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Abstract. We describe in this paper the use of hierarchical genetic algo-
rithms for fuzzy system optimization in intelligent control. In particular, 
we consider the problem of optimizing the number of rules and member-
ship functions using an evolutionary approach. The hierarchical genetic al-
gorithm enables the optimization of the fuzzy system design for a particu-
lar application. We illustrate the approach with the case of intelligent 
control in a medical application. Simulation results for this application 
show that we are able to find an optimal set of rules and membership func-
tions for the fuzzy system. 

1 Introduction 

We describe in this paper the application of a Hierarchical Genetic Algo-
rithm (HGA) for fuzzy system optimization (Man et al. 1999). In particu-
lar, we consider the problem of finding the optimal set of rules and mem-
bership functions for a specific application (Yen and Langari 1999). The 
HGA is used to search for this optimal set of rules and membership func-
tions, according to the data about the problem. We consider, as an illustra-
tion, the case of a fuzzy system for intelligent control. 

Fuzzy systems are capable of handling complex, non-linear and some-
times mathematically intangible dynamic systems using simple solutions 
(Jang et al. 1997). Very often, fuzzy systems may provide a better per-
formance than conventional non-fuzzy approaches with less development 
cost (Procyk and Mamdani 1979). However, to obtain an optimal set of 
fuzzy membership functions and rules is not an easy task. It requires time, 
experience and skills of the designer for the tedious fuzzy tuning exercise. 
In principle, there is no general rule or method for the fuzzy logic set-up, 
although a heuristic and iterative procedure for modifying the membership  
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functions to improve performance has been proposed. Recently, many re-
searchers have considered a number of intelligent schemes for the task of 
tuning the fuzzy system. The noticeable Neural Network (NN) approach 
(Jang and Sun 1995) and the Genetic Algorithm (GA) approach (Homaifar 
and McCormick 1995) to optimize either the membership functions or 
rules, have become a trend for fuzzy logic system development. 

The HGA approach differs from the other techniques in that it has the 
ability to reach an optimal set of membership functions and rules without a 
known fuzzy system topology (Tang et al. 1998). During the optimization 
phase, the membership functions need not be fixed. Throughout the genetic 
operations (Holland 1975), a reduced fuzzy system including the number 
of membership functions and fuzzy rules will be generated (Yoshikawa et 
al. 1996). The HGA approach has a number of advantages: 

1. An optimal and the least number of membership functions and rules are 
obtained

2. No pre-fixed fuzzy structure is necessary, and 
3. Simpler implementing procedures and less cost are involved. 

We consider in this paper the case of automatic anesthesia control in 
human patients for testing the optimized fuzzy controller. We did have, as 
a reference, the best fuzzy controller that was developed for the automatic 
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider 
the optimization of this controller using the HGA approach. After applying 
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9 
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm. 
We did compare the simulation results of the optimized fuzzy controllers 
obtained with the HGA against the best fuzzy controller that was obtained 
previously with expert knowledge, and control is achieved in a similar 
fashion. Since simulation results are similar, and the number of fuzzy rules 
was reduced, we can conclude that the HGA approach is a good alternative 
for designing fuzzy systems. We have to mention that Type-2 fuzzy sys-
tems are considered in this research work, which are more difficult to de-
sign and optimize. 

2 Genetic Algorithms for Optimization 

In this paper, we used a floating-point genetic algorithm (Castillo and 
Melin 2001) to adjust the parameter vector , specifically we used the 
Breeder Genetic Algorithm (BGA). The genetic algorithm is used to 
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optimize the fuzzy system for control that will be described later (Castillo 
and Melin 2003). A BGA can be described by the following equation: 

BGA=(Pg

0
, N, T, , , HC, F, term) (1)

where: Pg

0=initial population, N=the size of the population, T=the trunca-
tion threshold, =the recombination operator, =the mutation operator, 
HC=the hill climbing method, F=the fitness function, term=the termina-
tion criterion. 

The BGA uses a selection scheme called truncation selection.  The %T 
best individuals are selected and mated randomly until the number of off-
spring is equal the size of the population. The offspring generation is equal 
to the size of the population. The offspring generation replaces the parent 
population.  The best individual found so far will remain in the population. 
Self-mating is prohibited (Melin and Castillo 2002). As a recombination 
operator we used “extended intermediate recombination”, defined as: If x
=(xi,...xn) and y y=(y1,...,yn) are the parents, then the successor  z=(z1,...,zn)
is calculated by: 

zi=xi+ i(yi-xi)       i =1,…n (2)

The mutation operator is defined as follows: A variable xi is selected 
with probability pm for mutation.  The BGA normally uses pm = 1/n.  At 
least one variable will be mutated.  A value out of the interval [-rangei,
rangei] is added to the variable. rangei defines the mutation range.  It is 
normally set to (0.1 x  searchintervali).  searchintervali is the domain of 
definition for variable xi.  The new value zi is computed according to

zi=xi±rangei· (3)

The + or – sign is chosen with probability 0.5.  is computed from a dis-

tribution which prefers small values.  This is realized as follows 
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Before mutation we set i=0.  Then each i is mutated to 1 with prob-

ability p =1/16.  Only i=1 contributes to the sum.  On the average there 

will be just one i with value 1, say j . Then  is given by 

j
2 (5)
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The standard BGA mutation operator is able to generate any point in the 
hypercube with center x defined by xi±rangei.  But it generates values 
much more often in the neighborhood of x. In the above standard setting, 
the mutation operator is able to locate the optimal xi up to a precision of 
ramgei·2

-150.
To monitor the convergence rate of the LMS algorithm, we computed a 

short term average of the squared error e2(n) using 

ke
K

mASE

Kn

nk 1

21
)(

(6)

where m=n/K=1,2,….  The averaging interval K may be selected to be 
(approximately) K=10N.  The effect of the choice of the step size parame-
ter  on the convergence rate of LMS algorithm may be observed by moni-
toring the ASE(m).

2.1 Genetic Algorithm for Optimization

The proposed genetic algorithm is as follows: 

1. We use real numbers as a genetic representation of the problem. 
2. We initialize variable i with zero (i=0). 
3. We create an initial random population Pi, in this case (P0). Each indi-

vidual of the population has n dimensions and, each coefficient of the 
fuzzy system corresponds to one dimension.

4. We calculate the normalized fitness of each individual of the population 
using linear scaling with displacement (Melin and Castillo 2002), in the 
following form: 
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5. We normalize the fitness of each individual using: 
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6. We sort the individuals from greater to lower fitness.  
7. We use the truncated selection method, selecting the %T best individu-

als, for example if there are 500 individuals and, then we select 
0.30*500=150 individuals. 
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8. We apply random crossover, to the individuals in the population (the 
150 best ones) with the goal of creating a new population (of 500 indi-
viduals). Crossover with it self is not allowed, and all the individuals 
have to participate. To perform this operation we apply the genetic op-
erator of extended intermediate recombination as follows: 

If x=(x1,...,xn) and y=(y1,...,yn) are the parents, then the successors 
z=(z1,...,zn) are calculated by, zi=xi+ i(yi-xi)  for i=1,...,n where  is a 
scaling factor selected randomly in the interval [-d,1+d].  In intermedi-
ate recombination d=0, and for extended d>0, a good choice is d=0.25,
which is the one that we used. 

9. We apply the mutation genetic operator of BGA. In this case, we select 
an individual with probability pm=1/n (where n represents the working 
dimension, in this case n=25, which is the number of coefficients in the 
membership functions). The mutation operator calculates the new indi-
viduals zi of the population in the following form: zi=xi±rangei we can 
note from this equation that we are actually adding to the original indi-
vidual a value in the interval:  [-rangei,rangei] the range is defined as 
the search interval, which in this case is the domain of variable xi, the 
sign ± is selected randomly with probability of 0.5, and is calculated us-
ing the following formula, 

1,02

1

0

i

m

i

i

i

Common used values in this equation are m=16 y m=20. Before muta-
tion we initiate with i=0, then for each i we mutate to 1 with probabil-
ity p =1/m.

10. Let i=i+1, and continue with step 4. 

3 Evolution of Fuzzy Systems 

Ever since the very first introduction of the fundamental concept of fuzzy 
logic by Zadeh in 1973, its use in engineering disciplines has been widely 
studied. Its main attraction undoubtedly lies in the unique characteristics 
that fuzzy logic systems possess. They are capable of handling complex, 
non-linear dynamic systems using simple solutions. Very often, fuzzy sys-
tems provide a better performance than conventional non-fuzzy approaches 
with less development cost. 

However, to obtain an optimal set of fuzzy membership functions and 
rules is not an easy task. It requires time, experience, and skills of the op-
erator for the tedious fuzzy tuning exercise. In principle, there is no general 
rule or method for the fuzzy logic set-up. Recently, many researchers have 
considered a number of intelligent techniques for the task of tuning the 
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fuzzy set. Here, another innovative scheme is described (Tang et al. 1998). 
This approach has the ability to reach an optimal set of membership func-
tions and rules without a known overall fuzzy set topology. The conceptual 
idea of this approach is to have an automatic and intelligent scheme to tune 
the membership functions and rules, in which the conventional closed loop 
fuzzy control strategy remains unchanged, as indicated in Figure 1. 

Fig. 1 Genetic algorithm for a fuzzy control system. 

In this case, the chromosome of a particular system is shown in Figure 
2. The chromosome consists of two types of genes, the control genes and 
parameter genes. The control genes, in the form of bits, determine the 
membership function activation, whereas the parameter genes are in the 
form of real numbers to represent the membership functions. 

Fig. 2 Chromosome structure for the fuzzy system. 

To obtain a complete design for the fuzzy control system, an appropriate 
set of fuzzy rules is required to ensure system performance. At this point it 
should be stressed that the introduction of the control genes is done to gov-
ern the number of fuzzy subsets in the system. Once the formulation of the 
chromosome has been set for the fuzzy membership functions and rules, 
the genetic operation cycle can be performed. This cycle of operation for 
the fuzzy control system optimization using a genetic algorithm is illus-
trated in Figure 3. There are two population pools, one for storing the  
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membership chromosomes and the other for storing the fuzzy rule chromo-
somes. We can see this in Figure 3 as the membership population and 
fuzzy rule population, respectively. Considering that there are various 
types of gene structure, a number of different genetic operations can be 
used. For the crossover operation, a one-point crossover is applied sepa-
rately for both the control and parameter genes of the membership chro-
mosomes within certain operation rates. There is no crossover operation 
for fuzzy rule chromosomes since only one suitable rule set can be as-
sisted.

Fig. 3. Genetic cycle for fuzzy system optimization. 

Bit mutation is applied for the control genes of the membership chromo-
some. Each bit of the control gene is flipped if a probability test is satisfied 
(a randomly generated number is smaller than a predefined rate). As for 
the parameter genes, which are real number represented, random mutation 
is applied. 

The fitness function can be defined in this case as follows: 

fi=  y (k) - r (k) (7)

where  indicates the sum for all the data points in the training set, and 
y(k) represents the real output of the fuzzy system and r(k) is the reference 
output. This fitness value measures how well the fuzzy system is approxi-
mating the real data of the problem. 
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4 Type-2 Fuzzy Logic 

The concept of a type-2 fuzzy set, was introduced by Zadeh (Melin and 
Castillo 2002) as an extension of the concept of an ordinary fuzzy set 
(henceforth called a “type-1 fuzzy set”). A type-2 fuzzy set is characterized 
by a fuzzy membership function, i.e., the membership grade for each ele-
ment of this set is a fuzzy set in [0,1], unlike a type-1 set (Castillo and 
Melin 2001, Melin and Castillo 2002) where the membership grade is a 
crisp number in [0,1]. Such sets can be used in situations where there is 
uncertainty about the membership grades themselves, e.g., an uncertainty 
in the shape of the membership function or in some of its parameters. Con-
sider the transition from ordinary sets to fuzzy sets (Castillo and Melin 
2001). When we cannot determine the membership of an element in a set 
as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation is so 
fuzzy that we have trouble determining the membership grade even as a 
crisp number in [0,1], we use fuzzy sets of type-2. 

Example: Consider the case of a fuzzy set characterized by a Gaussian 
membership function with mean m and a standard deviation that can take 
values in [ 1, 2], i.e., 

(x)=exp {– ½[(x – m)/ ]2 };  [ 1, 2] (8)

Corresponding to each value of , we will get a different membership 
curve (Figure 4). So, the membership grade of any particular x (except 
x=m) can take any of a number of possible values depending upon the 
value of , i.e., the membership grade is not a crisp number, it is a fuzzy 
set. Figure 4 shows the domain of the fuzzy set associated with x=0.7. 

The basics of fuzzy logic do not change from type-1 to type-2 
fuzzy sets, and in general, will not change for any type-n (Castillo and 
Melin 2003). A higher-type number just indicates a higher “degree of 
fuzziness”. Since a higher type changes the nature of the membership func-
tions, the operations that depend on the membership functions change; 
however, the basic principles of fuzzy logic are independent of the nature 
of membership functions and hence, do not change. In Figure 5 we show 
the general structure of a type-2 fuzzy system. We assume that both ante-
cedent and consequent sets are type-2; however, this need not necessarily 
be the case in practice.

The structure of the type-2 fuzzy rules is the same as for the type-1 case 
because the distinction between type-2 and type-1 is associated with the 
nature of the membership functions. Hence, the only difference is that now 
some or all the sets involved in the rules are of type-2. In a type-1 fuzzy 
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system, where the output sets are type-1 fuzzy sets, we perform defuzzifi-
cation in order to get a number, which is in some sense a crisp (type-0) 
representative of the combined output sets. In the type-2 case, the output 
sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the out-
put of the fuzzy system, the extended defuzzification operation in the type-
2 case gives a type-1 fuzzy set at the output. Since this operation takes us 
from the type-2 output sets of the fuzzy system to a type-1 set, we can call 
this operation “type reduction” and call the type-1 fuzzy set so obtained a 
“type-reduced set”. The type-reduced fuzzy set may then be defuzzified to 
obtain a single crisp number; however, in many applications, the type-
reduced set may be more important than a single crisp number. Type-2 sets 
can be used to convey the uncertainties in membership functions of type-1 
fuzzy sets, due to the dependence of the membership functions on avail-
able linguistic and numerical information.
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Fig. 4. A type-2 fuzzy set representing a type-1 set with uncertain deviation. 

Fig. 5. Structure of a type-2 fuzzy system. 
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5 Application to Intelligent Control 

We consider the case of controlling the anesthesia given to a patient as the 
problem for finding the optimal fuzzy system for control (Lozano 2003). 
The complete implementation was done in the MATLAB programming 
language. The fuzzy systems were build automatically by using the Fuzzy 
Logic Toolbox, and genetic algorithm was coded directly in the MATLAB 
language. The fuzzy systems for control are the individuals used in the ge-
netic algorithm, and these are evaluated by comparing them to the ideal 
control given by the experts. In other words, we compare the performance 
of the fuzzy systems that are generated by the genetic algorithm, against 
the ideal control system given by the experts in this application.

5.1 Anesthesia Control Using Fuzzy Logic 

The main task of the anesthesist, during and operation, is to control anes-
thesia concentration. In any case, anesthesia concentration can’t be meas-
ured directly. For this reason, the anesthesist uses indirect information, like 
the heartbeat, pressure, and motor activity. The anesthesia concentration is 
controlled using a medicine, which can be given by a shot or by a mix of 
gases. We consider here the use of isoflurance, which is usually given in a 
concentration of 0 to 2% with oxygen. In Figure 6 we show a block dia-
gram of the controller. 

Fig. 6. Architecture of the fuzzy control system. 

Fu
zz

if
ic

at
io

n

In
fe

re
nc

e
  D

ef
uz

zi
fi

ca
-

tio
n

C
on

tr
ol

le
r

Pa
tie

nt

dt

If
P =

small
And

I=big

Set of values
for the concentra-
tion of iso-
flurance



Evolutionary Computing for Topology Optimization      173 

The air that is exhaled by the patient contains a specific concentration of 
isoflurance, and it is re-circulated to the patient. As consequence, we can 
measure isoflurance concentration on the inhaled and exhaled air by the 
patient, to estimate isoflurance concentration on the patient’s blood. From 
the control engineering point of view, the task by the anesthesist is to 
maintain anesthesia concentration between the high level W (threshold to 
wake up) and the low level E (threshold to success). These levels are diffi-
cult to be determine in a changing environment and also are dependent on 
the patient’s condition. For this reason, it is important to automate this an-
esthesia control, to perform this task more efficiently and accurately, and 
also to free the anesthesist from this time consuming job. The anesthesist 
can then concentrate in doing other task during operation of a patient. 

The first automated system for anesthesia control was developed using a 
PID controller in the 60’s. However, this system was not very succesful 
due to the non-linear nature of the problem of anesthesia control. After this 
first attempt, adaptive control was proposed to automate anesthesia con-
trol, but robustness was the problem in this case. For these reasons, fuzzy 
logic was proposed for solving this problem.

5.2 Characteristics of the Fuzzy Controller 

In this section we describe the main characteristics of the fuzzy controller 
for anesthesia control. We will define input and output variable of the 
fuzzy system. Also, the fuzzy rules of fuzzy controller previously designed 
will be described. 

The fuzzy system is defined as follows: 

1. Input variables: Blood pressure and Error 
2. Output variable: Isoflurance concentration 
3. Nine fuzzy if-then rules of the optimized system, which is the base for 

comparison
4. 12 fuzzy if-then rules of an initial system to begin the optimization cycle 

of the genetic algorithm. 
The linguistic values used in the fuzzy rules are the following: 

PB = Positive Big 
PS = Positive Small 
ZERO = zero 
NB =Negative Big 
NS = Negative Small 
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We show below a sample set of fuzzy rules that are used in the fuzzy in-
ference system that is represented in the genetic algorithm for optimiza-
tion.

if Blood pressure is NB and error is NB  then conc_isoflurance is PS 
if Blood pressures is PS  then conc_isoflurance is NS 
if Blood pressure is NB  then conc_isoflurance is PB 
if Blood pressure is PB  then conc_isoflurance is NB 
if Blood pressure is ZERO and error is ZERO  then conc_isoflurance is 

ZERO
if Blood pressure is ZERO and error is PS  then conc_isoflurance is NS 
if Blood pressure is ZERO and error is NS  then conc_isoflurance is PS 
if error is NB  then conc_isoflurance is PB 
if error is PB  then conc_isoflurance is NB 
if error is PS  then conc_isoflurance is NS 
if Blood pressure is NS and error is ZERO  then conc_isoflurance is NB 
if Blood pressure is PS and error is ZERO  then conc_isoflurance is PS. 

5.3 Genetic Algorithm Specification 

The general characteristics of the genetic algorithm that was used are the 
following:
NIND = 40; % Number of individuals in each subpopulation. 
MAXGEN = 300; % Maximum number of generations allowed. 
GGAP = .6; %"Generational gap", which is the percentage from the com-
plete population of new individuals generated in each generation. 
PRECI = 120; % Precision of binary representations. 
SelCh = select('rws', Chrom, FitnV, GGAP);  % Roulette wheel method 
for selecting the indivuals participating in the genetic operations. 

nation method for the selected individuals. 
ObjV = FuncionObjDifuso120_555(Chrom, sdifuso); Objective function 
is given by the error between the performance of the ideal control system 
given by the experts and the fuzzy control system given by the genetic al-
gorithm.

5.4 Representation of the Chromosome 

In Table 1 we show the chromosome representation, which has 120 binary 
positions. These positions are divided in two parts, the first one indicates 
the number of rules of the fuzzy inference system, and the second one is 
divided again into fuzzy rules to indicate which membership functions are 
active or inactive for the corresponding rule. 

SelCh = recombin('xovmp',SelCh,0.7); % Multi-point crossover as recombi- 
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Table 1. Binary Chromosome Representation.

Bit
assigned

Representation

1 a 12 Which rule is active or inactive 
13 a 21 Membership functions active or inac-

tive of rule 1 
22 a 30 Membership functions active or inac-

tive of rule 2 
... Membership functions active or inac-

tive of rule... 
112 a 120 Membership functions active or inac-

tive of rule 12 

6 Simulation Results 

We describe in this section the simulation results that were achieved using 
the hierarchical genetic algorithm for the optimization of the fuzzy control 
system, for the case of anesthesia control. The genetic algorithm is able to 
evolve the topology of the fuzzy system for the particular application. We 
used 300 generations of 40 individuals each to achieve the minimum error. 
We show in Figure 7 the final results of the genetic algorithm, where the 
error has been minimized. This is the case in which only nine fuzzy rules 
are needed for the fuzzy controller. The value of the minimum error 
achieved with this particular fuzzy logic controller was of 0.0064064, 
which is considered a small number in this application. 

Fig. 7. Plot of the error after 300 generations of the HGA. 
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In Figure 8 we show the simulation results of the fuzzy logic controller 

produced by the genetic algorithm after evolution. We used a sinusoidal 

input signal with unit amplitude and a frequency of 2 radians/second, with 

a transfer function of [1/(0.5s +1)]. In this figure we can appreciate the 

comparison of the outputs of both the ideal controller (1) and the fuzzy 

controller optimized by the genetic algorithm (2). From this figure it is 

clear that both controllers are very similar and as a consequence we can 

conclude that the genetic algorithm was able to optimize the performance 

of the fuzzy logic controller. We can also appreciate this fact more clearly 

in Figure 9, where we have amplified the simulation results from Figure 8 

for a better view.

Fig. 8. Comparison between outputs of the ideal controller (1) and the fuzzy con-
troller produced with the HGA (2). 

Fig. 9. Zoom in of figure 8 to view in more detail the difference between the con-
trollers.
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Finally, we show in Figure 10 the block diagram of the implementation of both 
controllers in Simulink of MATLAB. With this implementation we are able to 
simulate both controllers and compare their performances. 
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Fig. 10. Implementation in Simulink of MATLAB of both controllers for com-
parison of their performance. 

7 Conclusions 

We consider in this paper the case of automatic anesthesia control in hu-
man patients for testing the optimized fuzzy controller. We did have, as a 
reference, the best fuzzy controller that was developed for the automatic 
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider 
the optimization of this controller using the HGA approach. After applying 
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9 
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm. 
We did compare the simulation results of the optimized fuzzy controllers 
obtained with the HGA against the best fuzzy controller that was obtained 
previously with expert knowledge, and control is achieved in a similar 
fashion.
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