
Evolutionary Computing for Topology

Optimization of Type-2 Fuzzy Controllers

Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

Abstract. We describe in this paper the use of hierarchical genetic algo-
rithms for fuzzy system optimization in intelligent control. In particular,
we consider the problem of optimizing the number of rules and member-
ship functions using an evolutionary approach. The hierarchical genetic al-
gorithm enables the optimization of the fuzzy system design for a particu-
lar application. We illustrate the approach with the case of intelligent
control in a medical application. Simulation results for this application
show that we are able to find an optimal set of rules and membership func-
tions for the fuzzy system.

1 Introduction

We describe in this paper the application of a Hierarchical Genetic Algo-
rithm (HGA) for fuzzy system optimization (Man et al. 1999). In particu-
lar, we consider the problem of finding the optimal set of rules and mem-
bership functions for a specific application (Yen and Langari 1999). The
HGA is used to search for this optimal set of rules and membership func-
tions, according to the data about the problem. We consider, as an illustra-
tion, the case of a fuzzy system for intelligent control.

Fuzzy systems are capable of handling complex, non-linear and some-
times mathematically intangible dynamic systems using simple solutions
(Jang et al. 1997). Very often, fuzzy systems may provide a better per-
formance than conventional non-fuzzy approaches with less development
cost (Procyk and Mamdani 1979). However, to obtain an optimal set of
fuzzy membership functions and rules is not an easy task. It requires time,
experience and skills of the designer for the tedious fuzzy tuning exercise.
In principle, there is no general rule or method for the fuzzy logic set-up,
although a heuristic and iterative procedure for modifying the membership

O. Castillo et al.: Evolutionary Computing for Topology Optimization of Type-2 Fuzzy Con-

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

Tijuana, Mexico
Department of Computer Science, Tijuana Institute of Technology,

trollers, StudFuzz 208, 163–178 (2006)

164 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

functions to improve performance has been proposed. Recently, many re-
searchers have considered a number of intelligent schemes for the task of
tuning the fuzzy system. The noticeable Neural Network (NN) approach
(Jang and Sun 1995) and the Genetic Algorithm (GA) approach (Homaifar
and McCormick 1995) to optimize either the membership functions or
rules, have become a trend for fuzzy logic system development.

The HGA approach differs from the other techniques in that it has the
ability to reach an optimal set of membership functions and rules without a
known fuzzy system topology (Tang et al. 1998). During the optimization
phase, the membership functions need not be fixed. Throughout the genetic
operations (Holland 1975), a reduced fuzzy system including the number
of membership functions and fuzzy rules will be generated (Yoshikawa et
al. 1996). The HGA approach has a number of advantages:

1. An optimal and the least number of membership functions and rules are
obtained

2. No pre-fixed fuzzy structure is necessary, and
3. Simpler implementing procedures and less cost are involved.

We consider in this paper the case of automatic anesthesia control in
human patients for testing the optimized fuzzy controller. We did have, as
a reference, the best fuzzy controller that was developed for the automatic
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider
the optimization of this controller using the HGA approach. After applying
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm.
We did compare the simulation results of the optimized fuzzy controllers
obtained with the HGA against the best fuzzy controller that was obtained
previously with expert knowledge, and control is achieved in a similar
fashion. Since simulation results are similar, and the number of fuzzy rules
was reduced, we can conclude that the HGA approach is a good alternative
for designing fuzzy systems. We have to mention that Type-2 fuzzy sys-
tems are considered in this research work, which are more difficult to de-
sign and optimize.

2 Genetic Algorithms for Optimization

In this paper, we used a floating-point genetic algorithm (Castillo and
Melin 2001) to adjust the parameter vector , specifically we used the
Breeder Genetic Algorithm (BGA). The genetic algorithm is used to

Evolutionary Computing for Topology Optimization 165

optimize the fuzzy system for control that will be described later (Castillo
and Melin 2003). A BGA can be described by the following equation:

BGA=(Pg

0
, N, T, , , HC, F, term) (1)

where: Pg

0=initial population, N=the size of the population, T=the trunca-
tion threshold, =the recombination operator, =the mutation operator,
HC=the hill climbing method, F=the fitness function, term=the termina-
tion criterion.

The BGA uses a selection scheme called truncation selection. The %T
best individuals are selected and mated randomly until the number of off-
spring is equal the size of the population. The offspring generation is equal
to the size of the population. The offspring generation replaces the parent
population. The best individual found so far will remain in the population.
Self-mating is prohibited (Melin and Castillo 2002). As a recombination
operator we used “extended intermediate recombination”, defined as: If x
=(xi,...xn) and y y=(y1,...,yn) are the parents, then the successor z=(z1,...,zn)
is calculated by:

zi=xi+ i(yi-xi) i =1,…n (2)

The mutation operator is defined as follows: A variable xi is selected
with probability pm for mutation. The BGA normally uses pm = 1/n. At
least one variable will be mutated. A value out of the interval [-rangei,
rangei] is added to the variable. rangei defines the mutation range. It is
normally set to (0.1 x searchintervali). searchintervali is the domain of
definition for variable xi. The new value zi is computed according to

zi=xi±rangei· (3)

The + or – sign is chosen with probability 0.5. is computed from a dis-

tribution which prefers small values. This is realized as follows

1,02

15

0

i

i

i

i

(4)

Before mutation we set i=0. Then each i is mutated to 1 with prob-

ability p =1/16. Only i=1 contributes to the sum. On the average there

will be just one i with value 1, say j . Then is given by

j
2 (5)

166 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

The standard BGA mutation operator is able to generate any point in the
hypercube with center x defined by xi±rangei. But it generates values
much more often in the neighborhood of x. In the above standard setting,
the mutation operator is able to locate the optimal xi up to a precision of
ramgei·2

-150.
To monitor the convergence rate of the LMS algorithm, we computed a

short term average of the squared error e2(n) using

ke
K

mASE

Kn

nk 1

21
)(

(6)

where m=n/K=1,2,…. The averaging interval K may be selected to be
(approximately) K=10N. The effect of the choice of the step size parame-
ter on the convergence rate of LMS algorithm may be observed by moni-
toring the ASE(m).

2.1 Genetic Algorithm for Optimization

The proposed genetic algorithm is as follows:

1. We use real numbers as a genetic representation of the problem.
2. We initialize variable i with zero (i=0).
3. We create an initial random population Pi, in this case (P0). Each indi-

vidual of the population has n dimensions and, each coefficient of the
fuzzy system corresponds to one dimension.

4. We calculate the normalized fitness of each individual of the population
using linear scaling with displacement (Melin and Castillo 2002), in the
following form:

iff
N

ff
i

i
iii

)(min
1'

5. We normalize the fitness of each individual using:

i

f

f
F

N

i

i

i

i

1

'

'

6. We sort the individuals from greater to lower fitness.
7. We use the truncated selection method, selecting the %T best individu-

als, for example if there are 500 individuals and, then we select
0.30*500=150 individuals.

Evolutionary Computing for Topology Optimization 167

8. We apply random crossover, to the individuals in the population (the
150 best ones) with the goal of creating a new population (of 500 indi-
viduals). Crossover with it self is not allowed, and all the individuals
have to participate. To perform this operation we apply the genetic op-
erator of extended intermediate recombination as follows:

If x=(x1,...,xn) and y=(y1,...,yn) are the parents, then the successors
z=(z1,...,zn) are calculated by, zi=xi+ i(yi-xi) for i=1,...,n where is a
scaling factor selected randomly in the interval [-d,1+d]. In intermedi-
ate recombination d=0, and for extended d>0, a good choice is d=0.25,
which is the one that we used.

9. We apply the mutation genetic operator of BGA. In this case, we select
an individual with probability pm=1/n (where n represents the working
dimension, in this case n=25, which is the number of coefficients in the
membership functions). The mutation operator calculates the new indi-
viduals zi of the population in the following form: zi=xi±rangei we can
note from this equation that we are actually adding to the original indi-
vidual a value in the interval: [-rangei,rangei] the range is defined as
the search interval, which in this case is the domain of variable xi, the
sign ± is selected randomly with probability of 0.5, and is calculated us-
ing the following formula,

1,02

1

0

i

m

i

i

i

Common used values in this equation are m=16 y m=20. Before muta-
tion we initiate with i=0, then for each i we mutate to 1 with probabil-
ity p =1/m.

10. Let i=i+1, and continue with step 4.

3 Evolution of Fuzzy Systems

Ever since the very first introduction of the fundamental concept of fuzzy
logic by Zadeh in 1973, its use in engineering disciplines has been widely
studied. Its main attraction undoubtedly lies in the unique characteristics
that fuzzy logic systems possess. They are capable of handling complex,
non-linear dynamic systems using simple solutions. Very often, fuzzy sys-
tems provide a better performance than conventional non-fuzzy approaches
with less development cost.

However, to obtain an optimal set of fuzzy membership functions and
rules is not an easy task. It requires time, experience, and skills of the op-
erator for the tedious fuzzy tuning exercise. In principle, there is no general
rule or method for the fuzzy logic set-up. Recently, many researchers have
considered a number of intelligent techniques for the task of tuning the

168 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

fuzzy set. Here, another innovative scheme is described (Tang et al. 1998).
This approach has the ability to reach an optimal set of membership func-
tions and rules without a known overall fuzzy set topology. The conceptual
idea of this approach is to have an automatic and intelligent scheme to tune
the membership functions and rules, in which the conventional closed loop
fuzzy control strategy remains unchanged, as indicated in Figure 1.

Fig. 1 Genetic algorithm for a fuzzy control system.

In this case, the chromosome of a particular system is shown in Figure
2. The chromosome consists of two types of genes, the control genes and
parameter genes. The control genes, in the form of bits, determine the
membership function activation, whereas the parameter genes are in the
form of real numbers to represent the membership functions.

Fig. 2 Chromosome structure for the fuzzy system.

To obtain a complete design for the fuzzy control system, an appropriate
set of fuzzy rules is required to ensure system performance. At this point it
should be stressed that the introduction of the control genes is done to gov-
ern the number of fuzzy subsets in the system. Once the formulation of the
chromosome has been set for the fuzzy membership functions and rules,
the genetic operation cycle can be performed. This cycle of operation for
the fuzzy control system optimization using a genetic algorithm is illus-
trated in Figure 3. There are two population pools, one for storing the

Evolutionary Computing for Topology Optimization 169

membership chromosomes and the other for storing the fuzzy rule chromo-
somes. We can see this in Figure 3 as the membership population and
fuzzy rule population, respectively. Considering that there are various
types of gene structure, a number of different genetic operations can be
used. For the crossover operation, a one-point crossover is applied sepa-
rately for both the control and parameter genes of the membership chro-
mosomes within certain operation rates. There is no crossover operation
for fuzzy rule chromosomes since only one suitable rule set can be as-
sisted.

Fig. 3. Genetic cycle for fuzzy system optimization.

Bit mutation is applied for the control genes of the membership chromo-
some. Each bit of the control gene is flipped if a probability test is satisfied
(a randomly generated number is smaller than a predefined rate). As for
the parameter genes, which are real number represented, random mutation
is applied.

The fitness function can be defined in this case as follows:

fi= y (k) - r (k) (7)

where indicates the sum for all the data points in the training set, and
y(k) represents the real output of the fuzzy system and r(k) is the reference
output. This fitness value measures how well the fuzzy system is approxi-
mating the real data of the problem.

170 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

4 Type-2 Fuzzy Logic

The concept of a type-2 fuzzy set, was introduced by Zadeh (Melin and
Castillo 2002) as an extension of the concept of an ordinary fuzzy set
(henceforth called a “type-1 fuzzy set”). A type-2 fuzzy set is characterized
by a fuzzy membership function, i.e., the membership grade for each ele-
ment of this set is a fuzzy set in [0,1], unlike a type-1 set (Castillo and
Melin 2001, Melin and Castillo 2002) where the membership grade is a
crisp number in [0,1]. Such sets can be used in situations where there is
uncertainty about the membership grades themselves, e.g., an uncertainty
in the shape of the membership function or in some of its parameters. Con-
sider the transition from ordinary sets to fuzzy sets (Castillo and Melin
2001). When we cannot determine the membership of an element in a set
as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation is so
fuzzy that we have trouble determining the membership grade even as a
crisp number in [0,1], we use fuzzy sets of type-2.

Example: Consider the case of a fuzzy set characterized by a Gaussian
membership function with mean m and a standard deviation that can take
values in [1, 2], i.e.,

(x)=exp {– ½[(x – m)/]2 }; [1, 2] (8)

Corresponding to each value of , we will get a different membership
curve (Figure 4). So, the membership grade of any particular x (except
x=m) can take any of a number of possible values depending upon the
value of , i.e., the membership grade is not a crisp number, it is a fuzzy
set. Figure 4 shows the domain of the fuzzy set associated with x=0.7.

The basics of fuzzy logic do not change from type-1 to type-2
fuzzy sets, and in general, will not change for any type-n (Castillo and
Melin 2003). A higher-type number just indicates a higher “degree of
fuzziness”. Since a higher type changes the nature of the membership func-
tions, the operations that depend on the membership functions change;
however, the basic principles of fuzzy logic are independent of the nature
of membership functions and hence, do not change. In Figure 5 we show
the general structure of a type-2 fuzzy system. We assume that both ante-
cedent and consequent sets are type-2; however, this need not necessarily
be the case in practice.

The structure of the type-2 fuzzy rules is the same as for the type-1 case
because the distinction between type-2 and type-1 is associated with the
nature of the membership functions. Hence, the only difference is that now
some or all the sets involved in the rules are of type-2. In a type-1 fuzzy

Evolutionary Computing for Topology Optimization 171

system, where the output sets are type-1 fuzzy sets, we perform defuzzifi-
cation in order to get a number, which is in some sense a crisp (type-0)
representative of the combined output sets. In the type-2 case, the output
sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the out-
put of the fuzzy system, the extended defuzzification operation in the type-
2 case gives a type-1 fuzzy set at the output. Since this operation takes us
from the type-2 output sets of the fuzzy system to a type-1 set, we can call
this operation “type reduction” and call the type-1 fuzzy set so obtained a
“type-reduced set”. The type-reduced fuzzy set may then be defuzzified to
obtain a single crisp number; however, in many applications, the type-
reduced set may be more important than a single crisp number. Type-2 sets
can be used to convey the uncertainties in membership functions of type-1
fuzzy sets, due to the dependence of the membership functions on avail-
able linguistic and numerical information.

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1
G au s s i an Ty p e - 2

M
e

m
b

e
r
s
h

ip
 G

r
a
d

e
s

Fig. 4. A type-2 fuzzy set representing a type-1 set with uncertain deviation.

Fig. 5. Structure of a type-2 fuzzy system.

172 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

5 Application to Intelligent Control

We consider the case of controlling the anesthesia given to a patient as the
problem for finding the optimal fuzzy system for control (Lozano 2003).
The complete implementation was done in the MATLAB programming
language. The fuzzy systems were build automatically by using the Fuzzy
Logic Toolbox, and genetic algorithm was coded directly in the MATLAB
language. The fuzzy systems for control are the individuals used in the ge-
netic algorithm, and these are evaluated by comparing them to the ideal
control given by the experts. In other words, we compare the performance
of the fuzzy systems that are generated by the genetic algorithm, against
the ideal control system given by the experts in this application.

5.1 Anesthesia Control Using Fuzzy Logic

The main task of the anesthesist, during and operation, is to control anes-
thesia concentration. In any case, anesthesia concentration can’t be meas-
ured directly. For this reason, the anesthesist uses indirect information, like
the heartbeat, pressure, and motor activity. The anesthesia concentration is
controlled using a medicine, which can be given by a shot or by a mix of
gases. We consider here the use of isoflurance, which is usually given in a
concentration of 0 to 2% with oxygen. In Figure 6 we show a block dia-
gram of the controller.

Fig. 6. Architecture of the fuzzy control system.

Fu
zz

if
ic

at
io

n

In
fe

re
nc

e
 D

ef
uz

zi
fi

ca
-

tio
n

C
on

tr
ol

le
r

Pa
tie

nt

dt

If
P =

small
And

I=big

Set of values
for the concentra-
tion of iso-
flurance

Evolutionary Computing for Topology Optimization 173

The air that is exhaled by the patient contains a specific concentration of
isoflurance, and it is re-circulated to the patient. As consequence, we can
measure isoflurance concentration on the inhaled and exhaled air by the
patient, to estimate isoflurance concentration on the patient’s blood. From
the control engineering point of view, the task by the anesthesist is to
maintain anesthesia concentration between the high level W (threshold to
wake up) and the low level E (threshold to success). These levels are diffi-
cult to be determine in a changing environment and also are dependent on
the patient’s condition. For this reason, it is important to automate this an-
esthesia control, to perform this task more efficiently and accurately, and
also to free the anesthesist from this time consuming job. The anesthesist
can then concentrate in doing other task during operation of a patient.

The first automated system for anesthesia control was developed using a
PID controller in the 60’s. However, this system was not very succesful
due to the non-linear nature of the problem of anesthesia control. After this
first attempt, adaptive control was proposed to automate anesthesia con-
trol, but robustness was the problem in this case. For these reasons, fuzzy
logic was proposed for solving this problem.

5.2 Characteristics of the Fuzzy Controller

In this section we describe the main characteristics of the fuzzy controller
for anesthesia control. We will define input and output variable of the
fuzzy system. Also, the fuzzy rules of fuzzy controller previously designed
will be described.

The fuzzy system is defined as follows:

1. Input variables: Blood pressure and Error
2. Output variable: Isoflurance concentration
3. Nine fuzzy if-then rules of the optimized system, which is the base for

comparison
4. 12 fuzzy if-then rules of an initial system to begin the optimization cycle

of the genetic algorithm.
The linguistic values used in the fuzzy rules are the following:

PB = Positive Big
PS = Positive Small
ZERO = zero
NB =Negative Big
NS = Negative Small

174 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

We show below a sample set of fuzzy rules that are used in the fuzzy in-
ference system that is represented in the genetic algorithm for optimiza-
tion.

if Blood pressure is NB and error is NB then conc_isoflurance is PS
if Blood pressures is PS then conc_isoflurance is NS
if Blood pressure is NB then conc_isoflurance is PB
if Blood pressure is PB then conc_isoflurance is NB
if Blood pressure is ZERO and error is ZERO then conc_isoflurance is

ZERO
if Blood pressure is ZERO and error is PS then conc_isoflurance is NS
if Blood pressure is ZERO and error is NS then conc_isoflurance is PS
if error is NB then conc_isoflurance is PB
if error is PB then conc_isoflurance is NB
if error is PS then conc_isoflurance is NS
if Blood pressure is NS and error is ZERO then conc_isoflurance is NB
if Blood pressure is PS and error is ZERO then conc_isoflurance is PS.

5.3 Genetic Algorithm Specification

The general characteristics of the genetic algorithm that was used are the
following:
NIND = 40; % Number of individuals in each subpopulation.
MAXGEN = 300; % Maximum number of generations allowed.
GGAP = .6; %"Generational gap", which is the percentage from the com-
plete population of new individuals generated in each generation.
PRECI = 120; % Precision of binary representations.
SelCh = select('rws', Chrom, FitnV, GGAP); % Roulette wheel method
for selecting the indivuals participating in the genetic operations.

nation method for the selected individuals.
ObjV = FuncionObjDifuso120_555(Chrom, sdifuso); Objective function
is given by the error between the performance of the ideal control system
given by the experts and the fuzzy control system given by the genetic al-
gorithm.

5.4 Representation of the Chromosome

In Table 1 we show the chromosome representation, which has 120 binary
positions. These positions are divided in two parts, the first one indicates
the number of rules of the fuzzy inference system, and the second one is
divided again into fuzzy rules to indicate which membership functions are
active or inactive for the corresponding rule.

SelCh = recombin('xovmp',SelCh,0.7); % Multi-point crossover as recombi-

Evolutionary Computing for Topology Optimization 175

Table 1. Binary Chromosome Representation.

Bit
assigned

Representation

1 a 12 Which rule is active or inactive
13 a 21 Membership functions active or inac-

tive of rule 1
22 a 30 Membership functions active or inac-

tive of rule 2
... Membership functions active or inac-

tive of rule...
112 a 120 Membership functions active or inac-

tive of rule 12

6 Simulation Results

We describe in this section the simulation results that were achieved using
the hierarchical genetic algorithm for the optimization of the fuzzy control
system, for the case of anesthesia control. The genetic algorithm is able to
evolve the topology of the fuzzy system for the particular application. We
used 300 generations of 40 individuals each to achieve the minimum error.
We show in Figure 7 the final results of the genetic algorithm, where the
error has been minimized. This is the case in which only nine fuzzy rules
are needed for the fuzzy controller. The value of the minimum error
achieved with this particular fuzzy logic controller was of 0.0064064,
which is considered a small number in this application.

Fig. 7. Plot of the error after 300 generations of the HGA.

176 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

In Figure 8 we show the simulation results of the fuzzy logic controller

produced by the genetic algorithm after evolution. We used a sinusoidal

input signal with unit amplitude and a frequency of 2 radians/second, with

a transfer function of [1/(0.5s +1)]. In this figure we can appreciate the

comparison of the outputs of both the ideal controller (1) and the fuzzy

controller optimized by the genetic algorithm (2). From this figure it is

clear that both controllers are very similar and as a consequence we can

conclude that the genetic algorithm was able to optimize the performance

of the fuzzy logic controller. We can also appreciate this fact more clearly

in Figure 9, where we have amplified the simulation results from Figure 8

for a better view.

Fig. 8. Comparison between outputs of the ideal controller (1) and the fuzzy con-
troller produced with the HGA (2).

Fig. 9. Zoom in of figure 8 to view in more detail the difference between the con-
trollers.

Evolutionary Computing for Topology Optimization 177

Finally, we show in Figure 10 the block diagram of the implementation of both
controllers in Simulink of MATLAB. With this implementation we are able to
simulate both controllers and compare their performances.

suma2

suma

gráfica de cambio

 de error de

 anestesia9

gráfica de cambio

 de error de

 anestesia12

grafica

error

anestesia

du/dt

error

anestesia9

du/dt

error

anestesia

cambio 1

cambio

anestesia9 y

señal de entrada1

anestesia y

señal de entrada

anestesia

anestesia9

s-entrada

anestesia

Mux

Mux

Mux

Mux

Mux

Generador

de señal

1

0.5s+1

Fcn de Transferecnia

(con estado inicial)2
Controlador Difuso

anestesia9

Controlador Difuso

anestesia

1

0.5s+1

 Fcn de Transferencia

(con estado icial)

grafica

error

anestesia9

Fig. 10. Implementation in Simulink of MATLAB of both controllers for com-
parison of their performance.

7 Conclusions

We consider in this paper the case of automatic anesthesia control in hu-
man patients for testing the optimized fuzzy controller. We did have, as a
reference, the best fuzzy controller that was developed for the automatic
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider
the optimization of this controller using the HGA approach. After applying
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm.
We did compare the simulation results of the optimized fuzzy controllers
obtained with the HGA against the best fuzzy controller that was obtained
previously with expert knowledge, and control is achieved in a similar
fashion.

178 Oscar Castillo, Gabriel Huesca, and Fevrier Valdez

Acknowledgments

We would like to thank the Research Grant Committee of COSNET for the
financial support given to this project (under grant 424.03-P). We would
also like to thank CONACYT for the scholarships given to the students
that work in this research project (Gabriel Huesca and Fevrier Valdez).

References

O. Castillo and P. Melin (2001), “Soft Computing for Control of Non-Linear Dy-
namical Systems”, Springer-Verlag, Heidelberg, Germany.

O. Castillo and P. Melin (2003), “Soft Computing and Fractal Theory for Intelli-
gent Manufacturing”, Springer-Verlag, Heidelberg, Germany.

J. Holland, (1975), "Adaptation in natural and artificial systems" (University of
Michigan Press).

A. Homaifar and E. McCormick (1995), “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms”, IEEE
Trans. Fuzzy Systems, vol. 3, pp. 129-139.

J.-S. R. Jang and C.-T. Sun (1995) “Neurofuzzy fuzzy modeling and control”,
Proc. IEEE, vol. 83, pp. 378-406.

J.-S. R. Jang, C.-T. Sun, and E. Mizutani (1997), "Neuro-fuzzy and Soft Comput-
ing, A computational approach to learning and machine intelligence", , Pren-
tice Hall, Upper Saddle River, NJ.

C.L. Karr and E.J. Gentry (1993), “Fuzzy control of pH using genetic algorithms”,
IEEE Trans. Fuzzy Systems, vol. 1, pp. 46-53.

A. Lozano (2003), "Optimización de un Sistema de Control Difuso por medio de
algoritmos genéticos jerarquicos", Thesis, Dept. of Computer Science, Tijuana
Institute of Technology, Mexico.

K.F. Man, K.S. Tang, and S. Kwong (1999), "Genetic Algorithms: Concepts and
Designs", Springer Verlag.

P. Melin and O. Castillo (2002), “Modelling, Simulation and Control of Non-
Linear Dynamical Systems”, Taylor and Francis, London, Great Britain.

T.J. Procyk and E.M. Mamdani (1979), “A linguistic self-organizing process con-
troller” Automatica, vol. 15, no. 1, pp 15-30.

K.-S. Tang, K.-F. Man, Z.-F. Liu and S. Kwong (1998), “Minimal fuzzy member-
ships and rules using hierarchical genetic algorithms”, IEEE Trans. on Indus-
trial Electronics, vol. 45, no. 1.

J. Yen, and R. Langari (1999), "Fuzzy Logic: intelligence, control and informa-
tion", Prentice Hall, Inc.

T. Yoshikawa, T. Furuhashi and Y. Uchikawa (1996), “Emergence of effective
fuzzy rules for controlling mobile robots using NA coding method”, Proc.
ICEC’96, Nagoya, Japan, pp. 581

