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problem of Offline Point-to-Point Autonomous Mobile Robot Path Plan-
ning. The problem consist of generating “valid” paths or trajectories, for an 
Holonomic Robot to use to move from a starting position to a destination 
across a flat map of a terrain, represented by a two dimensional grid, with 
obstacles and dangerous ground that the Robot must evade. This means 
that the GA optimizes possible paths based on two criteria: length and dif-
ficulty.

1 Introduction 

The problem of Mobile Robot Path Planning is one that has intrigued and 
has received much attention thru out the history of Robotics, since it’s at 
the essence of what a mobile robot needs to be considered truly “autono-
mous”. A Mobile Robot must be able to generate collision free paths to 
move from one location to another, and in order to truly show a level of in-
telligence these paths must be optimized under some criteria most impor-
tant to the robot, the terrain and the problem given. GA’s and evolutionary 
methods have extensively been used to solve the path planning problem, 
such as in (Xiao and Michalewicz, 2000) where a CoEvolutionary method 
is used to solve the path planning problem for two articulated robot arms, 
and in (Ajmal Deen Ali et. al., 2002) where they use a GA to solve the 
path planning problem in non-structured terrains for the particular applica-
tion of planet exploration. In (Farritor and Dubowsky, 2002) an Evolution-
ary Algorithm is used for both off-line and on-line path planning using a 
linked list representation of paths, and (Sauter et. al., 2002) uses a Particle
swarm optimization (PSO) method based on Ant Colony Optimization 
(ACO). However, the research work presented in this paper used as a basis 
for comparison and development the work done in (Sugihara, 1999). In 
this work, a grid representation of the terrain is used and different values 
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are assigned to the cells in a grid, to represent different levels of difficulty 
that a robot would have to traverse a particular cell.  Also they present a 
codification of all monotone paths for the solution of the path-planning 
problem.

2 Basic Theory 

This section is intended to present some basic theory used to develop the 
GA’s in this paper for use in the path planning problem, covering topics 
like basic Genetic Algorithm theory, Multi Objective optimization, Trig-
gered Hypermutation and Autonomous Mobile Robot Point-to Point Path 
Planning.

2.1 Genetic Algorithms 

A Genetic Algorithm is an evolutionary optimization method used to 
solve, in theory “any” possible optimization problem. A GA (Man et. al., 
1999) is based on the idea that a solution to a particular optimization prob-
lem can be viewed as an individual and that these individual characteristics 
can be coded into a finite set of parameters. These parameters are the genes
or the genetic information that makes up the chromosome that represents 
the real world structure of the individual, which in this case is a solution to 
a particular optimization problem. Because the GA is an evolutionary 
method, this means that a repetitive loop or a series of generations are used 
in order to evolve a population S of p individuals to find the fittest individ-
ual to solve a particular problem. The fitness of each individual is deter-
mined bye a given fitness function that evaluates the level of aptitude that a 
particular individual has to solve the given optimization problem. Each 
generation in the genetic search process produces a new set of individuals 
through genetic operations or genetic operators: Crossover and Mutation,
operations that are governed by the crossover rate  and the mutation rate
µ respectively. These operators produce new child chromosomes with the 
intention of bettering the overall fitness of the population while maintain-
ing a global search space. Individuals are selected for genetic operations
using a Selection method that is intended to select the fittest individuals for 
the role of parent chromosomes in the Crossover and Mutation operations.
Finally these newly generated child chromosomes are reinserted into the 
population using a Replacement method. This process is repeated a k num-
ber of generations.
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2.2 Multiple Objective Genetic Algorithms 

Real-world problem solving will commonly involve (Oliveira et. al., 2002) 
the optimization of two or more objectives at once, a consequence of this is 
that it’s not always possible to reach an optimal solution with respect to all 
of the objectives evaluated individually. Historically a common method 
used to solve multi objective problems is by a linear combination of the 
objectives, in this way creating a single objective function to optimize (Su-
gihara, 1997) or by converting the objectives into restrictions imposed on 
the optimization problem. In regards to evolutionary computation, 
(Shaffer, 1985) proposed the first implementation for a multi objective 
evolutionary search. The proposed methods in (Fonseca and Fleming, 
1993), (Srinivas, 1994) and (Goldberg, 1989), all center around the con-
cept of Pareto optimality and the Pareto optimal set. Using these concepts 
of optimality of individuals evaluated under a multi objective problem, 
they each propose a fitness assignment to each individual in a current 
population during an evolutionary search based upon the concepts of 
dominance and non-dominance of Pareto optimality. Where the definition 
of dominance is stated as follows: 

Definition 1: For an optimization (minimization) problem with n-
objectives, solution u is said to be dominated by a solution v if:

.,....,2,1 ni )()( vfuf
ii  ,                  (1)

,,....,2,1 nj )()( vfuf
ii            (2)

2.3 Triggered Hypermutation 

In order to improve on the convergence of a GA, there are several tech-
niques available such as (Man et. al. 1999) expanding the memory of the 
GA in order to create a repertoire to respond to unexpected changes in the 
environment. Another technique used to improve the overall speed of con-
vergence for a GA is the use of a Triggered Hypermutation Mechanism 
(Cobb, 1990), which consists of using mutation as a control parameter in 
order to improve performance in a dynamic environment. The GA is modi-
fied by adding a mechanism by which the value of µ is changed as a result 
of a dip in the fitness produced by the best solution in each generation in 
the genetic search. This way µ is increased to a high Hypermutation value
each time the top fitness value of the population at generation k dips below 
some lower limit set beforehand. 
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2.4 Autonomous Mobile Robots 

An Autonomous Mobile Robot as defined in (Xiao and Michalewicz, 
2000) can be seen as a vehicle that needs the capability of generating colli-
sion free paths that take the robot from a starting position s to a final desti-
nation d, and needs to avoid obstacles present in the environment. The ro-
bot must be able to have enough relevant information of his current 
position relative to s and d, and of the state of the environment or terrain 
that surrounds it. One advantage about generating paths or trajectories for 
these kinds of robots, compared to the more traditional robot arms, is that 
in general there are far less restrictions in regards to the precision with 
which the paths must be generated. The basic systems that operate in an 
Autonomous Mobile robot are: 
1. Vehicle Control. 
2. Sensor and Vision.  
3. Navigation 
4. Path Planning 

2.5 Point-to-Point Path Planning Problem 

The path planning problem when analyzed with the point-to-point tech-
nique, (Choset et. al., 1999) comes down to finding a path from one point 
to another (start and destination). Obviously, one of the most important 
reasons to generate an appropriate path for a robot to follow, is to help it 
avoid possible danger or obstacles along the way, for this reason an appro-
priate representation of the terrain is needed generating a sufficiently com-
plete map of the given surroundings that the robot will encounter along its 
route. The general path-planning problem, that all autonomous mobile ro-
bots will face, has been solved (to some level of satisfaction) with various 
techniques, besides the evolutionary or genetic search, such as, using the 
Voroni Generalized Graph (Choset et. al., 1999), or using a Fuzzy Control-
ler (Kim et. al., 1999), yet another is by the use of Artificial Potential 
Fields (Planas et. al., 2002).

3 Proposed Method 

The first step before we can continue and give the details of the GA im-
plementation used to solve the path-planning problem, is to explicitly de-
fine the problem and what is it that we are expecting out of the subsequent 
genetic search. To this end, we propose what will be the input/output pair 
that we are expecting from our GA as follows: 
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Input: 1) An n x n grid, where the starting cell s for the robot is in one 
corner and the destination cell d is diagonally across from it. 
2) Each cell with a corresponding difficulty weight wd assigned to it rang-
ing from [0, 1]. 
Output: A path, defined as a sequence of adjacent cells joining s and d,
and that complies with the following restrictions and optimization criteria: 
1) The path most not contain cells with wd = 0 (solid obstacles). 
2) The path must stay inside of the grid boundaries. 
3) Minimize the path length (number of cells). 
4) Minimize the total difficulty for the path, that means, the combined val-
ues of wd for all the cells in a given path. 

We must also establish a set of ground rules or assumptions that our GA 
will be operating under. 
1) The n x n grid isn’t limited to all cells in the grid having to represent a 
uniform or constant size in the terrain, each cell is merely a conceptual rep-
resentation of spaces in a particular terrain. 
2) Each cell in a terrain has a given difficulty weight wd between the values 
of [0,1], that represents the level of difficulty that a robot would have to 
pass through it, where the lower bounds 0 represents a completely free 
space and the higher bounds 1 represents a solid impenetrable obstacle. 
3) The terrain is considered to be static in nature. 
4) It is assumed that there is a sufficiently complete knowledge in regards 
to the state of the terrain in which the robot will operate. 
5) The paths produced by the GA are all monotone paths. 

4 Architecture of the Genetic Algorithm 

We now turn to the actual implementation of our GA, used to solve the 
path-planning problem for one and two optimization objectives. So we de-
scribe each of the parts of our GA and give a brief description of each, 
clearly stating any differences between the one and two optimization ob-
jectives implementations. 

4.1 Individual Representation 

Basically, the chromosome structure was taken from the work done in (Su-
gihara, 1999) where a binary string representation of monotone paths is 
used. The binary string chromosome is made up of n-1 (where n is the 
number of columns and rows in the grid representing the map of a given 
terrain) pairs of direction/distance of length 3 + log[2]n, and an extra bit a
which determines if the path is x-monotone (a=0) or y-monotone (a=1).
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And each pair of direction/distance codes the direction in which a robot 
moves inside the grid and the number of cells it moves thru in that direc-
tion. The coding used greatly facilitates its use in a GA, because of its con-
stant length no special or revamped genetic operators are needed, a prob-
lem that would be very cumbersome to solve if using a linked list 
chromosome representation of the path as done in (Xiao and Michalewicz, 
2000).

4.2 Initial Population 

The population S used in the genetic search is initialized with p total indi-
viduals. Of the p individuals in S, p-2 of them are generated randomly 
while the remaining two represent straight line paths from s to d, one of 
this paths is x-monotone and the other is y-monotone.

So we can clearly define the population S as being made up by: 

S = { baxxxx
p

,,............,,
2210

}                         (3) 

Where
i

x  are randomly generated individuals, and by a and b that are x-

monotone and y-monotone paths respectively that take a straight-line route 
from s to d.

4.3 Path Repair Mechanism 

Each path inside of the population S is said to be either valid or non-valid.
Where criteria for non-validity are: 

Path contains a cell with a solid obstacle (wd = 1). 
Path contains cells out of bounds. 
The paths final cell isn’t d.
Using this set of three rules to determine the state of validity of a given 

path for a particular genetic search, we can define a subpopulation S’, 
which is made up by entirely non-valid paths in S.

The Path Repair Mechanism used with the GA is a Lamarckian process 
designed to take non-valid x’, where x’  S’, and determine if they can be 
salvaged and return to a valid state, so as to be productive in the genetic 
search, because just because a particular path is determined to be non-valid
this does not preclude it from having possible information coded in its 
chromosome that could prove to be crucial and effective in the genetic 
search process, this is way non-valid paths are given low fitness values 
with the penalty scheme used in the fitness evaluation, only after it has 
been determined that its non-valid state cant be reversed. 

260      Julian Garibaldi, Azucena Barreras and Oscar Castillo 



4.4 Fitness Evaluation 

As was mentioned earlier, we introduce here both single and two objective 
optimization of the path planning problem, taking into account the length a 
given path and the difficulty of the same as the two criteria for optimiza-
tion for paths in the population hence, the way in which each implementa-
tion of the GA assigns fitness values differs for obvious reasons.

4.4.1 Single Objective 

Considering our Conventional GA, we can say that for paths inside S we
optimize for only one objective, which is the path length, therefore we de-
fine fitness )(

1
xf  as given by: 

)(
1

xf = )()(
2

cn                                                  (4)

Where c is the number of cells in a given path x.

4.4.2 Multiple Objective 

Besides the fitness )(
1

xf  used in Section 4.4.1 given for path length, a 

second fitness assignment )(
2

xf  is given for path difficulty is given, and 
is calculated by, 

)(
2

xf  =
i

wdn )(
2                                             (5)

Where the second term in (5) is the sum of wd for each cell in a given 
path x. With this we are forced to use Pareto optimality for a rank-based 
system for individuals in population S. So for a path x where x  S its final 
fitness values is given by their rank value inside of S determined by,

          rank(x) =  p -  t                                                                   (6) 

Where p is the size of population S and t is the number of individuals 
that dominate x in S.

5 Simulation Results 

We use the benchmark test presented in Figure 1, which was used in (Su-
gihara, 1997) due to its capability of projecting an accurate general per-
formance score for the GA, and the performance measure of probability
optimality )(kL

opt
, which is a representation of the probability that a GA 

has of finding an optimal solution to a given problem. In this case, is the 
probability of finding a solution on the Pareto optimal front. Using 
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)(kL
opt

as the performance measure we present a set of optimal operating 

parameters for our MOGA using both a Generational and Elitist replace-
ment scheme, Figures 2 to 3 show the simulation results that support this 
values. We also compare the two methods along with the GA proposed in 
(Sugihara, 1999) and the comparison is made under a normalized value for 
kp=30,000 keeping the overall computational cost equal for each GA. 

Fig. 1. Benchmark Test, with two paths on the Pareto Optimal Front. 
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and number of generations with Generational Replacement. 

6 Conclusions 

This paper presented a GA designed to solve the Mobile Robot Path Plan-
ning Problem. We showed with simulation results that both a Conventional 
GA and a MOGA, based on Pareto optimality, equipped with a basic repair 
mechanism for non-valid paths, can solve the point-to-point path planning 
problem when applied to grid representations of binary and continuous 
simulation of terrains respectively. From the simulation results gathered 
from experimental testing the Conventional GA with a Generational Re-
placement scheme and Triggered Hypermutation (which is commonly re-
ferred to as a conversion mechanism for dynamic environments) gave con-
sistent performance to varying degrees of granularity in the representation 
of terrains with out a significant increase in population size or number of 
generations needed in order to complete the search in a satisfactory man-
ner, while the MOGA based on Pareto Optimality combined with a Elitist 
replacement scheme clearly improves upon previous (Sugihara, 1999) 
work done with multiple objective path planning problem based on linear 
combination, with the added advantage of providing more than one equally 
usable solution. 

k
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