
Intelligent Agents in Distributed Fault Tolerant

Systems

Arnulfo Alanis Garza, Juan José Serrano, Rafael Ors Carot, José Mario
García Valdez

1

Dpto. de Sistemas Computacionales, Instituto Tecnológico de Tijuana
(México) Calzada Tecnológico S/N, Unidad Tomas Aquino,

2
D. Inf. de Sistemas y Computadoras, Camí de Vera, s/n, 46022

VALÈNCIA, ESPAÑA, 00+34 96387,Universidad Politécnica de Valencia
(España) {jserrano,rors}@disca.upv.es

Abstract. Intelligent Agents have originated a lot of discussion about
what they are, and how they are different from general programs. We de-
scribe in this paper a new paradigm for intelligent agents. This paradigm
helped us deal with failures in an independent and efficient way. We pro-
posed three types of agents to treat the system in a hierarchic way. A new
way to visualize fault tolerant systems (FTS) is proposed, in this paper
with the incorporation of intelligent agents, which as they grow and spe-
cialized create the Multi-Agent System (MAS). The MAS contains a di-
versified range of agents, which depending on the perspective will be spe-
cialized or evolutionary (from our initially proposal) they will be
specialized for the detection and possible solution of errors that appear in
an FTS). The initial structure of the agent is proposed in [1] and it is called
a reflected agent with an internal state and in the Method MeCSMA [2].

1 Introduction

At the moment, the approach using agents for real applications, has
worked with movable agents, which work at the level of the client-server
architecture. However, in systems where the requirements are higher, as in
the field of the architecture of embedded industrial systems, the idea is to
innovate in this area by working with the paradigm of intelligent agents.
Also, it is a good idea in embedded fault tolerant systems, where it is a
new and good strategy for the detection and resolution of errors.

{alanis,ocastillo,mario}@tectijuana.mx

A.A. Garza et al.: Intelligent Agents in Distributed Fault Tolerant Systems, StudFuzz 208,

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
203–213 (2007)

204 Arnulfo Alanis Garza et al.

The main goals of the present research work were the following:
To create a new visualization tool of the application of intelligent
agents, in the fault tolerant systems for embedded systems.
To create a model, that will help the programmers to create profiles in
embedded circuits, according to utility, by means of, Intelligent Agents
The reflected agent with an internal state sets out the general structure of

the recovery Intelligent Agent for Fault tolerant Systems in Distributed
Systems, whit three types of intention agents.

1.1 Where do Agents Come From?

Agents have their origins in four different research areas: robotics,
artificial intelligence, distributed systems, and computer graphics.

Agents working in robotics and artificial intelligence were originally
strongly interrelated. Robots such as SHAKEY were programmed to ex-
hibit autonomous behavior in well-defined environments, and laid the
groundwork for AI planning systems to this day. The first software agent
was probably ELIZA [12], a program which could engage in a conversa-
tion with a user. Another influential program, SHRDLU [13], allowed a
person to have a conversation with a simulated robot.

The notion of multi-agent systems was brought to the fore-front by
Marvin Minsky in his work on the “Society of Mind” [14]. His vision was
that a complex system such as the human mind should be understood as a
collection of relatively simple agents, each of which was a specialist in a
certain narrow domain. Through structures called K-lines, agents would
activate each other whenever their context became relevant.

The work of Minsky showed remarkable vision, but was ahead of its
time since software complexity had not yet reached the level where the ad-
vantages of such structures would have a practical impact.

However, the idea of decomposing a complex system into simple agents
found willing takers in robotics. Frustrated with the complexity of robots
built around general and thus large homogeneous software systems, Rod-
ney Brooks [18] proposed a radically different design. In his view, intelli-
gent and complex behavior would be emergent in the interplay of many
simple behaviors. Each behavior is a simple agent whose activation is de-
cided by a control architecture. Complex general vision systems were re-
placed by simple detectors specialized in particular situations, and actions
were taken based on very simple rules. Brooks showed that using this ap-
proach, one could very easily build robust autonomous robots, which had
not been possible otherwise [9] [10] [11].

Intelligent Agents in Distributed Fault Tolerant Systems 205

1.2 Agents

Let's first deal with the notion of intelligent agents. These are generally de-
fined as "software entities", which assist their users and act on their behalf.
Agents make your life easier, save you time, and simplify the growing
complexity of the world, acting like a personal secretary, assistant, or per-
sonal advisor, who learns what you like and can anticipate what you want
or need. The principle of such intelligence is practically the same of human
intelligence. Through a relation of collaboration-interaction with its user,
the agent is able to learn from himself, from the external world and even
from other agents, and consequently act autonomously from the user, adapt
itself to the multiplicity of experiences and change its behavior according
to them. The possibilities offered for humans, in a world whose complexity
is growing exponentially, are enormous [1][4][5][6].

2 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) systems can be defined as coop-
erative systems where a set of agents act together to solve a given problem.
These agents are often heterogeneous (e.g., in Decision Support System,
the interaction takes place between a human and an artificial problem
solver).

Its metaphor of intelligence is based upon social behavior (as opposed to
the metaphor of individual human behavior in classical AI) and its empha-
sis is on actions and interactions, complementing knowledge representa-
tion and inference methods in classical AI.

This approach is well suited to face and solve large and complex prob-
lems, characterized by physically distributed reasoning, knowledge and
data managing. In DAI, there is no universal definition of agent, but Fer-
ber's definition is quite appropriate for drawing a clear image of an agent:
"An agent is a real or virtual entity, which is emerged in an environment
where it can take some actions, which is able to perceive and represent par-
tially this environment, which is able to communicate with the other agents
and which possesses an autonomous behaviour that is a consequence of its
observations, its knowledge and its interactions with the other agents".

DAI systems are based on different technologies like, e.g., distributed
expert systems, planning systems or blackboard systems. What is now new
in the DAI community is the need for methodology for helping in the de-
velopment and the maintenance of DAI systems. Part of the solution relies
on the use of more abstract formalisms for representing essential DAI

206 Arnulfo Alanis Garza et al.

properties (in fact, in the software engineering community, the same prob-
lem led to the definition of specification languages) [7][8].

3 FIPA (The Foundation of Intelligence Physical Agents)

FIPA specifications represent a collection of standards, which are intended
to promote the interoperation of heterogeneous agents and the services that

The life cycle [9] of specifications details what stages a specification
can attain while it is part of the FIPA standards process. Each specification
is assigned a specification identifier [10] as it enters the FIPA specification
life cycle. The specifications themselves can be found in the Repository

The Foundation of Intelligent Physical Agents (FIPA) is now an official
IEEE Standards Committee.

4 FIPA ACL Message

A FIPA ACL message contains a set of one or more message elements.
Precisely which elements are needed for effective agent communication
will vary according to the situation; the only element that is mandatory in
all ACL messages is the performative, although it is expected that most
ACL messages will also contain sender, receiver and content elements.

If an agent does not recognize or is unable to process one or more of the
elements or element values, it can reply with the appropriate not-
understood message.

Specific implementations are free to include user-defined message ele-
ments other than the FIPA ACL message elements specified in Table 1.
The semantics of these user-defined elements is not defined by FIPA, and
FIPA compliance does not require any particular interpretation of these
elements.

Some elements of the message might be omitted when their value can be
deduced by the context of the conversation. However, FIPA does not spec-
ify any mechanism to handle such conditions, therefore those implementa-
tions that omit some message elements are not guaranteed to interoperate
with each other

The full set of FIPA ACL message elements is shown in Table 1 with-
out regard to their specific encodings in an implementation. FIPA-
approved encodings and element orderings for ACL messages are given in

they can represent.

[11].

Intelligent Agents in Distributed Fault Tolerant Systems 207

other specifications. Each ACL message representation specification con-
tains precise syntax descriptions for ACL message encodings based on
XML, text strings and several other schemes.

A FIPA ACL message corresponds to the abstract element message pay-
load identified in the [15]

Table 1. FIPA ACL Message Elements

Element Category of Elements

performative Type of communicative acts

sender Participant in communication

receiver Participant in communication

reply-to Participant in communication

content Content of message

language Description of Content

encoding Description of Content

ontology Description of Content

protocol Control of conversation

conversation-id Control of conversation

reply-with Control of conversation

in-reply-to Control of conversation

reply-by Control of conversation

208 Arnulfo Alanis Garza et al.

He following terms are used to define the ontology and the abstract syn-
tax of the FIPA ACL message structure:
Frame. This is the mandatory name of this entity, that must be used to
represent each instance of this class.
Ontology. This is the name of the ontology, whose domain of discourse
includes their elements described in the table.
Element. This identifies each component within the frame. The type of
the element is defined relative to a particular encoding. Encoding specifi-
cations for ACL messages are given in their respective specifications.
Description. This is a natural language description of the semantics of
each element. Notes are included to clarify typical usage.
Reserved Values. This is a list of FIPA-defined constants associated with
each element. This list is typically defined in the specification referenced.

All of the FIPA message elements share the frame and ontology shown
in Table 2.

Table 2. FIPA ACL Message Frame and Ontology

Frame FIPA-ACL-Message

Ontology FIPA-ACL

5 Proposed Method

Let DS denote a distributed system made up of a set of Nodes N = { Ni },
where each Ni can be formed by several Devices (De) [Di, z]. On the
other hand, a DS also contains a set of Tasks to execute, T = { Tj }.

Definition 1: N = {Ni}, where i is the number of nodes of the distrib-
uted system.

Definition 2: T = {Tj}, where j is the number of tasks that are executed
in the system.

Definition 3: De = [Di, z], where z is the number of devices that will be
monitored by Ni from these definitions, it can be made the following one:

Definition 4: Let a distributed system DS be pair <N, T>

Intelligent Agents in Distributed Fault Tolerant Systems 209

This is where we equiped this DS with certain characteristics of failure
tolerance.

This is where the use of the DAI paradigm, applied to the Fault Tolerant
System (FTS) as a DS can represent a new approach with the implementa-
tion of Intelligent Agents.

IAFT = {ANi,AT j,AS} will now define the Fault tolerant Agents, that
work a DS.

The Node Agent (ANi) € Ni, whose mission is related to the tolerance to
failures at node level (What works and what not within the node).

The Task Agent (ATj) € ATj, whose mission is related to the tolerance
to failures at task level (like recovering the tasks of the possible errors that
can suffer)

System Agent (AS) € DS, whose mission is the related to the tolerance
to failures at the system level (what tasks must be executed in the system
and on what nodes)

With it a fault tolerant DS is defined as:

Definition 5: A Distributed Fault Tolerant System DFTS is the pair
<DS, IAFT>, DSTF is defined as {DS, IAFT}

6 Control of Conversation

In this section we describe the control of conversation between agents. In
table 3 we show the protocol. In this table 4 we sow the conversation iden-
tifier of the node agent. In table 5 we show the reply of an agent.

Table 3. Protocol

Element Description Reserved Values

Protocol

TCP/IP

Denotes the interaction protocol that the

sending agent is employing with this

ACL message

See [16]

210 Arnulfo Alanis Garza et al.

Table 4. Conversation Identifier of Node Agent (ANi)

Element Description Reserved Values

(ANi).Phase.Detectio

n y (ANi).{Input-

Error (i,j).Error}

(ANi).Phase.Location

y (ANi).Input-

Error(i,j).Error

(ANi).Phase.Isolation

y

(ANi).Device[Di,m].I

ncorrect

(ANi).Phase.Recunfig

uration

(ANi).Phase.Recunfig

uration y ANiTj. Re-

covered

Introduces an ex-

pression (a conversa-

tion identifier) which

is used to identify

the ongoing se-

quence of communi-

cative acts that to-

gether form a

conversation.

Intelligent Agents in Distributed Fault Tolerant Systems 211

Table 5. Reply With

Element Description Reserved

Values

(ANi).State.Suspect

(ANi).{Test[Di k]}

(ANi).{Device[Di,m].

 Incorrect}

(ANi).{Test [Di,l]}

 (ANiS). low y

 (ANi).State.low

(ANi).Actions-

Isolation-Device(m)

ANiTj.A-to Recover y

(ANi).Phase. recovery

(ANi).Phase.Detection

y (ANi).State.Correcto.

Introduces an expres-

sion that will be used

by the responding

agent to identify this

message.

7 Considerations

The agent counts on a AID, which is "intelligent Agents as a new para-
digm of Distributed Fault tolerant Systems for industrial control" to as Ar-
chitecture of Reference fipa/Data minimum of an agent is specified in the
norms of Fipa (, says: Aid- the agent must have a unique name globally).

212 Arnulfo Alanis Garza et al.

The agent contains descriptions of transport in the development of his
documentation, which fulfills the specifications of fipa (Architecture of
Reference fipa/Data minimum of an agent, says: Localizer one or but de-
scriptions of the transport that as well, contains the type of transport by ej.
Protocol), but does not specify the protocol that uses like type of transport,
this in phase of analysis.

It concerns the communication and cooperation between agents, the
document "intelligent Agents as New Paradigm of Distributed Fault toler-
ant Systems for Industrial Control" says to us that the communication be-
tween the agents occurs of ascending or descendent form depending on the
type of agent. A little superficial explanation occurs, without specifying
for example that type of language of communication between agents uses,
or KQML or the Fipa-acl.

8 Conclusions

We described in this paper our approach for building multi-agents system
for achieving fault tolerant control system in industry. The use of the
paradigm of intelligent agents has enabled the profile generation of each of
the possible failures in an embedded industrial system. In our approach,
each of the intelligent agents is able to deal with a failure and stabilize the
system in an independent way, and that the system has a behavior that is
transparent for the use application as well as for the user.

Reference

1. Stuart Russell and Peter Norvig, Artificial Intelligence to Modern Aproach,

Pretence artificial Hall series in intelligence, Chapter Intelligent Agent, pages.

31-52.

2. A.Alanis, Of Architectures for Systems Multi-Agentes, (Master Degree the-

sis in computer sciences), Tijuana Institute of Technology, November, 1996.

3. Michael J. woodridge, Nicholas R. Jennings. (Eds.), Intelligence Agents, Arti-

ficial Lecture Notes in 890 Subseries of Lectures Notes in Computer Science,

Amsterdam, Ecai-94 Workshop on Agent Theories, Architectures, and lan-

guages, The Netherland, Agust 1994 Proceedings, ed. Springer-Verlag, págs.

2-21.

4. P.R. Cohen ET al.?An Open Agent Architecture, working Notes of the AAAI

Spring symp.: Software Agent, AAAI Press, Cambridge, Mass., 1994 págs.

1-8.

5. Bratko I. Prolog for Programming Artificial Intelligence, Reding, Ma. Addi-

son-Wesley, 1986.

Intelligent Agents in Distributed Fault Tolerant Systems 213

6. Or Etzioni, N. Lesh, and R. Segal?Bulding for Softbots UNIX? (preliminary

report). Tech. Report 93-09-01. Univ. of Washington, Seattle, 1993.

7. Elaine Rich, Kevin Knight, Artificial intelligence, SecondEdition, Ed. Mc

Graw-Hill, págs. 476-478.

8. N. Jennings, M. Wooldridge: Intelligent agents: Theory and practice. The

9. E. H. Durfee, V. R. Lesser, D. D. Corkill: Trends in cooperative distributed

problem solving. IEEE Transactions on Knowledge and Data Engineering

KDE-1, 1(March 1989), 63–83.

10. http://www.fipa.org/specifications/lifecycle.html

11. http://www.fipa.org/specifications/identifiers.html

12. http://www.fipa.org/specifications/index.html

13. M. Yokoo, T. Ishida, K. Kuwabara: Distributed constraint satis-faction for

DAI problems. In Proceedings of the 1990 Distributed AI Workshop (Ban-

dara, TX, Oct. 1990).

14. J. Weizenbaum: ELIZA – a computer program for the study of natural lan-

guage communication between man and machine. Communications of the As-

sociation for Computing Machinery 9, 1(Jan. 1965), 36–45.

15. T. Winograd: A procedural model of language understanding. In Computer

Models of Thought and Language, R.Schank and K. Colby, Eds.

W.H.Freeman, New York, 1973, pp. 152–186.

16. FIPA Abstract Architecture Specification. Foundation for Intelligent Physical

Agents, 2000. http://www.fipa.org/specs/fipa00001/

17. FIPA Interaction Protocol Library Specification. Foundation for Intelligent

Physical Agents, 2000. http://www.fipa.org/specs/fipa00025/

Knowledge Engineering Review 10, 2 (1995), 115– [10] Durfee et al. 89.

