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The lifecycle of a product is generally associated with two key players 
viz., a producer and an end-user. Although producers and end-users de-
pend on each other, they have their own priorities. For a producer, the 
characteristics of a population of units are more important than the indi-
vidual units, whereas for an end-user the opposite is true. The government 
makes laws for the population of a country, but a parent may be more con-
cerned about its impact on the future of their individual children. A car 
manufacturer targets consistency in fuel efficiency for a population of cars, 
whereas a car owner has concerns about the fuel efficiency of his/her car. 
Similar differences in concerns also apply to tennis racquet manufacturer 
versus a tennis player or a cutting tool manufacturer versus cutting tool 
user. 

The producer commonly uses time-to-failure data to assess and predict 
reliability of a population of products. For highly reliable products, when 
time-to-failure data are difficult to obtain, degradation data are also used 
for such an analysis. On the other hand, for an end-user assessing and pre-
dicting reliability of an individual part or component often assumes more 
importance. For example, a producer involved in voluminous production 
of drill-bits needs to assess and monitor reliability on a regular basis to en-
sure consistent population characteristics for end users. However, the end-
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9  .1 Introduction 

9  .1.1 Individual Component versus Population Characteristics 
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user of such drill-bits generally has more interest in the reliability of the 
individual drill-bits. Voluminous amount of work has been published for 
reliability modeling and analysis related to population characteristics (Ka-
pur and Lamberson 1977; Lawless 1982; Nelson 1982; Lewis 1987; El-
sayed 1996; Meeker and Escobar 1998). A good review of literature on 
degradation signals can be obtained from Tomsky (1982), Lu and Pantula 
(1989), Nelson (1990), Lu and Meeker (1993), Tseng et al. (1995), Tang et 
al. (1995), Chinnam et al. (1996), Lu et al. (1997), Meeker et al. (1998), 
Wu and Shao (1999), Wu and Tsai (2000), and Gebraeel et al. (2004). 

This chapter focuses on monitoring of reliability from end-users view-
point. For monitoring reliability of individual unit, time-to-failure data are 
not of much use. For example, Fig. 1 gives a plot of the life of 16 M-1 
grade quarter-inch high speed twist drills, measured in number of holes 
successfully drilled in quarter-inch steel plates, when operated with no 
coolant at a speed 2000 rpm and a feed 20 inches/min (Chinnam 1999).  
Even though the drill-bits came from the same manufacturer in the same 
box, it is obvious from the figure that the dispersion in life (ranging from 
17 holes to 58 holes) is far too large with respect to the mean time-to-
failure (around 28 holes), and hence, information about the population 
would be of little value to the end user.  In contrast, the end user would 
greatly benefit from an on-line estimate of the reliability of the drill-bit, to 
make effective decisions regarding optimal drill bit replacement strategies, 
essentially lowering production costs by fully utilizing the drill-bit.   
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Drillbit Life in Holes
 

Fig. 1. A plot of life of 16 drill-bits, measured in number of holes successfully 
drilled 

For individual units, condition at different points of time or degradation 
levels are more useful to arrive at optimal component replacement or 
maintenance strategies leading to improved system utilization, while re-
ducing the risk and maintenance costs. While gathering data based on di-
rect measurements of the condition or degradation level of a unit is not im-
possible, such methods are not practical due to the intrusive nature for 
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applications requiring online monitoring of reliability. For example, meas-
uring the amount of wear on a milling insert or a drill bit after every opera-
tion would slow down the production drastically. Thus, applications re-
quiring online reliability monitoring of individual units more often use 
indirect and non-intrusive measurements. The nature and type of such indi-
rect measurements may vary from application to application, however, 
their selection is critical for an effective decision making process. A basic 
criterion they need to fulfill, apart from being non-intrusive, is to have a 
good correlation with the degradation level of the part/component of inter-
est. 

Maintenance 

In many physical and electro-mechanical systems, the system or unit under 
consideration generates degradation signals that contain valuable informa-
tion about the health/well-being of the system. These degradation signals, 
such as power consumption of a metal cutting machine tool, error rate of a 
computer hard disk, temperature of a drill-bit, vibration in machinery, 
color spectrum from an arc welder, loads acting on a structure, tend to be 
non-stationary or transitory signals having drifts, trends, abrupt changes, 
and beginnings and ends of events. Despite considerable advances in intel-
ligent degradation monitoring for the last several decades, on-line condi-
tion monitoring and diagnostics are still largely reserved for only the most 
critical system components and have not found their place in mainstream 
machinery and equipment health management (Kacprzynski and Roemer, 
2000). If one were to talk about predictive maintenance technologies, in 
particular prognostics and on-line reliability assessment, there exist no ro-
bust methods for even the most critical system components. Diagnostics 
has traditionally been defined as the ability to detect and classify fault 
conditions. Literature is extremely vast in this area. Prognostics on the 
contrary is defined here as the capability to provide early detection of the 
precursor to a failure condition and to manage and predict the progres-
sion of this fault condition to component failure. Recognizing the inability 
to prevent costly unscheduled equipment breakdowns through Preventive 
Maintenance (PM) activities and basic diagnostic condition monitoring 
methods, there seem to be consensus among industry and federal agencies 
that one of the next great opportunities for product differentiation and suc-
cessful competition in the world markets lies in true prognostics based 
condition-based maintenance (CBM). 

9  .1.2 Diagnostics and Prognostics for Condition-Based 
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Condition-Based Maintenance (CBM) is a philosophy of performing 
maintenance on a machine or system only when there is objective evidence 
of need or impending failure. CBM typically involves mounting non-
intrusive sensors on the component to capture signals of interest and sub-
sequent interpretation of these signals for the purpose of developing a cus-
tomized maintenance policy. Given recent advances in the areas of non-
intrusive sensors, data acquisition hardware, and signal processing algo-
rithms, combined with drastic reductions in computing and networking 
costs and proliferation of information technology products that integrate 
factory information systems and industrial networks with web-based visual 
plant front-ends, it is now possible to realize systems that can deliver cost 
effective diagnostics, prognostics, and CBM for a variety of industrial sys-
tems. The basic elements necessary for successful diagnostics and prog-
nostics for CBM are illustrated in Fig. 2 (Chinnam and Baruah 2004). 

 
 

 

 

 

 

Sensor 
Signal(s) 

Feature Ex-
traction 

Failure Definition 
in the Feature 

Space 

Diagnostics 
Fault detection 
& classification 

Prognostics 
Reliability Pre-

diction 

Domain 
- Time 
- Frequency 
- Mixed 
 

Issues 
- Sensor Fusion 
- Data Acquisition 
- Preprocessing 
- Networking 
- Data Storage 

Fig. 2. Basic elements of diagnostics and prognostics for CBM. 

Sensor signal(s): Sensing techniques commonly used include touch sen-
sors, temperature, thrust force, vibration, torque, acoustic emission, volt-
age, noise, vision systems, etc. The data obtained from sensor signals con-
tain useful information about the condition or degradation levels of a unit. 
As data recording is automated, it is not uncommon to see several thou-
sands of measurements recorded per incremental usage condition. Extrac-
tion of appropriate and useful features from such data is critical before 
models for online monitoring and prediction of individual component reli-
ability can be developed. 
 
Feature extraction: Extraction of useful features typically involves analy-
sis of data in several different domains. Basic time domain signal parame-
ters utilized in conventional diagnostics include amplitude, crest factor, 
kurtosis, RMS values, and various measures of instantaneous and cumula-
tive energy (Zhou et al. 1995; Quan et al. 1998; Kuo 2000; Dzenis and 
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Qian 2001; Sung et al. 2002). Frequency domain spectral parameters in-
clude the Fourier transform and linear spectral density, while advanced 
spectral measures include higher-order (or displaced) power spectral den-
sity. Extensive research over the last two decades has resulted in a long list 
of promising features or Figures-of-Merit (FOMs) for different applica-
tions. For example, Lebold et al. (2000) discussed 14 FOMs for gearbox 
diagnostics and prognostics, employing a vibration signal alone. The litera-
ture offers FOMs for monitoring and diagnosis of mechanical systems 
such as gearboxes, pumps, motors, engines, and metal cutting tools. In re-
cent years, mixed-domain analysis methods such as Wavelets are gaining 
popularity for their ability to offer a shorter yet accurate description of a 
signal by employing scale-based basis functions. Wavelet analysis, while 
still being researched for machine diagnostics and prognostics (Chinnam 
and Mohan 2002; Vachtsevanos et al. 1999), is well established for such 
applications as image processing. In the last few years, the Empirical 
Mode Decomposition method has received much attention for its ability to 
analyze non-stationary and nonlinear time series, something not possible 
with methods such as Wavelet analysis (Huang et al. 1998). 
 
Failure Definition in the Feature Space: A specified level of degradation 
in feature space is generally used to define failure.  Such a threshold limit 
is required to assess and predict reliability of a unit. Sometimes the fea-
tures of interest may consistently show significantly different degradation 
levels before the physical failure occurs. In such situations, failure defini-
tion in the feature space may be easier to determine. In situations where 
this is not the case, arriving at a failure definition may be more involved. 
We later discuss a fuzzy inference model to arrive at failure definition in 
the feature space in Section 4. 
 
Diagnostics: During the diagnostics process, specific FOMs are typically 
compared to threshold limits (Begg et al. 1999). Additional processing 
may determine a signature pattern in one, or multiple, fault measure(s). 
Automated reasoning is often used to identify the faulty type (cracked gear 
tooth, bearing spall, imbalance etc.), location, and severity. The core prob-
lem of diagnostics is essentially a problem of classification (Elverson 
1997). Discriminant transformations are often used to map the data charac-
teristic of different failure mode effects into distinct regions in the feature 
subspace (Byington and Garga 2001). The task is relatively straightfor-
ward in the presence of robust FOMs.  The literature is vast in this area 
and commercial technologies are well established. Depending on the ap-
plication, these systems employ model-based methods, any number of sta-
tistical methods, and a variety of computational intelligence methods. 
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Dimla et al. (1997) provide a critical review of the neural network methods 
used for tool condition monitoring. 
 
Prognostics: Contrary to diagnostics, the literature on prognostics, called 
the Achilles’ heel of the CBM architecture (Vachtsevanos et al. 1999), is 
extremely sparse. Unfortunately, the large majority of the literature that 
employs the term ‘prognostics’ in the title ends up discussing diagnostics. 
To achieve prognostics, there need to be features that are suitable for track-
ing and prediction (Begg et al. 1999). It is for this reason that prognostics 
is receiving the most attention for systems consisting of mechanical and 
structural components, for unlike electronic or electrical systems, me-
chanical systems typically fail slowly as structural faults progress to a 
critical level (Mathur et al., 2001).  

Let  represent a scalar time-series generated by sampling the per-
formance degradation signal (or a transformation thereof).  Suppose that 

 can be described by a nonlinear regressive model of order  as 
follows: 

{ ( )}y s

{ ( )}y s p

( ) ( ( 1), ( 2), , ( )) ( )= − − − + εLy s f y s y s y s p s  (1) 

where f  is a nonlinear function and ( )ε s a residual drawn from a white 

Gaussian noise process. In general, the nonlinear function 

 is 

f  is u nown, 
and the only information we have available to us is a set of observables: 

(1),y y e S  is the total length of the time-series.  Given 
the data set, the requirement is to construct a physical model of the time-
series.  To do so, we can use any number of statistical (for example, Box 
and Jenkin’s auto-regressive integrated moving average (ARIMA) models) 
or computational intelligence based (for example, feed-forward neural 
networks such as multi-layer perceptron (MLP)) forecasting techniques as 
a one-step predictor of order p.  Specifically, the model is estimated to 
make a prediction of the sample ( )y s , giv e immediate past p  sam-

s ( 1)−y s wn by 

nk

y S , wher

en th

ple − −Ly s y s p , as sho

(2), , ( )L
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9  .2 Performance Reliability Theory 
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The nonlinear function %f  is the approximation of the unknown func-

tion f , built in general to minimize some cost function ( ) of the predic-
tion error  

J

ˆ( ) ( ) ( ),   1= − + ≤ ≤e s y s y s p s S  (3) 

Note that a single model can be potentially built to simultaneously work 
with many degradation signals and also allow different prediction orders 
for different signals.  Of course, the structure and complexity of the model 
will increase with an increase in the number of degradation signals jointly 
modeled. 

Now, let  denote the probability that failure of a component takes 

place at a time or usage less than or equal to  (i.e., 

( )F t
t ( ) ( )= ≤F t P T t ), 

where the random variable T  denotes the time to failure.  From the defini-
tion of conditional probability, the conditional reliability that the compo-
nent will fail at some time or usage , given that it has not yet 
failed at time  will be: 

> + ∆T t t
=T t

( )( ) ( ) ( )| 1⎡ ⎤+ ∆ = − ≤ + ∆ >⎣ ⎦ .R t t t P T t t P T t  (4) 

Let  denote the vector of  degradation signals (or 

a transformation thereof) being monitored from the system under evalua-

tion. Let  denote the vector of deterministic per-

formance critical limits (PCLs), which represent an appropriate definition 
of failure in terms of the amplitude of the  degradation signals.  For any 
given operating/environmental conditions, performance reliability can be 

defined as “the conditional probability that y does not exceed 

1 2[ , ,..., ]= my y yy m

1 2[ , ,..., ]=pcl pcl pcl pcl
my y yy

m

pcly , for a 
specified period of time or usage.”  Obviously, the above definition di-
rectly applies to the case where the amplitudes of the degradation signals 
are preferred to be low (lower-the-better signals with higher critical limits), 
and can be easily extended to deal with higher-the-better signals (with 
lower critical limits) and nominal-value-is-best signals (with two-sided 
critical limits), and any combinations in between.  Without loss of general-
ity, for illustrative purposes, let us make the assumption here that all the 

 degradation signals are of lower-is-better type signals.   m
Since a model estimated using past degradation signals collected from 

other similar components keeps providing us with an estimate of  into 

the future, denoted by 

y
ˆ ( )fty , under the assumption that the change in  y
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from the current time point ( ) to the predicted time point (ct ft ) is either 

monotonically decreasing or increasing, the reliability that the component 
or system will operate without failure until ft  is given by: 

( )( ) ( )( )
1 2

1 2

1 2ˆ| ..
=−∞ =−∞ =−∞

≥ = ∫ ∫ ∫
pcl pcl pcl

m

m

y y y

..f c f

y y y

mR T t t g t dy dy dyy  
(5) 

where ( )( )ˆ fg ty  denotes the probability density function of ˆ ( )fty . The 

assumption here is that  is a constant for any given  and is independ-

ent of 

pcl
iy i

( )fty . Under these conditions, the failure space is bounded by or-

thogonal hyper planes. If the independence assumption is not justified, one 
could use a hyper-surface to define the failure boundary (Lu et al. 2001). If 
need be, one could even relax the assumption of a deterministic boundary 
and replace it with a stochastic boundary model. However, such an exten-
sion is non-trivial.  

For the special case where there exists just one lower-the-better degra-
dation signal, this process is illustrated in Fig. 3 (Chinnam and Baruah 

2004). The shaded area of ( )( )ˆ fg ty  at any ft  denotes the conditional-

unreliability of the unit. That is, given that the unit has survived until , 

the shaded area denotes the probability that the unit will fail by 
ct

ft . To ob-

tain mean residual life (MRL), using , the least acceptable reliability, 

one can estimate , the time instant/usage at which the reliability of the 

unit reaches . Thus, one can calculate the MRL to be the time differ-

ence between  and .  

MRLr

MRLt

MRLr

ct MRLt

Feature extraction is an important step in developing effective procedures 
for online reliability monitoring using degradation signals. In this section 
we discuss time, frequency and mixed-domain analysis techniques for pre-
processing degradation signals and feature extraction. 

9  .3 Feature Extraction from Degradation Signals 



Computation Intelligence in Online Reliability Monitoring 231 

As is pointed out in the introduction, the most important and fundamental 
variables in degradation signal processing are time and frequency. In addi-
tion, the degradation signals often tend to be stochastically non-stationary, 
rendering the fast Fourier transform (FFT) spectrum (a transform that is 
quite popular for frequency analysis) inadequate, for it can only evaluate 
an average spectrum over a definite time period and loses the non-
stationary characteristics of the signals (Yen and Lin 2000). Given this, in 
many real world applications, it is far more useful to characterize the sig-
nal in both the time- and frequency- domains, simultaneously.  
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Fig. 3. Degradation signal forecasting model coupled with a failure definition PCL 
to estimate MRL 

Several joint time-frequency (or mixed-domain) alternatives have been 
proposed in the literature. Some of the alternatives include the short term 
Fourier transform (STFT) and the Wavelet transform (WT), to name a few. 
Joint time-frequency methods are conventionally classified into two cate-
gories: linear and quadratic (Qian and Chen, 1996). The principle of linear 
time-frequency representation involves decomposing any signal into a lin-
ear expansion of functions that belong to a set of redundant elementary 
functions. All linear transformations are achieved by comparing the ana-

9  .3.1 Time, Frequency, and Mixed-Domain Analysis 
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lyzed signal with a set of prudently selected elementary functions. While 
the functions for STFT are obtained by frequency modulation of sine and 
cosine waves in STFT, in the WT, the functions are obtained by scaling 
and shifting the mother wavelet.  

The most important relationship in terms of joint time-frequency analy-
sis is the relation between signal’s time window duration and frequency 
bandwidth. Several different definitions are offered in the literature for 
specifying the time window duration and frequency bandwidth (Qian and 
Chen, 1996; Akay and Mello, 1998). In general, for mixed-domain meth-
ods, there is a tradeoff between time resolution and frequency resolution 
for there is an upper bound on the product of the two resolutions. In other 
words, an increase in the time resolution results in a loss of frequency 
resolution, and vice versa. In STFT, since the elementary function is the 
same for all the frequency components, time and frequency resolutions are 
fixed on the time-frequency plane once the elementary function has been 
chosen. Hence, the choice of time window duration is the key for any good 
STFT representation. In WT, time and frequency resolutions are not fixed 
over the entire time-frequency plane. 
 

f

t

 
f

t

f

t

 
(a) STFT (small window 

length) 
 

(b) STFT (long window 
length) 
 

(c) Wavelet Transform 

Fig. 4. Comparison of the STFT and the wavelet transform in terms of time and 
frequency resolution. 

The tiling of the windows in the joint time-frequency plane is illustrated 
for STFT and WT in Fig. 4. While the STFT tilling is linear, the WT tilling 
is logarithmic. In Fig. 4(a) and 4(b), when the length of window is speci-
fied, the time and frequency resolution remains constant throughout the 
plane. In Fig. 4(c), time and frequency resolution is not fixed over the en-
tire time-frequency domain: time resolution becomes good at higher fre-
quencies whereas frequency resolution becomes good at lower frequency. 
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As discussed in the introduction, degradation signals often tend to be rich 
in time and frequency components, and hence, lend themselves for better 
representation in mixed-domain analysis. The treatment on wavelets that 
follows is borrowed heavily from DeVore and Lucier (1992). The term 
wavelet denotes a univariate function ψ (multivariate wavelets exist as 

well), defined on , which, when subjected to the fundamental operations 
of shifts (i.e., translation by integers) and dyadic dilation, yields an or-
thogonal basis of . That is, the functions 

R

2 ( )L R / 2
, : 2 (2 )k k

j k jψ = ψ ⋅ − , 

, form a complete orthonormal system for . Such functions 
are generally called orthogonal wavelets, since there are many generaliza-
tions of wavelets that drop the requirement of orthogonality.  

,j k ∈Z 2 ( )L R

One can view a wavelet ψ as a "bump" and think of it as having com-
pact support, though it need not. Dilation squeezes or expands the bump 
and translation shifts it. Thus, ,j kψ  is a scaled version of ψ  centered at 

the dyadic integer 2 kj − . If is large positive, then k ,j kψ  is a bump with 

small support; if is large negative, the support k ,j kψ  is large. The re-

quirement that the set { }, ,j k j k∈
ψ

Z
 forms an orthonormal system means 

that any function  can be represented as a series 2 ( )f L∈ R

, ,
,

,  j k j k
j k

f f
∈

= ψ ψ∑
Z

 (6) 

with , :f g fgdx= ∫R
 the usual inner product of two 2 (L R ctions. 

One can view Eq. (6) as building up the function 

)  fun

f  from the bumps. 

Bumps corresponding to small values of  contribute to the broad resolu-
tion of 

k
f ; those corresponding to large values of  give finer detail. k

The decomposition of Eq. (6) is analogous to the Fourier decomposition 

of a function  in terms of the exponential functions , 

but there are important differences. The exponential functions have 

global support. Thus, all terms in the Fourier decomposition contribute to 
the value of 

2 ( )f L∈ R : ik
ke e ⋅=

ke

f  at a point x . On the other hand, wavelets are usually either 
of compact support or fall off exponentially at infinity. Thus, only the 

9  .3.2 Wavelet Preprocessing of Degradation Signals 
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terms in Eq. (6) corresponding to ,j kψ  with 2 kj −  near x  make a large 

contribution to x . The representation Eq. (6) is in this sense local.  
All this would be of little more than theoretical interest if it were not for 

the fact that one can efficiently compute wavelet coefficients and recon-
struct functions from these coefficients. These algorithms, known as "fast 
wavelet transforms" are the analogue of the Fast Fourier Transform and 
follow simply from the refinement of the dilation and shift equation men-
tioned above. 

In summary, the wavelet transform results in many wavelet coefficients, 
which are a function of scale (or level or frequency) and position. Hence, a 
wavelet plot is a plot of coefficients on time-scale axis. The higher the 
scale, the more stretched the wavelet. The more stretched the wavelet, the 
longer the portion of the signal with which it is compared, and thus the 
coarser the signal features being measured by the wavelet coefficients. 
Multiplying each coefficient by the appropriately scaled and shifted wave-
let yields the constituent wavelets of the original signal. The coefficients 
constitute the results of a regression of the original signal performed on the 
wavelets.  
 

Fig. 5. Daubechies DB4 wavelet tranform. 

Fig. 6. Thrust-force degradation signal from drill-bit #8 hole #1 and their 
transformed DB4 wavelet coefficients. 
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Fig. 7. Discrete wavelet analysis of thrust-force signal from drill-bit #8 hole #1 

The particular wavelet transform considered in this paper is the com-
pactly supported Daubechies' wavelet transform. The transform is com-
pactly supported with extreme phase and highest number of vanishing 
moments for a given support width. One particular Daubechies' wavelet 
transform, the DB4 discrete wavelet transform function and its associated 
scaling function, is shown in Fig. 5. For illustrative purposes, the thrust-
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force degradation signal measured from drill-bit #8 while drilling hole #4 
is shown in Fig. 6(a). The wavelet plot resulting from the DB4 transform 
of this degradation signal is shown in Fig. 6(b). In this plot, the x-axis 
represents time while the y-axis represents scales, and the darker cells in 
the plot represent coefficients that are low in amplitude. The reconstruction 
of this signal at different levels (or scales) is shown in Fig. 7 along with 
the detail counterparts. The transform is performed using MatLab's Wave-
let Toolbox. We request the reader to see Daubechies (1990) for a detailed 
treatment of this transform. 

When multiple features are used to represent degradation signals, multi-
variate methods can also be used for extracting useful features. Rai, Chin-
nam, and Singh (2004) used Mahalanobis-Taguchi System (MTS) analysis 
for predicting drill-bit breakage from degradation signals. A MTS analysis 
consists of four stages (Taguchi and Jugulum 2002). In the first stage of 
analysis a measurement scale is constructed from a standardized (by sub-
tracting the mean and dividing by the standard deviation) ‘normal’ group 
of features using Mahalanobis distances (MDs) given by, 

ijijjj ZCZ
k

DMD 1'2 1 −==  
(7) 

where, 
 j = Observation number in the normal group (1 to m) 
 i = Feature number (1 to k) 
 = Standardized vector ),...,,( 21 kjjjij zzzZ =

 Inverse of the correlation matrix. =−1C

In the second stage, larger values of MDs obtained from an abnormal 
group are used for validating the measurement scale developed in the first 
stage. In the third stage, useful features are extracted from those under 
study using signal-to-noise ratio values. A S/N ratio for say qth trial with 
‘t’ features present in the combination can be obtained as, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

=

t

j j
q MDt 1

11
log10η  

(8) 

For a given feature, an average value of the S/N ratio is determined 
separately at level-1 indicating presence and at level-2 indicating absence 

9  .3.3 Multivariate Methods for Feature Extraction 
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of a feature. Subsequently, gain in S/N ratio values is obtained by taking 
difference of the two average values as, 

Gain = (Avg. S/N Ratio)Level-1 - (Avg. S/N Ratio)Level-2  (9) 

A positive gain for a feature indicates its usefulness and vice-versa. And 
finally, in the fourth stage of analysis a threshold value for the MDs is de-
veloped from the normal group to enable degradation level prediction us-
ing the useful features. 

Most prognostics methods in the literature for on-line estimation of MRL 
utilize trending or forecasting models in combination with mechanistic or 
empirical failure definition models. However, in spite of significant ad-
vances made throughout the last century, our understanding of the physics 
of failure is not quite complete for many electro-mechanical systems. In 
the absence of sound knowledge for the mechanics of degradation and/or 
adequate failure data, it is not possible to establish practical failure defini-
tion models in the degradation signal space. Under these circumstances, 
the sort of procedures illustrated in Section 2 is not feasible. However, if 
there exist domain experts with strong experiential knowledge, one can po-
tentially establish fuzzy inference models for failure definition. In this sec-
tion, we suggest the incorporation of fuzzy inference models to introduce 
the definition of failure in the degradation signal space using domain ex-
perts with strong experiential knowledge. While the trending or forecasting 
subcomponent will predict the future states of the system in the degrada-
tion signal space, it is now the task of the fuzzy inference model to esti-
mate the reliability associated with that forecast state. If one were to com-
pare this procedure with that discussed in Section 2, it is equivalent to 
replacing the right hand side of Eq. (5) with a fuzzy inference model. 

One might argue that probabilistic models could be potentially used for 
modeling experiential knowledge of domain experts. However, it is widely 
accepted that classical probability theory has some fundamental shortcom-
ings when it comes to modeling the nature of human concepts and 
thoughts, which tend to be abstract and imprecise. While probability the-
ory is developed to model and explain randomness, fuzzy arithmetic and 
logic is developed to model and explain the uncertain and imprecise nature 
of abstract thoughts and concepts. Over the last three decades, since Lofti 
Zadeh authored his seminal paper in 1965 on fuzzy set theory (Zadeh 
1965), the scientific community had made major strides in extending the 

9  .4 Fuzzy Inference Models for Failure Definition 
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set theory to address applications in areas such as automatic control, data 
classification, decision analysis, and time series prediction (Jang et al. 
1997).  

Fig. 8. Sugeno FIM with two inputs (X, Y) and one output (F). 

In the context of prognostics and failure definition, Sugeno Fuzzy Infer-
ence Model (FIM), illustrated in Fig. 8(a), is particularly attractive for fail-
ure definition for three reasons:  

1. It makes a provision for incorporating subjective knowledge of domain 
experts and experienced operators,  

2. Model can be viewed as a feed-forward neural network (labeled Adap-
tive-Network based Fuzzy Inference Systems or ANFIS), and hence, 
can be adapted using empirical/historical data coupled with gradient 
search methods (Jang 1993), and  

3. Computationally efficient for the absence of a de-fuzzification operator 
prevalent in other fuzzy inference models.  

The illustrated two-input ( X andY ) one-output ( F ) Sugeno FIM car-
ries two membership functions for each of the two input variables, 
namely ,  and1A 2A 1B , 2B . The model is made of two rules. For example, 

Rule-1 states that if X  is 1A  and Y  is 1B , then the output is given 

by 1 1 1= + + 1f p x q y r . Here, 1A  and 1B  denote linguistic variables (such 
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as “thrust is low” or “vibration is high”). Even though the consequent of 
each rule constitutes a first-order model, the overall relationship is often 
highly nonlinear. The equivalent ANFIS model is shown in the illustration 
as well.  

For the application considered here, typically, the number of input vari-
ables for the Sugeno FIM will be equal to the number of degradation sig-
nals under investigation, and there is one output variable predicting the re-
liability of the unit (i.e., ). The number of membership functions and 
the number of rules needed to fully describe the failure definition will be 
dictated by the specific application and input from domain experts. In the 
absence of first-principles models, rules can be initially formulated with 
the help of domain experts and experienced operators. All the parameters 
of the Sugeno FIM can be adapted to best describe any historical dataset 
using the ANFIS framework. For more details regarding Sugeno fuzzy in-
ference models or their ANFIS equivalents (Jang et al. 1997). 

( )r t

In general, artificial neural networks are composed of many non-linear 
computational elements, called nodes, operating in parallel and arranged in 
patterns reminiscent of biological neural nets (Lippmann 1987).  These 
processing elements are connected by weight values, responsible for modi-
fying signals propagating along connections (also called synapses) and 
used for the training process.  The number of nodes plus the connectivity 
define the topology/structure of the network, and is intimately connected 
with the learning algorithm used to train the network Haykin (1999). The 
higher the number of nodes per layer and/or the number of layers, the 
higher the ability of the network to extract higher-order statistics (Church-
land and Sejnowski 1992) and approximate more complex relationships 
between inputs and outputs.   

One of the most significant properties of a neural network is its ability 
to learn from its environment that normally involves an iterative process of 
adjustments applied to the synaptic weights.  There is no unique learning 
algorithm for the design of neural networks and they differ from each other 
in the way in which the adjustment of synaptic weights takes place.  Two 
popular learning algorithms are the error-correction learning algorithm (in 
essence a stochastic gradient-descent search technique) used normally for 
training FFNs such as FIR MLPs discussed in Section 5.2 and the competi-
tive learning algorithm used for training networks such as SOMs discussed 
in Section 5.3.  It is beyond the scope of this chapter to discuss the nature 

9  .5 Online Reliability Monitoring with Neural Networks 
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of these learning algorithms in detail, and the reader is referred to Haykin 
(1999). 

Two popular learning paradigms for neural networks involve supervised 
learning and unsupervised (self-organized) learning.  FFNs, such as the 
FIR MLP, are trained in a supervised learning mode. In essence, there is a 
teacher present (metaphorically speaking) to guide the network toward 
making accurate predictions. Unsupervised learning is performed in a self-
organized manner in that no external teacher or critic is required to instruct 
synaptic changes in the network, and is the case with SOMs. For a more 
thorough treatment of the general topic of neural networks, the reader is re-
ferred to Haykin (1999). 

Modeling 

FFNs have proven to be very effective in function approximation and time 
series forecasting (Wan 1994; Sharda and Patil 1990; Tang et al. 1991; 
Harnik et al. 1989; Haykin 1999; Cheng and Titterington 1994; Balazinski 
et al. 2002).  They are flexible models that are widely used to model high 
dimensional, nonlinear data (De Veaux et al. 1998). In fact, FFNs with 
nonlinear sigmoidal nodal functions are universal approximators (proved 
by Hornik et al. (1989), using the Stone-Weierstrass theorem), meaning 
that a network with finite number of hidden layers and finite number of 
nodes per hidden layer can approximate any continuous function  (RN, RM) 
over a compact subset of RN to arbitrary precision. However, since the FFN 
model parameters are generally not interpretable, they are not recom-
mended for process understanding. However, if the emphasis is simply on 
accurate prediction, they tend to be extremely good and tend to outperform 
most traditional methods. This is not to say that traditional methods cannot 
be effectively used for modeling degradation signals. The method for on-
line estimation of individual component reliability introduced in this chap-
ter is compatible with traditional methods of modeling degradation signals 
as well. However, there are other motivations for using FFNs for degrada-
tion signal modeling. These include their nonparametric properties and su-
perior ability to adapt to changes in surrounding environment (neural net-
work trained to operate in a specific environment can be easily retrained to 
deal with minor changes in the environmental conditions).  

9  .5.1  Motivation for Using FFNs for Degradation Signal 
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Perceptron Networks 

A FIR MLP is an extension to the popular MLP network in which each 
scalar synaptic weight in an MLP network is replaced by a FIR synaptic 
filter.  The additional memory allows the network dynamic properties nec-
essary to make the network responsive to time-varying signals. A standard 
MLP network trained using an algorithm such as back-propagation is only 
capable of learning an input-output mapping that is static, and hence, is 
only capable of performing nonlinear prediction on a stationary time series 
(Haykin 1999). However, most degradation signals measured from physi-
cal systems, as they degrade with time, tend to be non-stationary. A typical 
FIR MLP network with an input layer, an output layer, and two hidden 
layers is shown in Fig. 9(a), whose synaptic FIR filter structure is defined 

by the signal-flow graph of Fig. 9(b). Here Tx otes the 

input vector while Ty the output vector. 

 and  are the outputs at the first 

and second hidden layers, respectively.  , ,  are 

matrices of FIR weight vectors associated with the three layers.  For ex-
ample, , where  denotes the weight 

connected to the rth memory tap of the FIR filter modeling the synapse 
that connects the input neuron j to neuron i in the first hidden layer.  As 
shown in Fig. 9(b), the index r ranges from 0 to M, where M is the total 
number of delay units (element z
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-1 represents unit time delay in Fig. 9(b) 
and s denotes a discrete-time variable) built into the design of the FIR fil-
ter.  The vectors pR∈v , qR∈z , and mR∈y  are as shown in Fig. 9(a) 

with ii vv =γ )( , kk zz =γ )( , and ll yy =γ )(  where iv , kz , and ly  are 

elements of v , z , and y  respectively.  Here γ is a sigmoidal nonlinear 
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During network training, the weights of the network are adjusted using 
an adaptive algorithm based on a given set of input-output pairs. An error-
correction learning algorithm will be briefly discussed here, and readers 
can see Haykin (1999) for further details and information regarding other 
training algorithms. If the weights of the networks are considered as ele-

                                                      
1 The most popular non-linear nodal function for FIR MLP networks is the sig-

moid [unipolar → f (x) = 1/(1 + e-x) and bipolar  → f (x) = (1 - e -x )/(1 + e-x )]. 

9  .5.2  Finite-Duration Impulse Response Multi-layer 
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ments of a parameter vector , the error-correction learning process in-

volves the determination of the vector  which optimizes a performance 

function J based on the output error.

θ
*θ

2  In error-correction learning, the 
weights are adjusted along the negative gradient of the performance func-
tion as follows: 

)(

)(
)()1(

s

s
ss J

θ
θθ

∂
∂

η−=+  
(10) 

where η  is a positive constant that determines the rate of learning and 
the superscript refers to the iteration step.  In the literature, a method for 
determining this gradient for FIR MLP networks is the temporal back-
propagation learning, which is not repeated here due its complexity. For 
further information on the algorithm, see Haykin (1999) or Wan (1990). 

The principal goal of the SOM developed by Kohonen (1982) is to trans-
form an incoming signal pattern of arbitrary dimension into a one- or two- 
dimensional discrete map, and to perform this transformation adaptively in 
a topological ordered fashion.  The presentation of an input pattern causes 
a corresponding "localized group of neurons" in the output layer of the 
network to be active (Haykin 1999), introducing the concept of a 
neighborhood.   

Let Φ denote a non-linear SOM transformation which maps the spatially 
continuous input space X onto a spatially discrete output space (made up 
of a set of N computation nodes of a lattice) A.  Given an input vector x, 
the SOM identifies a best-matching neuron i(x) in the output space A, in 
accordance with the Map Φ. For information on the unsupervised competi-
tive learning algorithm typically used for training SOMs (Haykin 1999).  
For a typical SOM, trained in such a fashion, the map Φ has the following 
properties (Haykin 1999): 

Property 1: Approximation of the Input Space–The SOM Φ, represented 
by the set of synaptic weight vectors {wj| j = 1, 2,..., N}, in the output 
space A, provides a good approximation of the input space X.  

Property 2: Topological Ordering–The Map Φ computed by the SOM 
algorithm is topologically ordered in the sense that the spatial location of a 

                                                      
2 A popular performance function in the literature is the sum of the squared values 

of the prediction error for all training patterns. 

9  .5.3 Self-Organizing Maps 
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neuron in the lattice corresponds to a particular domain or feature of input 
patterns. 

Property 3: Density Matching–The Map Φ reflects variations in the sta-
tistics of the input distribution. 

 

Fig. 9. A typical network and its structure 

Signals 

The proposed approach for on-line performance reliability estimation of 
physical systems calls for modeling degradation signals as well as the dis-
persion characteristics of the signals around the degradation models.  
Globally generalizing neural networks such as FFNs do not easily lend 
themselves for modeling dispersion characteristics.  In contrast, locally 
generalizing networks such as radial-basis function (RBF) networks and 
cerebellar model arithmetic computer (CMAC) networks have a naturally 
well-defined concept of local neighborhoods and lend themselves for mod-
eling dispersion.  Such networks have been extended in the literature to in-
clude dispersion attributes such as prediction limits (PLs).  For example, 
the validity index (VI) network derived from an RBF network, fits func-
tions (Park and Sandberg 1991) and calculates PLs/error bounds for its 
predictions (Leonard et al. 1992).  
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9  .5.4 Modeling Dispersion Characteristics of Degradation 
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Since globally generalizing neural networks concentrate on global ap-
proximation and tend to produce highly compact and effective models, we 
need a method for estimating prediction limits for these networks. Most of 
the very few extensions to FFNs discussed in the literature that facilitate 
estimation of prediction intervals make the strong assumption that residual 
dispersion or variance in the output space is constant (for example, see De 
Veaux et al. 1998; Chryssolouris et al. 1996). Our experience with degra-
dation signals reveals that this is not true. This section introduces an ap-
proach that integrates SOMs with FFNs to facilitate modeling of disper-
sion characteristics using FFNs without making such an assumption. In 
addition, the method allows the dispersion properties in the output space to 
be modeled using non-diagonal covariance matrices in those cases where 
there are multiple output variables.  The intent is to utilize a SOM to intro-
duce the concept of a "local neighborhood" even with globally approximat-
ing FFNs, critical for modeling dispersion characteristics. 

Let M represent the total number of training patterns spanning the entire 
input space X.  Let Mj the "membership" of neuron j in the discrete output 
space A represent the subset of training patterns from input space X that ac-
tivate it. This is shown by: 

 i(x) = j  for all x ∈ Mj,   j = 1, 2, ..., N. (11) 

It is also true that the sum of the memberships of the neurons in the lat-
tice output space must equal the total number of training patterns for the 
SOM, as shown by: 

  M Mj
j

N

=
∑ =

1

. (12) 

The three properties exhibited by SOMs (discussed earlier) provide the 
motivation to utilize the SOM to break the input space X into N distinct re-
gions (denoted by Xj) that are mutually exclusive, and hence satisfy the fol-
lowing relationship: 

   X Xj
j

N

=
∑ =

1

. (13) 

All the signal patterns from any given distinct region Xj, when provided 
as input to the Map Φ, will activate the same output neuron j.  This is 
shown by: 

 i(x) = j  for all  x ∈ Xj,  j = 1, 2, ..., N. (14) 

Thus, using SOMs, one can introduce the concept of a "local neighbor-
hood," the resolution depending on the number of neurons (N) in the dis-
crete output space. 
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From the above definition of local neighborhood, input signal patterns 
can be associated unambiguously with one of the distinct regions Xj. As-
suming that a FFN is being used for function approximation or time series 
forecasting, an estimate of the covariance matrix for the FFN model re-
siduals within the domain of region Xj is given by: 
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1 ), and denotes the covariance between out-

put variables p  and q , 
 Ekp denotes the FFN model residual for output variable p for pattern k, 

O denotes the number of output variables predicted by the FFN. 

Assuming that the residuals are independent and Gaussian distributed 
with a constant covariance matrix over the domain of any region but vary-
ing from domain to domain, one can even estimate the PLs. In fact, the 1-

quantile is given by the point x satisfying the following condition: α

( ) ( ) ( )αχ≤−− − 21
Ojj

T
j Cov µxµx  (16) 

where: 

( )χ αO
2  denotes the (1- α ) quantile of the Chi-Square distribution   

with O  degrees of freedom. 

jµ  denotes the mean residual vector for domain Xj, and 

Covj
−1  is the inverse of the matrix . Covj

Investigation through simulation studies and statistical analysis have re-
vealed that the residuals do tend to exhibit Gaussian distribution in differ-
ent neighborhoods as long as the overall noise in the data is Gaussian. If 
the FFN has adequate representational capacity, the fit should not be sig-
nificantly biased, and the mean residual vector can be a null vector.  In a 
similar fashion, one could also determine the limits of the dispersion of the 
mean, i.e., the range of possible values for the mean predicted value, rather 
than the value for a single sample. 



     Ratna Babu Chinnam and Bharatendra Rai 246

A drilling operation was chosen as the physical test-bed for the reason that 
it is a commonly used machining process. El-Wardany et al. (1996) note 
that of all the cutting operations performed in the mechanical industries, 
drilling operations contribute approximately 40%. Broad steps involved 
and methodology used is briefly described in Fig. 10 as a guide to the case 
study followed-up with detailed description of the last two steps. 
 

 
 

 

 

Fig. 10. Broad steps and methodology for online reliability prediction for drilling 
process 
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The development of reliable tool-wear sensors has been an active area 
of metal cutting research (Andrews and Tlusty 1983). Machining literature 
has shown that there is a strong correlation between thrust-force (and 
torque) acting on a drill-bit and the bit's future life expectancy (Kim and 
Kolarik 1992, Dimla 2000, Dimla and Lister 2000). Dimla and Lister 
(2000) applied multi-layer perceptron neural network for tool-state classi-
fication using online data on the cutting forces and vibration, and reported 
achieving approximately 90% accuracy in tool-state classification. Jan-
tunen (2002) summarizes monitoring methods that have been studied for 
tool condition monitoring in drilling with thrust force and torque being 
most popular. Hence, thrust force and torque signals are appropriate deg-
radation signals for estimating on-line drill-bit reliability.  

As thousands of data points are recorded for thrust force and torque for 
each hole drilled, the data are condensed using root mean square value af-
ter systematically grouping the data points for each drilled hole. Sun et al 
(2006) discuss a systematic procedure for sampling the training data that 
helps to reduce the size of the training data without trading off the gener-
alization performance. For defining failure in feature space, Sugeno fuzzy 
inference model as explained in Section 4 is used and demonstrated for the 
drilling process. For reliability prediction, a methodology using finite-
duration impulse response multi-layer perceptron neural networks along 
with self-organizing maps as detailed in Section 5 is demonstrated.  

9  .6 Drilling Process Case Study 
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A dynamometer was available in-house for measuring on-line the thrust-
force and torque acting on the drill-bit. The experimental setup consists of 
a HAAS VF-1 CNC milling machine, a workstation with LabVIEW soft-
ware for signal processing, a Kistler 9257B piezo-dynamometer for meas-
uring thrust-force and torque, and a National Instruments PCI-MIO-16XE-
10 card for data acquisition. The experimental setup is depicted in Fig. 11.  

Kistler 5017
Multi-Channel

Charge Amplifier

DAQ Card
NI PCI-MIO-16XE-10
LABView 5.1 Interface
for Signal Processing

IBM PC Compatible
Computer

HAAS VF-1
Machining Center

Drillbit

Dynamometer
Kistler 9257 B

(Force and Torque Sensor)

Fixture
Workpiece

 

Fig. 11. Experimental setup for capturing thrust-force and torque degradation sig-
nals from a ¼” HSS drill-bit. 

A series of drilling tests were conducted using quarter-inch drill-bits on a 
HAAS VF-1 Machining Center. Stainless steel bars with quarter-inch 
thickness are used as specimens for the tests. The drill-bits were high-
speed twist drill-bits with two flutes, and were operated under the follow-
ing conditions without any coolant: feed-rate of 4.5 inches-per-minute 
(ipm) and spindle-speed of 800 revolutions-per-minute (rpm). 

Twelve drill-bits were used in the experiment. Each drill-bit was used 
until it reached a state of physical failure, either due to macro chipping or 
gross plastic deformation of the tool tip due to excessive temperature. Col-
lectively, the drill-bits demonstrated significant variation in life (varying 
between eight and twenty five successfully drilled holes) even though they 
came from the same manufacturer in the same box. This further validates 
the need to develop good on-line reliability estimation methods to help end 
users arrive at optimal tool or component replacement strategies.  

The thrust-force and torque data were collected for each hole from the 
time instant the drill penetrated the work piece through the time instant the 
drill tip protruded out from the other side of the work piece. The data was 
initially collected at 250 Hz and later condensed using RMS techniques to 

9  .6.1 Experimental Setup 

9  .6.2. Actual Experimentation 
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24 data points per hole, considered normally adequate for the task at hand. 
Throughout the rest of this paper, in all illustrations, one time unit is 
equivalent to the time it takes to drill 1/24th of a hole. For illustrative pur-
poses, data collected from drill-bit #8 is depicted in Fig. 12.  

 

Fig. 12. Plots of thrust-force and torque signals collected from drill-bit #8. 

Experimental data has revealed a lot of variation between drill-bits, in 
the amplitudes of thrust-force and torque observed during the final hole. 
This invalidates the concept of a deterministic critical limit for establishing 
failure definition in the thrust-force and torque signal space. While one 
could potentially introduce a probabilistic critical plane, here, we utilize 
fuzzy logic to introduce an FIS failure definition model in the degradation 
signal space.   

It was decided initially to use two membership functions for represent-
ing the “low” and “high” linguistic levels for each of the degradation sig-
nals. Sigmoid membership functions were considered appropriate for three 
reasons:  

1.  They are open-ended on one side,  
2. They are monotonous functions (always increase or decrease but not 

both), and  
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9  .6.3 Sugeno FIS for Failure Definition  
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3. They are compatible with most ANFIS training algorithms. 

Past experience suggested that thrust-force typically varies between 0 to 
3000 Newtons for the drilling operation at hand. Similarly, it was common 
to see torque vary between 0 to 6 Newton-meters. Initially, the member-
ship functions were set up to equally divide the ranges of the variables, as 
illustrated in Fig. 13(a) and 13(c) for thrust-force and torque, respectively. 
It was expected that ANFIS training would address any misrepresentations 
in these membership functions. 
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Fig. 13. Plots of membership functions before and after ANFIS training (a) 
Thrust-force MFs – before training. (b) Thrust-force MFs – after training. 

(c)Torque MFs – before training. (d) Torque MFs – after training. 

Two rules were initially formulated with the understanding that more 
rules can be added to address any serious violations by the FIS model. The 
rules are as follows: 

IF thrust-force is low AND torque is low, THEN, drill-bit reliability = 1.0. 
IF thrust-force is high AND torque is high, THEN, drill-bit reliability = 0.0. 
Thus, the consequent of each rule constitutes a zero-order model. The 

resulting FIS model relationship is illustrated in Fig. 14(a). It is clear that 
the overall relationship is highly non-linear and certainly seems plausible. 
At this stage, it was decided to extract training data to further refine the 
FIS model using the ANFIS framework. The training, validation, and test-
ing datasets used for developing the forecasting model were once again 
exploited to refine the FIS model. The reasoning behind the generation of 
training data is as follows. Given any drill-bit and the provided operating 
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conditions, it is totally reasonable to assume that the drill-bit will survive 
the very first hole. This implies that the FIS model should estimate the 
drill-bit reliability to be 1.0 when exposed to the sort of thrust-force and 
torque conditions witnessed during the machining of the first hole for all 
the eight training set drill-bits. Similarly, it is only reasonable to expect the 
FIS model to estimate the drill-bit reliability to be 0.0 when exposed to the 
sort of thrust -force and torque conditions witnessed during the machining 
of the last hole for all the eight training set drill-bits. Thus, in total, 16 data 
points were developed from the eight training set drill-bits. Validation and 
testing datasets were also developed similarly, using the corresponding 
drill-bit data. Note that while labeled data could be generated for repre-
senting extreme states of the drill-bits, it is not easily possible to develop 
any such data for intermediate states (i.e., states other than those represent-
ing either an extremely sharp/good or extremely dull/bad drill-bits). 

 

0
900

1900
2800 0

2 4
6

0.2
0.4
0.6
0.8
1.0

Torque
Thrust

R
el

ia
bi

lit
y

0
900

1900
2800 0

2
4

6

0  
0.2
0.4
0.6
0.8

1.0  

Torque
Thrust

R
el

ia
bi

lit
y

 

(a)      FIM Surface – before training.  (b)      FIM Surface – after training. 

Fig. 14. Failure definition model surface. 

Training the ANFIS formulation of our FIS model using these datasets 
resulted in the final relationship illustrated in Fig. 14(b). The correspond-
ing changes to the membership functions by the ANFIS training algo-
rithms are also illustrated in Fig. 13. Close observation of Fig. 13 and 14 
reveals that the FIS model is predominantly utilizing the torque degrada-
tion signal in comparison with the thrust-force signal for estimating the on-
line reliability of the drill-bit. This is partially attributed to the fact that 
torque exerted on a drill-bit is more sensitive to most of the failure modes 
that dominate drilling operations (i.e., it offers better signal-to-noise ratio 
in comparison with the thrust-force signal). 
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Structured experiments revealed that a FIR MLP network with the follow-
ing configuration appeared to be good at maintaining generalization with 
respect to predicting the thrust force and torque levels into the future: 
1. Input layer:  

• Number of neurons: 2  
(One for each of the two (thrust force & torque) degradation signals.) 

• Number of taps per synaptic filter: 15 
2. Hidden layer   

• Number of neurons: 25 
• Number of taps per synaptic filter: 5 

3. Output layer 
•  Number of neurons: 6 

(Three neurons for each of the two degradation signals.  First neuron 
is used for predicting one-step into the future, second neuron for pre-
dicting three-steps into the future, and the third neuron is used for 
predicting six-steps into the future.  Networks with simultaneous 
multi-step predictions into the future outperformed networks with just 
one-step ahead prediction, in terms of generalization.) 

Of the information collected from the 16 drill-bits, information from 12 
randomly picked drill-bits was used for training purposes (labeled #1 to 
#12), and the information from the remaining 4 drill-bits was used for test-
ing purposes (labeled #13 to #16).  The network was designed to reduce 
the mean-square-error associated with testing patterns. 

A SOM with a two-dimensional lattice of neurons (8×8) was used in di-
viding the 42 dimensional continuous input space into 64 distinct regions 
in an adaptive, topologically ordered fashion. The 42 dimensions are made 
up of (20+1) dimensional thrust force input vector and (20+1) dimensional 
torque input vector. The adaptive training scheme and parameter selection 
process discussed by Haykin (1999) was utilized in training the network.  
The covariance matrix, for each of the 64 distinct regions, for the FIR 
MLP model residuals in the output space, has been computed as per the 
procedure discussed in Section 5.4.  Statistical analysis using Chi-Square 
tests and normal probability plots revealed that the residuals in distinct 
SOM neighborhoods tend to follow a Gaussian distribution.  The reliability 
integral shown in equation (13) is calculated for these experiments using 
the Romberg method (Press et al. 1988). 

The conditional performance reliability predictions for drill-bit #16 used 
for testing is shown in Fig. 15.  All the conditional performance reliabil-
ities are based on the assumption that the critical plane for the drill-bit with 

9  .6.4 Online Reliability Estimation using Neural Networks 



     Ratna Babu Chinnam and Bharatendra Rai 252

respect to thrust is 700 pounds and critical plane for the drill-bit with re-
spect to torque is 42.5 inch-pounds, levels set from data available from the 
drill-bit manufacturer and laboratory experiments. Here again, the condi-
tional performance reliability is equivalent to mission reliability where the 
mission constitutes the probability of successfully drilling the hole for the 
next cf TTT −=∆ , given that it has survived thus far ( ).  cT

Fig. 15. Conditional performance reliability exhibited by drill-bit #16. 

Fig. 16. Performance reliability exhibited by drill-bits #13, #14, #15, and #16. 

Fig. 16 depicts the changes in the performance reliabilities (uncondi-
tional) for the 4 drill-bits used for testing. These unconditional perform-
ance reliabilities are calculated from their respective conditional reliabil-
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ities developed above. For example, the performance reliability that a par-
ticular drill-bit would survive Z intervals (interval width or sampling pe-
riod in time units = 1/sampling rate = 1/150 = 0.0067 seconds) is the prod-
uct of the conditional performance reliabilities of surviving each of these Z 
intervals (basically the product of Z conditional performance reliabilities).  
Since the FIR MLP is of prediction order 21, these calculations are based 
on the assumption that each drill-bit will survive the first 21 intervals (i.e., 

0.14 seconds) with certainty.3

Traditional approaches to reliability analysis are based on life tests that re-
cord only time-to-failure.  With very few exceptions, all such analyses are 
aimed at estimating a population characteristic or characteristics of a sys-
tem, subsystem, or component. For some components, it is possible to ob-
tain degradation measurements over time, and these measurements contain 
useful information regarding component reliability. Then, one can define 
component failure in terms of a specified level of degradation, and esti-
mate the reliability of that "particular" component based on its unique deg-
radation measures. This chapter demonstrates that fuzzy inference models 
can be used to introduce failure definition in the degradation signal space 
using expert opinion and/or empirical data. This is particularly valuable for 
carrying out prognostics activities in the absence of sound knowledge for 
the mechanics of degradation and/or lack of adequate failure data. The 
specific application considered is in-process monitoring of the condition of 
the drill-bit in a drilling process utilizing the torque and thrust signals. The 
drilling process case study demonstrates the feasibility of on-line reliability 
estimation for individual components using the neuro-fuzzy approach. Fur-
ther, this chapter provides an approach that allows the determination of a 
component's reliability as it degrades with time by monitoring its degrada-
tion measures. The concepts have been implemented using finite-duration 
impulse response multi-layer perceptron neural networks for modeling 
degradation measures and self-organizing maps for modeling degradation 
variation.  An approach to compute prediction limits for any feed-forward 
neural network, critical for on-line performance reliability monitoring of 
systems using neural networks, is also introduced by combining the net-

                                                      
3 The prediction order for a FIR MLP is equal to the sum of the memory taps for 

the input and hidden layers plus one for the current state. For this particular 
network, p = 15 + 5 +1 = 21.   

9  .7 Summary, Conclusions and Future Research 
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work with a self-organizing map. Experimental results reveal that neural 
networks are effective in modeling the degradation characteristics of the 
monitored drill-bits, and predicting conditional and unconditional per-
formance reliabilities as they degrade with time or usage.  In contrast to 
traditional approaches, this approach to on-line performance reliability 
monitoring opens new avenues for better understanding and monitoring 
systems that exhibit failures through degradation. Essentially, implementa-
tion of the proposed performance reliability monitoring approach reduces 
overall operations costs by facilitating optimal component replacement and 
maintenance strategies. 

However, there are still several unanswered questions. For example, 
there is no evidence that all types of failure modes prevalent in critical 
equipment could be adequately captured by the proposed Sugeno FIS 
model. Secondly, the inability to easily generate labeled training data for 
the ANFIS model from intermediate states (i.e., when the unit is neither 
brand new nor completely worn out) might jeopardize the interpolation ca-
pability of the FIS model. This issue, however, may not be significant from 
a practical perspective, for in general, there isn’t a lot of interest in the in-
termediate states, at least from the standpoint of CBM. Typically, there is 
no provision to estimate MRL using the proposed method for the sug-
gested neural network forecasting models are not capable of making long-
term forecasts. This is beginning to change with the introduction of the so-
called structural learning neural networks (Zimmerman et al. 2002). Means 
to develop confidence intervals is of paramount importance as well, with-
out which, there is no provision to gauge the accuracy of the overall prog-
nostics procedure. 
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