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Abstract

The preferred models of the consortium (SSG, k-w, STT, SCW) have been
implemented in a recent open source FV software and tested. Numerical behaviour
of two popular versions of the V2F model have been compared and a new
formulation proposed, that combines the accuracy of the original version and
stability of the degraded “code friendly version”. In the DES framework, the need
for reduction of the EVM coefficient has been related to the stress-strain miss-
alignment in rapidly changing time dependent mode and a single transport
equation for this coefficient proposed. On the wall function front, the AWF of
Craft and Gerasimov entailing an analytical integration of terms over the first cell
(body force in particular) proved challenging to implement on unstructured grids,
but was achieved. Towards the end of the project, a promising mathematical
framework (Robin type conditions) was proposed, based on domain
decomposition and mixed Dirichlet and Neumann conditions.

17.1 Introduction

The focus at UMIST has been set on “robust” formulations of the models and wall
treatment, for implementation is professional software, and their suitability for
industrial applications. Collaborations with Ansys-CFX and NUMECA, in
addition to EDF, have been very fruitful in this respect. After fine tuning of the
turbulence models in academic codes, UMIST implemented these models in the
EDF unstructured finite volume software of EDF named Code_Saturne, described
in Chapter I1.9 (this software is available in full source code to academic partner-
developers contributing to the Code_Saturne consortium). One exception is test-
case 1 (wing-tip vortex) performed by C. Robinson with UMIST’s STREAM
code, but this as part of the MDAW project, and hence not described herein
although those solutions will appear in chapter I'V.

17.2 Two equations models improvements
17.2.1 Near-wall models

The viscous effects are not taken into account when using a wall function
approach, therefore loosing information that can be important in some flows. In
order to reproduce the near-wall effects, a low-Reynolds model should be used to
compute all the sharp gradients present in the viscous sublayer. Many two
equation models have a low-Reynolds counterpart but they have been developed
(as if an afterthought) via damping functions in order to obtain the correct
behaviour near the wall. These damping functions are usually design for a specific
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type of flow and are far from universal. Most of them contain the distance from
the wall as a parameter, which can be ill-defined in certain geometries.

Durbin (1991) proposed a more physical approach to the near wall modelling
by taking into account the effects of the wall via an elliptic equation. The
formulation of the V2F model is based on the use of the correct velocity scale near
the wall, o? instead of k. Using this rationale, the turbulent viscosity is computed
asy,=c, 21, where T is a maximum between the turbulent and the Kolmogorov

timescales. Additionally to the k and € equations, a transport equation is solved for
»* and an elliptic equation is solved for f. The V2F model was proven to
reproduce the wall effects accurately in many types of flows (Kalitzin 1999) but
its major drawback is the stiffness present at the wall due to the boundary
condition of the elliptic function f. At the wall, the boundary condition is given by:
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The fact that the denominator includes the distance to the wall to the power of four
makes it very stiff and a coupled algorithm is necessary to obtain convergence
(Lien and Kalitzin, 2001). It also imposes constrains on the mesh size near the
wall.

During the course of the FLOMANIA project, UMIST developed a new
formulation of the model that removes the stiffness while retaining the advantages
of the original formulation (Laurence et al 2004). The new model solves for a
variable -y, and by adding a change on the definition of f

T el ok de .,9?  the equations can be solved uncoupled. The final
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with the now simple, uncoupled, boundary conditions f=0and ¢=0 .

It is shown that the cross terms (products of gradients) are comparatively small
and do not cause any stability problems.

The model was implemented in the unstructured FV Code_Saturne. The new
formulation proposed presents an overall good performance, similar to the original
model which required very small time steps (i.e. CFL of order 0.01, probably as a
consequence of not being able to couple the boundary conditions in the
professional FV code), whereas the above version convergence much more easily
(CFL of order 1).

The ¢ model was tested on the asymmetric plane diffuser with other elliptic
relaxation formulations as described (Laurence et al 2004). The velocity profiles
predicted by the ¢ model, the LDM [V2F Li] and the k- (dashed, solid and

dotted lines, accordingly) are shown in Figure 2. The computational results are
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compared against the experimental data marked by triangles. The LDM under-
predicts the recirculation length whereas the @-model gives a larger recirculation
zone, closer to the experiment. Overall, the ¢ -model performs better than the
LDM. It should be noted that the pressure field is very sensitive to the
recirculation bubble and affects the bulk of the flow as can be seen concerning the
mean velocity in the region of the straight wall. The LDM model underestimates

the velocity in this region, similarly to more standard X —& models.
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Figure 2 Asymmetric plane diffuser. Velocity profiles

The pressure coefficients are shown
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in Fig. 3. Here again, the @-model e rerrteeeren
produces better prediction than the Jigaeers *

LDM; while the both models are f‘/

more accurate than the k-o.

Flow over periodic hills.

Velocity profiles for the flow over
periodic hills can be seen in figure Seed
4. Here the @ model performs better L { i " i L —

than the standard k-¢ . . o
Figure 3 Pressure coefficient
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Figure 4 Flow over periodic hills. Velocity profile
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17.2.2  New stress-strain eddy viscosity model: k — & — C,

A new eddy viscosity model was developed to include stress-strain lag effects in
the modelling of unsteady mean flows. Standard EVMSs significantly over-predict
the production of turbulent kinetic energy in presence of strong strain. This has led
to various limiters as in the V2F model (Durbin 1995), the SSTmodel (Menter et
al. 2003) and the Linear Production model (Guimet et al 2002) among others.
These corrections are not needed in DSMs, and Jakirli¢ (2004) solves in fact the
full RSM to include stresses only in the k& production term as a means of
improving levels of &, while the standard EVM representation of the stresses is
subsequently applied to the momentum equation. The results show some good
improvements, but the computational cost is very high. The aim of this work was
therefore to develop a model for the stress-strain lag, which appears to be a key
parameter in rapidly evolving flows. The stress-strain lag parameter, hereby
denoted C, is written as follows.

a;S;
Cus = —ﬁ 5] =y2S,S;

A transport equation for Cas is derived from the full SSG DSM for the time

derivative of the anisotropy tensor, a;j, as well as terms including the rate of

change of the strain tensor, S; (Revell et al). The stress-strain lag term is defined

as follows. The strain rate parameter is N=k||S|/e, and the second invariant of

anisotropy is A,=ajja;;. The final transport equation is therefore as follows.
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The turbulent viscosity, Vi, is redefined using an updated value of C, according to
the following limit. The new diffusion term is of a standard gradient diffusion
form with the constant Gg,=2.
K . C
Vv, = CZ""W —_— Czew = mln[0.09, 45 ]
€ n

If the equation is to correctly model the log-layer region, then it is a requirement
that it returns the standard value of C, in equilibrium conditions (i.e. when
production to dissipation ratio is unity and h =3.33). The correctional effects of the

Cys term on the parameter Cy are expected to be even greater since normal
anisotropy is non-zero and so more of the terms in the transport equation are in
play. The motivation behind the model development stems from the observation
that in rapidly varying mean flows, such as bluff body wakes or staggered tube
bundles, RSMs can produce large unsteady structures similar to LES
(Benhamadouche et al 2003). In homogenous turbulence subject to cyclic
straining it was shown that the stresses increasingly lag behind the strains until
production is shut off (Hadzic et al 2001). Therefore RSMs seem an attractive
idea for DES, but are too computationally expensive. The present model is very
economical since it is has almost no additional expense over a standard 2 equation
model in terms of convergence time, and only slightly higher storage
requirements. It is also very easy to implement in contrast with the RSM.

Figure 1. Flow around NACA0012 at 60° incidence using k-e-C,, model. top: Pressure
contours & streamlines. Bottom: modified C, isovalues

Figure 1 shows contour plots from some early calculations on the NACA0012
airfoil at an AoA of 60°. This is a massively separated flow and it can be seen that
C, is reduced in the regions corresponding to the shedded structures (shown by the
pressure contours and flow streamlines) while recovering its usual values at the
boundaries of the unsteady wake. This behaviour is in agreement with the



118 J. Uribe et al.

prediction of strongly detached flows by modified two-equation models that
suggest the C, reduction based on the behaviour of the RSM modelling for the
same class of flows (Hoarau et al 2002), in the context of Organised Eddy
Simulation. It appears that the response of the model to regions of stress-strain lag
could be used to automatically reduce k levels in the URANS-DES transition
when unsteady structures start to emerge, instead of the ad-hoc switch based on
grid characteristics as commonly used in DES; in which mesh dependency is one
of the current breakdowns.

17.2.3 Generalized (Robin-type) wall functions

A method of boundary conditions transfer has been developed (Utyuzhnikov
2005). The method allows one to transfer a boundary condition from a wall to
some intermediate surface. The boundary condition on the intermediate surface
always becomes of Robin-type. In the vicinity of the wall, the boundary condition
can be treated as the generalized wall function. Meanwhile, one should note the
method can also be used far from the wall in the framework of a domain
decomposition method.

If a Dirichlet boundary condition is set for a function u on the wall, the wall
function (boundary condition) is formulated at point y* (in the normal to the wall
direction) as follows (Utyuzhnikov 2005)
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ug R, = Ry(y) is the right-hand side of the governing equation written in the
boundary-layer-like form [1-3].
If the coefficient u is changed piece-wise linearly [3] and R;, = const,

M, if 0sy<y,
A2 i uy v, ify sy<y
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then it is possible to obtain analytical expressions for f; and f5:
fio= 3,0 +0na,), f,=2a5,[1-0-1/2 - O, +0,5,6" Ina, |,
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The obtained general form of the wall function has been implemented for all
independent variables (except dissipation ¢) including the turbulent kinetic energy
k and normal component of the velocity. These wall functions are formulated in
the differential form, they are robust and can be applied to any kind of
approximations of the governing equations. Boundary conditions are transferred to
the point y’ which can be completely mesh independent.

where yv :yv/y*ralu ::u* /luwa 9-1 =



