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applications.  The use of new methods for handling incomplete informa-
tion is of fundamental importance in engineering applications.  This paper 
deals with the design of controllers using type-2 fuzzy logic for minimiz-
ing the effects of uncertainty produced by the instrumentation elements.  
We simulated type-1 and type-2 fuzzy logic controllers to perform a com-
parative analysis of the systems’ response, in the presence of uncertainty.

1 Introduction 

Uncertainty affects decision-making and appears in a number of different 
forms.  The concept of information is fully connected with the concept of 
uncertainty. The most fundamental aspect of this connection is that the un-
certainty involved in any problem-solving situation is a result of some in-
formation deficiency, which may be incomplete, imprecise, fragmentary, 
not fully reliable, vague, contradictory, or deficient in some other way [1].  
The general framework of fuzzy reasoning allows handling much of this 
uncertainty, fuzzy systems employ type-1 fuzzy sets, which represents un-
certainty by numbers in the range [0, 1].  However, when something is un-
certain, like a measurement, it is difficult to determine its exact value, and 
of course type-1 fuzzy sets makes more sense than using crisp sets. How-
ever, it is not reasonable to use an accurate membership function for some-
thing uncertain, so in this case what we need is another type of fuzzy sets, 
those, which are able to handle these uncertainties, the so called type-2 
fuzzy sets [2].  So, the amount of uncertainty in a system can be reduced 
by using type-2 fuzzy logic because it offers better capabilities to handle 
linguistic uncertainties by modeling vagueness and unreliability of infor-
mation.

Abstract. Uncertainty is an inherent part in controllers used for real-world 
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Recently, we have seen the use of type-2 fuzzy sets in fuzzy logic sys-
tems to deal with uncertain information. So we can find some papers em-
phasizing on the implementation of a type-2 Fuzzy Logic System (FLS) 
[3]; in others, it is explained how type-2 fuzzy sets let us model and mini-
mize the effects of uncertainties in rule-base FLSs [4].  Some research 
works are devoted to solve real world applications in different areas, for 
example, in signal processing type-2 fuzzy logic is applied in prediction in 
Mackey-Glass chaotic time-series with uniform noise presence [5]. In 
medicine, an expert system was developed for solving the problem of Um-
bilical Acid-Base (UAB) assessment [6].  In industry, type-2 fuzzy logic 
and neural networks was used in the control of non-linear dynamic plants 
[7,8].

This work deals with the advantages of using type-2 fuzzy sets in the 
implementation of a Fuzzy Logic Controller (FLC), for a real system.  It is 
a fact, that in the control of real systems, the instrumentation elements (in-
strumentation amplifier, sensors, digital to analog, analog to digital con-
verters, etc.) introduce some sort of unpredictable values in the information 
that has been collected. So, the controllers designed under idealized condi-
tions tend to behave in an inappropriate manner.  Since, uncertainty is in-
herent in the design of controllers for real world applications, we are pre-
senting how to deal with it using type-2 FLC to diminish the effects of 
imprecise information.  We are supporting this statement with experimen-
tal results, qualitative observations, and quantitative measures of errors.  
For quantifying the errors, we utilized three widely used performance cri-
teria, these are:  Integral of Square Error (ISE), Integral of the Absolute 
value of the Error (IAE), and Integral of the Time multiplied by the Abso-
lute value of the Error (ITAE) [9].

This paper is organized as follows: section 2 presents an introductory 
explanation of type-1 and type-2 FLCs and the performance criteria for 
evaluating the transient and steady state closed-loop response in a com-
puter control system.  In section 3, we are showing details of the imple-
mentation of the feedback control system used in this work, we are pre-
senting some experimental results and a performance comparison between 
type-1 and type-2 fuzzy logic controllers.  Finally, we have the conclu-
sions.

2 Fuzzy Controllers 

In the 40's and 50's, many researchers proved that many dynamic systems 
can be mathematically modeled using differential equations.  These previ-
ous works represent the foundations of the Control theory, which, in  
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addition with the Transform theory, provided an extremely powerful 
means of analyzing and designing control systems [10].  These theories 
were being developed until the 70's, when the area was called System the-
ory to indicate its definitiveness [11].  Its principles have been used to con-
trol a very big amount of systems taking mathematics as the main tool to 
do it during many years.  Unfortunately, in too many cases this approach 
could not be sustained because many systems have unknown parameters or 
highly complex and nonlinear characteristics that make them not to be 
amenable to the full force of mathematical analysis as dictated by the Con-
trol theory. 

Soft computing techniques have become a research topic, which is ap-
plied in the design of controllers [12].  These techniques have tried to 
avoid the above-mentioned drawbacks, and they allow us to obtain effi-
cient controllers, which utilize the human experience in a more related 
form than the conventional mathematical approach.  In the cases in which 
a mathematical representation of the controlled systems cannot be ob-
tained, the process operator should be able to express the relationships ex-
isting in them, that is, the process behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is called a 
type-1 fuzzy logic system (type-1 FLS).  It is composed by a knowledge 
base that comprises the information given by the process operator in form 
of linguistic control rules, a fuzzification interface, who has the effect of 
transforming crisp data into fuzzy sets, an inference system, that uses them 
in conjunction with the knowledge base to make inference by means of a 
reasoning method, and a defuzzification interface, which translate the 
fuzzy control action so obtained to a real control action using a defuzzifi-
cation method [10]. 

In our paper, the implementation of the fuzzy controller in terms of 
type-1 fuzzy sets, has two input variables such as the error e(t), the differ-
ence between the reference signal and the output of the process, as well as 
the error variation e(t),

)()()( tytrte                              (1) 
)1()()( tetete                              (2) 

so the control law can be represented as in Fig. 1. 
A FLS described using at least one type-2 fuzzy set is called a type-2 

FLS.  Type-1 FLSs are unable to directly handle rule uncertainties, be-
cause they use type-1 fuzzy sets that are certain.  On the other hand, type-2 
FLSs, are very useful in circumstances where it is difficult to determine an 
exact certainties, and measurement uncertainties [2]. 
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Fig. 1. System used for obtaining the experimental results. 

It is known that type-2 fuzzy sets let us to model and to minimize the ef-
fects of uncertainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets 
are more difficult to use and understand than type-1 fuzzy sets; hence, their 
use is not widespread yet.  In [4] were mentioned at least four sources of 
uncertainties in type-1 FLSs: 
1. The meanings of the words that are used in the antecedents and conse-

quents of rules can be uncertain (words mean different things to differ-
ent people). 

2. Consequents may have histogram of values associated with them, espe-
cially when knowledge is extracted from a group of experts who do not 
all agree. 

3. Measurements that activate a type-1 FLS may be noisy and therefore 
uncertain.

4. The data used to tune the parameters of a type-1 FLS may also be noisy. 
All of these uncertainties translate into uncertainties about fuzzy set 

membership functions.  Type-1 fuzzy sets are not able to directly model 
such uncertainties because their membership functions are totally crisp.  
On the other hand, type-2 fuzzy sets are able to model such uncertainties 
because their membership functions are themselves fuzzy.  A type-2 mem-
bership grade can be any subset in [0,1], the primary membership, and cor-
responding to each primary membership, there is a secondary membership 
(which can also be in [0,1]) that defines the possibilities for the primary 
membership.  A type-1 fuzzy set is a special case of a type-2 fuzzy set; its 
secondary membership function is a subset with only one element, unity. 
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Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule base, 
fuzzy inference engine, and output processor.  The output processor in-
cludes type-reducer and defuzzifier; it generates a type-1 fuzzy set output 
(from the type-reducer) or a crisp number (from the defuzzifier).  A type-2 
FLS is again characterized by IF-THEN rules, but its antecedent or conse-
quent sets are now type-2.  Type-2 FLSs, can be used when the circum-
stances are too uncertain to determine exact membership grades such as 
when training data is corrupted by noise.  In our case, we are simulating 
that the instrumentation elements (instrumentation amplifier, sensors, digi-
tal to analog, analog to digital converters, etc.) are introducing some sort of 
unpredictable values in the collected information. 

In the case of the implementation of the type-2 FLC, we have the 
same characteristics as in type-1 FLC, but we used type-2 fuzzy sets as 
membership functions for the inputs and for the output. 

For evaluating the transient closed-loop response of a computer control 
system we can use the same criteria that normally are used for adjusting 
constants in PID (Proportional Integral Derivative) controllers.  These are 
[9]:

1. Integral of Square Error (ISE). 

0

2
ISE dte    (3) 

2. Integral of the Absolute value of the Error (IAE). 

0

||IAE dte    (4) 

3. Integral of the Time multiplied by the Absolute value of the Error 
(ITAE).

0

||ITAE dtet    (5) 

The selection of the criteria depends on the type of response desired, the 
errors will contribute different for each criterion, so we have that large er-
rors will increase the value of ISE more heavily than to IAE.  ISE will fa-
vor responses with smaller overshoot for load changes, but ISE will give 
longer settling time. In ITAE, time appears as a factor, and therefore, ITAE 
will penalize heavily errors that occurs late in time, but virtually ignores 
errors that occurs early in time. Designing using ITAE will give us the 
shortest settling time, but it will produce the largest overshoot among the 
three criteria considered.  Designing considering IAE will give us an in-
termediate results, in this case, the settling time will not be so large than 
using ISE nor so small than using ITAE, and the same applies for the 
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overshoot response.  The selection of a particular criterion is depending on 
the type of desired response. 

3 Simulation Results 

We are showing in Fig. 1, the feedback control system that was used for 
achieving the results of this paper.  It was implemented in Matlab where 
the controller was designed to follow the input as closely as possible.  The 
plant was modeled using equation (6) 

25.01005.019.027.032.0 iuiuiyiyiyiy   (6) 

The controller’s output was applied directly to the plant’s input. Since 
we are interested in comparing the performance between type 1 and type 2 
FLC system, we tested the controller in two ways:

1. One is considering the system as ideal, that is, we did not intro-
duce in the modules of the control system any source of uncer-
tainty.  See experiments 1, and 2. 

2.  The other one is simulating the effects of uncertain modules (sub-
systems) response introducing some uncertainty.  See experiments 
3, and 4. 

For both cases, as is shown in Fig. 1, the system’s output is directly 
connected to the summing junction, but in the second case, the uncertainty 
was simulated introducing random noise with normal distribution (the 
dashed square in Fig. 1).  We added noise to the system’s output iy  using 
equation (7), which in turn was introduced to the summing junction of the 
controller system.

randniyiy 05.0    (7) 
We tested the system using as input, a unit step sequence free of 

noise, ir .  For evaluating the system’s response and compare between 
type 1 and type 2 fuzzy controllers, we used the performance criteria ISE, 
IAE, and ITAE.  In table I, we summarized the values obtained for each 
criterion considering 400 units of time.  For calculating ITAE we consid-
ered a sampling time 1.0

s
T sec.

For Experiments 1, 2, 3, and 4 the reference input r is stable and noisy 
free.  In experiments 3 and 4, although the reference appears clean, the 
feedback at the summing junction is noisy since we introduced deliberately 
noise for simulating the overall existing uncertainty in the system, in con-

sequence, the controller’s inputs e  (error), and e
t

 contains uncertainty 

data.
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For each input of the type-1 FLC, we defined three type-1 fuzzy 
Gaussian membership functions: negative, zero, positive. The universe of 
discourse for these membership functions is in the range [-10 10]; their 
mean is -10, 0 and 10 respectively, and their standard deviation are 9, 2 
and 9 respectively.

For the output, we have five type-1 fuzzy Gaussian membership func-
tions: NG, N, Z, P and PG.  They are on the interval [-10 10], their means 
are -10, -4.5, 0, 4, and 10 respectively; and their standard deviations are 
4.5, 4, 4.5, 4 and 4.5 respectively. 

In the type-2 FLC, for each input we defined three type-2 fuzzy Gaus-
sian membership functions: negative, zero, positive.  In this case the fuzzy 
membership functions have uncertain mean and fixed standard deviation 
on the interval [-10 10].  For the upper membership functions we have -
10.5, -1, and 9.5 uncertain means; for the lower membership functions we 
have -9.5, 1, and 10.5 uncertain means respectively; for the fixed standard 
deviations 9, 2 and 9 respectively. 

For computing the output we have five type-2 fuzzy Gaussian 
membership functions with uncertain mean and fixed standard deviations: 
NG, N, Z, P and PG, on the interval [-10 10].  For the upper membership 
functions we have -10.25, -4.75, -0.25, 3.75 and 9.75 uncertain means; for 
the lower membership functions we have  -9.75, -4.25, 0.25, 4.25 and 
10.25 uncertain means respectively.  The fixed standard deviations: 4.5, 4, 
4.5, 4 and 4.5 respectively.

Experiment 1.  Ideal system using a type-1 FLC.

In this experiment, we did not add uncertainty data to the system, the 
system response is illustrated in Fig. 2.  Note that the settling time is in 
about 140 units of time; i.e., the system trends to stabilize with time and 
the output will follow accurately the input.  In Table I, we listed the ob-
tained values of ISE, IAE, and ITAE for this experiment.  We are showing 
in Fig. 3, 4 and 5 the ISE, IAE, and ITAE behavior of this experiment. 

Experiment 2.  Ideal system using a type-2 FLC.

Here, we used the same test conditions of Experiment 1, but in this case, 
we implemented the controller’s algorithm with type-2 fuzzy logic, its out-
put sequence is illustrated in Fig. 2, and the corresponding performance 
criteria are listed in Table I.  By visual inspection, we can observe that the 
output system response of Experiment 1, and this one, are very similar, 
they are almost overlapped. 

Using the performance criteria we can get a quantitative comparison, 
where we can observe small differences favoring Experiment 1, i.e., the re-
sults obtained using a type-1 FLC. We can observe in Fig. 3, 4, and 5 that 
using a type-1 FLC we got the lower errors. 
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Fig. 2. This graphic shows the system’s response to a unit step sequence. 

Fig. 3. In uncertainty absence, the ISE values are very similar for type-1 and type-
2 FLCs. 
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Fig. 4. In uncertainty absence, the IAE values obtained at the plant’s output are 

very similar for type-1 and type-2 FLCs. 

Fig. 5. In uncertainty absence, the ITAE values obtained at the plant’s output are 

very similar for type-1 and type-2 FLCs, in accordance with Figure 13, it is evi-

dent a type-1 FLC works a little better. 
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Experiment 3.  System with uncertainty using a type-1 FLC.

In this case, we simulated using equation (7), the effects of uncertainty 
introduced to the system by transducers, amplifiers, and any other element 
that in real world applications affects expected values.  We are showing in 
Fig. 6, the system’s response output.  In Fig. 7 and 8 are plotted the per-
formance criteria ISE, IAE, ITAE. 

Fig. 6. This graphic was obtained with uncertainty presence; compare the system’s 
outputs produced by type-1 and type-2 FLCs. 

Fig. 7. Here we can see that a type-2 FLC produces lower overshoot errors, quan-
titatively the ISE overall error of using type-2 is 9.5516 against 15.1143 of the 
overall error produced by the type-1 FLC. 



Fig. 8. In accordance with Fig. 6, IAE confirms that we obtained the best system 
response using a type-2 FLC with uncertainty presence. 

Experiment 4.  System with uncertainty using a type-2 FLC.  In this ex-
periment, we introduced uncertainty in the system, in the same way as in 
Experiment 3. In this case, we used a type-2 FLC and we improved those 
results obtained with a type-1 FLC (Experiment 3). 

4 Conclusions 

We observed and quantified using performance criteria such as ISE, IAE, 
and ITAE that in systems without uncertainties (ideal systems) is a better 
choice to select a type-1 FLC since it works a little better than a type-2 
FLC, and it is easier to implement it.  It is known that type-1 FLC can han-
dle nonlinearities, and uncertainties up to some extent.
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