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Abstract. Variable structure control is a recognized method to stabilize 
mechanical systems with friction. Friction produces non linear phenomena, 
such as tracking errors, limit cycles, and undesired stick-slip motion, de-
grading the performance of the closed-loop system. The main drawback of 
variable structure control is the presence of chattering, which is not suit-
able in mechanical systems. In this paper, we design a variable structure 
controller complemented with Linear-in-the-Parameter neural nets to at-
tenuate chattering. Experimental validation applied to a three degree of 
freedom robot mechanical manipulator is shown to support the results. 

1 Introduction 

Friction is the resistance to motion, during sliding or rolling, that is experi-
enced whenever one solid body moves tangentially over another with 
which it is in contact. Friction is undesirable in mechanical systems be-
cause can lead to tracking errors, limit cycles, and undesired stick-slip mo-
tion (cf. [1]). Control strategies for friction compensation have been pro-
posed in [1]-[7], among others. In these papers the authors propose friction 
model based controllers to mitigate the friction effects. It is well-known 
that the phenomenon of friction is not yet completely understood and it is 
hard to model [8], therefore stabilization of mechanical systems through a 
feedback law with an imprecise friction compensation term may result in a 
considerable degree of uncertainty, thus not producing the expected mo-
tion. If the uncertainties are bounded, discontinuous robust control meth-
ods ([8]) provide simple and straightforward solutions to the friction com-
pensation design, however, the system exhibits an infinitely fast switching  
of the input control called chattering ([9]) inducing fatigue in mechanical 
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parts and the system could be damaged in a short time. For instance, in [8] 
and [10], friction compensator design involves chattering behavior where 
the chattering controller deals with the friction model uncertainties, which 
is a desired property in friction compensation. 

This paper is intended to provide a solution to mechanical problems due 
to chattering without losing robustness properties given by variable struc-
ture controllers [11]. Neural nets have been used extensively in feedback 
control (see, for instance, [12]-[15]). Also, adaptive control theory has 
evolved as a powerful methodology for designing nonlinear feedback con-
trollers for systems with uncertainties [16]. Using the advantage of chatter-
ing control to deal with uncertainty in the friction model ([8] and [10]), and 
utilizing a linear-in-the-parameter (LIP) neural net, a chattering friction 
compensation design is proposed, where a dynamic adaptation law for the 
parameters of the LIP neural nets is designed to attenuate the amplitude of 
the chattering once the control objective is achieved. In this way, chatter-
ing appears only when it is needed. 

To the best knowledge of the authors, the chattering attenuation problem 
for the class of Variable Structure Control (VSC) introduced in this paper 
has not been reported. On the other hand, few results have appeared in re-
search papers dealing with the chattering problem for sliding mode control: 
Parra-Vega et al. [17], for example, showed that adaptive and non-adaptive 
cases of variable structure robot control undergo chattering attenuation. 
Bartolini et al. [18] demonstrated that it is possible to eliminate chattering 
by generating a second-order sliding mode control using the first derivative 
of the control law as a control input instead of the actual control law. An-
other alternative used in control applications is to replace the signum func-
tion with a smooth approximation (e.g. tanh, sigmoid function, among oth-
ers).

This paper is organized as follows: Section 2 presents the problem 
statement along with the dynamic model of mechanical manipulators and 
the previous result on chattering control developed by Orlov et al. [8]; Sec-
tion 3 presents the neural nets chattering controller applied to a n-degrees-
of-freedom robot manipulator where it is assumed that joint positions are 
the only information available for feedback, along with its stability analy-
sis; Section 4 provides experimental results made for a three degrees of 
freedom mechanical manipulator using the neural nets chattering controller 
described in Section 3; and Section 5 presents some conclusions.

The following notations will be adopted throughout this paper. )(
min

A

and )(
max

A  denote the minimum and maximum eigenvalues of a symmet-

ric positive definite matrix nn
RA , respectively, and xxx

T  repre-

sents the Euclidean norm of vector n
Rx .
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In the present paper we study controlled n-link mechanical manipulators 
described by interconnected second-order differential equations of the 
form [8]: 

qFqGqqqCqqM ,                                                            (1) 

where n
Rq  is the position vector, n

R  is the control input, )(qM ,
),,( qqC )(qG  are smooth functions of appropriate dimensions, 
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and }{
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bb
kdiagK  and }{

i
ff

kdiagK  are positive definite and diagonal 

matrices. Throughout, the precise meaning of solutions of the system (1) 
with discontinuous functions qF  and qq,  are defined in Filippov’s 
sense [8]. 

From the physical point of view, the position q  represents the general-
ized coordinates, the control input  is the vector of external torques, 

qM  is the inertia matrix, qqqC ,  is the vector of Coriolis and centripetal 
torques, qG  is the vector of gravitational forces, qF  represents the fric-
tion torques, where 

i
b

k  and 
i

f
k , ni ,,2,1  are the constant coefficients of 

viscous and Coulomb frictions, respectively. Because frictions are uncou-
pled among joints, we have assumed that the matrices 

b
K  and 

f
K are di-

agonal.
Consider the following control law: 

eKeKxKqG
pd

sgn                                                                (5) 

2 Problem Statement 



232      Ricardo Guerra, Luis T. Aguilar, and Leonardo Acho

eKLxx
d

                                                                                             (6) 

where nn
RL  is a symmetric positive definite matrix, nn

d
RK  is a 

symmetric positive semi-definite matrix, nn

pp
RkdiagK

i

}{  is a diago-

nal positive definite matrix, nn
RkdiagK

i

}{  is a diagonal matrix 

such that 
f

KK , and 
d

qqe  represents the position error with respect 

to the constant desired position 
d

q . Equation (6) is a first-order linear 
compensator used to replace the velocity feedback (cf. [19]). 

The control law (5)-(6), that belongs to the variable structure control-
lers family, is called a chattering controller because it generates no sliding 
mode, except at the origin, while exhibiting an infinite number of switches 
in a finite time interval ([8]). 

Theorem 1 ([8]). Let the friction manipulator (1)-(4) be driven by the 
switched position feedback controller (5)-(6) with the assumptions given 
above. Then, the closed loop system (1)-(6) is globally asymptotically sta-
ble at the equilibrium point 0,, xeq .

The switched term in (5), represented by )sgn(eK , can be interpreted 
as LIP neural nets with dendrite weights equal to one, and with firing 
thresholds (the so called ‘bias’ terms) equal to zero. The cell inputs are the 
components of the vector e . The outputs are the components of the 
switched term. Because the dendrite weights are positive the neural nets 
correspond to excitatory synapses. Here, the activation functions are the so 
called symmetric hard limit. Representing the activation function by )(

we have: 

niekeky
iii

ii

,,2,1;sgn                                                       (7) 

where
i

y are the outputs of the LIP neural nets. 
The problem to tackle is to find a training rule for each 

i

k  such that the  

closed-loop system be globally asymptotically stable at the equilibrium 
point  0,, xeq  with the property that each 

i

k  converges to zero as the 

system approaches the equilibrium point. 
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Considering the following control law: 

esignKteKxKqG
pd
                                                            (8) 

eKLxx
d

                                                                                             (9) 

2

11log

1
1log ek

r
                                                        (10) 

where Rk
r

,  and Rt)(  is the adaptive term that will regulate the 
amplitude of the chattering term. In fact, the above controller is a LIP neu-
ral net with dynamic training implemented with a point of view similar to 
[14] and [15]. 

Again, nn
RL  is a symmetric positive definite matrix, nn

d
RK  is a 

symmetric positive semi-definite matrix, nn

pp
RkdiagK

i

}{  is a diago-

nal positive definite matrix, nn
RkdiagK

i

}{  is a diagonal matrix 

such that 
f

KK , and 
d

qqe  represents the position error with respect 

to the constant desired position 
d

q .

Lemma 1 [20]: Suppose the ordinary differential equation in (10) has ini-
tial condition 0)(

0
t , then 0)(t  for all 

0
tt .

Our main result follows. 

Theorem 2. Let the friction manipulator (1)-(4) be driven by the switched 
position feedback controller (8)-(10) with the assumptions given above. 
Suppose that KK

f
 with 1and 1)(0 t  for all 

0
tt . Then, 

the closed-loop system (1)-(4) and (8)-(10) is globally asymptotically sta-
ble at the equilibrium point 0),,,(),,,( xeexeq  if 0)(t  and
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3 Neural Nets Chattering Controller 
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Remark 1: Because 0  is an equilibrium point of the closed-loop sys-
tem (1)-(4) and (8)-(10), the chattering amplitude vanishes as t .

Proof. To this end, we follow the same line of reasoning given in [8]. 
Let us introduce the Lyapunov candidate function 

.1log1

2

1

2

1

2

1
,,,

1
1

n

d

T

dp

TT

ekek

LxeKLxeKeKeqqMqxeqV

n

                 (12) 

This Lyapunov function is similar to the one proposed in [8] but the last 
term involves the dynamic adaptation law. This last term was also utilized 
in [20]. The time derivative of (12), along the trajectories of the closed 
loop system (1)-(4) and (8)-(10) yields: 

.11log
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2

1
,,,

xLeKLxeK
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d

T

d

T

p
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                     (13) 

Employing the well-known property 0],[
2

1
qqqCqMq

T , for all 
n

Rq , and substituting the control law (8) into (13) we have 
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From (9), the above equation is simplified to 
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Invoking (10), the above equation is reduced to 
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From (11) we forward to 
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011log1log
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Since ),,,( xeqV  is positive definite and ),,,( xeqV  is a negative semi-
definite decreasing function, it follows that the equilibrium point 

0),,,(),,,( xeexeq  of the closed-loop system (1)-(4) and (8)-(10) is 
uniformly stable, i.e., Lttetetx )(),(),(),( . From (17), we can easily 

show that the squares of ,,ex  are integrable with respect to time t ; i.e.,

2
)(),(),( Lttetx . Next, Barbalat’s lemma implies that 0)(,0)( txte

and .0)(t  If 0)(tx  then ,0)(tx  and from (9), it follows that 
.0)(te  This concludes our proof.                                              

4 Application to an Industrial Robot Manipulator 

The experimental setup designed in the research laboratory of CITEDI-
IPN involves a three degrees-of-freedom (3-DOF) industrial robot manipu-
lator manufactured be Amatrol, it is shown in Figure 1. This mechanical 
system presents Coulomb friction [8]. The base of the mechanical robot 
has a horizontal revolute joint, q1, whereas two links have vertical revolute 
joints q2 and q3. The nominal parameter values of the mechanical 
manipulator are summarized in Table 1. A worm gear set, a helicon gear 
set and a roller chain are used for torque transmission to joints q1, q2 and q3,
respectively; there is a DC gear motor for each joint with a reduction ratio 
of 19.7:1 for q1 and q2 and 127.8:1 for q3. The ISA Bus servo I/O card from 
the company Servo To Go is employed for the real time control system and 
it mainly consists of eight channels of 16-bit D/A outputs, 32 bits of I/O, 
and an interval timer capable of interrupting the PC. The controller is im-
plemented using C++ programming language running on a 486 PC. Posi-
tion measurements of each articulation of the robot are obtained using the 
quadrature encoder channel available on each DC gear-motor, connected to 
the I/O card, and programmed to provide the encoder signal processing 
every millisecond; the resolution of the encoders is 52 x 10-3 rad, 62 x 10-3

rad and 34 x 10-3 rad for q1, q2 and q3, respectively. Along  
with this, a digital oscilloscope is used to store the control signal. Linear 
power amplifiers are installed en each servomotor which apply a variable 

4.1 Experimental Setup 
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torque to each joint. These amplifiers accept control inputs from the D/A 
converter in the range of ±10 volts. See Figure 2 for the hardware setup 
configuration. The dynamic model of the robot in the form of (1) is given 
in [8]. However, for control implementation, we only require ).(qG

Table 1. Nominal parameter values fo the mechanical manipulator 

Description Notatio
n

Value Uni
ts

Lenght of link 1 1
l 0.297 m 

Lenght of link 2 2
l 0.297 m 

Mass of link 1 1
m 0.38 Kg 

Mass of link 2 2
m 0.34 Kg 

Gravity
acceleration

g 9.8 m/s2

4.2. Experimental Results 

The regulator performance was studied experimentally. The experiment 
was performed with the 3-DOF robot manipulator required to move in 
space from the origin 0)0()0()0(

321
qqq  to the desired position 

2
321 ddd

qqq [rad]. The initial velocities 3
)0( Rq  and )0(  were 

set to zero, respectively. 

The control goal was achieved by implementing the control (8)-(10) 
where ([8]) 

3222

2122212211

cos

coscoscos

0

qqlm

qqlmqlmqlmgqG ,

and the controller gains selected as follows: 

,10,10,10,3,3,3

,5,5,5,40,40,15

diagLdiagK

diagKdiagK
dp

and 2
r

K  and .8  The physical constant parameters, 2,1,, ilm
ii

 are 
given in table 1. 
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Fig. 1. Schematic diagram of the robot. 

Fig. 2. Hardware setup. 

The resulting joint positions and input torques are depicted in Figures 3 
and 4, respectively. Figure 3 shows that joint positions converge to the de-
sired position for the closed loop system [(1), (8)-(10)], whereas the fast 
switching due to LIP terms vanishes as t  tends to (see Figure 4). Also, 
from Figure 3, a finite time convergence of the articulated positions to 
their desired positions is appreciated in about 3.2 seconds. The applied 
control inputs present chattering that is attenuated in about 8 seconds (see 
Figure 4). This chattering attenuation is good in mechanical systems, and 
was the main objective of the present paper. Finally, Figure 5 presents the 
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time evolution of )(t . It should be noted that the dynamic of )(t  (10) is 
slower (smooth and slow variation) than [(1)-(4), (7), (8)]. 

5 Conclusions 

We have developed a variable structure controller with chattering attenua-
tion for robot manipulators in the presence of friction. The manipulator is 
governed by a second order differential equation with a right-hand discon-
tinuous side admitting discontinuous terms to account for friction phenom-
ena. The proposed controller uses Linear-in-the-Parameter Neural nets to 
attenuate the chattering signal inherent to variable structure systems with-
out losing the robustness of the function framework. Effectiveness of the 
design is supported by the experiments made for a three degrees-of-
freedom robot manipulator with frictional joints. 

Fig. 3. Joint Positions. 

Fig. 4. Input Torques. 
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Fig. 5. Time evolution of ).(t
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