if
ska := D[hndu = skahnd ∧ type = ska].ind = ↓. Let (l, pka1, . . . , pkaj) :=
D[aut ].arg and pka := ska− 1. If pka �∈ {pka1, . . . , pkaj} set D[aut ].arg :=
(l, pka1, . . . , pkaj , pka) and output v := true. Otherwise, output v := false.

1 This command implies that real authenticators must contain the message. The sim-
ulator in the proof needs this to translate authenticators from the adversary into
abstract ones. Thus we also offer message retrieval to honest users so that they need
not send the message separately.
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– Parameter retrieval: (type, arg)← adv parse(mhnd).
This existing command always sets type := D[hnda = mhnd].type, and for
most types arg := ind2hnd∗

a(D[hnda = mhnd].arg). This applies to the new
types pka, ska, and aut.

Note that for authenticators, a handle to the “empty” public key is output in
adv parse. If the adversary wants to know whether two given authenticators have
been created using the same secret key, it simply parses them yielding handles
to the corresponding “empty” public keys, and compares these handles.

Send Commands. The ideal cryptographic library offers commands for virtu-
ally sending messages to other users. Sending is modeled by adding new handles
for the intended recipient and possibly the adversary to the database entry mod-
eling the message. These handles always point to a list entry, which can contain
arbitrary application data, ciphertexts, public keys, etc., and now also authen-
ticators and authentication keys. These commands are unchanged from [5]; as
an example we present those modeling insecure channels, which are the most
commonly used ones, and omit secure channels and authentic channels.

– send i(v, lhnd), for v ∈ {1, . . . , n}. Intuitively, the list l shall be sent to user
v. Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind �= ↓, then output
(u, v, ind2hnda(l ind)) at outa!.

– adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?. Intuitively,
the adversary wants to send list l to v, pretending to be u. Let l ind :=
D[hnda = lhnd ∧ type = list].ind . If l ind �= ↓ output (u, v, ind2hndv(l ind)) at
outv !.

4 Real System

The real cryptographic library offers its users the same commands as the ideal
one, i.e., honest users operate on cryptographic objects via handles. There is one
separate database for each honest user in the real system, each database contains
real cryptographic keys, real authenticators, etc., and real bitstrings are actually
sent between machines. The commands are implemented by real cryptographic
algorithms, and the simulatability proof will show that nevertheless, everything
a real adversary can achieve can also be achieved by an adversary in the ideal
system, or otherwise the underlying cryptography can be broken. We now present
our additions and modifications to the real system, starting with a description of
the underlying algorithms for key generation, authentication, and authenticator
testing.

4.1 Cryptographic Operations

We denote a memoryless symmetric authentication scheme by a tuple A = (genA,
auth, atest, ska len, aut len) of polynomial-time algorithms. For authentication
key generation for a security parameter k ∈ N, we write
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sk ← genA(1k).

The length of sk is ska len(k) > 0. By

aut ← authsk (m)

we denote the (probabilistic) authentication of a message m ∈ {0, 1}+. Verifica-
tion

b := atestsk (aut , m)

is deterministic and returns true (then we say that the authenticator is valid)
or false. Correctly generated authenticators for keys of the correct length must
always be valid. The length of aut is aut len(k, |m|) > 0. This is also true for every
aut ′ with atestsk (aut ′, m) = true for a value sk ∈ {0, 1}ska len(k). The functions
ska len and aut len must be bounded by multivariate polynomials.

As the security definition we use security against existential forgery under
adaptive chosen-message attacks similar to [10]. We only use our notation for
interacting machines, and we allow that also the test function is adaptively
attacked.

Definition 1. (Authentication Security) Given an authentication scheme, an
authentication machine Aut has one input and one output port, a variable sk
initialized with ↓, and the following transition rules:

– First generate a key as sk ← genA(1k).
– On input (auth, mj), return autj ← authsk (mj).
– On input (test, aut ′, m′), return v := atestsk (aut ′, m′).

The authentication scheme is called existentially unforgeable under adaptive
chosen-message attack if for every probabilistic polynomial-time machine Aaut

that interacts with Aut, the probability is negligible (in k) that Aut outputs v =
true on any input (test, aut ′, m′) where m′ was not authenticated until that time,
i.e., not among the mj’s. �

Note that the definition does not exclude authenticator transformation, i.e.,
if a message mi has been properly authenticated, creating another valid au-
thenticator for mi is not excluded. This is why we introduced the command
adv transform aut as a tolerable imperfection in Section 3.4. A well-known ex-
ample of an authentication scheme that is provably secure under this definition
is HMAC [6].

4.2 Structures

The intended structure of the real cryptographic library consists of n machines
{M1, . . . ,Mn}. Each Mu has ports inu? and outu !, so that the same honest users
can connect to the ideal and the real system. Each Mu has connections to each
Mv exactly as in [5], in particular an insecure connection called netu,v ,i for normal
use. They are called network connections and the corresponding ports network
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ports. Any subset H of {1, . . . , n} can denote the indices of correct machines.
The resulting actual structure consists of the correct machines with modified
channels according to a channel model. In particular, an insecure channel is
split in the actual structure so that both machines actually interact with the
adversary. Details of the channel model are not needed here. Such a structure
then interacts with honest users H and an adversary A.

4.3 Lengths and Bounds

In the real system, we have length functions list len, nonce len, ska len, and
aut len, corresponding to the length of lists, nonces, authentication keys, and
authenticators, respectively. These functions can be arbitrary polynomials. For
given functions list len, nonce len, ska len, and aut len, the corresponding ideal
length functions are computed as follows:

– ska len∗(k) := list len(|ska|, ska len(k), nonce len(k)); this must be bounded
by max len(k);

– aut len′(k, l) := aut len(k, list len(nonce len(k), l));
– aut len∗(k, l) := list len(|aut|, nonce len(k), nonce len(k), l, aut len′(k, l)).

4.4 States of a Machine

The state of each machine Mu consists of a database Du and variables curhndu
and stepsp? for each input port p?. Each entry x in Du has the following at-
tributes:

– x.hndu ∈ HNDS consecutively numbers all entries in Du. We use it as a
primary key attribute, i.e., we write Du[ihnd] for the selection Du[hndu =
ihnd].

– x.word ∈ {0, 1}+ is the real representation of x.
– x.type ∈ typeset ∪ {null} identifies the type of x. The value null denotes that

the entry has not yet been parsed.
– x.add arg is a list of (“additional”) arguments. For entries of our new types

it is always ().

Initially, Du is empty. Mu has a counter curhndu ∈ HNDS for the current size
of Du. The subroutine

(ihnd, Du) :← (i, type, add arg)

determines a handle for certain given parameters in Du: If an entry with the
word i already exists, i.e., ihnd := Du[word = i∧ type �∈ {sks, ske}].hndu �= ↓ 2, it
2 The restriction type �∈ {sks, ske} (abbreviating secret keys of signature and public-

key encryption schemes) is included for compatibility to the original library. Similar
statements will occur some more times, e.g., for entries of type pks and pke denoting
public signature and encryption keys. No further knowledge of such types is needed
for understanding the new work.



Symmetric Authentication within a Simulatable Cryptographic Library 283

returns ihnd, assigning the input values type and add arg to the corresponding
attributes of Du[ihnd] only if Du[ihnd].type was null. Else if |i| > max len(k),
it returns ihnd = ↓. Otherwise, it sets and returns ihnd := curhndu++, Du :⇐
(ihnd, i, type, add arg).

For each input port p?, Mu maintains a counter stepsp? ∈ N0 initialized with
0 for the number of inputs at that port. All corresponding bounds boundp? are
adopted from the original library without modification. Length functions for
inputs are tacitly defined by the domains of each input again.

4.5 Inputs and Their Evaluation

Now we describe how Mu evaluates individual new inputs.

Constructors and One-Level Parsing. The stateful commands are defined
via functional constructors and parsing algorithms for each type. A general func-
tional algorithm

(type, arg)← parse(m),

then parses arbitrary entries as follows: It first tests if m is of the form
(type, m1, . . . , mj) with type ∈ typeset \ {pka, sks, ske, garbage} and j ≥ 0. If
not, it returns (garbage, ()). Otherwise it calls a type-specific parsing algorithm
arg ← parse type(m). If the result is ↓, parse again outputs (garbage, ()). By

“parse mhnd”

we abbreviate that Mu calls (type, arg) ← parse(Du[mhnd].word), assigns
Du[mhnd].type := type if it was still null, and may then use arg . By

“parse mhnd if necessary”

we mean the same except that Mu does nothing if Du[mhnd].type �= null.

Basic Commands and parse type. First we consider basic commands. They
are again local. In Mu this means that they produce no outputs at the network
ports. The term “tagged list” means a valid list of the real system. We assume
that tagged lists are efficiently encoded into {0, 1}+.

– Key constructor: sk∗ ← make auth key().
Let sk ← genA(1k), sr R← {0, 1}nonce len(k), and return sk∗ := (ska, sk , sr).

– Key generation: skahnd ← gen auth key().
Let sk∗ ← make auth key(), skahnd := curhndu++, and Du :⇐
(skahnd, sk∗, ska, ()).

– Key parsing: arg ← parse ska(sk∗).
If sk∗ is of the form (ska, sk , sr) with sk ∈ {0, 1}ska len(k) and sr ∈
{0, 1}nonce len(k), return (), else ↓.

– Authenticator constructor: aut∗ ← make auth(sk∗, l), for sk∗, l ∈ {0, 1}+.
Set r R← {0, 1}nonce len(k), sk := sk∗[2] and sr := sk∗[3]. Authenticate as
aut ← authsk ((r, l)), and return aut∗ := (aut, sr , r, l, aut).
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– Authenticator generation: authnd ← auth(skahnd, lhnd).
Parse lhnd if necessary. If Du[skahnd].type �= ska or Du[lhnd].type �= list, then
return ↓. Otherwise set sk∗ := Du[skahnd].word , l := Du[lhnd].word , and
aut∗ ← make auth(sk∗, l). If |aut∗| > max len(k), return ↓, else set authnd :=
curhndu++ and Du :⇐ (authnd, aut∗, aut, ()).

– Authenticator parsing: arg ← parse aut(aut∗).
If aut∗ is not of the form (aut, sr , r, l, aut) with sr , r ∈ {0, 1}nonce len(k), l ∈
{0, 1}+, and aut ∈ {0, 1}aut len′(k,|l|), return ↓. Also return ↓ if l is not a
tagged list. Otherwise set arg := (l).

– Authenticator verification: v ← auth test(authnd, skahnd, lhnd).
Parse authnd yielding arg =: (l), and parse skahnd. If Du[authnd].type �= aut or
Du[skahnd].type �= ska, return ↓. Else let (aut, sr , r, l, aut) := Du[authnd].word
and sk := Du[skahnd].word [2]. If sr �= Du[skahnd].word [3]
or l �= Du[lhnd].word , or atestsk (aut , (r, l)) = false, output v := false, else
v := true.

– Message retrieval: lhnd ← msg of aut(authnd).
Parse authnd yielding arg =: (l). If Du[authnd].type �= aut, return ↓, else let
(lhnd, Du) :← (l, list, ()).

Send Commands and Network Inputs. Similar to the ideal system, there
is a command send i(v, lhnd) for sending a list l from u to v, but now using the
port netu,v ,i!, i.e., using the real insecure network: On input send i(v, lhnd) for
v ∈ {1, . . . , n}, Mu parses lhnd if necessary. If Du[lhnd].type = list, Mu outputs
Du[lhnd].word at port netu,v ,i!.

Inputs at network ports are simply tested for being tagged lists and stored
as in [5].

5 Simulator

We now start with the proof that the real system is as secure as the ideal one.
The main step is to construct a simulator SimH for each set H of possible honest
users such that for every real adversary A, the combination SimH(A) of SimH
and A achieves the same effects in the ideal system as the adversary A in the
real system, cf. Section 2. This is shown in Figure 2. This figure also shows the
ports of SimH. Roughly, the goal of SimH is to translate real bitstrings coming
from the adversary into abstract handles that represent corresponding terms in
THH, and vice versa. This will be described in the following.

5.1 States of the Simulator

The state of SimH consists of a database Da and a variable curhnda. Each entry
in Da has the following attributes:

– x.hnda ∈ HNDS is used as the primary key attribute in Da. However, its
use is not as straightforward as in the ideal and real system, since entries
are created by completely parsing an incoming message recursively.
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Fig. 2. Set-up of the simulator.

– x.word ∈ {0, 1}∗ is the real representation of x.
– x.add arg is a list of additional arguments. Typically it is (). However, for

our key identifiers it is (adv) if the corresponding secret key was received
from the adversary, while for keys from honest users, where the simulator
generated an authentication key, it is of the form (honest, sk∗).

The variable curhnda denotes the current size of Da, except temporarily within an
algorithm id2real. Similar to THH, the simulator maintains a counter stepsp? ∈ N0
for each input port p? for the number of inputs at that port, initialized with
0. Similar to the definition of THH, the corresponding bounds boundp? can be
adopted one-to-one from [5], with the only exception that the bound for outa?
has to be enlarged.

5.2 Input Evaluation of Send Commands

When SimH receives an “unsolicited” input from THH (in contrast to the im-
mediate result of a local command), this is the result m = (u, v, i, lhnd) of a send
command by an honest user (here for an insecure channel). SimH looks up if
it already has a corresponding real message l := Da[lhnd].word and otherwise
constructs it by an algorithm l← id2real(lhnd) (with side-effects). It outputs l at
port netu,v ,i!.

The algorithm id2real is recursive; each layer builds up a real word given
the real words for certain abstract components. We only need to add new type-
dependent constructions for our new types, but we briefly repeat the overall
structure to set the context.

1. Call (type, (mhnd
1 , . . . , mhnd

j )) ← adv parse(mhnd) at ina!, expecting type ∈
typeset \ {sks, ske, garbage} and j ≤ max len(k), and mhnd

i ≤ max hnd(k) if
mhnd

i ∈ HNDS and otherwise |mhnd
i | ≤ max len(k) (with certain domain
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expectations in the arguments mhnd
i that are automatically fulfilled in inter-

action with THH, also for the now extended command adv parse for the new
types).

2. For i := 1, . . . , j: If mhnd
i ∈ HNDS and mhnd

i > curhnda, set curhnda++.
3. For i := 1, . . . , j: If mhnd

i �∈ HNDS, set mi := mhnd
i . Else if Da[mhnd

i ] �= ↓,
let mi := Da[mhnd

i ].word . Else make a recursive call mi ← id2real(mhnd
i ). Let

arg real := (m1, . . . , mj).
4. Construct and enter the real message m depending on type; here we only list

the new types:
– If type = pka, call sk∗ ← make auth key() and set m := ε and Da :⇐

(mhnd, m, (honest, sk∗)).
– If type = ska, let pkahnd := mhnd

1 . We claim that Da[pkahnd].add arg is of
the form (honest, sk∗). Set m := sk∗ and Da :⇐ (mhnd, m, ()).

– If type = aut, we claim that pkahnd := mhnd
2 �= ↓. If

Da[pkahnd].add arg [1] = honest, let sk∗ := Da[pkahnd].add arg [2], else
sk∗ := Da[pkahnd + 1].word . Further, let l := m1 and set m ←
make auth(sk∗, l) and Da :⇐ (mhnd, m, ()).

5.3 Evaluation of Network Inputs

When SimH receives a bitstring l from A at a port netw ,u,i? with |l| ≤ max len(k),
it verifies that l is a tagged list. If yes, it translates l into a corresponding handle
lhnd and outputs the abstract sending command adv send i(w, u, lhnd) at port ina!.

For an arbitrary message m ∈ {0, 1}+, mhnd ← real2id(m) works as follows.
If there is already a handle mhnd with Da[mhnd].word = m, then real2id reuses
that. Otherwise it recursively parses the real message, builds up a corresponding
term in THH, and enters all messages into Da. For building up the abstract
term, real2id makes extensive use of the special adversary capabilities that THH
provides. In the real system, the bitstring may, e.g., contain an authenticator for
which no matching authentication key is known yet. Therefore, the simulator has
to be able to insert such an authenticator with “unknown” key into the database
of THH, which explains the need for the command adv unknown aut. Similarly,
the adversary might send a new authentication key, which has to be added to
all existing authenticator entries for which this key is valid, or he might send a
transformed authenticator, i.e., a new authenticator for a message for which the
correct user has already created another authenticator. Such a transformation is
not excluded by the definition of secure authentication schemes, hence it might
occur in the real system. All these cases can be covered by using the special
adversary capabilities.

Formally, id2real sets (type, arg) := parse(m) and calls a type-specific algo-
rithm add arg ← real2id type(m, arg). After this, real2id sets mhnd := curhnda++

and Da :⇐ (mhnd, m, add arg). We have to provide the type-specific algorithms
for our new types.

– add arg ← real2id ska(m, ()). Call skahnd ← gen auth key() at ina! and set
Da :⇐ (curhnda++, ε, (adv)) (for the key identifier), and add arg = () (for
the secret key).
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Let m =: (ska, sk, sr); this format is ensured by the preceding
parsing. For each handle authnd with Da[authnd].type = aut and
Da[authnd].word = (aut, sr , r, l, aut) for r ∈ {0, 1}nonce len(k), l ∈ {0, 1}+,
and aut ∈ {0, 1}aut len′(k,|l|), and atestsk(aut , (r, l)) = true, call v ←
adv fix aut validity(skahnd, authnd) at ina!. Return add arg .

– add arg ← real2id aut(m, (l)). Make a recursive call lhnd ← real2id(l) and let
(aut, sr, r, l, aut) := m; parsing ensures this format.
Let Ska := {skahnd | Da[skahnd].type = ska ∧ Da[skahnd].word [3] = sr ∧
atestsk(aut, (r, l)) = true for sk := Da[skahnd].word [2]} be the set of keys
known to the adversary for which m is valid.
Verify whether the adversary has already seen another authenticator for the
same message with a key only known to honest users:
Let Aut := {authnd | Da[authnd].word = (aut, sr, r, l, aut ′)∧Da[authnd].type =
aut}. For each authnd ∈ Aut , let (aut, argauthnd) ← adv parse(authnd) and
pkaauthnd := argauthnd [2].
We claim that there exists at most one pkaauthnd such that the corre-
sponding secret key was generated by an honest user, i.e., such that
Da[pkaauthnd ].add arg [1] = honest. If such a pkaauthnd exists, let sk∗ :=
Da[pkaauthnd ].add arg [2] and v := atestsk∗[2](aut, (r, l)). If v = true, call
trans authnd ← adv transform aut(authnd) at ina! and after that call v ←
adv fix aut validity(skahnd, trans authnd) at ina! for every skahnd ∈ Ska. Re-
turn ().
Else if Ska �= ∅, let skahnd ∈ Ska arbitrary. Call authnd ← auth(skahnd, lhnd)
at ina!, and for every ska′hnd ∈ Ska \ {skahnd} (in any order), call v ←
adv fix aut validity(ska′hnd, authnd) at ina!. Return ().
If Ska = ∅, call authnd ← adv unknown aut(lhnd) at ina! and return ().

5.4 Properties of the Simulator

Two important properties have to be shown for the simulator. First, it has to be
polynomial-time, as the joint adversary SimH(A) might otherwise not be a valid
polynomial-time adversary on the ideal system. Secondly, we have to show that
the interaction between THH and SimH in the recursive algorithms cannot fail
because one of the machine reaches its runtime bound.

Essentially, this can be shown as in [5], except that the interaction of THH
and SimH in real2id can additionally increase the number of steps linearly in
the number of existing authenticators and existing keys, since a new secret key
might update the arguments of each existing authenticator entry, and a new
authenticator can get any existing key as an argument. This is the reason why we
had to enlarge the bounds at ina? and outa? to maintain the correct functionality
of the simulator, cf. Section 3.3 and 5.1. However, only a polynomial number of
authenticators and keys can be created (a coarse bound is n·max in(k) for entries
generated by honest users, where max in(k) denotes the permitted number of
inputs for each honest user, plus the polynomial runtime of A for the remaining
ones). We omit further details.
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Fig. 3. Overview of the Simulatability Proof.

6 Proof of Correct Simulation

Given the simulator, we show that even the combination of arbitrary polynomial-
time users H and an arbitrary polynomial-time adversary A cannot distinguish
the combination MH of the real machines Mu from the combination THSimH
of THH and SimH (for all sets H indicating the correct machines). We do not
repeat the precise definition of “combinations” here. As the rigorous proof of
correct simulation takes 11 pages, we only give a brief sketch here.

The proof is essentially a bisimulation. This means to define a mapping be-
tween the states of two systems and a sufficient set of invariants so that one can
show that every external input to the two systems (in mapped states fulfilling
the invariants) keeps the system in mapped states fulfilling the invariants, and
that outputs are identical. We need a probabilistic bisimulation because the real
system and the simulator are probabilistic , i.e., identical outputs should yield
mapped states with the correct probabilities and identically distributed outputs.

However, the states of both systems are not immediately comparable: a sim-
ulated state has no real versions for data that the adversary has not yet seen,
while a real state has no global indices, adversary handles, etc. We circumvent
this problem by conducting the proof via a combined system CH, from which
both original systems THSimH and MH can be derived. The two derivations are
two mappings, and we perform the two bisimulations in parallel. By the transi-
tivity of indistinguishability (of the families of view of the same A and H in all
three configurations), we obtain the desired result. This is shown in Figure 3.

In addition to standard invariants, we have an information-flow invariant
which helps us to show that the adversary cannot guess certain values in these
final proofs for the error sets. Although we can easily show that the probability
of a truly random guess hitting an already existing value is negligible, we can
only exploit this if no information (in the Shannon sense) about the particular
value has been given to the adversary. We hence have to show that the adversary
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did not even receive any partial information about this value, which could be
derivable since, e.g., the value was hidden within a nested term. Dealing with
aspects of this kind is solved by incorporating static information-flow analysis
in the bisimulation proof.

Finally, the adversary might succeed in attacking the real system with very
small probability, which is impossible in the ideal system. We collect these cases
in certain “error sets”, and we show that these sets have negligible probabil-
ity (in the security parameter) at the end; this is sufficient for computational
indistinguishability.
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