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Abstract The study of the genetics of complex traits is made complicated by the fact 
that the traits themselves are infl uenced by an interplay of many genes with many 
environmental factors. In this chapter the historical concepts of quantitative genetics, 
including additive variance and heritability, will be developed to underscore how 
important it is to understand that the root of the problem is to explain how genes 
contribute to the variance in a trait. With molecular genetic markers, such as SNPs, it 
is possible to test whether there are differences in the measured phenotype among the 
genotypes at the genetic marker, and this serves as a crude test of association. Many 
interesting challenges arise when such a test is expanded to 1 million markers span-
ning the entire chromosome, a design known as a genome-wide association study 
(GWAS). Complications due to population stratifi cation, admixture, genotype x envi-
ronment interaction, epistasis, and rare alleles are all considered. Methods that test 
association by use of excess of allele sharing in siblings (affected sib methods) or 
other relatives, or by excess cotransmission of alleles and a disease state (transmis-
sion disequilibrium test) have their own set of advantages and disadvantages. The 
chapter closes with some considerations of why the powerful methods presented here 
nevertheless leave much of the genetic variance in complex traits unexplained.
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     8.1  Genetic Analysis of Complex Traits 

 A primary goal of genetic analysis is to understand the 
causal relationships that connect the observed varia-
tion in phenotypes to the underlying genetic variation 
in the population. The simplest case was that observed 
by Gregor Mendel, where a single gene with two dif-
ferent co-dominant alleles presents a one-to-one cor-
respondence between genotype and phenotype. In this 
situation, the ability to predict offspring ratios from 
any given parental phenotypes is very good. Most 
human traits do not follow these simple rules of trans-
mission, but instead have a more complex association 
between genotype and phenotype. We become con-
vinced that there is at least some genetic aspect to the 
transmission, because there is  familial resemblance . 
These traits aggregate in families, but do not segregate 
like a single Mendelian gene. Such traits include stat-
ure and body proportions, facial features, skin color, 
and blood pressure. Many diseases may have a com-
plex nexus of causes, but often the liability may differ 
between individuals and may be genetic in origin. In 
earlier years, a Mendelian framework was often super-
imposed naively on such data, with no testing of the 
formal requirements for simple modes of inheritance. 
We will show in this chapter that a fruitful way to 
approach the genetics of complex traits is to fi t the 
data on individual genotypes and phenotypes to spe-
cifi c models that consider different ways in which the 
genetic variation may be causing the phenotypic vari-
ation. One outcome of this kind of model fi tting is to 
map the genes responsible for the variation. But by the 
very nature of complex traits, there is also a role of 
environmental effects on the traits, and the observa-
tion that different genotypes respond differentially to 
environmental pressures means that the inferences 
about the genotype-phenotype association depends on 
the environmental context. Let us fi rst consider some 
basic principles about variation at the phenotypic and 
genetic levels. 

8.1.1   Variation in Phenotypic Traits 

 A fundamental idea to focus on in considering complex 
traits is that the primary feature that is of importance is 
among-individual  variation . Nearly every trait shows 
some level of variation among individuals, from overall 
body size measurements, to the most minute features, 
such as fi ngerprints. Most biochemical traits also dis-
play variation, including the levels of many components 
of the blood (cholesterol, hemoglobin) and ranging up 
to the activities of metabolic enzymes in the liver. It is 
only because there is variation among individuals that 
there is an opportunity to identify underlying genes that 
themselves harbor genetic variation in the form of dif-
ferences in DNA sequences. These gene variations in 
turn may mediate the phenotypic variation. Just because 
we can identify mouse mutants in orthologous genes 
that have profound effects on a particular phenotype, 
this does not guarantee that the population will harbor 
natural polymorphisms in that gene, which in turn will 
infl uence trait variability. Similarly, the genes that 
appear to be most responsible for variation in a trait may 
play a part in the mechanism for that aspect of biology 
that seems totally peripheral, or in many cases one has 
no clue why gene X infl uences trait Y. This level of 
decoupling of genetic and phenotypic variation may 
seem unnerving at fi rst, but for many attributes of pro-
found medical importance there is important phenotypic 
variability (such as susceptibility to atherosclerosis) and 
excellent understanding of relevant pathways, but rela-
tively great uncertainty about the causes of variation.  

8.1.2    Familial Resemblance 
and Heritability 

 Before we make the leap from phenotypic variation to 
seeking to fi nd the genes responsible for that variation, 
there is one other attribute of the trait that is of vital 
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8 Formal Genetics of Humans 

importance. The trait might actually not have any genetic 
variation responsible for the phenotypic variation, but 
may instead be driven entirely by environmental infl u-
ences, such as diet or exercise levels. Fortunately 
there is a rich history of study of the problem of detect-
ing a role of genes in complex traits simply by asking 
whether the degree of resemblance among relatives is 
elevated above what one would see by chance. 

 A fundamental idea in quantitative genetics is that 
variability in a trait can be partitioned into components 
that contribute to that variability. We seek to explain the 
variability in the phenotypic measures in terms of both 
genetic and environmental factors. Environment is 
considered as a sort of trash-bin term to encompass all 
nongenetic factors that infl uence the phenotypic value. 
The simplest statement of a model is that the pheno-
typic value of an individual is composed of the sum of 
the genotypic value plus the environmental value:

  P = G + E   

 where  P  = phenotypic value,  G  = genotypic value, and 
 E  = environmental value. 

 The phenotypic values of all individuals in a popu-
lation have a mean and a variance around this mean. 
The variance is distinguished from other measures of 
variability by one mathematical property: different 
variances can be added to give a total variance and, 
conversely, a total phenotypic variance  V  

P
  can be broken 

down into its components, such as the genotypic variance 
 V  

G
  and the environmental variance  V  

E
 :

= +P G EV V V      

 The idea that the sum of normally distributed factors 
yields a normal distribution whose variance is the sum 
of the variances of the components is true in the limit with 
many factors, and is a central idea in statistics (indeed, it is 
called the Central Limit Theorem) (Fig.  8.1 ).  

 However, the addition rule for variances applies 
only if genotypic and environmental values are inde-
pendent of each other, i.e., when they are not correlated. 
If there is a correlation between the two, the covariance 
of  G  and  E  must be added:

  = + +P G E GE2 CovV V V    

 Let us take an example from the area of genetics that 
fi rst introduced these concepts – agricultural studies. It 
is normal practice in dairy husbandry to feed cows 

according to their milk yield. Cows that produce more 
milk are given more food. Such correlations of genetic 
and environmental factors tend to infl ate the variance. 
Whether human societies present environmental perks 
to individuals in a way that is correlated with genetic 
proclivity is open to discussion. In any event, any such 
correlation between genetic and environmental varia-
tion should be identifi ed, as it can cause serious prob-
lems in the modeling if it is ignored. 

 Another assumption is that specifi c differences in 
environments have the same effect on the various 
genotypes. When this is not so, there is an interaction 
between genotype and environment, giving an additional 
component to the variance  V  

GE
 . A prime example of 

genotype by environment interaction occurs with 
adverse reactions to drugs by a subset of individuals 
with a susceptible genotype. In the laboratory, where 
multiple replicate experiments may be run with identical 
genotypes of plants or animals, genotype × environ-
ment interaction is measured by testing the same geno-
types across a range of environments. 

 The genotypic value  V  
G
  can be subdivided into 

several components: an additive component ( V  
A
 ) and a 

component ( V  
D
 ) measuring the deviation attributable to 

dominance and epistasis ( V  
I
 ) from the expectation derived 

from the additive model. The dominance variance is 
 contributed by heterozygotes ( Aa ) that are not exactly 

  Fig. 8.1    The population distribution of acid phosphatase activity. 
The bell-shaped curve of total enzyme level (acid phosphatase) 
may be the sum of enzyme activities for acid phosphatase for 
genotypes of several polymorphic alleles, each having different 
overlapping acid phosphatase activity. Most phenotypes have 
a distribution in a population that results from summing over 
heterogeneous collections of genotypes (from Harris et al. 1968 
Ann N Y Acad Sci. 151:232–242)       
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intermediate in value between the corresponding homozy-
gotes ( aa  and  AA ). The variance contributed by epistasis 
refers to the action of genes that affect the expression of 
other genes. Hence, the concept of additive variance does 
not imply the assumption of purely additive action of the 
genes involved. Even the action of genes showing domi-
nance or epistasis tends to have an additive component. 
The whole genotypic variance can be written: 

 Phenotypic 
variance 

 Genetic 
variance 

 Environmental 
variance 

 Genetic × envi-
ronmental 
covariance 

  V  
P
  =    V  

A
  +  V  

D
  +  V  

I
   +  V  

 E 
   + Cov 

GE
  

 To estimate these various components of variance, 
one measures the phenotypes of individuals that have 
different known relationships to one another. There are 
simple algebraic relationships between the correlations 
of phenotypic measures among relatives and these 
components of variance. The one that we will focus on 
is the relationship between parents and offspring. Sir 
Francis Galton observed a nearly linear relationship 
between points that represent family groups plotted as 
follows. Defi ne the  x -axis as the average of the two 
parents’ phenotypes (also called the midparent), and 
the  y -axis as the average of the offspring phenotype. If 
each point represents a nuclear family, then in a popu-
lation, such points will fall along a line whose slope is 
called the “heritability.” If the slope is 1.0, this would 
mean that the average of the offspring is always equal 
to the average of the parents, and so the resemblance is 
perfect. More typically, the slope might be about 0.5, 
meaning that for every increase by a factor of 2 in the 
phenotype of the midparent, the offspring mean would 
increase by 1. Galton called this line through the scat-
ter of points (Fig.  8.2 ) a “regression” line, because the 
offspring tend to be less deviant from the population 
mean than do the parents. As Galton put it, the off-
spring  regress  toward the population mean.  

 The heritability, as calculated by the midparent-
offspring regression can also be written as:

  =2 A

P

V
h

V
   

 When it is written in this way, it is clear that heritability 
can be considered as the proportion of the total pheno-
typic variance that is explained by additive genetic 
effects. This expression varies between 0 and 1, and 
many morphological traits, such as height, have a heri-
tability in the range of 0.7–0.8, implying that the bulk 

of the variance is genetic in origin. This very same term, 
often called the narrow sense heritability, has also been 
used by plant and animal breeders to predict the outcome 
of artifi cial selection for such economically useful 
traits as milk production in cows and egg laying in 
chickens. A high proportion of additive genetic variance 
implies that the trait will respond rapidly to selection. 
Heritability of many complex disorders, such as diabetes, 
is more in the range of 30–50%, implying that there 
clearly is a genetic component, but that this only 
explains part of the variation in disease risk. 

 It is worth stating carefully some of the properties 
of heritability:

   (a)    Heritability is a ratio. A ratio changes when either 
the numerator or the denominator changes. There is 
an increase in  h  2  when the numerator ( V  

G
 , genotypic, 

or  V  
A
 , additive, variance) increases, or when the 

denominator ( V  
P
  , phenotypic variance) decreases. 

We could also say that a reduction in environmental 
variability will actually increase the heritability!  

   (b)    The estimation of heritability is based on theoreti-
cal correlations between relatives. These correla-
tions are valid only for random mating. Assortative 
mating leads to other correlations and, unless taken 
into consideration, produces systematic errors in 
the estimation of  h  2 . The correlations resulting 
from assortative mating were fi rst calculated by 
Fisher  [7] . These correlations can be used for 
adjustment of  h  2 .  

  Fig. 8.2    The parent-offspring regression. The  x -axis plots the 
average phenotypic measure of the two parents (the midparent) and 
the  y -axis is the average phenotype of the offspring from each 
couple. Thus, each  point  on the plot represents a single nuclear family. 
The slope of the regression line through these points is the narrow-
sense heritability. Francis Galton constructed many such scatter-plots, 
and inferred the degree of familial resemblance in this way       
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8 Formal Genetics of Humans 

   (c)    An estimation of  h  2  is strictly valid only when the 
assumption is made that covariance and interaction 
between genotypic and environmental values are 0.     

 Correlations between relatives do not prove that 
there is genetic variability; they may also be caused by 
common environmental infl uences within families. 
In animal breeding, where the environment can be 
controlled, this factor might either be neglected or 
quantifi ed. In humans, this is almost impossible. One 
of the major areas of research in human complex trait 
genetics today is to develop better automated methods 
for measuring differences in the environments that 
individuals have experienced. For example, many chem-

ical exposures can be assessed by directly measuring 
residues in the bloodstream.  

8.1.3   The Special Case of Twins 

 The use of twins has been much more popular in the past 
as a means for understanding genetic transmission of 
traits and diseases, but twin studies remain an excellent 
tool for developing concepts of genetic transmission. 
Identical or monozygotic (MZ) twins represent a won-
derful experiment in nature (Fig.  8.3 ), since their 
genetic identity implies that differences between MZ 

  Fig. 8.3    Monozygotic twins have long fascinated human geneticists, and the questions about their biology change with advancing 
technologies. Initially interest focused on gross morphological similarities that were easy to measure. Now these questions center 
on issues of differential epigenetic modifi cations, differences in somatic mutations, altered patterns of X-inactivation, and similari-
ties in brain activity as measured by functional MRI       
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twins must be due to accumulated perturbations of the 
environment  [15] . In discussions on methods of quan-
titative genetics the use of twin data for quantitative 
assessment of the degree of genetic determination has 
been mentioned repeatedly. Indeed, twin investigations 
have played a major role in the history of human genetics. 
Especially in the fi eld of behavior genetics, much of 
our current understanding is based on twin data. 
Therefore critical assessment of the twin method, its 
advantages, and limitations, is well motivated.  

 The twin method for assessing heritability is based on 
the biological observation that MZ twins originate from 
splitting of one zygote into two identical clones. It follows 
that any phenotypic differences between MZ twins must 
be largely caused by environmental infl uences. Somatic 
mutations may arise that generate differences between 
MZ twins, and efforts to quantify differences in somatic 
mutations between twin pairs using modern genom-
ics technologies are under way in several laboratories. 
Environmental differences may manifest themselves by 
altering the epigenetic states of chromosomal regions, 
and an active area of research is to quantify the magnitude 
of differences in DNA methylation and histone acetyla-
tion between MZ twin pairs  [2] . 

 The degree of phenotypic similarity between MZ 
twins can be contrasted to the similarity between 
dizygotic (DZ) twins. Assuming that DZ twins are 
infl uenced by the same environmental differences but 
have only one-half of their genes in common by 
descent, the greater degree of resemblance of MZ 
twins provides a kind of measure of heritability. This 
heritability, however, is not the same as the parent-
offspring regression approach mentioned above. 
Instead, the heritability one gets from twins is  broad-
sense heritability :

  =2 G
B

P

V
h

V
   

 where  V  
 G 
  and  V  

 P 
  refer to the total genotypic and 

phenotypic variance, respectively. This broad-sense 
heritability can be estimated from MZ and DZ twin 
pairs by calculating the average correlation between 
pairs of MZ twins ( r  

MZ
 ) and the average correlation 

between pairs of DZ twins ( r  
 DZ 

 ). The broad sense heri-
tability is then  h   

B
  2   = 2( r  

MZ
 – r  

DZ
 ). It takes some algebra to 

show exactly why this is so, and it is of course true 
only when there is no shared environment effect. If 
there is a shared environment effect and it is measur-

able, one can adjust the heritability downward using 
another formula. 

 The above model for estimating heritability from 
twins makes some key assumptions about the biol-
ogy that deserve to be considered carefully. In par-
ticular, twins have a unique shared environment that 
nontwins do not, and one has to worry whether that 
shared time in utero may infl uence their degree of 
resemblance. Because they have shared nutrition and 
environmental stresses, this shared environment 
might be expected to infl ate the resemblance of 
twins. Whether the resemblance is augmented more 
in MZ twins than DZ twin depends on the details of 
how the environment is experienced (e.g., in one 
chorion or in two chorions). 

 One appreciates the effect of the uterine environ-
ment simply by examining medical attributes of 
twins and nontwins. Twins suffer from a higher fre-
quency of abnormalities during pregnancy and at 
birth. Their lower birthweight can be attributed only 
partly to the shorter duration of gestation. The still-
birth rate and infant mortality in early life are con-
siderably higher in multiple births than in single 
ones; in later years, twins run a higher risk than non-
twins of becoming mentally retarded, which is pre-
sumably at least partly due to complications during 
pregnancy and at birth. Even the mean IQ of both 
MZ and DZ twins is slightly lower than that of con-
trol populations. 

 Some features of twins result in a higher chance 
that they  differ  in traits. X-inactivation in females 
occurs at the division of the zygote after X-inactivation 
(and is a fairly disruptive process). It therefore 
may happen that all cells in which a certain X-linked 
gene has been inactivated end up in one twin, while 
all the cells with active X chromosomes are found 
in the co-twin. This phenomenon leads to clinical 
expression of X-linked traits (such as Duchenne 
muscular dystrophy or color blindness) in only one 
member of a female twin pair that is heterozygous 
for the X-linked trait. A striking example is that 
two of the MZ Dionne quintuplets were color blind! 
The roles of X-inactivation and of intrauterine effects 
on epigenetic modifi cations are two of the many pro-
cesses that occur during development and result in 
altered resemblance between twins. Thus, twins 
remain a fascination for geneticists, although simple 
calculation of heritability based on twin resemblance 
is clearly fraught with problems.  
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8 Formal Genetics of Humans 

8.1.4    Embedding a Single Measured Gene 
Infl uencing a Continuous Trait 

 Consider a trait that has important medical conse-
quences, where the trait has continuous phenotypic 
variation but we also know about an underlying mecha-
nism for the trait, and we have managed to identify a 
gene whose variation infl uences the trait. As an illustra-
tion, consider the example of warfarin dose and the 
 VKORC1  polymorphism. Warfarin is an important anti-
coagulant drug that is used for heart disease patients and 
other circumstances where it is important to “thin” the 
blood to prevent thrombosis (clotting). The problem 
with warfarin has been that it has a narrow range of dose 
within which it is effective – too low a dose and it fails 
to delay clotting time, but at too high a dose it leads to 
hemorrhagic complications. For each patient there is a 
period where the optimal dose for that patient must be 
determined by approximate testing of coagulation sta-
tus. To make matters worse, there is wide variability 
among individuals in the best therapeutic dose. 

 Rieder et al.  [17]  did a retrospective study on a large 
cohort of individuals who had been on warfarin therapy. 
These individuals had been through the battery of tests 
to determine their correct warfarin dose, and this was 
the phenotype being considered. The target of warfarin 
is the vitamin K epoxide reductase complex 1 ( VKORC1 ), 
and a fi rst guess might be that there could be polymor-
phism in this gene that requires different doses of 
warfarin for effectiveness. The study was a stunning 
success, fi nding mean differences in optimal warfarin 
dose across genotypes. 

 Other studies had associated warfarin dose with the 
cytochrome P450 2C9 ( CYP2C9 ) gene, and this raises the 
question of whether there might be other genes elsewhere 
in the genome that also contribute to variation in optimal 
warfarin dose. Cooper et al.  [3]  did a scan of 181 European 
warfarin users and a replication sample of 374 individu-
als. They tested 550,000 SNPs and found that  VKORC1  
had by far the strongest association ( P  = 6.2 × 10 −13 ) and 
that a SNP in  Cyp2C9  has moderate signifi cance ( P  < 10 −4 ). 
Because none of the other SNPs attained signifi cance in 
this study, the conclusion was that common SNPs with 
large effects on optimal warfarin dose are unlikely to be 
discovered outside of  VKORC1  and  CYP2C9 . In 
Sect. 8.1.5 we will see how to partition the variance in a 
trait, and to determine what fraction of the total variance 
in a phenotype is attributable to one or two major genes.  

8.1.5   A Model for Variance Partitioning 

 The preceding section showed how the continuously 
varying phenotype can be thought of as having multi-
ple causal factors that determine the phenotype. If one 
is lucky and has a handle on one of those factors, it is 
possible to determine what fraction of the total varia-
tion is explained by that one factor. Let us consider a 
model that seeks to explain variation in continuous 
traits as the sum of the effects over many loci. We can 
further assume that, as in the above section, we have a 
handle on one of the loci. Among a collection of indi-
viduals whose genotype is  aa , we can defi ne the mean 
phenotype as − a . For the  Aa  heterozygotes, let the 
mean phenotype be  d , and for the  AA  homozygote, let 
the mean be + a . If the frequencies of the  A  and  a  alleles 
are  p  and  q , an the population is in Hardy–Weinberg 
equilibrium, then the mean phenotype for the whole 
population is:

  + + - = - +2 22 ( ) ( ) 2p a pqd q a a p q pqd    

 If we were to plot the phenotypes for these three geno-
typic classes on the  y -axis, and label the  x -axis with the 
genotypes  aa ,  Aa , and  AA  at coordinates 0, 1, and 2 
(think of this as measuring 0, 1, and 2 copies of the  A  
allele), then a regression through these points has many 
useful attributes. The increase in phenotype for each 
addition of an  A  allele is the “average effect of an 
allelic substitution” and has the value  a  =  a  +  d ( q - p ). 
The  y -axis values for the points on the regression line 
are −2 p  α , 2 pqd , and 2 q  α . These are the “breeding val-
ues,” a term from classic animal breeding analysis. 
They give the value of each genotype if the allelic sub-
stitutions were purely additive. But because there is 
dominance, we can calculate the deviation of each 
observed phenotype from this regression line fi t (like a 
residual in a regression). These are the dominance 
deviations, and they are −2 p  2  d , 2 pdq  and −2 q  2  d , 
respectively. 

 From the breeding values and the dominance deviations 
we can calculate two important attributes of this trait. The 
additive genetic variance is the variance in breeding values. 
This is the sum of the squared deviations from the mean, 
weighted by the population frequencies or:

     
2 2 2

2 2 2

(2 ) 2 [( ) ]

( 2 ) 2 [ ( )]

AV p q pq q p

q p pq a d q p

a a

a

= + -

+ - = + -
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 Recall that one of the defi nitions of narrow-sense 

heritability is the additive genetic variance divided by 
the phenotypic variance. This formula for the additive 
variance makes it clear that the additive genetic vari-
ance depends on allele frequencies, and it drops to zero 
with either  p  = 0 or  p  = 1. The variance in dominance 
deviations is the dominance variance. This is:

  + == +2 2 2 2 2 2 2 2(2 ) 2 (2 ) (2 ) (2 )DV p q d pq pdq q p d pqd    

 The above formulae show clearly how the variance 
components are impacted by allele frequencies, and 
how heritability itself also varies with allele frequen-
cies. The important point to remember about these 
measures of quantitative genetics is that these are 
parameters of a model, and the numbers have meaning 
only so far as the model explains the data. In many 
circumstances in plant and animal breeding for agri-
cultural purposes, we have excellent data demonstrating 
the utility of the models. Human quantitative genetics 
cannot assess whether the model fi ts nearly as thoroughly, 
both because the environment is less well controlled 
and because the only crosses that can be observed are 
those drawn from a large, essentially randomly mating 
population. 

 In the absence of epistasis or genotype × environ-
ment interaction, the total genetic variance is the simple 
sum of the additive variance and dominance variance: 
 V  

G
  =  V  

A
  +  V  

D
 . This splitting of a variance into two parts 

is called variance partitioning, and a key part of modern 
quantitative genetics is to partition variance into 
components that have biological meaning. For exam-
ple, in the  VKORC1  example, the total genetic vari-
ance in optimal warfarin dose can be partitioned into a 
component of variance attributable to the  VKORC1  
gene, and another component that accounts for the rest 
of the genome. For further development of the models 
for partitioning quantitative genetic variation, see  [6] .  

8.1.6   Relating the Model to Data 

 When there is a measured genotype that it is suspected 
is involved in a trait, the above model suggests a straight-
forward way to test what the effects of that gene on the 
phenotype are. We have to emphasize that this test is 
valid under the assumption that the effects across genes 
are additive. If this assumption is not right, then the 

inferred effects of the measured gene will not be valid 
– and the estimates can either spuriously overestimate 
the effects or underestimate them. Thus, a lot hinges on 
the validity of the assumption of additive effects. 

 First we bin the individuals in the population into 
the three bins based on their genotypes at the measured 
locus. If we plot them as in Fig.  8.4 , it can be seen that 
one way to test the null hypothesis of no effect of this 
gene would be to perform a linear regression and test 
whether the regression coeffi cient (the slope) differs 
from zero. A nonzero slope indicates that the gene 
has an additive effect on this trait. A really wonderful 
aspect of this approach to the problem is that the slope 
is proportional to the additive effect contributed by 
this locus. Similarly, if the data are plotted with two 
 x -values, where genotypes  AA  and  aa  are on the left, 
and  Aa  on the right, then the regression through these 
points will have zero slope if the heterozygotes are 
intermediate between the two homozygous classes. This 
would be true if there were zero dominance. So the 
estimator for the dominance effect is simply the regres-
sion coeffi cient obtained from the data when arranged 
in this way.   

  Fig. 8.4    Association of a single SNP with a continuous trait can 
be assessed by the regression plot depicted here: the  x -axis has 
discrete elements for each genotype at one locus, and the  y -axis 
is the continuously variable phenotypic measure. The slope of 
the regression line through these points yields the additive com-
ponent of variance. If the genotype at this one SNP has no effect 
on the phenotype, this slope will be zero. The test of signifi cance 
for whether the regression coeffi cient is greater than zero is the 
formal statistic test for whether this SNP shows an association 
with the phenotype       
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8.1.7   Mendelian Diseases Are Not Simple 

 While it is possible to trace the transmission of simple 
Mendelian traits and show that the trait is consistent 
with a major gene that is transmitted in the same way 
as smooth vs wrinkled peas, humans are so acutely 
aware of subtle phenotypic differences that the full 
spectrum of phenotypes associated with a major gene 
is almost never simple. And the departures from the 
pure Mendelian pattern are not always subtle. There 
are cases of individuals who are homozygous for a 
disease-causing allele, but are nevertheless perfectly 
healthy. Is this an example of a variant allele with 
reduced penetrance? Or, as is more often the case, are 
there other genes in the genome conferring a modify-
ing infl uence, virtually suppressing the disease phe-
notype in these individuals? Mendelian disorders are 
not simply composed of two alleles, one healthy and 
one diseased; rather, a multitude of mutations that 
knock out function can result in disease, and there is 
also typically a series of alleles in the healthy group. 
In this case we have a mutation-selection balance 
between a fully functional gene and a rainbow series 
of alleles of reduced function. Heterozygotes may 
have even more intermediate phenotypes. It should 
be clear how this presents a situation where, despite 
the primary role of one major gene, there is neverthe-
less a continuous spectrum of disease severity in the 
population.   

8.2   Genetic Polymorphism and Disease 

 Much of our understanding about the genetic basis of 
complex chronic diseases is based on our knowledge 
of Mendelian disorders, coupled with experiences in 
quantitative genetics of agricultural and laboratory 
organisms. We see that the complex disorders aggre-
gate in families but do not segregate as Mendelian 
genes do, and so the inevitable conclusion is that the 
genetic basis involves many genes. In order to fi nd 
those genes and to better understand the transmission 
of the disorder, we must construct a model for the 
genetic architecture. There may, for example, be a 
single major gene that accounts for most of the disease 
risk, but a series of modifi er genes may temper the 
expression of this major gene. Or there may be ten 

genes, each of which is equally important in determin-
ing the trait. The frequency of the high-risk alleles may 
be very low, which may happen if there is natural 
selection driving them to low frequency in a mutation-
selection balance, or they may have more intermediate 
frequency if they have little infl uence on reproductive 
fi tness. In the next sections we will examine properties 
of polymorphisms in human genes and their impact on 
complex diseases. 

8.2.1    Finding Genes Underlying a 
Complex Trait 

 In the preceding sections of this chapter we saw the 
consequences of a gene that has an effect on a trait and 
how its effect is added to the mix of effects of other 
genes and environment to add to the among-individual 
variability in the trait. Now imagine the situation in 
which you have no information about any of the under-
lying genes. The only data you have are the measure-
ments of phenotypes of many individuals. You can 
determine that the trait has a heritable component 
because of the fact that relatives have correlated phe-
notypes. It is also clear that, if you did have measure-
ments of the genotypes of a gene that happened to 
infl uence the trait (let the genotypes be  AA ,  Aa , and 
 aa ), you might be able to see this from the fact that the 
phenotypes of these three genotypic groups might be 
different. The challenge is to identify an effi cient way 
to fi nd such genes.  

8.2.2   Limitations of Pedigree Analysis 

 Probably the fi rst approach one would consider for 
mapping the genes that underlie variation in a trait 
would be linkage analysis using pedigrees. This is a 
fundamental approach in human genetics, and it has a 
long history of success. As soon as one suspects a 
genetic basis for a syndrome, one has a collection of 
cases, and so by acquiring DNA samples from relatives, 
it becomes possible to test the linkage of the syndrome 
to anonymous marker loci throughout the genome. 
Methods for performing linkage analysis are provided 
elsewhere in this text, but there are several attributes of 
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linkage analysis that especially pertain to fi nding genes 
for complex traits that render linkage analysis some-
what less than ideal. First, if multiple genes are involved 
in a trait, the transmission pattern in a pedigree may be 
highly complex, and we may fail to detect the impact of 
any single marker through its marginal effect on risk. 
Even more serious is the fact that the resolution, in 
terms of accuracy of pinpointing the location of a gene 
on the genome, is limited by a combination of the sam-
ple size, the number of markers, and the number of 
meiotic exchanges represented by the pedigree. Typical 
pedigree studies have a mapping resolution of no better 
than 10 or 20 cM (centiMorgans), which is equivalent 
to approximately 10–20 Mbp of DNA sequence. This 
span typically encompasses dozens of human genes, 
and so one is left with a particularly challenging fi ne-
mapping problem (Fig.  8.5 ).   

8.2.3    A Prevailing Model: Common 
Disease Common Variants 

 For genetic association to be found by linkage disequi-
librium, a fundamental constraint is that the rare allele 
must be relatively common (greater than about 10%) 
or the power to detect the association will be very low. 
Given that this approach can only fi nd relatively com-
mon alleles, one can ask just how badly association 
mapping works for rare alleles. After all, common 
alleles, all else being equal, will contribute more to the 
total population variance in the trait, and will hence 

have a greater population attributable risk (defi ned 
elsewhere).What then are the prospects that common 
diseases will be caused by these relatively common 
alleles? Some Mendelian disorders can provide useful 
insight. If the disease is associated with a change in the 
environment, such as presence of malarial parasites, 
then alleles that may cause a disease (sickle cell ane-
mia) may be driven to high frequency by the presence 
of a worse disease (malaria) against which they confer 
resistance. This kind of counterselection results in a 
heterozygote advantage, and any disease associated 
with alleles showing heterozygote advantage, either 
now or in the recent past, would be expected to have 
common alleles. The rapid expansion of the human 
population and the fact that many human populations 
have gone through population bottlenecks can also 
drive deleterious alleles to relatively high frequencies 
by drift and founder effects. In short, it was plausible 
that many diseases might have relatively common 
alleles as an underlying genetic cause. But these argu-
ments do not make it particularly convincing that most 
complex diseases would be driven mostly by common 
alleles. 

 In the end it seems clear that successful identifi cation 
of the common alleles causing disease would be the 
most desirable place to begin, since they likely harbor 
more of the population risk, and diagnostic tests that 
identify these tests are likely to identify more at-risk 
individuals than would tests for very rare alleles  [1] . 
Now that more than 300 genome-wide association 
studies have been completed (http://www.genome.gov/
gwastudies/), we can see that in no case was a very 

  Fig. 8.5    Linkage analysis in pedigrees 
produces log-odds (LOD) plots like this 
one. In this example, there were 396 
people in 22 families that were identifi ed 
as having bipolar disorder in at least two 
members per family (these are called 
multiplex families). As described in the 
text, a model is fi tted that provides the 
LOD score, representing the likelihood of 
obtaining such data given linkage at each 
position sliding along the chromosome. 
The salient feature to note is that the width 
of the LOD peak is nearly 20 cM or 20 
Mbp across. This implies that there is 
relatively little confi dence in the location, 
apart from there being a gene somewhere 
within that 20-Mbp region. (After  [4] )       
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large portion of the total variance explained by the 
associated SNPs. While there are many success stories 
of fi nding well-replicated associations between disor-
ders and common SNPs, the effect sizes of those SNPs 
are all very small. That the common SNPs do not 
explain much of the variation in risk does not imply 
that the Common Disease Common Variant Hypothesis 
is totally in error, however, because it is possible that 
the variance explained is eroded by the fact that we are 
looking at effects of marker SNPs, and perhaps not the 
actual SNPs causing the variation in risk. But the fact 
that so little of the variance in risk is explained is 
unfortunate, and it suggests that myriad rare alleles of 
larger effect might contribute a substantial portion of 
disease risk in humans.  

8.2.4   Affected Sib-pairs 

 For a brief period in the 1990s, the affected sib-pairs 
method was very popular, and it met with some success 
in mapping genes for some traits (more than 600 papers 
applying affected sib methods appear in PubMed; see 
 [20]  for a review of methods). The basic idea is that 
because full pedigrees are time consuming, expensive, 
and diffi cult to collect, one could collect the single 
kind of relative best matched for age and environment, 
namely siblings. The principle behind mapping with 
affected sib-pairs is to score genetic markers through-
out the genome in a collection of sibs, and then to scan 
the genotype data to identify regions of the genome 
that show an excess of genetic identity between the 
sibling pairs. 

 To make sense of affected sib-pair methods we need 
the concept of  Identity By Descent . Two alleles 
sampled from either two individuals or the same indi-
vidual are said to be identical by descent if they can be 
traced back to a single ancestor. If two parents have 
genotypes  A  

1
  A  

2
  and  A  

3
  A  

4
 , then a pair of siblings may 

both be  A  
1
  A  

3
 , in which case they share two alleles that 

are IBD, or they may be  A  
1
  A  

3
  and  A  

1
  A  

4
 , in which case 

they share one allele IBD. Finally, the two siblings 
may be  A  

1
  A  

3
  and  A  

2
  A  

4
 , in which case they share zero 

alleles IBD. If you consider all possibilities, you fi nd 
that ¼ of the time they share two alleles IBD, ½ the 
time they are expected to share one allele IBD, and ¼ 
of the time they are expected to share no alleles IBD. 
In table form it looks like this: 

 Count of alleles IBD 

 0  1  2 
 Observed   n  

0
    n  

1
    n  

2
  

 Expected   n /4   n /2   n /4 

 where  n  =  n  
0
  +  n  

1
  +  n  

2
  is the total count of sib-pairs in 

the study. The test of association is to perform a simple 
Chi-square test. If the null hypothesis is rejected, and 
if there is an excess count of those sharing one and two 
alleles, then this SNP shows a positive association with 
the disorder. It is not so easy to explain the case when 
the null hypothesis is rejected with an excess of cases 
sharing zero alleles. It does not imply that the SNP 
has protective effects. There are many extensions of 
this simple affected sib-pair test, including use of LOD 
scoring, application to continuously varying traits, and 
application to cases where other circumstances result 
in an empirical deviation from ¼ : ½ : ¼ for the 
expected allele sharing. 

 The basic idea of affected sib-pair mapping is to fi nd 
regions of the genome where affected sibs have an ele-
vated chance of sharing more alleles than this null 
model. The LOD score equivalent to the Chi-square 
can be plotted for each SNP as one scans along the 
chromosome, resulting in plots remarkably like the 
LOD score plots from full pedigree mapping efforts. 
Affected sib-pair methods retain the advantage in being 
much faster and easier to collect than full pedigrees.  

8.2.5   Transmission Disequilibrium Test 

 The problem of hidden population stratifi cation was 
seen as a serious limitation of direct association 
testing, because any such stratifi cation could result in 
false-positive test results that would be diffi cult to 
identify without a full independent replication study. 
The Transmission Disequilibrium Test (TDT) is one of 
the simplest designs that is immune to the problem of 
population stratifi cation. Since it was fi rst introduced 
by Spielman et al .   [21] , there have been dozens of 
extensions to allow a similar test approach to apply to 
other scenarios. We will focus on just the simplest 
application, since it shows why the test works so well. 

 Suppose our sample consists of trios, each of parents 
and an affected offspring. The essence of the TDT is to 
ask whether the two alleles at a heterozygous SNP are 
transmitted at a 50:50 ratio to the affected offspring. 
If the SNP is linked to a mutant allele at a disease-
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8
causing gene, then the transmission will be distorted. 
The test is essentially a Chi-square test for the co-
transmission of the SNP and the disease state. If the 
count of trios where the  A  allele is transmitted is  n  

A
 , 

and the count of trios where the  a  allele is transmitted 
is  n  

a
 , then the Mendelian expectation is that each count 

would be ( n  
A
  +  n  

a
 )/2, so that the Chi-square is

  
( )
( )

2 2

A a A a
2A a

A a2

A a

2 2

2
A a

n n n n
n n

n n
X

n n n n

é ù é ù+ +æ ö æ ö- + -ç ÷ ç ÷ê ú ê úè ø è ø -ë û ë û= =
+æ ö +

ç ÷è ø

   

 This remarkably simple test has many positive attributes, 
not the least of which is the virtual immunity to distortions 
caused by population stratifi cation. Its simplicity and 
robustness explain in part why it has been applied in nearly 
1,200 published studies in human genetics.  

8.2.6   Full-Genome Association Testing 

 In a major paradigm-shifting paper, Risch and 
Merikangas  [18]  pointed out the statistical limitations 
for mapping by determining linkage in pedigrees and 
carefully showed how we might be able to map in 

humans purely by association testing. This approach 
would work if there was relatively little linkage disequi-
librium (LD) between SNPs or other genetic variants 
that are far apart along the chromosome. The hope was 
that a signature of high LD between a marker and a dis-
ease would indicate that the disease had to have risk fac-
tors mapping close to the SNP. This strongly motivated 
the quest for better understanding of LD across the 
human genome, and eventually led to completion of the 
human HapMap project  [19] . The HapMap project pro-
vided us with a map of some 8 million markers and 
information on the pattern of LD across them in three 
human population samples. It also stimulated commer-
cial entities to develop methods for genotyping those 
SNPs with high accuracy and low cost (see Sect. 8.3.2). 

 Risch and Merikangas  [18]  made the case for 
genome-wide association testing by showing that for a 
given sample size, one could have a greater probability 
of detecting association (higher power) by doing an 
association study than by doing a pedigree study. They 
considered a range of allele frequencies and genotypic 
relative risks for the disease-causing alleles, and 
several scenarios for the markers to be scored. It is 
impressive to see how accurately they foresaw the 
problems of testing 1,000,000 markers, estimating that 
a signifi cance level of a = 5 × 10 −8  would be needed to 
have a low probability of false positives. In Table  8.1 , 

  Table 8.1    Sample sizes needed to detect a gene that elevates the risk of a complex disease under different assumptions of 
frequencies, genotypic relative risks, and testing approaches. (from Risch and Merikangas  [18] )   

 Linkage 

 Association 

 Singletons  SibPairs 

 Genotypic 
risk ratio ( g ) 

 Frequency of 
disease allele 
A ( p ) 

 Probability of 
allele sharing ( Y ) 

 No. of families 
required ( N ) 

 Probability of 
transmitting 
diseases allele 
A ( P (tr-A) 

 Proportion of 
heterozgous 
parents (Het) 

 ( N )  (Het)  ( N ) 

 4.0  0.01  0.52  4260  0.800  0.048  1098  0.112  235 
 0.10  0.597  185  0.800  0.346  150  0.537  48 
 0.50  0.576  297  0.800  0.5  103  0.424  61 
 0.80  0.529  2013  0.800  0.235  222  0.163  161 

 2.0  0.01  0.502  296.71  0.667  0.029  5823  0.043  1970 
 0.10  0.518  5382  0.667  0.245  695  0.323  264 
 0.50  0.526  2498  0,667  0.5  340  0.474  180 
 0.80  0.512  11,917  0.667  0.267  640  0.217  394 

 1.5  0.01  0.501  4,620.807  0.600  0.025  19,320  0.031  7776 
 0.10  0.505  67,816  0.600  0.197  2216  0.253  941 
 0.50  0.51  17,997  0.600  0.5  949  0.49  484 
 0.80  0.505  67,816  0.600  0.286  1663  0.253  941 

  From  [18] , the paper that convinced the human genetics community that by scoring genotypes and phenotypes in direct association 
tests we ought to be able to identify genetic variants responsible for disease. The genotypic risk ratio ( γ ) is the ratio of risk of 
genotypes AA:aa  
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reproduced from their paper, you can see the massive 
reduction in sample size needed in an association study 
relative to a pedigree study for the same chance of 

fi nding a disease gene.  
 Note that association testing works by demonstrating 

a statistical correlation between allelic states of an 
anonymous marker and a putative risk-elevating locus. 
This approach is quite distinct from linkage-based map-
ping methods. The latter rely on identifi cation of recom-
bination events within the sample, and noting that two 
genes are closely linked if there are relatively few such 
recombination events. Because linkage methods rely 
on counting recombination events, the resolution comes 
from having a large number of such events. Even the 
largest pedigrees might have only a few thousand 
recombination events, and this limits the resolution and 
the statistical confi dence in map distances obtained in 
linkage studies. Association studies seem to depend 
solely on the statistical correlation of allelic states, but 
behind this test is the idea that the correlations arise 
from a combination of low rates of recombination in 
the ancestral history of the variation and from random 
genetic drift. Genes that are far apart will have allelic 
states randomized relative to one another by recombi-
nation over a few generations. If the genes are close 
together, drift can generate LD, and recombination will 
be very slow to erode it, so at equilibrium there is a 
tendency for tightly linked genes to display LD.   

8.3    LD Mapping and Genome-Wide 
Association Studies 

8.3.1    Theory and How It Works: 
HapMap and Genome-Wide LD 

 The basic principle behind LD mapping, also called 
association mapping, rests on a few key assumptions. 
Suppose a population is in a state of near equilibrium, 
with relatively little mixing through migration, so that 
the resulting genetic variation in the population is in 
Hardy–Weinberg proportions. In a population that has 
a steady rain of mutations, there will be a balance 
between the input of variation by mutation and its loss 
by random genetic drift. Some of the mutations have a 
deleterious effect; other mutations have no measurable 
effect; and very rarely some will be advantageous. 

Because there is recombination occurring in each gen-
eration, the statistical association between mutant 
alleles will tend to erode over time; however, the effect 
of random drift is to keep the LD from completely 
decaying to zero. Instead, there is a balance between 
mutation, drift, and recombination that produces a 
steady state level of LD. An approximate relation at 
steady state is E( r  2 ) = 1/(1 + 4 N  

e
  c ), indicating that the 

expected linkage disequilibrium as measured by  r  2  is a 
simple function related inversely to a term with 4 N  

e
  c , 

where  N  
e
  is the effective population size and  c  is the 

recombination rate  [14,   22] . According to this theory, 
one would get the same LD if one halved the recombi-
nation rate and doubled the population size, so long as 
4 N  

e
  c  is kept the same (Fig.  8.6 ).  
 Empirically, the data on human LD support the 

idea of association mapping very well. In particular, 
one does fi nd SNPs that are in strong pairwise LD, 
but basically this only happens if the SNPs are in 
close physical proximity along the genome (Fig.  8.7 ). 
When a pair of SNPs is farther apart than 100 kb or 
so, they only very rarely have strong LD. This means 
that a strong association between a disease and an 
SNP provides fairly convincing evidence that a gene 
associated with elevating disease risk must reside 
near the marker SNP.  

  Fig. 8.6    Under the population genetic model, in which there is 
a balance between mutation, neutral drift, and recombination, 
there arises an equilibrium level of linkage disequilibrium (LD) 
as is plotted here. LD is here measured as the correlation coef-
fi cient  r   2  , as described in the text. The theory says that the 
expected value of  r   2  , or E( r  2 ) = 1/(4 N  

e
  c  + 1), where  N  

e
  is the effec-

tive population size, and  c  is the recombination rate. Note that 
the terms appear as the product  N  

e
  c , so that one expects the same 

LD if one doubles the population size and halves the recombina-
tion rate. The theory shows that there is a strong inverse relation 
between 4 N  

 e 
  c  and LD       
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 According to this theory, if one imagines that there 
are SNPs responsible for disease, then there ought to 
be a statistical association between case/control status 
and the genotypes at nearby SNPs. Table  8.2  shows the 
steps for a genome-wide association test. The quality 
checking step is particularly vital, because despite the 
impressive gains in genotyping technologies, artifacts 
always creep into these studies and any slight perturba-
tion from perfect genotyping calls can and usually does 
result in false-positive calls. Nearly every GWAS study 
had a moment of amazement when so many positive 
signals of association were seen, only for the number 

to dwindle as quality testing revealed more and more 
to be artifactual.   

8.3.2    Technology: The Fantastic Drop 
in Genotyping Costs 

 One cannot overstate the importance of develop-
ments in the technology for large-scale molecular 
biology in accelerating the rate of discovery in 
human genetics. This is nowhere more true than in 
the area of genome-wide association testing. As 
recently as 2002, it cost about 1 U.S. dollar to score 
the genotype of an individual at one targeted nucle-
otide in the genome. Just 5 years later, one could 
score 1 million SNPs for $ 400, a 2,500-fold reduc-
tion in cost. This came about through development 
of mass manufacture of high-quality microarrays 
and methods to label and hybridize DNA to these 
arrays that gave highly accurate genotype calls. 
Competition among multiple manufacturers for 
competing technologies probably helped to drive 
the costs down as they drove speed and accuracy up. 
The next frontier is whole-genome sequencing at 
costs comparable to those of a CAT scan, and the 
human genetics community seems to have a consen-
sus that this will happen within the next few years. 
Returning to the problem of mapping genetic vari-
ants that are associated with risk of complex dis-
eases, even if we had complete DNA sequences of 
all the individuals in the case-control GWAS stud-
ies, many of the barriers to identifi cation of genes 
responsible for infl ated risk would still be there.  

  Table 8.2    Steps for a genome-wide association study   

 1. Identify the sample. Should be from a homogeneous population. Clearly defi ned cases and controls matched for gender and age. 
 2. Score the genotypes. Today this is almost universally done by applying standard commercial SNP genotyping chips from 

Affymetrix or Illumina. 
 3. Quality checking. It is necessary to take the genotype calls through rigorous testing for Hardy–Weinberg departures, spurious 

heterogeneity across runs, clustering of artifacts with cases, etc. Generally poor-quality DNA means removing some individuals, 
and some SNPs need to be removed. 

 4. Perform fi rst-pass statistical inference .  Nearly everyone starts with single-SNP tests, such as the Cochran–Armitage trends test. 
 5. Double-check all positives. The vast and overwhelming majority of positive hits seen at the fi rst pass are errors of some sort. 

Disbelieve them until you fail to prove that they are errors. 
 6. Perform validation study. Standard practice is to repeat the study in another population to see that the same result is repeated. 
 7. Perform additional statistical inference. One can check for genotype x environment and epistatic effects, although the power 

will be low. 

  Fig. 8.7    A plot of the pairwise LD for a collection of SNPs 
from an early SNP study. In this study, the SNP genotypes were 
determined at several thousand SNPs in a few hundred people, 
and for each pair of SNPs it was possible to calculate the dis-
tance between them (for pairs on the same chromosome) and the 
level of LD between that SNP pair, showing clearly that SNPs 
that are far apart almost never have appreciable LD       
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8.3.3   Case-Control Studies 

 Despite the fact that complex disorders are intrinsi-
cally embedded in likely interactions with environ-
mental factors, the easiest design to begin genome-wide 
studies that identify genes associated with the disease 
is the case-control design. Because these tests entail 
examination of so many SNPs (typically 500,000 or 1 
million SNPs), it is necessary to have large sample 
sizes so that the  P -values of tests are suffi ciently small, 
even when effect sizes are moderate, for the statistical 
tests to retain signifi cance in the face of so many simul-
taneous tests. For example, the Wellcome Trust Case 
Control Consortium examined 2,000 cases for each of 
seven different disorders, and these were each con-
trasted against 3,000 controls  [25] . With a complex 
disorder it becomes necessary to dichotomize individ-
uals into these two bins, and it is crucial that this be 
done rigorously and homogeneously across the study., 
Other variables, such as sex, age, diet, etc. must either 
be randomized, controlled (e.g., by examining one sex 
only), or done as matched cases and controls, where 
the matching is for as many of these ancillary variables 
as possible. But case-control studies have a solid place 
in the history of medical research, and the simplicity of 
their design and ready access to samples stratifi ed in 
this simple way means they are likely to continue to be 
useful. In addition, the fi rst-pass statistical tests are 
very simple indeed.  

8.3.4    Statistical Inference 
with Genome-Wide Studies 

 If the individuals in the study are placed into discrete 
bins of ;cases’ and “controls,” then the simplest way to 
consider the data is as a 3 × 2 table: 

  AA    Aa    aa  

 Cases   n  
11

    n  
12

    n  
13

  
 Controls   n  

21
    n  

21
    n  

22
  

 It is legitimate to perform a 3 × 2 contingency Chi-
square test on these data, provided the cell counts 
are suffi ciently large (above 5 or so). For many SNPs 
one fi nds that the rare homozygous class has only a 
few observations, and in these cases one has to be 
careful about the aberrant behavior of the test statis-

tic with small cell counts. One common way to solve 
the problem of small cell counts is to perform a per-
mutation test to estimate the probability of a more 
extreme table. Another approach is to pool cells 
(e.g., the rarest genotype class, or column, could be 
pooled with the heterozygotes, yielding a 2 × 2 
table). 

 Because the three genotypes are not totally inde-
pendent categories, but rather there is an underlying 
order to them, a test more appropriate than the 3 × 2 
contingency Chi-square is the Cochran–Armitage 
trend test. This test assumes that there is a linear trend 
in the phenotypes as one progresses from  AA  to  Aa  and 
 aa , and obtains an asymptotically Chi-square test statistic 
under this model. Its primary advantage is in statistical 
power, because it effectively saves a degree of freedom. 
Just as for the contingency Chi-square, the signifi cance 
test for the Cochran–Armitage trend test can be based 
on a permutation, and this allows it to be used even 
when cell counts are small. One needs to have  P -values 
below 10 −6  to attain signifi cance across the whole 
study, and the Wellcome Trust Case Control Consortium 
was successful in achieving this for more than 80 SNPs 
across the seven disorders they mapped by GWAS 
(Fig.  8.8 ).  

 The genome-wide SNP chips are not successful 
at producing a reliable genotype call for every SNP 
in every individual, and the resulting missing data 
can be a challenge for analysis. One of the interest-
ing features of dense SNP data is that because nearby 
SNPs are in LD, when one SNP call is missing, there 
is often some ability to predict the value of the miss-
ing genotype by use of the fl anking SNPs. This 
“guessing the missing data” is known in statistics as 
 imputation   [8,   11] . While it sounds suspicious to fi ll 
in the missing data in this way, it is easy enough to 
test how well it works – simply take a large data set, 
blind yourself to some of the known genotype calls, 
and determine whether the imputation procedure 
gets the correct genotype call. When this is done, 
the misclassifi cation error rate can be as low as 1%. 
With genome-wide SNP chips, whose density is one 
SNP every 3 kb on average, the imputation error rate 
varies with population but is typically less than 3%. 
Depending on the analysis, this can make a big dif-
ference. For the Wellcome Trust case-control study, 
use of imputed genotype calls often produced SNPs 
whose association  P -values were more signifi cant 
than the nonimputed SNPs.  
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8.3.5   Replication and Validation 

 A problem with performing 500,000 tests at once is 
that one expects that 25,000 will be “signifi cant” at 
 P  < 0.05 by pure chance. Even when stringent criteria 
are applied to control for the false-positive rate, such 

as Bonferroni correction or use of False Discovery 
Rate, it is inevitable that if one places all the tests in 
rank order from the lowest to the highest  P -value, that 
in amongst the signifi cant tests at the lowest  P -value 
range, there will be many tests that are spuriously con-
sidered positive. It is felt that the only way around this 
problem, to distinguish false positives from true posi-

  Fig. 8.8    Results observed by the Wellcome Trust Case Control Consortium in a large multi-disorder genome-wide association 
study. This study examined seven different complex disorders and performed genome-wide association tests for all traits using a 
common panel of healthy control individuals. Each of these plots (such plots are sometimes called Manhattan plots) shows the 
results of all 500,000 signifi cance tests for association between each of the 500,000 SNPs and the specifi ed disease. The  y -axis of 
each plot is –log 

10
  ( P -value), so that a value of 6 implies a  P -value of 10 −6  (such an event would be seen by chance alone once out 

of every 1 million trials)       
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tives, is to “replicate” the study. The word “replicate” 
is placed in quotes because of course there is no way to 
truly replicate a human study. Each individual is unique 
and each set of environmental circumstances is unique. 
At best, a second study on a similar but independent 
second population sample might identify overlapping 
sets of genomic regions harboring variation associated 
with disease risk. If so, this does indeed lend support to 
the initial positive result. The rub is that the second 
population is not identical, and the differences in geno-
typic and environmental composition between the two 
studies may in fact account for the difference between 
the results. That is, it may truly be a positive in the fi rst 
study and not in the second. For now we hope that this 
is relatively rare, and are forced to rely on replication 
as a signature of real and repeatable effects.  

8.3.6    Age-Related Macular Degeneration 
and Complement Factor H 

 In the early days, when the human genetics community 
was coming to grips with the idea that genome-wide 
association studies might actually work, Klein et al.  [9]  
published a paper that showed that it could work far 
better than anyone could have hoped. The disorder was 
age-dependent macular degeneration, and they applied 
a simple case-control design. What was remarkable 
about the study was that they genotyped only 116,204 
SNPs (using one of the early commercial chips) in a 

ridiculously small sample of 96 cases and 50 controls. 
To have a test that remains signifi cant in the face of 
116,204 tests would require an odds ratio of something 
like 6.0, and in fact, this is just what they found (Fig.  8.9 ). 
The positive hit was in the gene for complement factor 
H, and the result immediately sent the AMD community 
scrambling to understand the role of this immunity 
factor in macular degeneration risk.    

8.4    Admixture Mapping 
and Population Stratifi cation 

8.4.1   How to Quantify Admixture 

 Before considering how to use admixture for mapping 
purposes, fi rst consider how one might try to determine 
the degree of admixture of an individual’s genome, 
and whether it is possible to infer which alleles came 
from which population. If one could identify the 
“parental” populations from which the admixed popu-
lation derives, then the fi rst thing to do is to estimate 
allele frequencies in the parental and admixed popula-
tions. In the extreme example where the allele frequen-
cies are 0 and 1 in the parentals, it is easy to see that the 
allele frequency in the admixed population directly 
gives an estimate of the proportion of the alleles derived 
from the second population. If instead the allele fre-
quencies in the two parental populations are  p  

1
  and  p  

2
 , 

  Fig. 8.9    A plot similar to that in 
Fig.  8.8 , showing the outstandingly 
strong signal from the association of 
macular degeneration with complement 
factor H. The  dashed line  is the 
Bonferroni critical value for  P  < 0.05, 
implying that any point above this line 
would be expected to occur by chance 
only 1 out of 20 times even after doing 
the 100,000 tests. (After  [9] )       
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and the frequency in the admixed population is p 

a
 , then 

the admixture proportion, a, giving the proportion of 
the alleles derived from the second population, is:

  
a 1

2 2

| |

| |

p p

p p

-
a =

-    

 It turns out this is a maximum-likelihood estimator 
for this simple single gene case. The situation gets 
more interesting when we have genome-wide data. For 
each region of the genome it is possible to estimate the 
proportion derived from each parental population, but 
what we really want is to identify for each individual 
the population of origin of that individual’s two alleles. 
This is much easier with runs of SNP alleles along the 
chromosome, or haplotype segments. Based on the fre-
quencies in the two parental populations, there are 
methods that produce reasonably accurate calls of the 
stretches of the genotype derived from each parental 
population. One effective approach applies a Markov 
hidden Markov model to the genotype data  [22] .  

8.4.2   Using Admixture for Mapping 

 If two different populations have differing risk of a 
complex disorder, and there is an admixed population 
that also manifests the disorder, if one could identify 
regions of the genome derived from each population 
for each admixed individual, then a means of mapping 
might be to look for an association between disease 
status and population-of-origin of genomic segments. 
These methods are still being refi ned, but they appear 
to be very promising, especially in populations with 
variation in the degree of mixing of the two genomes 
 [23] . It is good to have large blocks of unrecombined 
chromosomal segments to attain power, but more fi nely 
diced genomic regions are needed in order to map with 
fi ne resolution. Also, the method works best when the 
parental populations are well defi ned, and when there 
are only two parental populations that are widely sepa-
rated from each other historically (to maximize allele 
frequency differences). 

 A reasonable target for admixture mapping meth-
ods are diseases that differ in incidence between the 
two parental populations. End-stage kidney disease 
has a lifetime incidence of about 1.5% in Europeans 
and about 7.5% in African Americans. At the outset 

we do not know whether there is a genetic basis for 
this, but admixture mapping could in principle identify 
genetic factors if they exist. One particular form of 
end-stage kidney disease that shows strong familial 
clustering is focal segmental glomerulosclerosis 
(FSGS). Relative to Europeans, African Americans 
have a fourfold increased risk for FSGS and an 18- to 
50-fold increased risk for HIV-1-associated FSGS. For 
this reason, Kopp et al.  [10]  identifi ed 190 African-
American cases and 222 controls for FSGS, obtained 
genome-wide SNP data and applied admixture map-
ping. On chromosome 22 they found a region with a 
LOD score of 9.1, implying that African ancestry for 
this chromosomal region infl ated the risk of FSGS by 
more than ninefold. Subsequent genotyping of addi-
tional SNPs in additional samples narrowed the map-
ping to the gene  MYH9 . The precise mutation(s) 
responsible for the elevated risk of African alleles are 
still not known, but this success and the relative ease of 
application of admixture mapping in studies of African 
American population samples, make it likely that we 
will see many future successes in its application.  

8.4.3    The Perils of Population 
Stratifi cation 

 Many complex disorders display a wide range of inci-
dences across different human populations. At the outset 
we cannot say whether the difference in incidence 
is due to a difference in gene frequencies or whether 
differences in environmental exposures account for the 
variation in disease risk. Sometimes a population will 
face a change in an environmental factor, and then 
the role of environment can become starkly clear. 
For example, the increase in saturated fat consumption 
in the diet of Chinese, especially in large cities, is being 
accompanied by a sharp increase in cardiovascular dis-
ease  [24] . The increase in protein content of the diet in 
post-World War II Japan was accompanied by an 
astonishing increase in the average stature of that pop-
ulation. But in addition to such clear environmental 
effects, many genes have allele frequencies that differ 
among populations, and whenever we try to do asso-
ciation tests when there are differences in disease inci-
dence and allele frequencies, we must be wary of a 
serious artifact. 
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 Suppose two populations have disease incidences 
of 4% and 20%. These two populations have been iso-
lated geographically for thousands of years, and many 
alleles differ in frequency. Suppose one particular gene 
has allele frequencies of 0.10 and 0.30 in the two pop-
ulations. Now imagine that there was a large infl ux of 
individuals from the second population into the fi rst 
population, and the population sample consists of a 
50/50 mix of individuals from the two populations, but 
investigators were unable to keep track of the ancestral 
origin of each individual. The population sample con-
tains hidden stratifi cation of these two population 
groups. The allele frequency in the sample would be 
(0.10 + 0.20)/2 = 0.15, and the disease incidence would 
likewise be the average of the two populations or 12%. 
But, assuming that there is zero association between 
this gene and the disease, the table of genotype and 
phenotype frequencies would be: 

  AA    Aa    aa  

 Diseased  16  144  320 
 Healthy  76  856  2,580 

 This table was constructed by calculating the Hardy–
Weinberg proportions in each population (frequencies of 
0.01, 0.18, and 0.81 in one population and 0.04, 0.32, 
and 0.64 in the other), taking the average frequencies 
across the two populations for each genotypic class, and 
then calculating the disease incidence for each genotype. 
The Chi-square test of heterogeneity is  χ  2  = 10.53, for 
which  P  < 0.005. We have generated an association that 
appears signifi cant purely due to the fact that the popu-
lation with the higher disease incidence happened by 
chance to have a higher allele frequency for this SNP. 
In fact, for any SNP having an allele frequency difference 
of suffi cient magnitude between the two populations, 
there will be this same kind of spurious association. 
This is why it is so crucial to avoid hidden population 
stratifi cation in association testing.  

8.4.4    How to Correct for Hidden 
Population Stratifi cation 

 Fortunately, there are ways to identify the problem of 
hidden population stratifi cation that allow some degree 
of correction of the false positives it causes. First note 
that a mixture of two populations having different 

allele frequencies results in genotype frequencies that 
depart from Hardy–Weinberg proportions. The easiest 
way to see this is to imagine populations with allele 
frequencies 0 and 1. A mixture of the two would give 
50%  AA , 0%  Aa , and 50%  aa  individuals. The allele 
frequency is 50%, but there is a massive defi cit of 
heterozygotes (or excess of homozygotes). One way to 
tease apart the sample into its original populations is to 
try to fi nd clusters of individuals each of which form a 
Hardy–Weinberg population. This is the basic idea 
behind the program   STRUCTURE  , which is widely 
used in heterogeneous population samples to try to 
understand its partitioning into units  [16] . 

 Another approach, fi rst used in 1978 by L.L. 
Cavalli-Sforza’s group  [12] , is to apply a principal 
components analysis to the genotype data. This is a 
multivariate statistical procedure that identifi es linear 
combinations of the SNPs that explain the most among-
individual variability (arbitrarily number coded as, for 
example 0, 1, and 2 for the three genotypes). Generally 
there are multiple orthogonal sets of “axes” or vectors 
of SNPs that are needed to describe the variation. What 
PCA does is provide the weightings for each SNP and 
each such principal component. In the end, one can 
simply plot these principal components for each indi-
vidual, and to the extent that individuals are more 
genetically similar to each other, they will fall closer 
together in these plots. If there are separate clusters of 
individuals, as there might be if there were discrete 
populations, these would appear as clusters in the 
PCA plot. Recently this method was applied to a sample 
of some 7,000 individuals from Europe genotyped at 
500,000 SNPs  [13] , and the plot of the fi rst two principal 
components produces an astonishingly good reproduction 
of the geographic map of Europe (Fig.  8.10 ). What 
does this imply? Just that there is a measurable isola-
tion by distance among Europeans, and that histori-
cally people have tended to marry and settle down not 
far from their birth place.  

 To use PCA for association testing, one could iden-
tify the discrete clusters and use this as a covariate in 
the analysis, trying to explain as much of the variance 
in disease risk by population of origin fi rst, and then 
explaining the remainder with the allele frequencies. 
Alternatively, one could directly use the principal com-
ponents loadings as cofactors in the association analy-
sis. This is an area of active research, and some of the 
newer approaches for dealing with genetic ancestry 
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and population structure in association studies are pre-
sented in Chap. 20 in this volume.   

8.5   Complications 

 The models that we have presented up to now were 
purposely simplifi ed so that the principle concepts 
would be clear. We assumed that the effects of many 
genes were additive, and proceeded to fi t real data to 
this model without particularly questioning whether 
the model was correct. In fact, several factors can con-
tribute to departures from this simple additive model, 
and many people think that these departures are virtually 
ubiquitous. Departures from additivity do not bring to 
a halt hopes of fi nding genes that act on complex traits, 
but they do make the problem more challenging. 

8.5.1    Genotype by Environment 
Interaction 

 One of the challenges of studying the genetics of complex 
traits in humans is that we can never measure the same 
genotype in more than one controlled environment. 
Monozygotic twins at least give us some idea of the 
impact that different environments may have as a 
zygote undergoes development and eventually manifests 
mature phenotypes. With model organisms, where it 
is possible to produce many individuals with the same 
genotype, a very simple experiment produces a profoundly 
important result. The experiment is to simply rear the set 
of genotypes in two or more environments. Figure  8.11  
shows an example of one such experiment, where a set 
of  Drosophila  lines were reared at two different tem-
peratures, and body mass was measured in the resulting 
adult fl ies. As you can see, some lines gain weight 

  Fig. 8.10    The principal 
components plot from a study 
of 500,000 SNPs across a 
European sample of nearly 
7,000 individuals. (From 
 [13] ). The raw genotype data 
were analyzed by Principal 
Components Analysis to try 
to fi nd collections of SNPs 
that explain the most 
variance. A Principal 
Component is a combination 
of weightings of a subset of 
SNPs, and so after the PCA is 
run, each individual has a 
value for each principal 
component (PC1, PC2, PC3, 
etc.). If one plots a point ( x, y ) 
for the values (PC1, PC2) for 
each individual, one gets a 
plot like that shown. Note the 
impressive correspondence to 
the map of Europe, indicating 
that simple geographic 
distance is well correlated 
with the degree of genetic 
difference between individu-
als living that distance apart       
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when moving from the low to the higher temperature, 
and other lines do the opposite.  

 Whenever the lines connecting the mean pheno-
types across a range of environments cross, as they do 
in Fig.  8.11 , this is a form of genotype × environment 
(G × E) interaction. More formally, we could set up an 
analysis of variance of these data, where the two factors 
are genotype and environment, and the interaction 
term in the analysis of variance would quantify the 
degree of G × E interaction. The impressive feature of 
this simple experiment is that whenever an experiment of 
this sort is done having any power at all, the observation 
of signifi cant G × E is nearly universal. 

 Human examples of G × E interaction are a bit 
harder to fi nd, but this is only because one has to defi ne 
genotypes by particular targeted subsets of SNPs. A 
clear example of human G × E comes from drug 
responses. The particular example of  VKORC1  and 
warfarin response is a prime example. The phenotype 
of clotting time shows a strong interaction between 
genotypes at  VKORC1  and the environment of having 
taken warfarin. Given the ubiquity of G × E in animal 
and plant studies, one might expect that a differential 
response to drugs, varying with the genotype of the 
patient, is probably also nearly universal. 

 A particularly good example of a genotype by envi-
ronment is seen in   a   

1
 -antitrypsin. The antiproteolytic 

activity of human serum was detected in 1897, and in 

1900 Landsteiner showed this activity to be located in 
the albumin fraction. Antiproteolytic activity is mea-
sured by hydrolysis of artifi cial substrates by trypsin in 
the presence of the serum to be tested. The concentra-
tion of antiproteolytic activity increases quickly, for 
example with bacterial infection, after injection of 
typhoid vaccine, and during pregnancy. Interindividual 
differences in levels of antiproteolytic activity in the 
blood were fi rst observed in 1963. A simple recessive 
mode of inheritance was proposed for low  a  

1
 -antit-

rypsin levels. Many different alleles have been discov-
ered that vary widely in their activity levels. The gene 
is located on 14q31-32; it spans 10.2 kb, and has fi ve 
exons. Two variants, Z and S, are especially important 
because the   a   

1
 -antitrypsin level is appreciably reduced 

relative to the common M type. 
 Subcutaneous injection of typhoid vaccine and 

diethylstilbestrol leads to a 100 % increase in activity 
of subjects with the MM type. Heterozygotes of the MZ 
type show a moderate increase, whereas in homozy-
gotes of the ZZ type hardly any increase is seen. Many 
studies have shown that the rate of obstructive pulmo-
nary disease in these ZZ individuals is at least 15 times the 
rate in the general population. Among ZZ homozygotes 
only 70–80% develop obstructive emphysema, and in 
heterozygotes the frequency is much lower. When a 
patient is exposed to recurrent bronchial irritation, such 
as that caused by smoking or frequent infections, these 
enzymes cause digestive damage to the lungs. Tobacco 
smoking enhances the danger of bronchial infections 
and hastens the progress of the disease. Once we are in 
the era of widespread genotyping for medical diagnos-
tics, individuals who are found to be ZZ homozygotes 
and possibly ZM heterozygotes ought to get extra 
guidance regarding their exceptional risk of COPD, 
especially if they smoke. 

 The   a   
1
 -antitrypsin polymorphism is an example in 

which there is a subset of genotypes with heightened 
environmental sensitivity. The associated diseased 
condition can be thought of as one of reduced pene-
trance, and that penetrance is increased by an environ-
mental trigger. The genetics of COPD appears to be 
complex, but for individuals with the ZZ genotype of 
  a   

1
 -antitrypsin, the disease is practically Mendelian. 

This is one of the more hopeful situations motivating 
the study of genotype × environment interactions – 
many diseases that we think of as complex and unpre-
dictable may prove to have a simple gene of large 
effect whose otherwise low penetrance is triggered by 

  Fig. 8.11    A typical study of genotype × environment interaction 
obtained from model organism studies where the same geno-
types can be reared in two or more environments. This kind of 
design nearly ubiquitously shows crossing of the mean pheno-
type lines, indicating a nonlinear effect of the environment 
attributable to a genotype × environment background. (Data from 
Kristi Montooth)       
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an identifi ed environmental factor. Such situations are 
also highly sought after because they provide a means 
whereby early genotypic analysis may result in an 
ability to give advice about environmental hazards that 
could greatly impact disease prevalence.  

8.5.2   Epistasis 

 In the context of complex traits, epistasis is the situation 
when the risk of the disorder departs from an additive 
effect across two or more risk-elevating SNPs. 
Table  8.3  makes the situation clear. If one locus has 
marginal phenotypes (means across all other factors) 
of  a  

1
 ,  a  

2
 , and  a  

3
 , and the other locus has marginal phe-

notypes of  b  
1
 ,  b  

2
 , and  b  

3
 , then the two-locus genotypes 

have phenotypes that might fi t the additive pattern as 
depicted in Table  8.3 . Any departure from this additivity 
is an example of epistasis. One extreme example is 
where all the genotypes in the table have one phenotype, 
but the  aabb  genotype in the lower right corner has a 
radically different genotype. Consider two parallel 
pathways, where the organism requires the product of 
one or the other pathway, and the  aa  genotype knocks 
out one pathway, and the  bb  genotype knocks out the 
other. In this case, all the genotypes except  aabb  would 
get the required product, but the  aabb  doubly homozy-
gous mutant would fail in both pathways and would 
produce the extreme phenotype. This kind of epistasis 
is rampant in model organisms, but when we try to test 
for it in human complex traits, it is not so easy to fi nd. 
The reason is primarily due to the greatly reduce statis-
tical power to detect such interaction effects. Given 
this low statistical power, it is premature to conclude 

that epistasis is not very prevalent in humans.  

 It has been argued that epistasis is especially likely 
to be found for phenotypes that are closely related to 
molecular function. The argument is that molecular 
biology is loaded with intermolecular interactions, and 
so if there is polymorphism in pairs of molecules that 
interact in some key pathway, then it is all the more 
likely that those variants may display an interaction in 
disease risk. Following this reasoning, Dimas et al.  [5]  
examined pairs of SNPs for possible interactions in 
driving transcript abundance. They used the genome-
wide expression data generated by the Sanger Centre 
in the 210 cell lines from the unrelated individuals 
whose genotypes were scored in the HapMap study. 
Reasoning that coding SNPs might be compensated 
for by fl anking SNPs, they specifi cally looked for 
coding-fl anking SNP pairs that infl uenced transcript 
abundance in nonadditive ways. After identifying non-
synonymous SNPs that affect expression and fl anking 
SNPs that also affect expression, they performed an 
ANOVA test for each SNP pair to detect main effects 
and pairwise interactions. At a signifi cance level of 
 P  < 0.001 they expected 331 such interactions by 
chance, but observed 412. In this set were several cases 
of strong and highly signifi cant interactions. Although 
the fi nal conclusion does not overwhelmingly suggest 
that pairwise interactions are rampant in the human 
genome, the test had relatively low power given the 
small sample sizes. As our ability to apply tests of 
epistasis to larger samples targeted at specifi c path-
ways improves, it does seem likely that epistatic inter-
action among human genetic variants will be seen to 
play as important a role as has been found in genetic 
model organisms.   

8.6    Missing Heritability: Why is so Little 
Variance Explained by GWAS Results? 

 One of the more surprising results from the genome-wide 
association studies has been that they uniformly fi nd 
only SNPs of very small effect, and that even the sum 
of the effects of all the SNP associations that are found 
only explains a small proportion of the total genetic 
variance. This implies that if one has the SNP geno-
type for all the SNPs that impact a trait, one still has 
rather poor ability to predict the phenotype. This is 
surprising in light of the density of SNP genotypes 
obtained (one every 3 kb on average) and the large 

  Table 8.3    Two-locus genotypes and additive genotypic effects a    

  BB    Bb    bb  

  AA    a  
1
   + b  

1
    a  

1
   + b  

2
    a  

1
   + b  

3
  

  Aa    a  
2
   + b  

1
    a  

2
   + b  

2
    a  

2
   + b  

3
  

  aa    a  
3
   + b  

1
    a  

3
   + b  

2
    a  

3
   + b  

3
  

   a Defi ne (a 
1
 , a 

2
 , a 

3
 ) as the effect of genotypes  AA ,  Aa , and  aa  on 

the phenotype, and (b 
1
 , b 

2
 , b 

3
 ) as the effects of genotype  BB ,  Bb , 

and  bb , then the matrix below gives the expected genotypic 
effects for the nine pairwise genotype combinations assuming 
that the two loci have additive effects. These genotypic effects 
would be equivalent to the measured phenotypes in the environ-
mental effect is zero  

284



8 Formal Genetics of Humans 

sample sizes (in some studies in excess of 30,000). The 
most dramatic example of this poor prediction ability 
is the case of body height (stature). The heritability of 
stature in humans is approximately 80%, making it one 
of the more strongly heritable complex phenotypes 
that we know. Despite this, even the top 20 SNPs found 
to be associated with stature explain less than 5% of 
the variance. Because we know from the heritability 
studies that there are genetic factors explaining the 
familial resemblance, this problem is sometimes called 
“missing heritability”; or, by analogy with dark matter 
in astrophysics, it is also called “dark heritability.” 

 There are several reasons why a GWAS study may 
fail to explain more of the genetic variance in a complex 
trait. First, the SNPs that are used as markers are not 
expected to be the causal factors that drive the pheno-
type, but instead are correlated with the trait-affecting 
SNPs. This indirect association would erode the predic-
tion power. Second, the SNPs that are used as markers 
are only quite common, because they were chosen from 
the HapMap studies, which specifi cally sought to cata-
log common SNPs. If much of the variance in traits is 
driven by rare SNPs, the correlation between the SNP 
markers that were used and these rare SNPs could be 
quite low. Third, it is clear that the complex traits that 
are studied include an environmental component, and if 
there are genotype × environment interactions (G × E), 
each SNP genotype will be averaged across all the envi-
ronments, so that its effect would appear to be eroded 
compared with an SNP that had no such G × E interac-
tion. Soon we hope to have the means to directly test 
for G × E interactions, but the primary challenge that 
must be tackled is to have accurate and meaningful 
measurements of the environment. Fourth, the statistical 
models have only made use of single SNPs at a time, 
and the trait may instead be driven by interactions 
among SNPs, or epistasis. It is also possible that there 
are other sources of heterogeneity, including epigenetic 
differences among individuals.  

8.7   Concluding Remarks 

 The human genetics community is striving to improve 
methods for identifi cation of genes that underlie com-
plex genetic disorders and to understand how the effects 
of genes combine to produce infl ated risk of disease. 
As part of the effort to better understand the role of rare 

alleles, the 1000 Genomes Project (www.1000genomes.
org) was launched to provide the stimulus to accelerate 
the development of sequencing technologies that reduce 
the cost while increasing the speed and accuracy of 
whole-genome resequencing methods. Statistical meth-
ods need to be developed that accommodate the known 
complexities that may connect variation at the geno-
typic and phenotypic levels. While we can have confi -
dence that methods of genome-wide association testing 
based on full genome sequence will be developed and 
improved in the near future, the prediction of an 
individual’s disease risk given only his or her genome 
sequence may never attain useful accuracy (apart from 
extreme alleles that are nearly deterministic for some 
disorders, such as Mendelian disorders), especially if 
the disorder is heavily impacted by stochastic environ-
mental factors, or by complex interactions between 
genotype and environment. But prediction of individual 
risk could make an enormous difference to public 
health, especially if environmental amelioration of 
that risk were possible, and so the drive to maximize 
prediction accuracy will motivate work in this area for 
years to come.      
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