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Preface

We describe in this book, new methods for analysis and design of hybrid 
intelligent systems using soft computing techniques. Soft Computing (SC) 
consists of several computing paradigms, including fuzzy logic, neural 
networks, and genetic algorithms, which can be used to produce powerful 
hybrid intelligent systems for solving problems in pattern recognition, time 
series prediction, intelligent control, robotics and automation. Hybrid intel-
ligent systems that combine several SC techniques are needed due to the 
complexity and high dimensionality of real-world problems. Hybrid intel-
ligent systems can have different architectures, which have an impact on 
the efficiency and accuracy of these systems, for this reason it is very im-
portant to optimize architecture design. The architectures can combine, in 
different ways, neural networks, fuzzy logic and genetic algorithms, to 
achieve the ultimate goal of pattern recognition, time series prediction, in-
telligent control, or other application areas.

This book is intended to be a major reference for scientists and engi-
neers interested in applying new computational and mathematical tools to 
design hybrid intelligent systems. This book can also be used as a textbook 
or major reference for graduate courses like the following: soft computing, 
intelligent pattern recognition, computer vision, applied artificial intelli-
gence, and similar ones. We consider that this book can also be used to get 
novel ideas for new lines of research, or to continue the lines of research 
proposed by the authors of the book. 

The first contribution by Witold Pedrycz deals with hybridization 
schemes in architectures of Computational Intelligence. The description of 
the hybridization schemes is described. While the essence of Computa-
tional Intelligence hinges profoundly on the symbiotic use of their underly-
ing technologies (viz. Neuro-computing, granular computing, and pre-
dominantly fuzzy sets, and evolutionary optimization), there are several 
other equally promising development avenues where a hybrid usage of the 
underlying technologies is worth pursuing. In this study, the author con-
centrates on the hybrid concepts and constructs available within the realm 
of Granular Computing (GC). Given the highly diversified landscape of 
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GC, the author discusses main directions of forming hybrid structures in-
volving individual technologies of information granulation, elaborate on 
the fundamental communication, interoperability, and orthogonality issues 
and propose some general ways of building hybrid constructs of GC, 
which are of immediate interest to system modeling realized in the realm 
of Computational Intelligence. The author also sheds light on the central 
role of the concepts of information granularity, information granules and 
ensuing hybrid constructs. Furthermore the author emphasizes a role of hi-
erarchical modeling that is directly supported by stratified aspect of infor-
mation granules formed at nested levels of specificity. The central issue of 
human-centricity of such models is also highlighted. 

The contribution by Oscar Montiel et al. deals with an evolutionary op-
timization of a Wiener model. There exists no standard method for obtain-
ing a nonlinear input-output model using external dynamic approach. In 
this work, the authors are using an evolutionary optimization method for 
estimating the parameters of an NFIR model using the Wiener model 
structure. Specifically, the authors are using a Breeder Genetic Algorithm 
(BGA) with fuzzy recombination for performing the optimization work. 
The BGA was selected because it uses real parameters (it does not require 
any string coding), which can be manipulated directly by the recombina-
tion and mutation operators.  For training the system, amplitude modulated 
pseudo random binary signal (APRBS) were used. The adaptive system 
was tested using sinusoidal signals.

The contribution by Cornelio Posadas-Castillo et al. deals with the syn-
chronization of chaotic neural networks with a generalized Hamiltonian 
systems approach. In this paper, the authors describe a Generalized Hamil-
tonian forms approach to synchronize chaotic neural networks unidirec-
tionally coupled. Synchronization is thus between the master and the slave 
networks with the slave network being given by an observer. In particular, 
we present two cases of study: the first is a second-order 3×4 CNN array, 
and the second is a CNN with delay. The chaotic CNNs are used as trans-
mitter and receiver in encrypted information transmission. 

The contribution by Oscar Montiel and Oscar Castillo deals with Media-
tive Fuzzy Logic, which is a novel approach for handling contradictory 
knowledge. In this paper, the authors propose a novel fuzzy method that 
can handle imperfect knowledge in a broader way than Intuitionistic Fuzzy 
Logic does (IFL).  This fuzzy method can manage non-contradictory, 
doubtful, and contradictory information provided by experts, providing a 
mediated solution, that is why it is called Mediative Fuzzy Logic (MFL). A 
comparative study of the results given by MFL, IFL and traditional Fuzzy 
logic (FL) was performed.
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The contribution by Ieroham Baruch deals with direct and indirect adap-
tive neural control of nonlinear systems. A comparative study of various 
control systems using neural networks was done. The paper proposes to 
use a Recurrent Trainable Neural Network (RTNN) identifier with back-
propagation method of learning. Two methods of adaptive neural control 
with integral plus state action are applied – an indirect and a direct trajec-
tory tracking control. The first one is the indirect Sliding Mode Control 
(SMC) with I-term where the SMC is resolved using states and parameters 
identified by RTNN. The second one is the direct adaptive control with I-
term where the adaptive control is resolved by a RTNN controller. The 
good tracking abilities of both methods are confirmed by simulation results 
obtained using a MIMO mechanical plant and a 1-DOF mechanical system 
with friction plant model. The results show that both control schemes 
could compensate constant offsets and that - without I- term did not. 

The contribution by Eduardo Gomez-Ramirez deals with a simple Tun-
ing of fuzzy controllers. The number of applications in the industry using 
the PID controllers is bigger than fuzzy controllers. One reason is the prob-
lem of the tuning, because it implies the handling of a great quantity of 
variables like: the shape, number and ranges of the membership functions, 
the percentage of overlap among them and the design of the rule base. The 
problem is more complicated when it is necessary to control multivariable 
systems due that the number of parameters. The importance of the tuning 
problem implies to obtain fuzzy system that decrease the settling time of 
the processes in which it is applied, or in some cases, the settling time must 
be fixed to some specific value. In this work a very simple algorithm is 
presented for the tuning of a fuzzy controller using only one variable to ad-
just the performance of the system. The results are based on the relation 
that exists between the shape of the membership functions and the settling 
time. Some simulations are presented to exemplified the algorithm pro-
posed.

The contribution by Nohe Cazarez et al. deals with a stability and ro-
bustness Study from type-1 to type-2 fuzzy logic control. Stability is one 
of the more important aspects in the traditional knowledge of Automatic 
Control. Type-2 Fuzzy Logic is an emerging and promising area for 
achieving Intelligent Control (in this case, Fuzzy Control). In this work, 
the authors use the Fuzzy Lyapunov Synthesis, as proposed by Margaliot, 
to build a Lyapunov Stable Type-1 Fuzzy Logic Control System. Then an 
extension from a Type-1 to a Type-2 Fuzzy Logic Control System was 
done, ensuring the stability on the control system and proving the robust-
ness of the correponding fuzzy controller. 

The contribution by Roberto Sepulveda and Patricia Melin deals with a 
comparative study of controllers using type-2 and type-1 fuzzy logic. Un-
certainty is an inherent part in controllers used for real-world applications. 
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The use of new methods for handling incomplete information is of funda-
mental importance in engineering applications. This paper deals with the 
design of controllers using type-2 fuzzy logic for minimizing the effects of 
uncertainty produced by the instrumentation elements. Simulations of the 
type-1 and type-2 fuzzy logic controllers were done to perform a compara-
tive analysis of the systems’ response, in the presence of uncertainty.

The contribution by Oscar Castillo et al. deals with evolutionary com-
puting for topology optimization of type-2 fuzzy controllers. In this paper, 
the authors describe the use of hierarchical genetic algorithms for fuzzy 
system optimization in intelligent control. In particular, the authors con-
sider the problem of optimizing the number of rules and membership func-
tions using an evolutionary approach. The hierarchical genetic algorithm 
enables optimization of the fuzzy system design for a particular applica-
tion. The approach was illustrated with the case of intelligent control in a 
medical application. Simulation results for this application show that the 
optimal set of rules and membership functions for the fuzzy system was 
obtained.

The contribution by Giovanni Pazienza et al. deals with decision trees 
and CBR for the Navigation System of a CNN-based Autonomous Robot. 
In this paper, the authors present a navigation system based on decision 

trees and CBR (Case-Based reasoning) to guide an autonomous robot. The 

robot has only real-time visual feedback, and the image processing is per-

formed by CNNs to take advantage of the parallel computation. The ap-

proach was validated by successfully testing the system on a SW simula-

tor.

The contribution by Arnulfo Alanis et al. deals with intelligent agents in 
distributed fault tolerant systems. Intelligent Agents have originated a lot 
of discussion about what they are, and how they are different from general 
programs. The authors describe in this paper a new paradigm for intelligent 
agents. This paradigm helped us deal with failures in an independent and 
efficient way. The authors proposed three types of agents to treat the sys-
tem in a hierarchic way. A new way to visualize fault tolerant systems 
(FTS) is proposed, in this paper with the incorporation of intelligent 
agents, which as they grow and specialized create the Multi-Agent System 
(MAS). The MAS contains a diversified range of agents, which depending 
on the perspective will be specialized or evolutionary (from our initially 
proposal) they will be specialized for the detection and possible solution of 
errors that appear in an FTS). The initial structure of the agent is proposed 
in [1] and it is called a reflected agent with an internal state and in the 
Method MeCSMA [2]. 
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The contribution by Mahmoud Tarokh deals with an approach for ge-
netic path planning with fuzzy logic adaptation for rovers traversing rough 
terrain. The paper develops a genetic algorithm approach to path planning 
for a mobile robot operating in rough environments. Path planning consists 
of a description of the environment using a fuzzy logic framework, and a 
two-stage planner. A global planner determines the path that optimizes a 
combination of terrain roughness and path curvature. A local planner uses 
sensory information, and in case of detection of previously unknown and 
unaccounted for obstacles, performs an on-line planning to get around the 
newly discovered obstacle. The adaptation of the genetic operators is 
achieved by adjusting the probabilities of the genetic operators based on a 
diversity measure of the population and traversability measure of the path.  
Path planning for an articulate rover in a rugged Mars terrain is presented 
to demonstrate the effectiveness of the proposed path planner. 

The contribution by Ricardo Guerra et al. describes chattering attenua-
tion using linear-in-the-parameter neural nets in variable structure control 
of robot manipulators with friction. Variable structure control is a recog-
nized method to stabilize mechanical systems with friction. Friction pro-
duces non-linear phenomena, such as tracking errors, limit cycles, and un-
desired stick-slip motion, degrading the performance of the closed-loop 
system. The main drawback of variable structure control is the presence of 
chattering, which is not suitable in mechanical systems. In this paper, the 
authors design a variable structure controller complemented with Linear-
in-the-Parameter neural nets to attenuate chattering. Experimental valida-
tion applied to a three degree of freedom robot mechanical manipulator is 
shown to support the results. 

The contribution by Selene Cardenas et al. describes tracking control for 
a unicycle mobile robot using a fuzzy logic controller. The authors develop 
a tracking controller for the dynamic model of unicycle mobile robot by in-
tegrating a kinematic controller and a torque controller based on Fuzzy 
Logic Theory. Computer simulations are presented confirming the per-
formance of the tracking controller and its application to different naviga-
tion problems. 

The contribution by Julian Garibaldi et al. describes intelligent control 
and planning of autonomous mobile robots using fuzzy logic and genetic 
algorithms. This paper describes the use of a Genetic Algorithm (GA) for 
the problem of offline point-to-point autonomous mobile robot Path Plan-
ning. The problem consist of generating “valid” paths or trajectories, for an 
holonomic robot to use to move from a starting position to a destination 
across a flat map of a terrain, represented by a two dimensional grid, with 
obstacles and dangerous ground that the Robot must evade. This means 
that the GA optimizes possible paths based on two criteria: length and dif-
ficulty.
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The contribution by Pilar Gomez-Gil describes the role of neural net-
works in the interpretation of antique handwritten documents. The need for 
accessing information through the web and other kind of distributed media 
makes it mandatory to convert almost every kind of document to a digital 
representation. However, there are many documents that were created long 
time ago and currently, in the best cases, only scanned images of them are 
available, when a digital transcription of their content is needed. For such 
reason, libraries across the world are looking for automatic OCR systems 
able to transcript that kind of documents. In this work the authors describe 
how Artificial Neural Networks can be useful in the design of an Optical 
Character Recognizer able to transcript handwritten and printed old docu-
ments. The properties of Neural Networks allow this OCR to have the abil-
ity to adapt to the styles of handwritten or antique fonts. Advances with 
two prototype parts of such OCR are presented. 

The contribution by Thompson Sarkodie-Gyan describes object recogni-
tion using fuzzy inferential reasoning. This paper introduces a vision-based 
pattern recognition scheme for the identification of very high tolerances of 
manufactured industrial objects. An image-forming device is developed for 
the generation and the capture of images/silhouettes of the components. A 
simple but effective feature extraction algorithm is employed to produce 
distinguishable features of the components in question. Radial basis func-
tion (RBF) based membership functions are used as classifiers for the pat-
tern classification. For the decision making process, a fuzzy logic based in-
ferential reasoning algorithm is implemented for the approximate 
reasoning scheme. 

The contribution by Olivia Mendoza and Patricia Melin describes the 
fuzzy Sugeno integral as a decision operator in the recognition of images 
with modular neural networks. The authors describe the implementation of 
the Fuzzy Sugeno Integral formulas for integration of responses in modular 
neural networks. In this work the authors illustrate their approach with 
modular neural networks for image recognition, using images divided in 
parts. The Fuzzy Sugeno Integral was used to make a final decision. Simu-
lation results show that the approach has potential application. 

The contribution by Patricia Melin et al. describes modular neural net-
works and fuzzy Sugeno integral for pattern recognition for the case of 
human face and fingerprint. The authors describe in this paper a new ap-
proach for pattern recognition using modular neural networks with a fuzzy 
logic method for response integration. A new architecture for modular neu-
ral networks for achieving pattern recognition in the particular case of hu-
man faces and fingerprints is proposed. Also, the method for achieving re-
sponse integration is based on the fuzzy Sugeno integral with some 
modifications. Response integration is required to combine the outputs of  
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all the modules in the modular network. The authors applied the new ap-
proach for fingerprint and face recognition with a real database from stu-
dents of our institution. 

The contribution by J. A. Ruz-Hernandez et al. describes optimal train-
ing for associative memories with application to fault diagnosis in fossil 
electric power plants. In this contribution, the authors discuss a new syn-
thesis approach to train associative memories, based on recurrent neural 
networks. They propose to update the weight vector as the optimal solution 
of a linear combination of support patterns. The proposed training algo-
rithm maximizes the margin between the training patterns and the decision 
boundary. This algorithm is applied to the synthesis of an associative 
memory, for fault diagnosis in fossil electric power plants. The scheme is 
evaluated via a full scale simulator to diagnose the main faults occurred in 
this kind of power plants. 

The contribution by F. Rivero-Angeles and Eduardo Gomez-Ramirez 
describes the acceleration output prediction of buildings using polynomial 
artificial neural networks. Severe earthquake motions could make civil 
structures to undergo hysteretic cycles and crack or yield their resistant 
elements. The present research proposes the use of a polynomial artificial 
neural network to identify and predict, on-line, the behavior of such non-
linear systems. Predictions are carried out first on theoretical hysteretic 
models and later using two real seismic records acquired on a 24-story 
concrete building in Mexico City. Only two cycles of movement are 
needed for the identification process and the results show fair prediction of 
the acceleration output. 

The contribution by Ileana Leal and Patricia Melin describes time series 
forecasting of tomato prices in Mexico using modular neural networks and 
Parallel Processing. In this paper, the authors give a brief explanation of 
the concepts of Time Series, the Neural Networks, the Modular Neural 
Networks, and Parallelism is given. Modular Neural Networks and Parallel 
Processing are used for Time Series Forecasting of the Tomato Price in 
Mexico. The modular neural network was implemented in a parallel archi-
tecture for improving the accuracy and efficiency of the obtained results. 

The contribution by Patricia Melin et al. describes modular neural net-
works with fuzzy Sugeno integration applied to time series prediction. The 
authors describe in this paper the application of several neural network ar-
chitectures to the problem of simulating and predicting the dynamic behav-
ior of complex economic time series. The authors use several neural net-
work models and training algorithms to compare the results and decide at 
the end, which one is best for this application. The authors also compare 
the simulation results with the traditional approach of using a statistical 
model. In this case, real time series of prices of consumer goods were used 
to test the models. Real prices of tomato and green onion in the U.S. show 
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complex fluctuations in time and are very complicated to predict with tra-
ditional statistical approaches. 

The contribution of Kacprzyk, Zadro ny and Wilbik presents the use of 
the Sugeno integral as a means for a fuzzy linguistic quantifier based ag-
gregation to the extraction of trends in time series data. The authors start 
with the use of the well-known Sklansky and Gonzalez algorithms to de-
rive a piecewise linear approximation of time series data. Then, the con-
cept of  classic Yager’s linguistic summary of a data(base) is employed to 
derive linguistic description of trends in time series data. Two basic types 
of linguistic descriptions (summaries) are proposed that refer to the fre-
quency of occurrence and duration of trends. As opposed to the classic 
Zadeh’s fuzzy logic based calculus of linguistically quantified propositions 
employed in Yager’s approach, the authors propose here the use of the 
Sugeno integral which provides more intuitively appealing results. 

We end this preface of the book by giving thanks to all the people who 
have help or encourage us during the making of this book. We would like 
to thank our colleagues working in Soft Computing, which are too many to 
mention each by their name. Of course, we need to thank our supporting 
agencies for their help during this project. We have to thank our institu-
tions for always supporting our projects. Finally, we thank our families for 
their continuous support during the time that we spend in this project. 

Tijuana, Mexico Oscar Castillo
Tijuana, Mexico Patricia Melin 
Warsaw, Poland Janusz Kacpr yk
Calgary, Canada Witold Pedrycz 
July 2006 
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Hybridization Schemes in Architectures 

of Computational Intelligence 

Witold Pedrycz 

Department of Electrical & Computer Engineering, University of Alberta, 
Edmonton, Canada, & Systems Research Institute, Polish Academy of Sci-
ences, Warsaw, Poland 
[pedrycz@ee.ualberta.ca]

foundly on the symbiotic use of their underlying technologies (viz. neuro-
computing, granular computing, and predominantly fuzzy sets, and evolu-
tionary optimization), there are several other equally promising 
development avenues where a hybrid usage of the underlying technologies 
is worth pursuing. In this study, we concentrate on the hybrid concepts and 
constructs available within the realm of Granular Computing (GC). Given 
the highly diversified landscape of GC, we discuss main directions of 
forming hybrid structures involving individual technologies of information 
granulation, elaborate on the fundamental communication, interoperability, 
and orthogonality issues and propose some general ways of building hy-
brid constructs of GC which are of immediate interest to system modeling 
realized in the realm of Computational Intelligence. We also shed light on 
the central role of the concepts of information granularity, information 
granules and ensuing hybrid constructs. Furthermore we emphasize a role 
of hierarchical modeling that is directly supported by stratified aspect of 
information granules formed at nested levels of specificity. The central is-
sue of human-centricity of such models is also highlighted. 

1. Introductory Comments 

With the rapidly growing complexity of systems encountered today in 
various disciplines, it becomes evident that new developments need to ad-
dress the important and commonly present issues of efficient human-
centricity of pursuits emerging within a specific domain under investiga-
tion. The important facet of human-centricity and bi-directional efficient 
human-system communication comes hand in hand with the omnipresent 
concept of abstraction and information granularity. 

Abstract. While the essence of Computational Intelligence hinges pro-

W. Pedrycz: Hybridization Schemes in Architectures of Computational Intelligence, StudFuzz

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
208, 3–20 (2007)
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Computational Intelligence dwells on symbiotic links between fuzzy 
sets (or information granules, in general), neurocomputing and evolution-
ary optimization. This facet of synergy is well known, investigated in 
depth and carefully documented. We have encountered numerous architec-
tures of CI that take full advantage of the fully orchestrated usage of the 
contributing technologies of the CI. The reader may refer to various neuro-
fuzzy systems that are commonly present in control, classification, data 
mining and other domains.  Interestingly, another equally interesting facet 
of synergy within the CI realm remains far less explored and documented. 
It concerns the knowledge-oriented aspects of the CI that are inherently as-
sociated with Granular Computing. Fuzzy sets or rough sets are regarded 
to be the key frameworks within which information granules are con-
structed and processed.

In this study, we investigate the key features of information granules 
and elaborate on the underlying processes of information granulation. Fun-
damental formalisms (including fuzzy sets, interval analysis and rough 
sets) applied there are presented in a succinct manner. A careful compara-
tive analysis is offered along with a presentation of some mechanisms of 
interoperability and communication.  It is shown how the mechanisms of 
knowledge-based clustering give rise to a suite of algorithms aimed at the 
design of information granules. We stress how such algorithms help cap-
ture the nature of data and incorporate any domain knowledge that be-
comes available in the context of the given problem. We also deliver a 
number of observations about the development of granular models and dis-
cuss them in the context of complexity handling as being supported by 
constructs of information granules. 

The paper is organized in the following manner. First, in Section 2, we 
focus on the human-centric orientation which becomes an evident trend in 
intelligent systems and highlight its main points. In the sequel, we elabo-
rate on the main formal models of information granules with a particular 
emphasis on shadowed sets which form a interesting and operationally jus-
tifiable bridge between fuzzy sets and interval analysis (Section 3 and 4). 
Communication and interoperability mechanisms are covered in Section 5. 
Then we show the role played by fuzzy clustering and knowledge-based 
clustering in the buildup of information granules. It is stressed how various 
formats of domain knowledge could be captured through a suitable refine-
ment of the underlying objective function guiding the clustering mecha-
nisms. Modeling aspects, both architectural and conceptual are investi-
gated in Section 7 and 8.
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2. Human-Centric Orientation in Intelligent Systems 

The rapidly growing complexity of systems and processes we encounter 
every day and intend to model in an efficient way brings new challenges. 
One of the very much visible tendencies we encounter today comes with 
high expectations and a genuine need for making systems predominantly 
human centric. In essence, this implies that one expects to communicate 
with the system in a seamless manner, formulate requests and receive in-
terpretable and meaningful results. Typically, the higher the complexity of 
the domain in which the system functions, the higher the expectations with 
regard to efficient communication. In the areas such as management, fi-
nances, decision-making, etc., this factor of human centricity becomes 
very visible. Human-centricity is a highly desirable quality yet its opera-
tional definition and the subsequent realization requires a plethora of con-
ceptual developments and a suite of supporting algorithms. The effective 
two-way communication is a key to the success of constructs of Computa-
tional Intelligence, in particular if we are concerned how computing activi-
ties become invoked. For instance, the mechanisms of relevance feedback 
that become more visible in various interactive systems hinge upon the 
well-established and effective human-centric schemes of processing. It is 
expected that they could effectively accept user hints and directives and af-
terwards release results in a highly comprehensible format. 

Abstraction and information granularity along with information granules 
(being the ultimate constructs arising within this setting) are the key com-
ponents that vitally support a realization of the human-centric aspects of 
the systems. This has led us to the development of various frameworks of 
information granules. 

3. Selected Formal Models of Information Granules 

Let us briefly present the major formalisms used in information granula-
tion. Our objective is to emphasize their key features and demonstrate the 
genuine diversity that exists in the area of granular computing. Further on, 
we pay more attention to the buildup of shadowed sets illustrating the ten-
dency of offering new interpretation capabilities to fuzzy sets. 

Sets and interval analysis The two-valued world of sets and interval 
analysis [7][8][14] ultimately dwells upon a collection of intervals of real 
numbers, say [a,b],  [c,d],…etc or their Cartesian products. Conceptually,  
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sets are rooted in a two-valued logic with its fundamental predicate of 
membership ( ). We emphasize here an important isomorphism between 
the structure of two-valued logic endowed with truth values (false-true) 
and set theory along with its characteristic functions. The interval analysis 
is a cornerstone of reliable computing that is ultimately associated with 
digital computing where any variable is expressed at some finite level of 
accuracy (being implied by the fixed number of bits that are available to 
represent numbers). The Boolean character of the constructs (sets, inter-
vals, etc.) helps capture possible ranges of values of system variables yet 
makes the elements that belong to some set completely indistinguishable.

Fuzzy sets Fuzzy sets offer an important and conceptually different 
formalism of representing information granules [15][16]. It is offered in 
the language of constructs with partial membership so that we can dis-
criminate between elements that are “typical” to the concept and those of 
the borderline character. Information granules such as high speed, warm
weather, fast car are examples of information granules falling under this 
category. We cannot specify a single, well-defined element that forms a 
solid border between full belongingness and full exclusion. Fuzzy sets with 
their soft transition boundaries are an ideal vehicle to capture the notion of 
partial membership. In this way they realize a non-Aristotelian view of re-
ality emphasized even before the inception of fuzzy sets, just to mention 
Max Black and Alfred Korzybski. Obviously, the 3-valued and multival-
ued Lukasiewicz logics build the solid foundations of the non-binary con-
cepts. When looking at fuzzy sets from the computational perspective, the 
smoothness and non-disruptive character of membership functions are 
highly beneficial in forming and solving various optimization problems. 

Shadowed sets Fuzzy sets help describe and quantify concepts with 
continuous boundaries. By introducing a certain -cut, we convert a fuzzy 
set into a set. By choosing the threshold level ( ) that is high enough, we 
admit elements whose membership grades are sought meaningful (as being 
viewed from the standpoint of the imposed threshold). The use of a certain 

-cut transforming a fuzzy set into some set leads to a fairly misleading 
impression that any fuzzy set could be made equivalent to some set. This 
point of view is highly deceptive. In essence, by building any -cut we 
elevate some membership grades to 1 (full membership) and reduce others 
to 0 (total exclusion). Surprisingly, no account is taken for the distribution 
of elements with partial membership so that this effect cannot be quanti-
fied in the resulting construct. The idea of shadowed sets [11][13], see also 
[4][5] is aimed at alleviating this problem by forming regions of complete 
ignorance about membership grades. In essence, a shadowed set A~ in-
duced by given fuzzy set A defined in X is an interval-valued set  in X
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which maps elements of the space into 0, 1, and the unit interval [0,1].  
Formally, A~ is a mapping A~ : X  { 0, 1, [0,1]. 0 denotes complete ex-
clusion from A~, 1 stands for complete inclusion in A~. A~(x) that is equal 
to [0,1] represents a complete ignorance – nothing is known about mem-
bership of x in A~: we neither confirm its belongingness to A~ nor commit 
to its exclusion. An example of a shadowed set is illustrated in Figure 1. 

A
~

[0,1] [0,1] 

Fig. 1. An example of a shadowed set A~; observe “shadows” produced at the 
edges of the characteristic function 

Rough sets The fundamental concept represented and quantified by 
rough sets [9] is the one concerning a description of a given concept in the 
language of a certain collection (vocabulary) of generic terms being agreed 
upon in advance to be regarded as the generic ones. Depending upon this 
collection relative to the concept, we can encounter situations where it 
cannot be possible to fully and uniquely describe the concept. This situa-
tion may give rise to an approximate, or better to say, a rough description 
of the concept. An example of the discrepancy of the description yielding 
the lower and upper bound of the description is displayed in Figure 2.

   I1         I2         I3         I4         I5

[a, b]

Fig. 2. Concept (set) [a, b] represented in the language of uniformly distributed in-
tervals; note the emergence of the upper and lower bound contributing to their rep-
resentation

Given the fact that shadowed sets form an interesting and algorithmi-
cally appealing bridging mechanism between fuzzy sets and interval analy-
sis, we focus on a way in which they are constructed.
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4. The Development of Shadowed Sets 

Accepting the point of view that shadowed sets are algorithmically implied 
(induced) by some fuzzy sets, we are interested in the transformation 
mechanisms translating fuzzy sets into the corresponding shadowed sets. 
The underlying concept is the one of uncertainty condensation or “localiza-
tion”. While in fuzzy sets we encounter intermediate membership grades 
located in-between 0 and 1 and distributed practically across the entire 
space, in shadowed sets we “localize” the uncertainty effect by building 
constrained and fairly compact shadows. By doing so we could remove (or 
better to say, re-distribute) uncertainty from the rest of the universe of dis-
course by bringing the corresponding low and high membership grades to 
zero and one and then compensating these changes by allowing for the 
emergence of uncertainty regions. This transformation could lead to a cer-
tain optimization process in which we complete a total balance of uncer-
tainty.

To illustrate this optimization, let us start with a continuous, symmetric, 
unimodal, and normal membership function A. In this case we can split the 
problem into two tasks by considering separately the increasing and de-
creasing portion of the membership function, Figure 3. 

1-

Fig. 3. The concept of a shadowed set induced by some fuzzy set; note the range 
of membership grades (located between  and 1- ) generating a shadow 

For the increasing portion of the membership function, we reduce low 
membership grades to zero, elevate high membership grades to one and 
compensate these changes (which in essence lead to an elimination of par-
tial membership grades) by allowing for a region of the shadow where 
there are no specific membership values assigned but we admit the entire 
unit interval as feasible membership grades. Computationally, we form the 
following balance of uncertainty preservation that could be symbolically 
expressed as 
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Reduction of membership + Elevation of membership = shadow         (1) 

Again referring to Figure 3 and given the membership grades below  and 
above 1- (0, ½), we express the components of the above relation-
ship in the form (we assume that all integrals do exist) 
Reduction of membership (low membership grades are reduced to zero) 

:A(x)x

A(x)dx        (2) 

Elevation of membership (high membership grades elevated to 1) 

-1:A(x)x

A(x))dx-(1       (3) 

Shadow       

-1A(x):x

dx   (4) 

The minimization of the absolute difference 

V( ) = |

:A(x)x

A(x)dx +

-1:A(x)x

A(x))dx-(1 -

-1A(x):x

dx |

(5)

completed with respect to  is given in the form of the following optimiza-

tion problem 

opt = arg min  V( ) (6)

where (0, ½).  For instance, when dealing with triangular membership 

function (and it appears that the result does not require the symmetry re-

quirement), the optimal value of  is equal to 4142.012  [11]. For 

the parabolic membership functions, the optimization leads to the value of 

 equal to 0.405. 
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5. Communication and Interoperability Mechanisms 

in Granular Computing

Information granules come with a significant level of diversity indicat-
ing a wealth of conceptual and algorithmic approaches available in the 
area. An example of this diversity is illustrated in Figure 4. Let us note that 
there are a number of links that help associate various granular constructs. 
Some of them are quite often used. Say, we typically use -cuts to articu-
late in some selective manner fuzzy sets in the language of sets (intervals). 
The choice of the specific value of  is quite critical to capture the essence 
of the fuzzy set. Various generalizations of fuzzy sets are worth stressing; 
those include type-2 fuzzy sets and fuzzy sets of higher order. We can ap-
preciate interesting linkages and ensuing generalization emerging at the 
junction of fuzzy sets and rough sets (in the form of fuzzy-rough and 
rough-fuzzy sets).

Fig. 4. A roadmap of linkages in various formal platforms of Granular 
Computing

The apparent diversity present within the realm of Granular Computing 
becomes crucial when it comes to various interactions and establishing col-
laborative linkages between the autonomous systems exploiting various 
mechanisms of information granules (say, fuzzy systems, rough models, 
fuzzy-rough models, interval models and alike), refer to Figure 5. Likewise 
one may encounter various users with their specific preferences as to the 
usage of specific machinery of granular computing.
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Fig. 5. Collaborative linkages between granular models established within the 
frameworks of various formalisms of Granular Computing (GC-1, GC-2, etc) and 
communities of users 

Different formal models of information granules support unique points 
of view when it comes to knowledge representation, organization and its 
utilization. It is very likely that in problem solving we could be faced with 
several fairly heterogeneous environments for which we would like to es-
tablish a certain level of interoperability and communication. In essence, 
one could distinguish between the two essential and orthogonal coordi-
nates of the space in which the communication between various models 
has to be realized, see Figure 6.

Fig. 6. Two fundamental and orthogonal coordinates of interoperability of infor-
mation granules (formal frameworks of information granulation and levels of 
granularity–abstraction) 
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Along the y- coordinate, we encounter different levels of granularity 
(depending upon the formalism of granulation, it could be quantified 
through sigma-count, cardinality, etc). The x- coordinate of this graph 
identifies a collection of formal frameworks of granulation. When design-
ing the interoperability mechanisms, these two facets of the problem need 
to be considered. When staying within a realm of the same formal frame-
work and moving across different levels of granularity this does not re-
quire any transformation yet one has to consider a mechanism to quantify 
the effectiveness of such communication. When forming the interoperabil-
ity links between different technologies of granular information, we have 
to proceed carefully as this implies a need to follow the principles of trans-
formation of information granules between the frameworks so that they 
could be deemed equivalent. For instance, a fuzzy set transformed into a 
construct in the formal setting of sets (interval) calls for the determination 
of its optimal -cut.

as Human-Centric Constructs 

Information granules are reflective of some abstraction processes using 
which we attempt to hide some unnecessary details and focus our model-
ing or decision-making activities on the most essential and dominant facets 
of the problem. Thus building information granules that are reflective of 
the existing sources of knowledge and available data is of paramount im-
portance. Clustering and fuzzy clustering are well known algorithmic tools 
that are aimed at constructing information granules [2][3][12][13]. In all 
clustering algorithms we are ultimately faced with the problem of reveal-
ing structures in data through some optimization driven by the available 
experimental evidence. While this tendency is evident, a shift of this data-
oriented paradigm is contemplated in light of the fact that not only the data 
are essential but any domain knowledge available from users, designers, 
experts has to play a pivotal role. Considering domain knowledge to be an 
important and indispensable component of data analysis, it becomes clear 
that it positions data analysis in the human-centric perspective. To be more 
descriptive, we may refer to pursuits carried out in this way as knowledge-
based clustering [13]. There are two fundamental issues that need to be ad-
dressed in the setting of the knowledge-based clustering: (a) what type of 
knowledge-based hints could be envisioned, and (b) how they could be in-
corporated as a part of the optimization scheme. More specifically, what 
needs to be done with regard to the possible augmentation of the objective 

6. The Development of Information Granules 
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function and how the ensuing optimization scheme has to be augmented to 
efficiently cope with the modified objective function.

6. 1. Fuzzy Clustering and Mechanisms 

of Human-Oriented Guidance 

In what follows, we highlight several commonly encountered alternatives 
that emerge when dealing with domain knowledge and building formal 
mechanisms, which reformulate the underlying objective function. We fo-
cus on two quite commonly encountered formats of domain knowledge be-
ing available in this setting that is labeling of some selected data points and 
assessments of proximity of some pairs of data. 

To make a consistent exposure of the overall material and assure link-
ages with the ensuing optimization developments, we confine ourselves to 
the Fuzzy C-Means (FCM) [2] governed by the following objective func-
tion

2

ik

N

1k

m

ik

c

1i

||||uQ vx      (7) 

where xk denotes an multidimensional data point (pattern) , vi is an i-th pro-
totype and U=[uik], i=1, 2, …, c; k=1, 2,…,N stands for a partition matrix. 
Moreover ||.|| denotes a certain distance function and “m” is a fuzzification 
coefficient; m>1.0. The minimization of (1) is realized with respect to the 
partition matrix and the prototypes. The optimization scheme and all spe-
cific features of the minimization of Q are well reported in the literature. 

6.2. Mechanisms of Partial Supervision

The effect of partial supervision involves a subset of labeled data, which 
come with their pre-assigned values of class membership [1][3][10][13]. 
These knowledge-based hints have to be included into the objective func-
tion and reflect that some patterns have been labeled. In the optimization, 
we expect that the structure to be discovered conforms to the membership 
grades already provided for these selected patterns. More descriptively, we 
can treat the labeled patterns to form a grid of “anchor” (navigation) points 
using which we attempt to discover the entire structure in the data set. Put 
it differently, such labeled data should help us navigate a process of reveal-
ing the structure. The generic objective function shown in the form (7) has 
to be revisited and expanded so that the structural information (labeled  
data points) is taken into consideration. While there could be different al-
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ternatives possible with this regard, we consider the following additive ex-
pansion of the objective function, cf. also [10]

2
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The first term is aimed at the discovery of the structure in data and is the 
same as in the standard FCM. The second term (weighted by some positive 
scaling factor ) addresses the effect of partial supervision. It requires 
careful attention because of the way in which it has been introduced into 
the objective function and the role it plays during its optimization. There 
are two essential data structures containing information about the initial la-
beling process (labeled data points) 

the vector of labels, denoted by b=[b1 b2…bN]T. Each pattern xk comes 
with a Boolean indicator: we assign bk equal to1 if the pattern has been 
already labeled and bk = 0 otherwise. 
The partition matrix F = [fik], i=1, 2,…,c; k=1,2,…N which contains 
membership grades assigned to the selected patterns (already identified 
by the nonzero values of b). If bk =1 then the corresponding column 
shows the provided membership grades. If bk = 0 then the entries of the 
corresponding k-th column of F do not matter; technically we could set 
them up to zero.
The nonnegative weight factor ( ) helps set up a suitable balance be-

tween the supervised and unsupervised mode of learning. When = 0 then 
we end up with the standard FCM. 

6.3. Clustering with Proximity Hints 

The concept of proximity is one of the fundamental notions useful in as-
sessing the mutual dependency between membership values occurring for 
two patterns. Consider two patterns with their corresponding columns in 
the partition matrix denoted by “k” and “l”, that is uk and ul, respectively. 
The proximity between them, Prox(uk, ul),  is defined in the form [2][13] 

)u,min(u),Prox(
c

1i
iliklk

uu                                               (9) 

Note that the proximity function is symmetric and returns 1 for the same 

pattern (k=l). In virtue of the properties of any fuzzy partition matrix we 

obtain
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The incorporation of the proximity-based knowledge hints leads to the 
two-optimization processes. The first one is the same as used to optimize 
the original objective function. In the second one, we reconcile the prox-
imity hints with the proximity values induced by the partition matrix gen-
erated by the generic FCM. Denote the proximity values delivered by the 
user as Prox[k1, k2] where k1 and k2 are the indexes of the data points for 
which the proximity value is provided. Obviously these hints are given for 
some pairs of data so to emphasize that we introduce a Boolean predicate 
B[k1, k2]

otherwise0,

)k,(kpairfor thespecifiedbeen

has]k,Prox[kof value theif1,

]k,B[k
21

21

21
   (11) 

Note that for any pair of data, the corresponding induced level of prox-
imity that is associated with the partition matrix produced by the FCM. We 
request that the proximity knowledge-based hints brought in by the de-
signer coincide with the induced proximity values implied by the structure 
revealed by the FCM on the basis of numeric data. Computationally, we 
express this requirement by forming the expression (which is a sum of dis-
tances between the corresponding values of the proximity values) [13] 

]k,B[k||)u,min(u]k,Prox[k||
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  (12) 

By making changes to the entries of the partition matrix U, we minimize 
the value of the expression given above thus arriving at some agreement 
between the data and the domain knowledge. The optimization activities 
are then organized into two processes exchanging results as outlined in 
Figure 7. There are two interacting optimization processes. The first one, 
being driven by data produces some partition matrix. The values of this 
matrix are communicated to the second optimization process driven by the 
proximity-based knowledge hints. At this stage, the proximity values in-
duced by the partition matrix are compared with the proximities coming as  
knowledge hints and (11) is minimized thus giving rise to the new values 
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of the partition matrix U which in turn is communicated to the data driven 
optimization phase. At this point, this “revised” partition matrix is used to 
further minimize the objective function following the iterative scheme of 
the FCM.

induced 

proximity (U) 

U

knowledge 

Data-driven 

optimization 

Knowledge -driven 

optimization 

Data

FCM 
Proximity 

optimization 

Fig. 7. The optimization data – and knowledge-driven processes of proximity-
based fuzzy clustering 

7. Modeling with Information Granules 

Given the current developments in granular computing and its individual 
technologies, they are fully reflected in the diversity of models exploiting 
the individual formalisms of information granules. One could easily point 
at the growing variety of architectures and related learning schemes found 
in these areas. Information granules offer an interesting opportunity to 
form models at different levels of abstraction depending upon the needs of 
the modeling process, specificity (granularity) of available information, in-
ternal format of the model associated with the topology of model and 
available estimation algorithms. An overall scheme of such modeling 
showing the main functional modules of the architecture is illustrated in 
Figure 8.
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Fig. 8. A general structure of modeling realized in the setting of granular informa-
tion

The role of interfaces is quite profound in the overall scheme. The input 
interface supports the development of information granules and could in-
clude a number of mechanisms of knowledge-based clustering given the 
fact that one is provided with numeric data and various knowledge hints 
coming from domain experts, designers, and potential users. The core 
processing part situated in the central part of the scheme is focused on 
processing of information granules and be realized in terms of rule-based 
computing, logic neurocomputing or any other architecture that is geared 
towards handling granular information. The output interface brings the re-
sults of modeling to the users in the format that is considered as the most 
suitable for them. In a very special case the interface may convert informa-
tion granules to some numeric representatives if the numeric character of 
results is required.  The complexity of systems can be alleviated by con-
sidering models formed at the higher levels of abstraction (so a lot of de-
tails are intentionally left out). The models built at different levels of 
granularity give rise to their conceptual hierarchy. Information granules of-
fer an effective and algorithmically sound way of forming abstractions. 
Hence they can be considered as a viable conceptual and computational 
environment of system modeling.

8. Granular Multimodels 

Being fully cognizant of the role of information granules, the diversity of 
formal frameworks (where this diversity manifests both in terms of the ex-
isting formal environments as well as the levels of specificity or generality 
we can consider several general architectural scenarios. Those are sche-
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matically visualized in Figure 9. As evident the two criteria being used 
here concern homogeneity (or heterogeneity) applied to the formalisms of 
information granulation or the level of granularity itself.

ity and a collection of formalisms of granular computing 

While the taxonomy presented above exhibits two dimensions, the quan-
tification of heterogeneity along the line of the formalisms of granular 
computing. Noticeably the coordinate of the variable level of homogeneity 
is definitely continuous and there is no well delineated boundary.   Let us 
elaborate on some scenarios in more detail.

Homogeneity of formal frameworks of information granularity – het-
erogeneity of information granules Formation of a family of models de-
pending upon the already assumed levels of granularity of information. At 
each level we maintain the same formal framework of Granular Comput-
ing. For instance, at each level we may consider the use of fuzzy sets. 
Given the variable level of granularity, the specificity of the each model in 
the hierarchy, Figure 10, could be very different. The aggregation of out-
comes of these individual models could be completed in several different 
ways. For instance, one could consider an intersection of the corresponding 
fuzzy sets formed by the models. The other alternative would be to form 
higher order constructs such as type-2 fuzzy sets.

Fig. 9. Generic scenarios of heterogeneity–homogeneity in information granular-
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M-1

M-2

M-P 

level of 

granularity 

Aggregation

Fig. 10. A hierarchy of granular models guided by sources of data available at dif-
ferent levels of specificity (granularity) and aggregation of their results 

Heterogeneity of formal frameworks of information granularity This
scenario becomes present when we encounter models built on a basis of 
different fundamental frameworks in which information granules are 
formed. The aggregation of the outputs of the model becomes more chal-
lenging. Sometimes it becomes more suitable to consider a transformation 
of information granules from one framework to another so that all models 
are homogenous in terms of the formalism being used.

9. Conclusions 

In this study, we discussed the role of information granules in the setting of 
Computational Intelligence, outlined the main formal frameworks of 
granular computing and demonstrated its role in system modeling. The is-
sue of dealing with the heterogeneity of sources of data and knowledge 
was identified and along this line we presented a new category of knowl-
edge-based fuzzy clustering demonstrating how they support the develop-
ment of information granules. While we focused on some fundamental 
concepts and architectures, the detailed algorithmic considerations still de-
serve careful attention.
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Abstract. Boltzmann Machines are recurrent and stochastic neural net-
works that can learn and reproduce probability distributions. This feature 
has a serious drawback in the exhaustive computational cost involved. In 
this context, decimation was introduced as a way to overcome this prob-
lem, as it builds a smaller network that is able to reproduce exactly the 
quantities required to update the weights during learning. Decimation 
techniques developed can only be used in sparsely connected Boltzmann 
Machines with stringent constraints on the connections between the units. 
In this work, decimation is extended to any Boltzmann Machine with no 
restrictions on connections or topology. This is achieved introducing high 
order weights, which incorporate additional degrees of freedom. 

1 Introduction 

The Boltzmann Machine (BM) [0, 2] is a stochastic and recurrent neural 
network based on the Hopfield [3] model that can be taken as a parallel 
version of the Simulated Annealing Algorithm [4]. However, its stochastic 
properties give the neural network the great ability of learning and extrapo-
lating probability distributions. Furthermore, it has a strong analogy with 
the physical magnetic spin glass model, which provides a very strong for-
mal definition of the neural network’s dynamics. On the other hand, the 
Boltzmann Machine has an important drawback that has prevented further 
usage, this is, learning stage is computationally exhaustive. One alternative 
to this problem is the Decimation [5, 6] that was introduced as a way to re-
duce the number of calculations needed at each step of the learning proc-
ess. Decimatable Boltzmann Machines can be reduced to simpler struc-
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tures where analytical expressions for correlations between units, needed 
to update weights during learning, can be found. However, this method can 
only be applied to sparsely connected Boltzmann Machines with important 
constraints on their connections. In this work, we propose a way to deci-
mate any Boltzmann Machine regardless of its topology and number of 
units. That is accomplished by transforming the original network into a 
High Order Boltzmann Machine (HOBM) [7]. 

The structure of the paper is the following: in section 2 we briefly de-
scribe the Boltzmann Machine and its advanced model, the High Order 
Boltzmann Machine, and introduce the general notation used along this 
work. In section 3 the traditional decimation method is introduced, just to 
explain the new procedure on section 4, which will be thereafter referred to 
as High Order Decimation. Section 5 is used to provide a graphical exam-
ple of decimation over a typical structure. Section 6 offers some results 
with an example on how this method works with the N-bit parity or XOR 
problem. Finally, section 7 provides some conclusions about the previous 
results.

2 The Boltzmann Machine 

2.1 The Simulated Annealing Algorithm 

The Simulated Annealing (SA) algorithm [8] is a powerful, global optimi-
zation algorithm which may be considered a numerical implementation of 
the physical process known as annealing. This process consists on heating 
up any material until it arrives at a state with a maximum entropy and en-
ergy values associated. Once it reaches equilibrium at such temperature, it 
will be slowly cooled until achieving absolute zero. When this happens, 
the system will be on its minimum energy and entropy values. 

The Simulated Annealing algorithm numerically makes an equivalence 
between a physical system and a cost function to be optimized, where its 
possible energetic states are no more than different values for the variables 
of the cost function. On the other hand, the temperature is introduced as a 
control parameterT , which stands for a stochastic noise measure. The SA 
is implemented by fixing a high temperature value where it starts searching 
over the function and a final temperature value where it is expected to 
converge on its the global minima of the function. The algorithm performs 
a stochastic search, starting at a random point and proposing new different 
points, which will be rejected or accepted according to a Metropolis crite-
ria. Each temperature is associated to a number of iterations that the algo-

22      Enric Farguell, Ferran Mazzanti and Eduardo Gomez-Ramirez 



Boltzmann Machines Learning Using High Order Decimation      23 

rithm will have to be run in order to reach equilibrium. This set of tem-
peratures and iterations is known as annealing schedule.

So, for a standard N variables 
110

,,,
N

xxxfxf  function, the 

algorithm itself is implemented as follows: 
Fix the initial temperature from the annealing schedule. 

Selecting a random starting point 
110

,,,
N

xxxx .

Selecting another random point 
110

,,,
N

xxxx .

Evaluate the quantity 

xfxfE  , (1)

which is the energy gain between the first and the second state. 
Then, if 0E   or 

pe k
T

E

 , (2)

x  is selected as the new searching point, p  being a realization of a uni-

form probability distribution and T  the corresponding temperature from 
the cooling schedule.

This evaluation is performed as many times as necessary to make the 
system reach equilibrium, or as stated in the annealing schedule.
Finally,

1k
T  is selected and this process is repeated until the annealing 

schedule ends. 
So, if this process is correctly performed, the global minima of the func-

tion will be finally set. However, it is not only difficult to find out a suit-
able annealing schedule, but the algorithm itself is quite time consuming. 
Hence, there are problems where it is not worth using, given its computa-
tional exhaustive requirements.

The neural network known as Boltzmann Machine has the same dynamics 
as the Simulated Annealing optimization algorithm. However, the neural 
network has an own free energy functional associated, known as the 
Helmholtz free energy 

TSEF  , (3)

where T  is the control parameter usually known as temperature, S  repre-
sents the entropy of the system and E  is the energy functional related to 

2.2 Boltzmann Machine Dynamics 
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the system. This energy term is easily written in terms of unit states 
1,1

i
S , symmetric weights 

jiij
ww  and external bias 

i
h  in the 

form

ji i

iijiij
ShSSwE

,2

1
 , (4)

although biases are often replaced by two-body weights 
ij

w  (weights 

which connect any pair of units) connecting every unit in the network to an 
external one clamped to 1 [0]. This functional has to be worked to fit any 
cost function that one wishes to optimize, as explained on Ref. [9]. How-
ever, when the Boltzmann Machine is working as a neural network this en-
ergy functional is evaluated with the Simulated Annealing algorithm until 
the neural network reaches equilibrium at a given final T  which is not 
zero (as it would be if implementing the SA). At this moment, the Helm-
holtz free energy becomes zero and the neural network reaches a stationary 
probability distribution, which is known as Boltzmann probability distribu-
tion

T

E

e
p , (5)

 is a normalization term called the partition function

T

E

e  , (6)

which ensures that the total probability sum over all possible energy states 
is one. On the other hand 

ji i

iijiij
ShSSwE

,2

1
. (7)

The previous equation is the energy of a generic energy state  charac-
terized by the binary value of the different 

i
S  units in the network.

To sum up, the process of bringing the system to equilibrium is compu-
tationally exhaustive as it has to be done with the help of the Simulated 
Annealing algorithm, where a sequence of decreasing temperatures is used 
to cool the system down to a desired final temperature T . In this algo-
rithm, the equilibrium has to be reached at each intermediate temperature 
and the number of iterations required grows significantly with the number 
of units in the net. 
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2.3 Learning in Boltzmann Machines 

Learning in a BM is done by minimization of the Kullback-Leibler dis-
tance [11] between the actual probability distribution and the one to be 
learnt. For a BM with different input and output units this magnitude is 
expressed as 

P

R

RPG ln  , (8)

where P  is the Boltzmann probability distribution of finding a state 

in the output units when a state  has been set in the input units and, in 
consequence, it depends on the weights and biases of the neural network 
given by Eq. (4). R  is the desired probability distribution to be learnt 

for the same input and output, and is given by the user as an input-output 
vectors set. P  is the probability of having the input clamped to state 

regardless of the output and, finally, G  is positive whenever 
||

RP

and zero when 
||

RP . This means that we can use gradient descent 

on G to find the update rule for both weights and biases [0] 

,
2

Z

w

Z
eZ

w

e

P

R

P

w

P

P

R

P
w

G
w

ij

E

ij

E

ijij

ij

(9)

so we need the following derivatives 

E

ji

E

ijij

E

eSSe
w

E

w

e
 , 

(10)

and

ZSSZ
Z

eSS
eSS

w

Z

ji

E

jiE

ji

ij

 . 
(11)
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Finally,

.

2

RSSSSRP
T

SSRSSRP
T

SSSSRP
T

Z

SSeeSS

P

R

P
T

Z

SSZeZeSS

P

R

P
T

w

jiji

jiji

jiji

ji

EE

ji

ji

EE

ji

ij

(12)

Since

1R  , 
(13)

we get the following expression 

jijiij
SSSSP

T
w .

(14)

Finally, and since the derivative for the bias terms is similar, we get the 
following expressions 

jiji

ij

ij
SSSS

Tw

G
w

*

 , (15)

ii

i

i
SS

Th

G
h

*

 , (16)

where  is  a  convergence parameter that is tuned at will. On the other 

hand,  are average values for fixed input units at a given input vector 

and
*

 are average values for both fixed input and output units at the 

same given vector but with its corresponding output value. This expression 
is calculated at a final annealing schedule equilibrium temperature T , and 
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those correlation values are to be statistically evaluated for each different 
example from the training set for each algorithm iteration.

2.4 The High Order Boltzmann Machine 

The High Order Boltzmann Machine [7, 10] is an extension to the original 
model where weights may connect more than two units. So, in an M-th Or-
der Boltzmann Machine weights can connect a total of up to M  units si-
multaneously and, from now on, we will consider the 2M  case as the 
standard situation. According to this, we will change the energy functional 
notation by 

ji i

iijiij
SwSSwE

,

12

2

1
 , (17)

where 2

ij
w  stands for the typical weight connecting two different units and 

1

i
w  stands for the bias terms. High Order Boltzmann Machines still keep 

the stochastic properties of their simpler model: such networks have an as-
sociated energy functional [7, 10] of the form 

M

m

iii

m
SSSw

m
E

1

10

!

1
 , (18)

m
w  is the generic m-th order weight connecting m  given binary units, as-

suming that a bias is a first order term. This functional is evaluated each it-
eration of the Simulated Annealing algorithm in order to bring the network 
to equilibrium at every temperature of the cooling schedule. In the end, the 
system follows a Boltzmann distribution at the lowest T . M-th order 
weights can be graphically represented by a line connecting groups of M

units. As an example, Fig. (1a) shows a second order weight linking units 

i
S  and 

j
S , while Fig. (1b) shows a third order weight linking units 

ji
SS ,

and
k

S .

Fig. 1. Simplified notation for 2nd(a) and 3rd(b) order connections 
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Learning in a HOBM is carried out as in a standard BM, so it the Kull-
back-Leibler distance [11] between the actual probability distribution and 
the one to be learnt is minimized. For a HOBM with different input and 
output units this last quantity is still used 

P

R

RPG ln  , (19)

just as in the simpler model of the neural network. Hence, we can also use 
gradient descent on G to find the update rule

iim

m
SS

Tw

G
w

*

 , (20)

though now the correlations are calculated along all the units that the 
weights connect. However, as the order of the neural network grows, it be-
comes harder to calculate these quantities by Monte Carlo simulations 
[10].

3 Standard Decimation of Boltzmann Machines 

3.1 Introduction 

Decimation is a standard technique in statistical mechanics [12] that is 
used in this context to build a new network with Nm  units from a 
N units neural network, that is able to reproduce exactly the m-unit
correlations of Eq. (20). This is possible because units that do not appear 
explicitly as arguments in the expectation values enter only in the Boltz-
mann factors TEexp . So, for every such unit S  one can look for re-
normalized bias and weights corresponding to an equivalent BM with one 
less neuron where S  has been removed. In terms of a new set of weights 
[5, 6] 

mm
w

T
J

1
 , (21)
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the master equation for this process is born when the Boltzmann marginal 
probability distribution for the rest of the units is to remain constant for 
any given energy state E . So 

11 SS
EPEPEP  . (22)

where E  takes into account the rest of the units from the neural network. 

Using (5) the Boltzmann probability distribution can be computed: 

T

E

T

E

T

E
SS

eee
11

. (23)

If E  is separated in terms of weights connecting units 
i

S  to unit S  and 

the rest of the weights, we will now get an expression as 

i

ii

i

ii

ij

ijji

i

ii JSJ
T

E
JSJ

T

E
JSSJS

T

E

eee

212121
~~~

Z

ee
ee

S

JSJS

T

E

JSSJS

T

E i

ii

ij

ijji

i

ii

1

1

~

~

21

21

,
(24)

E
~

 being the part of the energy which is not represented by unit S , but by 

all the rest of the neural network, linked by elements 1
J  and 2

i
J . If the 

previous expression is worked out, we will get the decimation expression 
proposed by Ref. [5] 

ij

ijji

i

ii

i

ii
JSSJS

S

JSJS

eCe

21211

1

 . (25)

3.2 Decimation Equations 

If Eq. (25) is worked, we obtain the generic decimation equation 
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ij

ijji

i

ii

ij

ijji

i

ii
i

ii

i

ii

ij

ijji

i

ii

i

ii

JSSJS
C

i

ii

JSSJS

JSJJSJ

JSSJS

S

JSJS

eJSJ

e
Cee

eCe

21

21

2121

2121

2
ln

21

1

1

cosh

22

ij

ijji

i

ii

i

ii
JSSJSJJSJ

21021
coshln  , (26)

0
J  being a normalization constant. Once these equations are solved one is 
left with an equivalent network with one less unit and different bias and 
weights. The star-triangle transformation of Ref. [6] is a special case where 
a unit connected to three other units is simplified as shown in Fig. (2c). 

Equations for the star-triangle transformation are born when binary 
1,1S  are given to units 

ji
SS ,  and 

k
S  to this equation 

2220222
coshln

jkkjikkiijjikkjjii
JSSJSSJSSJJSJSJS (27)

which takes into account connections on Fig. (2c). Thus, we get 

2220222
coshln

jkikijkji
JJJJJJJ (28)

2220222
coshln

jkikijkji
JJJJJJJ (29)
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Fig. 2. Parallel (a), serial (b) and star-triangle (c) associations 
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2220222
coshln

jkikijkji
JJJJJJJ (30)

2220222
coshln

jkikijkji
JJJJJJJ (31)

2220222
coshln

jkikijkji
JJJJJJJ (32)

2220222
coshln

jkikijkji
JJJJJJJ (33)

2220222
coshln

jkikijkji
JJJJJJJ (34)

2220222
coshln

jkikijkji
JJJJJJJ (35)

This set of equations is reduced to a four equation and four incognita 
system due to the hyperbolic cosinus symmetrical properties. So, we are 
left with Eq. (32) to Eq. (35). Lineal combination of this equations leads to

222222

222222

2

coshcosh

coshcosh
ln

4

1

kjikji

kjikji

ij

JJJJJJ

JJJJJJ
J  , (36)

222222

222222

2

coshcosh

coshcosh
ln

4

1

kjikji

kjikji

ik

JJJJJJ

JJJJJJ
J  , (37)

222222

222222

2

coshcosh

coshcosh
ln

4

1

kjikji

kjikji

jk

JJJJJJ

JJJJJJ
J  . (38)

When 0
2

k
J  these equations are reduced to the serial association of 

Ref. [5] represented in Fig. (2b) 

22

22

2

cosh

cosh
ln

2

1

ji

ji

ij

JJ

JJ
J  . (39)

The last and easiest transformation is called parallel association and is 
also shown in Fig. (2a). The resulting weight is immediately seen to be the 
sum of the weights being associated 
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222
~~~

ˆ
ijijij

JJJ  . (40)

4 High Order Decimation 

4.1 Introduction 

Decimation, as stated in the previous section, can not be used to simplify a 
unit connected to more than three other units [6]. Hence, a structure like 
this can not be handled by the traditional equations 

Fig. 3. Non-decimatable structure. 

In this work, we propose a way to decimate such kind of structures, by 
making an extension to the original decimation equations. 

One can shed some light on the reason why decimation fails to simplify 
these structures by working out a simple example, the three points star 
with a central biased unit, where the central unit is the one to be decimated. 
Using Eq. (27) one finds this set of equations 

22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  , 
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22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  , 

22202221
coshln

jkikijkji
JJJJJJJJ  . (41)

As it can be readily seen, the first and last equations are not compatible 

for arbitrary values of 1
J , 2

i
J , 2

j
J  and 2

k
J . The same happens with other 

pairs of equations. Actually and as stated, the problem has 4 unknown 
variables and 8 equations that are not compatible. In any case, the number 
of equations equals the number of binary states a system of 3 external units 
can take, and can not be reduced even if adding the bias terms units i, j, k 
would need. Alternatively, one can introduce four new variables that make 
the system compatible, and this is the procedure adopted here. 

4.2 High Order Decimation Equations 

Three new variables are easily introduced by including the missing bias 
terms in the resulting system. The last one is a third order term connecting 
the three external units together. Taking all this into account one arrives to 
the following set of decimation equations 

ij

ijkkjiijji

i

ii

i

ii
JSSSJSSJSJJSJ

321021
coshln , (42)

which can be written in matrix form to realize that the coefficient matrix is 
of the Hadamard type [13, 14, 15]. Now, Hadamard matrices are made out 
of orthogonal row and column vectors, meaning that the system is com-
patible and has a unique solution. In summary, decimation can be carried 
out in this system when all possible sets of weight connecting three units 
are considered.

This very same strategy can be used to decimate the general structure of 

Fig. (4a). In this case one can write N
2  equations corresponding to the N

2

binary states units 
110

,,,
N

SSS  can take, so once again N
2  un-

known variables are required. This can be achieved by including all possi-
ble m order weights, with m spanning the range 1 to N. The resulting high 
order structure is fully connected and is shown in Fig.  (4b).
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Fig. 4. Initial (a) and resulting (b) structure 

Counting the total number of variables is easy, since there are 

1
0

N
 normalization constants 0

J ,

1

N
 biases 1

J ,

2

N
 two body weights 2

J ,

3

N
 three body terms 3

J ,

i

N
i body terms i

J ,

1
N

N
 N body weight N

J ,

while we know that the sum of all these combinatorial numbers equals N
2 ,

that is, equals the number of decimation equations. 
The complete system of equations becomes then 

,

coshln

10121210

3210

21

N

NN

ij ijk

ijkkjiijji

i

ii

i

ii

JSSSSJSSSJSSJSJ

JSJ

(43)

and is still of the Hadamard type, meaning that the system can be inverted 
and that there is a solution that is unique. The general structure shown in 
Fig. (4a) can therefore be decimated. Furthermore, higher order structures 
can be decimated in the same way, since the coefficient matrix of the sys-
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tem remains unchanged and as only the independent terms are modified 
according to the expression 

.

coshln

10121210

3210

321

N

NN

ij ijk

ijkkjiijji

i

ii

ji

ijji

i

ii

JSSSSJSSSJSSJSJ

JSSJSJ

(44)

In fact, these equations are to be used iteratively, decimating one unit in 
each step until one is only left with the m  neurons 

m
iii

SSS ,,,
21

 re-

quired to update m
w  as shown in Eq. (20). 

As an example, equations to decimate Fig. (3) would stand for 

32221110

2221
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ijkjkikijkji

kji

JJJJJJJJ

JJJJ

32221110

2221
coshln

ijkjkikijkji

kji

JJJJJJJJ

JJJJ
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JJJJJJJJ

JJJJ

32221110
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JJJJJJJJ

JJJJ

32221110
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32221110

2221
coshln

ijkjkikijkji

kji

JJJJJJJJ

JJJJ

.

coshln

32221110

2221

ijkjkikijkji

kji

JJJJJJJJ

JJJJ

(45)

5 High Order Decimation Method Example 

In order to improve the High Order Decimation process understanding, we 
will provide a graphical example on how the method would work on a 
fully connected neural network with six free units. For this example, we 
will assume that input units have been parallel associated with bias terms. 
Therefore, there is no need of representing them.

Additionally, we would like to remark that the number of free units 
from the neural network will vary depending on the learning stage. Hence, 
Fig. (5a) represents with two circles outputs units at a learning stage where 
inputs have been clamped. On the other hand, Fig. (5b) has both clamped 
input and output units, so there are only hidden units left.

Fig. 5. Fully connected 3 inputs – 3 outputs mall, both with free (a) and clamped 
(b) output units 

Hence, we will perform our example over Fig. (5a). For instance, we are 
interested on finding correlation for units 

0
S  and 

1
S  and expected value 

for
0

S , so we are going to decimate the rest of the units following this or-

der:
5

S ,
4

S ,
3

S  and 
2

S . Decimating unit 
5

S  results on this mall 
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Fig. 6. Decimation process to obtain a fully connected High Order 5 units mall 

Working on the other units can be seen as a process with the following 
stages

Fig. 7. Decimation process to obtain two units 

Now that we have arrived to the pair 
10

, SS , correlation is analytically 

computed as in Ref. [5] 
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Finally, unit 
0

S  is isolated by performing a simple serial decimation op-

eration, to compute its expected value 
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and, then 

1

00
tanh JS  , (48)

where 1

0
J  is the new bias term. 

In order to calculate correlations for each pair of connected units, the 
neural network has to be decimated until such two units are left and, then, 
repeat the process.

In this section we are going to explain how we have used the tools de-
scribed in this work to solve a typical benchmarking problem. In order to 
speed up the learning process the conjugate descent gradient method has 
been used as proposed on Ref. [16]. So, the Boltzmann learning expression 
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ii
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 , (49)

is now changed into 

1

*

1
im

ii

im
wSS

T
w  , (50)

where i is the current algorithm iteration. 

6.1 Parity Problem 

The High Order Decimation procedure has been first tested on the N-bit
parity or XOR problem [17]. A recurrent and fully connected network has 
been chosen to solve the problem and the conjugate gradient descent rule 
from Eq. (50) has been adopted to update the weights at each iteration of 
the learning process.

Preliminary results for different instances of the problem and network 
topologies are reported in table 1 and compared with data obtained using 
the Boltzmann Trees and the perceptrons trained with the SCG learning al-
gorithm of Refs. [5] and [18], respectively. The first column in the table 
indicates the topology of the network in the X-Y-Z format, where X, Y and 
Z stand for the number of input, hidden and output units, respectively. The 
next three columns report the efficiency, average and maximum number of 
iterations allowed in the training algorithm. The procedure used to obtain 
these values is the following: for each architecture one performs a total of 
2000 trainings. In each training the weights are allowed to be updated at 
most

max
n  times. A training instance is considered to be a success when 

the network has been trained with less than 
max

n  weight updates and the 

predicted value for any given input coincides with the actual XOR of the 
inputs with a probability equal or larger than 0.9 over a batch of 1000 runs 
of the trained network. 

avg
n  is the average number of weight updates re-

quired in each successful training. The Boltzmann Tree results of Ref. [5] 
are reported in columns 5, 6 and 7. Finally the perceptron results of Ref. 
[18] are shown in the last column, where the total number of iterations re-
quired to solve the XOR problem with an average quadratic error no larger 

than 6
10  is reported. 
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As it can be seen from the table, the performance of the High Order 
Decimation algorithm is comparable if not better than the standard decima-
tion technique used on a Boltzmann Tree, both in efficiency and number of 
iterations, although more data would be required to establish a better com-
parison. Only in the 5-4-1 case the Boltzmann Tree achieves a higher effi-
ciency with less iterations, but we have not been able to reproduce these 
figures with our Boltzmann Tree simulator. 

An improvement on the number of iterations needed to solve the prob-
lem when computed with the perceptron of Ref. [18] is also apparent, al-
though one should bear in mind the different criteria adopted to consider a 
learning instance successful in each case. Additionally and for fixed num-
ber of input units, the High Order Decimation method seems to be useful 
in this context to determine a suitable minimum number of hidden neurons 
required to solve the N-bit parity problem with a Boltzmann Machine. This 
number turns out to be 3, 4 and 5 for N=3, 4 and 5, which seems to indi-
cate that the XOR problem is best solved when the number of input and 
output units is equal. 

Table 1. Parity problem efficiency 

Architec-
ture

Efficiency
(%) avg

n
max

n
Efficiency

(%) avg
n

max
n

avg
n

2-1-1 97.2 25.0 50 97.2 25.0 50 - 
3-1-1 96.2 40.0 250 96.1 42.1 250 - 
3-3-1 100.0 16.3 250 - - - 154 
4-2-1 99.5 289.4 1000 - - - - 
4-3-1 100.0 184.9 1000 95.1 281.1 1000 - 

7 Conclusions 

Previous works on decimation applied to Boltzmann Machines introduced 
the concepts of parallel and serial decimation firstly and, later, the original 
star-triangle conversion with an unbiased unit. More complex transforma-
tions were not intended to be possible due to the lack of freedom degrees 
on the system equations, as stated on Ref. [6]. In this work we have shown 
that all sort of Boltzmann Machines can be decimated when high order 
weights are allowed to appear in the resulting network.

Decimation is of capital interest in Boltzmann Machine learning as it al-
lows finding update values for weights in a gradient descent exploration 
without resorting to the use of the Simulated Annealing algorithm. This 
speeds up learning considerably, but at the expense of solving a system of 

NN
22  linear equations where N is the total number of hidden and out-

put units. In this sense and in the context of Boltzmann Machine learning, 
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decimation as opposed to Simulated Annealing turns exhaustive time-
consuming calculations into high memory requirements. Compared with 
the standard decimation procedures used up to the date, high order decima-
tion introduces many additional degrees of freedom in the form of new 
weights, and therefore less units are expected to be required to solve the 
problem at hand. This turns out to be of great advantage once the network 
has been trained and is operated to obtain a probability distribution with 
the help of the Simulated Annealing algorithm. 
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output model using external dynamic approach.  In this work, we are using 
an evolutionary optimization method for estimating the parameters of an 
NFIR model using the Wiener model structure. Specifically we are using a 
Breeder Genetic Algorithm (BGA) with fuzzy recombination for perform-
ing the optimization work. We selected the BGA since it uses real parame-
ters (it does not require any string coding), which can be manipulated di-
rectly by the recombination and mutation operators.  For training the 
system we used amplitude modulated pseudo random binary signal 
(APRBS). The adaptive system was tested using sinusoidal signals.

1. Introduction 

A system is a human conception of a group of independent but interrelated 
elements comprising a unified whole (Severance, 2001).  The key task of 
system identification (modeling) is to find a best suitable mathematical 
model between the inputs, outputs and disturbances of a physical system 
(Ljung, 1999). Nowadays, identifying linear systems has become a routine 
task and there are available several successful methods for solving the 
problem in the time or in the frequency domain, using iterative and non-
iterative optimization methods for estimating the parameters. Real systems 
are nonlinear and their properties may change with time, obtaining models 
for nonlinear systems are more complex than for linear, since any differ-
ence in the dynamic behavior of these models can be extremely significant.
It is a common practice to treat real systems as linear to some extent, and 

Abstract. There exists no standard method for obtaining a nonlinear input-
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as a natural consequence to consider a linear model as first choice.  If the 
linear model does not fulfill the expectative, it is necessary to analyze the 
whole process to search an explanation and solution.  A possibility is to 
change from a linear to a nonlinear model, but sometimes it can be con-
flicting since if the nonlinear model chosen is not flexible enough its per-
formance can be worst.  Nonlinear system identification of a dynamic pro-
cess is a challenging task and it has received special attention during the 
past decade (Ikonen, 1999).

In this work, for modeling a nonlinear system we used an input-output 
model that fits in the class of models known as “external dynamics mod-
els”, this name stems from the fact that it can be separated in two well de-
fined parts: an external dynamic filter bank and a nonlinear static approxi-
mator (Nelles, 2001). This concept is illustrated in Fig. 1. In the external 
dynamic approach the model is conceptualized as a dynamic filter bank 
and a nonlinear static approximator.  In principle, it does not matter the 
model architecture or the static nonlinear approximator. 

Fig. 1. In the external dynamic approach the model is conceptualized as a dynamic 
filter bank and a nonlinear static approximator.  In principle, it does not matter the 
model architecture or the static nonlinear approximator. 

There are several nonlinear optimization methods for estimating the pa-
rameters of an external dynamic model, most of them perform local 
searches and they might get trapped in local optima.  Global optimization 
methods can perform global searches for the global optimum, although it is 
well known the huge computational demand that these methods require.  
Since nonlinear, local and global, as linear optimization methods have their 
own advantages and drawbacks, it is a good practice to combine these 
techniques.

In the field of external dynamic modeling we found some interesting 
works like: “An iterative method for the identification of nonlinear systems 
using a Hammerstein model” (Narendra, 1996), here it was proposed the 
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traditional iterative algorithm; in “A new Identification Method for Wiener 
and Hammerstein Systems” (Guo, 2004),  was developed a unified new re-
cursive identification method in the prediction error;   in “Worst-Case 
Identification of Nonlinear Fading Memory Systems” (Dahleh, 1995) was 
studied the problem of asymptotic identification for fading memory in the 
presence of bounded noise; in “Identification of Multivariable Hammer-
stein Systems using Rational Orthonormal Bases” (Gomez, 2004), it is pre-
sented a non iterative algorithm for the simultaneous identification of the 
linear and nonlinear parts of multivariable Hammerstein systems.

For the purpose of putting into context this work, we want to mention 
two previous works that deal with estimating parameters using evolution-
ary computation, they are: “The evolutionary learning rule for system iden-
tification” (Montiel et al., 2004a) and “Asynchronous hybrid architecture 
for parametric system identification using fuzzy real coded evolutionary 
algorithm” (Montiel et al., 2004b).  In both papers were shown results of 
parameter estimation for the Finite Impulse Response (FIR) filter using the 
BGA.

A different approach is to use genetic programming (GP) mainly focus-
ing on generating algebraic expression for describing a physical system in-
stead of estimating parameters of a model structure.  In this branch there 
are some interesting works, such as, “Finding an Impulse Response Func-
tion Using Genetic Programming” (Keane Martin A. et al.,  1993) where 
GP was applied to obtain a symbolic expression for a linear time-invariant 
system (LTI);  two representative works applied to nonlinear systems are: 
“Multiobejctive Genetic Programming: A Nonlinear System Identification 
Application” (Rodríguez et al., 1997), and "Identifying Nonlinear Model 
Structures Using Genetic Programming Techniques"  (Winkler S., et al., 
2004).

2 System Description 

In Fig. 2. System identification with noise presence. 
We have a digital signal input u(k) that is fed to the unknown system 

and to the adaptive system at the same time, in this figure the unknown 
system is enclosed by dashed lines in a “black box” (Sjoberg, 1995), its 
output is called the desired response signal and it is represented by y(k).
The adaptive system, i.e. the Wiener model will compute a corresponding 
output signal sample kŷ  at time k.  Both signals, ky  and kŷ  are com-
pared subtracting the two samples at time k, to obtain the error signal, e(k),

kykyke ˆ (1)



The adaptive system has the task of representing accurately the signal 
ky  at its output, i.e, kyky ˆ .  At the unknown system side, we have 

an additive noisy signal known as the observation noise signal because it 
corrupts the observation of the signal at the output of the unknown system 
(Vijay, 1997), then 

kkyky
u

(2)

The unknown system can be any system, a simple or a complex system.  
We used a nonlinear autoregressive with exogenous input (NARX) first 
order Wiener model given by (Nelles, 2001),

1tan*9.01*1.0arctan kykuky (3)

Fig. 2. System identification with noise presence. 

The Wiener model structure consists of a linear dynamic block followed 
by a nonlinear static block.  We selected an NFIR Wiener model structure 
described by (Nelles, 2001)(Gomez Juan C., 2004),

1

0

arctanˆ

L

i

i
ikxkhky (4)

or in vectorial form 

kXkHky
T

arctanˆ (5)

where the coefficient vector H(k) is 

khkhkhkH
L 110

(6)
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and the input signal vector is given in vectorial form by, 

11 LkxkxkxkX (7)

In real world problems, the identification is successful if we meet with 
some criterion in the error value.  Moreover, in real world problems, the 
output of the unknown system ky

u
 is contaminated with noise k .

Generally, we do not have direct access to the uncorrupted output ky
u

 of 
the plant; instead we have a noisy measurement of it. In this case the out-
put is given by equation (2).  Then, we can say that the adaptive filter has 
reached the optimum if we find a value kyky ˆ  this is achieved when 
we find an optimum weight vector’s parameter H, such as

kHkH
OPT

(8)

3 Evolutionary Optimization Technique 

System identification uses a supervised learning method (Jang, 1997), for 
estimating the optimum parametric vector H(k) it is necessary to use an op-
timization technique. We selected the evolutionary algorithm known as 
BGA (Mühlenbein, 1994), and we tested it using the fuzzy recombination 
(FR) operator (Voigt, 1995).  The BGA allows us to represent in a direct 
way floating point numbers, so the encoding and decoding of each variable 
is transparent for the user (Deb Kalyanmov, 2002). This algorithm uses a 
deterministic selection mechanism implemented using truncation selection, 
only a percent of the best individuals of the whole population is selected 
for recombining, in this way the survivor of the best individuals is guaran-
teed, and the extinction of the worst individuals is also guaranteed.  The 
BGA is defined as an eight tuple, 

termFHCTNHBGA ,,,,%,,,
0 (9)

where 0
H  is the initial population of size N, T is the truncation threshold 

commonly referred as T%,  represents the recombination operator,  is 
the mutation operator, HC is a hill climbing method (for example: the LS 
algorithm), F is the fitness function and term is the termination criterion. In 
FR for obtaining an offspring it is necessary to recombine the individuals 
of the population, say X=(x1,...,xn),  and Y=(y1,...,yn) to obtain Z =(z1,...,zn)
(Voigt, 1995), the offspring zi is obtained using triangular membership 
functions, where ui and yi are the modes. Equation (10) is the membership 
function of a normalized triangular fuzzy number, where m is the mode 



and s represents the spread of the fuzzy number, for example for the off-
spring

i
x , we have 

s

xm
msx

i

Ti

||2
1,

(10)

  and the corresponding probability distribution function (pdf) is 

smx
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(11)

Equation (11) is a unimodal pdf of the allele xi.  For generating the allele 
successor

i
z , we will need a bimodal pdf, so it will be necessary to obtain a 

unimodal pdf for each allele of each parent.  Equation (12) represents the 
bimodal pdf for the allele zi,

22112211
,Pr,Pr

2

1
,,,Pr msymsxmsmsz

TiTiBTi

(12)

where the range for each triangular membership function is given in equa-
tions (13) and (14) 

axxax
iii

(13)

ayyay
iii

(14)

the offspring zi can lie in one or both of the intervals, the variable a is 
given by

0, exyea
ii

(15)

Using equations (14), (15) and (16) we have that 

iiiiiiBTii
yxyexxyezz ,,,PrPr (16)

in equation (15), the variable e is the fuzzy spread of the fuzzy numbers, 
generally e is selected to be 0.5.  The mutation operator is applied to each 
offspring, and the resulting individuals are inserted in the new popula-
tion nH

r
.  The process is repeated until a termination criterion is met.

The goal of the mutation operator  is to modify one or more parameters 
of zi, the modified objects (i.e., the offsprings) appear in the landscape 
within a certain distance of the unmodified objects (i.e., the parents).  In 
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this way, an offspring 'Z , where
n

zzZ ,,'
1

 is given by (Mühlenbein 
Heinz and Schilierkamp-Voosen, 1993)( De Falco et al., 1997), 

iii
rangezz ' (17)

where rangei defines the mutation range, and is calculated as 
( ·searchintervali). The variable searchinterval  is defined into the domain 
of the variable to be mutated, in this case 1,1 .  In the Discrete Mutation 

operator (DM)  is normally set to 0.1 or 0.2 and is very efficient in some 
functions, but also we can set  to 1.  The sign + or – is chosen with prob-
ability of 0.5.  The variable  is computed by 

1

0

1,02

J

i

i

i

i

(18)

Before mutation we set each i equals to 0, then each i is mutated to 1 
with probability p =1/J, and only j=1 contributes to the sum.  On the aver-
age there will be just one i with value 1, say j .  Then  is given by: 

i
2 (19)

In formula (18), J is a parameter originally related to the machine preci-
sion, i.e. the number of bits used to represent a real variable in the machine 
we are working with, traditionally J used values of 8 and 16.  In practice, 
however, the value of J is related to the expected value of mutation steps, 
in other words, the higher J is, the more fine-grained is the resultant muta-
tion operator (De Falco, 1997).

For identifying a process adequately is necessary to use an appropriated 
excitation signal.  Nonlinear processes require excitation of their dynamic 
and static properties in all relevant points, so it will be necessary to use a 
sequence that combines excitation of both parts, static and dynamic.  For 
these reasons it is common to use an amplitude modulated pseudo random 

the input to both systems, and it is used for training the adaptive model, in 
this figure is magnified the minimal hold time (Th). This time is the mini-
mal step size of the signal, i.e., it is the shortest period of time for which 
the signal stays constant.  For a given signal length, Th will have a direct 
influence in the number of steps and the frequency characteristics. The se-
lection of Th is different for linear and nonlinear SI, in linear SI this time is 

4 Training Signal Generation

binary signal (APRBS). Fig. 3 shows an APRBS signal (solid line), it is 



selected equal to the sampling time, at the other hand for nonlinear SI Th

should be selected neither too small nor too large.  If we select Th too small 
then the system will not have time to settle, only operating conditions 
around 2/

minmax0
uuy  will be covered (Nelles, 2001). If Th is too 

large, then for a given signal only a reduced set of operating conditions 
will be covered, the amount of points mainly depends on the number of 
steps with different amplitude.  As a consequence, if we do not modulate 
in amplitude the signal and we only use pseudo random signals (PRBS), 
we will have only two operating conditions, one for each signal’s value.   
In Fig. 3 also we have a dashed line which is the output of the unknown 
system.  Fig. 4. shows the data distribution of the training data of Fig. 3, 
there are some holes and they are random located, depending on the ampli-
tude levels.  Nevertheless, the holes trend to disappear or at least they will 
become smaller as the length of the training signal increases.

Fig. 3. At the input of both systems (unknown and adaptive model structure) we 
applied an APRBS signal (solid).  This APRBS signal consists of 200 samples, its 
amplitude is in the interval of [-3,3].  The minimal hold time Th is 5 samples and 
the maximum hold time Tmh is 15 samples.  Here, we are showing the unknown 
system’s output with a dashed line.
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Fig. 4.  Data distribution of the training signal shown in Fig. 3. 

5 Experimental Results 

In Fig. 5., we are showing an outline sketch of the software implementa-
tion that we used for identifying the unknown system represented by equa-
tion (3).  This software uses the evolutionary floating point algorithm 
known as BGA explained in section 3.   We used a population size of 
1,000 individuals floating point coded.

We implemented the fuzzy recombination (FR) operator described by 
equations 10 to 16, where we used for the variable e a value of 0.5.

For the mutation operator, we used the discrete mutation operator (DM) 
with a value of 0.1 and a range value of [-1,1] for the variable searchin-
terval.   We calculated equation 18 using J = 16.  The new mutated 
offspring was calculated using equation 17, using the specifications men-
tioned above.



Fig. 5.  Outline of the software implementation for solving the nonlinear system 
identification problem.  We tested the software for obtaining models of the NFIR 
type model structure.  This software can be applied for solving the generic nonlin-
ear system identification problem known as nonlinear autoregressive moving av-
erage with exogenous input (NARMAX) type.

The BGA uses a deterministic selection mechanism in the sense that 
only the best individuals are selected for creating the offspring by means of 
applying the recombination and mutation operators, moreover, we saved 
the best individual, i.e. the individual with the highest fitness value through 
generations, this is shown in Fig. 6. with small circles ‘o’.   The average 
fitness value of the whole population at each generation is shown in Fig. 6. 
with ‘x’.
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Fig. 6. Here we are showing the best fitness value at each generation, we pre-
served the best individual at each generation.  At generation 360 we found the best 
fitness values of 357.1027. The average square error is 0.0028, we used 80 sam-
ples for computing this value.  The fittest individual at each generation is plotted 
using a small ‘o’, and the average fitness value of the population at each genera-
tion is shown with ‘x’.  Note that although the selection procedure is deterministic 
and we are including the fittest individual through generation, the algorithm still 
have good explorative characteristics, preventing the population to fully converge. 

At the adaptive side, we used a Wiener model structure for modeling the 
system, the parameters were estimated using the BGA with the above men-
tioned characteristics.  For training the adaptive system, we made in Fig. 2, 

0k ; but for testing the system we used random noise with normal dis-

tribution with mean equals to zero and variance 1.0
2

.   We ran the al-
gorithm 400 generations, at each generation we applied an APRBS to the 
systems: the unknown, and the adaptive model.  This signal (APRBS) was 
generated with the next characteristics: 200 samples, with random ampli-
tude in the interval of [-3,3], the minimal hold time Th is 5 samples, more-
over, we used maximum hold time Tmh consisting of 15 samples.

For testing the system we applied to the unknown system a sinusoidal 

we have the data distribution of this signal at the unknown system side. 
signal, this signal and its corresponding output is shown in Fig. 7. In Fig. 8 



Fig. 7. We used a sinusoidal sequence for testing the system (solid line), the sys-
tem’s output is shown with a dashed line. 

Fig. 8. Unknown system data distribution for the sinusoidal signal of Fig. 7. 
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Fig. 9. In this graphic we have three plots; they were obtained using the best pa-
rametric vector found for the NFIR model structure.  The upper one is the un-
known system output; at the middle, we have the NFIR model output; and at the 
bottom we have the error sequence obtained subtracting the two preceding plots.  
For the error signal we found that the maximum value of this sequence is 0.02996, 
the mean value is 0.0002821, the median value is -0.003728, and the standard de-
viation value is 0.01324. These values were obtained considering 200 samples. 

Fig. 10.  Data distribution at the adaptive system side.  This signal was obtained 
when we applied a sinusoidal excitation (Fig. 7. ) at the NFIR model once it was 
trained; i.e., with the optimal parameters. 



Fig. 11.  This figure was obtained when we increase the sinusoidal frequency al-
most two times.

6 Conclusions 

Global search capabilities of evolutionary algorithms can be exploited 
for estimating parameters in nonlinear input-output models structures such 
as in a Wiener model structure.   This is an off-line option for system iden-
tification since it is highly computational time demanding, but it could be 
implemented in on-line application working in a second plane, searching 
for better models.   Using an NFIR model structure gives us stability since 
it does not have feedback, but the price to pay is that we will need higher 
dynamic order for describing the process dynamics properly.  The NFIR 
model can represent an unstable model for the first L samples, where L is 
the filter’s order.  For improving the performance of this method it is nec-
essary to implement faster evolutionary strategies and better fitness func-
tions.
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to synchronize chaotic neural networks unidirectionally coupled. Synchro-
nization is thus between the master and the slave networks with the slave 
network being given by an observer. In particular, we present two cases of 
study: the first is a second-order 3×4 CNN array, and the second is a CNN
with delay. The chaotic CNNs are used as transmitter and receiver in en-
crypted information transmission. 

1 Introduction 

In recent years many complex network structures have been observed in 
diverse fields as physics, biology, economics, ecology, electronics and 
computer science. In particular, Cellular Neural Networks (CNNs) consti-
tute an important example in such cases. CNN is a nonlinear system de-
fined by coupling only identical simple dynamical systems called cells lo-
cated within a prescribed sphere of influence, such as nearest neighbors 
[3]. CNN has broad applications in image and video signal processing, ro-
botic and biological visions [30], and higher brain functions [18]. Many 
proceedings of workshop and special issues see e.g., [23]; [24]; [25]; [26] 
have been devoted to CNNs.

On the other hand, recently synchronization of complex dynamics (cha-
otic and hyperchaotic) has become a field of active research see e.g., [20]; 

Abstract. In this paper, we use a Generalized Hamiltonian forms approach 
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[17]; [27]; [28]; [29]; [10]; [4]; [5]; [22]; [21]; [1]; [7]; [11]; [12]; [13]; and 
references therein. Data encryption using chaotic dynamics was reported in 
the early 1990’s as a new approach for signal encoding which differs from 
the conventional methods using numerical algorithms as the encryption 
key. One of the motivations for synchronization is the possibility of send-
ing confidential information through chaotic signals for secure communi-
cations. The idea is use two highly dynamic nonlinear systems (as trans-
mitter and receiver). So, the confidential information is imbedded into the 
transmitted chaotic signal by direct modulation, masking or another 
method. At the receiver end, if chaos synchronization can be achieved, 
then it is possible to recover the original information. The communication 
schemes based on chaos synchronization can be broadly categorized into 
three approaches. They include the chaotic masking scheme [8], the cha-
otic shift keying scheme [19]; [8]; [9], and the chaotic modulation scheme 
[31].

The main goal of this paper is to synchronize chaotic neural networks. 
This objective is achieved by using Generalized Hamiltonian forms and 
observer approach developed in [22]. Moreover, we proceed to illustrate 
this synchrony to transmit encrypted confidential information using a 
modified chaos-based communication scheme [16]; [14]. The synchroniza-
tion method presents the following advantages: i) it is systematic, ii) it is 
useful to synchronize several well-known chaotic and hyperchaotic oscilla-
tors, iii) it does not require the computation of any Lyapunov exponent, 
and iv) it does not require initial conditions belonging to the same basin of 
attraction.

The paper is organized as follows: In Section 2, we give a brief review 
on chaos synchronization via Generalized Hamiltonian forms and observer 
approach. In Section 3, we apply this approach to synchronize chaotic neu-
ral networks using two numerical examples; a second-order 3×4 CNN ar-
ray and a CNN with delay. In Section 4, we present the stability analysis 
related to the synchronization process. In Section 5, we apply the synchro-
nization of chaotic neural networks to confidential communication for 
transmission and recovering of audio messages. Finally, in Section 6, we 
give some concluding remarks. 

2 Review of Chaos Synchronization via Hamiltonian Forms 

and Observer Approach 

Consider the following n-dimensional autonomous system

txfx , ,
n

x (1)

60      C. Posadas-Castillo, C. Cruz-Hernández, D. López-Mancilla



Synchronization of Chaotic Neural Networks      61 

which provides an example of complex oscillator, whit f  a nonlinear 
function of the state x . Following the approach provided in [22], many 
CNN models described by Eq. (1) can be written in the following “Gener-
alized Hamiltonian” canonical form, 

xF
x

H
xS

x

H
xJx

(2)

where H(x) denotes a smooth energy function which is globally positive 
definite in n . The column gradient vector of H, denoted by xH , is as-
sumed to exist everywhere. We use quadratic energy function 

MxxxH
T

21  with M  being a, constant, symmetric positive definite 

matrix. In such a case, Mx
x

H . The square matrices, xJ and xS sat-

isfy, for all n
x , the following properties, which clearly depict the en-

ergy managing structure of the system, 0xJxJ
T  and xSxS

T .
The vector field xJ xH  exhibits the conservative part of the system 
and it is also referred to as the workless part, or workless forces of the sys-
tem; and xS  depicting the working or nonconservative part of the system. 
For certain systems, xS  is negative definite or negative semidefinite. In 
such cases, the vector field is addressed to as the dissipative part of the 
system. If, on the other hand, xS  is positive definite, positive semidefi-
nite, or indefinite, it clearly represents, respectively, the global, semi-
global and local destabilizing part of the system. In the last case, we can 
always (although nonuniquely) descompose such an indefinite symmetric 
matrix into the sum of a symmetric negative semidefinite matrix xR  and 
a symmetric positive semidefinite matrix xN . And where xF represents a 
locally destabilizing vector field. 

We consider a special class of Generalized Hamiltonian systems given 
by

m

n

y
x

H
Cy

xyF
x

H
SI

x

H
yJx

,

,
(3)

where S is a constant symmetric matrix, not necessarily of definite sign. 
The matrix I  is a constant skew symmetric matrix. The vector variable 

ty  is referred to as the system output. The matrix C is a constant matrix. 
The destabilizing vector field yF .



We denote the estimate of the state vector tx by t , and consider the 
Hamiltonian energy function H to be the particularization of H in terms 
of t . Similarly, we denote by t the estimated output, computed in 

terms of the estimated state t . The gradient vector H is, natu-
rally, of the form M with M being a, constant, symmetric positive definite 
matrix.

A dynamic nonlinear state observer for the special class of Generalized 
Hamiltonian forms (3) is readily obtained as 

,

,

H
C

yKyF
H

SI
H

yJ (4)

where K is a constant matrix, known as the observer gain. The state esti-
mation error, defined as ttxte and the output estimation error, 
defined as ttyte

y
, are governed by 

m

yy

n

e
e

H
Ce

e
e

H
KCSI

e

H
yJe

,

, (5)

where the vector, eH  actually stands, with some abuse of notation, for 
the gradient vector of the modified energy function, 

MexMHxHeeH . We set, when needed, 
WSI .

Definition 1 (Complete synchronization problem) We say that the 
slave system (4) synchronizes with the master system (3), if 

0)()(lim ttx
t

,

no matter which initial conditions )0(x and )0( have. Where the state estimation 

error )()()( ttxte represents the synchronization error. 

3 Synchronization of Chaotic Neural Networks: Examples 

In this section, we present two numerical examples of synchronization of 
chaotic neural networks, to this purpose, let us first briefly give a suitable 
material on CNN. 
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Definition 2 (CNN) A CNN is any spatial arrangement of locally cou-
pled cells, where each cell is a dynamical system which has an input, and 
a state evolving according to some prescribed dynamical laws [3]. 

In three-dimensional lattice CNN architecture, mathematically each cell 
ijk

C at location ),,( kji  is a dynamical system whose states evolve accord-

ing to some prescribed state equations, whose dynamics are coupled only 
among the neighboring cells lying within some prescribed sphere of influ-
ence

ijk
S , centered at ),,( kji . In two-dimensional case, using a double 

subscript, the variables for an isolated cell are: input u

ij
tu )( , threshold 

z

ij
tz )( , state x

ij
tx )( , and output y

ij
ty )( . A CNN cell is said to 

be isolated if it is not coupled to any other cell (Fig. 1). 

Threshold

Input

ji
u

,

ji
z

,

Output

ji
y

,

S t a t e

ji
x

,

Fig. 1: Isolated cell: input 
ij

u , threshold 
ij

z , state x

ij
tx )( , and output 

ij
y  for a two-

dimensional CNN.

In this work, we will assume that all isolated cells
ij

C are identical, and 

that for simplicity we have that )(tz
ij

is a constant scalar. Besides, we as-

sume that for any )(
0

tx
ij

at
0

tt , any threshold )(tz
ij

, and any input )(tu
ij

,

the state of each isolated cell
ij

C is assumed to evolve for all
0

tt as a 

nonautonomous set of ordinary differential equations 

),,,(
ijijijij

uzxfx ;...,,2,1 Mi Nj ...,,2,1

)(
ijijij

xgy

where )(
ij

g is a nonlinear function of the state. However, in many cases the 

output of interest often coincides with the state, )()( txty
ijij

.

The standard CNN equations used most widely in the literature, pro-
posed in [2] for an M×N CNN array 



)()( rSkl

klkl

rSkl

klklijijij

ijij

ubyazxx ;...,,2,1 Mi

Nj ...,,2,1

(6)

)(
ijij

xfy , (7)

where )(rS
ij

 is the sphere of influence of radius r ;
)(rSkl

klkl

ij

ya  and 

)(rSkl

klkl

ij

ub  are the local coupling, and 

1,1

1,

1,1

11
2

1

ij

ijij

ij

ijijij

x

xx

x

xxxf

For the particular case where 3M  and 4N , the Eqs. (6)-(7) assume 
the simpler form 3×4 CNN array 

).(

),(

),()()(

),()()(

22

11

20020011,022

10020110011

xfy

xfy

tubxfaxfaxx

tubxfaxfaxx (8)

Example 1 [3] Consider the second-order nonautonomous CNN. If 

;0)(and,
2

sin04.4)(,1,2.1,2
21001,01,000

tuttubaaa  then Eq. 

(8) becomes 

),(2)(2.1

,
2

sin04.4)(2.1)(2

2122

2111

xfxfxx

txfxfxx
(9)

with nonlinear function 

1,1

1,

1,1

11
2

1

x

xx

x

xxxf
ij

(10)
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Figure 2 shows a projection of the chaotic attractor of 3×4 CNN (9)-(10). 
The waveforms of ))(),(((

21
txtx corresponding to the )1.0,1.0())(),(((

21
txtx .

Fig. 2: Projection of the chaotic attractor of 3×4 CNN in the ),( 21 xx plane.

The state equations describing the 3×4 CNN (9)-(10) in Hamiltonian ca-
nonical form with a destabilizing vector field (master 3x4 CNN) is given 
by

2

1

2

1

2

1

2

1

2
sin04.4

)(

)(

20

02

)(

)(

02.1

2.10

x

xt

xf

xf

xf

xf

x

x
(11)

taking as the Hamiltonian energy function 

.)()()(
21

0
22

0
11

xx

drrfdrrfxH
(12)

The destabilizing vector requires two signals for complete cancellation at 
the slave. Namely, the states ).(and)(

21
txtx  The output of the master (11) in 

this case, is then chosen as .),(),(
2121

TT
xxyyy  The matrices C, S, and I 

are found to be 

.
20

02
,

02.1

2.10
,10 SIC

The pair (C, S) is observable, and hence detectable. An injection of the 
synchronization error )()()(

222
ttxte  suffices to have an asymptotically 

stable trajectory convergence. The slave (3x4 CNN) would then be de-
signed as follows 



2

2

1

2

1

2

1

2

1

2

1

2
sin04.4

)(

)(

20

02

)(

)(

02.1

2.10
e

k

k

x

t

f

f

f

f

(13)

where T
kkk ),(

21
 is chosen in order to guarantee the asymptotic exponen-

tial stability to zero of the state reconstruction error trajectories (synchro-
nization error). From (11) and (13) the synchronization error dynamics is 
governed by 

.
)(

2

1
2

2

1

2

1
2

)(

02.1
2

1

2.1
2

1
0

11

1

1

1

2

1

e

eH

kk

k

e

eH

k

k

e

e (14)

With initial states )1.0,1.0())0(),0((
21

xx and )5.0,5.0())0(),0((
21

,
and 2

21
kk we obtain the following numerical results. Figure 3 shows 

synchronization between: )(and)(b)),(and)(a)
2211

ttxttx ; solid 
line )(tx

i
and dashed line .2,1),( it

i
 c) and d) illustrate the time behav-

iors of the synchronization error trajectories 2,1),()()( ittxte
iii

. e) 
and f)

i
x  versus 

i
in phase space. 

Example 2: Time-delay oscillators represent examples of high-
dimensional chaos generators. Now, the system considered is a cell equa-
tion in Cellular Neural Networks with delay [15]. Its model is given by 

3

4

3

4
85.2118.3)(001.0)( xxxxtxtx

(15)

where )(txx . Its solution space is infinite-dimensional, with initial 
condition as any continuous function defined on the closed interval 0, .
By considering 1and initial condition as a constant function equal to 0.5 
on 0,1 , and initial state 1)0(x . Figure 4 shows a projection of the 
chaotic attractor of the cellular neural network with delay in the ),( xx

plane.
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ure).

The CNN with delay system (15) in Generalized canonical form (as mas-
ter) is given by 

3

4

3

4
85.2118.3

)(
001.0)( xxxx

x

xH
tx

(16)

taking as Hamiltonian energy function 

2

2

1
)( xxH

(17)

with xxxH /)( .  It is clear that the system (16) is observable. The ob-
server (as slave) for dynamics (16) is designed as 

),(

3

4

3

4
85.2118.3)(001.0)(

tek

tt

(18)

where )()()( ttxte . From (16) and (18) the synchronization error dy-
namics is governed by 

).()001.0()( tekte (19)
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Figure 5 depicts the synchronization between the state trajectories 
)(tx (solid line) and )(t (dashed line) (top of figure), the time behavior of 

the synchronization error trajectory )()()( ttxte  (middle of figure), and 
x versus  (bottom of figure). When 1)0(x and 1)0( , and 1k are
chosen.

Now, we give conditions for asymptotic stability of the synchronization er-
rors (14) and (19) between chaotic dynamics (11)-(13) and (16)-(18), re-
spectively.

Theorem 1 [22] The state )(tx of the nonlinear system (3) can be globally, 
exponentially, asymptotically estimated by the state )(t of an observer of 
the form (4), if the pair of matrices ),( WC , or the pair ),( SC , is either ob-
servable or, at least, detectable. 

An observability condition on either of the pairs ),( WC , or ),( SC , is 
clearly a sufficient but not necessary condition for asymptotic state recon-
struction. A necessary and sufficient condition for global asymptotic stabil-
ity to zero of the estimation error is given by the following theorem. 

Theorem 2 [22] The state )(tx of the nonlinear system (3) can be globally, 

exponentially, asymptotically estimated, by the state )(t of the observer 
(4) if and only if there exists a constant matrix K such that the symmetric 
matrix

)(
2

1
2

TTTT
KCKCSKCSKCSKCWKCW

is negative definite. 

In particular, the matrix )(
2

1
2

TT
KCKCS  is negative definite (sta-

bility synchronization condition holds) for Example 1, if we choose 
1

k and

2
k such that 

,2,42
221

kkk

i.e., if 6568.1  then ,
21

kkkk .  And for Example 2, the synchronization 
error is stabilized at the origin for .001.0k

4 Synchronization Stability Analysis 



5 Confidential Communication 

Finally, we apply the Hamiltonian synchronization of chaotic neural net-
works to transmit encrypted information. In particular, we use the modified 
chaos communication scheme (MCCS) for signal information masking 
with single transmission channel [16]; [14]. Figure 6 shows the MCCS (us-
ing previous Example 1) where: )(tm is the confidential information to be 
hidden and transmitted, )(

2
tx is the chaotic signal of the network for mask-

ing purpose, )()()(
2

tmtxts is the transmitted signal, and 

)()()(
2

'
ttstm the recovered information. It was reported in [14] that 

due to tm is also injected into the transmitter, the MCCS is able to re-
cover faithfully the hidden information even if a noise level is present 
through the transmission channel. 

+ -

Transmitter Receiver

+

+

m(t)
x

2 s(t)

m'(t)

Fig. 6: Modified chaos-based communication scheme for signal masking using a single 
transmission channel. 

Figure 7 illustrates the secret message communication of an audio message 
using the Example 1: the confidential message to be hidden and transmit-
ted )(tm (top of figure), the transmitted chaotic sig-
nal )()()(

2
tmtxts (middle of figure), and the recovered audio message 

)(
'

tm at the receiver (bottom of figure). 
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Fig. 7: Transmission and recovering of an audio message: Confidential message to be hid-
den and transmitted (top of figure). Transmitted chaotic signal )()()( 2 tmtxts (middle

of figure). Recovered audio message )(
'

tm  at the network receiver (bottom of figure). 

In this paper, we have presented the synchronization problem of chaotic 
neural networks from the perspective of Generalized Hamiltonian forms 
and observer design. The approach allows one to give a simple design pro-
cedure for the slave CNN. We have shown that synchronization of chaotic 
CNNs is possible from this viewpoint. The approach can be easily imple-
mented on experimental setups. Moreover, we have shown based on cha-
otic CNNs synchronization the transmission of encrypted confidential in-
formation.

In a forthcoming work we will be concerned with a physical implemen-
tation of CNN with electronic circuits, and the synchronization of large 
chaotic neural networks and possible applications. 

6 Concluding Remarks 
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Abstract. In this paper we are proposing a novel fuzzy method that can 
handle imperfect knowledge in a broader way than Intuitionistic fuzzy 
logic does (IFL).  This fuzzy method can manage non-contradictory, 
doubtful, and contradictory information provided by experts, providing a 
mediated solution, so we called it Mediative Fuzzy Logic (MFL). We are 
comparing results of MFL, with IFL and traditional Fuzzy logic (FL).  

1 Introduction 

Uncertainty affects all decision making and appears in a number of differ-
ent forms.  The concept of information is fully connected with the concept 
of uncertainty; the most fundamental aspect of this connection is that un-
certainty involved in any problem-solving situation is a result of some in-
formation deficiency, which may be incomplete, imprecise, fragmentary, 
not fully reliable, vague, contradictory, or deficient in some other way [1].  
The general framework of fuzzy reasoning allows handling much of this 
uncertainty.   

Nowadays, we can handle much of this uncertainty using Fuzzy logic 
type-1 or type-2 [2,3], also we are able to deal with hesitation using In-
tuitionistic fuzzy logic, but what happens when the information collected 
from different sources is somewhat or fully contradictory. What do we 
have to do if the knowledge base changes with time, and non-contradictory 
information becomes into doubtful or contradictory information, or any 
combination of these three situations?  What should we infer from this 
kind of knowledge?  The answer to these questions is to use a fuzzy logic 
system with logic rules for handling non-contradictory, contradictory or in-
formation with a hesitation margin.  Mediative fuzzy logic is a novel 
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approach presented for the first time in [4] which is able to deal with this 
kind of inconsistent information providing a common sense solution when 
contradiction exists, this is a mediated solution. 

There are a lot of applications where information is inconsistent. In eco-
nomics for estimating the Gross Domestic Product (GDP), it is possible to 
use different variables; some of them are distribution of income, personal 
consummation expenditures, personal ownership of goods, private invest-
ment, unit labor cost, exchange rate, inflation rates, and interest rates.  In 
the same area for estimating the exportation rates it is necessary to use a 
combination of different variables, for example, the annual rate of infla-
tion, the law of supply and demand, the dynamic of international market, 
etc. [5].  In medicine information from experiments can be somewhat in-
consistent because living being might respond different to some experi-
mental medication. Currently, randomized clinical trials have become the 
accepted scientific standard for evaluating therapeutic efficacy, and con-
tradictory results from multiple randomized clinical trials on the same 
topic have been attributed either to methodological deficiencies in the de-
sign of one of the trials or to small sample sizes that did not provide assur-
ance that a meaningful therapeutic difference would be detected [6]. In 
forecasting prediction, uncertainty is always a factor, because to obtain a 
reliable prediction it is necessary to have a number of decisions, each one 
based on a different group, in [7] says: Experts should be chosen "whose 
combined knowledge and expertise reflects the full scope of the problem 
domain. Heterogeneous experts are preferable to experts focused in a sin-
gle specialty”. 

The aim of this paper is to present MFL as new fuzzy method for going 
around from traditional, intuitionistic, and now from meditative fuzzy 
logic.  This is a transparent way from the point of view of the inference 
system. This paper is organized as follows. In section 2, we are giving 
some historical antecedent about different logic systems. In section 3, we 
are explaining Mediative Fuzzy Logic (MFL).  In section 4, we are show-
ing some experimental results, and finally we have the conclusions. 

2 Historical Background 

Throughout history, distinguish good from bad arguments has been of 
fundamental importance to ancient philosophy and modern science.  The 
Greek philosopher Aristotle (384 BC – 322 BC) is considered a pioneer in 
the study of logic and, its creator in the traditional way. The Organon is his 
surviving collected works on logic [8]. Aristotelian logic is centered in the  
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syllogism. In Traditional logic, a syllogism (deduction) is an inference that 
basically consists of three things: the major and minor premises, and the 
proposition (conclusion) which follows logically from the major and minor 
premises [9].  Aristotelian logic is “bivalent” or “two-valued”, that is, the 
semantics rules will assign to every sentence either the value "True" or the 
value "False". Two basic laws in this logic are the law of contradiction (p
cannot be both p and not p), and the law of the excluded middle (p must be 
either p or not p).

In the Hellenistic period, the stoics work on logic was very wide, but in 
general, one can say that their logic is based on propositions rather than in 
logic of terms, like the Aristotelian logic. The Stoic treatment of certain 
problems about modality and bivalence are more significant for the shape 
of Stoicism as a whole. Chrysippus (280BC-206BC) in particular was 
convinced that bivalence and the law of excluded middle apply even to 
contingent statements about particular future events or states of affairs. 
The law of excluded middle says that for a proposition, p, and its 
contradictory, ¬p, it is necessarily true, while bivalence insists that the 
truth table that defines a connective like ‘or’ contains only two values, true 
and false [10]. 

In the mid-19th century, with the advent of symbolic logic, we had the 
next major step in the development of propositional logic with the work of 
the logicians Augustus DeMorgan (1806-1871) [11] and, George Boole 
(1815-1864). Boole was primarily interested in developing special mathe-
matical to replace Aristotelian syllogistic logic. His work rapidly reaps 
benefits, he proposed "Boolean algebra” that was used to form the basis of 
the truth-functional propositional logics utilized in computer design and 
programming [12,13].  In the late 19th century, Gottlob Frege (1848-1925) 
claimed that all mathematics could be derived from purely logical princi-
ples and definitions and he considered verbal concepts to be expressible as 
symbolic functions with one or more variables [14]. 

L. E. J. Brouwer (1881-1966) published in 1907 in his doctoral 
dissertation the fundamentals of intuitionism [15], his student Arend 
Heyting (1898-1980) did much to put intuitionism in mathematical logic, 
he created the Heyting algebra for constructing models of intuitionistic 
logic [16].  Gerhard Gentzen (1909-1945), in (1934) introduces systems of 
natural deduction for intuitionist and classical pure predicate calculus [17], 
his cornerstone was cut-elimination theorem which implies that we can put 
every proof into a (not necessarily unique) normal form. He introduces two 
formal systems (sequent calculi) LK and LJ.  The LJ system is obtained 
with small changes into the LK system and it is suffice for turning it into a 
proof system for intuitionistic logic.   
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Nowadays, Intuitionistic logic is a branch of logic which emphasizes 
that any mathematical object is considered to be a product of a mind, and 
therefore, the existence of an object is equivalent to the possibility of its 
construction. This contrasts with the classical approach, which states that 
the existence of an entity can be proved by refuting its non-existence. For 
the intuitionist, this is invalid; the refutation of the non-existence does not 
mean that it is possible to find a constructive proof of existence. Intuition-
ists reject the Law of the Excluded Middle which allows proof by contra-
diction.  Intuitionistic logic has come to be of great interest to computer 
scientists, as it is a constructive logic, and is hence a logic of what 
computers can do. 

Bivalent logic was the prevailing view in the development of logic up to 
XX century. In 1917, Jan Łukasiewicz (1878-1956) developed the three-
value propositional calculus, inventing ternary logic [18].  His major 
mathematical work centered on mathematical logic. He thought 
innovatively about traditional propositional logic, the principle of non-
contradiction and the law of excluded middle. Łukasiewicz worked on 
multi-valued logics, including his own three-valued propositional calculus, 
the first non-classical logical calculus. He is responsible for one of the 
most elegant axiomatizations of classical propositional logic; it has just 
three axioms and is one of the most used axiomatizations today [19]. 

Paraconsistent logic is a logic rejecting the principle of non-
contradiction, a logic is said to be paraconsistent if its relation of logical 
consequence is not explosive. The first paraconsistent calculi was 
independently proposed by Newton C. da Costa (1929- ) [20] and 
Ja kowski, and are also related to D. Nelson’s ideas [21]. Paraconsistent 
logic was proposed in 1976 by the Peruvian philosopher Miró Quesada, it 
is a non-trivial logic which allows inconsistencies. The modern history of 
paraconsistent logic is relatively short. The expression “paraconsistent 
logic” is at present time well-established and it will make no sense to 
change it.  It can be interpreted in many different ways which correspond 
to the many different views on a logic which permits to reason in presence 
of contradictions. There are many different paraconsistent logics, for 
example, non-adjunctive, non-truth-functional, many-valued, and relevant.  

Fuzzy sets, and the notions of inclusion, union, intersection, relation, 
etc, were introduced in 1965 by Dr. Lofti Zadeh [2], as an extension of 
Boolean logic.  Fuzzy logic deals with the concept of partial truth, in other 
words, the truth values used in Boolean logic are replaced with degrees of 
truth.  Zadeh is the creator of the concept Fuzzy logic type-1 and type-2.  
Type-2 fuzzy sets are fuzzy sets whose membership functions are them-
selves type-1 fuzzy sets; they are very useful in circumstances where it is 
difficult to determine an exact membership function for a fuzzy set [22]. 
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K. Atanassov in 1983 proposed the concept of Intuitionistic fuzzy sets 
(IFS) [23], as an extension of the well-known Fuzzy sets defined by Zadeh.  
IFS introduces a new component, degree of nonmembership with the 
requirement that the sum of membership and nonmbership functions must 
be less than or equal to 1. The complement of the two degrees to 1 is called 
the hesitation margin.  George Gargov proposed the name of intuitionistic 
fuzzy sets with the motivation that their fuzzification denies the law of 
excluded middle, wish is one of the main ideas of intuitionism [24]. 

3 Mediative Fuzzy Logic 

Since knowledge provided by experts can have big variations and some-
times can be contradictory, we are proposing to use a Contradiction fuzzy 
set to calculate a mediation value for solving the conflict.  Mediative 
Fuzzy Logic is proposed as an extension of Intuistionistic fuzzy Logic 
[23,25].  Mediative fuzzy logic (MFL) is based in traditional fuzzy logic 
with the ability of handling contradictory and doubtful information, so we 
can say that also it is an intutitionistic and paraconsistent fuzzy system. 

A traditional fuzzy set in X [25], given by 

A = {(x, A(x))| x  X} (1) 

where A : X  [0, 1] is the membership function of the fuzzy set A. 
An intuitionistic fuzzy set B is given by 

XxxxxB
BB

|,,  (2) 

where B : X  [0, 1] and B : X  [0, 1] are such that 

10 xx
BB

 (3) 

and B(x); B(x)  [0, 1] denote a degree of membership and a degree of 
non-membership of x  A, respectively. 

For each intuitionistic fuzzy set in X we have a “hesitation margin” 
x

B
, this is an intuitionistic fuzzy index of Bx , it expresses a hesita-

tion degree of whether x belongs to A or not.  It is obvious 
that 10 x

B
, for each Xx . 

xxx
BBB

1  (4) 
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Therefore if we want to fully describe an intuitionistic fuzzy set, we must use 
any two functions from the triplet [10]. 
1. Membership function 
2. Non-membership function 
3. Hesitation margin 

The application of intuitionistic fuzzy sets instead of fuzzy sets, means 
the introduction of another degree of freedom into a set description, in 
other words, in addition to 

B
 we also have 

B
 or 

B
.  Fuzzy inference in 

intuitionistic has to consider the fact that we have the membership func-
tions as well as the non-membership functions .   Hence, the output of 
an intuitionistic fuzzy system can be calculated as follows: 

FSFSIFS 1  (5) 

where FS is the traditional output of a fuzzy system using the member-

ship function , and FS is the output of a fuzzy system using the non-
membership function .  Note in equation (6), when = 0 the IFS is re-
duced to the output of a traditional fuzzy system, but if we take into ac-
count the hesitation margin of the resulting IFS will be different. 

In similar way, a contradiction fuzzy set C in X is given by: 

xxx
CCC

,min  (6) 

where x
C

 represents the agreement membership function, and for the 
variable x

C
 we have the non-agreement membership function.   

We are using the agreement and non-agreement instead membership and 
non-membership, because we think these names are more adequate when 
we have contradictory fuzzy sets. 

We are proposing three expressions for calculating the inference at the 
system’s output, these are 

FSFSMFS
22

1  
(7) 

2
1,**1min

v
FSFSMFS  

(8) 

2
1***1

v
FSFSMFS  

(9) 

In this case, when the contradictory index is equal to zero, the sys-
tem’s output can be reduced to an intituionistic fuzzy output or, in case that 

=0, it can be reduced to a traditional fuzzy output. 
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4 Experimental Results 

For testing the system we dealt with the problem of population control.  
This is an interesting problem that can be adapted to different areas.  We 
focused in controlling the population size of an evolutionary algorithm by 
preserving, killing or creating individuals in the population.  Dynamic 
population size algorithms attempt to optimize the balance between effi-
ciency and the quality of solutions discovered by varying the number of 
individuals being investigated over the course of the evolutionary algo-
rithm’s run. We used Sugeno Inference system to calculate FS  and FS , 

so the system is divided in two main parts: the inference system of the 
agreement function side, and the inference system of the non-agreement 
function side.  

At the FS  side, we defined the variable percentage of cycling (pcCy-

cling) with three terms, Small, Medium and Large.  The universe of dis-
course is in the range [0,100]. We used a Sugeno Inference System, which 
in turn have three variables for the outputs: MFSCreate, MFSKill and 
MFSPreserve. They correspond to the amount of individuals that we have 
to create, kill and preserve in the population. Each output variable has 
three constant terms, so we have: 
1. For the MFSCreate variable, the terms are: Nothing=0, Little=0.5, and 

Many =1. 
2. For FSKill we have: Nothing=0, Little=0.5, All=1. 
3. For MFSPreserve we have: Nothing=0, More or Less=0.5, All=1.   

The rules for the FS  side are: 

if (pcCycled is small) then (create is nothing)(kill is nothing)(preserve is 
all) 
if (pcCycled is medium) then (create is little)(kill is little)(preserve is 
moreOrLess) 
if (pcCycled is large) then (create is many)(kill is all)(preserve is nothing) 

At the side FS , we defined the input variable NMFpcCycled with three 
terms: NoSmall, NoMedium, and NoLarge, they are shown in Fig. 2.  They 
are applied to a Sugeno Inference System with three output variables: 
nCreate, nKill, and nPreserve. In similar way, they are contributing to the 
calculation of the amount of individuals to create, kill and preserve, 
respectively. Each output variable has three constant terms, they are:  
1. For nCreate we have the output terms: Nothing=0, Little=0.5, Many=1.  
2. For nKill we have: Nothing=0, Little=0.5, and All=1.  
3. For nPreserve we have: Nothing=0, More or Less=0.5, and All =1.  
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The corresponding rules are: 
if (NMFpcCycled is Nsmall) then (create is nothing)(kill is noth-

ing)(preserve is all) 
if (NMFpcCycled is Nmedium) then (create is little)(kill is noth-

ing)(preserve is moreOrLess) 
if (NMFpcCycled is Nlarge) then (create is many)(kill is all)(preserve is 

nothing) 
Using the agreement function ( FS ) and the non-agreement functions 

( FS ) we obtained the hesitation fuzzy set and the contradictory fuzzy set.    
We performed experiments for the aboventioned problem obtaining re-

sults for traditional and intuitionistic fuzzy systems. Figures 5, 6, and 7 
show results of a traditional fuzzy system (FS), and in figures 8, 9, and 10 
we have the intuitionistic fuzzy outputs (IFS).  Moreover, we did experi-
ments for calculating the meditative fuzzy output using equations (7), (8), 
and (9). Next we are commenting about them. 

 
Fig. 1. Membership functions in a traditional fuzzy system (FS). 

 
Fig. 2. Non-agreement membership functions for Mediative Fuzzy Inference Sys-
tem (MFS). 
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Fig. 3. Hesitation fuzzy set. We applied equation (4) to each complementary sub-
set of membership and non-membership functions, in this case agreement and 
non-agreement membership functions. 

 
Fig. 4. Contradiction fuzzy set.  We obtained this set applying equation (6) to each 
subset of agreement and non-agreement membership functions. 

 
Fig. 5. Traditional FS for the output Create.  We can observe that the system is in-
ferring that we have to create 50% more individual in the actual population size 
when we have a percentage of cycling between 12 and 55. 
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Fig. 6. The output Kill of FS, says that we have to remove 50% of the less fit indi-
viduals when we have more or less a percentage of cycling between 12 and 55. 

 
Fig. 7. The output Preserve of traditional FS says how many individuals we have 
to preserve, this is depending on the degree of cycling. Note that this result is in 
accordance with Figs. 6 and 7. 

 
Fig. 8. We can observe that although there is contradictory knowledge, we have a 
softener transition in the lower part of Percentage of cycling, but when contradic-
tion increases we cannot say the same. We used eq. (5), with FSCreate y FSnCreate. 
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Fig. 9. In fact, a comparison using contradictory knowledge in IFS is not fear 
since the idea of this logic is not to use this kind of knowledge, but it is interesting 
to plot the inference output to compare results with MFS. 

 

Fig. 10. IFS do not reflect contradictory knowledge at the systems’ output. 

Experiment #1.  Using equation (7). 
Equation (7) is transformed in equations (10), (11), and (12) for the 

three different outputs MFSCreate, MFSKill, and MFSPreserve.  Figures 
11, 12 and 13 correspond to these outputs.   

nCreateCreate
FSFSMFSCreate

22
1  

(1) 

nKillKill
FSFSMFSKill

22
1  

(2) 

eserveneserve
FSFSeMFSPreserv

PrPr
22

1  
(3) 
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Fig. 11. MFS reflects contradictory knowledge at the systems’ output. Note that 
here we have a softener transition values in the range between 50 and 100.  We 
used equation (7) for plotting Figs. 11, 12 and 13. Experiment #1. 

 
Fig. 12. Although, we have the highest degree of contradiction around the value 
80, inference gives, for this region, reasonably good output values. Experiment #1. 

 
Fig. 13 Comparing results of MFS against FS and IFS, we can see that MFS can 
gives a softener transition when we have hesitation and contradiction fuzzy sets.  
We used equation (7) in experiment #1. 
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Experiment #2. Using equation (8). 
Similar than experiment #1, we can calculate the three corresponding 

outputs for the system using equation (8).  Figures 14, 15 and, 16 corre-
spond to the calculated output for the variables: MFSCreate, MFSKill, and 
MFSPreserve. 
Experiment #3. Using equation (9). 

In the same way than experiment #1, we used equation (9) to calculate 
the three meditative fuzzy outputs of the system. Figures 17, 18, and 19 
corresponds to this experiment. 

In Fig. 3 we are showing the hesitiation fuzzy set for the Membership 
functions of Figs. 1 and 2, they are the agreement and non-agreement 
membership function respectively. Figure 3 shows the hesitation fuzzy set 
obtained using equation (4). Figure 4 shows the contradiction fuzzy set ob-
tained using equation (6). Figures 5, 6, and 7 correspond to the outputs 
MFSCreate, MFSKill, and MFSPreserve, we can see in these figures that 
the hesitation and contradiction fuzzy set did not impact the output. Figs. 
8, 9 and 10 show that the corresponding outputs were impacted by the 
hesitation fuzzy set and they were calculated using the IFS given in (5). 
The outputs in Figs. 11 to 19 were impacted by the hesitation and contra-
diction fuzzy set, they were calculated using MFL. We used equation (7) to 
calculate the output in Figs. 11, 12, and 13. Equation (8) was used to ob-
tain Figs. 14, 15 and 16. Finally, Figs. 17, 18, and 19 were obtained using 
equation (9). In general, we observed that the best results were obtained 
using equation (7), with this equation we obtained a softener inference 
output in all the test that we made, this can be observed comparing Fig. 13 
against Figs. 16 and 19.  

 
Fig. 14. MFS for the output MFSCreate. Figs. 14, 15 and 16 were plotted using 
equation (8) as base.  Experiment #2. 
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Fig. 15. MFS for the output MFSKill. Experiment #2. 

 
Fig. 16. Output for the variable MFSPreserve. Experiment #2. 

 
Fig. 17. Output for the variable MFSCreate. Figs. 17, 18, and 19 were plotted us-
ing equation (9) as base. Experiment #3. 
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Fig. 18. Output for the variable MFSKill. Experiment #3. 

 
Fig. 19 Output for the variable Preserve in Experiment #3. 

5 Conclusions 

Through time fuzzy logic type-1 and type-2 have demonstrated their use-
fulness for handling uncertainty in uncountable applications.  Intuitionistic 
fuzzy logic is relatively a new concept which introduces the degree of 
nonmbership as a new component, this technology also have found several 
application niches.  Mediative fuzzy logic is a novel approach that enables 
us to handle imperfect knowledge in a broader way than traditional and in-
tuitionistic fuzzy logic do.  MFL is a sort of paraconsistent fuzzy logic be-
cause it can handle contradictory knowledge using fuzzy operators. MFL 
provides a mediated solution in case of a contradiction, moreover it can be 
reduced automatically to intuitionistic and traditional fuzzy logic in an 
automatized way, this is depending on how the membership functions 
(agreement and non-agreement functions) are established. We introduced 
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three equations to perform the meditative inference. In this experiment we 
found the best results using equation (7) that is an extension of equation 
(5), i.e. it is an extension of the formula to calculate the intuitionistic fuzzy 
output. MFL is a good option when we have knowledge from different 
human experts, because it is common that experts do not fully agree all the 
time, so we can obtain contradiction fuzzy sets to represent the amount of 
disagree with the purpose of impacting the inference result. Traditional FL, 
and IFL will not impact the output when we have contradictory knowl-
edge. 
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Abstract. A comparative study of various control systems using neural 
networks is done. The paper proposes to use a Recurrent Trainable Neural 
Network (RTNN) identifier with backpropagation method of learning. 
Two methods of adaptive neural control with integral plus state action are 
applied – an indirect and a direct trajectory tracking control. The first one 
is the indirect Sliding Mode Control (SMC) with I-term where the SMC is 
resolved using states and parameters identified by RTNN. The second one 
is the direct adaptive control with I-term where the adaptive control is re-
solved by a RTNN controller. The good tracking abilities of both methods 
are confirmed by simulation results obtained using a MIMO mechanical 
plant and a 1-DOF mechanical system with friction plant model. The re-
sults show that both control schemes could compensate constant offsets 
and that - without I- term did not. 

1 Introduction 

Recent advances in understanding of the working principles of artificial 
neural networks has given a tremendous boost to identification and control 
tools of nonlinear systems, [1], [2], [3]. Most of the current applications 
rely on the classical NARMA approach, where a feed-forward neural net-
work is used to synthesize the nonlinear map, [4], [5]. This approach has 
some disadvantages, [2], like that: the network inputs are a number of past 
system inputs and outputs, so to find out the optimum number of past val-
ues, a trial and error must be carried on; the model is naturally formulated 
in discrete time with fixed sampling period, so if the sampling period is 
changed the network, must be trained again; problems associated with sta-
bility, convergence and rate of convergence of this networks are not 

I. Baruch: Direct and Indirect Adaptive Neural Control of Non-Linear Systems, StudFuzz 208,
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clearly understood and there is not a framework available for its analysis in 
vector-matricial form, [6]; it is a necessary condition, that the plant order 
has to be known. Besides to avoid these difficulties, a new Recurrent 
Trainable Neural Networks (RTNN) topology, and a Backpropagation 
(BP) like learning algorithm, [7], has been proposed, but they have still 
what to do. So, the objective of this paper is to derive a normalized BP 
vector-matricial learning algorithm, to prove its stability, to derive two 
adaptive control algorithms and to give some simulation results, illustrat-
ing its capabilities. 

2 Description of the RTNN Topology and Learning 

The given in [7], [8] RTNN topology is expressed by the following vector-
matricial equations: 

X(k+1) = J(k) X(k) + B(k) U(k) (1)

J(k) = block-diag [ Ji(k) ]; | Ji(k) | < 1; i=1,...,n (2)

Z(k) =  [ X(k) ] (3)

Y(k) =  [ C(k) Z(k) ] (4)

The RTNN topology has a linear time varying structure properties like: 
controllability, observability, and identifiability (trainability), which are 
proved in [9], [10]. These properties of the RTNN structure signify that 
starting from the block- diagonal matrix structure of J(.) , we can find a 
correspondence in the block structure of the matrices B(.) and C(.), that's 
show us how to find out the ability of learning of this RTNN. The main 
advantage of this discrete RTNN (which is really a Jordan Canonical RNN 
model), is of being an universal hybrid neural network model with one or 

Where: Y(.), X(.), U(.) are output, state and input variables with dimen-
sions l, n, m, respectively; J(.) is a (nxn) block-diagonal weight matrix of 
the hidden layer feedback; B(.), C(.) are input and output weight matrices 
of dimensions (nxm) and (lxm), respectively; (.), (.) are vector-valued 
activation functions of respective dimensions, with functional elements 
like: saturation, sigmoid or hyperbolic tangent. The eigenvalues of the 
RTNN model must be placed in the unit circle, so some restrictions on the 
weight elements of the matrix J(.), are imposed during the learning (see 
equation (2)). 
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two feedforward layers, and one recurrent hidden layer, where the weight 
matrix J(.) is a block-diagonal one. So, the RTNN posses a minimal num-
ber of learning weights and the performance of the RTNN is fully parallel. 
The described RTNN architecture could be used as one step ahead state 
predictor/estimator and systems identifier. Another property of the RTNN 
model is that it is globally nonlinear, but locally linear. That is why the 
matrices J(.), B(.), C(.), generated by learning, could be used to design a 
controller law. Furthermore, the RTNN model is robust, due to the dy-
namic weight adaptation law, based on the sensitivity model of the RTNN, 
and the performance index, which is as follows: 

(k) = (1/2) j [ Ej(k) ]2,    j C (5)

Here the performance index (.) is nonlinear function of the weight matri-
ces of the output and the hidden RTNN layers, respectively. The general 
RTNN - BP learning algorithm, written in a vector-matricial form, is given 
by the following equation: 

W(k+1) =W(k) + W(k) + W(k-1) (6)

Where: W(.) is the weight matrix, being modified {J(.), B(.), C(.)}; W is 
the weight matrix correction { J(.), B(.), C(.)} which is defined as 

W(k) = -
W

;  is a learning rate normalized parameter's diagonal ma-

trix, and  is a momentum term normalized learning parameter's diagonal 
matrix. The momentum term of this learning algorithm is used when some 
error oscillations occur. The structure of the normalized learning and mo-
mentum rate terms with respect to the error is shown in [8]. The weight 
matrix elements update for the discrete time model of the RTNN has been 
derived and applied in [7], but here it will be expressed in vector-matricial 
form, [8], using the diagrammatic method, proposed in [11]. The weight 
update algorithm is: 

C(k) = E1(k) ZT(k); E1(k) = ’[ Y(k) ] E(k); E(k) = Yd(k) – Y(k) (7)

J(k) = E3(k) XT(k); E3(k) = ’[ Z(k) ] E2(k); E2(k) = CT(k) E1(k) (8)

vJ(k) = E3(k)  X(k) (9)
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B(k) = E3(k) UT(k) (10)

Where: J(.) , B(.) , C(.) are weight corrections of the of the learned 
matrices J(.), B(.), C(.), respectively; E(k) = Yd(k) – Y(k) is an l-error vec-
tor of the output RTNN layer, where Yd (.) is a desired target vector (plant 
output) and Y(.) is a RTNN output vector, both with dimensions l; X(.) is a 
n-state vector, and Ej (.) is a j-th error vector with respective dimension; 

’(.), ’(.) are diagonal Jacobean matrices with appropriate dimensions, 
which elements are derivatives of the activation functions. The equation 
(8) represents the learning of the feedback weight matrix of the hidden 
layer, which is supposed as a full (nxn) matrix. The equation (9) gives the 
learning solution when this matrix is diagonal, which is our case, where 
vJ(.) is the diagonal of the matrix J with dimension n.

2.1 Stability Proof of the Learning Algorithm 

The stability and the properties of the BP - RTNN learning algorithm, 
given by the equation (6), are proved by one theorem and two lemmas. 

Theorem of stability. Let the RTNN with Jordan Canonical Structure, [7], 

is given by equations (1), (2), (3), (4) and the nonlinear plant model, [8], 

is as follows: 

Xd.(k+1) = F[ Xd (k), U(k) ] (11) 

Yd (k) = G[ Xd (k) ] (12) 

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with di-
mensions l, nd, m, respectively; F(.), G(.) are vector valued nonlinear func-
tions with respective dimensions. Under the assumption of RTNN identifi-
ability made, the application of the BP learning algorithm for J(.), B(.), 
C(.), in general matricial form, described by equation (6), and the learning 
rates  (k),  (k) (here they are considered as time-dependent and normal-
ized with respect to the error) are derived using the following Lyapunov 
function, [8], [12]: 

L(k) = || J(k) ||2 + || B(k) ||2 + || C(k) ||2  (13)
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Then the identification error is bounded, i.e.: 

L(k)  - (k) |E(k)|
 2
 - (k) |E(k-1)|

 2
 + d; L(k) = L(k) – L(k-1) (14)

Where all: the unmodelled dynamics, the approximation errors and the 
perturbations, are represented by the d-term, and the complete proof of that 
theorem and two lemmas are given in [8], [12].

3 Description of the Designed Adaptive Neural 

Control Methods 

Two different adaptive neural control methods will be derived: an indirect 
adaptive neural control with I-term and a direct adaptive neural control 
with I-term. 

3.1 Indirect Adaptive Neural Control with I-term 

The block diagram of the indirect adaptive neural control is shown on 
Fig. 1. Here the indirect control is realized as a sliding mode one. The 
scheme contains identification and state estimation RTNN, an adaptive 
sliding mode controller, and an I-term. 

Let us first design the Sliding Mode Control (SMC). The stable nonlin-
ear plant is identified by a RTNN with topology, given by equations (1), 
(2), (3), (4) which is learned by the stable BP-learning algorithm, given by 
equation (6), completed by equations (7), (8), (9), (10), (11), where the 
identification error Ei(k) = Yd(k) – Y(k) tends to zero (Ei 0, k ). The 
linearization of the activation functions of the learned identification RTNN 
model, which approximates the nonlinear plant, given by (11), (12), leads 
to the following linear local plant model: 

X(k+1) = JX(k) + BU(k) (15) 

Y(k) = CX(k) (16) 

Where l=m, is supposed. The new point in the proposed sliding mode con-
trol here, with respect to the original works of Utkin, [13], [14], [15], [16], 
is that the sliding surface here is defined with respect to the plant output 
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and not to the state. Let us define the sliding surface with respect to the 
output error of reference tracking, [17]: 

                                              p 
S(k+1)=E(k+1)+ i E(k-i+1);  | i | < 1 

                                                 i=1 

(17)

Where: S(.) is the sliding surface error function; E(.) is the systems output 
tracking error; i are parameters of the desired error function; p is the order 
of the error function. The additional inequality in (17) is a stability condi-
tion, required for the sliding surface error function. The tracking error is 
defined as: 

(18) 

Where R(.) is a l-dimensional reference vector and Y(.) is an output vector 
with the same dimension. 

Fig. 1. Block-diagram of an indirect adaptive neural control system with I-term 

The objective of the SMC system design is to find a control action 
which maintains the systems error on the sliding surface which assure that 

E(k) = R(k)  Y(k) 
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the output tracking error reaches zero in p steps, where p<n. So, the con-
trol objective is fulfilled if: 

S(k+1) = 0 (19) 

The iteration of the error, defined by (18) gives: 

E(k+1) = R(k+1)  Y(k+1) (20) 

Now, let us iterate (16) and substitute (15) in it so to obtain the in-
put/output local plant model, which yields: 

Y(k+1) = CX(k+1) = C[JX(k) + BU(k)] (21) 

From (17), (19), and (20), it is easy to obtain: 

                                                       p 
R(k+1) – Y(k+1) + i E(k-i+1) = 0 

                                                         i=1 

(22)

The substitution of (21) in (22) gives: 

                                                            p 
R(k+1)–CJX(k)–CBU(k)+ i E(k-i+1) = 0 

                                                             i=1 

(23)

As the local approximation plant model, given by (15), (16), is controlla-
ble, observable and stable, the matrix J is diagonal, and l=m, the matrix 
product (CB) is nonsingular, and the plant states X(.) are smooth  non-
increasing functions. Now, from (23) it is possible to obtain the equivalent 
control Ueq (.) capable to lead the system to the sliding surface which 
yields:

                                                                    p 
Ueq(k) = (CB)

-1
[–CJX(k)+R(k+1)+ i E(k-i+1)] 

                                                                     i=1 

(24)
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Following [15], [16], the SMC avoiding chattering is taken using a satura-
tion function inside a bounded control level Uo, taking into account plant 
uncertainties. Furthermore, as the sliding surface contains the output plant 
trajectory, than the chattering is completely avoided. So the SMC U*(.) 
takes the form: 

 Ueq(k),                     if ||Ueq(k)|| < Uo 
U*(k) =

-Uo Ueq(k)/||Ueq(k)||, if ||Ueq(k)||  Uo. 
(25)

The proposed SMC copes with the characteristics of the wide class of 
plant model reduction neural control with reference model, defined by 
Narendra and Parthasarathy, [3], and represents an indirect adaptive neural 
control, given by Baruch, [18].

Let us suppose that the plant is a second order nonlinear mechanical 
plant, so we could accept p=1. In order to study the stability of the closed 
loop control system, let us accept Uo=1, and linearize the saturation func-
tion, given by (25), supposing its gain to be equal to one. Then the SMC 
yields:

U*(k)=(CB)-1 [  CJX(k)+R(k+1)+  Ec(k)]  (26) 

Where:  is a (lxl) diagonal control gain matrix. 
Now, let us add an I-term to the SMC and an offset perturbation term to 

the plant input, so to obtain an indirect control with integral action. Fol-
lowing the block-diagram, given on Fig.1, we could express the input of 
the plant as it is: 

U(k) = U*(k) + Of(k) + Ui(k)  (27) 

Where: U*(.) is the dynamic compensation control part, based on SMC; 
Of(.) is a constant offset perturbation term, taking to account all imperfec-
tions of the plant model; Ui (.) is the I-term control part, which is: 

Ui(k+1) = Ui(k) + T0 Ki Ec(k) (28) 
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Where: T0 is a period of discretization; Ki is a diagonal (lxl) I-term gain 
matrix. The substitution of the control component U*(.), given by (26), in 
(27), and then – the obtained control signal U(.) - in the linear model (21), 
taking into account (19), give us after some mathematical manipulations 
an expression for the error dynamics, i.e.:

Ec(k+1) =  Ec(k)  (CB)Ui(k)  (CB)Of(k) (29)

The equations (27), (28), could be rewritten in z-operators form and the 

closed-loop systems error dynamics could be derived as: 

Ui(z) = (z-1)
-1

T0 Ki Ec(z) (30)

(zI + ) Ec =  (CB) Ui(z)  (CB) Of(z) (31)

[(z-1)(zI + ) + T0 (CB) Ki] Ec(z) =  (z-1) (CB) Of(z) (32)

As it could be seen from the equation (32), the closed-loop systems stabil-
ity could be assured by an appropriate choice of the diagonal gain matrices 
 and Ki, respectively. It could be seen also that the effect of the I-term on 

the control error resulted in the introduction of a difference on the offset 
which reduces substantially that error, especially for constant offset, and 
accelerates the RTNN learning. 

3.2 Direct Adaptive Neural Control with I-term 

The block diagram of the direct adaptive neural control is shown on Fig. 2. 
The scheme contains identification and state estimation RTNN-1, an adap-
tive recurrent neural controller RTNN-2, and an I-term. In order to derive 
the closed-loop system dynamics, let us to linearize the plant equations 
(11), (12) and represent them in z-operation form, as it is: 

Yd(z) = Wd(z) U(z) (33)

Where Wd(z) id a plant transfer function. Following the block-diagram of 
Fig. 2, the linearized controller equation is obtained in state space form 
like this: 



104      Ieroham Baruch 

Xc(k+1) = Jc Xc(k) – Bc,1 V(k) - Bc,2 X(k) + Bc,3 R(k) (34) 

U*(k) = Cc Xc(k)  (35) 

Where: Xc (.) is a nc-dimensional state vector ( nc  l+m+n is supposed); 
U*(.) is a m-dimensional controller output vector; Jc , Cc, Bc,1, Bc,2, Bc,3, are 
(nc x nc), (m x nc), (nc x l), (nc x n), (nc x l), weight matrices, respectively 
(l=m is supposed). The l-dimensional I-term vector V(.) and the m-
dimensional plant control variable are: 

V(k+1) = V(k) + To Yd(k)  (36) 

U(k) = U*(k) + Of(k) (37) 

Where Of(.) is a m-dimensional offset vector variable. To derive the dy-

namics of the closed-loop system we need to define also the following 

statements and z-transfer functions, derived from its corresponding state 

space representations: 

Fig. 2. Block-diagram of an direct adaptive neural control system with I-term 
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Yd(z) = Wd(z) U*(z) + Wd(z) Of(z) (38) 

V(z) = I(z) Yd(z); I(z) = (zI - I)-1 To  (39) 

X(z) = P(z) U(z); P(z) = (zI - J)-1 B (40) 

U*(z) = - Q1(z) V(z) –Q2(z) P(z) U(z) + Q3(z) R(z) (41) 

Q1(z) = Cc (zI - Jc)
-1 Bc,1 ; Q2(z) = Cc (zI - Jc)

-1 Bc,2 ; Q3(z) 

=                                          Cc (zI - Jc)
-1 Bc,3

(42)

The RTNN learning BP algorithm, given by the equations (6) to (10) is 
proved to be convergent, (see the Theorem of Stability), and the RTNN 
model is proved to be stable, controllable and observable, [8], [12], so the 
identification and control errors Ei(k) = Yp(k)–Yi(k), and Ec(k)=R(k)-Yp(k)
tends to zero. The plant is supposed to be BIBO stable. So the transfer 
functions (38) to (42) are stable with minimum phase. Using (37) to (42) 
and performing some manipulations, finally yields: 

U*(z) = [I+ Q2(z) P(z)] -1 [-Q1(z) V(z) – Q2(z) P(z) Of(z) 
+

 
Q3(z) R(z)] 

(43)

{(z-1) I+ Wd(z) [I+ Q2(z) P(z)] -1 Q1(z)To} Yd(z) 

= Wd(z) [I+ Q2(z) P(z)] -1 Q3(z) (z-1) R(z) 

+Wd(z) {I - [I+ Q2(z) P(z)] -1 Q2(z)P(z)} (z-1) Of(z) (44)

The equation (44) shows that the closed loop system remains also stable, 
and it is obvious that the I-term reduces the steady-state reference and off-
set parts of the systems error, which tend to zero when k tends to infinity 
(z  1). 

4 Simulation Results 

Two examples illustrating both the indirect and the direct neural control 
schemes with I-term will be presented in the following paragraphs. 
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4.1 Example 1. MIMO Mechanical Plant Controlled by a SMC 

The plant, considered here, is a third-order nonlinear MIMO kinematics 
system whit two inputs, two outputs, three states, described by the follow-
ing equations, [19]: 

1 1 2

1 1 1

1 1 22 2 2

1 1 1

( 1) 0.9 ( )sin[ ( )]

( ) ( ) 2 ( )
2 1.5 ( )

1 ( ) ( ) 1 ( )

x k x k x k

x k u k x k
u x k u

x k u k x k
(45)

2

3

3

332

x1

)k(x
)]}k(x4sin[1){k(x)1k(x

(46)

)k(u)]}k(x2sin[3{)1k(x
213

(47)

);()(
11

kxky (48)

2 2
( ) ( );y k x k (49)

Where: x(k)=[x1(k), x2(k), x3(k)]T  represents the 3-state vector, u(k) 
=[u1(k), u2(k)]T the 2-dimensional input vector, and y(k) =[y1(k), y2(k))]T

the 2-dimensional output vector, at the instant k. The reference signal is 
sum of two sinusoids with different amplitudes and frequencies. Results of 
simulation experiments with duration of 50 seconds are shown in 20- sec-
ond-graphics. The results, obtained using the control scheme, given on 
Fig.1 and 40% constant offset (load disturbance), corrupting the plant in-
put, are shown on Fig. 2 a to i. Results, obtained by control scheme with-
out integral term and 40% constant offset, are given on Fig. 3 a to i. 

The graphics, given on Fig. 3 a, b, compare reference signals with plant 
outputs in the last 20 seconds of the control simulation. The next two 
graphics compare plant outputs with corresponding outputs of the identifi-
cation RTNN during the last 20 seconds of the plant identification (Fig. 3, 
c, d). The following two graphics, (Fig. 3, e, f), represents control signals 
in the same period of time. The next two graphics represent the Mean 
Squared Error (MSE %) of control and the MSE% of identification (Fig. 3, 
g, h), both decreasing rapidly to small values. The last graphics (Fig. 3, i) 
represents the 5 states of the system, issued by the identification RTNN 
(architecture 2, 5, 2,  0.01,  = 0.001) which are entry to the SMC. Re-
sults, obtained with a control system without I-term and a constant offset 
of 40%, are shown on Fig. 4, a – I, which could be compared with that of 
Fig. 3, a - i. As it could be seen, the system without integral action is sensi-
tive to load disturbances, and the MSE% (see Fig. 3 g) remains great, 
which means that the SMC without I-term could not compensate the offset 
at all. 
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Fig. 3. Simulation results of a SMC with I-term and a 40% constant offset; a) comparison 

between the first plant output  Y1 and R1 in the last 20 seconds of the simulation; b) com-
parison between the second plant output Y2 and R2 in the last 20 seconds of the simulation; 
c) comparison between Y1 and Yi1 of the identification RTNN in the last 20 seconds of the 
simulation; d) comparison between Y2 and Yi2 of the identification RTNN in the last 20 
seconds of the simulation; e) first control signal U1; f) second control signal U2; g) mean 
squared error of control (MSE%); h) mean squared error of identification (MSE%); i) sys-
tems state variables, estimated by RTNN. 
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Fig. 4. Simulation results of a SMC without I-term and a 40% constant offset; a) compari-

son of  Y1 and R in the last 20 seconds of the simulation; b) comparison of Y2 and R in the 
last 20 seconds of the simulation; c) comparison of Y1 and the first output Yi1 of the iden-
tification RTNN in the last 20 seconds of the simulation; d) comparison of Y2 and the sec-
ond output Yi2 of the identification RTNN in the last 20 seconds of the simulation; e) first 
control signal U1; f) second control signal U2; g) mean squared error of control (MSE%); 
h) mean squared error of identification (MSE%); i) systems state variables, estimated by 
RTNN.
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4.2 Example 2. 1-DOF Mechanical Plant with Friction Controlled 

by a 

Let us consider a 1-DOF mechanical system with friction, which general 
model, taken from [20], is given by the equation: 

.. .

o
mq fr(q, t) t k u(t)

(50)

Where: m is the mass, q(t) is the relative displacement; (t)=dq(t)/dt is the 
velocity, fr( ,t) is the friction force, u(t) is the control force, ko is the sys-
tem gain, and (t) is a bounded external load disturbance, with unknown 
upper bound d: 

0  t;d (51)

The equations, describing the behavior of the friction force, taken from 
[20], are given as: 
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The friction model have the following friction parameters, [19]:  = 0.001 
m/s; Fs

+ = 4.2 N; Fs

- = - 4.0 N; F + = 1.8 N ; F - = - 1.7 N ; cr = 0.1 m/s; 
 = 0.5 Ns/m. Let us also consider that the time of discretization is To = 0.1 

s, the system gain is ko = 8, the mass is m = 1 kg, and the load disturbance 
depends on the position and the velocity ( (t) = d1q(t) + d2 (t); d1 = 0.25; 
d2 = - 0.7). So the discrete-time model of the 1-DOF mass mechanical sys-
tem with friction is obtained in the form: 

Direct Adaptive Neural Controller 
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X1(k+1) = X2(k)  (59) 

X2(k+1) = 0.025 X1(k) – 0.3 X2(k) + 0.8 U(k) - 0.1 Fr(k) (60)

(k) = X2(k) - X1(k) (61)

Y(k) = 0.1 X1(k)  (62) 

Where: X1(k), X2(k) are system states; (k) is system velocity  and Y(k) 
is system position; k is a discrete time variable, and the friction force Fr(k) 
is governed by the equations (52) to (58) with given values of friction pa-
rameters. The reference signal is a saturated sinusoid, given by: 

r(k) = sat [ sin( k/10) ] (63)

The RTNN characteristics for this control scheme are: the RTNN-1 topol-
ogy is chosen as (1, 5, 1); the RTNN-2 topology is (7, 5, 1); the learning 
rate parameters for both RTNNs are - = 0.01,  = 0. Results of simulation 
experiments are shown in 20-seconds graphics. The results obtained using 
the control scheme given on Fig. 2 and 40% constant offset, are shown on 
Fig. 5 a-h. Results, obtained by control scheme without integral term and 
40% constant offset, for the same case, are given on Fig. 6 a-h. The 
graphic, given on Fig. 5 a, compares the reference signal with the plant 
output in the last 20 seconds of the mechanical plant control simulation. 
The next graphics (Fig. 5 b) compares the plant output with the output of 
the RTNN-1 during the last 20 seconds of the plant identification. The fol-
lowing graphics, (Fig. 5 c), represents the control signal in the same period 
of time. The graphics, given on (Fig. 5 d), represents the five states of the 
system, issued by the RTNN-1, which are entry to the control RTNN-2. 
The next two graphics represent the instantaneous error of control and the 
instantaneous error of identification (Fig. 5 e, f). The last two graphics rep-
resent the Mean Squared Error (MSE%) of control and the MSE% of iden-
tification (Fig. 5 g, h), both decreasing rapidly to small values. Results, ob-
tained with a control system without integral block, and a 40% constant 
offset, are shown on Fig. 6 a-h, given in the same order, so to be compared 
with that of Fig. 5 a-h. 

As it could be seen, the system without integral action is sensitive to 
constant load disturbances, and as it is seen in Fig. 6 g, the MSE% is 
greater, than that of Fig. 5 g., which signifies that the control compensate 
the constant offset badly.
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Fig. 5. A direct adaptive trajectory tracking control with I-term and 40% constant offset; a) 

comparison between the plant output and the reference signal; b) comparison between the 

plant output and the output of the identification RTNN-1; c) control signal; d) the five sys-

tems states, issued by the RTNN-1; e) instantaneous error of control; f) instantaneous error 

of identification; g) mean squared error of control (MSE%); h) mean squared error of iden-

tification (MSE%). 
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Fig. 6. A direct adaptive trajectory tracking control without I-term and 40% constant offset; 

a) comparison between the plant output and the reference signal; b) comparison between 

the plant output and the output of the identification RTNN-1; c) control signal; d) the five 

systems states, issued by the RTNN-1; e) instantaneous error of control; f) instantaneous er-

ror of identification; g) mean squared error of control; h) mean squared error of identifica-

tion
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5 Conclusions 

A comparative study of various control systems using neural networks is 
done. The paper proposes to use a Recurrent Trainable Neural Network 
(RTNN) with Backpropagation method of learning as a plant parameters 
identifier and state estimator. The paper applied two methods of adaptive 
neural control with integral plus state action – an indirect and a direct tra-
jectory tracking control. The first one is a Sliding Mode Control (SMC) 
with I-term where the SMC is resolved using states and parameters identi-
fied by RTNN. The second one is the direct adaptive neural control with I-
term where the control is resolved by a RTNN controller. The good track-
ing abilities of both methods are illustrated by simulation results obtained 
using a MIMO mechanical plant and a 1-DOF mechanical system with 
friction plant model. The results show that both control schemes with I-
term could compensate constant offsets and that - without I- term did not. 
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Abstract. The number of applications in the industry using the PID con-
trollers is bigger than fuzzy controllers. One reason is the problem of the 
tuning, because it implies the handling of a great quantity of variables like: 
the shape, number and ranges of the membership functions, the percentage 
of overlap among them and the design of the rule base. The problem is 
more complicated when it is necessary to control multivariable systems 
due that the number of parameters. The importance of the tuning problem 
implies to obtain fuzzy system that decrease the settling time of the proc-
esses in which it is applied, or in some cases, the settling time must be 
fixed to some specific value. In this work a very simple algorithm is pre-
sented for the tuning of a fuzzy controller using only one variable to adjust 
the performance of the system. The results are based on the relation that 
exists between the shape of the membership functions and the settling 
time. Some simulations are presented to exemplified the algorithm pro-

1 Introduction 

The implementation of a fuzzy controller is not a hard work. The knowl-
edge of the dynamic of the system can be used to find a very good estima-
tion of the rules and the sets of membership functions. But to find an opti-
mal and well tuned fuzzy controller is other history. Normally the 
methodology for tuning fuzzy controller is a heuristic work and for every 
problem it is necessary to consider some elements like: the bandwidth, the 
error in steady state, or the settling time. In some cases it is possible to use 
this information to find the optimal parameters of the controller. In the 
case of a PID controller it is necessary to find three parameters (propor-
tional gain, derivative time, and integral parameters). In the case of fuzzy 
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controllers, there are many parameters to compute like, number of mem-
bership functions used, the ranges of every function, the rules, the shape, 
the percentage of overlap, etc. [1, 2 3]. Many people prefer to use a very 
well known PID controller that a fuzzy controller due the tuning complex-
ity. Many times this is a very important reason to avoid the use in the in-
dustry of this type of “intelligent” controller.

The tuning of any controller's type implies the adjustment of the pa-
rameters to obtain a desired behavior or a good approach with a minimal 
error of the desire response. The different methods published in the area 
for the problem of fuzzy controllers' tuning use methodologies like evolu-
tionary computation [4, 5, 6, 7] and artificial neural networks [8, 9]. These 
methods search the solution according to objective functions, parameter 
estimation, gradient error, etc., but in many cases these alternatives have 
serious convergence problems and a very complex mathematical represen-
tation. The computation time is big, or it is possible that the solution com-
puted is only a local minimum of the general solution. 

In this paper a very simple method for tuning fuzzy controllers is pre-
sented using only two parameters. In this case, the paper is based in the re-
lation between the stabilization time and the range of the membership 
functions. This papers uses the results of a previous work [10] using only 
one parameter for tuning all the membership functions. The paper is struc-
tured in the following way: In section 2 the relationship that exists be-
tween the positions of the membership functions with the transfer charac-
teristic is presented. In section 3 the non-linear system used is described 
with the controller's description for the tuning. The section 4 outlines an 
algorithm of parametric tuning that modifies the operation points that de-
fine the group of membership functions. In the section 5 the results of the 
simulations are shown for different values of the tuning factor and differ-
ent graphics that show the behavior of the settling time in function of the 
tuning factors and finally the conclusions of the work. 

2 Fuzzy Controller Characterization 

The fuzzy controller's behavior, considering its answer speed, sensitive 
and reaction under disturbances can be described using the transfer charac-
teristic and the position of the operation points. This is related with the 
election of the fuzzy controller's gain dxdy /  (where y is the output and x

is the input of the system), in different regions of the domain x.
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Case 1. For a flat slope in the middle of the domain x and increasing 
slopes toward increasing |x| values, choose larger distances between opera-
tions points in the middle of domain (see figure 1). This means:

For
12

|/||/|||||
12 xx

dxdydxdyxx (1)

Case 2. For a steep slope in the middle of the domain x and decreasing 
slopes toward increasing |x| values, choose smaller distances between op-
erations points in the middle of domain (see figure 2). This means: 

For
12

|/||/|||||
12 xx

dxdydxdyxx   (2) 

Fig. 2. Relationship between the location of the membership functions and the 
transfer characteristic for the case 2. 
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Option 1 should be chosen if for small errors a slow reaction to distur-
bances of the system under control is required. Option 2 should be chosen 
if for small errors the system is supposed to be sensitive with respect to 
disturbances.

In the previous figures the values for the intervals of the membership 
function are important for the slopes and the speed of the controller re-
sponse. If the membership functions “expand” (figure 1) then the response 
is slower than a compress group of membership functions (figure 2). 

3 Dynamic System and Fuzzy Controller 

For the analysis and simulations with the tuning algorithm a second order 
system has been considered: 

1245.0

1

2
ss

    (3)

overdamped with a damping ratio 4907.1  and a natural frequency 

srad
n

/4907.1 .

The fuzzy controller designed for the control of the plant described pre-
viously is a system TISO (two inputs-one output) where the inputs are the 
error and the change of error while the output is the control action. Each 
one of the controller's variables has been divided in 5 fuzzy regions. The 
fuzzy associative memory, integrated by 25 rules, it is shown in the figure 
4.

Table 1 Controller Fuzzy variables 

Input variables Output variable 

error change of error control action 

GN: Big negative 
MN: Medium nega-

tive
Z: Zero 
MP: Medium positive 
GP: Big positive 

GN: Big negative 
MN: Medium nega-

tive
Z: Zero 
MP: Medium positive 
GP: Big positive 

DG:  Big diminution 
DP:  Small diminu-

tion
M:  Hold 
AP:  Small increase 
AG:  Big increase 
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Fig. 9. Control surface for the fuzzy controller with the membership functions under 
their initial conditions.

The membership functions were defined in triangular shape for the mid-
dle and in a trapezoidal shape in the extremes; such that always have it 
overlap in the grade of membership 5.0)(x  (figures 6, 7 and 8). 

These membership functions will be considered later as the initial condi-
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tions for the proposed algorithm. The control surface for the fuzzy control-
ler under its initial conditions is shown in the figure 9. 

The answer of the system, with a step input of amplitude 40, is shown in 
figure 10. 

3.1 Tuning Algorithm 

The objective of the tuning algorithm is to be able to manipulate, by means 
of a single variable and in a simple way, the settling time of the system, 
from the answer without controller until the response equivalent to 1/5 of 
the settling time of the answer without controller. The response must be 
fulfilled too with the constraints of small overshoots and without persistent 
oscillations, which means, a very smooth response. 

This algorithm is based on the properties of the transfer characteristic or, 
in this case, of the control surface that it allows to modify the controller's 
behavior by means of modifications in the position and support of the 
membership functions maintaining fixed the fuzzy controller's structure. 
Obtaining a slower answer for configurations with wide or expanded 
membership functions in the center (see fig. 1) and reduced in the ends, 
and the other way, a faster answer for configurations with reduced or com-
pressed membership functions in the center and wide in the ends (fig. 2). 

The tuning algorithm only modifies the membership functions of the in-
put variables and the membership functions of the output fuzzy variable 
remains constant since this disposition is only in function of a proportion 
of the range of the control action, in other words, they always remain uni-
formly spaced. 

Fig. 10. Answer of the system with the membership functions under their initial conditions. 
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3.2 Tuning Factor Selection 

The tuning factor is a number 1,0k  that determines the grade of tun-

ing adjustment obtaining for k = 0 the biggest settling time (fig. 1) and for 
k = 1 the smallest settling time (fig. 2).

3.3 Normalization of Ranges of the Fuzzy Controller’s Variables 

In this step the range of each input fuzzy variable is modified so that their 
upper and lower limits are equal to +1 and -1, respectively. 

3.4 Tuning Factor Processing 

When the range is normalized in the range between 0 and 1 the values 
can be computing using a power function, because to expand it is only 
necessary to use an exponent less than 1 and to compress an exponent 
more than 1 (see fig. 12). Recall the previous step that all the values be-
long to the interval [-1,1]. In an experimental way different values of ex-
ponents were tested (table 2) such that the new vector of operation points 
will be given by: 

)(kr

initialfinal
VopVop     (4) 

Where Vopinitial are the values normalized of the membership function in 
the x-axis and r(k) is a polynomial.

Table 2. Important values of r(k).

k r
0 1/40

0.5 1 
1 3 
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The initial coefficients of the polynomial were obtained using mean 
square method. The values of k were defined in this way to be able to 
make an estimate over all their range 1,0k . The values of r, since it is 

an exponent, they were defined considering the increasing or decreasing of 
a number that is powered to the exponent r. Remember that the goal is to 
expand (slow response) for k=0 and to compress (fast response) k=1. For 
values below r = 1/40 the answer of the system was not satisfactory and in 
the same way, for values more than r = 3. With all these elements the 
polynomial obtained was: 

   
40

1523730
)(

23
kkk

kr    (5)

This r(k) was found testing the optimal response for different dynamical 
systems (linear and non-linear) and finding the optimal parameters of the 
polynomial that fix the function for different values of k (k = 0, 0.5, 1) 
(figure 11). 

To visualize the effect of this processing it is useful the graph of curves 
of adjustment for the vectors of operation points (figure 12). The values 
that can take an operation point (positive section) are in the horizontal axis 
and in the vertical axis, the values that takes this operation point once it 
has been powered to the exponent r(k) where 1,0k .
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Fig. 12. Curves of adjustment for the operation points. 

3.5 Denormalization of the Ranges of the Fuzzy Variables 

In this step it is necessary to convert the normalized range to the previ-
ous range of the system. This can be computed only multiplying the Vop
vector by a constant factor. 

4 Results of the Simulation. The Same Gain for Both Inputs 

The cases will be analyzed for 3 different values of k, k = 0, 0.5, 1, show-
ing the effect in the membership functions of the fuzzy variables, the con-
trol surface and the graph result of the simulation. For all the analyzed 
cases it will be used as input a step function with amplitude 40, the pa-
rameters that allow evaluating the quality of the tuning are the settling 
time (considered to 98% of the value of the answer in stationary state), the 
overshoots and the oscillations. Also for all the analyzed cases the control-
ler's structure is fixed, that means, the fuzzy associative memory is the 
same in all the examples. In the simulations it is included (on-line dotted) 
the answer of the system without controller to compare with the response 
using different tunings of the controller. The controller's fuzzy variables 
and the membership functions for the initial conditions are shown in the 
figures 6, 7 and 8: error, change of error and control action respectively. 
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4.1 Case 1: Adjusting the Membership Functions 

The function r(k) takes the value r(0) = 1/40. With the tuning process the 
vectors of operation points for the fuzzy input variables are the following 
ones:

3947.59,3473.58,0,3743.58,3947.59
final

errorVop

7982.19,4581.19,0,4581.19,7982.19)(/
final

errordtdVop

Making the simulation with the controller's characteristics shown in the 
figure 13 the following answer was obtained: 

Fig. 14 Answer of the system for the case 1 with k = 0. 

with a Tuning Factor k = 0

Fig. 13. Membership functions of the fuzzy variables and control surface for k = 0. 
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In the figure 14 it is shown that with the tuning factor k = 0 the control-
ler's effect on the answer of the system, due to the tuning, is small, ap-
proaching to the answer without controller. In this case the settling time is 
the biggest that can be obtained, ts = 4.96 s.

4.2 Case 2: Adjusting the Membership Functions 

with a Tuning Factor k = 0.5. 

The function r(k) takes the value r(0.5) = 1. With the tuning process the 
vectors of operation points for the fuzzy input variables are the following 
ones:

40,20,0,20,40
final

errorVop

332.13,666.6,0,666.6,332.13)(/
final

errordtdVop

Fig. 15. Membership functions of the fuzzy variables and control surface for k = 0.5. 

Computing the simulation with the controller's characteristics shown in 
the figure 15 the following answer was obtained: 
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This case, with the tuning factor k = 0.5, is equal to operate with the ini-
tial conditions of the membership functions. The settling time is ts = 3.36 s.

4.3 Case 3: Adjusting the Membership Functions 

The function r(k) takes the value r(1) = 3. With the tuning process the 
vectors of operation points for the fuzzy input variables are the following 
ones:

7724.17,2215.2,0,2215.2,7724.17
final

errorVop

9241.5,7405.0,0,7405.0,9241.5)(/
final

errordtdVop

Computing the simulation with the controller's characteristics shown in 
the figure 17 the answer was obtained in figure 18, where the settling time 
is ts = 1.6 s and it is the less value that can be obtained.

with a Tuning Factor k = 1

Fig. 16. Answer of the system for the case 2 with k = 0.5. 

Fig. 17. Membership functions of the fuzzy variables and control surface for K = 1. 
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The controller's effect on the answer of the system has begun to cause a 
small overshoot, due the bigger compression of the membership functions. 
If the value of r(k) is increased, the settling time is not reduced and it only 
causes bigger overshoots and oscillations around the reference. 

To visualize the effect of different values of the tuning factor k over the 
settling time of the answer of the system simulations with increments 

05.0k  in the interval 1,0  were computed. The result is shown in 

figure 19. 

Fig. 20. Comparative graph of the system answers for different values of k.

Figure 20 shows the behavior of the answer of the system for incre-
ments 1.0k . The next curve to the left is the corresponding for a tun-
ing factor k = 1, with a settling time ts = 1.6 s. For each increment, begin-
ning in k = 0, a curve was plotted showing in the figure a smaller settling 
time.

Making use of the simulations, and the graphs in figures 19 and 20, it is 
possible to see that the optimal value of k for the tuning is k = 0.9. This 

Fig. 19. Settling time versus tuning factor k.
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value generates a settling time ts = 1.6 s without a great overshoot and 
without oscillations (fig. 21). 

Additionally, the fuzzy controller's performance was compared with a 
controller PID (Proportional-integral-derivative) whose parameters are the 
following ones Kp = 25, Ti = 1.35 and Td = 5, and being that the differences 
are minimum as for time of establishment and general behavior (figures 
22).

The disadvantage found in the controller PID is its inefficiency in com-
parison with the fuzzy controller since the control action generated by the 
PID can take very big values that are impossible to consider in a real im-
plementation. On the other hand, the fuzzy controller uses real range of 
values.

Fig. 21. Response of the system with k = 0.9. 

Fig. 22. Comparative graph of fuzzy controller answer versus PID.
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Considering that this is the fastest answer that can be gotten with the 
controller PID, limited to the nature of the system, that is to say, limiting 
the range of the values that can take the control action to same values that 
those considered in the fuzzy controller's definition, it can be said that the 
tuning made on the fuzzy controller is satisfactory since it allows to vary 
the time of answer with very good behavior in the whole range of the tun-
ing factor. Note that it is not evident to find three parameters of the PID for 
the optimal tuning and in the case of the fuzzy controllers it is necessary to 
increase or decrease the parameter k depending the settling time desired. 

4.4 Simulation Results. Different Gains for all Inputs 

In this case, a different gain k was considered for all inputs. The method-
ology used is exactly the same of the previous sections. The next figures 
show the stabilization time, the gain for the error k1 and the gain used for 
the derivative of the error k2 using a k of 0.01. For the axes k1 and k2 the 
value of 21 is equivalent to 1 in the figures 23, 25 and 26. Fig. 19 can be 
obtained for the case of k1=k2 in this surface (see fig. 24). 

1 2
Fig. 23. Settling time versus tuning factor k  and k .
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Fig. 24. Settling time versus tuning factor k
1
 = k

2

Fig. 25. View for tuning factor k
2

.

.

.
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Fig. 26. View for tuning factor k1

With this option the controller has other degree of freedom to control 
the response of the dynamic system. Fig. 25 shows how the effect of tun-
ing factor k2, is less important than factor k1. Keeping the factor k1=1, the 
response of the system is in the interval 1.8-2.0 secs.

5 Conclusions 

The tuning methods of fuzzy controllers include the handling of a great 
quantity of variables that makes very difficult, and many times non-
satisfactory the search of structures and good parameters. The method pro-
posed uses only one variable and operates considering the transfer charac-
teristic, or in this case the control surface that is the fuzzy controller's 
property that defines their behavior allowing that the system can response 
with bigger or smaller speed and precision. The function r(k) can be gen-
eralized to any system that uses a fuzzy controller varying the values r(0)
and r(1) as well as the coefficients of the function r(k) depending on the 
desired behavior. Another perspective is to create a self-tuning algorithm 
that modifies by itself the factors k1 and k2 to find the desired response. In 
this point, the use of fuzzy controllers presents attractive aspects for its 
implementation in real systems. 

.
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Abstract. Stability is one of the more important aspects in the traditional 
knowledge of Automatic Control. Type-2 Fuzzy Logic is an emerging and 
promising area for achieving Intelligent Control (in this case, Fuzzy Con-
trol). In this work we use the Fuzzy Lyapunov Synthesis as proposed by 
Margaliot [11] to build a Lyapunov Stable Type-1 Fuzzy Logic Control 
System, and then we make an extension from a Type-1 to a Type-2 Fuzzy 
Logic Control System, ensuring the stability on the control system and 
proving the robustness of the correponding fuzzy controller. 

1 Introduction 

Fuzzy logic controllers (FLC’s) are one of the most useful control schemes 
for plants in which we have difficulties in deriving mathematical models or 
having performance limitations with conventional linear control schemes. 

Error e and change of error e are the most used fuzzy input variables in 
most fuzzy control works, regardless of the complexity of controlled 
plants. Also, either control input u (PD-type) or incremental control input 

u (PI-type) is typically used as a fuzzy output variable representing the 
rule consequent (“then” part of a rule) [6]. 

Stability has been one of the central issues concerning fuzzy control 
since Mamdani’s pioneer work [9], [10]. Most of the critical comments to 
fuzzy control are due to the lack of a general method for its stability analy-
sis.

But as Zadeh often points out, fuzzy control has been accepted by the 
fact that it is task-oriented control, while conventional control is character-
ized as setpoint-oriented control, and hence do not need a mathematical 
analysis of stability. And as Sugeno says, in general, in most industrial ap-

N. Cázarez et al.: From Type-1 to Type-2 Fuzzy Logic Control: A Stability and Robustness

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
Study, StudFuzz 208, 135–149 (2007)
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plications, the stability of control is not fully guaranteed and the reliability 
of a control hardware system is considered to be more important than the 
stability [15]. 

The success of fuzzy control, however, does not imply that we do not 
need a stability theory for it. Perhaps the main drawback of the lack of sta-
bility analysis would be that we cannot take a model-based approach to 
fuzzy control design. In conventional control theory, a feedback controller 
can be primarily designed so that a close-loop system becomes stable [13], 
[14]. This approach of course restricts us to set-point-oriented control, but 
stability theory will certainly give us a wider view on the future develop-
ment of fuzzy control. 

Therefore, many researchers have worked to improve the performance 
of the FLC’s and ensure their stability. Li and Gatland in [7] and [8] pro-
posed a more systematic design method for PD and PI-type FLC’s. Choi, 
Kwak and Kim [4] presents a single-input FLC ensuring stability. Ying 
[18] presents a practical design method for nonlinear fuzzy controllers, and 
many other researchers have results on the matter of the stability of FLC’s, 
in [1] Castillo et al., and Cázarez et al. [2] presents an extension of the 
Margaliot work [11] to build stable type-2 fuzzy logic controllers in 
Lyapunov sense. 

This work is based on Margaliot et al. [11] work and in Castillo et al. [1] 
and Cázarez et al. [2] results, we use the Fuzzy Lyapunov Synthesis [11] to 
built an Stable Type-2 Fuzzy Logic Controller for a 1DOF manipulator ro-
bot, first without gravity effect to probe stability, and then with gravity ef-
fect to probe the robustness of the controller. The same criterion can be 
used for any number of DOF manipulator robots, linear or nonlinear, and 
any kind of plants. 

This work if organized as follows: In Section II we presents an introduc-
tory explanation of type-1 and type-2 FLC’s. In Section III we extend the 
Margaliot result to built a general rule base for any type (1 or 2) of FLC’s. 
Experimental results are presented in Section IV and the concluding re-
marks are collected in Section V.

2 Fuzzy Logic Controllers 

2.1 Type-1 Fuzzy Logic Control 

Type-1 FLCs are both intuitive and numerical systems that map crisp in-
puts to a crisp output. Every FLC is associated with a set of rules with 
meaningful linguistic interpretations, such as 
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:
l

R If 1
x is

l
F

1 and 2
x is

l
F

2 and … and n
x is

l

n
F Then w is

l
G

which can be obtained either from numerical data, or experts familiar with 
the problem at hand. Based on this kind of statement, actions are combined 
with rules in an antecedent/consequent format, and then aggregated 
according to approximate reasoning theory, to produce a nonlinear 

mapping from input space 
n

UxxUUU ...
21

to the output space W ,

where nkUF
k

l

k
,...,2,1, , are the antecedent type-1 membership 

functions, and WG
l is the consequent type-1 membership function. 

The input linguistic variables are denoted by nku
k

,...,2,1, , and the 
output linguistic variable is denoted by w .

A Fuzzy Logic System (FLS), as the kernel of a FLC, consist of four ba-
sic elements (Fig. 1): the type-1 fuzzyfier, the fuzzy rule-base, the infer-
ence engine, and the type-1 defuzzifier. The fuzzy rule-base is a collection 

of rules in the form of
l

R , which are combined in the inference engine, to 
produce a fuzzy output. The type-1 fuzzyfier maps the crisp input into 
type-1 fuzzy sets, which are subsequently used as inputs to the inference 
engine, whereas the type-1 defuzzyfier maps the type-1 fuzzy sets pro-
duced by the inference engine into crisp numbers. 

Fig. 1. Structure of type-1 fuzzy logic system

Fuzzy sets can be interpreted as membership functions 
X

u  that associ-

ate with each element x  of the universe of discourse, U , a number 
)(xu

X
in the interval [0,1]: 
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]1,0[:Uu
X

(1)

For more detail of Type-1 FLS see [17], [5], [3]. 

2.2 Type-2 Fuzzy Logic Control 

As the type-1 fuzzy set, the concept of type-2 fuzzy set was introduced by 
Zadeh [19] as an extension of the concept of an ordinary fuzzy set. 

A FLS described using at least one type-2 fuzzy set is called a type-2 
FLS. Type-1 FLSs are unable to directly handle rule uncertainties, because 
they use type-1 fuzzy sets that are certain. On the other hand, type-2 FLSs, 
are very useful in circumstances where it is difficult to determine an exact, 
and measurement uncertainties [12]. 

It is known that type-2 fuzzy set let us to model and to minimize the ef-
fects of uncertainties in rule-based FLS. Unfortunately, type-2 fuzzy sets 
are more difficult to use and understand that type-1 fuzzy sets; hence, their 
use is not widespread yet. 

Similar to a type-1 FLS, a type-2 FLS includes type-2 fuzzyfier, rule-
base, inference engine and substitutes the defuzzifier by the output proces-
sor. The output processor includes a type-reducer and a type-2 defuzzyfier; 
it generates a type-1 fuzzy set output (from the type reducer) or a crisp 
number (from the defuzzyfier). A type-2 FLS is again characterized by IF-
THEN rules, but its antecedent of consequent sets are now type-2. Type-2 
FLSs, can be used when the circumstances are too uncertain to determine 
exact membership grades. A model of a type-2 FLS is shown in Fig. 2. 

Fig. 2. Structure of type-2 fuzzy logic system
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In the case of the implementation of the type-2 FLCs, we have the same 
characteristics as in type-1 FLC, but we used type-2 fuzzy sets as member-
ship functions for the inputs and for the outputs. Figure. 3 shows the struc-
ture of a control loop with a FLC. 

Fig. 3. Fuzzy control loop

3 Systematic Design of the Stable Fuzzy Controller 

For our description we consider the problem of designing a stabilizing con-
troller for a 1DOF manipulator robot system depicted in Fig.4. The state-

variables are 
1

x - the robot arm angle, and 
2

x  - its angular veloc-
ity. The system’s actual dynamical equation, which we will assume un-
known, is as the shows in (2)[14]: 

)(, qgqqqCqqM (2)

Fig. 4. 1DOF Manipulator robot
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To apply the fuzzy Lyapunov synthesis method, we assume that the ex-
act equations are unknown and that we have only the following partial 
knowledge about the plant (see Fig. 4): 

1) The system may have really two degrees of freedom and , re-
ferred to as 

1
x and

2
x , respectively. Hence, 

21
xx .

2)
2

x is proportional to u , that is, when u increases (decreases) 
2

x in-
creases (decreases). 

To facilitate our control design we are going to suppose no gravity ef-
fect in our model, see (3). 

qml
2 (3)

Our objective is to design the rule-base of a fuzzy controller that will 
carry the robot arm to a desired position dx

1
. We choose (4) as our 

Lyapunov function candidate. Clearly, V is positive-definite. 

)(
2

1
),(

2

2

2

121
xxxxV

(4)

Differentiating V , we have (5),

22212211
xxxxxxxxV (5)

Hence, we require: 

0
2221

xxxx (6)

We can now derive sufficient conditions so that condition (6) holds: If 

1
x and

2
x have opposite signs, then 0

21
xx and (6) will hold if 0

2
x ; if 

1
x and

2
x are both positive, then (6) will hold if 

12
xx ; and if 

1
x and

2
x are both negative, then (6) will hold if 

12
xx .

We can translate these conditions into the following fuzzy rules: 
If

1
x is positive and 

2
x is positive Then 

2
x must be negative big

If
1

x is negative and 
2

x is negative Then 
2

x must be positive big
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If
1

x is positive and 
2

x is negative Then 
2

x must be zero

If
1

x is negative and 
2

x is positive Then 
2

x must be zero

However, using our knowledge that 
2

x is proportional to u , we can re-

place each 
2

x with u  to obtain the fuzzy rule-base for the stabilizing con-
troller:

If
1

x is positive and 
2

x is positive Then u must be negative big

If
1

x is negative and 
2

x is negative Then u must be positive big

If
1

x is positive and 
2

x is negative Then u must be zero

If
1

x is negative and 
2

x is positive Then u must be zero

It is interesting to note that the fuzzy partitions for 
1

x ,
2

x , and u follow

elegantly from expression (5). Because )(
212

xxxV , and since we re-

quire that V be negative, it is natural to examine the signs of 
1

x and
2

x ;
hence, the obvious fuzzy partition is positive, negative. The partition 
for 2x , namely negative big, zero, positive big is obtained similarly when 

we plug the linguistic values positive, negative for 
1

x  and 
2

x  in (5). To 

ensure that 
12

xx )(
12

xx  is satisfied even though we do not 

know
1

x ’s exact magnitude, only that it is positive (negative), we must set 

2
x  to negative big (positive big). Obviously, it is also possible to start with 
a given, pre-defined, partition for the variables and then plug each value in 

the expression for V to find the rules. Nevertheless, regardless of what 
comes first, we see that fuzzy Lyapunov synthesis transforms classical 
Lyapunov synthesis from the world of exact mathematical quantities to the 
world of computing with words [20]. 

To complete the controllers design, we must model the linguistic terms 
in the rule-base using fuzzy membership functions and determine an infer-
ence method. Following [16], we characterize the linguistic terms positive,
negative, negative big, zero and positive big by the type-1 membership 
functions shows in Fig. 5 for a Type-1 Fuzzy Logic Controller, and by the 
type-2 membership functions shows in Fig. 6 for a Type-2 Fuzzy Logic 
Controller. Note that the type-2 membership functions are extended type-1 
membership functions. 

To this end, we had systematically developed a FLC rule-base that fol-
lows the Lyapunov Stability criterion. At Section IV we present some ex-
perimental results using our fuzzy rule-base to build a Type-2 Fuzzy Logic 
Controller.
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Fig. 5. Kind of type-1 membership functions: a) positive, b) negative, c) negative 
big, d) zero and e)positive big

Fig. 6. Kind of type-2 membership functions: a) negative, b) positive, c) positive 
big, d) zero and e) negative big
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4 Experimental Results 

In Section III we had systematically develop a stable FLC rule-base, now 
we are going to show some experimental results using our stable rule-base 
to built Type-2 FLC. The plant description used in the experiments is the 
same shown in Section III. 

Our experiments were done with Type-1 Fuzzy Sets and Interval Type-2 
Fuzzy Sets. In the Type-2 Fuzzy Sets the membership grade of every do-
main point is a crisp set whose domain is some interval contained in [0,1] 
[12]. On Fig. 6 we show some Interval Type-2 Fuzzy Sets, for each fuzzy 
set, the grey area is known as the Footprint Of Uncertainty (FOU) [12], 
and this one is bounded by an upper and a lower membership function as 
shown in Fig. 7. 

Fig. 7. Type-2 Fuzzy Set 

In our experiments we increase and decrease the value of  to the left 
and to the right side having a L  and a R  values respectively to deter-
mine how much can be extended or perturbed the FOU with out loss of 
stability in the FLC. 

We did make simulations with initial conditions  having values in the 
whole circumference [0, 2 ], and the desired angle d  having values in 
the same range. The initial conditions considered in the experiments shown 
in this paper are an angle rad0  and rad

d
1.0 .

In Fig. 8 we show a simulation of the plant made with a Type-1 FLC, as 
can be seen, the plant has been regulated in around 8seg, and in Fig. 9 we 
show the graph of equation (5) which is always negative defined and con-
sequently the system is stable.
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Fig. 8. Response for the Type-1 FLC 

Fig. 9. V for the Type-1 FLC 
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Figure 10 shows the simulation results of the plant made with the Type-
2 FLC increasing and decreasing in the range of [0,1], as can be seen the 
plant has been regulated in the around of 10 seg, and the graph of (5) de-
picted at Fig. 11 is always negative defined and consequently the system is 
stable. As we can see, the time response is increasing about de value of 

is increasing.

Fig. 10. Response for the Type-2 FLC ( )1,0[ )

Fig. 11. V  for the Type-2 FLC ( ]1,0[ )
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With the variation of in the definition of the FOU, the control surface 
changes proportional to the change of , for that reason, the values of u
for 1 is practically zero, and the plant do not have physical response. 

To test the robustness of the built Fuzzy Controller, now we are going to 
use the same controller designed in Section III, but at this time, we are go-
ing to use it to control (2) considering the gravity effect as shows in (7). 

qgmlqml cos
2 (7)

At Fig. 12 we can see a simulation of the plant made with a Type-1 
FLC, as can be seen, the plant has been regulated in around 8 seg, and 
Fig.13 shows the graph of (5) which is always negative defined and conse-
quently the system is stable.

Fig. 12. Response for the Type-1 FLC

Fig. 13. V for the Type-1 FLC
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Figure 14 shows the simulation results of the plant made with the Type-
2 FLC increasing and decreasing in the range of [0,1], and the graph of 
(5) depicted at Fig. 15 is always negative defined and consequently the 
system is stable. As we can see, that if we use an adaptive gain like in [1] 
all the cases of can be regulated around 8 seg.

Fig. 14. Response for the Type-2 FLC ( )1,0[ )

Fig. 15. V  for the Type-2 FLC ( ]1,0[ )
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5 Conclusions 

As in [1] and [2], the Margaliot approach for the design of FLC is now 
proved to be valid for both, Type-1 and Type-2 Fuzzy Logic Controllers. 

On Type-2 FLC’s membership functions, we can perturb or change the 
definition domain of the FOU without losing stability of the controller; in 
the case seen at this paper, like in [1] we have to use an adaptive gain to 
regulate the plant in a desired time. 

For our example of the 1DOF manipulator robot, the stability holds ex-
tending the FOU on the domain [0,1), this same was happened in [1] and 
[2]; we proved that a FLC designed following the Fuzzy Lyapunov Syn-
thesis is stable and robust. 
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applications.  The use of new methods for handling incomplete informa-
tion is of fundamental importance in engineering applications.  This paper 
deals with the design of controllers using type-2 fuzzy logic for minimiz-
ing the effects of uncertainty produced by the instrumentation elements.  
We simulated type-1 and type-2 fuzzy logic controllers to perform a com-
parative analysis of the systems’ response, in the presence of uncertainty.

1 Introduction 

Uncertainty affects decision-making and appears in a number of different 
forms.  The concept of information is fully connected with the concept of 
uncertainty. The most fundamental aspect of this connection is that the un-
certainty involved in any problem-solving situation is a result of some in-
formation deficiency, which may be incomplete, imprecise, fragmentary, 
not fully reliable, vague, contradictory, or deficient in some other way [1].  
The general framework of fuzzy reasoning allows handling much of this 
uncertainty, fuzzy systems employ type-1 fuzzy sets, which represents un-
certainty by numbers in the range [0, 1].  However, when something is un-
certain, like a measurement, it is difficult to determine its exact value, and 
of course type-1 fuzzy sets makes more sense than using crisp sets. How-
ever, it is not reasonable to use an accurate membership function for some-
thing uncertain, so in this case what we need is another type of fuzzy sets, 
those, which are able to handle these uncertainties, the so called type-2 
fuzzy sets [2].  So, the amount of uncertainty in a system can be reduced 
by using type-2 fuzzy logic because it offers better capabilities to handle 
linguistic uncertainties by modeling vagueness and unreliability of infor-
mation.

Abstract. Uncertainty is an inherent part in controllers used for real-world 
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Recently, we have seen the use of type-2 fuzzy sets in fuzzy logic sys-
tems to deal with uncertain information. So we can find some papers em-
phasizing on the implementation of a type-2 Fuzzy Logic System (FLS) 
[3]; in others, it is explained how type-2 fuzzy sets let us model and mini-
mize the effects of uncertainties in rule-base FLSs [4].  Some research 
works are devoted to solve real world applications in different areas, for 
example, in signal processing type-2 fuzzy logic is applied in prediction in 
Mackey-Glass chaotic time-series with uniform noise presence [5]. In 
medicine, an expert system was developed for solving the problem of Um-
bilical Acid-Base (UAB) assessment [6].  In industry, type-2 fuzzy logic 
and neural networks was used in the control of non-linear dynamic plants 
[7,8].

This work deals with the advantages of using type-2 fuzzy sets in the 
implementation of a Fuzzy Logic Controller (FLC), for a real system.  It is 
a fact, that in the control of real systems, the instrumentation elements (in-
strumentation amplifier, sensors, digital to analog, analog to digital con-
verters, etc.) introduce some sort of unpredictable values in the information 
that has been collected. So, the controllers designed under idealized condi-
tions tend to behave in an inappropriate manner.  Since, uncertainty is in-
herent in the design of controllers for real world applications, we are pre-
senting how to deal with it using type-2 FLC to diminish the effects of 
imprecise information.  We are supporting this statement with experimen-
tal results, qualitative observations, and quantitative measures of errors.  
For quantifying the errors, we utilized three widely used performance cri-
teria, these are:  Integral of Square Error (ISE), Integral of the Absolute 
value of the Error (IAE), and Integral of the Time multiplied by the Abso-
lute value of the Error (ITAE) [9].

This paper is organized as follows: section 2 presents an introductory 
explanation of type-1 and type-2 FLCs and the performance criteria for 
evaluating the transient and steady state closed-loop response in a com-
puter control system.  In section 3, we are showing details of the imple-
mentation of the feedback control system used in this work, we are pre-
senting some experimental results and a performance comparison between 
type-1 and type-2 fuzzy logic controllers.  Finally, we have the conclu-
sions.

2 Fuzzy Controllers 

In the 40's and 50's, many researchers proved that many dynamic systems 
can be mathematically modeled using differential equations.  These previ-
ous works represent the foundations of the Control theory, which, in  
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addition with the Transform theory, provided an extremely powerful 
means of analyzing and designing control systems [10].  These theories 
were being developed until the 70's, when the area was called System the-
ory to indicate its definitiveness [11].  Its principles have been used to con-
trol a very big amount of systems taking mathematics as the main tool to 
do it during many years.  Unfortunately, in too many cases this approach 
could not be sustained because many systems have unknown parameters or 
highly complex and nonlinear characteristics that make them not to be 
amenable to the full force of mathematical analysis as dictated by the Con-
trol theory. 

Soft computing techniques have become a research topic, which is ap-
plied in the design of controllers [12].  These techniques have tried to 
avoid the above-mentioned drawbacks, and they allow us to obtain effi-
cient controllers, which utilize the human experience in a more related 
form than the conventional mathematical approach.  In the cases in which 
a mathematical representation of the controlled systems cannot be ob-
tained, the process operator should be able to express the relationships ex-
isting in them, that is, the process behavior. 

A FLS, described completely in terms of type-1 fuzzy sets is called a 
type-1 fuzzy logic system (type-1 FLS).  It is composed by a knowledge 
base that comprises the information given by the process operator in form 
of linguistic control rules, a fuzzification interface, who has the effect of 
transforming crisp data into fuzzy sets, an inference system, that uses them 
in conjunction with the knowledge base to make inference by means of a 
reasoning method, and a defuzzification interface, which translate the 
fuzzy control action so obtained to a real control action using a defuzzifi-
cation method [10]. 

In our paper, the implementation of the fuzzy controller in terms of 
type-1 fuzzy sets, has two input variables such as the error e(t), the differ-
ence between the reference signal and the output of the process, as well as 
the error variation e(t),

)()()( tytrte                              (1) 
)1()()( tetete                              (2) 

so the control law can be represented as in Fig. 1. 
A FLS described using at least one type-2 fuzzy set is called a type-2 

FLS.  Type-1 FLSs are unable to directly handle rule uncertainties, be-
cause they use type-1 fuzzy sets that are certain.  On the other hand, type-2 
FLSs, are very useful in circumstances where it is difficult to determine an 
exact certainties, and measurement uncertainties [2]. 
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Fig. 1. System used for obtaining the experimental results. 

It is known that type-2 fuzzy sets let us to model and to minimize the ef-
fects of uncertainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets 
are more difficult to use and understand than type-1 fuzzy sets; hence, their 
use is not widespread yet.  In [4] were mentioned at least four sources of 
uncertainties in type-1 FLSs: 
1. The meanings of the words that are used in the antecedents and conse-

quents of rules can be uncertain (words mean different things to differ-
ent people). 

2. Consequents may have histogram of values associated with them, espe-
cially when knowledge is extracted from a group of experts who do not 
all agree. 

3. Measurements that activate a type-1 FLS may be noisy and therefore 
uncertain.

4. The data used to tune the parameters of a type-1 FLS may also be noisy. 
All of these uncertainties translate into uncertainties about fuzzy set 

membership functions.  Type-1 fuzzy sets are not able to directly model 
such uncertainties because their membership functions are totally crisp.  
On the other hand, type-2 fuzzy sets are able to model such uncertainties 
because their membership functions are themselves fuzzy.  A type-2 mem-
bership grade can be any subset in [0,1], the primary membership, and cor-
responding to each primary membership, there is a secondary membership 
(which can also be in [0,1]) that defines the possibilities for the primary 
membership.  A type-1 fuzzy set is a special case of a type-2 fuzzy set; its 
secondary membership function is a subset with only one element, unity. 
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Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule base, 
fuzzy inference engine, and output processor.  The output processor in-
cludes type-reducer and defuzzifier; it generates a type-1 fuzzy set output 
(from the type-reducer) or a crisp number (from the defuzzifier).  A type-2 
FLS is again characterized by IF-THEN rules, but its antecedent or conse-
quent sets are now type-2.  Type-2 FLSs, can be used when the circum-
stances are too uncertain to determine exact membership grades such as 
when training data is corrupted by noise.  In our case, we are simulating 
that the instrumentation elements (instrumentation amplifier, sensors, digi-
tal to analog, analog to digital converters, etc.) are introducing some sort of 
unpredictable values in the collected information. 

In the case of the implementation of the type-2 FLC, we have the 
same characteristics as in type-1 FLC, but we used type-2 fuzzy sets as 
membership functions for the inputs and for the output. 

For evaluating the transient closed-loop response of a computer control 
system we can use the same criteria that normally are used for adjusting 
constants in PID (Proportional Integral Derivative) controllers.  These are 
[9]:

1. Integral of Square Error (ISE). 

0

2
ISE dte    (3) 

2. Integral of the Absolute value of the Error (IAE). 

0

||IAE dte    (4) 

3. Integral of the Time multiplied by the Absolute value of the Error 
(ITAE).

0

||ITAE dtet    (5) 

The selection of the criteria depends on the type of response desired, the 
errors will contribute different for each criterion, so we have that large er-
rors will increase the value of ISE more heavily than to IAE.  ISE will fa-
vor responses with smaller overshoot for load changes, but ISE will give 
longer settling time. In ITAE, time appears as a factor, and therefore, ITAE 
will penalize heavily errors that occurs late in time, but virtually ignores 
errors that occurs early in time. Designing using ITAE will give us the 
shortest settling time, but it will produce the largest overshoot among the 
three criteria considered.  Designing considering IAE will give us an in-
termediate results, in this case, the settling time will not be so large than 
using ISE nor so small than using ITAE, and the same applies for the 
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overshoot response.  The selection of a particular criterion is depending on 
the type of desired response. 

3 Simulation Results 

We are showing in Fig. 1, the feedback control system that was used for 
achieving the results of this paper.  It was implemented in Matlab where 
the controller was designed to follow the input as closely as possible.  The 
plant was modeled using equation (6) 

25.01005.019.027.032.0 iuiuiyiyiyiy   (6) 

The controller’s output was applied directly to the plant’s input. Since 
we are interested in comparing the performance between type 1 and type 2 
FLC system, we tested the controller in two ways:

1. One is considering the system as ideal, that is, we did not intro-
duce in the modules of the control system any source of uncer-
tainty.  See experiments 1, and 2. 

2.  The other one is simulating the effects of uncertain modules (sub-
systems) response introducing some uncertainty.  See experiments 
3, and 4. 

For both cases, as is shown in Fig. 1, the system’s output is directly 
connected to the summing junction, but in the second case, the uncertainty 
was simulated introducing random noise with normal distribution (the 
dashed square in Fig. 1).  We added noise to the system’s output iy  using 
equation (7), which in turn was introduced to the summing junction of the 
controller system.

randniyiy 05.0    (7) 
We tested the system using as input, a unit step sequence free of 

noise, ir .  For evaluating the system’s response and compare between 
type 1 and type 2 fuzzy controllers, we used the performance criteria ISE, 
IAE, and ITAE.  In table I, we summarized the values obtained for each 
criterion considering 400 units of time.  For calculating ITAE we consid-
ered a sampling time 1.0

s
T sec.

For Experiments 1, 2, 3, and 4 the reference input r is stable and noisy 
free.  In experiments 3 and 4, although the reference appears clean, the 
feedback at the summing junction is noisy since we introduced deliberately 
noise for simulating the overall existing uncertainty in the system, in con-

sequence, the controller’s inputs e  (error), and e
t

 contains uncertainty 

data.
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For each input of the type-1 FLC, we defined three type-1 fuzzy 
Gaussian membership functions: negative, zero, positive. The universe of 
discourse for these membership functions is in the range [-10 10]; their 
mean is -10, 0 and 10 respectively, and their standard deviation are 9, 2 
and 9 respectively.

For the output, we have five type-1 fuzzy Gaussian membership func-
tions: NG, N, Z, P and PG.  They are on the interval [-10 10], their means 
are -10, -4.5, 0, 4, and 10 respectively; and their standard deviations are 
4.5, 4, 4.5, 4 and 4.5 respectively. 

In the type-2 FLC, for each input we defined three type-2 fuzzy Gaus-
sian membership functions: negative, zero, positive.  In this case the fuzzy 
membership functions have uncertain mean and fixed standard deviation 
on the interval [-10 10].  For the upper membership functions we have -
10.5, -1, and 9.5 uncertain means; for the lower membership functions we 
have -9.5, 1, and 10.5 uncertain means respectively; for the fixed standard 
deviations 9, 2 and 9 respectively. 

For computing the output we have five type-2 fuzzy Gaussian 
membership functions with uncertain mean and fixed standard deviations: 
NG, N, Z, P and PG, on the interval [-10 10].  For the upper membership 
functions we have -10.25, -4.75, -0.25, 3.75 and 9.75 uncertain means; for 
the lower membership functions we have  -9.75, -4.25, 0.25, 4.25 and 
10.25 uncertain means respectively.  The fixed standard deviations: 4.5, 4, 
4.5, 4 and 4.5 respectively.

Experiment 1.  Ideal system using a type-1 FLC.

In this experiment, we did not add uncertainty data to the system, the 
system response is illustrated in Fig. 2.  Note that the settling time is in 
about 140 units of time; i.e., the system trends to stabilize with time and 
the output will follow accurately the input.  In Table I, we listed the ob-
tained values of ISE, IAE, and ITAE for this experiment.  We are showing 
in Fig. 3, 4 and 5 the ISE, IAE, and ITAE behavior of this experiment. 

Experiment 2.  Ideal system using a type-2 FLC.

Here, we used the same test conditions of Experiment 1, but in this case, 
we implemented the controller’s algorithm with type-2 fuzzy logic, its out-
put sequence is illustrated in Fig. 2, and the corresponding performance 
criteria are listed in Table I.  By visual inspection, we can observe that the 
output system response of Experiment 1, and this one, are very similar, 
they are almost overlapped. 

Using the performance criteria we can get a quantitative comparison, 
where we can observe small differences favoring Experiment 1, i.e., the re-
sults obtained using a type-1 FLC. We can observe in Fig. 3, 4, and 5 that 
using a type-1 FLC we got the lower errors. 
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Fig. 2. This graphic shows the system’s response to a unit step sequence. 

Fig. 3. In uncertainty absence, the ISE values are very similar for type-1 and type-
2 FLCs. 
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Fig. 4. In uncertainty absence, the IAE values obtained at the plant’s output are 

very similar for type-1 and type-2 FLCs. 

Fig. 5. In uncertainty absence, the ITAE values obtained at the plant’s output are 

very similar for type-1 and type-2 FLCs, in accordance with Figure 13, it is evi-

dent a type-1 FLC works a little better. 
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Experiment 3.  System with uncertainty using a type-1 FLC.

In this case, we simulated using equation (7), the effects of uncertainty 
introduced to the system by transducers, amplifiers, and any other element 
that in real world applications affects expected values.  We are showing in 
Fig. 6, the system’s response output.  In Fig. 7 and 8 are plotted the per-
formance criteria ISE, IAE, ITAE. 

Fig. 6. This graphic was obtained with uncertainty presence; compare the system’s 
outputs produced by type-1 and type-2 FLCs. 

Fig. 7. Here we can see that a type-2 FLC produces lower overshoot errors, quan-
titatively the ISE overall error of using type-2 is 9.5516 against 15.1143 of the 
overall error produced by the type-1 FLC. 



Fig. 8. In accordance with Fig. 6, IAE confirms that we obtained the best system 
response using a type-2 FLC with uncertainty presence. 

Experiment 4.  System with uncertainty using a type-2 FLC.  In this ex-
periment, we introduced uncertainty in the system, in the same way as in 
Experiment 3. In this case, we used a type-2 FLC and we improved those 
results obtained with a type-1 FLC (Experiment 3). 

4 Conclusions 

We observed and quantified using performance criteria such as ISE, IAE, 
and ITAE that in systems without uncertainties (ideal systems) is a better 
choice to select a type-1 FLC since it works a little better than a type-2 
FLC, and it is easier to implement it.  It is known that type-1 FLC can han-
dle nonlinearities, and uncertainties up to some extent.
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Evolutionary Computing for Topology 

Optimization of Type-2 Fuzzy Controllers 

Oscar Castillo, Gabriel Huesca, and Fevrier Valdez 

Abstract. We describe in this paper the use of hierarchical genetic algo-
rithms for fuzzy system optimization in intelligent control. In particular, 
we consider the problem of optimizing the number of rules and member-
ship functions using an evolutionary approach. The hierarchical genetic al-
gorithm enables the optimization of the fuzzy system design for a particu-
lar application. We illustrate the approach with the case of intelligent 
control in a medical application. Simulation results for this application 
show that we are able to find an optimal set of rules and membership func-
tions for the fuzzy system. 

1 Introduction 

We describe in this paper the application of a Hierarchical Genetic Algo-
rithm (HGA) for fuzzy system optimization (Man et al. 1999). In particu-
lar, we consider the problem of finding the optimal set of rules and mem-
bership functions for a specific application (Yen and Langari 1999). The 
HGA is used to search for this optimal set of rules and membership func-
tions, according to the data about the problem. We consider, as an illustra-
tion, the case of a fuzzy system for intelligent control. 

Fuzzy systems are capable of handling complex, non-linear and some-
times mathematically intangible dynamic systems using simple solutions 
(Jang et al. 1997). Very often, fuzzy systems may provide a better per-
formance than conventional non-fuzzy approaches with less development 
cost (Procyk and Mamdani 1979). However, to obtain an optimal set of 
fuzzy membership functions and rules is not an easy task. It requires time, 
experience and skills of the designer for the tedious fuzzy tuning exercise. 
In principle, there is no general rule or method for the fuzzy logic set-up, 
although a heuristic and iterative procedure for modifying the membership  
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functions to improve performance has been proposed. Recently, many re-
searchers have considered a number of intelligent schemes for the task of 
tuning the fuzzy system. The noticeable Neural Network (NN) approach 
(Jang and Sun 1995) and the Genetic Algorithm (GA) approach (Homaifar 
and McCormick 1995) to optimize either the membership functions or 
rules, have become a trend for fuzzy logic system development. 

The HGA approach differs from the other techniques in that it has the 
ability to reach an optimal set of membership functions and rules without a 
known fuzzy system topology (Tang et al. 1998). During the optimization 
phase, the membership functions need not be fixed. Throughout the genetic 
operations (Holland 1975), a reduced fuzzy system including the number 
of membership functions and fuzzy rules will be generated (Yoshikawa et 
al. 1996). The HGA approach has a number of advantages: 

1. An optimal and the least number of membership functions and rules are 
obtained

2. No pre-fixed fuzzy structure is necessary, and 
3. Simpler implementing procedures and less cost are involved. 

We consider in this paper the case of automatic anesthesia control in 
human patients for testing the optimized fuzzy controller. We did have, as 
a reference, the best fuzzy controller that was developed for the automatic 
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider 
the optimization of this controller using the HGA approach. After applying 
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9 
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm. 
We did compare the simulation results of the optimized fuzzy controllers 
obtained with the HGA against the best fuzzy controller that was obtained 
previously with expert knowledge, and control is achieved in a similar 
fashion. Since simulation results are similar, and the number of fuzzy rules 
was reduced, we can conclude that the HGA approach is a good alternative 
for designing fuzzy systems. We have to mention that Type-2 fuzzy sys-
tems are considered in this research work, which are more difficult to de-
sign and optimize. 

2 Genetic Algorithms for Optimization 

In this paper, we used a floating-point genetic algorithm (Castillo and 
Melin 2001) to adjust the parameter vector , specifically we used the 
Breeder Genetic Algorithm (BGA). The genetic algorithm is used to 
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optimize the fuzzy system for control that will be described later (Castillo 
and Melin 2003). A BGA can be described by the following equation: 

BGA=(Pg

0
, N, T, , , HC, F, term) (1)

where: Pg

0=initial population, N=the size of the population, T=the trunca-
tion threshold, =the recombination operator, =the mutation operator, 
HC=the hill climbing method, F=the fitness function, term=the termina-
tion criterion. 

The BGA uses a selection scheme called truncation selection.  The %T 
best individuals are selected and mated randomly until the number of off-
spring is equal the size of the population. The offspring generation is equal 
to the size of the population. The offspring generation replaces the parent 
population.  The best individual found so far will remain in the population. 
Self-mating is prohibited (Melin and Castillo 2002). As a recombination 
operator we used “extended intermediate recombination”, defined as: If x
=(xi,...xn) and y y=(y1,...,yn) are the parents, then the successor  z=(z1,...,zn)
is calculated by: 

zi=xi+ i(yi-xi)       i =1,…n (2)

The mutation operator is defined as follows: A variable xi is selected 
with probability pm for mutation.  The BGA normally uses pm = 1/n.  At 
least one variable will be mutated.  A value out of the interval [-rangei,
rangei] is added to the variable. rangei defines the mutation range.  It is 
normally set to (0.1 x  searchintervali).  searchintervali is the domain of 
definition for variable xi.  The new value zi is computed according to

zi=xi±rangei· (3)

The + or – sign is chosen with probability 0.5.  is computed from a dis-

tribution which prefers small values.  This is realized as follows 

1,02

15

0

i

i

i

i

(4)

Before mutation we set i=0.  Then each i is mutated to 1 with prob-

ability p =1/16.  Only i=1 contributes to the sum.  On the average there 

will be just one i with value 1, say j . Then  is given by 

j
2 (5)
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The standard BGA mutation operator is able to generate any point in the 
hypercube with center x defined by xi±rangei.  But it generates values 
much more often in the neighborhood of x. In the above standard setting, 
the mutation operator is able to locate the optimal xi up to a precision of 
ramgei·2

-150.
To monitor the convergence rate of the LMS algorithm, we computed a 

short term average of the squared error e2(n) using 

ke
K

mASE

Kn

nk 1

21
)(

(6)

where m=n/K=1,2,….  The averaging interval K may be selected to be 
(approximately) K=10N.  The effect of the choice of the step size parame-
ter  on the convergence rate of LMS algorithm may be observed by moni-
toring the ASE(m).

2.1 Genetic Algorithm for Optimization

The proposed genetic algorithm is as follows: 

1. We use real numbers as a genetic representation of the problem. 
2. We initialize variable i with zero (i=0). 
3. We create an initial random population Pi, in this case (P0). Each indi-

vidual of the population has n dimensions and, each coefficient of the 
fuzzy system corresponds to one dimension.

4. We calculate the normalized fitness of each individual of the population 
using linear scaling with displacement (Melin and Castillo 2002), in the 
following form: 

iff
N

ff
i

i
iii

)(min
1'

5. We normalize the fitness of each individual using: 

i

f

f
F

N

i

i

i

i

1

'

'

6. We sort the individuals from greater to lower fitness.  
7. We use the truncated selection method, selecting the %T best individu-

als, for example if there are 500 individuals and, then we select 
0.30*500=150 individuals. 
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8. We apply random crossover, to the individuals in the population (the 
150 best ones) with the goal of creating a new population (of 500 indi-
viduals). Crossover with it self is not allowed, and all the individuals 
have to participate. To perform this operation we apply the genetic op-
erator of extended intermediate recombination as follows: 

If x=(x1,...,xn) and y=(y1,...,yn) are the parents, then the successors 
z=(z1,...,zn) are calculated by, zi=xi+ i(yi-xi)  for i=1,...,n where  is a 
scaling factor selected randomly in the interval [-d,1+d].  In intermedi-
ate recombination d=0, and for extended d>0, a good choice is d=0.25,
which is the one that we used. 

9. We apply the mutation genetic operator of BGA. In this case, we select 
an individual with probability pm=1/n (where n represents the working 
dimension, in this case n=25, which is the number of coefficients in the 
membership functions). The mutation operator calculates the new indi-
viduals zi of the population in the following form: zi=xi±rangei we can 
note from this equation that we are actually adding to the original indi-
vidual a value in the interval:  [-rangei,rangei] the range is defined as 
the search interval, which in this case is the domain of variable xi, the 
sign ± is selected randomly with probability of 0.5, and is calculated us-
ing the following formula, 

1,02

1

0

i

m

i

i

i

Common used values in this equation are m=16 y m=20. Before muta-
tion we initiate with i=0, then for each i we mutate to 1 with probabil-
ity p =1/m.

10. Let i=i+1, and continue with step 4. 

3 Evolution of Fuzzy Systems 

Ever since the very first introduction of the fundamental concept of fuzzy 
logic by Zadeh in 1973, its use in engineering disciplines has been widely 
studied. Its main attraction undoubtedly lies in the unique characteristics 
that fuzzy logic systems possess. They are capable of handling complex, 
non-linear dynamic systems using simple solutions. Very often, fuzzy sys-
tems provide a better performance than conventional non-fuzzy approaches 
with less development cost. 

However, to obtain an optimal set of fuzzy membership functions and 
rules is not an easy task. It requires time, experience, and skills of the op-
erator for the tedious fuzzy tuning exercise. In principle, there is no general 
rule or method for the fuzzy logic set-up. Recently, many researchers have 
considered a number of intelligent techniques for the task of tuning the 
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fuzzy set. Here, another innovative scheme is described (Tang et al. 1998). 
This approach has the ability to reach an optimal set of membership func-
tions and rules without a known overall fuzzy set topology. The conceptual 
idea of this approach is to have an automatic and intelligent scheme to tune 
the membership functions and rules, in which the conventional closed loop 
fuzzy control strategy remains unchanged, as indicated in Figure 1. 

Fig. 1 Genetic algorithm for a fuzzy control system. 

In this case, the chromosome of a particular system is shown in Figure 
2. The chromosome consists of two types of genes, the control genes and 
parameter genes. The control genes, in the form of bits, determine the 
membership function activation, whereas the parameter genes are in the 
form of real numbers to represent the membership functions. 

Fig. 2 Chromosome structure for the fuzzy system. 

To obtain a complete design for the fuzzy control system, an appropriate 
set of fuzzy rules is required to ensure system performance. At this point it 
should be stressed that the introduction of the control genes is done to gov-
ern the number of fuzzy subsets in the system. Once the formulation of the 
chromosome has been set for the fuzzy membership functions and rules, 
the genetic operation cycle can be performed. This cycle of operation for 
the fuzzy control system optimization using a genetic algorithm is illus-
trated in Figure 3. There are two population pools, one for storing the  
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membership chromosomes and the other for storing the fuzzy rule chromo-
somes. We can see this in Figure 3 as the membership population and 
fuzzy rule population, respectively. Considering that there are various 
types of gene structure, a number of different genetic operations can be 
used. For the crossover operation, a one-point crossover is applied sepa-
rately for both the control and parameter genes of the membership chro-
mosomes within certain operation rates. There is no crossover operation 
for fuzzy rule chromosomes since only one suitable rule set can be as-
sisted.

Fig. 3. Genetic cycle for fuzzy system optimization. 

Bit mutation is applied for the control genes of the membership chromo-
some. Each bit of the control gene is flipped if a probability test is satisfied 
(a randomly generated number is smaller than a predefined rate). As for 
the parameter genes, which are real number represented, random mutation 
is applied. 

The fitness function can be defined in this case as follows: 

fi=  y (k) - r (k) (7)

where  indicates the sum for all the data points in the training set, and 
y(k) represents the real output of the fuzzy system and r(k) is the reference 
output. This fitness value measures how well the fuzzy system is approxi-
mating the real data of the problem. 



170      Oscar Castillo, Gabriel Huesca, and Fevrier Valdez 

4 Type-2 Fuzzy Logic 

The concept of a type-2 fuzzy set, was introduced by Zadeh (Melin and 
Castillo 2002) as an extension of the concept of an ordinary fuzzy set 
(henceforth called a “type-1 fuzzy set”). A type-2 fuzzy set is characterized 
by a fuzzy membership function, i.e., the membership grade for each ele-
ment of this set is a fuzzy set in [0,1], unlike a type-1 set (Castillo and 
Melin 2001, Melin and Castillo 2002) where the membership grade is a 
crisp number in [0,1]. Such sets can be used in situations where there is 
uncertainty about the membership grades themselves, e.g., an uncertainty 
in the shape of the membership function or in some of its parameters. Con-
sider the transition from ordinary sets to fuzzy sets (Castillo and Melin 
2001). When we cannot determine the membership of an element in a set 
as 0 or 1, we use fuzzy sets of type-1. Similarly, when the situation is so 
fuzzy that we have trouble determining the membership grade even as a 
crisp number in [0,1], we use fuzzy sets of type-2. 

Example: Consider the case of a fuzzy set characterized by a Gaussian 
membership function with mean m and a standard deviation that can take 
values in [ 1, 2], i.e., 

(x)=exp {– ½[(x – m)/ ]2 };  [ 1, 2] (8)

Corresponding to each value of , we will get a different membership 
curve (Figure 4). So, the membership grade of any particular x (except 
x=m) can take any of a number of possible values depending upon the 
value of , i.e., the membership grade is not a crisp number, it is a fuzzy 
set. Figure 4 shows the domain of the fuzzy set associated with x=0.7. 

The basics of fuzzy logic do not change from type-1 to type-2 
fuzzy sets, and in general, will not change for any type-n (Castillo and 
Melin 2003). A higher-type number just indicates a higher “degree of 
fuzziness”. Since a higher type changes the nature of the membership func-
tions, the operations that depend on the membership functions change; 
however, the basic principles of fuzzy logic are independent of the nature 
of membership functions and hence, do not change. In Figure 5 we show 
the general structure of a type-2 fuzzy system. We assume that both ante-
cedent and consequent sets are type-2; however, this need not necessarily 
be the case in practice.

The structure of the type-2 fuzzy rules is the same as for the type-1 case 
because the distinction between type-2 and type-1 is associated with the 
nature of the membership functions. Hence, the only difference is that now 
some or all the sets involved in the rules are of type-2. In a type-1 fuzzy 
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system, where the output sets are type-1 fuzzy sets, we perform defuzzifi-
cation in order to get a number, which is in some sense a crisp (type-0) 
representative of the combined output sets. In the type-2 case, the output 
sets are type-2; so we have to use extended versions of type-1 defuzzifica-
tion methods. Since type-1 defuzzification gives a crisp number at the out-
put of the fuzzy system, the extended defuzzification operation in the type-
2 case gives a type-1 fuzzy set at the output. Since this operation takes us 
from the type-2 output sets of the fuzzy system to a type-1 set, we can call 
this operation “type reduction” and call the type-1 fuzzy set so obtained a 
“type-reduced set”. The type-reduced fuzzy set may then be defuzzified to 
obtain a single crisp number; however, in many applications, the type-
reduced set may be more important than a single crisp number. Type-2 sets 
can be used to convey the uncertainties in membership functions of type-1 
fuzzy sets, due to the dependence of the membership functions on avail-
able linguistic and numerical information.
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Fig. 4. A type-2 fuzzy set representing a type-1 set with uncertain deviation. 

Fig. 5. Structure of a type-2 fuzzy system. 
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5 Application to Intelligent Control 

We consider the case of controlling the anesthesia given to a patient as the 
problem for finding the optimal fuzzy system for control (Lozano 2003). 
The complete implementation was done in the MATLAB programming 
language. The fuzzy systems were build automatically by using the Fuzzy 
Logic Toolbox, and genetic algorithm was coded directly in the MATLAB 
language. The fuzzy systems for control are the individuals used in the ge-
netic algorithm, and these are evaluated by comparing them to the ideal 
control given by the experts. In other words, we compare the performance 
of the fuzzy systems that are generated by the genetic algorithm, against 
the ideal control system given by the experts in this application.

5.1 Anesthesia Control Using Fuzzy Logic 

The main task of the anesthesist, during and operation, is to control anes-
thesia concentration. In any case, anesthesia concentration can’t be meas-
ured directly. For this reason, the anesthesist uses indirect information, like 
the heartbeat, pressure, and motor activity. The anesthesia concentration is 
controlled using a medicine, which can be given by a shot or by a mix of 
gases. We consider here the use of isoflurance, which is usually given in a 
concentration of 0 to 2% with oxygen. In Figure 6 we show a block dia-
gram of the controller. 

Fig. 6. Architecture of the fuzzy control system. 
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The air that is exhaled by the patient contains a specific concentration of 
isoflurance, and it is re-circulated to the patient. As consequence, we can 
measure isoflurance concentration on the inhaled and exhaled air by the 
patient, to estimate isoflurance concentration on the patient’s blood. From 
the control engineering point of view, the task by the anesthesist is to 
maintain anesthesia concentration between the high level W (threshold to 
wake up) and the low level E (threshold to success). These levels are diffi-
cult to be determine in a changing environment and also are dependent on 
the patient’s condition. For this reason, it is important to automate this an-
esthesia control, to perform this task more efficiently and accurately, and 
also to free the anesthesist from this time consuming job. The anesthesist 
can then concentrate in doing other task during operation of a patient. 

The first automated system for anesthesia control was developed using a 
PID controller in the 60’s. However, this system was not very succesful 
due to the non-linear nature of the problem of anesthesia control. After this 
first attempt, adaptive control was proposed to automate anesthesia con-
trol, but robustness was the problem in this case. For these reasons, fuzzy 
logic was proposed for solving this problem.

5.2 Characteristics of the Fuzzy Controller 

In this section we describe the main characteristics of the fuzzy controller 
for anesthesia control. We will define input and output variable of the 
fuzzy system. Also, the fuzzy rules of fuzzy controller previously designed 
will be described. 

The fuzzy system is defined as follows: 

1. Input variables: Blood pressure and Error 
2. Output variable: Isoflurance concentration 
3. Nine fuzzy if-then rules of the optimized system, which is the base for 

comparison
4. 12 fuzzy if-then rules of an initial system to begin the optimization cycle 

of the genetic algorithm. 
The linguistic values used in the fuzzy rules are the following: 

PB = Positive Big 
PS = Positive Small 
ZERO = zero 
NB =Negative Big 
NS = Negative Small 
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We show below a sample set of fuzzy rules that are used in the fuzzy in-
ference system that is represented in the genetic algorithm for optimiza-
tion.

if Blood pressure is NB and error is NB  then conc_isoflurance is PS 
if Blood pressures is PS  then conc_isoflurance is NS 
if Blood pressure is NB  then conc_isoflurance is PB 
if Blood pressure is PB  then conc_isoflurance is NB 
if Blood pressure is ZERO and error is ZERO  then conc_isoflurance is 

ZERO
if Blood pressure is ZERO and error is PS  then conc_isoflurance is NS 
if Blood pressure is ZERO and error is NS  then conc_isoflurance is PS 
if error is NB  then conc_isoflurance is PB 
if error is PB  then conc_isoflurance is NB 
if error is PS  then conc_isoflurance is NS 
if Blood pressure is NS and error is ZERO  then conc_isoflurance is NB 
if Blood pressure is PS and error is ZERO  then conc_isoflurance is PS. 

5.3 Genetic Algorithm Specification 

The general characteristics of the genetic algorithm that was used are the 
following:
NIND = 40; % Number of individuals in each subpopulation. 
MAXGEN = 300; % Maximum number of generations allowed. 
GGAP = .6; %"Generational gap", which is the percentage from the com-
plete population of new individuals generated in each generation. 
PRECI = 120; % Precision of binary representations. 
SelCh = select('rws', Chrom, FitnV, GGAP);  % Roulette wheel method 
for selecting the indivuals participating in the genetic operations. 

nation method for the selected individuals. 
ObjV = FuncionObjDifuso120_555(Chrom, sdifuso); Objective function 
is given by the error between the performance of the ideal control system 
given by the experts and the fuzzy control system given by the genetic al-
gorithm.

5.4 Representation of the Chromosome 

In Table 1 we show the chromosome representation, which has 120 binary 
positions. These positions are divided in two parts, the first one indicates 
the number of rules of the fuzzy inference system, and the second one is 
divided again into fuzzy rules to indicate which membership functions are 
active or inactive for the corresponding rule. 

SelCh = recombin('xovmp',SelCh,0.7); % Multi-point crossover as recombi- 
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Table 1. Binary Chromosome Representation.

Bit
assigned

Representation

1 a 12 Which rule is active or inactive 
13 a 21 Membership functions active or inac-

tive of rule 1 
22 a 30 Membership functions active or inac-

tive of rule 2 
... Membership functions active or inac-

tive of rule... 
112 a 120 Membership functions active or inac-

tive of rule 12 

6 Simulation Results 

We describe in this section the simulation results that were achieved using 
the hierarchical genetic algorithm for the optimization of the fuzzy control 
system, for the case of anesthesia control. The genetic algorithm is able to 
evolve the topology of the fuzzy system for the particular application. We 
used 300 generations of 40 individuals each to achieve the minimum error. 
We show in Figure 7 the final results of the genetic algorithm, where the 
error has been minimized. This is the case in which only nine fuzzy rules 
are needed for the fuzzy controller. The value of the minimum error 
achieved with this particular fuzzy logic controller was of 0.0064064, 
which is considered a small number in this application. 

Fig. 7. Plot of the error after 300 generations of the HGA. 
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In Figure 8 we show the simulation results of the fuzzy logic controller 

produced by the genetic algorithm after evolution. We used a sinusoidal 

input signal with unit amplitude and a frequency of 2 radians/second, with 

a transfer function of [1/(0.5s +1)]. In this figure we can appreciate the 

comparison of the outputs of both the ideal controller (1) and the fuzzy 

controller optimized by the genetic algorithm (2). From this figure it is 

clear that both controllers are very similar and as a consequence we can 

conclude that the genetic algorithm was able to optimize the performance 

of the fuzzy logic controller. We can also appreciate this fact more clearly 

in Figure 9, where we have amplified the simulation results from Figure 8 

for a better view.

Fig. 8. Comparison between outputs of the ideal controller (1) and the fuzzy con-
troller produced with the HGA (2). 

Fig. 9. Zoom in of figure 8 to view in more detail the difference between the con-
trollers.
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Finally, we show in Figure 10 the block diagram of the implementation of both 
controllers in Simulink of MATLAB. With this implementation we are able to 
simulate both controllers and compare their performances. 
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Fig. 10. Implementation in Simulink of MATLAB of both controllers for com-
parison of their performance. 

7 Conclusions 

We consider in this paper the case of automatic anesthesia control in hu-
man patients for testing the optimized fuzzy controller. We did have, as a 
reference, the best fuzzy controller that was developed for the automatic 
anesthesia control (Karr and Gentry 1993, Lozano 2003), and we consider 
the optimization of this controller using the HGA approach. After applying 
the genetic algorithm the number of fuzzy rules was reduced from 12 to 9 
with a similar performance of the fuzzy controller. Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm. 
We did compare the simulation results of the optimized fuzzy controllers 
obtained with the HGA against the best fuzzy controller that was obtained 
previously with expert knowledge, and control is achieved in a similar 
fashion.



178      Oscar Castillo, Gabriel Huesca, and Fevrier Valdez 

Acknowledgments

We would like to thank the Research Grant Committee of COSNET for the 
financial support given to this project (under grant 424.03-P). We would 
also like to thank CONACYT for the scholarships given to the students 
that work in this research project (Gabriel Huesca and Fevrier Valdez). 

References

O. Castillo and P. Melin (2001), “Soft Computing for Control of Non-Linear Dy-
namical Systems”, Springer-Verlag, Heidelberg, Germany. 

O. Castillo and P. Melin (2003), “Soft Computing and Fractal Theory for Intelli-
gent Manufacturing”, Springer-Verlag, Heidelberg, Germany. 

J. Holland, (1975), "Adaptation in natural and artificial systems" (University of 
Michigan Press). 

A. Homaifar and E. McCormick (1995), “Simultaneous design of membership 
functions and rule sets for fuzzy controllers using genetic algorithms”, IEEE
Trans. Fuzzy Systems, vol. 3, pp. 129-139. 

J.-S. R. Jang and C.-T. Sun (1995) “Neurofuzzy fuzzy modeling and control”, 
Proc. IEEE, vol. 83, pp. 378-406. 

J.-S. R. Jang, C.-T. Sun, and E. Mizutani (1997), "Neuro-fuzzy and Soft Comput-
ing, A computational approach to learning and machine intelligence", , Pren-
tice Hall, Upper Saddle River, NJ. 

C.L. Karr and E.J. Gentry (1993), “Fuzzy control of pH using genetic algorithms”, 
IEEE Trans. Fuzzy Systems, vol. 1, pp. 46-53.

A. Lozano (2003), "Optimización de un Sistema de Control Difuso por medio de 
algoritmos genéticos jerarquicos", Thesis, Dept. of Computer Science, Tijuana 
Institute of Technology, Mexico. 

K.F. Man, K.S. Tang, and S. Kwong (1999), "Genetic Algorithms: Concepts and 
Designs", Springer Verlag. 

P. Melin and O. Castillo (2002), “Modelling, Simulation and Control of Non-
Linear Dynamical Systems”, Taylor and Francis, London, Great Britain. 

T.J. Procyk and E.M. Mamdani (1979), “A linguistic self-organizing process con-
troller” Automatica, vol. 15, no. 1, pp 15-30. 

K.-S. Tang, K.-F. Man, Z.-F. Liu and S. Kwong (1998), “Minimal fuzzy member-
ships and rules using hierarchical genetic algorithms”, IEEE Trans. on Indus-
trial Electronics, vol. 45, no. 1. 

J. Yen, and R. Langari (1999), "Fuzzy Logic: intelligence, control and informa-
tion", Prentice Hall, Inc. 

T. Yoshikawa, T. Furuhashi and Y. Uchikawa (1996), “Emergence of effective 
fuzzy rules for controlling mobile robots using NA coding method”, Proc.
ICEC’96, Nagoya, Japan, pp. 581 



Part III Robotic Applications



Decision Trees and CBR for the Navigation System 

of a CNN-based Autonomous Robot

Giovanni Egidio Pazienza
1

, Elisabet Golobardes-Ribé
1

, Xavier Vilasís-
Cardona

1

, and Marco Balsi
2

1Enginyeria i Arquitectura La Salle, Universitat “Ramon Llull”, Pg. 
Bonanova 8, 08022 Barcelona, Spain, gpazienza@salleurl.edu,
2Dipartimento di Ingegneria Elettronica, Università “La Sapienza”, Via 
Eudossiana 18, 00184 Roma, balsi@uniroma1.it 

Abstract. In this paper we present a navigation system based on decision 

trees and CBR (Case-Based reasoning) to guide an autonomous robot. The 

robot has only real-time visual feedback, and the image processing is per-

formed by CNNs to take advantage of the parallel computation. We suc-

cessfully tested the system on a SW simulator. 

1 Introduction

Among the challenges in autonomous robotics, we find navigation in un-

structured environments with vision based algorithms. The choice for vis-

ual feedback is likely to be based more on human perception analysis, for 

which sight is the primary navigation input, rather than on technological 

criteria. Still, dealing with images allows for a highly valuable verbalisa-

tion of the processing steps guiding to the heuristic development of proce-

dures and algorithms. Yet, we find in recent references such as [1, 2] prom-

ising results, at the price, however, of a large amount of computing effort. 

A compromise is then to be found between real autonomy, robot resources 

and real-time operation. We have been working for some time to study the 

capacity of Cellular Neural Networks (CNNs) [4, 5] to break the robot vi-

sion compromise [9, 10, 3]. CNNs represent a convenient tool for real-time 

image processing for three main reasons: they are, by construction, a mas-

sively parallel system with the capability of universal Turing machines [6] 

which can be implemented directly on analog or digital VLSI devices [7, 

8]. Although CNN hardware exists, Cellular Neural Networks are often 

emulated using general purpose processors or programmable hardware. In  

G.E. Pazienza et al.: Decision Trees and CBR for the Navigation System of a CNN-Based

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
Autonomous Robot, StudFuzz 208, 181–201 (2007)
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this manner, the limitations in availability and image sizes of CNN chips 

can be overcome. This has been our strategy to develop a CNN-based vi-

sion system to control an autonomous robot with only real-time visual 

feedback in an unknown environment. We have built a robot platform on 

purpose for this problem, where all processing tasks, such as CNN emula-

tion, are carried out by a DSP, while its unique sensor is a B/W camera. 

Robot is fully autonomous, while its dimensions are kept small, 

25x16x10cm, in order to achieve the goal of real-time operation with lim-

ited resources. Our robot guidance solution splits into two processes: vis-

ual processing and guidance operation. The first is based exclusively on 

CNN calculations to extract relevant parameters from the image, whereas 

the second is in charge of finding the trajectory to be followed by the ro-

bot. The fact that both CNN emulation and the navigation system run on 

the DSP, places an upper bound to the complexity of the algorithm, be-

cause it has to be executed in real-time. Actually, our efforts have been de-

voted more to the design of suitable CNN algorithms than to the refine-

ment of the guidance procedures, for which we resorted to adapting a well 

known solution of the truck backer-upper based on a fuzzy controller [14]. 

In this scheme, we align the robot to a desired straight trajectory by deter-

mining the steering angle from the distance and the angle of the axis of the 

cart with respect to the targeted line. These two last parameters are ex-

tracted from the CNN processing of the image. This simple strategy has al-

lowed us to solve problems such as line following, obstacle avoidance and 

tracking. Still, the guidance system has often required more attention and 

tuning than initially expected. Actually, the first step of our programme 

was proving that the image processing for driving a robot in a maze made 

of black lines could be performed using CNNs [9]. During the test phase, 

we noticed that the CNN visual system was effective and quite fast, but the 

development of an adequate guidance system turned out to be a not trivial 

task. In fact, as the camera of the robot is inclined to enlarge the visual 

field, the scene may be misrepresented due to the perspective distortion; 

therefore, it was not possible to use a guidance algorithm based exclusively 

on geometric considerations. Using a fuzzy system can be effective, but 

the design procedure involves tedious heuristic tuning of membership 

functions. Moreover, as in the robot used in the experiment the DSP is in 

charge of both vision algorithm and guidance operations, it is better to get 

the second as simple as possible to dedicate resources to the image elabo-

ration. In order to obtain a more efficient solution, in this paper we present 

an alternative guiding algorithm for the line following problem based on 

decision trees, integrated by a Case-Based Learning scheme. It will be 

shown that this system improves performance, meeting the requirement of 

real-time operation. The chapter is structured as follows: first, we shall re-
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view the essentials of Cellular Neural Networks and then sketch our CNN 

vision algorithm; then, we detail the new navigation system based on deci-

sion trees inserted in a Case-Based learning structure and compare it with 

the old fuzzy-reasoning-based guidance system; finally, we comment on 

results and give conclusions.

2 Cellular Neural Networks for Image Processing

Cellular Neural Networks (CNNs) [4, 5] are arrays of dynamical arti• cial 
neurons with local connections only. This essential point has made hard-
ware implementation of large networks possible on a single VLSI chip [7, 
8]. Our solution refers to the Discrete-Time CNN model (DTCNN hereaf-
ter) [11] because it performs better under emulation without loss of gener-

ality. The DTCNN core operation is described by the following system of 

iterative equations:

where:

n is (discrete) time; 
xij is the state of the cell (neuron) in position ij, that corresponds to the 
image pixel in the same position; 

uij is the input to the same cell, representing the luminosity of the corre-

sponding image pixel, suitably normalised; 

A is a matrix representing the interaction between cells, which is local 
(as speci• ed by the fact that summations are taken over the set N of in-
dexes of neighbour cells) and space-invariant (as implied by the fact that 
weights depend on the dierence between cell indexes, rather than on 
their absolute values);
xij is the state of the cell (neuron) in position ij, that corresponds to the 
image pixel in the same position; 

uij is the input to the same cell, representing the luminosity of the corre-

sponding image pixel, suitably normalised; 

B is a matrix representing forward connections issuing from a eighbour-
hood of inputs. I is a bias. N (i, j) is the set of indexes corresponding to 

cell ij itself and a small neighbourhood e.g. cell ij and its 8 nearest 

neighbours). Due to the locality of the computation, implied by the 

summation over this neighbourhood, and spaceinvariance, implied by  
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the differences of indexes in matrices A and B in equation (1), it is suffi-

cient to define A and B for a few instances of the indexes, so that they 

can be represented by small matrices.

cloning template {A, B, I} (see examples in Table 1). Under suitable con-
ditions and with time-invariant input u, a steady state is reached. In the 
DTCNN model, states are binary to allow for faster convergence of the 
function but this does not affect the structure of the cloning templates with 
respect to the continuous-time model. Images to be processed are fed to the 
network as initial state and/or input, and the result is the steady state value, 
which realistically comes after some time steps (ranging normally from 1 
to several tens according to the task).

3 Generalities on the Problem

3.1 Brief Description of the Robot Pasqual8

Although in this paper we present only a SW simulation of our system, in a 
near future we plan to implement it on a small autonomous robot called 
Pasqual8 we have already been employing to test other CNN algorithms 
[3]. Therefore, in this chapter we wish to give a rough idea of the hardware 
of the robot, above all to consider its limitations that must be taken into ac-
count during the development of the navigation algorithm.

The main part of Pasqual8 is the processing board, hosting some RAM, 
a TMS320C32 DSP from Texas Instruments, which emulates the CNNs, 
and a FLEX10K20 FPGA from Altera whose task is to interface a digital 
B/W camera that is the only sensor of the robot. The control algorithm, 
which is in charge of calculating the correct steering angle using data com-
ing from the image processing, is implemented on the same DSP where the 
CNN emulator runs. Therefore, the less complex the control algorithm is, 
the faster the CNN emulation results because the two processes cannot be 
done in parallel. With a 40 MHz clock, the board is able to process about 4 
64x64 pixel images per second. To sum up, Pasqual8 is not an elaborate 
robot but our aim is to show how such a simple hardware with no sensors, 
apart from a B/W camera, can execute complex tasks. Nevertheless, this 
simplicity constitutes a boundary for the complexity of both the visual 
processing and the guidance algorithm. 

The operation performed by the network is fully defined by the so-called 
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3.2 A Fuzzy-Based Navigation System for Pasqual8

For the sake of simplicity, at the beginning we chose to implement a quite 
standard fuzzy controller inspired by the solution to the truck backer-upper 
problem [14]. The controller is fed with the the distance Xc from the centre 
of the front wheels to the line to be followed, and with the angle Ath made
by the axis of the robot and the line (see figure 1). In the most-simple ver-
sion, this fuzzy system has 15 rules that allow to compute the steering an-
gle Ast. The consequent sets are simplified to singletons for simpler on-line 
implementation, and the values for the singletons are adjusted according to 
the robot platform steering capabilities. There is no systematic way to de-
termine such values, and usually they must be tuned experimentally. For 
example, we observed that a good solution is to choose 7 consequents for 
Ast that are 0 for Zero and ± 15, 30, 60 for Small, Medium, Large 

Left/Right respectively. When a line is in sight, the robot calculates the 

values assumed by of Xc and Ath and applies the fuzzy algorithm in order 

to align itself on the line as fast as possible.

Fig. 1. Representation of the alignment positioning parameters. 

As mentioned in the introduction, some aspects of the fuzzy system are 
improvable. In the first place, the image processing needed to get Xc and
Ath is not trivial, and several templates must be used to obtain the correct 
parameters; consequently, the final CNN algorithm results rather slow and 
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it may be the bottleneck of the whole process. Then, establishing fuzzy sets 
is a heuristic process and it may be long and not accurate. In addition, this 
mechanism is not efficient because the robot calculates the steering angle 
every time the camera takes a new image although the previous informa-
tion could be stored and used again. Last but not least, the parameter fuz-
zyfication and the application of fuzzy algorithm implies an excessive use 
of the DSP that can affect the image processing. As a result, this system re-
sults to be unsatisfactory and it must be substituted by a faster method, 
with a simpler CNN processing, so simple as to be implementable on a 
DSP, and, if possible, based on experience.

4 A New Approach to the Problem 

4.1 CNN Visual Processing

It follows from section 2 that the image processing is based on the action 
of a sequence of templates over the image in the manner of a ‘CNN Uni-
versal Machine’ algorithm: all templates used in the algorithm come from 
the standard library [12]. As we mentioned in the introduction, our purpose 
is to drive an autonomous robot in a maze made of black lines using only 
the information coming from a B/W camera. Basically, the aim of the vis-
ual algorithm is to get useful features from the image of a line in order to 
estimate its slope. For this purpose we devise the necessary sequence of 
actions to be taken on the image to obtain the required result, while check-
ing they can be performed by CNN templates. We said previously that one 
of the drawbacks of the fuzzy navigation system is the complexity of the 
CNN visual algorithm needed to get the parameters required. One of the 
aims of the new navigation system is to simplify the CNN algorithm, and 
in this section we show the new visual processing whose usefulness will be 
clearer after the reading of section 4.3.

First of all, we start by preprocessing the image taken by the camera 
with the so-called Small Object Remover template to make a preliminary 
cleaning and binarisation (Figure 2 (a) and (b)).

Next step consists in obtaining the line position and orientation in order 
to establish the right angle the robot must turn to keep staying on the line. 
If the image contains at most one line, its direction can be extracted by 
projecting the line onto the horizontal and vertical axis by means of the so-
called Hole Detection cloning template. Operations of such templates, with 
reference to horizontal holes (vertical direction), at an intermediate and 
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Fig. 2. Image taken from the actual camera with size 64x64 pixels (a), cleaning 
and binarisation (b), hole detection intermediate result (c), final result (d) 

final stage of processing are depicted in Figure 2(c,d). It is apparent that 
besides getting the desired projections, we can gain from intermediate re-
sults also the information about which extreme is closer to the lower bor-
der of the image. As shown in the next section, these data are su cient to 
compute direction and position of the line with the maximum precision al-
lowed by image definition.

Table 1. Templates used in the processing stage 

4.2 Navigation as a Classification Problem

As shown in section 4.1, after the CNN processing two images are avail-
able, each containing a projection of the line onto an axis. Moreover, it it is 
known which extreme of the line is closer to the lower border and this 
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information can be used to establish if the angle the line forms with the 
horizontal axis is positive or negative. Although we worked in the follow-
ing examples with 15x15 pixel images, the algorithm we are going to illus-
trate is applicable to images of any size. There is no loss of generality in 
taking into consideration small images, but by working this way, the sys-
tem can be tested in a more accurate way. Moreover, we take into account 
3 pixel-width lines to simplify the test phase, but also this hypothesis can 
be removed without problems. The main idea of this method is to classify 
all possible examples according to the slope of the line in the image. It 
means that we must extract useful information from all the images in the 

is an angle) to that image. In this way we no more try to measure the slope 
of a line geometrically, but we deal with the topic exactly as a 

method allows faster processing with respect to the fuzzy system. More-
over, in this case the perspective distortion can be discarded without con-
sequences because the training samples will be affected by the same 
amount of distortion of the images actually seen by the robot. Finally, as 
we will see in section 5, the system is able to improve with experience.

4.3 Use of the Decision Trees

A way to implement this new approach to the navigation problem, is em-

ploying the decision trees. The decision tree algorithm we use is ID3 [15], 

which is a method to perform supervised batch inductive learning and 

classification tasks. It is simple yet powerful, and these characteristics 

make it suitable for our system. The first step to design the classification

system consists in creating the training set. There are about 600 possible 

ways in which a 3 pixelwidth line can appear in a 15x15 pixel image: we 

stored them in a database and processed the images with CNNs in order to 

get the projections onto the axes. Next step is choosing an efficient repre-

sentation of features (examples) for the classification system, for instance 

deciding the number of attributes for each feature and how to relate them 

with the image. The first idea was associating each pixel of the projections 

with an attribute, creating a feature of 30 (15+15) attributes. As images are 

binary, the resulting tree is binary as well. Unfortunately, this way of oper-

ating has some drawbacks. Firstly, the size of features grows quickly as the 

image gets bigger (for example a 64x64 pixel image would require 128 at-

tributes) and this might cause problems with data storage; secondly, 

searching in binary trees is not efficient because of their depth; thirdly, a 

mechanism to relate each pixel with its neighbors lacks, and so the infor-

mation about the width of the line is lost. To sum up, we need to code the 

database, trying to codify it in some way, and finally associate a label (that 

classification problem. Generally speaking, the intrinsic simplicity of this 
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information in a more efficient way. We can overcome the problem by 

clustering the pixels, adding their values and considering the sum as one 

attribute. An example of this method is illustrated in Figure 3. Thanks to 

the clustering, a feature has less attributes than before, so the same infor-

mation can be stored and recalled quicker. Moreover, clustering allows to 

relate different pixels and this may result useful in many situations. For in-

stance, pixels belonging to a projection usually have at least one neigh-

bour, whereas pixels with no neighbours come probably from a spot in the 

image. We can discern this behaviour by codifying the information as il-

lustrated before. A further advantage of clustering is that trees are no more 

binary, therefore searching in the tree is faster than before. Note that all the 

attributes of a feature range in the same interval (from 0 to the number of 

features clustered) so a normalization of values is not necessary. By clus-

tering 3 pixels in each projection, every image can be represented by a 

feature of 11 attributes: 5 for the horizontal projection, 5 for the vertical 

projection and 1 for the inclination of the line.

Fig. 3. The horizontal projection of a line (a), its coding in a one-pixel one attrib-
ute feature (b), clustering of three pixels (c) 

The last attribute is necessary because two different images can have the 
same projections. For example, Figure 4 shows three images with the cor-
respondent features below. Line (a) and line (c) have the same projections 
but different slope. The only way to discern between them is looking at 
attribute 11, which is 1 if the angle of the line with respect to the horizontal 
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is below 90º and 2 otherwise. Once defined how to build the features, we 
must focus our attention on the relation between decision trees and robot 
guidance. Every image in the training set is associated with a class that, in 
our system, corresponds to an angle. Like in the fuzzy system, we consid-
ered 7 possible angles the robot can steer associating them with labels Zero 
and Small, Medium, Large Left or Right respectively. The values of the 
classes (that is, the angles) depend on the position of the camera and the 
perspective distortion. When a line is in sight, the CNN-based vision sys-

tem processes the image and passes the results to the controller, that looks 

in the tree for the class the line belongs to and transmits the corresponding 

angle to the actuator. 

Fig. 4. Each row contains a different line, its projections on the axes and the corre-
spondent feature 

5 Incremental Learning

5.1 Case-Based Reasoning

In the previous section we assumed that all possible images were known 
and stored in a database, but this hypothesis is not always verified. On the 
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contrary, usually the robot does not know what it is going to see. More-
over, broadly speaking, a robot navigation system needs to be able to learn 
and operate in real-time in order to be capable of continual adaptation to 
changes in the environment. In conclusion, we wish our system to be able 
to learn incrementally by acquiring new knowledge. A powerful method to 
implement this behaviour is using Case-Based Reasoning (CBR hereafter), 
which integrates in one system two different characteristics: machine 
learning and problem solving capabilities. CBR uses a human-inspired phi-
losophy: it tries to solve new cases by using previously solved ones. The 
process of solving new cases also updates the system providing new in-
formation and new knowledge to the system. This new knowledge can be 
used for solving other future cases. The basic method can be easily de-

old solved cases similar to the new one. Then, in the second phase, the sys-
tem tries to reuse the solutions of the previously retrieved cases for solving 
the new case. Next, the third phase revises the proposed solution. Finally, 
the fourth phase retains the useful information obtained while solving the 
new case. Basically, a new problem is matched against cases in the data-
base, and one or more similar cases are retrieved. A solution suggested by 
the matching cases is then reused and tested for success. Unless the re-
trieved case is a close match, the solution may have to be revised produc-
ing a new case that can be retained.

Fig. 5. Cycle of CBR 

One key point in the whole algorithms is the concept of most similar 

case used in the retrieval phase of CBR. The definition of this concept de-
termines which stored cases are retrieved as the bases of the classification 
process of the new cases being solved. In this work, the notion of similar-
ity between two cases is computed using functions based on distance met-
rics. The most used similarity function is the Nearest Neighbour Algorithm 

scribed in terms of its four phases (see Figure 5). The first phase retrieves
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(NNA). The NNA computes the similarity between two cases using a 
global similarity metric. In this work, the practical implementation of the 
NNA is the Minkowski metric (see Table 5.1). This metric admits several 
values for r parameter. We use r=1 (Hamming distance), r=2 (Euclidean 
distance), and r=3 (Cubic distance). Case x and Case y are two cases 
(whose similarity is computed), F is the number of features that describes 
the case, and xi, yi are the value of the ith feature of cases Case x and Case

y respectively. Detailed descriptions of CBR can be found in [16–18].

Table 2. Similarity functions based on distance metric 

In order to apply the CBR algorithm, we split the database into two sets: a 
training set and a test set. In this way, we can simulate an incomplete 
knowledge of the possible images the robot can see. In this phase we can 
appreciate the benefit of knowing all the possible ways the line can be seen 
by the robot; thanks to this fact, we can test our system reliably. Now the 
database is constituted by the training set, whereas the test set is used to 
measure the reliability of CBR algorithm. As far as the retrieve phase is 
concerned, we used the Minkowski metric of first order (Hamming dis-
tance) to determine the similarity between two attributes. In spite of its 
simplicity, it is the most suitable method for this task because all the at-
tributes, except for the one indicating the slope of the line, have the same 
importance and range in the same interval. We must compare a new case 
only with the samples in the training set that have the same value of attrib-
ute 11, otherwise we may make a mistake. For example, considering the 
Hamming distance, the feature corresponding to image (c) in Figure 4 is as 

difference), but the image itself is far more similar to image (b) than to im-
age (a). In our system, the reuse phase consists in finding in the database 
the set of cases similar to the new case, and assigning to it the class most 
present in the set. For the nature of the problem, our system does not need  

similar to the first as to the second (in both the case it has just one pixel of 

5.2 Application of CBR to Our Navigation System
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a revision of the solution proposed. Finally, the new feature (that is, the 
new case and the class deduced) is added to the database and a new tree is 
created.

6 Extensions of the Navigation System to Other Tasks

6.1 Obstacle Avoidance

The navigation system presented in this paper can be also used to avoid 
obstacles and move the robot in a corridor without colliding with the walls. 
In order to do this new task, it is necessary to change the way in which the 
sequence of monocular images is processed, allowing to localize the object 
(or the wall) through the identification of significant parameters. For ex-
ample, if there is a great contrast between the ground and the object, the 
gradient of the brightness assumes high values on the border of the object. 
This hypothesis is often true, therefore we can detect the obstacle by just 
calculating the gradient of brightness and looking for its maximum. We 
outline the new CNN image processing in Figure 6.1. Panel (a) is shows a 
wall seen from the robot point of view. It is apparent how noisy the image 
is, so the first template to be applied is the Small Object Remover that
cleans and binarises the image. Subsequently, in order to detect borders, 
we use the Gradient template, whose result is depicted in Figure 6.1 (c).

Fig. 6. Example of image processing: junction between a wall and the floor (a), 
binarisation (b), image obtained by application of Gradient Template (c) 

Thanks to the addition of just one template in the algorithm, the robot is 
able to recognize the border of the wall that is nothing but a line. Conse-
quently, we can use the navigation system showed before to establish the 
right steering angle, but now there is a difference with respect to the previ-
ous case: we do not want to follow a line, but to avoid it. It means that is 

necessary to change the values of the classes, and increment slightly the 

turning angles to avoid hitting the wall. The process is exactly the same 
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when an object is involved, but in this case the border line will not take up 

the whole visual field.

6.2 Crossing Detection

A further extension of this navigation system is the case of crossing detec-
tion. Also in this example we must change the visual processing for an-
other one, and the proposed solution is illustrated in Figure 6.2. If neces-
sary the image can be preprocessed as usual employing the Small Object 

Remover template to get a quasi-noiseless crossing. Then, in order to dis-
cern the different lines that constitute the crossing according to their slope, 
we employ a set of directional filters. Its way of operating can be under-
stood looking at the Figure 6.2, where the action of the ApproxHorizontal 
Line Detector template is represented, whose purpose is detecting ap-
proximately horizontal lines. By modifying the positions of the elements of 
the B template, namely rotating B, the template can be sensitized to other 
directions as well. As the bandwidth of a single filter is about 90º, the se-
quence of 4 templates covers the whole visual field. In Figure 6.2 (b) and 
6.2 (c) are depicted the images resulting after the application of the Ap-
proxHorizontal filter and an ApproxDiagonal filter.

It is apparent that the lines extracted are incomplete that is, they are af-
fected by noise, so their projections may not match exactly with those used 
to train the system. Anyway, the mechanism of clustering of several pixels, 
explained in 4.3, makes our system quite robust, so that this small amount 
of noise does not represent a problem. At the end of the processing all the 
lines belonging to the crossing are detected, and the slope of each one can 
be determined as explained in the previous sections.

Fig. 7. Crossing detection: original image (a), after the application of the Approx-
Horizontal Line Detector (b), ApproxDiagSWNE Line Detector (c) 
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Fig. 8. ApproxHorizontal Line Detector: example of the effects of the template on 
lines with various orientations. Original image (a), result (b) 

7 Results

7.1 Vision Algorithm

The vision algorithm resulted robust enough to the effects of a small 
change of the brightness, and little spots on the ground are usually elimi-
nated by the Small Object Remover template. We can foretell that when 
the algorithm will be implemented on Pasqual8, the CNN processing is 
still the bottleneck of the whole algorithm in spite of the fact that it implies 
only 3 templates. This is a consequence of the CNNs emulation on a DSP, 
but we are working to move the CNN emulation from the DSP to the 
FPGA so as to speed up the image processing. For example, in [19] is 
shown that the FPGA can emulate CNNs up to 9 times faster than this DSP 
can do (Pasqual8 can process about 4 images per second, as mentioned in 
section 3.1). This means that moving the emulation to the FPGA, we 
would be able to enlarge the images or increment the resolution going on 
processing the same number of images per second, or decide to use the 
same class of images but processing up to 36 images per second.

7.2 Navigation System

An exhaustive study of performances using a fuzzy-based guide system 

can be found in [10], so we will analyse in detail only the guidance system 

based on decision trees. As we said in 4.3, we took into consideration 

15x15 pixel images in which a 3 pixel-width line is drawn. We found heu-

ristically that there are about 600 possible ways to focus such a kind of 
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line, and all the possibilities, properly classified according to the slope of 

the line, were stored in a database. Then, we split the database into a train-

ing set and a test set, building a decision tree with the samples of the train 

set. Finally, we tested the system varying the dimension of the training set, 

observing how many cases belonging to the test set were classified cor-

rectly. Due to the small number of instances, we implemented a k-fold 

cross-validation test, with k ranging from 5 to 50. When cases in the test 

set were more than examples of the training set, we used an holdout test, 

varying the size of the test set from 55% to 95% of total instances. The test 

was repeated removing the CBR mechanism (that is, classifying the exam-

ples using only the tree) so to observe how much it influences the final re-

sult. Results are depicted in the Figure 9. This result can be improved in a 

very simple way. Sometimes a leaf has the value ”unknown” when there 

are no examples in the training set corresponding to that path in the tree. In 

this case, we could assign to that example the value of a neighbour leaf. 

This method is not effective as the CBR, but can increase the amount of 

matchings. Obviously, the number of well-classified cases becomes larger 

when the percentage of training set samples on the total increases. In par-

ticular, when the training set is composed of 95% of the total examples, 

more than 85% of the test set samples are classified correctly. 

Fig. 9. Experimental results. On the x-axis there is the percentage of the total ex-
amples belonging to the training set; on the y-axis there is the percentage of the 
samples in the test set classified correctly 



Decision Trees and CBR for the Navigation System       197

There are two reasons because not all the test set is well-classified: first, 

when the number of test samples is low, few errors can affect considerably 

the final result; second, due to the small quantity of total examples, the 

system can suffer from overtraining. This problem can be overcome just 

adding more samples (for example noisy images well-classified) to the 

original database so to characterize better the training set. When the exam-

ples of the training set constitutes 66% of the total, 4 out of 5 cases in the 

test set are classified correctly. Furthermore, when the training set is far 

smaller than the test set, the percentage of well-classified instances is about 

70%. It means that when the system is fed with just 120 samples chosen 

randomly, it is capable to classify correctly about 350 of the remaining ex-

amples. The dashed line in the figure represents the same system without 

the CBR mechanism. As only the decision tree is used, performances are 

worse than the previous system, and the difference is larger as the training 

set gets smaller. Looking at the figure, we can realize that also when the 

training set is very large, the CBR improves the performances of the sys-

tem significantly. The CBR is absolutely necessary when the training set is 

a small part of the whole set of examples, because without it only 35% of 

the instances are classified correctly. We never obtained trees deeper than 

7 levels, which it means that searching is efficient and fast. The last 

significative thing is that when the system makes a mistake during the clas-

sification, it assigns to the example a class neighbour of the correct one. 

For instance, if the right class for an example is “Large Right”, the system 

could classify erroneously the example as “Medium Right”, but it will to 

that example a class like “Medium Left”. This aspect is very important 

during the guide of the robot: it means the turning angle will never be very 

different from the correct one.

7.3 Robot Simulator

Finally, we tested the behaviour of the robot by means of a simulator that 

takes into consideration mechanical characteristics of the robot like veloc-

ity, height, inclination and visual field of the camera to make the simula-

tion as reliable as possible. The simulator is fed with a map containing the 

path that the robot has to follow. It able to see the environment from the 

robot point of view, and processes the images as the robot would do. As 

we said in 4.3, the values associated to the classes depend on the position 

of the camera. For example, in this case the camera was inclined by 15º

with respect to the flor and an adequate set of angles, found experimen-

tally, was (0, ±15, ±30, ±50). Figure 10 shows a test path drawn in black 

and the trajectory of the robot in blue. It is possible to appreciate that the 
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robot, starting from a random point, is able to find the line and walk on it. 

Due to its mechanic characteristics, the robot cannot steer more than 50º, 

so, when it finds an angle of 90º, it needs to turn more than one time to be 

aligned with the line after the bend. It can be possible to appreciate that the 

robot is almost always on the line, apart from a couple of points in which it 

turns 15º instead of going straight ahead. The robot cannot steer more than 

50º so, when it finds a right angle, it needs turn just before the bend and not 

in correspondence with it. 

Fig. 10. Simulation of the line following. 

Finally, in the Figure 11 is shown another simulation in which all the pa-
rameters are set exactly as before, but the values of the angles (that is, the 
classes) are: 0, ±5, ±10, ±30. It is evident that these values are not ade-
quate for this problem, although the robot is able to reach the line and be-
gin to follow it. The problem comes when the angle gets bigger, because 
the robot cannot turn more than 60º degrees.

To test the algorithm with obstacles and crossings we can use the same 
simulator, just changing the CNN processing as showed before. 
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.

Fig. 11. Line following with wrong values for the classes 

8 Conclusions

We have shown how a combination of soft computing techniques provides 
a powerful solution to develop a purely visual robot guidance system. On 
one hand Cellular Neural Networks prove to be sufficient to extract the 
relevant parameters from images in an efficient and simple manner. 
Though at present our CNN implementation lies on a DSP processor, we 
are currently involved in a project concerning the emulation of CNNs on 
an FPGA that should allow a faster processing of the image. However 
CNNs only show their real capabilities in hardware form. 

As far as the navigation system is concerned, we can say that decision 
trees are a good tool to deal with the problem. Results are encouraging and 
can improved just reclassifying the images in the database. Building a de-
cision tree is quite fast in comparison with other methods, and the CBR 
mechanism does not take much time. While in the fuzzy system perspec-
tive distortion causes some imperfections of the guide algorithm, using de-
cision trees this do not happens, because both images in the train set and 
images in test set are affected by the same amount of distortion. Finally, 
the tree can be stored in the limited memory of an embedded system with-
out any problem.
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In conclusion, the architecture proved effective for the task considered. 
In the near future we will implement the same algorithm on Pasqual8, and 
our aim is to apply our studies to real life problems. 
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Abstract.  Intelligent Agents have originated a lot of discussion about 
what they are, and how they are different from general programs. We de-
scribe in this paper a new paradigm for intelligent agents. This paradigm 
helped us deal with failures in an independent and efficient way. We pro-
posed three types of agents to treat the system in a hierarchic way. A new 
way to visualize fault tolerant systems (FTS) is proposed, in this paper 
with the incorporation of intelligent agents, which as they grow and spe-
cialized create the Multi-Agent System (MAS). The MAS contains a di-
versified range of agents, which depending on the perspective will be spe-
cialized or evolutionary (from our initially proposal) they will be 
specialized for the detection and possible solution of errors that appear in 
an FTS). The initial structure of the agent is proposed in [1] and it is called 
a reflected agent with an internal state and in the Method MeCSMA [2].

1 Introduction

At the moment, the approach using agents for real applications, has 
worked with movable agents, which work at the level of the client-server 
architecture.  However, in systems where the requirements are higher, as in 
the field of the architecture of embedded industrial systems, the idea is to 
innovate in this area by working with the paradigm of intelligent agents. 
Also, it is a good idea in embedded fault tolerant systems, where it is a 
new and good strategy for the detection and resolution of errors.
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The main goals of the present research work were the following:
To create a new visualization tool of the application of intelligent 
agents, in the fault tolerant systems for embedded systems.
To create a model, that will help the programmers to create profiles in 
embedded circuits, according to utility, by means of, Intelligent Agents
The reflected agent with an internal state sets out the general structure of 

the recovery Intelligent Agent for Fault tolerant Systems in Distributed 
Systems, whit three types of intention agents.

1.1 Where do Agents Come From?

Agents have their origins in four different research areas: robotics, 
artificial intelligence, distributed systems, and computer graphics.

Agents working in robotics and artificial intelligence were originally 
strongly interrelated. Robots such as SHAKEY were programmed to ex-
hibit autonomous behavior in well-defined environments, and laid the 
groundwork for AI planning systems to this day. The first software agent 
was probably ELIZA [12], a program which could engage in a conversa-
tion with a user. Another influential program, SHRDLU [13], allowed a 
person to have a conversation with a simulated robot.

The notion of multi-agent systems was brought to the fore-front by 
Marvin Minsky in his work on the “Society of Mind” [14]. His vision was 
that a complex system such as the human mind should be understood as a 
collection of relatively simple agents, each of which was a specialist in a 
certain narrow domain. Through structures called K-lines, agents would 
activate each other whenever their context became relevant.

The work of Minsky showed remarkable vision, but was ahead of its 
time since software complexity had not yet reached the level where the ad-
vantages of such structures would have a practical impact.

However, the idea of decomposing a complex system into simple agents 
found willing takers in robotics. Frustrated with the complexity of robots 
built around general and thus large homogeneous software systems, Rod-
ney Brooks [18] proposed a radically different design. In his view, intelli-
gent and complex behavior would be emergent in the interplay of many 
simple behaviors. Each behavior is a simple agent whose activation is de-
cided by a control architecture. Complex general vision systems were re-
placed by simple detectors specialized in particular situations, and actions 
were taken based on very simple rules. Brooks showed that using this ap-
proach, one could very easily build robust autonomous robots, which had 
not been possible otherwise [9] [10] [11]. 



Intelligent Agents in Distributed Fault Tolerant Systems      205 

1.2 Agents

Let's first deal with the notion of intelligent agents. These are generally de-
fined as "software entities", which assist their users and act on their behalf. 
Agents make your life easier, save you time, and simplify the growing 
complexity of the world, acting like a personal secretary, assistant, or per-
sonal advisor, who learns what you like and can anticipate what you want 
or need. The principle of such intelligence is practically the same of human 
intelligence. Through a relation of collaboration-interaction with its user, 
the agent is able to learn from himself, from the external world and even 
from other agents, and consequently act autonomously from the user, adapt 
itself to the multiplicity of experiences and change its behavior according 
to them. The possibilities offered for humans, in a world whose complexity 
is growing exponentially, are enormous [1][4][5][6].

2 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) systems can be defined as coop-
erative systems where a set of agents act together to solve a given problem. 
These agents are often heterogeneous (e.g., in Decision Support System, 
the interaction takes place between a human and an artificial problem 
solver).

Its metaphor of intelligence is based upon social behavior (as opposed to 
the metaphor of individual human behavior in classical AI) and its empha-
sis is on actions and interactions, complementing knowledge representa-
tion and inference methods in classical AI.

This approach is well suited to face and solve large and complex prob-
lems, characterized by physically distributed reasoning, knowledge and 
data managing. In DAI, there is no universal definition of agent, but Fer-
ber's definition is quite appropriate for drawing a clear image of an agent: 
"An agent is a real or virtual entity, which is emerged in an environment 
where it can take some actions, which is able to perceive and represent par-
tially this environment, which is able to communicate with the other agents 
and which possesses an autonomous behaviour that is a consequence of its 
observations, its knowledge and its interactions with the other agents".

DAI systems are based on different technologies like, e.g., distributed 
expert systems, planning systems or blackboard systems. What is now new 
in the DAI community is the need for methodology for helping in the de-
velopment and the maintenance of DAI systems. Part of the solution relies 
on the use of more abstract formalisms for representing essential DAI  
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properties (in fact, in the software engineering community, the same prob-
lem led to the definition of specification languages) [7][8].

3 FIPA (The Foundation of Intelligence Physical Agents) 

FIPA specifications represent a collection of standards, which are intended 
to promote the interoperation of heterogeneous agents and the services that 

The life cycle [9] of specifications details what stages a specification 
can attain while it is part of the FIPA standards process. Each specification 
is assigned a specification identifier [10] as it enters the FIPA specification 
life cycle. The specifications themselves can be found in the Repository 

The Foundation of Intelligent Physical Agents (FIPA) is now an official 
IEEE Standards Committee. 

4 FIPA ACL Message 

A FIPA ACL message contains a set of one or more message elements. 
Precisely which elements are needed for effective agent communication 
will vary according to the situation; the only element that is mandatory in 
all ACL messages is the performative, although it is expected that most 
ACL messages will also contain sender, receiver and content elements. 

If an agent does not recognize or is unable to process one or more of the 
elements or element values, it can reply with the appropriate not-
understood message. 

Specific implementations are free to include user-defined message ele-
ments other than the FIPA ACL message elements specified in Table 1. 
The semantics of these user-defined elements is not defined by FIPA, and 
FIPA compliance does not require any particular interpretation of these 
elements.

Some elements of the message might be omitted when their value can be 
deduced by the context of the conversation. However, FIPA does not spec-
ify any mechanism to handle such conditions, therefore those implementa-
tions that omit some message elements are not guaranteed to interoperate 
with each other 

The full set of FIPA ACL message elements is shown in Table 1 with-
out regard to their specific encodings in an implementation. FIPA-
approved encodings and element orderings for ACL messages are given in 

they can represent. 

[11].
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other specifications. Each ACL message representation specification con-
tains precise syntax descriptions for ACL message encodings based on 
XML, text strings and several other schemes. 

A FIPA ACL message corresponds to the abstract element message pay-
load identified in the [15]

Table 1. FIPA ACL Message Elements 

Element  Category of Elements 

performative Type of communicative acts 

sender Participant in communication 

receiver Participant in communication 

reply-to Participant in communication 

content Content of message 

language Description of Content 

encoding Description of Content 

ontology Description of Content 

protocol Control of conversation 

conversation-id Control of conversation 

reply-with Control of conversation 

in-reply-to Control of conversation 

reply-by Control of conversation 
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He following terms are used to define the ontology and the abstract syn-
tax of the FIPA ACL message structure: 
Frame.  This is the mandatory name of this entity, that must be used to 
represent each instance of this class. 
Ontology. This is the name of the ontology, whose domain of discourse 
includes their elements described in the table.
Element. This identifies each component within the frame.  The type of 
the element is defined relative to a particular encoding. Encoding specifi-
cations for ACL messages are given in their respective specifications. 
Description. This is a natural language description of the semantics of 
each element.  Notes are included to clarify typical usage. 
Reserved Values. This is a list of FIPA-defined constants associated with 
each element.  This list is typically defined in the specification referenced. 

All of the FIPA message elements share the frame and ontology shown 
in Table 2. 

Table 2. FIPA ACL Message Frame and Ontology 

Frame  FIPA-ACL-Message 

Ontology FIPA-ACL 

5 Proposed Method 

Let DS denote a distributed system made up of a set of Nodes N = { Ni }, 
where each Ni can be formed by several Devices (De) [ Di, z ]. On the 
other hand, a DS also contains a set of Tasks to execute,       T = { Tj }.

Definition 1: N = {Ni}, where i is the number of nodes of the distrib-
uted system.

Definition 2: T = {Tj}, where j is the number of tasks that are executed 
in the system.

Definition 3: De = [Di, z], where z is the number of devices that will be 
monitored by Ni from these definitions, it can be made the following one:

Definition 4: Let a distributed system DS be pair <N, T>
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This is where we equiped this DS with certain characteristics of failure 
tolerance.

This is where the use of the DAI paradigm, applied to the Fault Tolerant 
System (FTS) as a DS can represent a new approach with the implementa-
tion of Intelligent Agents.

IAFT = {ANi,AT j,AS} will now define the Fault tolerant Agents, that 
work a DS.

The Node Agent (ANi) € Ni, whose mission is related to the tolerance to 
failures at node level (What works and what not within the node).

The Task Agent (ATj) € ATj, whose mission is related to the tolerance 
to failures at task level (like recovering the tasks of the possible errors that 
can suffer)

System Agent (AS) € DS, whose mission is the related to the tolerance 
to failures at the system level (what tasks must be executed in the system 
and on what nodes)

With it a fault tolerant DS is defined as:

Definition 5: A Distributed Fault Tolerant System DFTS is the pair 
<DS, IAFT>, DSTF is defined as {DS, IAFT}

6 Control of Conversation 

In this section we describe the control of conversation between agents. In 
table 3 we show the protocol. In this table 4 we sow the conversation iden-
tifier of the node agent. In table 5 we show the reply of an agent. 

Table 3. Protocol 

Element Description Reserved Values 

Protocol

TCP/IP

Denotes the interaction protocol that the 

sending agent is employing with this 

ACL message 

See [16] 
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Table 4. Conversation Identifier of Node Agent (ANi) 

Element Description Reserved Values 

(ANi).Phase.Detectio

n y (ANi).{Input-

Error (i,j).Error}

(ANi).Phase.Location

y (ANi).Input-

Error(i,j).Error

(ANi).Phase.Isolation

y

(ANi).Device[Di,m].I

ncorrect

(ANi).Phase.Recunfig

uration

(ANi).Phase.Recunfig

uration y ANiTj. Re-

covered

Introduces an ex-

pression (a conversa-

tion identifier) which 

is used to identify 

the ongoing se-

quence of communi-

cative acts that to-

gether form a 

conversation.
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Table 5. Reply With 

Element Description Reserved 

Values

(ANi).State.Suspect

(ANi).{Test[Di k]}

(ANi).{Device[Di,m].

             Incorrect}

(ANi).{Test [Di,l]}

       (ANiS). low  y 

      (ANi).State.low

(ANi).Actions-

Isolation-Device(m)

ANiTj.A-to Recover y 

(ANi).Phase. recovery

(ANi).Phase.Detection

y (ANi).State.Correcto.

Introduces an expres-

sion that will be used 

by the responding 

agent to identify this 

message.

7 Considerations

The agent counts on a AID, which is "intelligent Agents as a new para-
digm of Distributed Fault tolerant Systems for industrial control" to as Ar-
chitecture of Reference fipa/Data minimum of an agent is specified in the 
norms of Fipa (, says:  Aid- the agent must have a unique name globally). 
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The agent contains descriptions of transport in the development of his 
documentation, which fulfills the specifications of fipa (Architecture of 
Reference fipa/Data minimum of an agent, says: Localizer one or but de-
scriptions of the transport that as well, contains the type of transport by ej.  
Protocol), but does not specify the protocol that uses like type of transport, 
this in phase of analysis. 

It concerns the communication and cooperation between agents, the 
document "intelligent Agents as New Paradigm of Distributed Fault toler-
ant Systems for Industrial Control" says to us that the communication be-
tween the agents occurs of ascending or descendent form depending on the 
type of agent.  A little superficial explanation occurs, without specifying 
for example that type of language of communication between agents uses, 
or KQML or the Fipa-acl. 

8 Conclusions

We described in this paper our approach for building multi-agents system 
for achieving fault tolerant control system in industry.  The use of the 
paradigm of intelligent agents has enabled the profile generation of each of 
the possible failures in an embedded industrial system. In our approach, 
each of the intelligent agents is able to deal with a failure and stabilize the 
system in an independent way, and that the system has a behavior that is 
transparent for the use application as well as for the user.
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Abstract. The paper develops a genetic algorithm approach to path plan-
ning for a mobile robot operating in rough environments.  Path planning 
consists of a description of the environment using a fuzzy logic frame-
work, and a two-stage planner.  A global planner determines the path that 
optimizes a combination of terrain roughness and path curvature.  A local 
planner uses sensory information, and in case of detection of previously 
unknown and unaccounted for obstacles, performs an on-line planning to 
get around the newly discovered obstacle.  The adaptation of the genetic 
operators is achieved by adjusting the probabilities of the genetic operators 
based on a diversity measure of the population and traversability measure 
of the path.  Path planning for an articulate rover in a rugged Mars terrain 
is presented to demonstrate the effectiveness of the proposed path planner. 

1 Introduction 

Path planning for a mobile robot is defined as determining a route from the 
start to the goal for successfully navigating the robot around obstacles in 
some optimal manner [1]. The optimality is usually taken as finding a 
short path, but research work has also considered the shortest motion time 
[2].  It is well known that path panning in its general form is an NP-
complete problem, and thus the problem is usually solved using heuristic 
approaches; most notably genetic and evolutionary algorithms.

There are two groups of path planners - local and global.  The local 
planners (e.g. [3]-[5] ) consider a subset of the environment in the vicinity 
of the robot to plan the path.  Therefore they are often fast but lack the 
necessary broad perspective and can often get stuck in traps.  Global plan-
ners (e.g. [6]-[8]) conceive their paths after a complete survey of the whole 
environment and are therefore much slower, but are generally much more 
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trap resistant than the local planners.  However, detailed information about 
the entire environment is often not available, and this information become 
known only when the robot moves and surveys its surroundings.

Most approaches to mobile path planning concentrate on a binary repre-
sentation of the terrain where a given region of the terrain is considered ei-
ther free or occupied by obstacles.  An evolutionary algorithm has been 
shown to be effective for this environment [6].  However, the binary set-
ting not appropriate for path planning of rovers that can climb over some 
obstacles or rocks if such a traversal results in a more optimal path.

In previous papers [9]-[10], we developed the concept of path imped-
ance that will take into account such parameters as the height and size of 
obstacles, terrain slope, and concentration of obstacles.  Most of this in-
formation can be obtained using imaging techniques.  However, extracting 
this information from the images of scene is associated with considerable 
uncertainty and vagueness.  In addition, relating path impedance to the ter-
rain characteristics, such as height and size of obstacles, is best done by a 
rule base approach rather than analytical expressions.  These considera-
tions naturally lead to the fuzzy logic framework, which is explored in this 
paper.

An important requirement for a path planner is to cope with partially 
known environments, where the rover may encounter previously unknown 
and unaccounted for obstacles.  This requires the rover to deviate from the 
planned path and perform collision avoidance as the obstacles are detected.
One of the contributions of this paper is to enhance a genetic path planner 
with such a capability.  A further contribution of the paper is to devise a 
scheme for adaptation of the genetic operators as the environment is 
learned.  The adaptation consists of adjusting the probabilities of the ge-
netic operators based on diversity and traversability of paths population in 
the genetic process.

2 Terrain and Path Representation 

The terrain is represented by a regular grid consisting of square cells. The 
size of a cell depends on the dimensions of the rover and the desired reso-
lution of the terrain description. The terrain roughness within a cell de-
pends on a number of parameters such as the height of the tallest obstacle 
in the cell, and the size or surface area of the cell occupied by obstacles.  
Stereo vision and region growing techniques can be used to determine ob-
stacle height and surface area using the image. Despite the availability of 
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vision processing software, exact determination of the heights and sizes of 
rocks affecting roughness is not possible.  These parameters can be found 
approximately due to errors, misinterpretations and ambiguity involved in 
extracting information from images.  We employed fuzzy logic and ap-
proximate reasoning framework, which involves defining five fuzzy sets 
for the height, i.e. VL (very low), LO (low), MD (medium), HI (high) and 
VH (very high).  Similarly, five fuzzy sets are defined for the obstacle size, 
i.e. VL (very large), LG (large), MD (medium), SM (small) and TI (tiny).  
Height and size of obstacles in a cell are fuzzified to obtain fuzzy variables 

ih
~

and is
~ , respectively, where ni ,...,2,1 and n is the number of cells. A 

rule matrix is designed to relate these quantities to fuzzy roughness i

~ of

the cell using rules

if ih
~

Height is HeightSet and is
~ Size is SizeSet 

           then i

~  is RoughnessSet

(1)

where HeightSet and SizeSet can take on one of the defined fuzzy sets de-
fined above, and RoughnessSet is associated with one of the five fuzzy 
sets, VH, HI, MD, LO, VL.  There will be 5 5 25  rules of the form (1).  
The fuzzy variable i

~ can be defuzzified to obtain the crisp roughness 

i for each cell, which are used in the genetic planner [10].  In this paper, 

however, we do not defuzzify the roughness, but use its fuzzy value in 
conjunction with the path curvature, to be defined shortly, in order to ob-
tain a fitness function for the path. 

A path is represented by a sequence of way-points connecting the start 
to the goal.   In a computer, the path is stored in a linked list data structure 
consisting of a number of nodes each of which stores the information 
about a way-point, and is linked to the next node (way-point) in the list.   
The way-points mkWk ,...,2,1, , where m is the number of waypoints, are 

specified by their ),( kk yx  coordinates on the terrain.  The generation and 

evolution of a path refers to the creation and modification of the way-
points. These way-points in turn specify the terrain cells that the path trav-
erses over.  A cell that is located on a path, will be referred to as a path
cell, and has two main attributes as follows: 

(a) The roughness of the cell, which provides information on the 
heights, sizes and concentration of obstacles on a cell as described above, 
and
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(b) The curvature or jaggedness of a path cell that is obtained using the 
information about the way-points.  Specifically, the curvature k  of the 

way-point kW  is defined

mk
D

d

k

k

k ,...,2,1,
(2)

where kd  is the perpendicular distance from kW  to the line segment join-

ing the previous way-point 1kW  to the next way-point 1kW and kD  is the 

distance between 1kW and 1kW . Note that k  is a dimensionless quan-

tity, and that  (2) also gives the curvature of the path cell that contains a 
way-point.  The curvature is fuzzified using three fuzzy sets, HI (high), 
MD (medium) and LO (low) to obtain the fuzzy curvature k

~
.

The cell impedance i  combines the roughness and curvature and is a 

measure of the difficulty of the traversal.  The fuzzy cell impedance i

~  is 

obtained from

if i

~  is RoughnessSet and k

~
is CurvatureSet

           then i

~ is ImpedanceSet

(3)

where RoughnessSet and CurvatureSet can take on one of the fuzzy sets 
defined above and ImpedanceSet can assume VH, HI, MD, LO or VL.  It 
is noted that other path attributes such as slope can easily be included in 
the above formulation of the path impedance. There are 5 3 15 fuzzy
rules of the form (3). A cell whose impedance belongs to VL (very high) 
becomes intraversable.  The scope (base width) of VL is determined based 
on the mobility characteristics of the particular rover being used. We iden-
tify a path as being traversable if every cell on the path is traversable, oth-
erwise the whole path becomes intraversable.  In the genetic evolutionary 
process, these two types of paths are treated separately.  Although, travers-
able paths have priority over intraversable paths, the latter are not auto-
matically discarded since they may prove to produce good off-springs later 
on during the evolutionary process.

The path impedance is obtained by the union of the clipped fuzzy sets 
resulting from the rules (3).  The defuzzified value of the union set gives 
the crisp value of the path impedance, which will be used as the fitness 
value of the path in the evolutionary path planning.
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3 Genetic Path Planning

Path planning consists of two phases - global and local.  Prior to the mo-
tion, the rover takes images of the environment using cameras (e.g. see 
[11]).  The images provide a panoramic view of the environment based on 
which the terrain representation discussed above is obtained.   The ac-
quired terrain will be used for global planning.  As the rover moves, previ-
ously un-represented obstacles may be detected by the rover’s proximity 
sensors, e.g. sonar.  Using this information, the rover must perform a local 
planning to avoid the newly detected obstacles. 

Global Planning 

The path planner starts by creating several random paths between start and 
goal locations on the terrain.  Each path consists of a random number of 
way-points between start and goal.  These initial paths in general go 
though rough or impassable regions on the terrain, and must be improved. 
This improvement is achieved by applying certain genetic operators to a 
randomly selected path from the population. Each genetic operator has a 
particular role in bringing about a change in the path. For example, the re-
place operator replaces an undesirable way-point (a way-point on a rough 
region) with a random and potentially better way-point. The selection of 
particular operator is based on the probability assigned to it.

After a genetic operation is performed and new paths are generated, a 

fitness proportion selection is employed to select the path for the next gen-

eration. The population goes through generations and is thus evolved. Af-

ter each generation, the quality of paths is either improved or in the worst 

case remains unchanged.  The evolution is continued until an acceptable 

path is found, or until a preset number of generations is performed.

In order to evolve paths from one generation to the next, several opera-

tors have been devised.  Two of these operators, namely crossover and mu-

tation, are commonly used in genetic algorithms.  Others are specifically 

designed for the path planner.  Operators are applied to way-points, and as 

a result of changes in way-points, the path cells are also changed.

The cross-over operator randomly selects two paths from the popula-
tion, say 1P  and 2P , and divides each path into two path segments about a 

randomly selected way-point.  Denoting these paths by ),( 12111 PPP  and 

),( 22212 PPP  where
ij

P is the j-th segment of the path i, then two new paths 

are formed as ),( 22111 PPP and ),( 12212 PPP . The mutate operator 
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randomly selects a path and a way-point in this path.  It then changes the 
),( yx coordinates of the selected way-point with random values within the 

terrain.  Mutate operator can produce a significant change in the path. 
The replace operator is applied to an intraversable path. It replaces an 

intraversable way-point with one or more way-points whose location and 
number are random.  If there are more than one intraversable way-points, 
one of them is selected randomly for replacement.

The swap operator interchanges the locations of two randomly selected 
way-points on a randomly selected path.  The swap operator can be ap-
plied to both traversable and intraversable paths. It has the possibility of 
either removing or introducing a "zig-zag" which could avoid an obstacle. 

The role of smooth operator is to reduce sharp turns.  The way-point 
with the highest curvature, say kW , is selected and two new way-points 

are inserted, one on a randomly selected cell between the previous way-
points 1kW and kW and the other on a cell between kW and the next way-

point 1kW .  After this insertion, the way-point kW  is removed.  The effect 

of this operation is the smoothing of a sharp turn. This operator is applied 
to traversable paths only. 

The pull-out operator is intended to pull out a path segment from inside 
an intraversable region to its surrounding traversable region.  Pull-out is 
more elaborate than the other operators, and details of its implementation 
is omitted here for the sake of brevity.

3.2 Local On-line Planning 

As the rover moves along the path found by the global planner, its prox-
imity sensors may detect obstacles that were not previously accounted for 
in the global planning.   In such a case, three heuristics strategies of ma-
neuvering around, ancestral knowledge and partial replanning are at-
tempted in that order.  These are described in the following paragraphs. 

The maneuvering around strategy aims at repairing the path segment 
that crosses an obstacle by randomly inserting new way-points in a region 
around the obstacle in an attempt to circumvent the detected obstacle. This 
region is constructed using one of the two methods shown in Fig 1, where 
the original path segment is ABCD.  In the first method (top diagram in 
Fig. 1), the region is the equilateral triangle BEF whose side BE is perpen-
dicular to the obstacle intersecting segment BC, and whose side length is 
equal to BC, i.e. BE=EF=FE=BC.  An identical region, not shown in the 
figure, is constructed on the other side of the path ABCD.  In each region a 
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number of random waypoints (three in our experiments) are inserted (one 
waypoint is shown in Fig. 1 as G).  For each of the inserted waypoints, the 
corresponding modified path segment (ABGCD in Fig. 1) is checked for 
collision, and if any is collision free the new waypoint is selected. 

Fig. 1. Strategies of maneuvering around a previously undetected obstacle. 

In case none of the inserted waypoints produces a collision free modi-
fied path segment, the second method, shown in bottom of Fig.1, is at-
tempted.  In this method the line JH is drawn between two extreme points 
of the obstacle as seen by the rover.  An equilateral triangular region is 
now formed with the vertex at the extreme point H such that JH bisects the 
angle EHF.  The side length of the triangle is chosen to be equal to JH. 
Similarly another triangular region is formed with its vertex placed at J. 
New waypoints are inserted into randomly in these regions, and for each 
the modified path segment (ABGCD) is tested to find a collision free path 
segment around the obstacle.

In any of the above two maneuvering method, once the obstacle is cir-
cumvented, the remaining path to the goal as determined by the global 
planner is followed.  In difficult environments, the above maneuvering 
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around methods may not produce collision free path segments.  In such 
cases we apply a strategy that we will call ancestral knowledge.  During 
the genetic evolution of the path in the global planning stage, a link is re-
tained to the previous state of a path, i.e. its ancestral chain.  Upon the dis-
covery of a previously unaccounted obstacle, the ancestral chain is trav-
ersed until a path that is both traversable and does not intersect the new 
obstacle is found.  This path is then followed from the nearest waypoint to 
the current rover position and finally to the goal. 

In extremely complex environment with substantial previously unde-
tected obstacles, the above strategies of maneuvering around and ancestral 
knowledge may not yield a collision free path.  In such a case a replanning
from the current rover position to the goal is performed using the global 
genetic planning by considering the newly detected obstacle information. 

3.3 Adaptation of Genetic Operators 

A population of paths has two fundamental characteristics, namely diver-
sity and traversability, which can be used to gage the effectiveness of a 
particular genetic operator in evolving better (fitter) paths.  Diversity is the 
degree of variability of the path and is defined as the variance of the fitness 
of the path in the population.  Suppose that there are p paths in the popula-
tion, and denote their fitness by pjF

j
,...,2,1, .  The diversity of the popu-

lation is then defined as

)(
1 2

1

2

ave

n

j

j FF
n

(4)

where
ave

F  is the average fitness value of the population.  The traversabil-

ity is defined as

1i

T

N

N (5)

where
T

N  and 
I

N  are the number of traversable and intraversable paths in 

the population.   These two population characteristics, i.e. diversity and 
traversability, are used to adjust the genetic operator’s probability.  For ex-
ample, a population with low diversity and low traversability (high imped-
ance) indicates that the mutation operator must be given higher probabil-
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ity, and cross over to be assigned a lower probability.  This is due to the 
fact that in this situation, the crossover of intraversable paths produces 
other intraversable paths and a substantial change is needed which is 
achieved by mutation.  On the other hand, a population with both high 
traversability and diversity has ideal characteristics and paths need only to 
be smoothed using the smooth operator. 

Based on the above argument, we propose the following rule matrix for 
the boosting (increasing) an operators probability, where diversity and 
traversability are fuzzified each with three fuzzy sets LO (low), MD (me-
dium) and HI (high).  Note that when an operator probability increased, 
other operators’ probabilities are reduced proportionally to keep the total 
probability equal to one.

LO HI

LO

HI

Diversity

Travers-

ability

Crossover

Smooth

Operator Boosti ng

Fuzzy Rules Matrix

Smooth

Mutate

Swap

Replace

Mutate

Swap

Mutate

Replace

Crossover

Pullout

Crossover

Pullout

MED

MED

Fig. 2. The rule matrix for adjusting operators’ probabilities 

The upper left box in the rule matrix, for example, describes the follow-
ing fuzzy rule 

        if diversity is LO and traversability is HI 

then boost Replace, Mutate, Swap 
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The magnitude of the boost in the operator’s probability is proportion to 
the truth values of the rule antecedent (i,e. “if diversity is LO and traver-
sability is HI”, in the above example).  The truth value is obtained using 
standard fuzzy logic computation. 

3 Results  

In this section, we present the results of applying the method discussed 
above to an image of the Mars terrain to plan two paths.  The software de-
veloped for image processing and obtaining the height and sizes of the 
rocks is described in [10].   Figure 3(a) shows the image of a 10 by 10 me-
ters terrain obtained from the JPL Mars yard, and its contour obtained by 
applying certain image processing techniques [10].  The darker areas in the 
contour map show higher elevations. The 512 by 512 pixel contour image 
was divided into 32 by 32 cells, and the roughness of each cell was deter-
mined by the method described in Section 2.  The number of cells can be 
increased for a higher resolution, if required.

Fig. 3. Image of Mars terrain and its contour map 

The genetic algorithm described in Section 3 was then applied.  A 

population size of five paths was chosen, and these paths went through the 

genetic evolution by applying one of the genetic operators. The fitness of 

each path was evaluated using the procedure described in Section 3.  Fi-

nally the genetic operators were adapted during the evolution as discussed 

in Section 4.  The initial intraversable paths were quickly evolved into tra-

versable paths, and as the evolution continued these paths in turn changed 
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into shorter ones passing through less rock concentrated areas and avoid-

ing larger rocks.  Near optimal paths were usually found after 200 to 400 

iterations (generations), thus good paths were found very quickly. Figure 4 

shows the results of changes in the diversity and traversability as the evo-

lution progresses.  It is seen that the population initially has a high diver-

sity and very low traversability due to random paths that were generated.  

However, as the evolution progresses, both these quantities converge to 

satisfactory values.

Figure 5 shows typical adaptations of the genetic operator probabilities 
as functions of generations.  It is seen that depending on the traversability 
and diversity, the operator probabilities change with generations according 
to the table in Figure 2. Generally, mutation has a higher probability at the 
beginning but its probability is reduced towards the end of evolution where 
traversable paths are found and smoothing gets a higher chance of being 
applied.

Fig. 4. Changes in diversity and traversability with generations. 
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Fig. 5. Adaptation of the genetic operators probabilities versus generation number. 

Figure 6 shows two typical path planned by the genetic algorithm.  In the 
first case, the start and goal points are at left and right of the terrain, re-
spectively.  In the second case, the start and goal points are located in the 
upper left corner and lower center of the terrain. Note that the genetic 
planner produces the waypoints, and in Fig. 6 these waypoints are con-
nected by straight line segments. To obtain smoother paths, these way-
points can be connected by cubic polynomials or another suitable interpo-
lation method.  It is noted from Fig. 6 that the path sometimes traverses 
over small rocks to achieve shorter path lengths.  A closer examination 
shows that all paths are in fact traversable by the rover (in this case 
NASA's Rocky 7 rover [11]).

Finally, experiments consisting of 100 path planning trials were con-
ducted in which obstacles were placed randomly on the rover path to simu-
late previously undetected obstacles in the global planning stage.  The lo-
cal planner then used strategies discussed in Section 3.2  to maneuver 
around the newly detected obstacle.  In more than 70% of cases, the first 
maneuvering around strategy (Fig. 1) was able to suitably modify the path.  
In the remaining cases, the two other maneuvering around strategies, an-
cestral knowledge method and re-planning were used and successfully 
found traversable paths. 
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Fig. 6 Two typical planned paths. 

5 Conclusions 

The main contributions of this paper are the development of a genetic path 

planner, a two-phase planning method, and an adaptation procedure for ad-

justing the probabilities of the genetic operators.   The planner uses a fuzzy 

logic description of the terrain topology to come up with a roughness 

measure for the terrain.  This description captures and copes with the un-

certainties in sensory terrain data acquisition.  The global path planner 

finds an optimal path that avoids rough areas, and quickly converges to a 

solution due to the adaptation of the genetic operators.  The local planner 

resolves the situations when on-board sensors discover new obstacles, and 

performs on-line strategies to circumvent the newly detected obstacles.  



228         

Several strategies are described for on-line collision avoidance to deal with 

a variety of difficult situations.  Extensive simulation tests have been car-

ried out for path planning in rocky Mars environments, and the results 

demonstrate the effectiveness of the proposed method. 
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Abstract. Variable structure control is a recognized method to stabilize 
mechanical systems with friction. Friction produces non linear phenomena, 
such as tracking errors, limit cycles, and undesired stick-slip motion, de-
grading the performance of the closed-loop system. The main drawback of 
variable structure control is the presence of chattering, which is not suit-
able in mechanical systems. In this paper, we design a variable structure 
controller complemented with Linear-in-the-Parameter neural nets to at-
tenuate chattering. Experimental validation applied to a three degree of 
freedom robot mechanical manipulator is shown to support the results. 

1 Introduction 

Friction is the resistance to motion, during sliding or rolling, that is experi-
enced whenever one solid body moves tangentially over another with 
which it is in contact. Friction is undesirable in mechanical systems be-
cause can lead to tracking errors, limit cycles, and undesired stick-slip mo-
tion (cf. [1]). Control strategies for friction compensation have been pro-
posed in [1]-[7], among others. In these papers the authors propose friction 
model based controllers to mitigate the friction effects. It is well-known 
that the phenomenon of friction is not yet completely understood and it is 
hard to model [8], therefore stabilization of mechanical systems through a 
feedback law with an imprecise friction compensation term may result in a 
considerable degree of uncertainty, thus not producing the expected mo-
tion. If the uncertainties are bounded, discontinuous robust control meth-
ods ([8]) provide simple and straightforward solutions to the friction com-
pensation design, however, the system exhibits an infinitely fast switching  
of the input control called chattering ([9]) inducing fatigue in mechanical 

R. Guerra et al.: Chattering Attenuation Using Linear-in-the-Parameter Neural Nets in Vari-

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
able Structure Control of Robot Manipulators with Friction , StudFuzz 208, 229–241 (2007)
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parts and the system could be damaged in a short time. For instance, in [8] 
and [10], friction compensator design involves chattering behavior where 
the chattering controller deals with the friction model uncertainties, which 
is a desired property in friction compensation. 

This paper is intended to provide a solution to mechanical problems due 
to chattering without losing robustness properties given by variable struc-
ture controllers [11]. Neural nets have been used extensively in feedback 
control (see, for instance, [12]-[15]). Also, adaptive control theory has 
evolved as a powerful methodology for designing nonlinear feedback con-
trollers for systems with uncertainties [16]. Using the advantage of chatter-
ing control to deal with uncertainty in the friction model ([8] and [10]), and 
utilizing a linear-in-the-parameter (LIP) neural net, a chattering friction 
compensation design is proposed, where a dynamic adaptation law for the 
parameters of the LIP neural nets is designed to attenuate the amplitude of 
the chattering once the control objective is achieved. In this way, chatter-
ing appears only when it is needed. 

To the best knowledge of the authors, the chattering attenuation problem 
for the class of Variable Structure Control (VSC) introduced in this paper 
has not been reported. On the other hand, few results have appeared in re-
search papers dealing with the chattering problem for sliding mode control: 
Parra-Vega et al. [17], for example, showed that adaptive and non-adaptive 
cases of variable structure robot control undergo chattering attenuation. 
Bartolini et al. [18] demonstrated that it is possible to eliminate chattering 
by generating a second-order sliding mode control using the first derivative 
of the control law as a control input instead of the actual control law. An-
other alternative used in control applications is to replace the signum func-
tion with a smooth approximation (e.g. tanh, sigmoid function, among oth-
ers).

This paper is organized as follows: Section 2 presents the problem 
statement along with the dynamic model of mechanical manipulators and 
the previous result on chattering control developed by Orlov et al. [8]; Sec-
tion 3 presents the neural nets chattering controller applied to a n-degrees-
of-freedom robot manipulator where it is assumed that joint positions are 
the only information available for feedback, along with its stability analy-
sis; Section 4 provides experimental results made for a three degrees of 
freedom mechanical manipulator using the neural nets chattering controller 
described in Section 3; and Section 5 presents some conclusions.

The following notations will be adopted throughout this paper. )(
min

A

and )(
max

A  denote the minimum and maximum eigenvalues of a symmet-

ric positive definite matrix nn
RA , respectively, and xxx

T  repre-

sents the Euclidean norm of vector n
Rx .
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In the present paper we study controlled n-link mechanical manipulators 
described by interconnected second-order differential equations of the 
form [8]: 

qFqGqqqCqqM ,                                                            (1) 

where n
Rq  is the position vector, n

R  is the control input, )(qM ,
),,( qqC )(qG  are smooth functions of appropriate dimensions, 

0)()( qMqM
T ,

qKqKqF
fb

sgn                                                                               (2) 

T

n
qqqq sgn,,sgn,sgnsgn

21
                                                          (3) 

01

01,1

01

sgn

zif

Rzzif

zif

z                                                              (4) 

and }{
i

bb
kdiagK  and }{

i
ff

kdiagK  are positive definite and diagonal 

matrices. Throughout, the precise meaning of solutions of the system (1) 
with discontinuous functions qF  and qq,  are defined in Filippov’s 
sense [8]. 

From the physical point of view, the position q  represents the general-
ized coordinates, the control input  is the vector of external torques, 

qM  is the inertia matrix, qqqC ,  is the vector of Coriolis and centripetal 
torques, qG  is the vector of gravitational forces, qF  represents the fric-
tion torques, where 

i
b

k  and 
i

f
k , ni ,,2,1  are the constant coefficients of 

viscous and Coulomb frictions, respectively. Because frictions are uncou-
pled among joints, we have assumed that the matrices 

b
K  and 

f
K are di-

agonal.
Consider the following control law: 

eKeKxKqG
pd

sgn                                                                (5) 

2 Problem Statement 
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eKLxx
d

                                                                                             (6) 

where nn
RL  is a symmetric positive definite matrix, nn

d
RK  is a 

symmetric positive semi-definite matrix, nn

pp
RkdiagK

i

}{  is a diago-

nal positive definite matrix, nn
RkdiagK

i

}{  is a diagonal matrix 

such that 
f

KK , and 
d

qqe  represents the position error with respect 

to the constant desired position 
d

q . Equation (6) is a first-order linear 
compensator used to replace the velocity feedback (cf. [19]). 

The control law (5)-(6), that belongs to the variable structure control-
lers family, is called a chattering controller because it generates no sliding 
mode, except at the origin, while exhibiting an infinite number of switches 
in a finite time interval ([8]). 

Theorem 1 ([8]). Let the friction manipulator (1)-(4) be driven by the 
switched position feedback controller (5)-(6) with the assumptions given 
above. Then, the closed loop system (1)-(6) is globally asymptotically sta-
ble at the equilibrium point 0,, xeq .

The switched term in (5), represented by )sgn(eK , can be interpreted 
as LIP neural nets with dendrite weights equal to one, and with firing 
thresholds (the so called ‘bias’ terms) equal to zero. The cell inputs are the 
components of the vector e . The outputs are the components of the 
switched term. Because the dendrite weights are positive the neural nets 
correspond to excitatory synapses. Here, the activation functions are the so 
called symmetric hard limit. Representing the activation function by )(

we have: 

niekeky
iii

ii

,,2,1;sgn                                                       (7) 

where
i

y are the outputs of the LIP neural nets. 
The problem to tackle is to find a training rule for each 

i

k  such that the  

closed-loop system be globally asymptotically stable at the equilibrium 
point  0,, xeq  with the property that each 

i

k  converges to zero as the 

system approaches the equilibrium point. 
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Considering the following control law: 

esignKteKxKqG
pd
                                                            (8) 

eKLxx
d

                                                                                             (9) 

2

11log

1
1log ek

r
                                                        (10) 

where Rk
r

,  and Rt)(  is the adaptive term that will regulate the 
amplitude of the chattering term. In fact, the above controller is a LIP neu-
ral net with dynamic training implemented with a point of view similar to 
[14] and [15]. 

Again, nn
RL  is a symmetric positive definite matrix, nn

d
RK  is a 

symmetric positive semi-definite matrix, nn

pp
RkdiagK

i

}{  is a diago-

nal positive definite matrix, nn
RkdiagK

i

}{  is a diagonal matrix 

such that 
f

KK , and 
d

qqe  represents the position error with respect 

to the constant desired position 
d

q .

Lemma 1 [20]: Suppose the ordinary differential equation in (10) has ini-
tial condition 0)(

0
t , then 0)(t  for all 

0
tt .

Our main result follows. 

Theorem 2. Let the friction manipulator (1)-(4) be driven by the switched 
position feedback controller (8)-(10) with the assumptions given above. 
Suppose that KK

f
 with 1and 1)(0 t  for all 

0
tt . Then, 

the closed-loop system (1)-(4) and (8)-(10) is globally asymptotically sta-
ble at the equilibrium point 0),,,(),,,( xeexeq  if 0)(t  and

LLLLLK

LLKLKK

k
T

d

ddd

r

2

1

2

1

1

1
0

min
.                    (11) 

3 Neural Nets Chattering Controller 
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Remark 1: Because 0  is an equilibrium point of the closed-loop sys-
tem (1)-(4) and (8)-(10), the chattering amplitude vanishes as t .

Proof. To this end, we follow the same line of reasoning given in [8]. 
Let us introduce the Lyapunov candidate function 

.1log1

2

1

2

1

2

1
,,,

1
1

n

d

T

dp

TT

ekek

LxeKLxeKeKeqqMqxeqV

n

                 (12) 

This Lyapunov function is similar to the one proposed in [8] but the last 
term involves the dynamic adaptation law. This last term was also utilized 
in [20]. The time derivative of (12), along the trajectories of the closed 
loop system (1)-(4) and (8)-(10) yields: 

.11log
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2

1
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xLeKLxeK
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d

T

d

T
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                     (13) 

Employing the well-known property 0],[
2

1
qqqCqMq

T , for all 
n

Rq , and substituting the control law (8) into (13) we have 
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From (9), the above equation is simplified to 

.11log
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T

b

T

                        (15) 

Invoking (10), the above equation is reduced to 
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From (11) we forward to 
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011log1log

,,,
2

min
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Since ),,,( xeqV  is positive definite and ),,,( xeqV  is a negative semi-
definite decreasing function, it follows that the equilibrium point 

0),,,(),,,( xeexeq  of the closed-loop system (1)-(4) and (8)-(10) is 
uniformly stable, i.e., Lttetetx )(),(),(),( . From (17), we can easily 

show that the squares of ,,ex  are integrable with respect to time t ; i.e.,

2
)(),(),( Lttetx . Next, Barbalat’s lemma implies that 0)(,0)( txte

and .0)(t  If 0)(tx  then ,0)(tx  and from (9), it follows that 
.0)(te  This concludes our proof.                                              

4 Application to an Industrial Robot Manipulator 

The experimental setup designed in the research laboratory of CITEDI-
IPN involves a three degrees-of-freedom (3-DOF) industrial robot manipu-
lator manufactured be Amatrol, it is shown in Figure 1. This mechanical 
system presents Coulomb friction [8]. The base of the mechanical robot 
has a horizontal revolute joint, q1, whereas two links have vertical revolute 
joints q2 and q3. The nominal parameter values of the mechanical 
manipulator are summarized in Table 1. A worm gear set, a helicon gear 
set and a roller chain are used for torque transmission to joints q1, q2 and q3,
respectively; there is a DC gear motor for each joint with a reduction ratio 
of 19.7:1 for q1 and q2 and 127.8:1 for q3. The ISA Bus servo I/O card from 
the company Servo To Go is employed for the real time control system and 
it mainly consists of eight channels of 16-bit D/A outputs, 32 bits of I/O, 
and an interval timer capable of interrupting the PC. The controller is im-
plemented using C++ programming language running on a 486 PC. Posi-
tion measurements of each articulation of the robot are obtained using the 
quadrature encoder channel available on each DC gear-motor, connected to 
the I/O card, and programmed to provide the encoder signal processing 
every millisecond; the resolution of the encoders is 52 x 10-3 rad, 62 x 10-3

rad and 34 x 10-3 rad for q1, q2 and q3, respectively. Along  
with this, a digital oscilloscope is used to store the control signal. Linear 
power amplifiers are installed en each servomotor which apply a variable 

4.1 Experimental Setup 
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torque to each joint. These amplifiers accept control inputs from the D/A 
converter in the range of ±10 volts. See Figure 2 for the hardware setup 
configuration. The dynamic model of the robot in the form of (1) is given 
in [8]. However, for control implementation, we only require ).(qG

Table 1. Nominal parameter values fo the mechanical manipulator 

Description Notatio
n

Value Uni
ts

Lenght of link 1 1
l 0.297 m 

Lenght of link 2 2
l 0.297 m 

Mass of link 1 1
m 0.38 Kg 

Mass of link 2 2
m 0.34 Kg 

Gravity
acceleration

g 9.8 m/s2

4.2. Experimental Results 

The regulator performance was studied experimentally. The experiment 
was performed with the 3-DOF robot manipulator required to move in 
space from the origin 0)0()0()0(

321
qqq  to the desired position 

2
321 ddd

qqq [rad]. The initial velocities 3
)0( Rq  and )0(  were 

set to zero, respectively. 

The control goal was achieved by implementing the control (8)-(10) 
where ([8]) 

3222

2122212211

cos

coscoscos

0

qqlm

qqlmqlmqlmgqG ,

and the controller gains selected as follows: 

,10,10,10,3,3,3

,5,5,5,40,40,15

diagLdiagK

diagKdiagK
dp

and 2
r

K  and .8  The physical constant parameters, 2,1,, ilm
ii

 are 
given in table 1. 
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Fig. 1. Schematic diagram of the robot. 

Fig. 2. Hardware setup. 

The resulting joint positions and input torques are depicted in Figures 3 
and 4, respectively. Figure 3 shows that joint positions converge to the de-
sired position for the closed loop system [(1), (8)-(10)], whereas the fast 
switching due to LIP terms vanishes as t  tends to (see Figure 4). Also, 
from Figure 3, a finite time convergence of the articulated positions to 
their desired positions is appreciated in about 3.2 seconds. The applied 
control inputs present chattering that is attenuated in about 8 seconds (see 
Figure 4). This chattering attenuation is good in mechanical systems, and 
was the main objective of the present paper. Finally, Figure 5 presents the 
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time evolution of )(t . It should be noted that the dynamic of )(t  (10) is 
slower (smooth and slow variation) than [(1)-(4), (7), (8)]. 

5 Conclusions 

We have developed a variable structure controller with chattering attenua-
tion for robot manipulators in the presence of friction. The manipulator is 
governed by a second order differential equation with a right-hand discon-
tinuous side admitting discontinuous terms to account for friction phenom-
ena. The proposed controller uses Linear-in-the-Parameter Neural nets to 
attenuate the chattering signal inherent to variable structure systems with-
out losing the robustness of the function framework. Effectiveness of the 
design is supported by the experiments made for a three degrees-of-
freedom robot manipulator with frictional joints. 

Fig. 3. Joint Positions. 

Fig. 4. Input Torques. 
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Fig. 5. Time evolution of ).(t
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Abstract. We develop a tracking controller for the dynamic model of uni-
cycle mobile robot by integrating a kinematic controller and a torque con-
troller based on Fuzzy Logic Theory. Computer simulations are presented 
confirming the performance of the tracking controller and its application to 
different navigation problems. 

1 Introduction 

Mobile robots are nonholonomic systems due to the constraints imposed 
on their kinematics. The equations describing the constraints cannot be in-
tegrated simbolically to obtain explicit relationships between robot posi-
tions in local and global coordinate frames. Hence, control problems in-
volve them have attracted attention in the control community in the last 
years [11]. 

Different methods have been applied to solve motion control problems. 
Kanayama et al. [10] propose a stable tracking control method for a non-
holonomic vehicle using a Lyapunov function. Lee et al. [12] solved track-
ing control using backstepping and in [13] with saturation constraints. Fur-
thermore, most reported designs rely on intelligent control approaches such 
as Fuzzy Logic Control [1][8][14][17][18][20] and Neural Networks 
[6][19].

However, the majority of the publications mentioned above, has concen-
trated on kinematics models of mobile robots, which are controlled by the 
velocity input, while less attention has been paid to the control problems of 
nonholonomic dynamic systems, where forces and torques are the true in-
puts: Bloch and Drakunov [2] and Chwa [4], used a sliding mode control 

S. Cárdenas et al.: Tracking Control for a Unicycle Mobile Robot a Fuzzy Logic Con-
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to the tracking control problem. Fierro and Lewis [5] propose a dynamical 
extension that makes possible the integration of kinematic and torque con-
troller for a nonholonomic mobile robot. Fukao et al. [7], introduced an 
adaptive tracking controller for the dynamic model of mobile robot with 
unknown parameters using backstepping.

In this paper we present a tracking controller for the dynamic model of a 
unicycle mobile robot, using a control law such that the mobile robot ve-
locities reach the given velocity inputs, and a fuzzy logic controller such 
that provided the required torques for the actual mobile robot. The rest of 
this paper is organized as follows. Section II describes the formulation 
problem, which include: the kinematic and dynamic model of the unicycle 
mobile robot and introduces the tracking controller. Section III illustrates 
simulations results using the tracking controller. The section IV gives the 
conclusions.

2 Problem Formulation 

2.1 The Mobile Robot 

The model considered is a unicycle mobile robot (see Fig. 1), it consist of 
two driving wheels mounted on the same axis and a front free wheel [3]. 

Fig. 1.  Wheeled mobile robot. 
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The motion can be described with equation (1) of movement in a plane 
[5]:

w

v
q

10

0sin

0cos (1a)

)(),()( qGvqqVvqM (1b)

Where T
yxq ],,[ is the vector of generalized coordinates which de-

scribes the robot position, (x,y) are the cartesian coordinates, which denote 
the mobile center of mass and is the angle between the heading direction 

and the x-axis (wich is taken counterclockwise form); T
wvv ],[ is the 

vector of velocities, v and w are the linear and angular velocities respec-

tively; r
R is the input vector, nxn

RqM )( is a symetric and positive-

definite inertia matrix, nxn
RqqV ),( is the centripetal and coriolis matrix, 

n
RqG )( is the gravitational vector. Equation (1.a) represents the kine-

matics or steering system of a mobile robot. Notice that the no-slip condi-
tion imposed a nonholonomic constraint described by (2), that it means 
that the mobile robot can only move in the direction normal to the axis of 
the driving wheels. 

0sincos xy (2)

2.2 Tracking Controller of Mobile Robot 

Our control objective is established as follow: Given a desired trajectory 
qd(t) and orientation of mobile robot we must desing a controller that apply 
adequate torque  such that the measured positions q(t) achieve the desired 
reference qd(t)  represented as (3): 

0)()(lim tqtq
d

t

(3)



246      Selene L. Cárdenas, Oscar Castillo, Luis T. Aguilar, Nohé Cázarez 

To reach the control objective, we are based in the procedure of [5], we 
deriving a (t) of a specific vc(t) that controls the steering system (1.a) us-
ing a Fuzzy Logic Controller (FLC). A general structure of tracking con-
trol system is presented in the Fig. 2. 

We are based on the procedure proposed by Kanayama et al. [10] and Nel-
son et al. [15] to solve the tracking problem for the kinematic model, this is 
denoted as vc(t). Suppose the desired trajectory qd satisfies (4): 

d

d

d

d

d

w

v
q

10

0sin

0cos

(4)

Using the robot local frame (the moving coordinate system x-y in figure 
1), the error coordinates can be defined as (5): 

d

d

d

y

x

de
yy
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e

e
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qqTe

100

0cossin

0sincos

),( (5)

And the auxiliary velocity control input that achieves tracking for (1.a) 
is given by (6): 

ekvekvw

ekev

w

v
vefv

dydd

xd

c

c

dcc
sin

cos
),,(

32

1

(6)

Where k1, k2 and k3 are positive constants. 

2.2.1 Control of the Kinematic Model 
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Fig. 2. Tracking control structure 

2.2.2 Fuzzy Logic Controller (FLC) 

The purpose of the FLC is to find a control input such that the current ve-
locity vector v to reach the velocity vector vc this is denoted as (7): 

0lim vv
c

t

(7)

As is shown in Fig. 2, basically the FLC have 2 inputs variables corre-
sponding the velocity errors obtained of (7) (denoted as ev and ew: linear 
and angular velocity errors respectively), and 2 outputs variables, the driv-
ing and rotational input torques  (denoted by F and N respectively). The 
membership functions (MF)[9] are defined by 1 triangular and 2 trapezoi-
dal functions for each variable involved due to the fact are easy to imple-
ment computationally. 

Figure 3 and Fig. 4 depicts the MFs in which N, C, P represent the fuzzy 
sets[9] (Negative, Zero and Positive respectively) associated to each input 
and output variable, where the universe of discourse is normalized into 
[-1,1] range. 
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Fig. 3. Membership function of the input variables ev and ew

Fig. 4. Membership function of the output variables F and N. 

The rule set of FLC contain 9 rules which governing the input-output re-
lationship of the FLC and this adopts the Mamdani-style inference en-
gine[16], and we use the center of gravity method to realize defuzzification 
procedure. In Table 1, we present the rule set whose format are established 
as follow: 

Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4

Where G1..G4 are the fuzzy set asociated to each variable and i= 1 ... 9. 

Table 1. Rule set 
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3 Simulations Results 

Simulations have been done in Matlab® to test the tracking controller of 
the mobile robot defined in (1). We consider the initial position q(0) = (0, 
0, 0) and initial velocity v(0) = (0,0), in Table 2 we show the results of five 
simulations. The columns 2 to 6 indicate the reference position qd and ve-
locity vd, the leftovers indicate the position and orientation errors obtained 
when finalizing the simulation. 

Table 2. Simulation results of five experiments. 

No. xd(m) yd(m) d

(rad)
vd

(m/s)
wd

(rad/s)
ex ey e  

1 0.15 0.15 1 1 0 0.0222 -0.0185 0.0321 
2 0.15 0.15 1 0.5 0 -0.0083 -0.0022 -0.0022 
3 0.25 0.25 0.45 1 0 0.0141 0.0005 0.0012 
4 0.40 0.25 0.45 1 0 -0.0118 0.0160 0.0141 
5 0.50 0.25 0.45 1 0 -0.0118 0.0079 0.0070 

From Fig. 5 to Fig. 8 we show the results of the simulation for the case 
1. Position and orientation errors are depicted in the Fig. 5 and Fig. 6 re-
spectively, as can be observed the errors are sufficient close to zero, the 
trajectory tracked (see Fig. 7) is very close to the desired, and the velocity 
errors shown in Fig. 8 decrease to zero, achieving the control objective in 
less than 1 second of the whole simulation. 

Fig. 5. Positions error with respect to the reference values. Solid: error in x, dot-
ted: error in y. 
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Fig. 6. Orientation error with respect to the reference values. 

Fig. 7. Mobile Robot Trajectory 
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Fig. 8. Velocity errors. Solid: error in ev, dotted: error in ew

4 Conclusions 

We described the development of a tracking controller integrating a fuzzy 
logic controller for a unicycle mobile robot with known dynamics, which 
can be applied for both, point stabilization and trajectory tracking. Com-
puter simulation results confirm that the controller can achieve our objec-
tive. As future work, several extensions can be made to the control struc-
ture of Fig. 2, such as to increase the tracking accuracy and the 
performance level. 
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Intelligent Control and Planning of Autonomous 

Algorithms

Julian Garibaldi, Azucena Barreras and Oscar Castillo 
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problem of Offline Point-to-Point Autonomous Mobile Robot Path Plan-
ning. The problem consist of generating “valid” paths or trajectories, for an 
Holonomic Robot to use to move from a starting position to a destination 
across a flat map of a terrain, represented by a two dimensional grid, with 
obstacles and dangerous ground that the Robot must evade. This means 
that the GA optimizes possible paths based on two criteria: length and dif-
ficulty.

1 Introduction 

The problem of Mobile Robot Path Planning is one that has intrigued and 
has received much attention thru out the history of Robotics, since it’s at 
the essence of what a mobile robot needs to be considered truly “autono-
mous”. A Mobile Robot must be able to generate collision free paths to 
move from one location to another, and in order to truly show a level of in-
telligence these paths must be optimized under some criteria most impor-
tant to the robot, the terrain and the problem given. GA’s and evolutionary 
methods have extensively been used to solve the path planning problem, 
such as in (Xiao and Michalewicz, 2000) where a CoEvolutionary method 
is used to solve the path planning problem for two articulated robot arms, 
and in (Ajmal Deen Ali et. al., 2002) where they use a GA to solve the 
path planning problem in non-structured terrains for the particular applica-
tion of planet exploration. In (Farritor and Dubowsky, 2002) an Evolution-
ary Algorithm is used for both off-line and on-line path planning using a 
linked list representation of paths, and (Sauter et. al., 2002) uses a Particle
swarm optimization (PSO) method based on Ant Colony Optimization 
(ACO). However, the research work presented in this paper used as a basis 
for comparison and development the work done in (Sugihara, 1999). In 
this work, a grid representation of the terrain is used and different values 

Abstract. This paper describes the use of a Genetic Algorithm (GA) for the 
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are assigned to the cells in a grid, to represent different levels of difficulty 
that a robot would have to traverse a particular cell.  Also they present a 
codification of all monotone paths for the solution of the path-planning 
problem.

2 Basic Theory 

This section is intended to present some basic theory used to develop the 
GA’s in this paper for use in the path planning problem, covering topics 
like basic Genetic Algorithm theory, Multi Objective optimization, Trig-
gered Hypermutation and Autonomous Mobile Robot Point-to Point Path 
Planning.

2.1 Genetic Algorithms 

A Genetic Algorithm is an evolutionary optimization method used to 
solve, in theory “any” possible optimization problem. A GA (Man et. al., 
1999) is based on the idea that a solution to a particular optimization prob-
lem can be viewed as an individual and that these individual characteristics 
can be coded into a finite set of parameters. These parameters are the genes
or the genetic information that makes up the chromosome that represents 
the real world structure of the individual, which in this case is a solution to 
a particular optimization problem. Because the GA is an evolutionary 
method, this means that a repetitive loop or a series of generations are used 
in order to evolve a population S of p individuals to find the fittest individ-
ual to solve a particular problem. The fitness of each individual is deter-
mined bye a given fitness function that evaluates the level of aptitude that a 
particular individual has to solve the given optimization problem. Each 
generation in the genetic search process produces a new set of individuals 
through genetic operations or genetic operators: Crossover and Mutation,
operations that are governed by the crossover rate  and the mutation rate
µ respectively. These operators produce new child chromosomes with the 
intention of bettering the overall fitness of the population while maintain-
ing a global search space. Individuals are selected for genetic operations
using a Selection method that is intended to select the fittest individuals for 
the role of parent chromosomes in the Crossover and Mutation operations.
Finally these newly generated child chromosomes are reinserted into the 
population using a Replacement method. This process is repeated a k num-
ber of generations.
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2.2 Multiple Objective Genetic Algorithms 

Real-world problem solving will commonly involve (Oliveira et. al., 2002) 
the optimization of two or more objectives at once, a consequence of this is 
that it’s not always possible to reach an optimal solution with respect to all 
of the objectives evaluated individually. Historically a common method 
used to solve multi objective problems is by a linear combination of the 
objectives, in this way creating a single objective function to optimize (Su-
gihara, 1997) or by converting the objectives into restrictions imposed on 
the optimization problem. In regards to evolutionary computation, 
(Shaffer, 1985) proposed the first implementation for a multi objective 
evolutionary search. The proposed methods in (Fonseca and Fleming, 
1993), (Srinivas, 1994) and (Goldberg, 1989), all center around the con-
cept of Pareto optimality and the Pareto optimal set. Using these concepts 
of optimality of individuals evaluated under a multi objective problem, 
they each propose a fitness assignment to each individual in a current 
population during an evolutionary search based upon the concepts of 
dominance and non-dominance of Pareto optimality. Where the definition 
of dominance is stated as follows: 

Definition 1: For an optimization (minimization) problem with n-
objectives, solution u is said to be dominated by a solution v if:

.,....,2,1 ni )()( vfuf
ii  ,                  (1)

,,....,2,1 nj )()( vfuf
ii            (2)

2.3 Triggered Hypermutation 

In order to improve on the convergence of a GA, there are several tech-
niques available such as (Man et. al. 1999) expanding the memory of the 
GA in order to create a repertoire to respond to unexpected changes in the 
environment. Another technique used to improve the overall speed of con-
vergence for a GA is the use of a Triggered Hypermutation Mechanism 
(Cobb, 1990), which consists of using mutation as a control parameter in 
order to improve performance in a dynamic environment. The GA is modi-
fied by adding a mechanism by which the value of µ is changed as a result 
of a dip in the fitness produced by the best solution in each generation in 
the genetic search. This way µ is increased to a high Hypermutation value
each time the top fitness value of the population at generation k dips below 
some lower limit set beforehand. 
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2.4 Autonomous Mobile Robots 

An Autonomous Mobile Robot as defined in (Xiao and Michalewicz, 
2000) can be seen as a vehicle that needs the capability of generating colli-
sion free paths that take the robot from a starting position s to a final desti-
nation d, and needs to avoid obstacles present in the environment. The ro-
bot must be able to have enough relevant information of his current 
position relative to s and d, and of the state of the environment or terrain 
that surrounds it. One advantage about generating paths or trajectories for 
these kinds of robots, compared to the more traditional robot arms, is that 
in general there are far less restrictions in regards to the precision with 
which the paths must be generated. The basic systems that operate in an 
Autonomous Mobile robot are: 
1. Vehicle Control. 
2. Sensor and Vision.  
3. Navigation 
4. Path Planning 

2.5 Point-to-Point Path Planning Problem 

The path planning problem when analyzed with the point-to-point tech-
nique, (Choset et. al., 1999) comes down to finding a path from one point 
to another (start and destination). Obviously, one of the most important 
reasons to generate an appropriate path for a robot to follow, is to help it 
avoid possible danger or obstacles along the way, for this reason an appro-
priate representation of the terrain is needed generating a sufficiently com-
plete map of the given surroundings that the robot will encounter along its 
route. The general path-planning problem, that all autonomous mobile ro-
bots will face, has been solved (to some level of satisfaction) with various 
techniques, besides the evolutionary or genetic search, such as, using the 
Voroni Generalized Graph (Choset et. al., 1999), or using a Fuzzy Control-
ler (Kim et. al., 1999), yet another is by the use of Artificial Potential 
Fields (Planas et. al., 2002).

3 Proposed Method 

The first step before we can continue and give the details of the GA im-
plementation used to solve the path-planning problem, is to explicitly de-
fine the problem and what is it that we are expecting out of the subsequent 
genetic search. To this end, we propose what will be the input/output pair 
that we are expecting from our GA as follows: 
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Input: 1) An n x n grid, where the starting cell s for the robot is in one 
corner and the destination cell d is diagonally across from it. 
2) Each cell with a corresponding difficulty weight wd assigned to it rang-
ing from [0, 1]. 
Output: A path, defined as a sequence of adjacent cells joining s and d,
and that complies with the following restrictions and optimization criteria: 
1) The path most not contain cells with wd = 0 (solid obstacles). 
2) The path must stay inside of the grid boundaries. 
3) Minimize the path length (number of cells). 
4) Minimize the total difficulty for the path, that means, the combined val-
ues of wd for all the cells in a given path. 

We must also establish a set of ground rules or assumptions that our GA 
will be operating under. 
1) The n x n grid isn’t limited to all cells in the grid having to represent a 
uniform or constant size in the terrain, each cell is merely a conceptual rep-
resentation of spaces in a particular terrain. 
2) Each cell in a terrain has a given difficulty weight wd between the values 
of [0,1], that represents the level of difficulty that a robot would have to 
pass through it, where the lower bounds 0 represents a completely free 
space and the higher bounds 1 represents a solid impenetrable obstacle. 
3) The terrain is considered to be static in nature. 
4) It is assumed that there is a sufficiently complete knowledge in regards 
to the state of the terrain in which the robot will operate. 
5) The paths produced by the GA are all monotone paths. 

4 Architecture of the Genetic Algorithm 

We now turn to the actual implementation of our GA, used to solve the 
path-planning problem for one and two optimization objectives. So we de-
scribe each of the parts of our GA and give a brief description of each, 
clearly stating any differences between the one and two optimization ob-
jectives implementations. 

4.1 Individual Representation 

Basically, the chromosome structure was taken from the work done in (Su-
gihara, 1999) where a binary string representation of monotone paths is 
used. The binary string chromosome is made up of n-1 (where n is the 
number of columns and rows in the grid representing the map of a given 
terrain) pairs of direction/distance of length 3 + log[2]n, and an extra bit a
which determines if the path is x-monotone (a=0) or y-monotone (a=1).
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And each pair of direction/distance codes the direction in which a robot 
moves inside the grid and the number of cells it moves thru in that direc-
tion. The coding used greatly facilitates its use in a GA, because of its con-
stant length no special or revamped genetic operators are needed, a prob-
lem that would be very cumbersome to solve if using a linked list 
chromosome representation of the path as done in (Xiao and Michalewicz, 
2000).

4.2 Initial Population 

The population S used in the genetic search is initialized with p total indi-
viduals. Of the p individuals in S, p-2 of them are generated randomly 
while the remaining two represent straight line paths from s to d, one of 
this paths is x-monotone and the other is y-monotone.

So we can clearly define the population S as being made up by: 

S = { baxxxx
p

,,............,,
2210

}                         (3) 

Where
i

x  are randomly generated individuals, and by a and b that are x-

monotone and y-monotone paths respectively that take a straight-line route 
from s to d.

4.3 Path Repair Mechanism 

Each path inside of the population S is said to be either valid or non-valid.
Where criteria for non-validity are: 

Path contains a cell with a solid obstacle (wd = 1). 
Path contains cells out of bounds. 
The paths final cell isn’t d.
Using this set of three rules to determine the state of validity of a given 

path for a particular genetic search, we can define a subpopulation S’, 
which is made up by entirely non-valid paths in S.

The Path Repair Mechanism used with the GA is a Lamarckian process 
designed to take non-valid x’, where x’  S’, and determine if they can be 
salvaged and return to a valid state, so as to be productive in the genetic 
search, because just because a particular path is determined to be non-valid
this does not preclude it from having possible information coded in its 
chromosome that could prove to be crucial and effective in the genetic 
search process, this is way non-valid paths are given low fitness values 
with the penalty scheme used in the fitness evaluation, only after it has 
been determined that its non-valid state cant be reversed. 
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4.4 Fitness Evaluation 

As was mentioned earlier, we introduce here both single and two objective 
optimization of the path planning problem, taking into account the length a 
given path and the difficulty of the same as the two criteria for optimiza-
tion for paths in the population hence, the way in which each implementa-
tion of the GA assigns fitness values differs for obvious reasons.

4.4.1 Single Objective 

Considering our Conventional GA, we can say that for paths inside S we
optimize for only one objective, which is the path length, therefore we de-
fine fitness )(

1
xf  as given by: 

)(
1

xf = )()(
2

cn                                                  (4)

Where c is the number of cells in a given path x.

4.4.2 Multiple Objective 

Besides the fitness )(
1

xf  used in Section 4.4.1 given for path length, a 

second fitness assignment )(
2

xf  is given for path difficulty is given, and 
is calculated by, 

)(
2

xf  =
i

wdn )(
2                                             (5)

Where the second term in (5) is the sum of wd for each cell in a given 
path x. With this we are forced to use Pareto optimality for a rank-based 
system for individuals in population S. So for a path x where x  S its final 
fitness values is given by their rank value inside of S determined by,

          rank(x) =  p -  t                                                                   (6) 

Where p is the size of population S and t is the number of individuals 
that dominate x in S.

5 Simulation Results 

We use the benchmark test presented in Figure 1, which was used in (Su-
gihara, 1997) due to its capability of projecting an accurate general per-
formance score for the GA, and the performance measure of probability
optimality )(kL

opt
, which is a representation of the probability that a GA 

has of finding an optimal solution to a given problem. In this case, is the 
probability of finding a solution on the Pareto optimal front. Using 
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)(kL
opt

as the performance measure we present a set of optimal operating 

parameters for our MOGA using both a Generational and Elitist replace-
ment scheme, Figures 2 to 3 show the simulation results that support this 
values. We also compare the two methods along with the GA proposed in 
(Sugihara, 1999) and the comparison is made under a normalized value for 
kp=30,000 keeping the overall computational cost equal for each GA. 

Fig. 1. Benchmark Test, with two paths on the Pareto Optimal Front. 
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6 Conclusions 

This paper presented a GA designed to solve the Mobile Robot Path Plan-
ning Problem. We showed with simulation results that both a Conventional 
GA and a MOGA, based on Pareto optimality, equipped with a basic repair 
mechanism for non-valid paths, can solve the point-to-point path planning 
problem when applied to grid representations of binary and continuous 
simulation of terrains respectively. From the simulation results gathered 
from experimental testing the Conventional GA with a Generational Re-
placement scheme and Triggered Hypermutation (which is commonly re-
ferred to as a conversion mechanism for dynamic environments) gave con-
sistent performance to varying degrees of granularity in the representation 
of terrains with out a significant increase in population size or number of 
generations needed in order to complete the search in a satisfactory man-
ner, while the MOGA based on Pareto Optimality combined with a Elitist 
replacement scheme clearly improves upon previous (Sugihara, 1999) 
work done with multiple objective path planning problem based on linear 
combination, with the added advantage of providing more than one equally 
usable solution. 

k
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Part IV Pattern Recognition 
Applications



The Role of Neural Networks in the Interpretation 

of Antique Handwritten Documents 

Department of Computer Science, (2) Department of Electrical Engineer-
ing. Universidad de las Américas, Puebla. MEXICO 

Abstract. The need for accessing information through the web and other 
kind of distributed media makes it mandatory to convert almost every kind 
of document to a digital representation. However, there are many docu-
ments that were created long time ago and currently, in the best cases, only 
scanned images of them are available, when a digital transcription of their 
content is needed. For such reason, libraries across the world are looking 
for automatic OCR systems able to transcript that kind of documents. In 
this chapter we describe how Artificial Neural Networks can be useful in 
the design of an Optical Character Recognizer able to transcript handwrit-
ten and printed old documents. The properties of Neural Networks allow 
this OCR to have the ability to adapt to the styles of handwritten or antique 
fonts. Advances with two prototype parts of such OCR are presented. 

1 The Problem of Antique Handwritten 

Currently, web distribution of old documents is limited to a scanned image 
of the document because most of the commercial Optical Character Rec-
ognizers (OCR) do not obtain good recognition rates with old handwritten 
documents or with documents using old styles of fonts.

The recognition of old handwritten and printed documents is a challenge 
in pattern recognition, due to special characteristics that this recognition 
problem presents. Figure 1 shows an example of an old telegram, written 
by Gral. Porfirio Díaz, president of Mexico at the beginning of XX Cen-
tury. Even for a non-expert person, who does not have some previous 
knowledge of this kind of writing, is very difficult to interpret the content 
of this document. 
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P. Gómez-Gil et al.: The Role of Neural Networks in the Interpretation of Antique Handwritten

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
Documents, StudFuzz 208, 269–281 (2007)



Digital processing of old documents faces, among others, the following 
conditions:

Old documents have been damaged with the pass of time. In most cases 
they present spots, color of paper have changed, or their texture is dete-
riorated.
Digitalization process requires special cares to protect the documents. 
The production of a digital image that will feed the OCR is, by itself, a 
delicate process. It requires a special kind of scanner, which would not 
touch the document. 
The recognition process of old documents is off-line. There is no infor-
mation about the dynamics of the writing or the pressure used by the 
writer.

Fig. 1. An example of a telegram written by Porfirio Díaz at the beginning of XX 
century [1] 

Added to these conditions, there are also special complications during the 
recognition of old handwriting. Some of them are [2]:

Old styles of handwriting have a lot of ornaments. 
Fonts are not uniform. For example, same character may look different 
in different places of a word, in different words or in different docu-
ments. Notice that this situation is presented in any kind of handwriting, 
and is much stronger if documents came from different writers. 
The shape and style of writing may be different even for the same per-
son depending on environmental factors, mood, type of pens, age, etc. 
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Character segmentation requires extra procedures, besides the common 
ones as identification of valleys and hills, due to the styles of different 
letters.
In some patterns it is noticed that different classes of characters are very 
similar in shape. 

Figure 2 shows some examples of handwritten words written by the 
same writer at different moments and documents. Notice that some letters 
have different shapes depending on their positions in the word, and when 
presented in different words. Some letters may be confused with a connec-
tion and some letters may be “embedded”, looking two of them as one 
character.  Therefore, in terms of a pattern recognition problem we have 
that:

There are no evident prototypes to define each class 
The variance among members of the same class is greater than expected 
values
Common similarity metrics, as Euclidian distance, are sometimes use-
less because it may be greater for patterns belonging to same class than 
for patterns belonging to different classes.

2 An OCR for Antique Handwritten Documents 

The research group of Neural Networks and Pattern Recognition at Uni-
versidad de las Américas, Puebla, is currently working with the construc-
tion of an OCR able to recognize antique handwritten and printed docu-
ments. This OCR will be useful to our library, which posses a huge amount 
of such historical documents [3].

We propose the construction of an adaptive OCR, called Priscus (latin 
word meaning “antique”) that have the following components (see figure 
3):

Digitization. Creation of a color or gray level image of the document to 
be recognized.
Pre-processing. Cleaning of image, noise reduction and black and white 
conversion of the image.
Segmentation of words. Given a binary map, this process obtains the 
words that are presented in the image. 
Segmentation training. Adaptive system that learns to identify 
segmentation points in a word, based on the handwriting or font 
presented to the OCR. 
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Character segmentation. This process obtains possible segments that 
may contain characters, based on the knowledge obtained from the seg-
mentation training. 
Recognizer training. Adaptive system that learns to identify characters 
from segments obtained from the binary image of the document. 
Recognition of characters. It receives segments of words, extract fea-
tures of them and decide the most likely characters.
Identification of words.  Based on possible words obtained by the rec-
ognizer and a dictionary, this process decides the most likely words. 
Correction of style. Based on the identified most likely words and 
grammar rules, this process creates well formed sentences, obtained a 
transcription of the document. 

At this point, we have focused our research in the segmentation and char-
acter recognition components, using artificial neural networks.

Fig. 2. Examples of old handwritten words [2] 
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Fig. 3. The proposed OCR for transcription of old documents

3 Why Neural Networks?

Artificial Neural Networks (ANN) are mathematical models inspired in 
biological systems, able to learn the behavior of a system getting their 
knowledge from data. For our purposes we use ANN simulated in digital 
computers, but they are available also as hardware components. There are 
many types of ANN, and most of them present three important characteris-
tics: abstraction, generalization and learning [4]. ANN are useful for prob-
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lems were the functions describing a system are not explicit, but there is 
enough data that likely can be used to obtain some numerical representa-
tion of the knowledge ruling the behavior of the system.

It is evident that the definition of explicit rules for the segmentation and 
recognition process in handwriting is a very complex task, therefore the 
use of adaptive systems that learned from examples for such processes are 
useful. In the other hand, it is known that some models of neural networks 
are able to obtain better generalization rates than others adaptive systems. 
This generalization ability is an advantage in the case of handwriting rec-
ognition, given the spread presented in the patterns of the clusters of 
classes presented in this case. In the other hand, having trainable systems, 
segmentation and recognition can be tailored to the style of the writing 
found in specific applications or for fonts found in specific periods of the 
history.

Up to date, we have been working with the development of prototypes 
of two parts of the OCR: a system based on a back-propagation neural 
network [5] for segmentation of words and a character recognizer based on 
a SOFM neural network [6]. Both sub-systems will be explained in the 
next sections.

4 Test Case: Telegrams Written by Gral. Porfirio Diaz

The library of the Universidad de las Américas Puebla, contains a rich col-
lection of old documents. Among them, there are about 70,000 telegrams 
written during a historical Mexican epoch known as “Porfiriato.” The li-
brary has the goal of making them available across the web. Up today, 
around 2,000 of them have been digitized and their contents transcribed by 
experts and they are available for consulting [1].

In order to test our segmentation and recognition systems, 25 of such 
telegrams were scanned, and their images were manually cleaned from 
noise and printed lines using commercial software, and manually a set of 
black and white isolated word images were cutting. 

We build a segmentation application, called HOWOST, based on 3 com-
ponents: the “white hole algorithm” proposed by Nicchiotti et al. [7], a ver-
tical density algorithm proposed by Kussul & Kasaktina [8] and a Back 
propagation neural net trained to reduce the over segmentation generated 
by both algorithms. 
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The white hole algorithm detects white pixel areas rounded by black 
runs,  in order to find caves or circumferences corresponding to letters as 
a,b,c,d,e,g,h,n,o,p,q. This method forces segmentation points before and 
after the white area. The second algorithm builds a black pixel density his-
togram for each word column so that valleys in the histogram indicate the 
presence of a ligature between letters. 

The BP neural network is trained to learn which of the segmentation 
points generated by both algorithms are right and which are wrong. The 
supervised classification to train the network is given by a human expert 
that marked the correct and incorrect segmentation points in some exam-
ples automatically generated for the algorithms. After the network is 
trained with examples of the handwritten or font documents, the system 
may be used on-line to segment words. Figure 4 shows the interface of the 
segmentation subsystem. 

Different configurations of networks with different data sets have been 
tested, but three major experiments were carried out to test the perform-
ance of the system. The first experiment uses very hard-to-read words, like 
words with short ligatures, overlapping, and bad quality, requiring an ex-
pert for their interpretation. The second experiment uses an ANN trained 
with "easy" words, like words with prominent ligatures easy to read for 
common people. The third experiment uses a training file with easy and 
hard words combined. All experiments use the same network topology 
(270-300-200-100-1), and a learning rate of 0.12. Training was stopped af-
ter 200 epochs. Table 1 shows the results of these experiments.  As 
expected, training the network with difficult words improves de number of 
correct segmentation points when difficult data is tested. The low level of 
over segmentation obtained in the three cases demonstrates the success of 
the hybrid technique in this type of writing. 

In general, using a set of 898 mixed patterns, we got 83% of accuracy in 
segmentation combining the two algorithms with the neural network. 
When tested independently, the white hole algorithm obtained 47% of suc-

6 Self-Organized Maps for Character Recognition 

For the recognizer we chose a neural network able to create topological 
maps trained with a non supervised algorithm [10]. We decided to use 
topological maps because, given the special characteristics of these prob-
lems, it was mandatory to have several prototypes of each class, and to re-
late them in a way that similar prototypes were near in a way that their  

cess in the best case, and the vertical density algorithm obtained 53% .
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relative relation were shown. The decision of use non supervised algorithm 
was based on the idea that the learning showed by humans when reading 
old handwriting is no supervised.

Inspired in the organization by maps of human brain T. Kohonen devel-
oped the self organizing feature mapping algorithm (SOFM) [6]. The goal 
of SOFM algorithm is to store a set of input patterns x  X by finding a set 
of prototypes {wj | j = 1, 2…N} that represent the best feature map , follow-
ing some topological fashion.  The map is formed by the weights connec-
tion wj of a one or two-dimensional lattice of neurons, where the neurons 
are also related each other in a competitive way.

This learning process is stochastic and off-line; that is, two possible 
stages are distinguished for the net: learning and evaluation. It is important 
to notice that the success of map forming is highly dependent on the learn-
ing parameters and the neighborhood function defined in the model. The 
map is defined by the weights connecting the output neurons to the input 
neurons.

Following is a description of the SOFM algorithm as applied in the con-
struction of the recognizer [11]. 

1. Initialize the weights with random values: 

wj (0) = random()  , j = 1..N (number of neurons) (1)

2. Chose randomly a pattern x(t) from the training set X at iteration t. 
3. For each neuron i in the map feature map  calculate the similarity 

among its corresponding weight set wi and x. The Euclidian distance 
may be used: 

2

1

2
,

n

k

kiki
xwd xw  i = 1..N 

(2)

4. Find a wining neuron i* which is the one with maximum similarity 
(minimum distance). 

Pilar Gómez-Gil et al. 
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Fig. 4. Our segmentation software [9] 

Table 1. Results obtained by  the segmentation subsystem 

5. Update the weights of winning neuron i* and their neighbors as: 

ttttt
ijj

wxww 1   for j )(
*

t
i

(3)

6. Where )(
*

t
i

 corresponds to a neighborhood function centered on the 

winning neuron. For this problem, we choose a neighborhood distance 

Training

input

Ideal number 

of segmenta-

tion points in 

the test set 

Correct seg-

mentation

points found 

by HAWOST 

Incorrect

segmentation

points found 

by HOWOST 

Hard-to-

read

words

82 67 22 

Easy-to-

read

words

82 43 23 

Mixed

words

82 55 18 
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of 0 neurons. )(t  is a learning rate function depending on time. We 

choose: tt /1)( .
7. Go to step 2 until no more changes in the feature map are observed or a 

maximum number of iterations is reached. 

Several experiments have been made with a different number of classes in 
order to analyze and understand the behavior of this network. We started 
with 3 classes up to 21 classes. Unfortunately, at the moment of this work, 
we did not have enough data to test the whole alphabet with 27 classes (the 
whole alphabet). The results of SOFM were compared with a recognizer 
based on a “nearest neighbor algorithm” using a “k-means” algorithm to 
get the prototypes required by nearest neighbor as described at [12]. Table 
2 shows the results obtained by both the SOFM network and the nearest 
neighbor classifier. Notice that in all cases the SOFM network gets better 
results that the nearest neighbor algorithm. 

Figure 5 shows some topological maps generated by the SOFM using 
patterns of the five vowels. Notice that the maps result as expected. Similar 
prototypes are generated near each other. Figure 6 shows the topological 
maps for 21 classes generated by the network. 

Table 2. Results of recognizer with different number of classes [10] 

Number of 
classes

Number of 
training pat-

terns

Type of Recognizer Recognition rate 
on

Training set 

3 13 Nearest neighbor 84% 

  SOFM (3x3) 92% 

5 56 Nearest neighbor 58% 

  SOFM (5x1) 58% 

  SOFM (5x2) 71% 

  SOFM (5x5) 73% 

21 86 Nearest neighbor 6% 

  SOFM (5x12) 63% 

  SOFM (2x30) 70% 

Pilar Gómez-Gil et al. 
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7 Conclusions and Future Work 

We presented the overall issues associated to the construction of a OCR 
able to process antique handwritten and printed documents. The special 
characteristics associated to this problem were discussed, as well as the 
role of artificial neural networks in the implementation of useful segmenta-
tion and recognition systems. The advances obtained in these two subsys-
tems were also presented. 

It is clear that there is still a lot of work to be done, because each com-
ponent of this recognizer is by itself a complete system. At this moment we 
are working with the integration of segmentation and recognition subsys-
tems, as well with the identification of a systematic way to look for the 
best SOFM topology. It can be noticed that we did not present results from 
the application of the recognizer or the segmentation system in old printed 
documents; we are also working with this part. 
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Fig. 5. Topological maps generated for vowel using different topologies [10]. 
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Fig. 6. Topological maps generated for 21 classes using 2 different topologies 
[10].
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Abstract. This paper introduces a vision-based pattern recognition scheme 
for the identification of very high tolerances of manufactured industrial ob-
jects. An image-forming device is developed for the generation and the 
capture of images/silhouettes of the components. A simple but effective 
feature extraction algorithm is employed to produce distinguishable fea-
tures of the components in question. Radial basis function (RBF) based 
membership functions are used as classifiers for the pattern classification. 
For the decision making process, a fuzzy logic based inferential reasoning 
algorithm is implemented for the  approximate reasoning scheme. 

1 Introduction 

In recent years, the concept of fuzzy logic has become a favourite tech-
nique for inferential reasoning processes in many control and decision-
making applications ranging from manufacturing processes to medical di-
agnosis. Fuzzy logic, developed by Zadeh [1,2,3], has provided a more 
natural and human-like interface between human and machine capable of 
making many rational decisions in environments with llevels of uncer-
tainty and imprecision. In fact, many Japanese consumer products such as 
washing machines, air conditioning systems and camcorders, to mention 
just a few, have already successfully applied fuzzy logic concepts for con-
trol purposes. There are two main reasons for the current use of fuzzy 
logic. First, the basic design principle of fuzzy logic systems is very simi-
lar to the way of human reasoning, based on simple conditional rules. Sec-
ond, expert knowledge (normally in way of natural language) can be built 
into the systems in advance and can easily be adapted and improved. 

In this paper, the concept underlying fuzzy inferential reasoning for the 
identification of  high tolerances in  manufactured components is proposed 
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and explained. Several different test objects,  compressor impellers, which 
serve as significant components of turbochargers, are used for the identifi-
cation.

A turbocharger is a device fitted to vehicle engines to increase engine 
brake power and torque over parts of the engine speed range. They are also 
used for the  avoidance of higher peak pressures beyond those of the nor-
mally aspirated vehicle engines [4]. Since different classes of turbocharg-
ers have different shapes, different characteristics and, therefore, different 
performances, the use of the correct components to assemble the turbo-
charger is highly significant in terms of performance and working-life of 
both the turbocharger and the engine. 

Incorrect impellers fitted into the turbocharger may result in the degra-
dation of the engine performance and even damage to the engine itself. 
The difference between different classes of impellers are so small such that 
it is almost impossible to identify them by human visual perception. The 
use of human inspectors to check every impeller is impractical especially 
at high rates of production. Therefore, there is a need for an easy-to-
operate vision-based checking system at the assembly unit or parts dis-
patch stage to verify the identities of parts. 

In this paper, the design configuration,  the development and testing of 
the system are all described. Both the advantages and the shortcomings of 
the system are discussed as well.

2 Image-Forming Device 

A high quality input image is always the fundamental requirement of an 
accurate and high performance image analysis process. The device used 
for forming and storing the images/silhouettes of the impeller blade(s) is 
the mechano-optical arrangement [5,6] as in Fig. 1. This image-forming 
device consists of an incandescent light source, two special purposed re-
flecting mirrors, a stepper motor-driven rotary table, and a CCD camera. 
The operating principle of this image-forming device is described as be-
low.
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Fig. 1. Design of the mechano-optical arrangement 

The device consists of a tungsten-halogen lamp 1  for the generation of 
a white beam as the light source of the system. The beam is then focused 

onto an iris diaphragm 3  by passing it through an aspheric condenser 

lens 2 . After the beam has been diffused by a circular holographic dif-

fuser 4 , a picture of the silhouette of the impeller blade(s) will be re-

flected to a CCD camera 7  by a pair of 90 off-axis paraboloidal mirrors
5 & 6 .

In this experimental investigation, impellers with different tolerances 
are screwed down separately to a spindle vertically mounted on a rotary

table 8 . 25 sequential images of the blade silhouettes of the impeller 

were recorded by rotating a stepper motor 9  through 45  in pre-
programmed steps (i.e., 1.8 /step) and images were captured at each inter-

val. The images were subsequently digitised by a frame grabber 12  into 
25 imaging files. 

The stepper motor is driven by a stepper motor driver 10 . A digital in-

put/output board 11  together with a tailored software program are used 
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to produce the control signal from the PC 13  to the stepper motor driver. 
The programs for the stepper motor movement control and the image ac-
quisition process are both written in "C" and run on a 486 PC. The capture 
time for 25 images is approximately 13 seconds. Once the images are digi-
tised and stored in the memory, feature extraction operations can be per-
formed. It may be noted that, since the impeller is symmetrical in shape, 
only a half of it is used for the process. Fig. 2 illustrates the form of the in-
put image. 

Fig. 2. Input image 

3 Feature Extraction 

The main objective of feature extraction is to transform the output data ac-
quired from the sensing device (pattern space) into a new lower dimen-
sional space (feature space) for later pattern representation and/or class 
discrimination. In order to gain processing speed, a reduction of the data 
dimensionality becomes a main feature of extraction. However, informa-
tion is always lost in the feature extraction stage, and it is possible that 
some of this information is valuable for classification. Therefore, selecting 
the optimal feature(s) is always important to the performance of the classi-
fication process. 

A one-dimensional edge detector and a feature transformation plus in-
dexing technique are used to extract the distinguishable features of the im-
ages. The flow diagram below (Fig. 3) depicts the principle underlying the 
feature extraction algorithm. A full description of this algorithm can be 
found in [7]. 
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Fig. 3. Principle of the feature extraction algorithm 

4 Design of the Classifier 

In general,  a classifier sorts out patterns into mutually exclusive regions or 
classes. Since classifiers are usually designed with labelled patterns, their 
design is sometimes unknown as the supervised learning [10]. 

Classifier design normally consists of two stages, training and testing.
After the establishment of the basic decision rules,  the boundaries that 
separate the pattern classes may  be obtained. This is done by training the 
classifier on a group of known objects (training set). Once the training is 
finished, a classifier evaluation process (testing) has to be performed to en-
sure the accuracy of the classifier. One of the most common methods for 
classifier testing is by presenting another group of known objects to the 
classifier and counting the number of misclassifications. 

In this study, a Radian Basis Function (RBF) based membership func-
tion is used as the classifier. A modified Gaussian-like RBF is expressed 
as

,...3,2,1
2
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exp)(

2

2

i
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where x  is the mean of x (the central position),  is the standard deviation 
of x (the width) and, 

h
1
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is a real constant which represents the height of the function. A graphical 
representation of the membership function is illustrated in the Figure 4. 

0
x

(x)

h

x
-

x
-

- x
-

+

Fig. 4. Graphical explanation of the membership function 

Since the classes of the impellers are known to possess subtle differ-
ences by virtue of manufacturing tolerances, it may be  possible to recog-
nise these impeller classifications by applying three characteristic attrib-
utes as the membership function parameters (x ,  and h) as inputs to a 
decision-making algorithm. 

Table 1 shows the knowledge-base of the membership parameters for 
the 1700 and 5300 impeller series. In view of the manufacturing tolerances 
of the impellers provided by the manufacturer, it was necessary to define 
not only three parameters for each class of impellers, but also two limits 
for each parameter to allow for all the possibilities of impeller acceptance 
within one class. 

Table 1. Illustration of the knowledge-base of the membership parameters for the 
1700 and 5300 series impellers. 

Class 1710 1711 1712 5358 5398 
x > = 514 

< = 523 
> = 499 
< = 508 

> = 484 
< = 493 

> = 560 
< = 569 

> = 519 
< = 528 

> = 99.3 
< = 103.8 

> = 104.5 
< = 109.0 

> = 110.1 
< = 114.6 

> = 76.0 
< = 79.5 

> = 92.7 
< = 96.6 

h > = 0.0038 
< = .00405 

> = 0.00362 
< = 0.00385 

> = 0.00346 
< = 0.00366 

> = 0.00500 
< = 0.00526 

> = 0.00410 
< = 0.00434 
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5 Classification : Fuzzy Logic Based Inferential Reasoning 

Intelligent reasoning and clever inference of conclusions  especially in 
the presence of ambiguity, confusion, missing information, deception, and 
so forth  are major attributes of human problem solving capabilities 
[11]. The main task of this system is to perform intelligent decision-
making through inference and extraction of conclusions from available 
relative data  an inferential reasoning system that can more closely emu-
late human performance. 

To cope with this style of reasoning, a suitable modelling technique is 
developed using fuzzy logic based on fuzzy set theory since this  system 
deals with inexact, uncertain and incomplete data. 

Fuzzy logic based on fuzzy set theory provides at least two advantages 
in the field of pattern recognition [12], first,  it serves as an interface be-
tween the linguistic variables which seem to be preferred by humans, and 
also the quantitative characterisations appropriate for machines. Secondly, 
it emphasises the possibility distribution interpretation of the concept of 
fuzziness. Fuzzy logic legitimises and provides a meaningful interpretation 
for some distributions that human beings believe are useful, but might 
have difficulty for their  justification on the basis of objective probabilities. 

For this particular project, a cross-correlation algorithm based on the 
theory of fuzzy sets, the fuzzy cross-correlation algorithm [7,9], has been 
developed to measure the fuzzy similarity relationship between two feature 
vectors obtained from two similar objects. 

Let A be a fuzzy subset of a classical set X, then we can write, 

]1,0[)(;:)(,
iAiiAi

xXxxxA

In the case of finite universes, it is more convenient to use vector nota-
tion,

a a a

x x

T

n

A A n

1

1

,...,

( ),..., ( )

The Cartesian product X Y  of finite universes is expressed as, 

n
xxX ,...,

1
 and 

m
yyY ,...,

1

and may be written in a corresponding matrix notation as, 

5.1. Principle of the Fuzzy Cross-Correlation 
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Fuzzy sets of the type given by Eqn (1) play an important role in fuzzy 
relations in X Y  indicating the strength of the relations between, x X

i

and y Y
j

.

The composition U V  of the fuzzy relations U in X Y  and V in 
Y Z , where 

p
zzZ ,...,

1
 is an additional universe, is the fuzzy rela-

tion in X Z ,
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are commonly interpreted as the strength of the chains linking x
i
 to z

k
.

Equation (2) can be represented by an equivalent notion, 

kiki
vuhgtr

,
 (3) 

where hgt( )  is the height of the fuzzy set which results from the intersec-
tion u v

i k
.

When both u
i
 and v

k
 are non-normalised fuzzy sets, with height less 

than 1, it may be useful to write, 

ki

ki

ki

vuhgt

vuhgt
r

,

instead of Eqn (3). 
The disadvantage of the max-min composition as a measure of composi-

tion between two fuzzy sets is that r
i k.

 would become equal to 1 even 
though u v

i k
.
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Therefore, an improved version of a measure is obtained by the relation-
ship,

r
u v

u v
i k

i k

i k

,

*

where  indicates the fuzzy cardinality of the corresponding fuzzy set. In 

this case, the measure of r
i k,

*  is equal to 1, if and only if u v
i k

.

By means of *–composition, the equation, 

vur
T

i

T

i
*

*  (4) 
may be constructed as a set of comparative operations between a fuzzy 
sample set u

i
 and a reference set of fuzzy sets 

p
vvV ,...,

1
, where u

i
 as 

well as v v
p1

,...,  are fuzzy subsets of Y . Thus the fuzzy set r
i

*  of Z  indi-

cates the grade of conformity of the pairs 
ki

vu ,  for a fixed i  and 

k p1,..., .
Obviously, the composition in Eqn (4), is the cross-correlation of dis-

crete sequences, and it is, therefore, called the fuzzy cross-correlation 
which may complement the notion of fuzzy convolution. 

Equation (5) illustrates the mathematical expression to compute the fuzzy 
cross-correlation algorithm, 

ref test ref

n

test

n

or,

ref test

i i

i

n

i i

i

n
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R T R T
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, , ,...

...
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1

1

1 1 2 2

1 1 2 2
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where
ref

n

i
R  and 

test

n

i
T  represent the reference and the testing 

feature matrices respectively, n is the number of elements in the matrix, 
and the R

i
 and T

i
 are the elements in the matrix. The symbol " " repre-

sents the fuzzy cross-correlation operator, the "min" represents the fuzzy 

5.2 Fuzzy Similarity Measure 
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logic intersection, the "max" represents the fuzzy logic union and the 

ref test
 is the grades of similarity of the testing component to the reference 

component ranging from 0 to 1. 
Figure 5 shows the principle of a Neuro-fuzzy algorithm based on the 

radial basis function as membership functions of the objects (impellers) 
and the fuzzy cross-correlation algorithm. 
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Fig. 5. Principle of the Neuro-fuzzy algorithm 
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The attributive parameters (x  - the position; 
x
 - the width; and h  - the 

height) of the membership function of the reference object are first ex-
tracted and stored in a knowledge-base. The attributive parameters of the 
membership function of the test objects are then extracted and expressed in 
a matrix format for similarity measure. The following matrices represent 
the feature matrices of the reference object and the test object respectively. 

x h
x ref

test

x

h

x

Feature matrix: Reference object.            Feature matrix: Test object. 

For mathematical reasons, the number of columns in the matrix of the 
reference object should be equal to the number of rows in the matrix of the 
test object. 

From Eqn (5), the grade of similarity between the reference object and 
the test objects may be computed. "1" can be obtained if the two objects 
are identical or a number between 0 and 1 is given to show the similarity 
between the two objects. 

Decision

hhxx

hhxx

h

x

hx

testreftestxrefxtestref

testreftestxrefxtestref

test

xrefxtestref

,,

,,

*

In this study, impeller 5358 is used as the reference model. Using Table 
1 as the input values to Eqn (5), the grade of similarity of all five classes of 
impeller can be defined as in Table 2. 

Table 2. Summary of the 
ref test

 for each impeller. 

5358 5358T 5358 5398T 5358 1710T 5358 1711T 5358 1712T

0.9903 0.9078 0.8907 0.8616 0.8325 
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6 System Evaluation 

In this section, the performance of the impeller recognition system will be 
evaluated. Three impellers with various tolerances are used to test the effi-
ciency and sensitivity of the system. It may be pointed out that these three 
impellers were not used for the development of the knowledge-base. In or-
der to show the effectiveness of the system, the mechano-optical arrange-
ment was subjected to the influence of ambient lighting during the data ac-
quisition process. Tables 3 to 5 show the results of the evaluation. 

Table 3. System evaluation - sensitivity of the impeller recognition system (1710).

Test no. 1 2 3 4 5 
x 516.1

67
514.583 515.417 515.250 515.917 

100.3
96

102.080 104.024 103.282 100.922 

h 0.00397 0.00391 0.00384 0.00386 0.00395 
Acceptable

Unclassified

Grade of 
similarity

  0.8827   

Similar to   1710   

Table 4. System evaluation - sensitivity of the impeller recognition system (1711).

Test no. 1 2 3 4 5 
x 500.333 503.250 501.667 500.750 500.917 

107.287 105.535 105.572 105.913 105.772 
h 0.00372 0.00378 0.00378 0.00377 0.00377 

Acceptable
Unclassified      

Grade of 
similarity

     

Similar to      
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Table 5. System evaluation - sensitivity of the impeller recognition system (1712).

Test no. 1 2 3 4 5 
x 485.667 484.750 484.083 483.917 487.750 

111.092 112.980 113.752 112.935 110.772 
h 0.00359 0.00353 0.00351 0.00353 0.00360 

Acceptable

Unclassified    
Grade of 
similarity

   0.8250  

Similar to    1712  

Tables 3 to 5 show that most of the classifications are correctly done even 
though the system suffers from interference by unexpected factors, e.g., 
ambient lighting. In Table 3 (Test no. 3) and Table 5 (Test no. 4), the clas-
sification results using the direct comparison scheme as depicted in [7] 
(i.e., the direct comparison of the three characteristic parameters of the 
membership function) were unsuccessful. However, the Neuro-fuzzy sys-
tem demonstrates its effectiveness with imprecise data. The uncertain im-
peller X can be assigned as a member of the reference class that shows the 
maximum similarity with impeller X.

7 Conclusions 

A pattern recognition scheme based on machine vision technology and 
Neuro-fuzzy  based decision-making algorithm is used to identify high tol-
erance manufactured components for identity verification. An overall flow 
diagram of this pattern recognition scheme is illustrated in Fig. 6. 

In this study, a neuro-fuzzy algorithm for the impeller recognition 
scheme, as shown in Fig. 7, has been developed and tested. In this design, 
we demonstrate the ease with which good performance with respect to 
high tolerance recognition is achieved and could be improved by applying 
the neuro-fuzzy algorithm to the classification of manufactured compo-
nents. In the proposed algorithm, characteristics of the application task can 
be built into the neeural network model in advance by employing a logical 
structure, in the form of fuzzy inference rules. Therefore, it is easier to im-
prove the performance of the proposed algorithm in which the internal 
state can be observed because of its structure, than in an ordinary neural 
network model, which is like a black box (non-algorithmic classification). 
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Abstract. In a previous paper we presented the implementation of the 
Fuzzy Sugeno Integral formulas developed with Matlab 6.5™. The pro-
grams are now included in a System called “Herramientas Multired” 
(“hmr”).  In this paper we will review an example of modular neural net-
work for image recognition, using images divided in four parts. The Fuzzy 
Sugeno Integral was used to make a final decision for pattern recognition. 

1 The Fuzzy Sugeno Integral 

The Fuzzy Integral is an operator introduced in 1974 by Sugeno [1]. This 
operator is used to resolve problems of multicriteria decision making, 
where the information that is combined is based in fuzzy measures deter-
mined by an expert. 

The goal is the simulation of the human process for the integration of 

Fuzzy measures are functions applied to fuzzy sets and they consist of 
different coefficients call fuzzy densities. Each fuzzy density rate the rele-
vance of the different sets and their combinations, in order to satisfy cer-
tain hypothesis. 

There are two types of Fuzzy Integral: Choquet Fuzzy Integral (1) and 
Sugeno Fuzzy Integral (2). [3]

(1)

(2)

different source of information [2].

Where i= (xi) and  0 1 … n  1 
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1.1 Fuzzy Measures 

A fuzzy measure µ, respect to the data set X, it must satisfy the following 
conditions: [4] [5]. 

1) µ(X)=1, µ(Ø)=0 
2) If S T, then µ(S)  µ(T) 

Where S y T are subsets of X. 

One fuzzy measure is a Sugeno Measure or -fuzzy, if it satisfies the fol-

lowing condition of addition for some  >-1. 

µ(S T)= µ(S)+µ(T)+ µ(S)µ(T) (3)

 can be calculated of the following by (4) or (5): 

(4)

(5)

The method used to calculate Sugeno measures, it is carrying out the 
calculation of recursive way, [6][7] using (6),(7). 

µ(A1)=µ(x1)                                               (6) 

µ(Ai)=µ(xi)+µ(Ai-1)+ µ(xi)µ(Ai-1) (7)

Where 1<i n, and the values to µ(xi)  corresponds to the fuzzy densities 

determined by an expert. 

A fundamental restriction to use the recursive formulas (6) and (7) is the 

reordering of the fuzzy densities. The fuzzy densities must be ordered re-

spect the descendent order of the respective values to combine.
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Consider the set X={x1,x2,…xn}, the fuzzy density values are given as 

follows:

Fuzzy densities: µ(x1)=0.3, µ(x2)=0.4, µ(x3)=0.1 

Values to combine: (x1)=0.9, (x2)=0.6, (x3)=0.3

The value of    can be calculated by  (5), solving the following equation, 

using some numeric method to found the root of f(  ) [8]:

1+ =(1+0.3 )(1+0.4 )(1+0.1 )

The solutions are = -16.8 y =0.9906,  if >-1, then =0.9906

The Sugeno measures (3) can be constructed as follows: 

µ(x1)=0.3,  µ(x2)=0.4,  µ(x3)=0.1 

µ(x1,x2)=µ(x1)+µ(x2)+ (µ(x1)µ(x2))=0.8189

µ(x1,x3)=µ(x1)+µ(x3)+ (µ(x1)µ(x3))=0.4297

µ(x2,x3)=µ(x2)+µ(x3)+ (µ(x2)µ(x3))=0.5396
µ(x1,x2,x3)=1

In this example the values to combine are already ordered descendent, then 
the reordering of fuzzy densities is not necessary to do the calculation us-
ing the recursive formulas (6) and (7). 

µ(A1)=0.3
µ(A2)=0.4+0.3+(0.9906)(0.4)(0.3)= 0.8189 
µ(A3)=0.1+0.8189+(0.9906)(0.1)(0.8189)= 1

1.3 Example for the Calculation of Sugeno Integral 

The Fuzzy Sugeno Integral, can now calculate using (1) 

h(0.9,0.6,0.3)=max(min(0.9,0.3),min(0.6,0.8189),min(0.3,1))
h(0.9,0.6,0.3)=max(0.3,0.6,0.3)=0.6

1.2 Example for Calculation of Sugeno Measures  
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2 The Modular Neural System  “Fotos 4 Partes” 

The model “Fotos 4 partes” shown in figure 1, contains one neural network 
node to each part of the face of 5 people. Each neural network was trained 
with one of 4 parts of 5 different people, with 7 samples.

Fig. 1.  Model “Fotos 4 partes” 

The steps to create the modular multi-net system are: 

Divide n images in p parts with s samples. 
Train one monolithic neural network for each part. 
Simulate each neural net trained, using a complete image like input data.
Use the result of simulation of many neural nets to build a matrix con-
tains one row for each person, and one column for each part of the im-
age.

For example, the module “frente” was trained with 7 samples of the supe-
rior part of the face of  5 different people, as shown in figure 2 

To explain the recognition process, we use the module “Fusion 1-5”, that 
combines four modules (neural nets) trained to recognize one of the parts 
of the face of five people.

All the neural networks in this model, was trained with samples 
1,2,3,4,5,6 and 10, for each person, the samples 7,8 and 9, are not included 
in the train data set, then this three samples are the most difficult images to 
recognize, and are used to test the precision of the calculation. 

In this example, we use as input data for the module “Fusion 1-5”, a 
complete image of the sample number 8 of the person number 3. 
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Fig. 2. Images assigned to the input data node: “datos frente”. 

The matrix shown in figure 3, have the simulation results of the people 
1,2,3,4 and 5, one row for each person. Each column contains the result of 
simulate: 1(forehead),  2(eyes), 3(nose), 4(mouth) of each person.

Fig. 3. Results of the simulation, of the person number 3, with the sample number 
8 in the cooperative module “Fusion 1-5”. 

The figure 4 shows what person is selected for each part of the image, us-
ing the maximum value method. If we use vote method to make a final de-
cision, we have 2 votes for the person 3 and 2 votes to the person 2.

Fig. 4. Results of search of the person number 3, with the sample number 8 in the 
cooperative module “Fusion 1-5”. 
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First we must calculate the Fuzzy Sugeno Integral for each row in the 
simulation matrix.

That means one result for each person, where the four elements com-
bined are the simulation results of each part or the image. The final deci-
sion will be the person with the great value of the Sugeno Integral. 

The fuzzy density values are given as follows: 

µ(forehead) µ(eyes) µ(nose) µ(mouth) 
0.9 0.5 0.9 0.9 

That values means, all the parts have the same relevance to the recognition, 
except the module “eyes”, if we suppose is the part with minor relevance 
because the person can ware eyeglasses, or maybe eye make up, but in a 
specific system this values must be determined by an expert. 

The value of    can be calculated by  (5), solving the following equa-

tion, using some numeric method to found the root of f(  ) [8]:

1+ =(1+0.9 )(1+0.5 )(1+0.9 )(1+0.9 )

The curve to the previous function is shown in the figure 5 

Fig. 5. The curve for 1+ =(1+0.9 )(1+0.5 )(1+0.9 )(1+0.9 )

3. Making a Decision with the Sugeno Integral 

3.1 Fuzzy Densities and Lambda 
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The program calc_lambda21.m implemented with matlab, use the function 
fzero,  that realize a scalar nonlinear zero finding. 

The solution using the program calc_lambda21.m is: 

>>L=calc_lambda21([.9 .5 .9 .9]) 
L = 

   -0.9995 
The solution is = -0.9995. 

Once we have the matrix with the simulation results of the modular sys-
tem, the next step is the fuzzification of the results of simulation 

The following is the simulation matrix for person 3 and sample number 8: 

Person forehead eyes nose mouth 
1 0.43849 -0.29364 -0.38769 -0.69856 
2 0.50203 -0.28418 2.1399 0.64638 
3 0.89923 1.1218 -0.13577 0.63817 
4 -0.20142 -0.73076 -0.17258 0.009603 
5 -0.8161 0.64992 0.65338 0.36658 

 Then, to fuzzify the simulation matrix, we use the gaussmf.m program 
with parameters:[.4 1 .9], as shown in figure 6.[9]

Fig. 6. Membership function to fuzzify the values of simulation. 

3.2 Fuzzify the Simulation Matrix
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 Then, the simulation matrix is now fuzzified and the fuzzy values are: 

Person forehead eyes nose mouth 
1 0.37333 0.0053553 0.002435 0.000121 

2 0.46074 0.005779 0.017237 0.67653 

3 0.96876 0.95468 0.017754 0.66423 

4 0.010991 8.6008e-005 0.013613 0.046641 

5 3.3401e-005 0.68183 0.68698 0.28541 

To use the recursive formula to calculate the Sugeno Measures, we must 
order the values in a descendent fashion. These values are in the fuzzy 
simulation matrix. 

Example for Person 2: 
 forehead eyes nose mouth 

Simulation
results

0.46074 0.005779 0.017237 0.67653 

µ 0.9 0.5 0.9 0.9 

 Now must order the table in a descendent way with respect to the simula-
tion results. 

 mouth forehead nose eyes 
Simulation
results

0.67653 0.46074 0.017237 0.005779 

µ 0.9 0.9 0.9 0.5 

The Sugeno measures (3) can be constructed using (6) and (7) 

µ(A1)=0.9
µ(A2)=0.9+0.9+(-0.9905)(0.9)(0.9)= 0.9904 
µ(A3)=0.9+0.9904+(-0.9905)(0.9)(0.9004)= 0.9995 
µ(A4)=0.5+0.9995+(-0.9905)(0.5)(0.9995)= 1 

 3.3 Recursive Formula for Sugeno Measures 
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Then, the Sugeno measures for each person are: 

Person µ(A1) µ(A2) µ(A3) µ(A4) 
1 0.9000  0.9502    0.9955   1.0000 
2 0.9000   0.9904   0.9995   1.0000 
3 0.9000   0.9502   0.9955   1.0000 
4 0.9000   0.9904   0.9995  1.0000 
5 0.9000   0.9502   0.9955  .0000 

3.4 The Final Decision

Once we have the Sugeno Measures for each person, we can calculate the 
respective Sugeno Integral, with (1). 

IS1=max(min(0.37333,0.9),min(0.0053551,0.95023),
min(0.0024351,0.99546),min(0.00012146,1))

IS2=max(min(0.67653,0.9),min(0.46074,0.99041),
min(0.01724,0.99949),min(0.0057792,1))

IS3=max(min(0.96877,0.9),min(0.9547,0.95023),
min(0.66423,0.99546),min(0.017754,1) ) 

IS4=max(min(0.046641,0.9),min(0.013613,0.99041),
min(0.010991,0.99949),min(8.6011e-005,1))

IS5=max(min(0.68698,0.9),min(0.68182,0.95023),
min(0.28541,0.99546),min(3.3401e-005,1) ) 

Person Fuzzy Sugeno In-
tegral

1 0.37333 
2 0.67653 
3 0.95023 
4 0.046641 
5 0.68698 
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IS1=max(0.37333,0.0053551,0.0024351,0.00012146)
IS2= max(0.67653,0.46074,0.01724,0.0057792) 
IS3= max(0.9,0.95023,0.66423,0.017754) 
IS4= max(0.046641,0.013613,0.010991,8.6011e-005) 
IS5= max(0.68698,0.68182,0.28541,3.3401e-005) 

The person selected is the number 3, because his Fuzzy Sugeno Integral is 
greater than the obtained for each person 1,2,4 and 5. 

All the previous calculations are implemented in the computer program 
final_sugeno_individual.m, included in the System “hmr”, we can execute 
the function for each row of the simulation matrix, or execute the image 
recognition within the graphic interface. 

The input parameters for the function final_sugeno_individual are:
row_individuo: The simulation data for one person. 
row_g: The fuzzy densities for each part of the image. 
mfparams: The parameters for the membership function. 
mftype: The type of membership function. 
In the following example we use the function final_sugeno_individual to 

calculate the Fuzzy Sugeno Integral for the Person number 3: 

>>row_individuo=[0.89923 1.1218 -0.13577 
0.63817]
>>row_g=[0.9,0.5,0.9,0.9]
>>mfparams=[.4 1 .9] 
>>mftype=’gaussmf’
>>[inte-
gral_sugeno,simulacion_fuzzy_row]=finalsugeno_in
dividual(row_individuo,row_g,mfparams,mftype)

L = 
   -0.9995 
simulacion_fuzzy_row = 
    0.9688    0.9547    0.0178    0.6642 
medidas =
    0.9000    0.9502    0.9955    1.0000 
minimos_texto = 
min(0.96877,0.9),min(0.9547,0.95023),
min(0.66423,0.99546),min(0.017754,1)
integral_sugeno = 
    0.95023 
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In the System “hmr” the results can be shown like in figure 7, the first im-
age is the input data to simulation, the second are the partial result if we 
use the maximum value for each part of the image, and the third is the per-
son selected with the Fuzzy Sugeno Integral. 

Fig. 7. Results as shown in System “hmr” 

4 Conclusions 

The “Fuzzy Sugeno Integral” allows us to test many combinations of input 
values, including a fuzzy membership function. These features help us to 
set the best combination of parameters for many kinds of applications. 
That parameters can be change recurrently, until found the best results. 

The model “Photos in 4 Parts” contains one cooperative module for each 
five people to recognize, then, if we want to complete the model to recog-
nize the 40 people of the OCR database [10], our model should contain 8 
cooperative modules. Then, to make a final decision, the input data to the 
competitive module “Decision Final” will be a simulation matrix with 40 
rows and 4 columns, one column for each part of the image, and one row 
for each person. 

In this particular example, the values to combine are always 4, because 
the images are divided in 4 parts, and the Fuzzy Sugeno Integral combines 
the values of simulation of each part for each person, but the programs im-
plemented in the system “hmr” allow to combine any number of elements, 
so we can build another models with images divided in different number of 
parts, and the system can calculate it with out problems about the input 
values.
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As shown in the results of this particular example, the Fuzzy Sugeno In-
tegral is a very useful operator to make decisions that are very difficult to 
obtain with another method such voting or maximum value. 
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Abstract. We describe in this paper a new approach for pattern recogni-
tion using modular neural networks with a fuzzy logic method for response 
integration. We proposed a new architecture for modular neural networks 
for achieving pattern recognition in the particular case of human faces and 
fingerprints. Also, the method for achieving response integration is based 
on the fuzzy Sugeno integral with some modifications. Response integra-
tion is required to combine the outputs of all the modules in the modular 
network. We have applied the new approach for fingerprint and face rec-
ognition with a real database from students of our institution. 

1 Introduction 

Response integration methods for modular neural networks that have been 
studied, to the moment, do not solve well real recognition problems with 
large sets of data or in other cases reduce the final output to the result of 
only one module. Also, in the particular case of face recognition, methods 
of weighted statistical average do not work well due to the nature of the 
face recognition problem. For these reasons, a new approach for face and 
fingerprint recognition using modular neural networks and fuzzy integra-
tion of responses was proposed in this paper. 

The basic idea of the new approach is to divide a human face into three 
different regions: the eyes, the nose and the mouth, and the fingerprint also 
into three parts, top, middle and bottom. Each of these regions is assigned 
to one module of the neural network. In this way, the modular neural net-
work has three different modules, one for each of the regions of the human 
face and the fingerprint. At the end, the final decision of face and finger-
print recognition is done by an integration module, which has to take into 

P. Melin et al.: Modular Neural Networks and Fuzzy Sugeno Integral for Pattern Recognition:
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The Case of Human Face and Fingerprint, StudFuzz 208, 311–326 (2007)
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account the results of each of the modules. In our approach, the integration 
module uses the fuzzy Sugeno integral to combine the outputs of the three 
modules. The fuzzy Sugeno integral allows the integration of responses 
from the three modules of the eyes, nose and mouth of a human specific 
face and the integration of the responses from the three modules of the fin-
gerprint parts. Other approaches in the literature use other types of integra-
tion modules, like voting methods, majority methods, and neural networks. 

The new approach for face and fingerprint recognition was tested with a 
database of students and professors from our institution. This database was 
collected at our institution using a digital camera for the faces and a special 
scanner for the fingerprints. The results with our new approach for face 
and fingerprint recognition on this database were excellent. 

2 Modular Neural Networks 

There exists a lot of neural network architectures in the literature that work 
well when the number of inputs is relatively small, but when the complex-
ity of the problem grows or the number of inputs increases, their perform-
ance decreases very quickly. For this reason, there has also been research 
work in compensating in some way the problems in learning of a single 
neural network over high dimensional spaces. 

In the work of Sharkey (Sharkey 1998), the use of multiple neural sys-
tems (Multi-Nets) is described. It is claimed that multi-nets have better 
performance or even solve problems that monolithic neural networks are 
not able to solve. It is also claimed that multi-nets or modular systems have 
also the advantage of being easier to understand or modify, if necessary. 

In the literature there is also mention of the terms “ensemble” and 
“modular” for this type of neural network. The term “ensemble” is used 
when a redundant set of neural networks is utilized, as described in Hansen 
and Salomon (Hansen and Salomon 1990). In this case, each of the neural 
networks is redundant because it is providing a solution for the same task, 
as it is shown in Figure 1. 

On the other hand, in the modular approach, one task or problem is de-
compose in subtasks, and the complete solution requires the contribution 
of all the modules, as it is shown in Figure 2. 
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Fig. 1. Ensembles for one task and subtask. 

Fig. 2. Modular approach for task and subtask. 

2.1 Multiple Neural Networks 

In this approach we can find networks that use strongly separated architec-
tures. Each neural network works independently in its own domain. Each 
of the neural networks is build and trained for a specific task. The final de-
cision is based on the results of the individual networks, called agents or 
experts. One example of this decision is shown by (Albrecht 1996), as 
shown in Figure 3, where a multiple architecture is used, one module con-
sists of a neural network trained for recognizing a person by the voice, 
while the other module is a neural network trained for recognizing a person 
by the image. 

Fig. 3. Multiple networks for voice and image. 

The outputs by the experts are the inputs to the decision network, which 
is the one making the decision based on the outputs of the expert networks. 
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2.2 Main Architectures with Multiple Networks 

Within multiple neural networks we can find three main classes of this 
type of networks (Fu et al. 2001): 

Mixture of Experts (ME): The mixture of experts can be viewed as a 
modular version of the multi-layer networks with supervised training or 
the associative version of competitive learning. In this design, the local 
experts are trained with the data sets to mitigate weight interference 
from one expert to the other. 
Gate of Experts: In this case, an optimization algorithm is used for the 
gating network, to combine the outputs from the experts.
Hierarchical Mixture of Experts: In this architecture, the individual out-
puts from the experts are combined with several gating networks in a hi-
erarchical way.

2.3 “Modular” Neural Networks 

The term “Modular Neural Networks” is very fuzzy. It is used in a lot of 
ways and with different structures. Everything that is not monolithic is said 
to be modular. In the research work by (Boers  and Kuiper 1992), the con-
cept of a modular architecture is introduced as the development of a large 
network using modules. 

One of the main ideas of this approach is presented in (Albrecht 1996), 
where all the modules are neural networks. The architecture of a single 
module is simpler and smaller than the one of a monolithic network. The 
tasks are modified in such a way that training a subtask is easier than train-
ing the complete task. Once all modules are trained, they are connected in 
a network of modules, instead of using a network of neurons. The modules 
are independent to some extent, which allows working in parallel. Another 
idea about modular networks is presented by (Boers and Kuiper 1992), 
where they used an approach of networks not totally connected. In this 
model, the structure is more difficult to analyze, as shown in Figure 4. A 
clear separation between modules can’t be made. Each module is viewed 
as a part of the network totally connected. 

In this figure, we can appreciate two different sections from the mono-
lithic neural network, namely A and B. Since there are no connections be-
tween both parts of the network, the dimensionality (number of weights) is 
reduced. As a consequence the required computations are decreased and 
speed of convergence is increased. 
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Fig. 4. One type of modular neural network. 

2.4 Advantages of Modular Neural Networks 

A list of advantages of modular networks is given below: 

They give a significant improvement in the learning capabilities, over 
monolithic neural networks, due to the constraints imposed on the 
modular topology.
They allow complex behavior modeling, by using different types of 
knowledge, which is not possible without using modularity.
Modularity may imply reduction of number of parameters, which will 
allow and increase in computing speed and better generalization capa-
bilities.
They avoid the interference that affects “global” neural networks.
They help determine the activity that is being done in each part of the 
system, helping to understand the role that each network plays within 
the complete system.
If there are changes in the environment, modular networks enable 
changes in an easier way, since there is no need to modify the whole 
system, only the modules that are affected by this change.

2.5 Elements of Modular Neural Networks 

When considering modular networks to solve a problem, one has to take 
into account the following points (Ronco and Gawthhrop 1995): 

Decompose the main problem into subtasks.
Organizing the modular architecture, taking into account the nature of 
each subtask.
Communication between modules is important, not only in the input of 
the system but also in the response integration.
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In the particular case of this paper, we will concentrate in more detail in 
the third point, the communication between modules, more specifically in-
formation fusion at the integrating module to generate the output of the 
complete modular system. 

2.6 Main Task Decomposition into Subtasks 

Task Decomposition can be performed in three different ways, as men-
tioned by (Lu and Ito 1998): 

Explicit Decomposition: In this case, decomposition is made before 
learning and requires that the designer has deep knowledge about the 
problem. Of course, this maybe a limitation if there isn’t sufficient 
knowledge about the problem. 
Automatic Decomposition: In this case, decomposition is made as learn-
ing is progressing. 
Decomposition into Classes: This type of decomposition is made before 
learning, a problem is divided into a set of sub-problems according to 
the intrinsic relations between the training data. This method only re-
quires knowledge about the relations between classes. 

2.7 Communication Between Modules 

In the research studies made by (Ronco and Gawthrop 1995), several ways 
of achieving communication between modules are proposed. We can 
summarize their work by mentioning the following critical points: 
1. How to divide information, during the training phase, between the dif-

ferent modules of the system. 
2. How to integrate the different outputs given by the different modules of 

the system to generate the final output of the complete system. 

2.8 Response Integration 

Response integration has been considered in several ways, as described by 
(Smith and Johansen 1997) and we can give the following list: 

Using Kohonen’s self organizing maps, Gaussian mixtures, etc. 
The method of “Winner Takes All”, for problems that require similar 
tasks.
Models in series, the output of one module is the input to the following 
one.
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Voting methods, for example the use of the “Softmax” function.
Linear combination of output results. 
Using discrete logic. 
Using finite state automata. 
Using statistical methods. 
Using fuzzy logic (Castillo and Melin 2003).

3 Methods of Response Integration 

The importance of this part of the architecture for pattern recognition is 
due to the high dimensionality of this type of problems. As a consequence 
in pattern recognition is good alternative to consider a modular approach. 
This has the advantage of reducing the time required of learning and it also 
increases accuracy. In our case, we consider dividing the images of a hu-
man face in three different regions. We also divide the fingerprint into 
three parts, and applying a modular structure for achieving pattern recogni-
tion.

In the literature we can find several methods for response integration, 
that have been researched extensively, which in many cases are based on 
statistical decision methods. We will mention briefly some of these meth-
ods of response integration, in particular the ones based on fuzzy logic. 
The idea of using these types of methods, is that the final decision takes 
into account all of the different kinds of information available about the 
human face and fingerprint. In particular, we consider aggregation opera-
tors, and the fuzzy Sugeno integral (Sugeno 1974). 

Yager (1999) mentions in his work, that fuzzy measures for the aggrega-
tion criteria of two important classes of problems. In the first type of prob-
lems, we have a set Z={z1,z2,…,zn} of objects, and it is desired to select 
one or more of these objects based on the satisfaction of certain criteria. In 
this case, for each zi Z, it is evaluated D(zi)=G(Ai(zi),…,Aj(zi)), and then 
an object or objects are selected based on the value of G. The problems 
that fall within this structure are the multi-criteria decision problems, 
search in databases and retrieving of documents.

In the second type of problems, we have a set G={G1,G2,…,Gq} of ag-
gregation functions and object z. Here, each Gk corresponds to different 
possible identifications of object z, and our goal is to find out the correct 
identification of z. For achieving this, for each aggregation function G, we 
obtain a result for each z, Dk(z)=Gk(A1(z), A2(z), … ,An(z)). Then we as-
sociate to z the identification corresponding to the larger value of the ag-
gregation function. 
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A typical example of this type of problems is pattern recognition. Where 
Aj corresponds to the attributes and Aj(z) measures the compatibility of z 
with the attribute. Medical applications and fault diagnosis fall into this 
type of problems. In diagnostic problems, the Aj corresponds to symptoms 
associated with a particular fault, and Gk captures the relations between 
these faults.

3.1 Fuzzy Integral and Fuzzy Measures 

Fuzzy integrals can be viewed as non-linear functions defined with respect 
to fuzzy measures. In particular, the “g -fuzzy measure” introduced by 
(Sugeno 1974) can be used to define fuzzy integrals. The ability of fuzzy 
integrals to combine the results of multiple information sources has been 
mentioned in previous works. 
Definition 1. A function of sets g:2x-(0.1) is called a fuzzy measure if: 
1. 1) g(0)=0   g(x)=1 
2. 2) g(A)  g(B) if A B
3. 3) if {Ai}i  =1 is a sequence of increments of the measurable set then 

 lim g(Ai) = g (lim Ai)                                           (1)      
  i             i 

From the above it can be deduced that g is not necessarily additive, this 
property is replaced by the additive property of the conventional measure. 

 From the general definition of the fuzzy measure, Sugeno intro-
duced what is called “g -fuzzy measure”, which satisfies the following 
additive property:
For every A, B  X and A  B = ,

g(A  B) = g(A) + g(B) +  g(A)g(B),                (2)         

for some value of >-1.
This property says that the measure of the union of two disjunct sets can 

be obtained directly from the individual measures. Using the concept of 
fuzzy measures, (Sugeno 1974) developed the concept of fuzzy integrals, 
which are non-linear functions defined with respect to fuzzy measures like 
the g -fuzzy measure. 
Definition 2. let X be a finite set and h:X [0,1] be a fuzzy subset of X, 
the fuzzy integral over X of function h with respect to the fuzzy measure g 
is defined in the following way, 

h(x) o g (x)   = max [ min ( min h(x), g(E))]                                        (3) 
                              E  X             x  E 

                      = sup [min(  , g(h  ))]  [0, 1] 
where h  is the level set  of h,
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               h   = { x | h(x)  }.                                                        (4)       

We will explain in more detail the above definition: h(x) measures the 
degree to which concept h is satisfied by x. The term min(hx) measures the 
degree to which concept h is satisfied by all the elements in E. The value 
g(E) is the degree to which the subset of objects E satifies the concept 
measure by g. As a consequence, the obtained value of comparing these 
two quantities in terms of operator min indicates the degree to which E 
satifies both criteria g and min(hx). Finally, operator max takes the greatest 
of these terms. One can interpret fuzzy integrals as finding the maximum 
degree of similarity between the objective and expected value. 

4 Proposed Architecture and Results 

In the experiments performed in this research work, we used 20 
photographs that were taken with a digital camera and 20 fingerprints from 
students and professors of our Institution. The photographs were taken in 
such a way that they had 148 pixels wide and 90 pixels high, with a 
resolution of 300x300 ppi, and with a color representation of a gray scale, 
some of these photographs are shown in Figure 5. In addition to the 
training data (20 photos) we did use 10 photographs that were obtained by 
applying noise in a random fashion, which was increased from 10 to 100%. 

Fig. 5. Sample Faces Used for Training. 

The images of fingerprints (Quezada 2004) were taken in such a way 
that they had 198 pixels wide and 200 pixels high, with a resolution of 
300x300 ppi, and with a color representation of a gray scale, some of these 
images are shown in Figure 6. In addition to the training data (20 
fingerprints) we did use 10 images that were obtained by applying noise in 
a random fashion, which was increased from 10 to 100%. 
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Fig. 6. Sample fingerprints used for training. 

4.2 Proposed Architecture 

The architecture proposed in this work consist of three main modules, in 
which each of them in turn consists of a set of neural networks trained with 
the same data, which provides the modular architecture shown in Figure 7. 

Fig. 7. Final proposed architecture. 

The input to the modular system is a complete photograph. For 
performing the neural network training, the images of the human faces 
were divided in three different regions. The first region consists of the area 
around the eyes, which corresponds to Sub Task 1. The second region 
consists of the area around the nose, which corresponds to Sub Task 2. The 
third region consists of the area around the mouth, which corresponds to 
Sub Task 3. An example of this image division is shown in Figure 8. 
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Fig. 8. Example of Image Division. 

As output to the system we have an image that corresponds to the 
complete image that was originally given as input to the modular system, 
we show in Figure 9 an example of this for face recognition. In the same 
way the fingerprints are divided in three parts and given to the 
corresponding Sub task module. This is ilustrated in Figure 10. 

Fig. 9. Final architecture showing inputs and outputs. 

4.2 Description of the Integration Module 

The integration modules performs its task in two phases. In the first phase, 
it obtains two matrices. The first matrix, called h, of dimension 3x3, stores 
the larger index values resulting from the competition for each of the 
members of the modules. The second matrix , called I, also of dimension 
3x3, stores the photograph number corresponding to the particular index. 
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Once the first phase is finished, the second phase is initiated, in which 
the decision is obtained. Before making a decision, if there is consensus in 
the three modules, we can proceed to give the final decision, if there isn’t 
consensus then we have search in matrix g to find the larger index values 
and then calculate the Sugeno fuzzy measures for each of the modules, 
using the following formula, 

g(Mi ) = h(A) + h(B) +  h(A) h(B)                                                          (5) 

Where  is equal to 1. Once we have these measures, we select the 
largest one to show the corresponding photograph. 

4.3 Summary of Results 

We describe in this section the experimental results obtained with the 
proposed approach using the 20 photographs as training data. We show in 
Table 1 the relation between accuracy (measured as the percentage of 
correct results) and the percentage of noise in the figures. 

Fig. 10. Final architecture for the fingerprints. 

In Table 1 we show the relation that exists between the % of noise that 
was added in a random fashion to the testing data set, that consisted of the 
20 original photographs, plus 200 additional images. We show in Figure 
11 sample images with noise. 

In Table 2 we show the reliability results for the system. Reliability was 
calculated as shown in the following formula. 

correct results-error 
Reliability    = 

correct results 
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Table 1. Relation between the % of noise and the % of correct results

% of noise % accuracy 

0 100 

10 100 

20 100 

30 100 

40 95 

50 100 

60 100 

70 95 

80 100 

90 75 

100 80 

Fig. 11. Sample images with noise. 

Table 2. Relation between reliability and accuracy. 

% errors %reliability %correct results

0 100 100.00

0 100 100.00

0 100 100.00

0 100 100.00

5 94.74 95.00

0 100 100.00

0 100 100.00

5 94.74 95.00

0 100 100.00

25 66.67 75.00

20 75 80.00
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We show in Figure 12 a plot relating the percentage of recognition 
against the number of examples used in the experiments. 
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Fig. 12. Relation between recognition and number of examples. 

In addition to the results presented before, we also compared the per-
formance of the modular approach, against the performance of a mono-
lithic neural network approach. The conclusion of this comparison was that 
for this type of input data, the monolithic approach is not feasible, since 
not only training time is larger, also the recognition is too small for real-
world use. We show in Figure 13 a plot showing this comparison but now 
in a graphical fashion. 
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Fig. 13. Comparison between modular and monolithic approach. 



Modular Neural Networks and Fuzzy Sugeno Integral      325 

5 Conclusions 

We showed in this paper the experimental results obtained with the 
proposed modular approach. In fact, we did achieve a 98.9% recognition 
rate on the testing data, even with an 80% level of applied noise. For the 
case of 100% level of applied noise, we did achieve a 96.4 % recognition 
rate on the testing data. The testing data included 10 photographs for each 
image in the training data. These 10 photographs were obtained by 
applying noise in a random fashion, increasing the level of noise from 10 
to 100 %, to the training data. We also have to notice that it was achieved a 
96.7 % of average reliability with our modular approach. This percentage 
values was obtained by averaging 

 In light of the results of our proposed modular approach, we have 
to notice that using the modular approach for human face pattern 
recognition is a good alternative with respect to existing methods, in 
particular, monolithic, gating or voting methods. As future research work, 
we propose the study of methods for pre-processing the data, like principal 
components analysis, eigenfaces, or any other method that may improve 
the performance of the system. Other future work include considering 
different methods of fuzzy response integration, or considering evolving 
the number of layers and nodes of the neural network modules.
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Abstract. In this chapter, the authors discuss a new synthesis approach to 
train associative memories, based on recurrent neural networks. They pro-
pose to update the weight vector as the optimal solution of a linear combi-
nation of support patterns. The proposed training algorithm maximizes the 
margin between the training patterns and the decision boundary. This algo-
rithm is applied to the synthesis of an associative memory, for fault diag-
nosis in fossil electric power plants. The scheme is evaluated via a full 
scale simulator to diagnose the main faults occurred in this kind of power 
plants.

1 Introduction 

The implementation of associative memories via recurrent neural networks 
is discussed in [1]. The goal of associative memories is to store a set of de-
sired patterns as stable memories such that a stored pattern can be retrieved 
when the input pattern (or the initial pattern) contains sufficient informa-
tion about that stored pattern. In practice the desired memory patterns are 
usually represented by bipolar vectors (or binary vectors).

There are several well-known methods available in the literature, which 
solve the synthesis problem of recurrent neural networks for associative 
memories, including the outer product method [2], the projection learning 
rule [3], [4], and the eigenstructure method [5], [6], (for a review of this 
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synthesis methods, see [7]). The eigenstructure method has also been gen-
eralized for the synthesis of recurrent neural networks with predetermined 
constraints on the interconnecting structure [8]-[11]. These synthesis 
methods use a set of linear equations for the design of recurrent neural 
networks. For the design method discussed in [12] and [13], a set of linear 
inequalities is formulated and solved via the optimal mean square-error 
(MSE), using the Hop-Kashyap method [14]. The design method presented 
in [15] utilizes a set of linear inequalities solved using linear program-
ming.

An important contribution to recurrent neural networks for associative 
memories is presented in [1]; a new synthesis approach is developed based 
on the perceptron training algorithm. Due to their high generalization per-
formance, support vector machines (SVMs) have attracted great attention 
for pattern recognition, machine learning, neural networks and so on [16], 
[17]. Learning of a SVM leads to a quadratic programming (QP) problem, 
which can be solved by many techniques [18]. 

This chapter proposes an optimal training algorithm to design associa-
tive memories implemented by recurrent neural networks. The algorithm 
uses a synthesis approach based on the SVMs, updating weight vector via 
a solution, which is expressed as a linear combination of support patterns. 
The training algorithm maximizes the margin between the training patterns 
and the decision boundary. The proposed algorithm is used for a neural 
network based scheme of fault diagnosis in fossil electric power plants. 

2 Preliminaries 

This section introduces useful preliminaries about associative memories 
implemented by recurrent neural networks, the perceptron training algo-
rithm and a synthesis for recurrent neural networks based on this algo-
rithm, which is proposed in [1]. The class of recurrent neural networks 
considered is described by equations of the form 

- sat( )

sat( )

dx
Ax T x I

dt

y x

,
(1)

where x is the state vector, y Dn = {x Rn |  xi  1} is the output vector,    
A = diag [a1, a2, …, an] with ai> 0 for i = 1, 2, ... , n, T = [Tij] Rnxn is the 
connection matrix, I = [I1, I2, …, In]

T is a bias vector, and sat(x) = 
[sat(x1),…, sat(xn)]

T represents the activation function, where 
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1         1

sat( )   -1 1

1        1

i

i i i

i

x

x x x

x

 .

    It is assumed that the initial states of (1) satisfy  xi(0)  1 for i = 1, 2, ..., 
n. System (1) is a variant of the analog Hopfield model [19] with activa-
tion function sat( ).

2.1 The Perceptron

A number of different types of perceptrons are described in [20] and [21]. 
The one which will be utilized in the present paper is described by:

s ign( )Z Wu , (2) 

where Z is the perceptron output, u = [u1, u2,…, un, 1]T is the input vector,     
W = [w1, w2,…, wn, ]T is the weight vector, and 

    1 if 0
s i gn( )

1 if <0
.

This simple perceptron can perform pattern classification (between two 
classes denoted by X1 and X2). The weight vector W can be obtained by the 
following training algorithm ([20], [21]). 

Perceptron Training Algorithm: Given m training patterns k, k = 1, 
2,..., m which are known to belong to class X1 (corresponding to Z = 1) or 
X2 (corresponding to Z = -1), the weight vector W can be obtained by the 
following algorithm. 

1. Initialize the weight vector W(l) for l = 0;
2. For l = 0, 1, 2, ... 

a) if W(l) u(l) 0 and u(l) X2, then update W(l+ 1) = W(l)-
 u(l).

b) if W(l) u(l)<0 and u(l) X1, then update W(l+1) =
W(l)+  u(l).

c) otherwise, W(l+ 1) = W(l), where  u(l) = k for some k,
1 k m and > 0 is the perceptron learning rate; 

3. Stop the training when no more updates for the weight vector W
are needed, i. e., stop the training when all the training patterns 
can be correctly classifies by W.
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2.2 Synthesis for Recurrent Neural Networks Based 

on the Perceptron Algorithm 

For the sake of completeness, the following results are taken from [1] and 
included in this section. A vector  will be called a (stable) memory vector
(or simply, a memory) of system (1) if  = sat( ) and if  is an asymptoti-
cally stable equilibrium point of system (1). In the following lemma, Bn is 
defined as a set of n-dimensional bipolar vectors    Bn = {x Rn | xi xj = - 
1, i = 1, 2, ..., n }. For  = [ 1, 2, …, n]

T Bn define C( ) = {x Rn | xi i

> 1, i = 1, 2, ..., n }. 
Lemma 2.1 If Bn and if

 = A-1(T  + I) , (3)

then ( , ) is a pair of stable memory  vector and an asymptotically stable 
equilibrium point of (1). 

The following synthesis problem concerns the design of (1) for associa-
tive memories.

Synthesis Problem: Given m vectors 1, 2, ..., m in the set of n-
dimensional bipolar vectors, , choose {A, T, I} in such a manner that: 

1. 1, 2, ..., m are stable memory vectors  of  system (1); 
2. the system has no oscillatory and chaotic solutions; 
3. the total number of spurious memory vectors (i.e., memory 

vectors which are not desired) is as small as possible, and the 
domain (or basin) of attraction of each desired memory vec-
tors is as large as possible. 

Item 1) of the synthesis problem can be guaranteed by choosing the {A,
T, I} such that every i satisfies condition 3 of Lemma 2.1. Item 2 can be 
achieved by designing a neural network with symmetric connection matrix 
T. Item 3) can be partly ensured by constraining the diagonal elements of 
the connection matrix. 
    The previous synthesis problem can be solved by applying the percep-
tron training algorithm. To solve the synthesis problem, one needs to de-
termine A, T and I from (3) with  = k, k = 1, 2,..., m.

Condition given in (3) can be equivalently written as 

  if  1

    if  1

k k

i i i i

k k

i i i i

T I a

T I a

,
(4)

for k = 1,2,...,m and i = 1,2,...,n where Ti  represents el ith row of T, Ii de-
notes the ith element of I, ai is the i-th diagonal element of A, and k

i
is the 

Bn

332      Jose A. Ruz-Hernandez, Edgar N. Sanchez and Dionisio A. Suarez 



      333 

i-th entry of k. From (4), the following synthesis algorithm based on the 
perceptron training algorithm can now be obtained [1] . 

Synthesis Algorithm 2.1: Using the perceptron algorithm to obtain n
perceptrons

1 12
, , ..., ,i

n n

i i i i
W w w w w ,

i = 1, 2, ...,n, such that: 

k

i

k

i

0 if 1

0 if 1

k

i

k

i

W

W

,
(5)

and for k = 1, 2, ..., m where 

...

1

k

k  , 

choose A = diag [a1, a2, …, an]  with ai > 0. For i, j = 1,2,...,n choose 
i

ij j
T w  if i j, i

ij j i i
T w a , with i >1 e 

1

i

i n
I w .

We have used this algorithm to train associative memories based on a 
recurrent neural network and isolate faults in a neural networks-based 
scheme for fault diagnosis in fossil electric power plants [22]. As an exten-
sion of these results, in this chapter, we propose to use the support vector 
machine ideas to propose a new optimal hyperplane algorithm to train this 
class of associative memories.

3 Support Vector Machines and Optimal Hyperplane Algorithm 

This section reviews the method of optimal hyperplane [23] for separation 
of training data. Two subsections are presented: the first one describes 
SVMs and the problem of finding an optimal hyperplane; and the second 
one describes the optimal hyperplane algorithm. 

3.1 Support Vector Machines and Optimal Hyperplanes 

The support vector machine is a learning mechanism for two-group classi-
fication problems. The machine implements the following idea: input vec-
tors are nonlinearly mapped to a very high-dimension feature space. In this 
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feature space, a linear decision surface is constructed. Special properties of 
the decision surface ensures high generalization ability [17]. 

The problem is how to find a separating hyperplane, which will general-
ize well. It was solved in 1965, for the case of separable classes [23]. An 
optimal hyperplane is defined as the linear function with maximal margin 
between the vectors of the two classes, (see Fig. 1).

optimal hyperplane

optimal margin

Fig. 1. An example of a separable problem in R2. The support vectors, marked with 
gray squares, define the margin of largest separation between the two classes. 

It was observed that to construct such optimal hyperplanes one only 
needs to take into account a small amount of the training data, the so called 
support vectors, which determine this margin. It was shown that if the 
training vectors are separated without errors by an optimal hyperplane the 
expectation value of probability of doing an error on a test example is 
bounded by the ratio between the expectation value of the number of sup-
port vectors and the number of training vectors: 

[number of support vectors]
[Pr(error)]

number of training vectors

E
E  . 

(6)

Let

w0 z + b0 = 0 , (7)

be the optimal hyperplane in the feature space, where w0  z  is the dot-
product between the weights and vector z in this space. The weights w0 for 
the optimal hyperplane in feature space can be written as some linear com-
bination of support vectors 

0

support vectors

w z
i i

. (8)
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The linear decision function I(z), in the feature space will accordingly 
be of the form 

i 0

support vectors

(z) sign z z
i

I b ,
(9)

where zi  z  is the dot-product between support vectors zi and vector z in 
feature space. 

3.2 The Optimal Hyperplane Algorithm 

This section closely follows [17]. The set of labelled training patterns 

(y1, x1), …, (yl, xl), yi  {-1, 1} (10)

is said to be linearly separable if there exists a vector w and a scalar b such 
that the inequalities 

w x 1  if   1,

w x 1  if   1,

i i

i i

b y

b y

(11)

are valid for all elements of the training set (10). Below, we write these 
inequalities (11) as 

y (w x ) 1,       1, ..., .
i i

b i l (12)

The optimal hyperplane 

w0  x + b0 = 0 , (13)

is the unique one which separates the training data with a maximal margin: 
it determines the direction w / w  where the distance between the projec-
tions of the training vectors of two different classes is maximal, (recall Fig. 
1). This distance (w, b)  is given by 

x:y 1 x:y  1

x w x w
(w, ) min max

w w
b .

(14)

The optimal hyperplane (w0, b0) is the arguments which maximize the 
distance (14). It follows form (14) and (12) that 

0 0

0
0 0

2 2
(w , )

w w w

b .
(15)
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This means that the optimal hyperplane is the unique one which mini-
mizes w  w under the constraints (12). Vectors x, for which yi(w xi+b)=1,
will be support vectors. To solve the associate optimization problem, it is 
possible to construct the Lagrangian 

1

1
(w, , ) w w - [ (x w ) 1]

2

l

i i i

i

L b y b  , 
(16)

where T = ( 1, …, l) is the vector of non-negative Lagrange multipliers 
corresponding to the constraints (12). It is known that the solution for this 
optimization problem is determined by the saddle point of this Lagrangian 
in the 2l + 1 dimensional space of w, , and b, where the minimum should 
be taken with respect to the parameters w and b, and the maximum should 
be taken with respect to the Lagrange multipliers  [17]. At the minimum 
point (with respect to w and b), one obtains 

0
w w 0

1

(w, , )
(w x ) 0

w

l

i i i

i

L b
y ,

(17)

0

(w, , )
0

i

b b i i

L b
y

b
.

(18)

From equality (17), we derive 

0

1

w x

l

i i i

i

y ,
(19)

which expresses that the optimal hyperplane solution can be written as a 
linear combination of training vectors. Note that only training vectors xi

with i > 0 have an effective contribution to the sum (19). 
Substituting (18) and (19) into (16), we obtain 

0 0

1

1
( ) w w

2

l

i

i

W ,
(20)

1 1 1

1
( ) x x

2

l l l

i i j i j i j

i i j

W y y .
(21)

In vector notation, this can be rewritten as

1
( ) Q

2

T T
W D ,

(22)
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where Q is an l-dimensional unit vector, and D is a symmetric l x l matrix
with elements 

x x
ij i j i j

D y y . (23)

To find the desired saddle point it remains to locate the maximum of 
(21) under the constraints (17) 

TY = 0 , (24)

where YT= (y1, ...,  yl), and 

 0. (25)

The Kuhn-Tucker theorem plays an important part in this optimization 
problem [24]. According to this theorem, at our saddle point in w0, b0, 0,
any Lagrange multiplier 0

i
, and its corresponding constraints are con-

nected by an equality 

0
[ (x w ) 1] 0,     1, ..., .

i i i
y b i l (26)

From this equality comes that non-zero values i are only achieved in 
the cases where 

0
(x w ) 1 0

i i
y b .  (27) 

In other words, i  0 only for cases where the inequality (12) satisfies 
the equality condition. We call vectors xi for which 

0
(x w ) 1

i i
y b , (28)

the support vectors. From (19), w0 can be expanded on support vectors. 
Based on equation (18) and (19) for the optimal solution, the relationship 
between the maximal value W( 0) and the separation distance 0:

0 0 0

0 0 0 0

1 1 1

w w x w (1 )

l l l

i i i i i i

i i i

y y b  .
(29)

Substituting this equality into the expression (20) for W( 0), we obtain 

0

0 0 0 0 0

1

1 1
( ) w w w w

2 2

l

i

i

W .
(30)

Taking into account the expression (14), we obtain 

0 2

0

2
( )W ,

(31)
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where 0 is the margin for the optimal hyperplane. If for same * and large 
constant W0 the inequality 

* 0
( )W W  ,  (32) 

is valid, then all hyperplanes which separate the training data have a mar-
gin

0

2

W

.
(33)

If the training set can not be separated by an hyperplane, the margin be-
tween the patterns of the two classes becomes arbitrary small, forcing the 
value of the functional W( ) to be arbitrary large. 

4 New Synthesis Approach 

This section contains our principal contribution. Considering the determi-
nation of the optimal hyperplane explain in section 3.2 and the training 
discussed in [1], we propose the following innovative algorithm for train-
ing associative memories implemented by recurrent neural networks. 

Synthesis Algorithm 4.1: Given m training patterns k, k = 1,2,…,m
which are known to belong to class X1 (corresponding to Z = 1) or X2 (cor-
responding to Z = -1), the weight vector W can be determined by means of 
the following algorithm. 

1 12

1

, , ..., ,
n n

m

i k k i i i i

j j

j

W w w w w ,
(34)

i = 1, 2, …, n, such that 

1   if   1,

1  if   1,

i k k

i

i k k

i

W b

W b

(35)

and for k = 1, 2, ..., m where 

...

1

k

k .

1. Start out by solving the quadratic programming problem given by 
(22), (24) and (25) to obtain T = ( 1, …, m).

2. Compute the weight vector 

 Jose A. Ruz-Hernandez, Edgar N. Sanchez and Dionisio A. Suarez 



      339 

5 Application to Fault Diagnosis in Fossil Electric Power Plants 

In order to illustrate the applicability of the above proposed optimal proce-
dure to train associative memories, based on recurrent neural networks, we 
discuss its application to fault diagnosis in fossil electric power plants. 

Fault diagnosis can be performed by a three steps algorithm [25]. First, 
one or several signals are generated which reflect faults in the process be-
havior. These signals are called residuals. For the second step, the residual 
are evaluated. A decision has to be taken in order to determine time and 
location of possible faults from the residuals. Finally, the nature and the 
cause of the fault is analyzed by the relations between the symptoms and 
their physical causes. 
    In order to describe the fault free nominal behavior of the process under 
supervision, a model (mathematic or heuristic) is employed, giving to this 
concept the name of model-based fault diagnosis. Model-based approaches 
have dominated the fault diagnosis research [26], [27].

Employing measurements of the process under normal operation, if pos-
sible, or with the help of a simulator as realistic as possible, a suitable neu-
ral network can be trained to learn the process input-output behaviour [28].

This section presents a neural network scheme for fault diagnosis. It 
uses for residual generation a predictor which consists of a bank of recur-
rent multilayer perceptron neural network models. Fault diagnosis is car-
ried out by an associative memory, which is based on a recurrent neural 
network, and trained with the proposed optimal learning algorithm. 

5.1 Problem Description 

Fault diagnosis in fossil electric power plants is a task carried out by an 
expert operator. This operator recognizes typical faults via supervision of 
key variables evolution. Adequate fault detection and diagnosis aids will 
help the human operator in order to take the right decisions to maintain the 
required electric energy production, avoiding failures and even accident 
risky to humans and the environment [29].
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3. Choose A = diag [a1, a2, …, an]  with ai > 0. For i, j = 1,2,...,n
choose i

ij j
T w  if i j, i

ij j i i
T w a , with i >1 e 

1

i

i n
I w .
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For this kind of plants, the main faults can be clustered as: faults related 
to temperature control of the superheated and reheated steam, faults related 
to combustion control and faults related to the steam generator drum water 
level. In order to understand the first group of faults, it is helpful to briefly 
describe the steam generator and superheated and reheated steam system. 
A simplified scheme is presented in Fig. 2, which illustrates the main 
components of a typical steam generator and superheating/ reheating sys-
tem.

Feedwater from the economizer enters the steam drum, and by forced 
circulation, the drum water flows down the downcomers and rises through 
the furnace wall tubes to generate steam by means of the hot combustion 
gases in the furnace. The water and steam in the drum are separated by 
steam separators and the steam becomes superheated as it passes through 
various superheaters. The turbine exhaust steam is again superheated in the 
reheater before generating power in the intermediate and low pressure tur-
bines. For this system, the main automatic control loops are the main 
steam temperature control and the reheated steam temperature control. The 
first one is controlled by the temperation spray, and the second one is con-
trolled by the burners inclination angle, as well as by another temperation 
spray.

Reheated

Low Temperature

SH

High Temperature

SH

Intermediate

Temperature SH

USS

Upper Drum

B
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F

Boiler

Waterwalls

SH
1

Lower Drum

Flash
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feedwater

system.

VRF

SH
4

RH
2
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2
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3
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1
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To

Temperation

Recirculation

Economizer

Fig 2. Steam Generator and Reheating / Superheating System. 
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As an example, we discuss a typical fault: waterwall tubes breaking,
which is part of the above first fault group. It could be due to inadequate 
design, selection of materials, and/or unsuitable start-up operations [30]. In 
presence of this fault, the combustion gases do not circulate properly and 
the waterwall tubes are not suitable cold. Additionally, the water level on 
the steam generator drum goes down and the level control tries to keep it 
by means of varying the feedwater flow. However if the maximum value 
of this flow is reached, and the water level continues to decrease, the low 
level monitoring orders the steam generator out of operation. If this order 
takes a long time to be executed or if it is not performed, the waterwalls 
tubes operating normally will suffer strong damages.

This fault also diminishes the steam generator drum pressure, causing 
reductions on the superheated and reheated steam pressures. The combus-
tion control tries to correct this situation by increasing the air flow and the 
fossil oil flow; these actions could increase the steam generator pressure 
beyond the allowed limit, and as a consequence the steam generator would 
be taken out of operation. If the human operator, in presence of this fault, 
does not take the adequate corrective actions, the healthy waterwalls tubes 
could be damaged due to thermal stress. The turbine will also suffer from 
thermal and mechanical stress.

5.2 Scheme for Fault Diagnosis 

This scheme has two components: residual generation and fault diagnosis. 
The scheme is displayed in Fig. 3.

Process

Controller

Neural

Network

Predictor

Fault Diagnosis

and Isolation

via Associative

Memory

StatesInputs

Set Points

Faults

Residuals

( )x k

( 1)u k

( )r k

ˆ ( )x k

Fault
i

Fig. 3. Scheme for Fault Diagnosis. 
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The first component is based on comparison between the measurements 
coming from the plant and the predicted values generated by a neural net-
work predictor. The predictor is based on neural network models, which 
are trained using healthy data from the plant. The differences between 
these two values, named as residuals, constitute a good indicator for fault 
detection. The residuals are calculated as 

( ) ( ) ( )i
i i

r k x k x k , i = 1, 2, …, n. (36)

where xi(k) are the plant measures and ( )ix k  are the predictions. The re-

siduals should be independent of the system operating state under nominal 
plant operating conditions. In absence of faults, the residuals are only due 
to noise and disturbance. When a fault occurs in the system, the residuals 
deviate from zero in characteristic ways.

For the second component, residuals are encoded in bipolar or binary 
vectors using thresholds to obtain fault patterns. These fault patterns are 
used to train an associative memory based on a recurrent neural network, 
which is employed to carry out the fault diagnosis. Our proposed optimal 
algorithm is used to train this associative memory.

5.2.1 Residual Generation 

For residual generation purposes the neural network replaces the analytical 
model describing the process under normal operation. The neural networks 
training is done using the series-parallel scheme [31]. After finishing the 
training, the neural networks are applied for residual generation (Fig. 4); 
its weights are fixed and used as a parallel scheme to carry out predictions. 
The neural network predictor is designed using ten neural network models, 
which are trained via the Levenberg-Marquardt Learning Algorithm ([32], 
[33]). Each neural network is a recurrent multilayer perceptron. The net-
works have one hidden layer with hyperbolic tangent activation functions 
and a single neuron with a linear activation function as the output layer. 
The neural network models are obtained employing the toolbox NNSYSID 
[34], which runs in MATLAB1.

                                                     
1 MATLAB is a registered trademark of The Math Works, Inc. 
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Fig.4. Scheme for training and application of neural networks for residual genera-
tion.

All the models have eight input variables and a one output variable with 
a NNARX2 structure as: 

1
1 1 1 1 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(37)

2
2 2 2 2 1 1

8 8

( ) [ , ( 1), , ( 4), ( 1), , ( 4),

                 , ( 1), , ( 4)]

x k F W x k x k u k u k

u k u k

(38)

3
3 3 3 3 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                   , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(39)

4
4 4 4 4 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(40)

                                                     
2 Neural Network AutoRegressive, eXternal input. 
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5
5 5 5 5 1 1

8 8

( ) [ , ( 1), , ( 5), ( 1), , ( 5),

                 , ( 1), , ( 5)]

x k F W x k x k u k u k

u k u k

(41)

6
6 6 6 6 1 1

8 8

( ) [ , ( 1), , ( 3), ( 1), , ( 3),

                  , ( 1), , ( 3)]

x k F W x k x k u k u k

u k u k

(42)

7
7 7 7 7 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(43)

8
8 8 8 8 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(44)

9
9 9 9 9 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(45)

10
10 10 10 10 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                   , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

(46)

where the input variables are

u1(.) = Fossil oil flow (%). 
u2(.) = Air flow (%). 
u3(.) = Condensed water flow (Litres per minute). 
u4(.) = Water flow for temperation (Kg/s). 
u5(.) = Feedwater flow (T/H). 
u6(.) = Replacement flow to condenser ( Litres per second). 
u7(.) = Steam water flow (Litres per minute). 
u8(.) = Burner inclination angle (Degrees) 

and the output variables are 

x1(.) = Load power (MW). 
x2(.) = Boiler pressure (Pa). 
x3(.) = Drum level (m). 
x4(.) = Reheated steam temperature (ºK).
x5(.) = Superheated steam temperature (ºK). 
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x6(.) = Reheated steam pressure (Pa). 
x7(.) = Drum pressure (Pa). 
x8(.) = Differential pressure (spray steam – fossil oil flow) (ºK).
x9(.) = Fossil oil temperature to burners (ºK). 
x10(.) = Feedwater temperature (ºK). 

Wi represent the weights for each neural network model. The lag struc-
ture of each neural network model is determined using the same criterion 
as in [34]. Once the neural network predictors have been trained, its 
weights are fixed and used as a parallel scheme for carry out the predic-
tions. Neural networks models are validated with healthy fresh data. Pre-
diction errors close to 1 % are obtained for each model. We display in Fig. 
5 a validation test with neural network model given by equation (37) 
working as a parallel scheme to carry out predictions. This validation test 
considers load power changes, and it is assumed that initial condition for 
the neural network model is different to the data acquired x1(0) from full 
scale simulator. 

The residual generation scheme is implemented for six faults: waterwall
tubes breaking, superheater tubes breaking, superheated steam tempera-
ture control fault, dirty regenerative preheater, velocity varier of feedwa-
ter pumps operating to maximum value and blocked  fossil oil valve named 
as fault 1 to fault 6, respectively.

For faults 1 to 4, data bases are acquired with a full scale simulator for 
75% of initial load power (225 MW), 15 % of severity fault, 2 minutes for 
inception and 8 minutes of simulation time. Furthermore, for fault 5 and 
fault 6 the simulator has only available severity and inception which are 
chosen as 15 % and 2 minutes, respectively.  For these two faults, data 
bases are acquired for 3 and 4 minutes of simulation time, respectively. 
The fault 5 is very critical because it can activate the drum level alarm and 
forces the fossil electric power plant out of operation. It is clear that fault 6 
is detectable when the load power is changed by the operator because the 
fossil oil valve does not work adequately. For the six cases, residuals are 
close to zero before fault inception. After this interval, residuals deviate 
from zero in different ways.

Even if all the described faults are taken into account, in this chapter, 
due to space limitations, for explaining the process to generate fault pat-
terns, only fault 1 and fault 5 are considered. The respective residuals are 
displayed in Fig. 6 and Fig. 7. 
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Fig. 5. Validation test for neural network model given by equation (37). 
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Fig. 6. Residuals for fault 1: waterwall tubes breaking. 
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Fig. 7.  Residuals for fault 5: velocity varier of feedwater pumps operating to 
maximum value. The symbol ‘o’ denotes that fossil electric power plant is taken 
out of operation. 

5.2.2 Fault Diagnosis 

1 if 
( ) ,  1, 2, ...,10.

1 if 

i i

i

i i

r
s k i

r

(47)

Residuals are encoded on-line for every fault. Residuals for fault 1 and 
fault 5 are displayed in Fig. 9 and Fig. 10. Once residuals are encoded, it is 
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Figure 8 presents a scheme to carry out the fault diagnosis via this associa-
tive memory. The previous stage generates a residual vector with ten ele-
ments which are evaluated by detection thresholds. Detection thresholds 
are contained in Table I. This evaluation provides a set of residuals en-
coded as bipolar vectors [s1(k), s2(k), …, s10(k)]T where



necessary to analyze them to choose the fault patterns to store in the asso-
ciative memory. This selection is done in order to discriminate adequately 
every fault, to reduce false alarms and to isolate fault as soon as possible. 
The patterns obtained are used, based on the optimal synthesis algorithm 
proposed in section 4 to train the recurrent neural network and to design 
the respective associative memory as a way to isolate the faults. Fault pat-
terns, for all the six faults previously mentioned, are contained in Table II, 
where fault 0 pattern is included to denote a normal operation condition.

The optimal training algorithm is programmed in MATLAB. The num-
ber of neurons is n=10 (fault pattern length) and the patterns are m=7
(number of fault patterns). The Lagrange multipliers matrix LM= [ 1, 2

,

…, n] , the weight matrix WM=[W1, W2, …,Wn+1] and the bias vector 
BV=[b1, b2, …, bn] are obtained as in (48), (49) and (50). The matrices A, T
and I are calculated as in (51), (52) and (53). The associative memory is 
evaluated with these matrices fixed using encoded residuals as input bipo-
lar vectors. Fig. 11 and Fig. 12 illustrate how fault 1 and fault 5 patterns 
are retrieved by the associative memory. 

Fig. 8. Scheme for fault diagnosis. 
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Table 1. Detection thresholds. 

i
i

1  25 MW 
2  30 Pa 
3  0.022 m 
4  4 ºK 
5  10 ºK 
6  20000 Pa 
7  42000 Pa 
8  0.85 % 
9  0.24 ºK 
10  10 ºK 

0.00 0.00 0.30 0.00 0.00 0.05 0.17 0.00 0.09 0.00

0.08 0.22 0.00 0.08 0.00 0.00 0.00 0.13 0.07 0.08

0.00 0.00 0.00 0.17 0.50 0.20 0.00 0.04 0.00 0.00

0.09 0.09 0.00 0.24 0.00 0.18 0.01 0.00 0.14 0.09

0.00 0.00 0.20 0.00 0.50 0.05 0.26 0.00 0.03 0

LM

.00

0.00 0.00 0.10 0.05 0.00 0.11 0.14 0.04 0.19 0.05

0.07 0.13 0.00 0.09 0.00 0.01 0.03 0.22 0.00 0.07

,

(48)

0.51 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51 0.22

0.68 0.95 0.40 0.68 0.13 0.13 0.13 0.40 0.41 0.68 0.68

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.46 0.09 0.64 0.27 0.27 0.09 0.09 0.09 0.27 0.27

0.00 0.00 0.00 0.
WM

00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.01 0.05 0.05 0.05 0.12 0.01 0.01 0.09 0.05 0.01

0.03 0.03 0.16 0.03 0.16 0.03 0.23 0.03 0.03 0.03 0.10

1.13 0.68 0.68 0.22 0.22 0.22 0.22 1.59 0.68 1.13 1.13

0.02 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.03 0.02 0.00

0.05 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51 0.22

,

(49)

[ 0.07 0.05 0.40 0.40 0.00 0.37 0.04 0.72 0.00 0.07]
T

BV , (50)
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1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

A

 ,  

(51)

2.51 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51

0.68 2.95 0.40 0.68 0.13 0.13 0.13 0.40 0.40 0.68

0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.46 0.09 2.64 0.27 0.27 0.09 0.09 0.09 2.77

0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.
T

00 0.00

0.05 0.01 0.05 0.05 0.05 2.12 0.01 0.01 0.09 0.05

0.03 0.03 0.16 0.03 0.16 0.03 2.23 0.03 0.03 0.03

1.13 0.68 0.68 0.22 0.22 0.22 0.22 3.59 0.68 1.13

0.02 0.01 0.00 0.00 0.00 0.02 0.00 0.01 2.03 0.02

0.51 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 2.51

,

(52)

0.22 0.68 0.00 0.27 0.00 0.01 0.10 1.13 0.00 0.22
T

I . (53)
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Fig. 9. Encoded residuals for fault 1. 
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Fig. 10. Encoded residuals for fault 5. 
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Table 2. Fault patterns to store in associative memory. 

0 1 2 3 4 5 6

-1 1 -1 -1 -1 -1 1 
-1 1 -1 -1 -1 -1 -1 
-1 1 1 1 1 1 1 
-1 1 -1 1 -1 -1 -1 
-1 1 1 1 -1 -1 1 
-1 1 -1 1 -1 1 1 
-1 1 1 1 1 -1 1 
-1 -1 -1 -1 -1 -1 1 
-1 1 -1 -1 -1 1 1 
-1 1 -1 -1 -1 -1 1 

When any fault (1 to 6) evolutes, fault patterns which are retrieved by 
the associative memory can correspond to a wrong pattern. This fact is 
mainly due to the input transient bipolar vectors which force the associa-
tive memory to converge to wrong fault patterns. However, during this in-
terval the encoded residuals do not correspond to true fault pattern and this 
fact is taken into account to carry out an efficient diagnosis. Taking into 
account this fact, information to operator is presented as in Fig.13 and Fig. 
14, for fault 1 and fault 5, respectively. 
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Fig. 11. Fault pattern retrieved by associative memory, fault 1. 
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Fig. 12. Fault pattern retrieved by associative memory, fault 5. 
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Fig. 13. Information to operator, fault 1. 
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Fig. 14. Information to operator, fault 5. 

6 Conclusions 

Results demonstrate that the optimal training algorithm proposed in this 
work is adequate to train associative memories based on recurrent neural 
networks. Based on this approach, an associative memory is designed and 
applied to fault diagnosis in fossil electric power plants. As future work, it 
is necessary to analyze convergence for this new algorithm. 
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Abstract. Severe earthquake motions could make civil structures to un-
dergo hysteretic cycles and crack or yield their resistant elements. The pre-
sent research proposes the use of a polynomial artificial neural network to 
identify and predict, on-line, the behavior of such nonlinear systems. Pre-
dictions are carried out first on theoretical hysteretic models and later us-
ing two real seismic records acquired on a 24-story concrete building in 
Mexico City. Only two cycles of movement are needed for the identifica-
tion process and the results show fair prediction of the acceleration output. 

1 Introduction 

Civil structures, such as buildings or bridges, are instrumented to acquire 
acceleration, velocity and displacement output data due to lateral loads, 
which could arise from severe wind or strong earthquake motions. The 
data is later analyzed to assess the lateral resistant capacity of the structure 
and to check output maximums against those allowed by construction 
codes. In some instances, wind or earthquakes induce lateral loads such 
that energy may dissipate through hysteretic phenomena, thus reducing 
their resistant capacity [10]. Many buildings have been instrumented 
around the world in order to monitor their structural health. The identifica-
tion of such nonlinear systems is therefore an important task for engineers 
who work in those areas affected by these natural hazards, and thus, the 
subject of the present paper. 

To cope with this problem, a polynomial artificial neural network 
(PANN) [8] is proposed, so a model could be identified to represent such 
nonlinear systems. The proposed algorithm is able to estimate with good  

F.J. Rivero-Angeles and E. Gomez-Ramirez : Acceleration Output Prediction of Buildings Using
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accuracy the acceleration output. Training is done on-line with only a lim-
ited amount of data. It is worth noting that on-line algorithms are favored 
in closed loop control applications, decision making strategies and fault 
detection, evidently in real-time. Thus, the present research implements 
such algorithms. 

Also, in structural dynamics, many parametric models are proposed to 
simulate the behavior of the structure, nonetheless, the PANN model 
seems easier to implement with real data and with the following advan-
tages: (a) the external driving force is assumed unknown and not needed 
for the identification scheme, which makes it interesting because it does 
not limit its application to ground acceleration records, but opens its use in 
other accidental loading such as high wind or explosions, in which the ac-
tual loads are unknown; and (b) the physical properties of the structure, 
such as mass, stiffness or damping, are not needed, which in turn makes 
the proposed algorithm advantageous when modeling actual structures 
only by using acceleration records. 

Additionally, from the training view point, usual neural networks are 
trained following two criteria: (a) by minimizing the error assuming an es-
tablished threshold, or (b) until a given number of epochs is reached. In 
this case, the proposed PANN is trained with a weight variance criterion, 
that is, during on-line training, the weights reach a “constant” value when 
the variance is close to zero. Besides the variance analysis, a moving aver-
age was used, as a tendency indicator, to complete the revision. 

To sum up, the present research proposes the use of a PANN with a su-
perior training speed, with a reduced number of samples for the on-line 
identification process, with no a priori knowledge of the structural pa-
rameters, the type of nonlinear system, or the driving force. 

2 Contents 

The present research shows the use of a polynomial artificial neural net-
work (PANN) [10] to identify and predict the acceleration output of four 
theoretical single-degree-of-freedom systems (SDOF). Two of them were 
modeled with a linear-elastic behavior. The other two were modeled as 
nonlinear, hysteretic systems with the Bouc-Wen model [24]. These sys-
tems were subject to the Loma Prieta earthquake, recorded at the Treasure 
Island station in Santa Cruz, California, USA, 1989, and to the Mexico 
City earthquake, recorded at the Communications Secretary (SCT), in 
1985. The results of the simulations show that the PANN is capable to 
identify both type of systems (linear and nonlinear) and predict with good 
accuracy the acceleration output after training. 
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Later, one actual seismic record, attained at the roof of a real 24-story 
concrete structure in Mexico City, acquired in the year 2002, is used to 
identify the behavior of the building. The identified model is then used to 
predict the acceleration motion of the same real building, subjected to an-
other actual record acquired ten months later, in the year 2003, and the re-
sults show that this simple model predicts with very good accuracy the be-
havior of the system. 

A long term aim of the present research is to develop a technique that 
could be used in conjunction with fault detection analysis, structural health 
monitoring, and structural control. 

3 State of the Art 

In this section, the state of the art in forecasting time series is shown, and 
of course, their use in the identification of civil structures. Forecasting time 
series has been solved with a broad range of algorithms such as ARMAX 
[3], NARMAX [6], Fuzzy Logic [23], Neural Networks [8], etc. 

In civil structures, some researchers have successfully identified nonlin-
ear systems with a wide variety of proposed algorithms. The techniques 
could be divided into on-line and off-line algorithms. In [22] a statistical 
technique is proposed, which considers the typical vibration signature of 
nonlinear mechanical systems, using linear techniques. One of the conclu-
sions drawn is that linear models are not able to fully predict the structural 
behavior, even nonlinear characteristics might modify the structural damp-
ing of the first mode. Thus, nonlinear techniques have been developed to 
cope with this problem. In [9] a thorough literature review is given. In [11] 
a NARMAX orthogonal model is used for parametric identification. In 
[21] a spectral method is shown, and in [13] a sequential regression analy-
sis, Gauss-Newton optimization, least squares and extended Kalman filter 
is used. Also, least squares methods have been used, with some modifica-
tions, by [16], [19], and [26]. Another example is the use of ERA-OKID, 
Subspace and Least Squares algorithms to estimate linear parameters of 
structures [15]. All papers so far have in common the use of off-line algo-
rithms, where the complete acceleration, velocity and displacement re-
cords, or a combination of them, are used. 

Nonetheless, as it was mentioned earlier, for structural control or deci-
sion making strategies, on-line algorithms are suitable. Evidently, some re-
searchers have worked with such type of algorithms. That is the case of 
[5], in which an adaptable least squares is used to see the evolution of 
stiffness changes in time of linear systems. In [25], besides parameter es-
timation, the partly unknown excitation is estimated, also with a least 
squares algorithm. 
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Although artificial neural networks have not been widely used in civil 
and structural engineering, some researchers have successfully applied 
them; that is the case of [12], [17], and [18]. Nonetheless, the models and 
architectures of those networks seem complex and are computer time con-
suming. Also, a partial knowledge of the structure and the nonlinear dy-
namics of the restoring force are needed. 

4 Basic Structural Dynamics 

This section contains some of the concepts shown in any structural dynam-
ics text book for civil engineers. A good starting point is [2] and the reader 
is referred to it for a more extensive revision. For the case of the proposed 
PANN, the following structural parameters are not needed, yet they are 
used to simulate the theoretical models shown herein, and their accelera-
tion output is used for comparison purposes with the PANN. 

For civil structures, the aim is to build useful infrastructure for our so-
cieties. Building codes give some rules such that a structure satisfies the 
following: (a) it will not suffer any damage under low intensity earthquake 
motions, (b) damage in nonstructural elements, such as architectural walls, 
plaster, windows and partitions, is limited and reparable under medium in-
tensity earthquakes, and (c) the structure will not collapse under high in-
tensity earthquakes. Also, interstory drifts are limited to ensure comfort 
and safety of the inhabitants. One type of structural analysis and design of 
buildings under lateral loads is by using response spectra, thus, it is neces-
sary to instrument the ground and the structure to acquire acceleration, ve-
locity and displacement records. Those records allow to define instrumen-
tal measurements of the earthquake intensity. 

On the other hand, from the structure’s point of view, its response will 
be a function of the excitation and the building characteristics. The differ-
ential equation shown in (1) describes the dynamics of a SDOF system in 
continuous time and subject to external driving force: 

( )
.

c k f t
x x x

m m m

(1)

In this case, the implicit relation which maps the external driving force 
( )f t  with the displacement ( )x t  is known. The structural parameters are 

mass m , damping c  and stiffness k . In a typical seismic instrumentation, 
accelerometric sensors are adopted, thus velocities and displacements are 
obtained by numeric integration. The quotient /k m  is, by definition, the 
circular frequency  squared, and period T  could be computed with 
2 / . If the response of the system depends on its dynamic characteris-
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tics, it is no surprise that building codes give design spectra which depend 
on the period of the structure and consider reduction factors to take into 
account the energy dissipated through hysteretic phenomena (nonlinear). 
The vibration periods of a structure are function of the mass and the stiff-
ness, yet, if these parameters are unknown, (2) or (3) could be used. 

0.1 ;T N (2)

3

40.075 ;T H

(3)

whereN is the number of stories in a building, and H in meters repre-
sents the total height of the building. The vibration period physically repre-
sents the number of seconds needed for a building to oscillate a complete 
cycle.

Another influential characteristic in the response of a building is viscous 
damping c , which is function of a fraction  of the critical damping. It 
could be noted that the magnitude of the spectral ordinates diminishes 
when  gets larger (the larger the damping, the lesser the spectral accel-
eration). This kind of damping considers dissipating energy arising from 
internal friction, friction at the bearings or with nonstructural elements, 
etc., thus, the magnitude of the effects depends on the level of damage and 
is difficult to quantify with certainty. To deal with this problem, viscous 
damping is introduced as a numerical aid due to the fact that 5% of critical 
damping (usual in civil concrete structures) leads to good results. If a dif-
ferent formulation is required, the reader is referred to the work in [14]. 

Earthquakes produce alternating loading conditions (cyclic), and con-
struction codes admit the occurrence of structural damage, thus, load-
deformation characteristics are of interest. The load-deformation curve of a 
structure depends, among other factors, on the curves of the elements, the 
materials and the area properties of the sections. If the stiffness of the 
structure changes with time on cyclic loading, it leads to hysteretic cycles. 
In some instances, the stiffness reduces considerably from one cycle to the 
other, such phenomenon is known as deterioration. 

A structural system is ductile if is able to hold important deformations 
under almost constant loads, without reaching excessive damage levels, 
which is opposed to a fragile behavior. A common measure is the ductility 
factor , defined for elastoplastic structures as the deformation required 
for collapse, divided by the corresponding elastic deformation. The energy 
dissipating capacity in a loading cycle is computed by the area enclosed in 
a hysteresis cycle. In deteriorating systems, the area enclosed in every cy-
cle is reduced, and consequently, the dissipating capacity is diminished. In 
this sense, this kind of systems are less effective to resist cyclic loads. 
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A formal way to define hysteresis is to consider it as a special constitu-
tive relation with memory. In other words, hysteresis arises when the dis-
placement output could not be determined at any given instant t , but it de-
pends on the evolution of the displacements in the interval [0, t ] and 
possibly on the initial conditions [20]. 

Many references to differential hysteretic models could be found in the 
literature. Nevertheless, the Bouc-Wen differential hysteretic model [24] is 
widely used in structural engineering. There are two interesting features of 
this model: (a) it is capable to represent different shapes, and (b) correlates 
well the numerical results to experimental data derived from tests. 

Several hysteretic friction models exist, such as the Dahl [7], LuGre [4] 
or Duhem Operator [14]. Nonetheless, the most popular remains the Bouc-
Wen model, modified to consider deterioration [1]. According to Wen, the 
restoring force in a nonlinear hysteretic system could be decomposed into 
the two parts shown in (4): 

, , ( );Q x x g x x z x (4)

where ,g x x  is a non-hysteretic component, generally nonlinear, which 

depends on the instantaneous displacement and velocity, and ( )z x  is the 
hysteretic component, which depends on the displacement output. The be-
havior of ( )z x  depends on the material characteristics, amplitude of the re-
sponse and the structural characteristics. For civil SDOF structures, subject 
to ground motion, the following equation applies: 

( ) ;
g

mx cx kx f t mx (5)

where the SDOF has mass m , damping c , stiffness k , ground acceleration 

g
x . Variables x , x  and x  represent the displacement, velocity and accel-

eration, respectively. Baber and Wen [1] proposed the following set of 
nonlinear differential simultaneous equations to describe the motion of a 
hysteretic SDOF. 

1 ( );mx cx kx kz f t (6)

1n n

Ax x z z x z

z

(7)

Equation (6) represents the motion of the system and (7) models the 
time change of the hysteretic component (see [1]). This set of equations al-
low to model hysteretic degrading and nondegrading systems. From this 
revision, it is evident the necessity to select materials, designs and struc-
tural details to avoid fragile failure and deterioration. 
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5 Polynomial Artificial Neural Network 

An interesting feature of the neural networks is the ability to identify 
nonlinear systems, thus, for the case of nonlinear hysteretic structures, neu-
ral networks may identify more accurately the dynamic behavior of a non-
parametric model. The model of a polynomial artificial neural network 
(PANN) is described in (8). 

max

1 2 min

1, 2, , 1, 1 2, 1

, 1 2

ˆ [ ( , , ... , , , .... ,

..... , , .... )] ;

i

i

k k k n k k k

n k n k k k n

y x x x x x

x y y y

(8)

where ˆ
k

y  is the estimated function, ( , )x y  is a nonlinear function, 

i
x X  are the inputs with 1, ,

i
i n ; and 

i
n  is the number of inputs. 

k j
y Y  are the previous output values, for 

2
1, ,j n ;

1
n  is the number of 

delays or previous values in the input, 
2

n  is the number of delays in the 
output, X  and Y  are compact subsets of . To simplify the notation, (9) 
is given. 

1 2
1, 2, , 1 2

1 2 3

( , , , , , , , , );
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v
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n

z x x x y y y

z z z z z
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where
v

n  is the total number of elements in description z , and 

1 2v i i
n n n n n . The nonlinear function ( )

p
z  belongs to a family 

p

of polynomials which could be represented by (10). 

1 2

0 1 2 1 1 2 1 2

, , , ( );

( ) , , , , , , , , , .

v

v v v
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n n p n

z z z z

z a z z z a z z z a z z z

(10)

Sub index p  is the maximum power of the polynomial expression. 

Polynomials
1 2
, , ,

v
i n

a z z z  are homogeneous polynomials of total degree 

i , for 0, ,i p . Each homogeneous polynomial could be written as 
shown in (11). 
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where
,i j

w  is the associated weight of the PANN. Term 
0

w  corresponds to 

the input bias of the network, homogeneous polynomial 
1
( )a z  is equivalent 

to weight the inputs, polynomials 
2
( )a z  to ( )

p
a z  represent the modulation 

between the inputs and the power of each polynomial. 
i

N  is the number of 
terms of each polynomial with 

1 3 2 1

1 2 1
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Dimension N  of each family 
p
 could be computed with 

0

p

ii
N N . Activation function of the network is given by (13). 
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The architecture of the PANN is shown in fig. 1. Learning of the PANN 
is done by minimizing an error function, thus, the approximation error in 
the PANN is defined as: 

2

1

2

1

1 2

1
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1
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Y y y y
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where
n

Y  is the desired output, ( ) ( )
k p

z z , and n  is the number of pre-

vious values of the output. The optimal error is defined as: 
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*
, ( ) , ( ) ;

n n n n n
opterr Y z err Y z (15)

where *
( )

n p
z  is the optimal estimation of 

n
Y . Thus, the PANN 

( )
p

z  learns the desired output uniformly with precision  if 

*
, ( ) , ( ) ; 0

n n n n
err Y z err Y z (16)

Fig. 1. Architecture of the PANN

From the latter, the learning problem of the PANN consists on finding 
the structure of ( )

p
z  which verifies (16). With this architecture, the 

weights of the PANN could be found with a recursive least squares algo-
rithm during training, for example (17). 
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where
1

( )
k

z  is a row vector, 1k  is the identification instant, ŵ  are the 
weights to be identified and P  is a matrix, approximately to the covari-
ance of the parameters with (0) 0P . Also, a forgetting factor could be 
used, nonetheless, this simple algorithm lead to good results, thus it was 
kept as a simpler approximation. If a more complex least squares algorithm 
is desired, it could be changed easily since the PANN does not require this 
specific identification scheme. 

6 Simulations 

Four SDOF theoretical systems were modeled. SDOF systems act like 
shear buildings with only lateral movement of the mass. No mass rotations 
are considered. In this case, two SDOFs were simulated with the Loma 
Prieta base acceleration record and the last two with the Mexico City 
earthquake record. In both cases, simulations were run with linear elastic 
and nonlinear hysteretic behavior. The simulations with the SDOF subject 
to the excitation of Loma Prieta earthquake are presented next. 

6.1. SDOF Subject to Loma Prieta Record 

The first SDOF has the following structural properties: mass 1m kg ,
damping 1.2566 /c kgf s cm , and stiffness 157.9137 /k kgf cm , subject to 
the base ground acceleration record acquired during the Loma Prieta earth-
quake. Simulations consisted on the following: (a) fully linear elastic struc-
ture, and (b) hysteretic nonlinear structure with Bouc-Wen parameters 

1 21 , 1.0A n , 0.5 . In every single case the PANN 
was trained with the acceleration output corrupted with 2% random noise 
and parameters 2p ,

1
0

i
n n , and 

2
4n , which leads to a second or-

der polynomial, no input values considered and 4 previous values of the 
output.

These values were obtained by trial and error, such that the results were 
acceptable and still obtain a simple model. Additionally, the PANN was 
trained with the first 100 samples, two cycles of movement, from the re-
cord at 50 samples per second. Note that two cycles of movement could be 
related to 2T , with T  the vibration period of the structure, in this case, 1 
second. Next the simulations with SDOF (a), fully linear elastic response, 
are shown. 
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Figure 2 contains the samples used during the training process of the 
proposed PANN. Note that the values have been normalized, such that the 
values are bounded between zero and one. 

Figure 3 shows the weight variation. It could be noted that the recursive 
least squares algorithm quickly identifies the weights of the PANN model. 
As it was stated previously, training termination was done with a variance 
analysis. In this case, the variance of the weights could be considered as a 
time series, in which variance at instant k  results from a set of three previ-
ous variance values. It is apparent that the variance reduces until it reaches 
a value of 0.0008303, small enough to assume they have reached an almost 
constant value of the weights. 

Another way to observe the tendency of the variance of the weights is 
through a moving average of sets of five previous values. The moving av-
erage “softens” the variance time series, and gives a clearer indication of 
the tendency. As an analogy, the slope of the weights should tend to zero 
to assume constant values. In that same figure, the slope of the first weight 
(as an example) is shown with a value of –0.0021, assumed very close to 
zero, and thus, the absolute variation clearly indicates a tendency to zero. 

Fig. 2. Training vector, SDOF (a), Loma Prieta earthquake 
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Fig. 3. Weight variation, SDOF (a), Loma Prieta earthquake 

Figure 4 shows the training interval with 100 samples and the accelera-
tion output prediction with 1,990 samples, divided by a vertical line in the 
figure. It is worth noting that during training, the PANN identifies the 
weights with only 2 seconds of motion and the prediction closely follows 
the theoretical output. It could also be noted that during the intense phase 
of the motion, the estimation error increases a bit. That figure also contains 
the prediction errors. Figure 5 shows a window with the acceleration out-
put prediction of the intense part (from 12 to 15 seconds of motion). Note 
that the model is able to adapt to unknown conditions with no a priori
knowledge of the type of structure or excitation. 

Fig. 4. Training and prediction, SDOF (a), Loma Prieta earthquake 
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Fig. 5. Acceleration output prediction, SDOF (a), Loma Prieta earthquake 

Next, the simulation of SDOF (b) hysteretic structure is shown. Figure 6 
contains the associated hysteresis of the SDOF. Figure 7 contains the sam-
ples used during the training process. Fig. 8 shows the weight variation, 
and it could be noted a quick identification. Also, the weight variance re-
duces to a value of 0.00065185. The moving average also tends to zero in 
this interval. Again, the slope of the first weight reaches a value of 0.0032, 
assumed close to zero, such that the absolute variation is assumed to tend 
to zero. Figure 9 contains the training interval with 100 samples and pre-
diction with 1,990 samples divided by a vertical line. Remember that two 
cycles of motion are related to 2T .

Fig. 6. Associated hysteresis, SDOF (b), Loma Prieta earthquake 
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Fig. 7. Training vector, SDOF (b), Loma Prieta earthquake 

During the acceleration output prediction, the weights of the model were 
kept constant, and it could be noted that the prediction is still quite accept-
able, nonetheless, when energy dissipation through hysteretic phenomena 
takes place, the estimation error increases. Even though, the PANN is able 
to adapt to this nonlinear system. In that figure the estimation error is also 
shown. Figure 10 shows a window from 12 to 15 seconds of prediction. 
Note that during the first two seconds of motion, the system is basically 
linear and elastic, therefore, if the system would have behaved nonlinearly, 
the PANN would have identified it better. This statement could be verified 
with the results of the simulations run with the SDOF subject to Mexico 
City earthquake. 

Fig. 8. Weight variation, SDOF (b), Loma Prieta earthquake 
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Fig. 9. Training and prediction, SDOF (b), Loma Prieta earthquake 

6.2. SDOF Subject to Mexico City Record 

The second SDOF has the following structural properties: mass 1m kg ,
damping 0.3142 /c kgf s cm , and stiffness 9.8696 /k kgf cm , subject to 
the base ground acceleration record acquired during the Mexico City 
earthquake, reduced to 30% amplitude to develop compact and stable hys-
teresis cycles. Again, simulations consisted on the following: (a) fully lin-
ear elastic structure, and (b) hysteretic nonlinear structure with Bouc-Wen 
parameters 1 21 , 1.0A n , 0.5 . In every single case 
the PANN was trained with the acceleration output corrupted with 2% ran-
dom noise and parameters 2p ,

1
0

i
n n , and 

2
4n , which leads to a 

second order polynomial, no input values considered and 4 previous values 
of the output. 

Additionally, the PANN was trained with the first 200 samples, two cy-
cles of movement, from the record at 50 samples per second. In this case, 
the vibration period of the structure is of 2 seconds, in resonance with the 
driving force. Next the simulations with SDOF (a), fully linear elastic re-
sponse, are shown. 
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Fig. 10. Acceleration output prediction, SDOF (b), Loma Prieta earthquake 

Figure 11 contains the samples used during training. Fig. 12 shows the 
weight variation. The variance of the weights reduces to a value of 
4.2677x10-6, small enough to assume constant values of the weights. The 
moving average clearly shows a tendency to zero, and the slope of the first 
weight reaches a value of 2.6754x10-5, therefore, the absolute slope tends 
to zero. Note that in this case, the identification results are better due to the 
fact that response of the SDOF is larger. This could be explained because 
the vibration period of the structure is in resonance to the vibration period 
of the driving base acceleration earthquake record. 

Fig. 11. Training vector, SDOF (a), Mexico City earthquake 
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Figure 13 shows the training interval with 200 samples and the predic-
tion with 2,300 samples divided by a vertical line. It is worth noting that 
training is done with only 4 seconds of motion. During the intense phase, 
the estimation error is kept small. The latter could be noted in the figure. 

Figure 14 contains a window of the intense part for added resolution, be-
tween 25 and 35 seconds of motion. Note that the model is able to adapt to 
the unknown external conditions. 

Next, the simulations with the hysteretic SDOF (b) are shown. 

Fig. 12. Weight variation, SDOF (a), Mexico City earthquake 

Fig. 13. Training and prediction, SDOF (a), Mexico City earthquake 
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Figure 15 shows the hysteretic behavior associated to the SDOF. Figure 16 
contains the samples used during training of the PANN. Figure 17 shows 
the weight variation reducing to a value of 0.0002141, small enough to as-
sume that the weights reached an almost constant value. The latter is easily 
noted with the moving average as an indicator of the tendency of the vari-
ance time series. Clearly the moving average shows a tendency to zero. 
Also, the slope of the first weight reaches a value of 1.3556x10-5, and 
therefore, the absolute slope variation tends to zero. 

Fig. 14. Acceleration output prediction, SDOF (a), Mexico City earthquake 

Fig. 15. Associated hysteresis, SDOF (b), Mexico City earthquake 
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Figure 18 shows the training interval. In this case, training was per-
formed with 200 samples and prediction with the rest of the samples in the 
record (2,300 samples), divided by a vertical line in the figure. Again, 
training was done with the first 4 seconds of motion. During the accelera-
tion output prediction phase, the weights of the network were kept con-
stant, and it shows that the prediction closely follows the theoretical out-
put. It is apparent that even when the energy dissipation is maximum, the 
estimation error is still close to zero. This fact could be explained because 
the nonlinear behavior takes place practically from the beginning of the 
motion, and the PANN is able to identify it. 

Fig. 16. Training vector, SDOF (b), Mexico City earthquake 

Fig. 17. Weight variation, SDOF (b), Mexico City earthquake 
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Figure 19 shows a window of the intense part of the motion for added 
resolution. The window is between 25 and 35 seconds of the acceleration 
output of the mass. Note that the model accurately reconstructs the output 
acceleration. It is worth noting that the system behaves nonlinearly and the 
PANN is able to identify it with only two cycles of motion. 

Fig. 18. Training and prediction, SDOF (b), Mexico City earthquake 

Fig. 19. Acceleration output prediction, SDOF (b), Mexico City earthquake 
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7 Identification Using Real Data 

This section uses the actual seismic acceleration record acquired at the roof 
of a real structure to prove the effectiveness of the proposed algorithm. 
This instrumented construction is located in Mexico City. It is a reinforced 
concrete, 24-story, office building; 8 stories are used for parking, and the 
rest are administrative offices. The instrumentation has been active since 
the year 2000, and to date, several earthquakes of low intensity have been 
acquired.

The earthquake record acquired in April 18th 2002 is used for training, 
and only the acceleration output of the roof, parallel to the street, is used. 
The building has a period of 2.95 seconds, and almost 6 seconds of mo-
tions are used for training. The PANN was trained again with a second or-
der polynomial model, no input values and 4 previous output values. 

Additionally, the PANN was trained with the first 290 samples, also ob-
tained from a record at 50 samples per second. Figure 20 contains the sam-
ples used during training of the PANN. 

Fig. 20. Training vector, actual data, April 22, 2002 earthquake 

Figure 21 shows the weight variation. The weight variance, in sets of three 
previous values, quickly reduces to a constant value of 0.00010439, thus 
training is attained. Also in that figure, the moving average of five previ-
ous values indicates a tendency to zero of the weight variance. 

It could also be noted that the slope reaches a value of –1.5994x10-5 and 
therefore, the absolute variation is assumed to tend to zero. This way, a 
training interval is ensured with a fairly small amount of samples. 
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Figure 22 shows the training interval with 290 samples, along with the 
prediction interval with 9,956 samples, separated by a vertical line. As it 
would be expected, during training, the PANN is quick enough to identify 
the weights with only 6 seconds of motion, of a total of 200 seconds. 

Fig. 21. Weight variation, actual data, April 22, 2002 earthquake 

Fig. 22. Training and prediction, actual data, April 22, 2002 earthquake 
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In order to predict the acceleration output, the weights of the model have 
been kept constant. It could be noted that the prediction output is quite 
good. Even at the intense part of the record, the estimation error practically 
does not change. In that figure, the error has also been plotted along with 
the training and prediction. The RMS errors are also shown for training 
and prediction. 

Figure 23 shows a window for added resolution. This window contains 
the intense part from 40 to 60 seconds of motion. It is worth mentioning 
that the acceleration output prediction at the roof of the real building is 
quite accurate for a model with no a priori knowledge of the structure, the 
type of nonlinear behavior it might show, or the intensity of the earthquake 
that hit it. 

Fig. 23. Acceleration output prediction, actual data, April 22, 2002 earthquake 

Additionally, and as a final test, once the model was identified, another 
seismic record acquired 10 months later by the instrumentation, January 
21st, 2003, was used to predict the acceleration output of the roof. 

Using the weights computed previously, the acceleration output predic-
tion is performed with this new and totally different excitation. Fig. 24 
shows the prediction with 19,360 samples. During the intense part of the 
motion, the estimation error practically does not change. The error has 
been plotted along with the identification. 
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Fig. 24. Acceleration output prediction, actual data, January 21, 2003 earthquake 

Figure 25 shows a window for added resolution, from 94 to 100 seconds 
of the total motion. Note that in this case, the model was identified 10 
months earlier with another earthquake record, with totally different char-
acteristics, and the model still predicts quite accurately the acceleration 
output.

Fig. 25. Acceleration output prediction, actual data, January 21, 2003 earthquake 
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8 Conclusions 

In the last two decades, several buildings have been instrumented to moni-
tor the resistant lateral capacity of the structure through the analysis of the 
acceleration, velocity and displacement records, acquired by that instru-
mentation when subject to earthquake or high wind. 

The present research proposes the use of a polynomial artificial neural 
network (PANN) to identify the behavior of such nonlinear systems and 
predict the acceleration output. The PANN is trained on-line, only with the 
first two cycles of motion. Usually, seismic records are acquired at 50 
samples per second, which means that only a small amount of samples is 
needed for training. The latter was revised with a variance analysis of the 
weights during training. The variance, in conjunction with a moving aver-
age, could suggest a tendency to zero, and thus could be interpreted as the 
weights reaching a constant value. 

In order to verify the effectiveness of the proposed algorithm, simula-
tions of four theoretical structures are shown. Two of them are simulated 
with linear elastic behavior, and the last two are simulated with nonlinear 
hysteretic behavior modeled with Bouc-Wen. Two theoretical models were 
excited with the Loma Prieta seismic record, and the other two with the 
Mexico City. The results of the simulations show fair convergence speed 
of the weights and good accuracy in the acceleration output prediction. Fi-
nally, the PANN identified a model of a real 24-story concrete building, 
located in Mexico City. The structure was identified with a record acquired 
in April, 2002, and the prediction results are adequate. Additionally, as a 
last test, once the model was identified, a seismic record acquired in Janu-
ary, 2003, was used to predict the acceleration output of the roof. Once 
again, the results show that the identified model predicts particularly well 
the output of the system. 

The prediction is achieved with a model with no a priori knowledge of 
the structural physical parameters, the type of nonlinear behavior, or the 
type of excitation. A long term aim of the present research is the develop-
ment of algorithms which allow its use, in conjunction with fault detection 
techniques, structural health monitoring, decision making strategies, and 
structural control, obviously in real-time. 
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Abstract. In this paper we describe the concepts of Time Series, Neural 
Networks, Modular Neural Networks, and Parallelism. Modular Neural 
Networks and Parallel Processing for Time Series Forecasting of Tomato 
Prices in Mexico are described in this paper. A particular modular neural 
network architecture implemented in parallel was used. Simulation results 
with the modular neural network approach for this application are very 
good.

1 Introduction

At this time all companies make use of forecasts of product prices or sales, 
which are used for planning of their production. If in the process of fore-
casting a significant error is obtained, this could leave a company without 
the raw material or supplies necessary for the production or in the case of 
agricultural products, the loss of a great amount of land without harvesting 
because of low prices of the product.

In these cases, the erroneous forecasting directly affects the profits of 
the company. Diverse factors exist so that the forecasting is erroneous, for 
example, the validity and availability of historical data, the desired preci-
sion of the prognosis, the benefits of the result, the future periods that are 
desired to foretell, among others [18].

Neural Networks are not more than an artificial model, which is a sim-
plification of the human brain. The artificial model has the ability to learn 
from data in a similar way as humans do. The human brain is the most per-
fect example that we have of a system that is able to acquire knowledge 
through experience [25]. For this reason an artificial model of this system 
can be used for solving many problems. 
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The use of Modular Neural Networks is considered when the applica-
tions are very complex. However, if a higher level of efficiency is required 
and a smaller processing time is required then no longer a Modular Neural 
Network in a single machine is sufficient, it is necessary to distribute that 
Network in several processors [18].

In order to carry out this distributed processing, a method of parallelism 
will be implemented, which defines the division of processing work be-
tween multiple processors that operate simultaneously. The achieved re-
sults of parallel processing are more efficient when compared to sequential 
processing.

2 Time Series 

When we speak of a sequence of values observed throughout time, and 
therefore ordered chronological, we called that, in a general sense, a time 
series. It is difficult to imagine a branch of science in which they do not 
appear. The data of many problems can be considered as time series [17].

If we know the past values of the series, and it is not possible to predict 
with total certainty the next value of the variable, we say that the series is 
nondeterministic or random, and logically this forms the body of knowl-
edge called "time series analysis".

2.1. Prediction 

Prediction is the estimation of future values of the variable based on the 
past behavior of the time series [17].

Evidently although the future value of a time series is not predictable 
with complete accuracy, this area of study has great interest, the result can 
either be completely random, or with some existing regularity as far as 
their behavior in the time [17]. 

2.2. Price 

The prices are the key of the income as well as the profits of a company. It 
is considered that the determination of prices is the key activity within the 
capitalist system of the free company [32].
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One of the multiple branches by which the investigation of the Artificial 
intelligence has been developed, are the development of the so called 
"Neural Networks". We can define a Neural Network as a mathematical 
model inspired by biological systems, which are simulated in conventional 
computers [14].

3.1. Operation 

Neural networks try to give a different approach from the traditional way 
to solve the problems. The training consists of presenting/displaying to the 
network a set to him of input-output patterns that of some form are known 
a priori.  This set of input-output patterns is called training set. It is desired 
that the neural network infers the rule that governs these patterns and is 
able to generalize. That is, the goal is to obtain the correct output for input 
patterns that do not belong to the training set. 

3.2. Methods of Learning 

The learning methods are classified as follows:

3.2.1. Supervised Learning 

This learning method consists of presenting the input patterns next to 
the desired output patterns for each input pattern, and for this reason it is 
called supervised learning. 

3.2.2. Learning Supervised

In this type of learning the desired output patterns are not presented to 
the network, since it is not indicated to the network the results that it must 
give, but are left to the network to organize the data.

3.2.3. Reinforced Learning

In this case the supervisor is limited to indicate if the output offered by 
the network is correct or incorrect, but does not indicate the answer that 
must be given [14].

3 Neural Networks 
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3.3. Elements 

The elements of a neural network are the following ones:

3.3.1. Aggregation Function

This function calculates the base value or total input to the unit, gener-
ally using a simple weighed sum of all the received inputs, that is to say, of 
the inputs multiplied by the weight or value of the connections. It is 
equivalent to the combination of the excitatory and inhibitory signals of 
the biological neurons.

3.3.2. Function of Activation

It is perhaps the basic characteristic of the neurons, the one that better 
defines their behavior. This function is in charge of calculating the level or 
state of activation of the neuron based on the total input.

3.3.3. Weighted Connections

Play the role of the synaptic connections, the weight of the connection is 
equivalent to the force or effectiveness of the synapse. The existence of 
connections determines if it is possible that a unit influences another one, 
they define the type (excitatory/inhibitory) and the intensity of the influ-
ence.

3.3.4. Output 

Calculates the output of the neuron based on the activation of the same 
one, although normally it is not applied more than the function identity, 
and the value of activation is taken as the output. The value of the output 
would act the as of the rate of firing in the biological neurons.

4 Modular Neural Networks 

A modular neural network is based on the idea of "divides and conquer":  a 
complex problem can be divided in a series of simpler sub-problems that 
can efficiently be solved by smaller networks.

Modular networks solve a problem by fragmenting it into simpler sub-
problems, each one is solved entirely by a module [24].
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4.1 Architecture of a Modular Neural Network

A modular architecture is a network using several modules in which each 
module is a monolithic neural network. The task of each module is simpler 
that the one of the complete network [18]. The characteristics of the modu-
lar neural networks are: 

• The modules are connected like neurons in a network 
• Independent Modules = Work in parallel 
• Scheme of control = together works of useful way 

Fig. 1. Architecture of Modular Neural Network 

5 Parallelism 

Parallel programming defines the division of processing work between 
multiple processors that operate simultaneously. The goal is to make such 
processing in a more efficient form, compared with its execution in a se-
quential system [25].

5.1. Use of Clusters 

A cluster parallel system combines a group of calculation systems, con-
nected by means of a network of high speed and a specific scheme of pro-
gramming to obtain a power of calculation similar to a supercomputer [25].  

In figure 1, we show the Architecture of a Modular Neural Net-work.
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The calculation systems work together to complete a common process-
ing task, by means of the division of such processing among them, and 
generating a result as if it was a unique system of calculation.  Normally, 
such processing is an intensive operation on data or numerical values.  The 
success of clusters of computers is due to its ability to combine a group of 
calculation systems, in such a way that they provide with processing ca-
pacities that a single computer could not solve.

The use of clusters to develop, and to execute parallel applications is 
gaining popularity, becoming a great alternative to the use of specialized 
architectures, more due to the great value of these systems. In figure 2, the 
structure of cluster is shown. 

Fig. 2 Structure of a Cluster 

5.2. Master-Slave Method

The Master-Slave method works in such a way that it has a single adminis-
trator of the tasks of all the processors. The processors are the slaves and 
perform their processing and return their results to the administrator also 
called Butler or Teacher [25]. In this method it is possible to have from 
one to n enslaved processors as it shown in figure 3. 
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Fig. 3 Cluster with many processors 

For achieving the goals of this research we compiled tables of real data of 
the price (in pesos per kg.) of the Saladette Tomato, this price is the one 
that is offered to the final consumer, the tables contain data from 5 cities of 
Mexico (Distrito Federal, Guadalajara, Mérida, Monterrey and Torreón), 
which include the years from 1998 to 2004. The data are given per week, 
which were obtained from the web page of the National System of Infor-
mation and Integration of Markets [27]. The design of the modular neural 
network and the one with parallelism were based on experience and on the 
references.

6.1 Architecture of the Modular Neural Network 

The modular network has as input the weekly period and as the output the 
predicted price, and consists of 5 modules, which represent each one of the 
cities mentioned before. Each module counts on 5 sub-modules to do the 
work.

In table 1, we show the parameters of the modular neural network.

6 Proposed Architectures 
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Table 1. Architecture of the Modular Neural Network for all the modules and 
their respective submodules. 

MODULE

SUBMODULE LAYERS NEURONS EPOCHS
ERROR
GOAL

1 2 14,14 2000 0.0000002 
2 2 14,12 2000 0.0000002 
3 2 15,14 2000 0.0000002 
4 2 15,12 2000 0.0000002 
5 2 12,12 2000 0.0000002 

6.2. Architecture in Parallel: Master-Slave

For this research six processors were used, which constitute the Master-
Slave architecture, and it was used as follows: one processor as the master 
and five processors as the slaves.

Each of the five slaves corresponds to each one of the above mentioned 
cities, which represent each of the 5 modules of the modular architecture 
before mentioned. The Master is the one in charge of distributing the tasks 
for each one of the slaves. In figure 5, the graphical representation used for 
the Master-Slave architecture is shown.

Fig. 5 Master-Slave architecture. 



Time Series Forecasting of Tomato Prices      393 

6.3. Integration

For the integration of the five modules that represent each of the cities 
used, a decision module was used. For the integration of the results coming 
from the sub-modules an average operator was applied, which consisted of 
adding each of the sub-modules and dividing the result between the num-
ber of sub-modules.

7 Results

In this section, the results obtained from each of the cities are shown. The 
simulation results are for time series forecasting of the tomato price.

7.1. Module 1: Distrito Federal

In figure 6, we show the graphical representation of the training for Mod-
ule 1; in which the real data and the trained data is represented.

Fig. 6 Training of Module 1: Distrito Federal. 

In figure 7, we have the graphical representation of the forecasting for 
Module 1.



394      Ileana Leal, Patricia Melin 

Fig. 7 Forecasting of Module 1: Distrito Federal. 

The training for this module was obtained with the modular neural net-
work in parallel and the forecasting is acceptable, since an average error of 
1.59 pesos was obtained, which indicates us that the foretold prices are 
very near the real prices.

7.2. Module 2: Guadalajara

In figure 8 we show the graphical representation of the training for Module 
2; in which are the real data and the trained data are represented. 

Fig. 8 Training of Module 2: Guadalajara. 
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In figure 9, we have the graphical representation of the forecasting 
for Module 2. 

Fig. 9 Forecasting of Module 2: Guadalajara. 

The training for this module was obtained with the modular Neural net-
work in parallel and the forecasting is acceptable, since an average error of 
1.80 pesos was achieved, which indicates us that the foretold prices are 
very near the real prices.

7.3. Module 3: Mérida

In figure 10, we have the graphical representation of the training for Mod-
ule 3; in which the real data and the trained data are shown. 

Fig. 10 Training of Module 3 for Mérida. 
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Fig. 11 Forecasting of Module 3 for Mérida. 

error of 1.69 pesos was obtained, which indicates us that the foretold 
prices are very near the real prices.

7.4. Module 4: Monterrey

In figure 12, we show the graphical representation of the training for Mod-
ule 4; in which are to the real data and the trained data.

Fig. 12 Training of Module 4:  Monterrey. 

In figure 11, we have the graphical representation of the forecasting
for Module 3.

The forecasting for module 3 of Mérida is acceptable, since an average
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In figure 13, we have the graphical representation of the forecasting for 
Module 4.

Fig. 13 Forecasting of Module 4:  Monterrey. 

The training for this module was obtained with the modular neural net-
work in parallel and the forecasting is acceptable, since an average error of 
1.71 pesos was obtained, which indicates us that the foretold prices are 
very near the real prices.

7.5 Module 5: Torreón 

In figure 14, is the graphical representation of the training for Module 5; 
in which are to the real data and the trained data. 

Fig. 14 Training of Module 5: Torreón. 
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In figure 15, we have the graphical representation of the forecasting for 
Module 5.

Fig. 15 Forecasting of the Module 5: Torreón. 

The training for this module was obtained with the modular neural net-
work in parallel and the forecasting is acceptable, since an average error of 
2.42 pesos was obtained, which indicates us that the foretold prices are 
very near the real prices.

In table 2, they are each one of the modules with its respective forecast-
ing errors.

Table 2.  Modules and Errors of Forecasting. 

MODULES AND ERRORS 
OF FORECASTING 

MODULE
ERROR (Pe-

sos)
1 1.69  
2 1.59  
3 1.80  
4 1.71  
5 2.42  

In the previous table we can observe that the best forecasting is the one 
of Module 2:  Guadalajara, since an average error of 1.59 pesos was ob-
tained and the forecasting with a greater error is the one of Module 5: Tor-
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reón, of 2.42 pesos, both errors are acceptable because the real data are 
very near the forecasted data. The difference between the errors of the 
modules is because the real data from the cities are very different.

In table 3, we show the training time for each of the Modules

Table 3 Training time of the Modules. 

TRAINING TIME OF THE 
MODULES

MODULE TIME 

1
2 hr and 41min 

approx

2
2 hr and 53 min 

approx

3
1 hr and 25 min 

approx

4
1 hr and 20 min 

approx

5
1 hr and 16 min 

approx

time of 2 hours and 53 minutes.

8 Conclusions 

Time Series Forecasting for the price of the tomato in Mexico is very 
complicated, since a great variation between the prices exists.  The use of 
modular neural networks allowed an acceptable prediction and the use of 
parallelism contributed to the results in that a smaller time of processing 
was obtained. It is possible to mention that the information that exists 
about the price of the Tomato in Mexico and the one of parallelism is very 
limited.  The Master-Slave method allowed a good distribution of the tasks 
and contributed to obtaining good results for this type of application. As 
future work, a genetic algorithm can be used to optimize the architecture of 
the modular neural network.

The Processing in Parallel (Cluster) approximately had a total training 
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Abstract. We describe in this paper the application of several neural net-
work architectures to the problem of simulating and predicting the dy-
namic behavior of complex economic time series. We use several neural 
network models and training algorithms to compare the results and decide 
at the end, which one is best for this application. We also compare the 
simulation results with the traditional approach of using a statistical model. 
In this case, we use real time series of prices of consumer goods to test our 
models. Real prices of tomato and green onion in the U.S. show complex 
fluctuations in time and are very complicated to predict with traditional 
statistical approaches. 

1 Introduction 

Forecasting refers to a process by which the future behavior of a dynamical 
system is estimated based on our understanding and characterization of the 
system. If the dynamical system is not stable, the initial conditions become 
one of the most important parameters of the time series response, i.e. small 
differences in the start position can lead to a completely different time evo-
lution. This is what is called sensitive dependence on initial conditions, 
and is associated with chaotic behavior [2, 16] for the dynamical system. 

The financial markets are well known for wide variations in prices over 
short and long terms. These fluctuations are due to a large number of deals 
produced by agents that act independently from each other. However, even 
in the middle of the apparently chaotic world, there are opportunities for 
making good predictions [4,5]. Traditionally, brokers have relied on tech-
nical analysis, based mainly on looking at trends, moving averages, and 
certain graphical patterns, for performing predictions and subsequently 
making deals. Most of these linear approaches, such as the well-known 
Box-Jenkins method, have disadvantages [9]. 
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More recently, soft computing [10] methodologies, such as neural net-
works, fuzzy logic, and genetic algorithms, have been applied to the prob-
lem of forecasting complex time series. These methods have shown clear 
advantages over the traditional statistical ones [12]. The main advantage of 
soft computing methodologies is that, we do not need to specify the struc-
ture of a model a-priori, which is clearly needed in the classical regression 
analysis [3]. Also, soft computing models are non-linear in nature and they 
can approximate more easily complex dynamical systems, than simple lin-
ear statistical models. Of course, there are also disadvantages in using soft 
computing models instead of statistical ones. In classical regression mod-
els, we can use the information given by the parameters to understand the 
process, i.e. the coefficients of the model can represent the elasticity of 
price for a certain good in the market. However, if the main objective if to 
forecast as closely as possible the time series, then the use of soft comput-
ing methodologies for prediction is clearly justified. 

2 Monolithic Neural Network Models 

A neural network model takes an input vector X and produces and output 
vector Y. The relationship between X and Y is determined by the network 
architecture. There are many forms of network architecture (inspired by 
the neural architecture of the brain). The neural network generally consists 
of at least three layers: one input layer, one output layer, and one or more 
hidden layers. Figure 1 illustrates a neural network with p neurons in the 
input layer, one hidden layer with q neurons, and one output layer with one 
neuron.

Fig. 1. Single hidden layer feedforward network. 

In the neural network we will be using, the input layer with p+1 process-
ing elements, i.e., one for each predictor variable plus a processing element 
for the bias. The bias element always has an input of one, Xp+1=1. Each 
processing element in the input layer sends signals Xi (i=1,…,p+1) to each 
of the q processing elements in the hidden layer. The q processing 
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elements in the hidden layer (indexed by j=1,…,q) produce an “activation” 
aj=F( wijXi) where wij are the weights  associated with the connections be-
tween the p+1 processing elements of the input layer and the jth processing 
element of the hidden layer. Once again, processing element q+1 of the 
hidden layer is a bias element and always has an activation of one, i.e. 
aq+1=1. Assuming that the processing element in the output layer is linear, 
the network model will be 

             p+1               p+1               p+1

Yt =  xit + j F ( wij xit )
     j=1                j=1            i=1 

(1)

Here  are the weights for the connections between the input layer and 
the output layer, and j are the weights for the connections between the 
hidden layer and the output layer. The main requirement to be satisfied by 
the activation function F(.) is that it be nonlinear and differentiable. Typi-
cal functions used are the sigmoid, hyperbolic tangent, and the sine func-
tions.

The weights in the neural network can be adjusted to minimize some 
criterion such as the sum of squared error (SSE) function: 

                                n

E1 = ½  (dl- yl)
2

l = 1

(2)

Thus, the weights in the neural network are similar to the regression co-
efficients in a linear regression model. In fact, if the hidden layer is elimi-
nated, (1) reduces to the well-known linear regression function. It has been 
shown [22] that, given sufficiently many hidden units, (1) is capable of ap-
proximating any measurable function to any accuracy. In fact F(.) can be 
an arbitrary sigmoid function without any loss of flexibility. 

The most popular algorithm for training feedforward neural networks is 
the backpropagation algorithm [14,18]. As the name suggests, the error 
computed from the output layer is backpropagated through the network, 
and the weights are modified according to their contribution to the error 
function. Essentially, backpropagation performs a local gradient search, 
and hence its implementation does not guarantee reaching a global mini-
mum. A number of heuristics are available to partly address this problem, 
some of which are presented below. Instead of distinguishing between the 
weights of the different layers as in Equation (1), we refer to them generi-
cally as wij  in the following. 

After some mathematical simplification the weight change equation 
suggested by backpropagation can be expressed as follows: 

wij = - E1 + wij
    wij

(3)
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Here,  is the learning coefficient and  is the momentum term. One 
heuristic that is used to prevent the neural network from getting stuck at a 
local minimum is the random presentation of the training data. 

3 Modular Neural Networks 

There exists a lot of neural network architectures in the literature that work 
well when the number of inputs is relatively small, but when the complex-
ity of the problem grows or the number of inputs increases, their perform-
ance decreases very quickly. For this reason, there has also been research 
work in compensating in some way the problems in learning of a single 
neural network over high dimensional spaces. 

In the work of Sharkey [20], the use of multiple neural systems (Multi-
Nets) is described. It is claimed that multi-nets have better performance or 
even solve problems that monolithic neural networks are not able to solve. 
It is also claimed that multi-nets or modular systems have also the advan-
tage of being easier to understand or modify, if necessary. 

In the literature there is also mention of the terms “ensemble” and 
“modular” for this type of neural network. The term “ensemble” is used 
when a redundant set of neural networks is utilized, as described in Hansen 
and Salamon [8]. In this case, each of the neural networks is redundant be-
cause it is providing a solution for the same task, as it is shown in Figure 2. 

On the other hand, in the modular approach, one task or problem is de-
compose in subtasks, and the complete solution requires the contribution 
of all the modules, as it is shown in Figure 3. 

Fig. 2. Ensembles for one task and subtask. 
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Fig. 3. Modular approach for task and subtask. 

4 Methods for Response Integration 

In the literature we can find several methods for response integration, that 
have been researched extensively, which in many cases are based on statis-
tical decision methods. We will mention briefly some of these methods of 
response integration, in particular the ones based on fuzzy logic. The idea 
of using these types of methods, is that the final decision takes into account 
all of the different kinds of information available about the time series. In 
particular, we consider aggregation operators, and the fuzzy Sugeno inte-
gral [21]. 

Yager [23] mentions in his work, that fuzzy measures for the aggrega-
tion criteria of two important classes of problems. In the first type of prob-
lems, we have a set Z={z1,z2,…,zn} of objects, and it is desired to select 
one or more of these objects based on the satisfaction of certain criteria. In 
this case, for each zi Z, it is evaluated D(zi)=G(Ai(zi),…,Aj(zi)), and then 
an object or objects are selected based on the value of G. The problems 
that fall within this structure are the multi-criteria decision problems, 
search in databases and retrieving of documents.

In the second type of problems, we have a set G={G1,G2,…,Gq} of ag-
gregation functions and object z. Here, each Gk corresponds to different 
possible identifications of object z, and our goal is to find out the correct 
identification of z. For achieving this, for each aggregation function G, we 
obtain a result for each z, Dk(z)=Gk(A1(z), A2(z), … ,An(z)). Then we asso-
ciate to z the identification corresponding to the larger value of the aggre-
gation function. 

A typical example of this type of problems is pattern recognition. Where 
Aj corresponds to the attributes and Aj(z) measures the compatibility of z 
with the attribute. Medical applications and fault diagnosis fall into this 
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type of problems. In diagnostic problems, the Aj corresponds to symptoms 
associated with a particular fault, and Gk captures the relations between 
these faults.

Fuzzy integrals can be viewed as non-linear functions defined with re-
spect to fuzzy measures. In particular, the “g -fuzzy measure” introduced 
by Sugeno [21] can be used to define fuzzy integrals. The ability of fuzzy 
integrals to combine the results of multiple information sources has been 
mentioned in previous works. 

Definition 1. A function of sets g:2x-(0.1) is called a fuzzy measure if: 
1. g(0)=0   g(x)=1 
2. g(A)  g(B) if A B
3. if {Ai}i  =1 is a sequence of increments of the measurable set then 

 lim g(Ai) = g (lim Ai)      (4) 
  i             i 

From the above it can be deduced that g is not necessarily additive, this 
property is replaced by the additive property of the conventional measure. 

From the general definition of the fuzzy measure, Sugeno introduced 
what is called “g -fuzzy measure”, which satisfies the following additive 
property: For every A, B  X and A  B = ,

g(A  B) = g(A) + g(B) +  g(A)g(B),               (5) 
for some value of >-1.

This property says that the measure of the union of two disjunct sets can 
be obtained directly from the individual measures. Using the concept of 
fuzzy measures, Sugeno [21] developed the concept of fuzzy integrals, 
which are non-linear functions defined with respect to fuzzy measures like 
the g -fuzzy measure. 

Definition 2 let X be a finite set and h:X [0,1] be a fuzzy subset of X, 
the fuzzy integral over X of function h with respect to the fuzzy measure g 
is defined in the following way, 

h(x) o g (x)   = max [ min ( min h(x), g(E))]           (6) 
                   E  X             x  E 

                      = sup [min(  , g(h  ))] 
 [0, 1] 

where h  is the level set  of h,
h   = { x | h(x)  }.               (7) 

We will explain in more detail the above definition: h(x) measures the 
degree to which concept h is satisfied by x. The term min(hx) measures the 
degree to which concept h is satisfied by all the elements in E. The value 
g(E) is the degree to which the subset of objects E satifies the concept 
measure by g. As a consequence, the obtained value of comparing these 
two quantities in terms of operator min indicates the degree to which E 
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satifies both criteria g and min(hx). Finally, operator max takes the greatest 
of these terms. 

5 Simulation and Forecasting Prices in the U.S. Market 

We will consider the problem forecasting the prices of tomato in the U.S. 
market. The time series for the prices of this consumer good show very 
complicated dynamic behavior, and for this reason it is interesting to ana-
lyze and predict the future prices for this good. We show in Figure 4 the 
time series of monthly tomato prices in the period of 1960 to 1999, to give 
an idea of the complex dynamic behavior of this time series. 

We will apply both the modular and monolithic neural network ap-
proach and also the linear regression method to the problem of forecasting 
the time series of tomato prices. Then, we will compare the results of these 
approaches to select the best one for forecasting. 
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Fig. 4. Prices in US Dollars of tomato from January 1960 to December 1999. 
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6 Experimental Results 

We describe, in this section, the experimental results obtained by using 
neural networks to the problem of forecasting tomato prices in the U.S. 
Market. We show results of the application of several architectures and dif-
ferent learning algorithms to decide on the best one for this problem. We 
also compare at the end the results of the neural network approach with the 
results of linear regression models, to measure the difference in forecasting 
power of both methodologies. 

First, we will describe the results of applying modular neural networks 
to the time series of tomato prices. We used the monthly data from 1960 to 
1999 for training a Modular Neural Network with four Modules, each of 
the modules with 80 neurons and one hidden layer. We show in Figure 5 
the result of training the modular neural network with this data. In Figure 
5, we can appreciate how the modular neural network approximates very 
well the real time series of tomato prices over the relevant period of time. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
Function Approx imation for Time Series Predic tion of Tomato Prices

Input (time in months)

O
ut

pu
t:

 -
, 

 T
ar

ge
t:

 +
 (

P
ric

e 
in

 c
en

ts
 p

er
 p

ou
nd

/1
00

)

Fig. 5. Modular network for tomato prices with Levenberg-Marquardt algorithm. 

We have to mention that the results shown in Figure 5 are for the best 
modular neural network that we were able to find for this problem. We 
show in Figure 6 the comparison between several of the modular neural 
networks that we tried in our experiments. From Figure 6 we can appreci-
ate that the modular neural network with one time delay and Leverberg-
Marquardt (LM) training algorithm is the one that fits best the data and for 
this reason is the one selected. 
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We show in Figure 7 the comparison of the best monolithic network 
against the best modular neural network. The modular network clearly fits 
better the real data of the problem. 
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7 Conclusions 

We described in this paper the use of modular neural networks for simula-
tion and forecasting time series of consumer goods in the U.S. Market. We 
have considered a real case to test our approach, which is the problem of 
time series prediction of tomato prices in the U.S. market. We have applied 
monolithic and modular neural networks with different training algorithms 
to compare the results and decide which is the best option. The Levenberg-
Marquardt learning algorithm gave the best results. The performance of the 
modular neural networks was also compared with monolithic neural net-
works. The forecasting ability of modular networks was clearly superior. 
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scriptions of trends in time series data. We consider two general types of
such summaries: summaries based on frequence and summaries based on
duration. We employ the concept of a linguistic database summary due to
Yager. To account for a specificity of time series data summarization we
employ the Sugeno integrals for linguistic quantifier based aggregation.

1. Introduction

A linguistic summary is meant as a concise, human-consistent description of
a data set that captures the very essence of data in the sense of their values,
variability, etc. The concept of a linguistic data(base) summary has been in-
troduced by Yager [13] and further developed by Kacprzyk and Yager [8],
and Kacprzyk, Yager and Zadrożny [9]. In this approach the content of a
database is summarized via a natural language like expression semantics of
which is provided via Zadeh’s calculus of linguistically quantified proposi-
tions [14].

In this paper we consider a specific type of data, namely time series that
can be viewed as a certain real valued function of time. For a manager,
stock exchange players, etc. it might be very useful to obtain a brief, natural
language like description of trends present in the data on, e.g., a company
performance, stock exchange quotations, etc. over a certain period of time.
This is not meant as a replacement for a classical statistical analysis but rather
as an additional form of data description that exhibits a remarkably by its
high human consistency because for a human being the only fully natural
means for the articulation, communication, etc. is natural language.

Technically, the summaries we propose refer to trends identified here
with straight line segments of the piece-wise linear approximation of time

J. Kacprzyk et al.: On Linguistic Summaries of Time Series Using a Fuzzy Quantifier Based

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
Aggregation via the Sugeno Integral, StudFuzz 208, 415–433 (2007)

Abstract. We propose and advocate the use of linguistic summaries as de-
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series. Thus, the first step is the construction of such an approximation. For
this purpose we use a modified version of the simple, easy to use Sklansky
and Gonzalez’s algorithm [12]. Then we employ a set of features (attributes)
to characterize the trends such as the slope of the line, a goodness of approx-
imation of the original data points by the line segment and the length of time
period over which the trend may occur.

Basically, the summaries proposed by Yager are interpreted in terms of
a number or proportion of elements possessing a certain property. In the
framework considered here a summary might look like: “Most of the trends
are short” or in a more sophisticated form: “Most long trends are increas-
ing”. Such expressions are easily interpreted using Zadeh’s [14] calculus of
linguistically quantified propositions. The most important element of this
interpretation is a linguistic quantifier exemplified by “most”. In Zadeh’s
approach it is interpreted in terms of a proportion of elements possessing a
certain property (e.g., a length of a trend) among all the elements considered
(e.g., all trends). In Kacprzyk, Wilbik and Zadrożny [7] we have proposed to
use Yager’s linguistic summaries, interpreted through Zadeh’s calculus, for
the summarization of time series.

Another type of summaries we propose here do not use the linguistic
quantifier based aggregation over the number of trends but over the time
instants they take altogether. For example, an interesting summary may
take the following form: “Trends taking most of time are increasing” or
“Increasing trends taking most of the time are of a low variability”. Such
summaries do not directly fit the framework of the original Yager’s [13] ap-
proach. In order to overcome this difficulty we generalize our previous ap-
proach (cf. Kacprzyk, Wilbik and Zadrożny [7]), modelling the linguistic
quantifier based aggregation both over the number of trends as well over the
time they take with the use of the Sugeno integral.

In this paper, first, we describe the way the trends are extracted from time
series and characterized using a set of attributes. Then we briefly remind
the basics of the original Yager’s approach to linguistic summarization and
discuss how it may be used to describe a set of trends. In the next section we
show how these summaries might be interpreted using the concept of fuzzy
measure and the Sugeno integral. Finally we present some simple examples
of linguistic summaries of an artificial data set.
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2. Characterization of Time Series

In our approach time series data {(xi,yi)} are approximated by a piece-wise
linear function f such that for a given ε > 0, there holds

∀i : | f (xi)− yi| ≤ ε (1)

There exist many algorithms that find such approximations (cf. [5, 6] ).
Our starting point is the Sklansky and Gonzalez algorithm [12] that seems
to be a good choice due to its simplicity and efficiency. We modified it
in the following way. The algorithm constructs the intersection of cones
starting from a point pi of the time series and including the circle of ra-
dius ε around the subsequent data points pi+ j, j = 1, . . . until this intersec-
tion becomes empty. If for pi+k the intersection is empty, then the points
pi, pi+1, . . . , pi+k−1 are approximated by a straight line segment and to ap-
proximate the remaining points we construct a new cone starting at pi+k−1.
Figure 1 presents the idea of the algorithm. The family of possible solutions,
i.e., straight line segments to approximate points p1 and p2, is indicated with
a dark gray area.

y

x

β1 γ1 β2 γ2p0

•

p1•

•p2

To make it more intuitively appealing we will now present the algorithm
in the form of a pseudocode. First, denote by:

Fig. 1. An illustration of the algorithm [12] for an uniform ε-approximation
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• p_0 – the current starting point,

• p_1 – the last point successfully verified, i.e. for it the intersection of
cones starting at p_0 is non-empty,

• p_2 – the next point to be checked

• Alpha_01 – a pair of angles (γ1,β1), meant as an interval that defines
the current cone, as shown in Figure 1 (indicated by light gray and
dark gray area)

• Alpha_02 – a pair of angles defining the cone constructed to check
p_2 (i.e., the cone starting at point p_0 and inscribing the circle of
radius ε around the point p_2 (cf. (γ2,β2) in Figure 1))

• function read_point() fetches the next data point,

• function find() finds a pair of angles defining the cone starting at
point p_0 and inscribing the circle of radius ε around of the point p_2

The pseudocode of the procedure that extracts the trends is depicted in
Figure 2.

The bounding values of Alpha_02 (γ2,β2), computed by function find(),
are the slopes of two lines such that:

• they are tangent to the circle of radius ε around point p_2

• they start at the point p_0

Let ∆x = x0 −x2 and ∆y = y0 −y2 then the angles γ2, β2 can be expressed by
the formulas:

γ2 = arctg

(
(∆x)(∆y)− ε

√
(∆x)2 +(∆y)2 − ε2

(∆x)2 − ε2

)

β2 = arctg

(
(∆x)(∆y)+ ε

√
(∆x)2 +(∆y)2 − ε2

(∆x)2 − ε2

)

Then, as an approximation of points p0, . . . , p1 we assume either a single
straight line segment, chosen as, e.g. a bisector, or one that minimizes the
distance (e.g. assumed as sum of squared errors, SSE) from the approxi-
mated points, or the whole family of possible solutions, i.e. the segments of
the rays of the cone.
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read_point(p_0);
read_point(p_1);
do
{

p_2 = p_1;
Alpha_02 = find();
Alpha_01 = Alpha_02;
do
{

Alpha_01 = Alpha_01 ∩ Alpha_02;

p_1=p_2;
read_point(p_2);
Alpha_02 = find();

} while(Alpha_01 ∩ Alpha_02 �= /0);

save_found_trend();
p_0 = p_1;
p_1 = p_2;

}

reasons we do not use Greek letters to denote variables.

This method is fast as it requires only a single pass through the data.

We characterize the trends, meant as the straight line segments of the
above described uniform ε-approximation, using the following three fea-
tures:

• dynamics of change,

• duration, and

• variability.

In what follows we will briefly discuss these factors.

Fig. 2. Pseudocode of the procedure for extracting trends. For technical
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Under the term dynamics of change we understand the speed of changes.
It can be described by the slope of a line representing the trend, (cf. any
angle η from the interval 〈γ,β〉 in Figure 1). Thus, to quantify dynamics
of change we may use the interval of possible angles η ∈ 〈−90;90〉 or their
trigonometrical transformation.

However it might be impractical to use such a scale directly while de-
scribing trends. Therefore we may use a fuzzy granulation in order to meet
the users’ needs and the task specificity. The user may construct a scale of
linguistic terms corresponding to various directions of a trend line as, e.g.:

• quickly decreasing,

• decreasing,

• slowly decreasing,

• constant,

• slowly increasing,

• increasing, and

• quickly increasing.

Notice that the number of different linguistic values, i.e. 7, does follow
a very well-known psychological rule, the so-called Miller’s magic number
7± 2, that basically states how many distinct (linguistic) values a human
being can distinguish.

Figure 3 illustrates the lines corresponding to the particular linguistic
terms.

In fact, each term represents a fuzzy granule of directions. In batyrshin
et al. [1, 2] there are presented many methods of constructing such a fuzzy
granulation. The user may define a membership functions of particular lin-
guistic terms depending on his or her needs.

We map a single value η (or the whole interval of the angles correspond-
ing to the gray area in Figure 1) characterizing the dynamics of change of a
trend identified using the algorithm shown in Figure 2, into a fuzzy set best
matching a given angle. Then we will say that a given trend is, e.g., “decreas-
ing to a degree 0.8”, if µdecreasing(η) = 0.8, where µdecreasing is the member-
ship function of a fuzzy set representing the linguistic term “decreasing” that
is a best match for the angle η characterizing the trend under consideration.

2.1. Dynamics of Change
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constant

quickly
increasing

quickly
decreasing

increasing

decreasing

slowly

increasing

slowly

decreasing

A visual representation of angle granules defining dynamics of
change

2.2. Duration

Duration describes the length of a single trend. Again we will treat it as a
linguistic variable. An example of its linguistic labels is “long” defined as
a fuzzy set whose membership function might be assumed as in Figure 4,
where OX is the axis of time measured with units that are used in the time
series data under consideration.

µ(t)

1

t

cerning the trend duration

Fig. 3.

Fig. 4. Example of member ship function describing the term “long” con-
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The actual definitions of linguistic terms describing the duration depends
on the perspective assumed by the user. He or she, analyzing the data, may
adopt this or another time horizon implied by his or her needs. The analysis
may be a part of a policy, strategic or tactical planning, and thus, may require
a global or local look, respectively.

2.3. Variability

Variability refers to how ”spread out” (in the sense of values taken on) a
group of data is. There are five frequently used statistical measures of vari-
ability:

• the range (maximum - minimum). Although this range is computa-
tionally the easiest measure of variability, it is not widely used as it is
only based on two extreme data points. This make it very vulnerable
to outliers and therefore may not adequately describe real variability.

• the interquartile range (IQR) calculated as the third quartile1 minus the
first quartile2 that may be interpreted as representing the middle 50%
of the data. It is resistant to outliers and is computationally as easy as
the range.

• the variance is calculated as 1/n∑i(xi− x̄)2, where x̄ is the mean value.

• the standard deviation – a square root of the variance. Both the vari-
ance and the standard deviation are affected by extreme values.

• the mean absolute deviation (MAD), calculated as 1/n∑i |xi − x̄|. While
it has a natural intuitive definition as the “mean deviation from the
mean”, the introduction of the absolute value makes analytical calcu-
lations using this statistics much more complicated.

We propose to measure the variability of a trend as the distance of data
points covered by this trend from a linear uniform ε-approximation that rep-
resents a given trend. For this purpose we propose to employ a distance
between a point and a family of possible solutions, indicated as a dark gray
cone in Figure 1. Equation (1) assures that the distance is definitely smaller
than ε. We may use this information for the normalization. The normalized
distance equals 0 if the point lays in the dark gray area. In the opposite case

1third quartile is the 75th percentile
2first quartile is the 25th percentile
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it is equal to the distance to the nearest point belonging to the cone, divided
by ε.

Alternatively, we may bisect the cone and then compute the distance
between the point and this ray.

Again the measure of variability is treated as a linguistic variable whose
values are linguistic terms (labels) modeled by fuzzy sets defined by the user.

3.

A linguistic summary, as presented in Kacprzyk and Zadrożny [10], [11] is
meant as a natural language-like sentence that subsumes the very essence
of a set of data. This set is assumed to be numeric and is usually large, not
comprehensible in its original form by the human being. In Yager’s approach
(cf. Yager [13], Kacprzyk and Yager [8], and Kacprzyk, Yager and Zadrożny
[9]) the following context for linguistic summaries mining is assumed:

• Y = {y1, . . . ,yn} is a set of objects (records) in a database, e.g., the set
of workers;

• A = {A1, . . . ,Am} is a set of attributes characterizing objects from Y ,
e.g., salary, age, etc. in a database of workers, and A j(yi) denotes a
value of attribute A j for object yi.

A linguistic summary of a data set D consists of:

• a summarizer P, i.e. an attribute together with a linguistic value (fuzzy
predicate) defined on the domain of attribute A j (e.g. "low salary" for
attribute "salary");

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);

• truth (validity) T of the summary, meant as a proposition of Zadeh’s
calculus of linguisitically quantified propositions (e.g. 0.7), i.e. a num-
ber from the interval [0,1] assessing the truth (validity) of the summary
(e.g. 0.7); usually, only summaries with a high value of T are interest-
ing;

• optionally, a qualifier R, i.e. i.e. another attribute Ak together with a
linguistic value (fuzzy predicate) defined on the domain of attribute Ak

determining a (fuzzy subset) of Y (e.g. "young" for attribute "age").

Summarization
Linguistic Summaries and Their Application to Trend
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In what follows we will often for brevity identify summarizers and qualifiers
with the linguistic terms they contain. In particular we will refer to the mem-
bership function µP or µR of the summarizer or qualifier to be meant as the
membership functions of respective linguistic terms.

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (2)

A richer form of a linguistic summary may include a qualifier (e.g. young)
as in, e.g.,

T (most of young employees earn low salary) = 0.9 (3)

Thus, basically, the core of a linguistic summary is a linguistically quan-
tified proposition in the sense of Zadeh [14]. A linguistically quantified
proposition corresponding to (2) may be written as

Qy’s are P (4)

and the one corresponding to (3) may be written as

QRy’s are P (5)

Then, the component of a linguistic summary, T , i.e., its truth (valid-
ity), directly corresponds to the truth value of (4) or (5). This may be calcu-
lated by using either the original Zadeh’s calculus of linguistically quantified
propositions (cf. [14]), or via other interpretations of linguistic quantifiers.
The truth values (from [0,1]) of (4) and (5) are calculated, respectively, as

T (Qy’s are P) = µQ

(
1
n

n

∑
i=1

µP(yi)

)
(6)

T (QRy’s are P) = µQ

(
∑n

i=1(µR(yi)∧µP(yi))
∑n

i=1 µR(yi)

)
(7)

where Q is a fuzzy set representing the linguistic quantifier in the sense of
Zadeh [14].

In order to characterize the summaries of trends we will refer to Zadeh’s
concept of a protoform (cf., Zadeh [15]). Basically, a protoform is defined
as a more or less abstract prototype (template) of a linguistically quantified
proposition. Then, summaries mentioned above might be represented by two
types of the protoforms of the following forms. We may consider frequency
based summaries and we obtain:
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• a simple form:
Q trends are P (8)

exemplified by:

Most of trends have a large variability

• an extended form:
QR trends are P (9)

exemplified by:

Most of slowly decreasing trends have a large variability

However it should be noticed that in some cases the summaries of the above
types might not properly grasp the character of time series. For example,
assuming there are many very short trends of high variability and a few long
terms of very low variability we may obtain a summary stating that “Most
of trends have a large variability”. This might be perceived as somehow in-
complete or inaccurate summarization on its own as in fact the trends taking
most of time have very low variability. Thus we propose to complement the
above types of summaries with two more types of duration based summaries.
These may be represented by the following schemes:

• a simple form:

The trends that took Q time are P (10)

exemplified by:

The trends that took most time have a large variability

• an extended form:

R trends that took Q time are P (11)

exemplified by:
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Slowly decreasing trends that took most time have a large
variability

The truth degrees T of the frequency based summaries (8)-(9) can be
directly computed using Zadeh’s calculus of linguistically quantified propo-
sitions, in particular the formulae (6) and (7) are of use. However this is not
the case when we consider duration based summaries. The reason is that
in case of (8)-(9) a linguistic quantifier aggregates over the number of trends
possessing a certain property while in case of (10)-(11) this aggregation goes
over time taken by the trends. Thus, in the former case the count (number)
of the trends matters that is properly accounted for with the use of the Σ-
Count cardinality in formulae (6) and (7). In the latter case however another
mode of aggregation is required. In order to to secure a unified solution in
both cases we propose to employ the Sugeno integral as explained in the next
section.

4. Linguistic Summary Interpretation via the Sugeno Integral

As we explained in the previous section, duration based linguistic summaries
do not fit well to the interpretation of a linguistically quantified proposition
employed in Zadeh’s calculus. Thus we propose here to use the Sugeno
integral for that purpose.

Let us start with a brief recall of the basics of the Sugeno integral. Let
X = {x1, . . . ,xn} be a finite set. Then, (cf., e.g., [4]) a fuzzy measure on X is
a set function µ : P (X) −→ [0,1] such that:

µ( /0) = 0,µ(X) = 1
if A ⊆ B then µ(A) ≤ µ(B),∀A,B ∈ P (X)

(12)

where P (X) denotes a set of all subsets of X .
Let µ is a fuzzy measure on X . The discrete Sugeno integral of function

f : X −→ [0,1], f (xi) = ai, with respect to µ is a function Sµ : [0,1]n −→ [0,1]
such that

Sµ(a1, . . . ,an) = max
i=1,...,n

(aσ(i)∧µ(Bi)) (13)

where ∧ stands for the minimum, σ is such a permutation of {1, . . . ,n} that
aσ(i) is the i-th smallest element from among the ai’s and Bi = {xσ(i), . . . ,xσ(n)}.

We can treat function f as a membership function of a fuzzy set F ∈
F (X), where F (X) denotes a family of fuzzy sets defined in X . Then the
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Sugeno integral can be equivalently defined as a function Sµ : F (X)−→ [0,1]
such that

Sµ(F) = max
αi∈{a1,...,an}

(αi ∧µ(Fαi)) (14)

where Fαi is the α-cut of F and the meaning of other symbols is as in (13).
The fuzzy measure and the Sugeno integral may be intuitively interpreted

in the context of multicriteria decision making (MCDM) where we have a set
of criteria and some options (decisions) characterized by the degree of sat-
isfaction of particular criteria. In such a setting X is a set of criteria and
µ expresses the importance of each subset of criteria, i.e., how the satisfac-
tion of a given subset of criteria contributes to the overall evaluation of the
option. Then the properties of the fuzzy measure (12) properly require that
the satisfaction of all criteria makes an option fully satisfactory and that the
more criteria are satisfied by an option the better its overall evaluation. Fi-
nally the set F represents an option and µF(x) defines the degree to which it
satisfies the criterion x. Then the Sugeno integral may be interpreted as an
aggregation operator yielding an overall evaluation of option F in terms of
its satisfaction of the set of criteria X . In such a context the formula (14) may
interpreted as follows:

find a subset of criteria of the highest possible importance
(expressed by µ) such that at the same time minimal satisfac-
tion degree of all these criteria by the option F is as high as
possible (expressed by α)
and take the minimum of these two degrees as the overall
evaluation of the option F .

(15)

Now we will explain how various linguistic summaries discussed in the
previous section may be interpreted using the Sugeno integral. The linguis-
tic quantifier Q is still defined as in Zadeh’s calculus as a fuzzy set in [0,1],
exemplified by (18). We will assume that Q is a regular monotone and non-
decreasing quantifier:

µ(0) = 0, µ(1) = 1 (16)

x1 ≤ x2 ⇒ µQ(x1) ≤ µQ(x2) (17)

exemplified by

µQ(x) =




1 for x>0.8
2x−0.6 for 0.3 < x < 0.8
0 for x<0.3

(18)
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The truth value of particular summaries is computed using the Sugeno
integral (14). For simple types of summaries we are in a position to provide
an interpretation similar to the one given above for the MCDM. For this
purpose we will identify the set of criteria X with a set of trends while an
option F will be the whole time series under consideration characterized in
terms of how well its trends satisfy P.

In what follows |A| denotes the cardinality of set A, summarizers P and
qualifiers R are identified with fuzzy sets modelling the linguistic terms they
contain, X is the set of all trends extracted from time series and time(xi)
denotes duration of the trend xi.

Simple frequency based summaries defined by (8) The truth value of
this type of summary may be expressed as Sµ(P) where

µ(Pα) = µQ

(
|Pα|
|X |

)
(19)

Thus, referring to (15), the truth value is determined by looking for a subset
of trends of the cardinality high enough as required by the semantics of the
quantifier Q and such that all these trends “are P” to the highest possible
degree.

Extended frequency based summaries defined by (9) The truth value of
this type of summary may be expressed as Sµ(P) where

µ(Pα) = µQ

(
| (P∩R)α |

| Rα |

)
(20)

Simple duration based summaries defined with (10) The truth value of
this type of summary may be expressed as Sµ(P) where

µ(Pα) = µQ

(
∑i:xi∈Pα time(xi)
∑i:xi∈X time(xi)

)
(21)

Thus, referring to (15) the truth value is determined by looking for a subset of
trends such that their total duration with respect to the duration of the whole
time series is long enough as required by the semantics of the quantifier Q
and such that all these trends “are P” to the highest possible degree.
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Extended duration based summaries defined with (11) The truth of this
type of summary may be expressed as Sµ(P) where

µ(Pα) = µQ

(
∑i:xi∈(P∩R)α time(xi)

∑i:xi∈Rα time(xi)

)
(22)

Due to the properties (16)-(17) of the quantifiers employed it is obvious
that all µ’s defined above for particular types of summaries satisfy the axioms
(12) of the fuzzy measure.

5. Example

Let us assume that from some given data we have extracted trends listed
in Table 1, e.g. using the algorithm shown in Figure 2. We assume the
granulation of dynamics of change presented in Section 2.1..

dynamics of change duration variability
id (α in degrees) (time units) ([0,1])
1 25 15 0.2
2 -45 1 0.3
3 75 2 0.8
4 -40 1 0.1
5 -55 1 0.7
6 50 2 0.3
7 -52 1 0.5
8 -37 2 0.9
9 15 5 0.0

We can consider the following simple frequency based trend summary:

Most of trends are decreasing (23)

In this summary most is the linguistic quantifier Q. The membership
function is as in (18).

“Trends are decreasing” is a summarizer P with the membership func-
tion of the “decreasing” term given as in (24). Let us recall, that for brevity
we identify summarizers and qualifiers with the linguistic terms they contain.

Table 1. Trends extracted
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µP(α) =




0 for α ≤−65
0,066α+4.333 for −65 < α < −50
1 for −50 ≤ α ≤−40
−0.01α−1 for −40 < α < −20
0 for α ≥−20

(24)

n is the number of all trends, i.e., in this example n = |X |=9.
The truth value of (23) is computed according to (14) and (19) that yields:

T (Most of the trends are decreasing) =

= max
αi∈{a1,...,an}

(
αi ∧µQ

(
|Pα|
|X |

))
= 0.511

If we assume the extended form, we may have the following summary:

Most of short trends are decreasing (25)

Again, most is the linguistic quantifier Q with its membership function
given as (18). “Trends are decreasing” is a summarizer P as in the previous
example. “Trend is short” is the qualifier R. We define the membership
function µR(t) as follows:

µR(t) =




1 for t ≤ 1
− 1

2 t + 3
2 for 1 < t < 3

0 for t ≥ 3
(26)

The truth value of (25) is computed using the formula (14) and (20):

T (Most of short trends are decreasing)

= max
αi∈{a1,...,an}

(
αi ∧µQ

(
| (P∩R)α |

| Rα |

))
= 0.9

On the other hand, we may have the following simple duration based
linguistic summary:

Trends that took most time are slowly increasing (27)

“Trends are slowly increasing” is the summarizer P with the membership
function µP(α) defined as follows:
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µP(α) =




0 for α ≤ 5
0.1α−0.5 for 5 < α < 15
1 for 15 ≤ α ≤ 20
−0.05α+2 for 20 < α < 40
0 for α ≥ 40

(28)

The linguistic quantifier most is defined as previously. The truth value of
(27) is computed via the formula (14) and (21) and we obtain:

T (Trends that took most time are slowly increasing)

= max
αi∈{a1,...,an}

(
αi ∧µQ

(
∑xi∈Pα time(xi)
∑i:xi∈X time(xi)

))
= 0.733

Finally, we may consider an extended form of duration based summaries,
here exemplified by:

Trends with a low variability that took most of

the time are slowly increasing (29)

Again, most is the linguistic quantifier and “trends are slowly increasing”
is summarizer P, with a membership function defined as in the previous ex-
ample. “Trends have a low variability” is the qualifier R. The membership
function µR(v) is given as follows:

µR(v) =




1 for v ≤ 0.2
−5v+2 for 0.2 < v < 0.4
0 for v ≥ 0.4

(30)

The truth value of (29) is computed according to the formula (14) and (22)
and we obtain:

T (Trends with low variability that took most of

the time are slowly increasing)

= max
αi∈{a1,...,an}

(
αi ∧µQ

(
∑i:xi∈(P∩R)α time(xi)

∑i:xi∈Rα time(xi)

))
= 0.75
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6. Concluding Remarks

We have proposed a new approach to the linguistic summarization of time
series data. The basic idea boils down to the identification of trends in time
series that are characterized by a set of attributes. Then such a set of trends
is directly amenable to the linguistic summarization. The specificity of time
series calls for a new type of summaries that cannot be easily cast in the
original framework of linguistic summaries as proposed by Yager. As op-
posed to Zadeh’s calculus of linguistically quantified propositions used for
the linguistic quantifier based aggregation, we employ here a new method
based on the use of the Sugeno integrals. The basic idea is very similar and
inspired by the work of Bosc et al.[3]. It seems that the results obtained are
more intuitively appealing.
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