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to synchronize chaotic neural networks unidirectionally coupled. Synchro-
nization is thus between the master and the slave networks with the slave 
network being given by an observer. In particular, we present two cases of 
study: the first is a second-order 3×4 CNN array, and the second is a CNN
with delay. The chaotic CNNs are used as transmitter and receiver in en-
crypted information transmission. 

1 Introduction 

In recent years many complex network structures have been observed in 
diverse fields as physics, biology, economics, ecology, electronics and 
computer science. In particular, Cellular Neural Networks (CNNs) consti-
tute an important example in such cases. CNN is a nonlinear system de-
fined by coupling only identical simple dynamical systems called cells lo-
cated within a prescribed sphere of influence, such as nearest neighbors 
[3]. CNN has broad applications in image and video signal processing, ro-
botic and biological visions [30], and higher brain functions [18]. Many 
proceedings of workshop and special issues see e.g., [23]; [24]; [25]; [26] 
have been devoted to CNNs.

On the other hand, recently synchronization of complex dynamics (cha-
otic and hyperchaotic) has become a field of active research see e.g., [20]; 
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[17]; [27]; [28]; [29]; [10]; [4]; [5]; [22]; [21]; [1]; [7]; [11]; [12]; [13]; and 
references therein. Data encryption using chaotic dynamics was reported in 
the early 1990’s as a new approach for signal encoding which differs from 
the conventional methods using numerical algorithms as the encryption 
key. One of the motivations for synchronization is the possibility of send-
ing confidential information through chaotic signals for secure communi-
cations. The idea is use two highly dynamic nonlinear systems (as trans-
mitter and receiver). So, the confidential information is imbedded into the 
transmitted chaotic signal by direct modulation, masking or another 
method. At the receiver end, if chaos synchronization can be achieved, 
then it is possible to recover the original information. The communication 
schemes based on chaos synchronization can be broadly categorized into 
three approaches. They include the chaotic masking scheme [8], the cha-
otic shift keying scheme [19]; [8]; [9], and the chaotic modulation scheme 
[31].

The main goal of this paper is to synchronize chaotic neural networks. 
This objective is achieved by using Generalized Hamiltonian forms and 
observer approach developed in [22]. Moreover, we proceed to illustrate 
this synchrony to transmit encrypted confidential information using a 
modified chaos-based communication scheme [16]; [14]. The synchroniza-
tion method presents the following advantages: i) it is systematic, ii) it is 
useful to synchronize several well-known chaotic and hyperchaotic oscilla-
tors, iii) it does not require the computation of any Lyapunov exponent, 
and iv) it does not require initial conditions belonging to the same basin of 
attraction.

The paper is organized as follows: In Section 2, we give a brief review 
on chaos synchronization via Generalized Hamiltonian forms and observer 
approach. In Section 3, we apply this approach to synchronize chaotic neu-
ral networks using two numerical examples; a second-order 3×4 CNN ar-
ray and a CNN with delay. In Section 4, we present the stability analysis 
related to the synchronization process. In Section 5, we apply the synchro-
nization of chaotic neural networks to confidential communication for 
transmission and recovering of audio messages. Finally, in Section 6, we 
give some concluding remarks. 

2 Review of Chaos Synchronization via Hamiltonian Forms 

and Observer Approach 

Consider the following n-dimensional autonomous system

txfx , ,
n

x (1)
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which provides an example of complex oscillator, whit f  a nonlinear 
function of the state x . Following the approach provided in [22], many 
CNN models described by Eq. (1) can be written in the following “Gener-
alized Hamiltonian” canonical form, 

xF
x

H
xS

x

H
xJx

(2)

where H(x) denotes a smooth energy function which is globally positive 
definite in n . The column gradient vector of H, denoted by xH , is as-
sumed to exist everywhere. We use quadratic energy function 

MxxxH
T

21  with M  being a, constant, symmetric positive definite 

matrix. In such a case, Mx
x

H . The square matrices, xJ and xS sat-

isfy, for all n
x , the following properties, which clearly depict the en-

ergy managing structure of the system, 0xJxJ
T  and xSxS

T .
The vector field xJ xH  exhibits the conservative part of the system 
and it is also referred to as the workless part, or workless forces of the sys-
tem; and xS  depicting the working or nonconservative part of the system. 
For certain systems, xS  is negative definite or negative semidefinite. In 
such cases, the vector field is addressed to as the dissipative part of the 
system. If, on the other hand, xS  is positive definite, positive semidefi-
nite, or indefinite, it clearly represents, respectively, the global, semi-
global and local destabilizing part of the system. In the last case, we can 
always (although nonuniquely) descompose such an indefinite symmetric 
matrix into the sum of a symmetric negative semidefinite matrix xR  and 
a symmetric positive semidefinite matrix xN . And where xF represents a 
locally destabilizing vector field. 

We consider a special class of Generalized Hamiltonian systems given 
by

m

n

y
x

H
Cy

xyF
x

H
SI

x

H
yJx

,

,
(3)

where S is a constant symmetric matrix, not necessarily of definite sign. 
The matrix I  is a constant skew symmetric matrix. The vector variable 

ty  is referred to as the system output. The matrix C is a constant matrix. 
The destabilizing vector field yF .



We denote the estimate of the state vector tx by t , and consider the 
Hamiltonian energy function H to be the particularization of H in terms 
of t . Similarly, we denote by t the estimated output, computed in 

terms of the estimated state t . The gradient vector H is, natu-
rally, of the form M with M being a, constant, symmetric positive definite 
matrix.

A dynamic nonlinear state observer for the special class of Generalized 
Hamiltonian forms (3) is readily obtained as 

,

,

H
C

yKyF
H

SI
H

yJ (4)

where K is a constant matrix, known as the observer gain. The state esti-
mation error, defined as ttxte and the output estimation error, 
defined as ttyte

y
, are governed by 

m

yy

n

e
e

H
Ce

e
e

H
KCSI

e

H
yJe

,

, (5)

where the vector, eH  actually stands, with some abuse of notation, for 
the gradient vector of the modified energy function, 

MexMHxHeeH . We set, when needed, 
WSI .

Definition 1 (Complete synchronization problem) We say that the 
slave system (4) synchronizes with the master system (3), if 

0)()(lim ttx
t

,

no matter which initial conditions )0(x and )0( have. Where the state estimation 

error )()()( ttxte represents the synchronization error. 

3 Synchronization of Chaotic Neural Networks: Examples 

In this section, we present two numerical examples of synchronization of 
chaotic neural networks, to this purpose, let us first briefly give a suitable 
material on CNN. 
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Definition 2 (CNN) A CNN is any spatial arrangement of locally cou-
pled cells, where each cell is a dynamical system which has an input, and 
a state evolving according to some prescribed dynamical laws [3]. 

In three-dimensional lattice CNN architecture, mathematically each cell 
ijk

C at location ),,( kji  is a dynamical system whose states evolve accord-

ing to some prescribed state equations, whose dynamics are coupled only 
among the neighboring cells lying within some prescribed sphere of influ-
ence

ijk
S , centered at ),,( kji . In two-dimensional case, using a double 

subscript, the variables for an isolated cell are: input u

ij
tu )( , threshold 

z

ij
tz )( , state x

ij
tx )( , and output y

ij
ty )( . A CNN cell is said to 

be isolated if it is not coupled to any other cell (Fig. 1). 

Threshold

Input

ji
u

,

ji
z

,

Output

ji
y

,

S t a t e

ji
x

,

Fig. 1: Isolated cell: input 
ij

u , threshold 
ij

z , state x

ij
tx )( , and output 

ij
y  for a two-

dimensional CNN.

In this work, we will assume that all isolated cells
ij

C are identical, and 

that for simplicity we have that )(tz
ij

is a constant scalar. Besides, we as-

sume that for any )(
0

tx
ij

at
0

tt , any threshold )(tz
ij

, and any input )(tu
ij

,

the state of each isolated cell
ij

C is assumed to evolve for all
0

tt as a 

nonautonomous set of ordinary differential equations 

),,,(
ijijijij

uzxfx ;...,,2,1 Mi Nj ...,,2,1

)(
ijijij

xgy

where )(
ij

g is a nonlinear function of the state. However, in many cases the 

output of interest often coincides with the state, )()( txty
ijij

.

The standard CNN equations used most widely in the literature, pro-
posed in [2] for an M×N CNN array 



)()( rSkl

klkl

rSkl

klklijijij

ijij

ubyazxx ;...,,2,1 Mi

Nj ...,,2,1

(6)

)(
ijij

xfy , (7)

where )(rS
ij

 is the sphere of influence of radius r ;
)(rSkl

klkl

ij

ya  and 

)(rSkl

klkl

ij

ub  are the local coupling, and 

1,1

1,

1,1

11
2

1

ij

ijij

ij

ijijij

x

xx

x

xxxf

For the particular case where 3M  and 4N , the Eqs. (6)-(7) assume 
the simpler form 3×4 CNN array 

).(

),(

),()()(

),()()(

22

11

20020011,022

10020110011

xfy

xfy

tubxfaxfaxx

tubxfaxfaxx (8)

Example 1 [3] Consider the second-order nonautonomous CNN. If 

;0)(and,
2

sin04.4)(,1,2.1,2
21001,01,000

tuttubaaa  then Eq. 

(8) becomes 

),(2)(2.1

,
2

sin04.4)(2.1)(2

2122

2111

xfxfxx

txfxfxx
(9)

with nonlinear function 

1,1

1,

1,1

11
2

1

x

xx

x

xxxf
ij

(10)
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Figure 2 shows a projection of the chaotic attractor of 3×4 CNN (9)-(10). 
The waveforms of ))(),(((

21
txtx corresponding to the )1.0,1.0())(),(((

21
txtx .

Fig. 2: Projection of the chaotic attractor of 3×4 CNN in the ),( 21 xx plane.

The state equations describing the 3×4 CNN (9)-(10) in Hamiltonian ca-
nonical form with a destabilizing vector field (master 3x4 CNN) is given 
by

2

1

2

1

2

1

2

1

2
sin04.4

)(

)(

20

02

)(

)(

02.1

2.10

x

xt

xf

xf

xf

xf

x

x
(11)

taking as the Hamiltonian energy function 

.)()()(
21

0
22

0
11

xx

drrfdrrfxH
(12)

The destabilizing vector requires two signals for complete cancellation at 
the slave. Namely, the states ).(and)(

21
txtx  The output of the master (11) in 

this case, is then chosen as .),(),(
2121

TT
xxyyy  The matrices C, S, and I 

are found to be 

.
20

02
,

02.1

2.10
,10 SIC

The pair (C, S) is observable, and hence detectable. An injection of the 
synchronization error )()()(

222
ttxte  suffices to have an asymptotically 

stable trajectory convergence. The slave (3x4 CNN) would then be de-
signed as follows 



2

2

1

2

1

2

1

2

1

2

1

2
sin04.4

)(

)(

20

02

)(

)(

02.1

2.10
e

k

k

x

t

f

f

f

f

(13)

where T
kkk ),(

21
 is chosen in order to guarantee the asymptotic exponen-

tial stability to zero of the state reconstruction error trajectories (synchro-
nization error). From (11) and (13) the synchronization error dynamics is 
governed by 

.
)(

2

1
2

2

1

2

1
2

)(

02.1
2

1

2.1
2

1
0

11

1

1

1

2

1

e

eH

kk

k

e

eH

k

k

e

e (14)

With initial states )1.0,1.0())0(),0((
21

xx and )5.0,5.0())0(),0((
21

,
and 2

21
kk we obtain the following numerical results. Figure 3 shows 

synchronization between: )(and)(b)),(and)(a)
2211

ttxttx ; solid 
line )(tx

i
and dashed line .2,1),( it

i
 c) and d) illustrate the time behav-

iors of the synchronization error trajectories 2,1),()()( ittxte
iii

. e) 
and f)

i
x  versus 

i
in phase space. 

Example 2: Time-delay oscillators represent examples of high-
dimensional chaos generators. Now, the system considered is a cell equa-
tion in Cellular Neural Networks with delay [15]. Its model is given by 

3

4

3

4
85.2118.3)(001.0)( xxxxtxtx

(15)

where )(txx . Its solution space is infinite-dimensional, with initial 
condition as any continuous function defined on the closed interval 0, .
By considering 1and initial condition as a constant function equal to 0.5 
on 0,1 , and initial state 1)0(x . Figure 4 shows a projection of the 
chaotic attractor of the cellular neural network with delay in the ),( xx

plane.
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i
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i
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 c) and d) the behaviors of the synchronization error trajecto-
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iii
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i

x versus
i
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Fig. 4: Phase space dynamics for the Cellular Networks with delay projected onto the 
),( xx  plane. 
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Fig. 5: Synchronization between the states )(tx (solid line) and )(t (dashed line) (top of 

figure). Synchronization error (middle of figure). x versus in phase space (bottom of fig-
ure).

The CNN with delay system (15) in Generalized canonical form (as mas-
ter) is given by 

3

4

3

4
85.2118.3

)(
001.0)( xxxx

x

xH
tx

(16)

taking as Hamiltonian energy function 

2

2

1
)( xxH

(17)

with xxxH /)( .  It is clear that the system (16) is observable. The ob-
server (as slave) for dynamics (16) is designed as 

),(

3

4

3

4
85.2118.3)(001.0)(

tek

tt

(18)

where )()()( ttxte . From (16) and (18) the synchronization error dy-
namics is governed by 

).()001.0()( tekte (19)
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Figure 5 depicts the synchronization between the state trajectories 
)(tx (solid line) and )(t (dashed line) (top of figure), the time behavior of 

the synchronization error trajectory )()()( ttxte  (middle of figure), and 
x versus  (bottom of figure). When 1)0(x and 1)0( , and 1k are
chosen.

Now, we give conditions for asymptotic stability of the synchronization er-
rors (14) and (19) between chaotic dynamics (11)-(13) and (16)-(18), re-
spectively.

Theorem 1 [22] The state )(tx of the nonlinear system (3) can be globally, 
exponentially, asymptotically estimated by the state )(t of an observer of 
the form (4), if the pair of matrices ),( WC , or the pair ),( SC , is either ob-
servable or, at least, detectable. 

An observability condition on either of the pairs ),( WC , or ),( SC , is 
clearly a sufficient but not necessary condition for asymptotic state recon-
struction. A necessary and sufficient condition for global asymptotic stabil-
ity to zero of the estimation error is given by the following theorem. 

Theorem 2 [22] The state )(tx of the nonlinear system (3) can be globally, 

exponentially, asymptotically estimated, by the state )(t of the observer 
(4) if and only if there exists a constant matrix K such that the symmetric 
matrix

)(
2

1
2

TTTT
KCKCSKCSKCSKCWKCW

is negative definite. 

In particular, the matrix )(
2

1
2

TT
KCKCS  is negative definite (sta-

bility synchronization condition holds) for Example 1, if we choose 
1

k and

2
k such that 

,2,42
221

kkk

i.e., if 6568.1  then ,
21

kkkk .  And for Example 2, the synchronization 
error is stabilized at the origin for .001.0k

4 Synchronization Stability Analysis 



5 Confidential Communication 

Finally, we apply the Hamiltonian synchronization of chaotic neural net-
works to transmit encrypted information. In particular, we use the modified 
chaos communication scheme (MCCS) for signal information masking 
with single transmission channel [16]; [14]. Figure 6 shows the MCCS (us-
ing previous Example 1) where: )(tm is the confidential information to be 
hidden and transmitted, )(

2
tx is the chaotic signal of the network for mask-

ing purpose, )()()(
2

tmtxts is the transmitted signal, and 

)()()(
2

'
ttstm the recovered information. It was reported in [14] that 

due to tm is also injected into the transmitter, the MCCS is able to re-
cover faithfully the hidden information even if a noise level is present 
through the transmission channel. 

+ -

Transmitter Receiver

+

+

m(t)
x

2 s(t)

m'(t)

Fig. 6: Modified chaos-based communication scheme for signal masking using a single 
transmission channel. 

Figure 7 illustrates the secret message communication of an audio message 
using the Example 1: the confidential message to be hidden and transmit-
ted )(tm (top of figure), the transmitted chaotic sig-
nal )()()(

2
tmtxts (middle of figure), and the recovered audio message 

)(
'

tm at the receiver (bottom of figure). 
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Fig. 7: Transmission and recovering of an audio message: Confidential message to be hid-
den and transmitted (top of figure). Transmitted chaotic signal )()()( 2 tmtxts (middle

of figure). Recovered audio message )(
'

tm  at the network receiver (bottom of figure). 

In this paper, we have presented the synchronization problem of chaotic 
neural networks from the perspective of Generalized Hamiltonian forms 
and observer design. The approach allows one to give a simple design pro-
cedure for the slave CNN. We have shown that synchronization of chaotic 
CNNs is possible from this viewpoint. The approach can be easily imple-
mented on experimental setups. Moreover, we have shown based on cha-
otic CNNs synchronization the transmission of encrypted confidential in-
formation.

In a forthcoming work we will be concerned with a physical implemen-
tation of CNN with electronic circuits, and the synchronization of large 
chaotic neural networks and possible applications. 

6 Concluding Remarks 
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