13 Potassium Homeostasis in Salinized Plant Tissues

TRACEY A. CUIN, SERGEY SHABALA

13.1 Introduction

Potassium is an essential cation, comprising ~6% of a plant’s dry weight and
is involved in numerous functions such as osmo- and turgor regulation,
charge balance, and control of stomata and organ movement. K* activates over
50 enzymes critical for numerous metabolic processes, including photosyn-
thesis, oxidative metabolism and protein synthesis (Marschner 1995). Within
the cytosol, K* neutralizes the soluble and insoluble macromolecular anions
and stabilizes the pH at the level optimal for most enzymatic reactions (pH
~7.2). Thus, cytosolic K homeostasis is crucial to optimal cell metabolism.

In contrast to K*, Na* is not essential for plants (Marschner 1995). For the
majority of crop species, Na* is toxic at mM concentrations in the cytosol.
With cytosolic K* concentrations being around 150 mM (Leigh and Wyn
Jones 1984; Leigh 2001) and cytosolic Na* in a lower mM range (Carden et al.
2003), the cytosolic K*/Na* ratio is high, enabling many K*-dependent meta-
bolic processes to proceed (Rubio et al. 1995; Maathuis and Amtmann 1999).
Under saline conditions, cytosolic Na* levels increase dramatically, estimates
varying from 10 to 30 mM, up to 200 mM (Koyro and Stelzer 1988; Flowers
and Hajibagheri 2001; Carden et al. 2003). At the same time, cytosolic K* con-
tent decreases dramatically. An almost 2-fold decrease in cytosolic K* activ-
ity was measured in salinized roots of barley (Carden et al. 2003), and
cytosolic K* activity as low as 15 mM in epidermal leaf cells has been reported
(Cuin et al. 2003). Thus the cytosolic K*/Na* ratio falls dramatically under
saline conditions, severely impairing cell metabolism (Maathuis and
Amtmann 1999; Flowers and Hajibagheri 2001; Munns 2002). Not surprising,
the ability to maintain a high cytosolic K*/Na* ratio has often been cited as a
key feature in plant salt tolerance (Gorham et al. 1990; Maathuis and
Amtmann 1999; Tester and Davenport 2003; Chen et al. 2005).

Within the vacuole, K* mediates osmoregulation, and within specialized
cells, stomatal movements and tropisms. Here the K* concentration is much
more flexible and can be more readily replaced by other cations, including
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Na* (Leigh et al. 1986). However, the vacuolar PP-ase is critically dependent
on K* for both hydrolytic activity and H* pumping (White et al. 1990). Thus,
even in this organelle, maintenance of a minimal level of K* is vitally impor-
tant for optimal plant performance. How is this achieved?

Molecular and ionic mechanisms of K* transport have been the subject of
a large number of comprehensive reviews in recent years (Maathuis and
Amtmann 1999; Maathuis and Sanders 1999; Tyerman and Skerrett 1999;
Schachtman 2000; Miser et al. 2001; Véry and Sentenac 2002, 2003; Shabala
2003) so are only briefly revised in our review. Many important questions,
however, remain to be answered. It is not clear how the levels and ratios of K*
to Na* are maintained within the plant, and why these ratios are different in
cells within various plant tissues. It is also remains to be answered how plants
distinguish between K* and Na*, both at the root and cellular levels. This lat-
ter problem is not trivial, due to the similarity in ionic radius and ion hydra-
tion energies for K* and Na* (Hille 1992), factors which determine both the
ion transport mode and the competition for enzyme binding sites within the
cytosol. Despite a recent plethora of research (Apse et al. 1999, 2003;
Hasegawa et al. 2000; Zhu 2000, 2003; Zhang and Blumwald 2001), we are still
lacking full knowledge of the signal-transduction pathways involved in K*
homeostasis and maintenance of the critical K*/Na* ratios under salt stressed
conditions.

This review addresses some of the above issues and summarizes molecu-
lar and electrophysiological evidence regarding mechanisms regulating K*
homeostasis in salinized plant tissues. The main emphasis is made on the
integration of K* transport mechanisms at various levels of plant structural
organization.

13.2 Potassium acquisition and distribution in plants

Potassium enters the root symplast via the cell plasma membrane (PM).
From there, it can travel through the symplast to the vascular tissues, where
it is unloaded from the xylem parenchyma into xylem vessels for long-distance
transport to leaves. K* is reabsorbed from the xylem into leaf cells. Being a
highly mobile element (Marschner 1995), it can be easily loaded into the
phloem for translocation to actively growing sink tissues (e.g. shoot and root
apices) where it can be unloaded by way of symplasmic or apoplastic path-
ways. K* can also cross the tonoplast membrane for storage in vacuoles of
both root and shoot cells. The integration and regulation of K* transport sys-
tems at different sites along the long-distance pathway allows the plant to
direct the partitioning and circulation of K*. Such an integrated system plays
a central role in plant growth and development and in the allocation of min-
eral nutrients in response to changes in nutrient availability. This section
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very briefly summarizes uptake and compartmentation of K* within a plant,
at a physiological level.

13.2.1 Uptake at the root level

Net K* uptake at the root PM is classically viewed as the result of the opera-
tion of both active and passive transporters with different affinities for K*
(systems I and II; Epstein et al. 1963). While the high-affinity K* uptake
system I is strongly selective for K* over other alkali cations and shows
increased gene expression or transport activity under K* starvation condi-
tions, the low-affinity K* transport system II is less selective for K* over Na*
and less influenced by changes in the K* status of the plant (Marschner
1995). Patch-clamp studies suggest that system I is an active transport mech-
anism (Maathuis and Sanders 1993), most likely via a K*/H* symporter
(Maathuis and Sanders 1994). The inward-rectifying K*-selective (KIR)
channels mediate uptake within the concentration range of system II (above
1 mM). These channels have been found in root cells of various species
(White and Tester 1992; Gassmann and Schroeder 1994; Maathuis and
Sanders 1995; Roberts and Tester 1995) and can mediate long-term K* influx
into the cell (Schroeder et al. 1994; Schachtman et al. 1992; Gaymard et al.
1996). KIR channels are also found in root hairs (Gassmann and Schroeder
1994), suggesting their important role in K* acquisition beyond the root
depletion zone.

13.2.2 Xylem loading

Once inside the root, K* is transported to the vascular tissues where it is
unloaded from xylem parenchyma into xylem vessels for long-distance trans-
port to leaves. Patch-clamp studies have demonstrated the presence of both
anion and cation channels likely to be responsible for loading of solutes into
the xylem for transport to the shoot (Maathuis et al. 1998; K6hler and Raschke
2000). The PM of cortical cells is dominated by a K* channel that favors K*
influx into the cells, and thus uptake into the root, whereas the stelar cells are
dominated by a K* channel favoring K* efflux into the apoplast, resulting in
xylem loading (Roberts and Tester 1995). However, such clear-cut differences
in channel activities are not seen in Arabidopsis cortical and stellar tissues
(Maathuis et al. 1998). Some authors have argued against the role of outward
K* channels in xylem sap K* loading (de Boer 1999), suggesting instead that K*
secretion into the xylem occurs against the K* electrochemical gradient in a
process mediated by active transport systems (Kochian and Lucas 1988;
Moshelion et al. 2002). More likely, both types of K* transporters are involved.
Experiments on SKOR, the Arabidopsis outward-rectifying Shaker channel,
estimated that its activity contribute to about 50% of K* translocated towards
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the shoot (Gaymard et al. 1998; Lacombe et al. 2000). The remainder might be
attributed to some active transport system.

13.2.3 Potassium compartmentation at the tissue and whole-plant levels

Under normal growth conditions, K* is the most abundant cation in both the
cytosol and the vacuole. The concentration to which K* accumulates is, how-
ever, different in root and leaf cells. K* activities in the leaf cell vacuoles were
approximately 230 mM (Cuin et al. 2003) compared with 120 mM in the root
cell vacuoles (Walker et al. 1996), while the cytosolic K* activities in root and
leaf cells were comparable (Walker et al. 1996; Cuin et al. 2003).

There is also a certain degree of heterogeneity between the vacuolar (but
not cytosolic) K* content of different cell types in leaves under K*-replete
conditions (Cuin et al. 2003). Barley K* concentrations were only slightly
lower in the mesophyll cells than the epidermal cells (Fricke et al. 1994; Cuin
et al. 2003). Slight differences in vacuolar K* content between abaxial and
adaxial epidermal cells were reported in Lupinus (Treeby and van Steveninck
1988) and Sorghum (Boursier and Lauchli 1989). However, the substantial
heterogeneity in K* concentration between different cell types only became
pronounced under K*-limiting conditions, where concentrations were main-
tained in the mesophyll cells, but decreased in the epidermal cells (Fricke
et al. 1994). Salinity is one such condition.

13.2.4 Intracellular K* compartmentation

The cytoplasmic K* level is strictly controlled (80-100 mM activity; Maathuis
and Sanders 1994; Walker et al. 1996; Cuin et al. 2003), a homeostasis that is
achieved by both the control of K* influx across the PM and by mobilizing K*
from vacuolar reserves (Glass and Fernando 1992; Walker et al. 1996).
Vacuolar K* content is not so strictly regulated and shows large fluctuations
depending on K* supply (Leigh and Wyn Jones 1984; Walker et al. 1996).
Under K*-replete conditions, vacuolar K* is typically around 200-250 mM
reaching 500 mM in open stomatal guard cells (MacRobbie 1998) but
decreasing to 10 mM under K*-deficient conditions (Walker et al. 1996). As
the major role of K* in the vacuoles is in maintenance of cell turgor (required
for cell extension and stomata opening), the osmotic functions of K* in the
vacuole may replaceable to a varying degree by other cations (such as Na*,
Mg?** and Ca*") or organic solutes (e.g. sugars). The concentration of K* in the
apoplast is usually low (between 2 and 20 mM; Karley et al. 2000; Roelfsema
and Hedrich 2002) with the exception of specialized cells or tissues such as
stomata and pulvini, where it may transiently rise to 100 mM (Roelfsema and
Hedrich 2002).

Potassium content is also high in chloroplasts, with 50-100 mM concentra-
tion range reported (Demmig and Gimmler 1983; Pier and Berkowitz 1987). In
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addition to being an important stromal enzyme involved in leaf photochem-
istry, K* also plays a key role in charge balancing the massive light-driven
transport of H' into the thylakoid lumen required for ATP synthesis (Pottosin
and Schonknecht 1996). The extent to which intact chloroplasts are able to
maintain a constant K* concentration, independently of changes in the exter-
nal medium, is unknown. Also limited is our knowledge of K* transporters in
this organelle. In addition to several types of cation-permeable channels
(reviewed by Shabala 2003), there are also suggestions that various secondary
active transport systems are present at the chloroplast envelope (Demming and
Gimmler 1983; Wu and Berkowitz 1992). Recently, an apparently neutral
K*(Na*)/H* antiporter has been characterized in the envelope membranes of
Arabidopsis chloroplasts (Song et al. 2004). This exchanger was suggested to be
located in the chloroplast envelope and is thought to function in the adjustment
of pH in the cytosol thereby maintaining a high pH level in the chloroplast
stroma. Much still remains to be described about K* homeostasis within this
vitally important organelle.

13.2.5 Remobilization and recycling

After delivery to the leaf tissue, K* can be loaded into phloem cells for translo-
cation to actively growing sink tissues (e.g. shoot and root apices), where it
can be unloaded by way of symplasmic or apoplastic pathways.

Classical electrophysiological analysis shows that uptake by roots is tuned
in response to shoot demand and K" recirculation via the phloem sap from
shoots to roots is involved in this control. In this scheme, the rate of K*
unloading from the root stele would act as a signal that would regulate, via as
yet unidentified negative feedback mechanisms, K* uptake activity in root
periphery cells (Kochian and Lucas 1988). This hypothesis has been sup-
ported by kinetic studies with rye (White 1997), and is likely to be significant
in maintaining K* homeostasis, although the specific details on the underly-
ing ionic mechanisms remain to be determined.

13.3 Ionic mechanisms of K* acquisition and transport in
plants

13.3.1 General features of K* transporters in plants

Since the classical work of Epstein and coworkers (1963), many advanced
electrophysiological and molecular techniques have become available, allow-
ing considerable progress in the analysis of K* transport in plants at both the
molecular and physiological level.

The recent completion of the Arabidopsis genome sequence has offered
the opportunity to make an inventory of all the putative plant transporter
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proteins (Ward 2001). A genome wide survey revealed seven major families
of Arabidopsis cation transporters (75 genes in total) which mediate K* trans-
port across plant membranes. These include (Miser et al. 2001; Véry and
Sentenac 2002, 2003; Shabala 2003): (i) Shaker-type K* channels (nine genes);
(ii) two-pore K* channels (six genes); (iii) cyclic-nucleotide-gate channels (20
genes); (iv) putative K*/H* antiporters (six genes); (v) KUP/HAK/KT trans-
porters (13 genes); (vi) HKT transporters (one gene); (vii) glutamate recep-
tors (20 genes). In addition, a low-affinity K*-permeable transporter (LCT1)
has been identified in wheat (Schachtman et al. 1997).

13.3.2 Basic features and control modes of potassium transporters
13.3.2.1 Shaker family of potassium channels

The Shaker family of K* channels comprises nine members in Arabidopsis
(Méser et al. 2001). They are related to animal K* channels initially cloned
from Drosophila (thus, “Shakers”). Members of this family have also been
identified in a number of other plant species (Véry and Sentenac 2003).
Comparison of the functional properties of these channels in heterologous
expression systems with channel activity recorded in planta suggests that they
are active at the PM and mediate most K*-selective voltage-gated currents that
dominate the membrane K* conductance at hyper- and depolarized mem-
brane potential (E_) (Véry and Sentenac 2002). These channels are present in
numerous cell types and operate at mM K* concentrations. They represent the
best-characterized family of plant transporters at the molecular level.

Plant Shaker polypeptides typically display a short (about 60 amino acid)
intracytoplasmic N-terminal domain, followed by a hydrophobic core com-
posed of six transmembrane segments (S1-S6), the pore domain being
inserted between S5 and S6, and a long intracytoplasmic region representing
more than half the sequence (Véry and Sentenac 2003). The transmembrane
segment 4 harbors positively charged amino acids and is expected to act as a
voltage sensor. A highly conserved pore domain, carrying the hallmark
GYGD/E motif of highly K* selective channels, is present between S5 and S6.
The long C-terminal region harbors a putative cyclic nucleotide-binding
domain and, in most Shaker channels, an ankyrin domain potentially
involved in protein-protein interactions (Véry and Sentenac 2003).

Most plant Shaker-type K* channels identified so far have been success-
fully expressed and characterized in heterologous systems. Based on their
voltage dependency, these channels can be grouped into three functional
subfamilies: (i) inward, (ii) weakly-inward, and (iii) outward-rectifying
(Véry and Sentenac 2003). Inward-rectifying channels are activated by
membrane hyperpolarization from a threshold more negative than the K*
equilibrium potential (E,), and are mainly involved in K* uptake. Weak
inward-rectifiers also are activated by membrane hyperpolarization, but



293

Potassium Homeostasis in Salinized Plant Tissues

JAd T[99 ¥e passaxdxa aq 03 AJoXI a1 uMoys s1v110dsueI) I9I0 [[e ‘spPuueyd 0D Jo uordooxs ay) YIIM "papnour osfe a1e sardads juerd
1910 WOy s)nsa1 ySnoy[e ‘sisdoprquiy Yim sjuawWLIadxe wroy sawod ejep ay) Jo 3oy ‘syuefd ur s1sjrodsuery Y jo uorssaidxa oyads-anssiy, 1°¢T *S1q

900 _
rARD OOSN
FLVM v/LdNX
€/2INY 900X FV i
AN FARD LOOM O
MHOD €IV LOM FIXV [ A

1

v/EdNX
MHOO

TN LIMH OOSN  DOSN

HOMS MvH/dNY  N19  LOM
1oy 01 0HOD®

LIV 1SOS

LOM

LMY

/LN #H09
LODM
MIdS
91NV



294 Tracey A. Cuin and Sergey Shabala

never display null open probabilities within a physiological E_ range and are
potentially able to mediate both K* uptake and release. Outward-rectifying
channels activate at E_ more positive than E, and are specialized in K*
release (Véry and Sentenac 2003).

Physiological roles and functional expression of the channels from the
Shaker family are diverse. AKT1 is a hyperpolarization-activated K* channel
(Bertl et al. 1994) that is expressed in the roots (Lagarde et al. 1996) and plays
arole in K* uptake, provided that the external K* concentration is in the mM
range and the E_ is negative enough (Hirsch et al. 1998). SKOR is expressed
in stelar tissue of the root and is thought to be involved in K* release into the
xylem sap (Gaymard et al. 1998). KAT1 takes part in guard cell K* uptake, but
is not essential for stomatal opening (Szyroki et al. 2001), probably because
of inward-rectifier redundancy in guard cells (Pilot et al. 2001). SPIK is
involved in K* uptake in pollen and is required for optimal pollen tube devel-
opment and pollen competitive ability (Mouline et al. 2002). The roles of the
other five Shakers are less well understood. Current data support the hypoth-
esis that AKT2/3 is involved in long-distance K* transport via the phloem sap
(Deeken et al. 2000; Lacombe et al. 2000). This channel has also been shown
to be an important contributor, along with AKT1, to the mesophyll K* per-
meability (Dennison et al. 2001). Like KAT1, KAT2 is thought to play a role
in K* influx into guard cells during stomatal opening (Pilot et al. 2001) and
GORK to mediate K* release from these cells during stomatal closure (Ache
et al. 2001; Hosy et al. 2003). GORK is also expressed in root hairs, where it
could play a role in osmoregulation (Ivashikina et al. 2001). AtKCl is
expressed in root periphery cells (Ivashikina et al. 2001; Pilot et al. 2003)
where it would be an integral component of functional K* uptake channels
(Reintanz et al. 2002). Only localization data have been obtained for the
remaining Arabidopsis Shaker channel, AKT6 (Lacombe et al. 2000), reveal-
ing expression in flowers.

13.3.2.2  “Two-pore” potassium channels

Two-pore K* channels display a hydrophobic core composed of either 4 TMS
and 2 P domains (KCO-2P family) or 2 TMS and 1 P domain (KCO-1P fam-
ily); none of the TMS acts as a voltage sensor. Their pore domains bear a high
K* permeability hallmark motif. The channels have putative Ca’**-binding
sites in their cytosolic C-terminal region (Czempinski et al. 1999; Moshelion
et al. 2002) and share some structural homologies with 4TMS-2P (leak-like)
and 2TMS-1P (inward-rectifying) animal K* channels, respectively (Doupnik
et al. 1995).

In Arabidopsis, the KCO-2P family has five members and the KCO-1P fam-
ily, a single member (Czempinski et al. 2002). Only KCOI has been charac-
terized, where it was shown to encode a K* selective outward-rectifying
channel activated by cytosolic Ca?* (Czempinski et al. 1999). KCO1 can also
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be functionally distinguished from outward-rectifying Shaker channels by
faster and non-sigmoidal kinetics of current activation and a higher single
channel conductance. KCO1 is expressed throughout the plant (Czempinski
et al. 2002). At the subcellular level, it has been localized at the tonoplast
(Czempinski et al. 2002).

13.3.2.3 Cyclic nucleotide-gated (CNG) channels

Twenty members of CNG family were found in Arabidopsis (Kohler et al.
1999; Miser et al. 2001), with CNG channel homologs identified in barley
(Schuurink et al. 1998) and tobacco (Arazi et al. 1999). They share structural
homologies with the animal cyclic nucleotide-gated channels (CNGCs) first
identified in sensory cells. CNGCs are related to the Shaker family, but with-
out the high K* selectivity hallmark motif in their P domains. As a result, they
readily conduct both mono- and divalent cations (Véry and Sentenac 2002)
and do not distinguish well between Na* and K* (Gamel and Torre 2000).
Similar to their animal counterparts, CNG channels are gated by intracellular
c¢GMP or cAMP (Maathuis and Sanders 2001), Ca*>" and calmodulin (Miser
et al. 2001; Véry and Sentenac 2002). Their physiological role is likely to be in
cell signaling (Demidchik et al. 2002; Véry and Sentenac 2002).

13.3.2.4 K*/H* antiporters

A family of cation/H" antiporters (CPA), comprising six putative K*/H*
antiporters, has been identified in Arabidopsis (Méser et al. 2001). The latter
systems (called KEA for K* efflux antiporter) show substantial sequence simi-
larities (up to 35% identity) with bacterial Ker (K* efflux) antiporters regulated
by glutathione (Yao et al. 1997). Their tissue and subcellular localizations are
unknown. Due to poor ion selectivity, other members of CPA family might
also exchange H* for K7, in addition to other ions. For instance, the AtNHX1
tonoplast located Na*/H* exchanger (Apse et al. 1999) was shown to transport
Na* and K* with equal affinity in reconstituted liposomes (Venema et al. 2002).
Plant K*/H* exchange activity is expected, at least at the tonoplast, to be an
important mechanism in K* loading into the vacuole. AtNHX1 might be
involved in osmoregulation and Na* detoxification of the cytoplasm, as well as
in cytosolic pH regulation (Venema et al. 2002). It has also been suggested that
K*/H* exchangers might be at work at the PM, contributing to active K* secre-
tion in the xylem sap (Kochian and Lucas 1988).

13.3.2.5 KUP/HAK/KT transporters

This is a class of transporters which are homologous to the H*-K* symporters
first identified in E. coli (Schleyer and Bakker 1993) and S. occidentalis
(Bafiuelos et al. 1995). The plant homologues, called KUP (Fu and Luan 1998;
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Kim et al. 1998), HAK (Santa-Maria et al. 1997; Rubio et al. 2000), or KT
(Quintero and Blatt 1997), form a large family, with 13 members in Arabidopsis
(Maser et al. 2002) and at least 17 members in rice (Bafiuelos et al. 2002). Little
is known about the structure of these transporters. Hydrophobicity profiles
suggest that they might possess 12 TMS and a long cytosolic loop between the
second and third TMS (Kim et al. 1998; Rubio et al. 2000; Bafiuelos et al. 2002).

Four groups of plant KUP/HAK/KT transporters can be distinguished on
a phylogenetic tree (Rubio et al. 2000; Bafiuelos et al. 2002); two of these have
been characterized at the functional level (Rodriguez-Navarro 2000). While
some transporters in group I are classified as high-affinity K* transporters, all
members from group II operate in the low-affinity (mM) range. These are
active transport systems, with poor discrimination between K*, Rb* and Cs*
(Rubio et al. 2000; Bafiuelos et al. 2002) but reduced permeability to Na* and
NH," (Fu and Luan 1998; Santa-Marfa et al. 2000; Bafiuelos et al. 2002). Their
activity is inhibited by elevated Na* levels (Quintero and Blatt 1997; Kim et al.
1998) and alkaline pH (Garciadeblds et al. 2002), suggesting H*-K* stoi-
chiometry. These systems can mediate both influx and efflux of K* (Bafiuelos
et al. 2002; Garciadeblds et al. 2002).

Although both high- and low-affinity KUP/HAK/KT transporters are
expressed in various plant organs/tissues, their subcellular localization is
largely unknown. At least one of 17 members of OsHAK family in rice was
targeted to the tonoplast (Bafiuelos et al. 2002), while others were more likely
to be located at the PM. Most of these transporters are expressed in roots
(Santa-Maria et al. 1997; Kim et al. 1998; Rubio et al. 2000; Rigas et al. 2001)
and are believed to mediate high-affinity K* uptake through the PM.

13.3.2.6 HKT transporters

Plant HKT transporters are related to the fungal Trk transporters and prokary-
ote KtrB and TrkH K* transporter subunits (Rodriguez-Navarro 2000).
Sequence analysis suggests that these transporters evolved from bacterial 2TMS
K* channels. They display a core structure with eight TMS and four P-forming
domains, four repeats of ITMS-1P-1TMS, with the four P loops lining a central
P, and C-terminal cytosolic region (Durell et al. 1999; Kato et al. 2001).

Although HKT homologues have been isolated or detected in many species,
including Arabidopsis, eucalyptus, rice, ice plant (Mesembryanthemum crys-
tallinum) and poplar (Fairbairn et al. 2000; Uozumi et al. 2000; Horie et al.
2001), they do not constitute multigene families. There is only one member of
this group in Arabidopsis (AtHKT1; Uozumi et al. 2000) and in diploid wheat
(HKT1; Schachtman and Schroeder 1994). Eucalyptus and rice each have two
HKT paralogs (Fairbairn et al. 2000; Horie et al. 2001). The only exception is
japonica rice in which the genome shows the presence of up to nine OsHKT
genes (Garciadeblds et al. 2003). All HKT transporters identified so far are
expressed predominantly in roots.
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Available information suggests that HKT homologues may operate in two
transport modes. One has only a limited ability to transport K*, while in the
other mode, HKT transporters transport K* as readily as Na*. For example,
K* uptake was not observed when the Arabidopsis homolog AtHKT1 was
expressed in either yeast or Xenopus oocytes, although high Na* uptake
activity was detected (Uozumi et al. 2000). Wheat, TaHKT1 operates as a
high affinity Na™-K* symporter in the presence of low K* and Na* concen-
trations, and as a low-affinity Na*-Na* (co)-transporter when the Na*/K*
ratio in the external solution is high (Rubio et al. 1995; Gassmann et al.
1996). In eucalyptus, two HKT1 homologs (EcHKT1 and EcHKT2) both
show K* and Na* currents when expressed in Xenopus oocytes (Fairbairn
et al. 2000). Experiments on rice suggested that the OsHKT1 isoform oper-
ated as a Na* transporter, while OsHKT2 displayed K*-Na* symport activity
(Horie et al. 2001).

Wheat HKT1 is expressed in the root cortex (Schachtman and Schroeder
1994) where it functions as a low-affinity Na* transport under low K*:Na*
ratios. K* starvation induces HKT1 expression in wheat and barley (Wang
et al. 1998) as well as inward Na* currents in wheat root cortical cells
(Buschmann et al. 2000). HKT1 plays a role in net Na* accumulation
(Uozumi et al. 2000; Laurie et al. 2002; Maser et al. 2002) and its decreased
expression under salt stress often correlates with plant salt tolerance
(Golldack et al. 1997). Direct evidence for the involvement of AtHKT1 in Na*
uptake and salt sensitivity in Arabidopsis has emerged from a screen for sup-
pressor mutations of the Arabidopsis sos3 mutant (Liu and Zhu 1998).
Disruption of AtHKT1 suppressed the sodium-overly-sensitive (sos) pheno-
type (Rus et al. 2001) and sos3/athkt]1 double mutant seedlings took up less
Na* than either sos3 or wild type (WT) plants (Rus et al. 2001). Not surpris-
ingly, HKT1 has been proposed to be a determinant of salt sensitivity in
plants (Rubio et al. 1995).

13.3.2.7 LCT1

LCT1 is low-affinity transporter found only in wheat. It is capable of mediat-
ing uptake of a wide range of monovalent cations, including K* and Na*
(Schachtman et al. 1997; Amtmann et al. 2001) and is expressed in both roots
and leaves (Schachtman et al. 1997). Expression of LCT1 in yeast caused Na*
hypersensitivity (Amtmann et al. 2001), and LCT1 mediated Na* transport
was inhibited by Ca?" (Schachtman et al. 1997; Amtmann et al. 2001). LCT1
has no counterpart in Arabidopsis and shares no sequence homology with
any other gene. Nonselective cation conductances have been described
in vivo in wheat roots. The hypothesis of a role for LCT1 in this activity
would, however, be highly speculative because poorly selective cation con-
ductances have also been described in many species, including Arabidopsis
(Demidchik et al. 2002).
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13.3.2.8 Glutamate receptors

A family of polypeptides related to animal ionotropic glutamate receptors has
been found in plants (Lam et al. 1998), with 20 members in Arabidopsis
(Lacombe et al. 2001). Although the P domains of plant and animal receptors
are quite distant, plant glutamate receptors might, like their animal counter-
parts, form cation channels permeable to K*, Na* and/or Ca?" (Lam et al. 1998;
Nakanishi et al. 1990). Plant glutamate receptors are usually expressed in roots
(Chiu et al. 2002). Their physiological role in plants remains unknown.

13.3.2.9 Other transport systems

Non-selective cation channels. Non-selective cation channels (NSCC) are a
large, heterogeneous group of channels. In addition to CNG channels and gluta-
mate receptors, the group also includes a large number of other channels which
show high selectivity for cations over anions, but low selectivity among mono-
valent cations under a wide range of ionic conditions (Demidchik et al. 2002)
and usually have similar permeability to a wide range of monovalent cations.
They show K*:Na* selectivity ratios typically between 0.3 and 3, and make a key
contribution to the uptake of Na* by plant cells (Tyerman et al. 1997; Demidchik
et al. 2002; Tester and Davenport 2003). NSCC channels have been found at the
PM, tonoplast and other endomembranes. Numerous methods of activation of
these channels have been reported, and they are thought to function in low-
affinity nutrient uptake (see Demidchik et al. 2002 for review). They are gated by
diverse mechanisms including voltage, cyclic nucleotides, glutamate, reactive
oxygen species and stretch.

CCC family. A few putative members of the cation chloride cotransporter fam-
ily (CCC) have been found in plants (Véry and Sentenac 2003). In animal cells,
the CCC family comprises K*-Cl", Na*-Cl~ and Na*-K*-2Cl~ cotransporters
(Gambea et al. 1993; Gillen et al. 1996; Isenring and Forbush 1997). Members of
this family have important roles in cellular ionic and osmotic homeostasis in
animal cells.

13.4 Specificity of salinity effect on K* homeostasis in plant
tissues

13.4.1 K*/Na' competition for uptake—channels and symporters

As Na*is not an essential element, it is no surprise that as yet, no specific Na*-
selective channels have been identified in higher plants. Due to their similar
physicochemical structures, excessive Na* in the soil solution competes
with binding sites in transport systems that mediate K* uptake resulting in K*
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deficiency (Niu et al. 1995; Hasegawa et al. 2000). The ionic mechanisms of
pathways of Na* uptake into plant cells have been a subject of extensive elec-
trophysiological studies (Maathuis and Sanders 1993, 1995; Gassmann and
Schroeder 1994; Amtmann et al. 1997, 1999; Tyerman et al. 1997; Buschmann
et al. 2000; Davenport and Tester 2000; Demidchik and Tester 2002).
However, the task of attributing known ion currents to corresponding trans-
porter genes appears to be particularly difficult for Na*, since it is likely that
several transporters contribute to Na*.

Candidate genes for root Na* uptake are found in several K* transporter
families. The high-affinity K* transporter (HKT1), low affinity cation trans-
porter (LCT1) and nonselective cation channels (NSCCs) are the most likely
specific transport systems that mediate Na* influx (Schachtman and Schroeder
1994; Schachtman et al. 1997; Amtmann and Sanders 1999; Davenport and
Tester 2000; Amtmann et al. 2001). Genome wide analyses indicate that addi-
tional classes of Na* transporters are likely to exist and characterization of fur-
ther complexities and interesting functions of Na* are on the horizon.

13.4.1.1 Inward-rectifying channels from the Shaker family

Under saline conditions, Na* would passively diffuse into the cell cytoplasm
through Na*-permeable PM channels. However, most inward-rectifying K*
(KIR) channels from the Shaker family appear to be highly selective for
K* over Na* (Amtmann and Sanders 1999) thus are unlikely to mediate sig-
nificant net Na* influx into plant cells.

Despite this, there are reports in the literature of an adverse affect of Na*
on the functioning of KIRs (e.g. AKT1). Sodium may have a direct effect on
the AKT channel protein, an interaction that reduces the open probability or
conductance of the channel (Qi and Spalding 2004). Alternatively, Na*
impairs the activity of a positive regulator of AKT1 or interferes with the
delivery of AKT1 channels to the membrane. Thus, KIRs functioning may be
impaired by excessive Na*, but it is not likely that these channels play any
substantial role in Na* transport into the cell.

13.4.1.2 KUP/HAK/KT transporters

The KUP/HAK/KT family of K* transporters might mediate some low-affinity
Na* influx at high Na* concentrations, although the full extent is not known.
When expressed in yeast, HYHAK1 from barley mediated low-affinity Na*
transport in addition to high-affinity K* uptake (Santa-Marfa et al. 1997).
Elevated Na* also inhibits K* transport through heterologously expressed
AtKUP1 (Fu and Luan 1998) and AtHAKS5 (Rubio et al. 2000). At the same
time, the upregulation of Mesembryanthemum crystallinum McHAK1 and
McHAK2 under both K* starvation and NaCl stress in roots and leaves has
been reported (Su et al. 2002).
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13.4.1.3 High affinity transporters—HKT]I

Two different transport modes have been reported for HKT1: (i) a saturable
high-affinity K*-Na* symport and (ii) a low-affinity Na* transport, the latter
operating at high external Na* concentrations when the transport of K* is
blocked (Rubio et al. 1995; Gassmann et al. 1996).

The in planta function of AtHKT1 as an effector of Na* influx has been
confirmed (Rus et al. 2001). T-DNA insertional and deletion mutants of
AtHKT1 were identified in a screen for suppressors of NaCl sensitivity of the
s0s3-1 mutant (Liu and Zhu 1997; Rus et al. 2001). Suppression of sos3-1 NaCl
sensitivity is related to reduced cellular accumulation of Na* and increased
capacity to maintain internal K*. Together, these results establish that
AtHKT1 controls Na* influx into plants. It is likely that AtHKT1 is a Na*
influx system but its function as a regulator of Na* and K* influx systems can-
not be precluded. As the transcript is expressed predominantly in root corti-
cal cells in wheat (Schachtman and Schroeder 1994), HKT1 most probably
functions in the control of Na* loading into the xylem for export to the shoot
(Uozumi et al. 2000; Rus et al. 2001). Through a combination of functional
chimeric HKT analysis and sequence analyses, an amino acid was identified in
HKT transporters that play an important role in determining the transport
mode of HKT transporters (Miser et al. 2002). This amino acid lies within the
predicted “pore-loop” domain. The presence of a Gly residue resulted in K*-Na*
transport, whereas a Ser residue in this position caused more Na* selective
transport (described above). Evidence is mounting that HKT1 systems are con-
served in plant species and that these function in Na* transport (Rus et al. 2001;
Golldack et al. 2002; Laurie et al. 2002; Garciadeblds et al. 2003).

Several reports have analyzed the physiological roles of HKT transporters
in vivo. Laurie et al. (2002) found that transgenic wheat plants expressing an
HKT1 antisense construct showed Na* tolerance under saline conditions with
reduced Na* uptake activity and accumulation. However, Miser et al. (2002)
and Berthomieu et al. (2003) showed that loss-of-function mutations in the
AtHKT1 gene lead to overaccumulation of Na* in shoots and rendered leaves
Na* hypersensitive. Transgenic plants harboring an AtHKT1 promoter-GUS
construct showed HKT1 expression in vascular tissues (Méser et al. 2002;
Berthomieu et al. 2003). Thus, a model was proposed in which AtHKT1 would
facilitate recirculation of the Na* from the shoot to the root, thereby restrict-
ing its accumulation in the aerial part of the plant (Méser et al. 2002;
Berthomieu et al. 2003). These authors postulated that, in the shoot, HKT1
loads Na* into the phloem, which is then translocated to the root and removal
of Na* from the root phloem occurs by efflux down the electrochemical gra-
dient (Berthomieu et al. 2003). This model is support by Laurie et al. (2002),
who showed that reduction of TaHKT1 expression in wheat resulted in a
marked decrease in the root stele Na* content while poorly affecting the root
epidermal and cortical contents.
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13.4.1.4 LCTI

LCT1 is proposed to play a role in Na* uptake in wheat. When expressed in
yeast, it functions as a non-selective cation permeable transporter, mediating
both Na* and K* transport (Schachtman et al. 1997), and rendered yeast more
salt sensitive (Amtmann et al. 2001). However, further analyses will be
required to determine where LCT1 is targeted, as well as to quantify its con-
tribution to the regulation of K* homeostasis in salinized plant tissues.

13.4.1.5 Non-selective cation channels

Physiological data implicate the involvement of non-selective cation channels
(NSCCs) in Na* influx and these are considered to be the major route for Na*
entry into plant cells (Tyerman et al. 1997; Amtmann and Sanders 1999;
Tyerman and Skerrett 1999; Davenport and Tester 2000; Tyerman 2002).
These channels have a similar permeability for K* and Na* (Amtmann and
Sanders 1999). Na* influx currents through NSCC have been characterized
electrophysiologically in root cortical cells of wheat (Tyerman et al. 1997;
Davenport and Tester 2000), maize (Roberts and Tester 1997) and
Arabidopsis (Demidchik and Tester 2002), as well as in barley suspension
cells (Amtmann et al. 1997). The current amplitude of these channels was
dependent on both the external Na* concentration and the external Ca?* con-
centration. At a low Ca?" concentration (40-100 uM), large increases were
observed in the amplitude of the Na*-dependent inward currents. At higher
Ca?* concentrations, Na* currents through NSCC were inhibited (Tyerman
et al. 1997; Buschmann et al. 2000; Davenport and Tester 2000; Demidchik
and Tester 2002), correlating with the reduction of Na* uptake by increased
external Ca’* concentration (LaHaye and Epstein 1969).

Calcium inhibition of NSCC conductance is not complete, so it is possible
that these ion channels allow a substantial leak for Na* influx, particularly
under high saline conditions (Davenport and Tester 2000; Demidchik and
Tester 2002). This suggests that Ca*-insensitive Na" uptake pathways are
probably also present and involved in Na* uptake. However, their full contri-
bution to Na* uptake remains unknown.

13.4.2 Sodium/cation antiporters

Low cytosolic Na* concentration is attained by the operation of Na*/H*
antiporters located at both the PM (Shi et al. 2000) and the tonoplast (Apse
et al. 1999). Electrochemical K* gradients generated by H*-pumps at the PM
(H*-ATPase) and the tonoplast (H™-ATPase, H"-PPase) provide the energy
used by the PM and tonoplast bound Na*/H" antiporters to couple the passive
movement of H* to the active movement of Na* out of the cell and into the
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vacuole. The recent characterization of these systems has added considerably
to our awareness of cytosolic Na* control. The identification and characteriza-
tion of the yeast HAL1 gene which facilitates K*/Na* selectivity and salt toler-
ance in yeast cells gives another dimension to our understanding of this issue.
Consequently, our insight into Na* transport at both these membranes, and
the control over K* and Na* homeostasis, has increased considerably, knowl-
edge which is finally giving us the possibility of generating salt tolerant crops.

13.4.2.1 The SOS-signal transduction pathway

The SOS (for Salt-Overly-Sensitive) signal-transduction pathway is important
in controlling ion homeostasis and salt tolerance in plants (Hasegawa et al.
2000; Sanders 2000; Zhu 2000, 2003). The current model for the SOS signal-
transduction pathway is that high Na* induces a Ca*" signal (Knight et al.
1997). A myristoylated Ca?*-binding protein senses the salt-elicited Ca** sig-
nal and translates it to downstream responses (Liu and Zhu 1998; Ishitani
et al. 2000). SOS3 interacts with, and activates SOS2, a serine/threonine pro-
tein kinase (Halfter et al. 2000; Liu et al. 2000). This SOS2/SOS3 complex reg-
ulates the expression level of SOS1, a salt effector gene encoding a PM Na*/H*
antiporter. The SOS1 Na*/H* exchanger serves to extrude excess Na* from the
cytosol and out of the cell, thereby maintaining a low cytosolic Na* concen-
tration (Shi et al. 2000).

Activity of the SOS1 promoter has been found ubiquitously in virtually all
tissues, but its greatest activity is found in root epidermal cells, particularly
at the root tip and in cells bordering the vascular tissue (Shi et al. 2002). This
suggests three major roles: (i) mediating Na* efflux from cytosol to the root
medium, (ii) buying time for Na* storage in the vacuole by slowing down Na*
accumulation in the cytoplasm, and (iii) controlling long-distance Na* trans-
port between roots and shoots by loading Na* into and unloading Na* from
the xylem and phloem (Zhu 2003). The role of SOSI in long distance trans-
port is important for coordination between transpirational Na* flow and the
vacuolar sequestration of Na* in leaves. A higher concentration of Na* accu-
mulates in shoots of sosI mutants than in WT, and transgenic plants overex-
pressing SOS1 showed improved salt tolerance and accumulated less Na* in
the xylem transpiration stream as well as in the shoot (Shi et al. 2003).

Extrusion of excess Na* from the cell is a straightforward way to avoid Na*
accumulation in the cytosol, so is widely employed by root epidermal cells,
where SOS1 is preferentially expressed (Shi et al. 2002). This strategy would
be problematic for most other types of cells, where extruded Na* will imme-
diately become a problem for neighboring cells. This is especially important
in leaves where, due to the small apoplasmic volume (~3%; Flowers and Yeo
1986), Na* extrusion via SOS1 would cause a rapid increase of apoplasmic Na*
leading to cell dehydration, turgor loss and even death of leaf cells and tissues
(Marschner 1995).
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The problem may be overcome if SOSI acts in concert with AtHKT1, which
has been suggested to mediate Na* loading into the phloem in leaves and
unloading in roots (Nublat et al. 2001; Berthomieu et al. 2003). These two
mechanisms could remove Na* from the apoplast and symplast as long as
their combined efficiency is greater than the rate of Na* delivery. According
to this scenario, SOS1 Na*/H* exchanger will remove Na* from the cell and
AtHKT1 will load it into phloem for removal from the shoot. Earlier Rus et al.
(2001) explained why the mutations in the AtHKT1 gene suppress the sos3
mutant phenotype by this functional interaction between SOS1 and AtHKT1.
The above model of functional interaction between AtHKT1 and AtNHXI1 can
also explain the otherwise puzzling result that transgenic plants overexpress-
ing AtNHX1 accumulate about 30% more Na* in leaves than control plants
(Apse et al. 1999). However, there are no reports of the functional expression
or physiological characterization of the SOS-signaling pathway in leaves, and
few on the functioning of the AtHKT1 gene and associated transporters.
Therefore, the occurrence of this model in planta remains to be confirmed.

The SOS3-SOS2 kinase complex may also regulate Na* compartmentation
by (i) activating NHX1 at the tonoplast, (ii) restricting Na* entry into the
cytosol (by inhibiting the PM Na* transporter HKT1 activity; Zhu 2002), (iii)
negatively controlling the expression of AtNHX family members (Yokoi et al.
2002), and (iv) controlling K* acquisition by the root (Wu et al. 1996). The lat-
ter is confirmed by the fact that under NaCl conditions, sosI mutant plants
accumulate more Na* and less K (Wu et al. 1996; Ding and Zhu 1997; Rus et al.
2001) and overexpression of SOS1 has been shown to result in increased Na*
export from the cell and improved salt tolerance in transgenic Arabidopsis
(Shi et al. 2002). Also, all sos mutants had a growth defect under K*-limiting
conditions (Zhu et al. 1998). Which specific K* transport system is targeted by
SOS signaling pathway, remains a mystery. Patch-clamp experiments suggest
that the extrusion of Na* from the cytoplasm by SOS1 protects the K* perme-
ability of the membrane, and the AKT1 K* channel in particular, from inhibi-
tion by Na* (Qi and Spalding 2004). However, experiments in our laboratory
showed no difference in NaCl-induced K* fluxes from roots of WT and aktI
Arabidopsis mutant (S. Shabala and L. Shabala, unpublished) questioning the
AKT1 involvement. Also, NaCl-induced K* efflux from barley mesophyll was
strongly inhibited by K* channel blocker TEA™ (Shabala et al. 2005). The pos-
sible involvement of other K* transporters remains to be evaluated.

13.4.2.2 Tonoplast Na*/H* antiporters

Compartmentation of Na* into the vacuole is important in the maintenance of
lower cytosolic Na* concentrations, while maintaining a lower cellular osmotic
potential. Significant progress has been made in deducing the genes and trans-
porters responsible for Na* sequestration. Active transport across the tono-
plast utilizes the electrochemical gradient generated by V-type H*-ATPase and
H*-PPase. Vacuolar Na*/H* antiporter activity was first measured in tonoplast
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enriched membranes isolated from red beet storage tissue (Blumwald and
Poole 1985), and has subsequently been measured in many plants (Apse et al.
1999; Blumwald et al. 2000 and references within). Salinity also upregulates
the expression of a V-type H-ATPase (Golldack and Dietz 2001), and overex-
pression of the native vacuolar H*-PPase gene (AVP1) increases salt tolerance
in Arabidopsis (Gaxiola et al. 2001).

Cloning of AtNHX1 (Apse et al. 1999; Gaxiola et al. 1999) was followed by
its functional complementation in yeast nhxl mutants (Gaxiola et al. 1999),
measurement of its Na'/H" exchange activity in vacuoles isolated from
AtNHX1 overexpressing Arabidopsis (Apse et al. 1999) and in vacuolar vesicle
membranes isolated from yeast expressing AtNHX1 (Darley et al. 2000). These
studies clearly confirm the function of AtNHXI as an Na'*/H* antiporter.
Increased expression of AtNHX1 by transformation with AtNHX driven by a
strong constitutive promoter, improves salinity tolerance in Arabidopsis
(Apse et al. 1999), Brassica napus (Zhang et al. 2001) and tomato (Zhang and
Blumwald 2001). These results show that an increased capacity for vacuolar
Na* sequestration is important for salinity tolerance. Importantly, transgenic
tomato and Brassica plants accumulated a high concentration of Na* in leaves,
but not in fruit or seed, thus were highly tolerant of salt stress while at the
same time maintaining the quality of fruit and oil (Zhang and Blumwald 2001;
Zhang et al. 2001). This is the first real progress in the development of geneti-
cally modified salt tolerant crop species.

This increased capacity for Na* uptake by vacuoles by a NHX1 Na*/H*
antiport is found in many salt tolerant species, e.g. Beta maritima, Atriplex
gmelini and Mesembryanthemum crystallinum. All show strong induction of
both Na*/H* antiporter expression and activity in response to NaCl treatment
(Barkla et al. 1995; Hamada et al. 2001; Xia et al. 2002).

The AtNHXI1 gene is also able to mediate K* transport in addition to Na*/H*
exchange (Zhang and Blumwald 2001; Venema et al. 2002; Apse et al. 2003).
Similar K* transporter activity has been reported in rice, where overexpression
of the tonoplast located OsNHX1 increased salt tolerance (Fukuda et al. 2004).
A tomato tonoplast LeNHX2 antiporter maintained higher K* concentration
in intracellular compartments under salt stress conditions (Venema et al.
2003) The AtCHX17 in Arabidopsis was reported to have a greater role in K*
acquisition and homeostasis rather than in Na* transport (Cellier et al. 2004).
This suggests that members of the NHX family may have different substrate
specificities and play different roles in salt tolerance (Yokoi et al. 2002).
Overall, the importance of NHX Na*/H* antiporters at the tonoplast in the
maintenance of K* and Na™ homeostasis in plant cells is beyond doubt.

13.4.2.3 HAL genes

The yeast HALI and HAL3 genes are proposed to improve salt tolerance by
increasing the cellular K*/Na* ratio (Gaxiola et al. 1992; Serrano 1996; Rios et al.
1997). Transcription of HALI favors Na* extrusion and restricts K* efflux



Potassium Homeostasis in Salinized Plant Tissues 305

through an unknown pathway (Bordas et al. 1997), effectively increasing the
intracellular K*/Na* ratio (Gaxiola et al. 1992).

In yeast, HALI expression is induced by salt (Gaxiola et al. 1992) and its
overexpression confers increased salt tolerance in transgenic Saccharomyces
cerevisiae (Rios et al. 1997). Increased salt tolerance has also been reported in
transgenic plants expressing the HALI gene, including tomato (Gisbert et al.
2000; Rus et al. 2001) and melon (Bordas et al. 1997). Genes homologous to
the yeast HAL genes could be present in higher plants and may be relevant to
salt tolerance (Bordas et al. 1997). For example, Espinosa-Ruiz et al. (1999)
isolated two Arabidopsis genes AtHAL3a and AtHAL3b which show homol-
ogy with HAL3. Gain of AtHAL3a function Arabidopsis show increased
growth rates and improved salt tolerance. Alterations in intracellular cation
concentrations associated with changes in HAL3 expression indicated that
HAL3 directly increased cytoplasmic K* concentration and decreased Na*
concentrations (Espinosa-Ruiz et al. 1999).

13.4.3 Mitigating effect of calcium

An important determinant for plant salt tolerance that is particularly relevant
to Na* and K" homeostasis is the sensitivity of many transport processes to
Ca?*. Increased Ca*" supply has a protective effect on plants under salt stress
(reviewed by Rengel 1992). Physiological effects of supplemental Ca?* include
(i) diminished membrane leakiness, (ii) improved PM structural integrity,
(iii) improved K* status of the cell and (iv) reduced Na* accumulation in
plants (Cramer et al. 1985, 1987; Rengel 1992; Bressan et al. 1998; Munns 2002).

At the transporter level, the traditional view is that elevated Ca?* restricts
Na* uptake via NSCC (Tyerman et al. 1997; Demidchik and Tester 2002; Tester
and Davenport 2003). Other divalent cations may also control NSCC perme-
ability for Na* (Elphick et al. 2001; Demidchik and Tester 2002). However,
work in our laboratory suggested that NSCC blockage by elevated Ca?* is not
the only mechanism involved. MIFE experiments on root (Shabala et al. 2003)
and leaf (Shabala 2000; Shabala et al. 2005) tissue of various species showed
that both supplemental Ca®*" and other divalent cations (Mg**, Ba*, Zn?*)
reduce or prevent NaCl-induced K* efflux from the cell. Thus, our results sug-
gest that, in addition to their known ability to block NSCC, divalent cations
also control the activity or gating properties of PM K* transporters, assisting
in maintaining an optimal K*/Na* ratio. Results of pharmacological studies
and patch-clamp experiments suggest that depolarization-activated outward-
rectifying K* channels are involved (S. Shabala, V. Demidchik and J. Davies,
unpublished data).

13.4.4 Ion compartmentation between roots and shoots

The regulation of Na* transport to the shoot is another feature that governs
plant responses to salinity. The differences in the growth responses of salt
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tolerant and salt sensitive species are often related to differences in the
translocation of Na' to leaves (Marschner 1995). In salt tolerant species,
increased salt supply leads to a large accumulation of Na* in the shoots where
it is utilized in the vacuoles of leaf cells for osmotic adjustment (Flowers and
Lauchli 1983), often replacing most of K* in the vacuole (Hawker et al. 1974).
In more salt sensitive species, substitution of K* by Na* is much more limited.
The higher salt tolerance of many species is often attributed to a more effec-
tive restriction on shoot directed transport of Na* (Tester and Davenport
2003). There is also some evidence of extensive recirculation of shoot Na* to
the roots (Méser et al. 2002; Berthomieu et al. 2003), although it has been sug-
gested that Na* transport is largely unidirectional and results in progressive
accumulation of Na* as the leaves age (Tester and Davenport 2003). As such,
retranslocation of Na* from shoots to roots was found to contribute to low
Na* contents in the shoots of beans (Matsushita and Matoh 1991) and clover
(Winter 1982), but not barley (Munns et al. 1987).

The importance of Na* and K* compartmentation at the whole-plant level
was highlighted in a recent study on two closely related species, contrasting
in their salt tolerance. Thellungiella halophila (salt cress) is closely related to
Arabidopsis (90-95% identity at the cDNA level; Bressan et al. 2001). Volkov
etal. (2003) showed that under saline conditions T. halophila had a much bet-
ter ability to retain or even increase shoot elemental K* content compared
with Arabidopsis. The observed differences in K* accumulation were larger in
roots than in shoots. At the same time, the differences in Na* accumulation
(higher in Arabidopsis) were more pronounced in shoots than in roots. This
suggests that control of Na* loading into xylem is particularly strong in
T. halophila (Volkov et al. 2003).

The control of shoot Na* will undoubtedly affect the K*/Na* ratio in leaf cells.
For example, the sasl mutant of Arabidopsis shows a deficiency in the control of
radial transport of Na* (Nublat et al. 2001). This led to a 5.5-fold higher concen-
tration of Na* in the xylem and a severe overaccumulation of Na* in the shoot,
corresponding with increased sensitivity to NaCl. Although Na* was accumu-
lated preferentially over K* in a similar manner for sasI and WT, the greater
amounts of Na* in the sasI mutants resulted in a much higher Na*/K* ratio than
in the WT. Overaccumulation of Na* was only in shoots, not in roots, which sug-
gested that sasI mutation impaired Na* long-distance transport from roots to
shoots. This emphasizes the importance of xylem loading in salinity tolerance.
In wheat, a K¥/Na* discrimination factor limiting Na* translocation to the shoot
for the benefit of K* loading operates at the xylem uptake step (Gorham et al.
1990). In soybean, Na* is removed from the xylem vessels and exchanged for K*
at the xylem parenchyma (Lduchli 1976; Lacan and Durand 1996).

Another component regulating Na* xylem content is SOS1. In sosI mutants,
the Na* concentration in the xylem sap is higher than in the WT, suggesting
that SOS1 controls Na* loading into, and/or retrieval from the xylem (Zhu
2003). SOS1 is expressed around the vacuolar tissue, consistent with it function
in xylem Na* concentration (Shi et al. 2002).
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13.4.5 Compartmentation at the tissue level

Salt stress is known to have different effects on the K*/Na* ratio in various
plant tissues in both roots and leaves (Fricke 2004). In leaves, epidermal cells
accumulate a greater amount of Na* than the mesophyll cells and the latter
show a greater ability to maintain a high K* levels (Fricke et al. 1996; Cuin et al.
2003). Volkov et al. (2003) found different trends in the distribution between
the epidermis and the bulk tissue of T. halophila and Arabidopsis. Salt stress
decreased epidermal K* concentrations dramatically, but bulk K* increased in
T. halophila while decreasing in both epidermal and bulk K* after salt treat-
ment in Arabidopsis (Volkov et al. 2003). This is consistent with the important
role of the tissue-specific compartmentation of Na* and K* for plant salt toler-
ance and suggests that some mechanisms are in place within the mesophyll,
but not the epidermis, to ameliorate ionic changes and protect and maintain
the photosynthetic activity of the mesophyll cells. This is consistent with recent
studies in our laboratory showing that improving K*/Na* ratios by externally
applied divalent cations enables normal leaf photochemistry in plant grown
even under high (100 mM) salinity conditions (Shabala et al. 2005).

The ionic mechanisms underlying the above difference in Na* and K* com-
partmentation between epidermis and mesophyll remain to be revealed. One
explanation could be that differences in gene expression account for the dif-
ferences in ion compartmentation under saline conditions. For example, in
fully expanded leaves, under unsalinized conditions, the K* channel genes
AtKC1 and AKT]I are expressed in hydrathodes and stipules (Lagarde et al.
1996; Pilot et al. 2003). However, upon the imposition of salt stress, the
expression pattern of AtKC1 broadens out to the leaf epidermis (Pilot et al.
2003) where both AKT1 and AKT?2 are also expressed (Dennison et al. 2001),
indicating reprogramming of K* channel gene expression in leaves (Pilot
et al. 2003). The strong increase in expression in leaves upon salt stress could
underlie changes in the compartmentalization of Na* and K* ions between the
different tissues. As described above, in barley, the leaf epidermis may act as
a “storage compartment” for Na*, thus protecting the mesophyll cells, at least
for a period, from Na* toxicity, allowing it to maintain higher concentrations
of K* (Dietz et al. 1992; Fricke et al. 1996). It might be speculated that the leaf
epidermis in Arabidopsis could play a similar role, requiring high AtKCl
expression levels for as yet unidentified reasons.

However, Karley et al. (2000) reported similar types of ion-selective chan-
nels and membrane transporters catalyzing the transport of K™ and Na* in
epidermal and mesophyll cells from barley. They suggest that the presence or
absence of ion transporters cannot explain cell type specific differences in
K*/Na* ratios. More likely, altered permeability or gating properties of these
transporters may be the key to understanding salt tolerance. The difference
in salt tolerance between T. halophila and Arabidopsis was attributed to much
higher selectivity for K* over Na* of both inward- and outward-rectifying K*
channels between these species (Volkov et al. 2003). This highlights the
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importance of a plant’s ability to retain K* as a key feature of salt tolerance
and is consistent with our recent findings that the magnitude of NaCl-
induced K* efflux from plant roots correlates with salt tolerance in barley
(Chen et al. 2005).

13.5 Conclusions and future perspectives

Knowledge regarding K* transport and the effects of salinity on K* home-
ostasis has increased considerably in recent years. New awareness concerning
Na* compartmentalization into the vacuole opens up exciting prospects for
developing salt tolerant crops. The sequencing of the Arabidopsis genome has
led to the identification of a plethora of K* transporters, some of which have
already been characterized electrophysiologically. Microarray experiments
are starting to indicate the genes induced by salt stress. The more recent
sequencing of the rice genome, which is likely to be followed by other crops,
will add to our knowledge of K* transporters and the effects of salinity on
these, as these putative genes are characterized.

However, there is still a very long way to go to gain a full extent of knowl-
edge about the mechanisms of salt tolerance in plants. Only a small numbers
of genes responsible for K* or Na* transport are characterized physiologi-
cally. Moreover, the majority of these results are through experiments in het-
erologous systems. Thus, in planta studies on ionic mechanisms regulating
K* homeostasis under saline conditions are needed. Also, we have just
scratched the surface of the signaling mechanisms that mediate the salt stress
regulation of the expression and activities of ion transporters. Other ques-
tions such as the involvement of compatible solutes in ion homeostasis and
the interaction of salt stress with other abiotic stress such as drought, high
temperatures, light intensity, pollution etc also remain a grey area.

Much research on salinity tolerance has recently focused on Arabidopsis.
Being methodologically convenient, this species is rather “non-typical” from
the point of view of plant physiologists. As a result, direct extrapolation of
findings from Arabidopsis to other species is not always possible. Now that
we appear to have most of the “basics” concerning Arabidopsis salt tolerance
mechanisms, it is time that the salt tolerance mechanisms other species are
tackled at the same level of scrutiny.

Another area that is severely lacking information and is of particular con-
cern is the regulation of K* and Na* at the leaf level, most studies on K* trans-
port under saline conditions have been attributed to root tissues. Being
central to plant photosynthesis, leaf mesophyll cells are almost crying to be
studied in this context!

Finally, with all the excitement of a magic of molecular techniques, we
should not forget that plants are more than a combination of genes.
Therefore, the whole-plant perspective should be also kept in mind when
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doing in-depth studies on expression and control modes of some specific
transporters mediating K* homeostasis in plants under saline conditions.
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