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Computer-based artificial systems have been widely applied in nearly 
every field of human activities. Whenever people rely heavily on some 
product/technique, they want to make sure that it is reliable. However, 
computer systems are not as reliable as expected, and software has always 
been a major cause of the problems. With the increasing reliability of 
hardware and growing complexity of software, the software reliability is a 
rising concern for both developer and users. Software reliability engineer-
ing (SRE) has attracted a lot of interests and research in the software 
community and software reliability modeling is one major part of SRE re-
search.  

Software reliability modeling describes the fault-related behaviors of 
the software testing process and is one of the important achievements in 
software reliability research activities. The information provided by the 
models is helpful in making management decisions on issues regarding the 
software reliability. They have been successfully applied in practical soft-
ware projects, such as cost-analysis [17, 34], testing-resource allocation [6, 
37], test-stopping decision [21, 32] and fault-tolerance system analysis [11, 
19]. 

Generally, software reliability models can be grouped into two catego-
ries: analytical software reliability growth models (SRGMs) and data-
driven models. Analytical SRGMs use stochastic models to describe the 
software failure process under several assumptions to provide mathemati-
cal tractability [18, 22, 23, 24, 31]. The major drawbacks of these models 
are their restrictive assumptions. On the other hand, most data-driven 
models follow the approach of time series analysis, including both tradi-
tional autoregressive methods [5] and modern artificial neural network 
(ANN) techniques [15]. These models are developed from past software 
failure history data. Specially, ANNs are universal functional approxima-
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tors. They are generally nonlinear and have the capability for generaliza-
tion [12]. ANN models have recently attracted more and more attention [3, 
10, 13, 16, 25, 28, 29]. ANN models are developed with respect to soft-
ware failure data under specific network architecture. Compared to 
SRGMs, ANN models are much less restrictive in assumptions. Besides 
these major kinds of models, there are also some models recently devel-
oped through Fuzzy theory [2], Bayesian networks [1], etc.  

Currently, most software reliability models, both analytical and data-
driven models, assume (explicitly or implicitly) that software faults can be 
removed immediately once they are detected. As a result, these models 
only describe the dynamic behavior of the software fault detection process 
(FDP). In real practice, after a fault is detected, it has to be reported, diag-
nosed, removed and verified before it can be noted as corrected. This re-
lated correction time is not that trivial to be ignored [30, 39]. Furthermore, 
the fault-correction time is an important factor in some management deci-
sion analysis, such as stopping time for testing, fault-correction control, 
and fault correction resource allocation. Therefore, utilizing only software 
fault detection data series can result in highly inaccurate predictions of the 
software reliability. When both fault detection and correction data series 
are available, they can be utilized by incorporating fault correction process 
(FCP) into software reliability models to make the software reliability 
models more realistic.  

Some extensions on current software reliability models have been ex-
plored. For analytical models, Schneidewind (1975) proposed to model 
fault correction process as a separate process following the fault detection 
process with a constant time lag [26]. This idea was extended in several 
ways in [35]. Schneidewind (2001) further extended the original model by 
assuming the time lag is a random variable [27]. These works are based on 
non-homogeneous Poisson process (NHPP) models where the time delay is 
the critical aspect of the modeling. As this approach is based on the tradi-
tional software reliability models, much time on modeling is saved. In ad-
dition, with only one extra factor of correction time, this model provides a 
simple analysis approach. Within the Markov framework, a non-
homogeneous continuous time Markov chain has been proposed [9]. Due 
to its complexity, analysis is not tractable and is often done trough simula-
tion. Moreover, there is a state explosion problem with such models. Simi-
larly, ANN models can also be extended to model both FDP and FCP. This 
can be done with a separate network for FCP in addition to the original one 
for FDP. As a general designation, all these modeling approaches will be 
called separate approaches, for they are developed through a separate way.  

However, applying this separate approach to either analytical or ANN 
model still fails to describe the interactions between FDP and FCP. Spe-
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cifically, the paired analytical models treat the software FDP as a NHPP  
independent from FCP and no influence from FCP is considered, while the 
influence of FDP on FCP is described by the time delay, which is not al-
ways the case for variant software testing processes. As for a separate 
ANN model, no interactions between these two processes are considered at 
all, and the two processes are treated as uncorrelated from each other. 
However, the feedback of fault correction on detection can not be ignored. 
Intuitively, slow fault correction should have negative effects on the fault 
detection process, and in extreme, it can make the successive detection 
process halt; while fast correction process would add pressure to the fault 
detection indirectly, through action on the testing personnel. In addition, as 
a following process to FDP, FCP can be described better by incorporating 
more information from FDP models. None of the above described ap-
proaches can meet this requirement. 

Compared with the analytical approach, the ANN modeling framework 
is flexible in combining multiple processes together [4], and has the poten-
tial to overcome the deficiencies described above. This problem is ex-
plored comprehensively in this chapter under this framework. The com-
bined ANN models with both the fault detection and correction processes 
are studied, focusing on the incorporation of the bi-directional influences 
between these two processes. In comparison with the former two schemes, 
more accurate prediction can be expected. Specifically, comparing with 
paired analytical models, the combined ANN model extracts the feedback 
from FCP on FDP, enabling better prediction for FDP. However, as the 
analytical models can describe the impact of FDP on FCP with time delay 
assumption, these two models would compete in predicting FCP. Com-
pared to the separate ANN model, the combined model describes better the 
influences between the two processes, so they can be expected to perform 
better in both FDP and FCP prediction. Further in this chapter two kinds of 
framework for the combined ANN model are proposed and comparisons 
among these available models are made.  

This chapter is organized as follows. In section 2, an overview on tradi-
tional software reliability models and their extensions to incorporate FCP 
is presented. In section 3, with the formulation of this problem, combined 
ANN models are described in detail. Two specific frameworks are intro-
duced, one feedforward and one recurrent, which are modeled through dif-
ferent approaches. Section 4 applies these two combined ANN models to 
real software reliability data, presenting the comparisons within the two 
frameworks. Detailed comparisons with the paired analytical models and 
separate ANN model are given in section 5. Section 6 presents our conclu-
sions and discussions on further studies on combined ANN model.  
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In this section, we provide an overview of the major modeling approaches, 
adopting the classification approach similar to [31]. Generally, software re-
liability growth models (SRGMs) have both analytical and data-driven 
models. Analytical SRGMs have three major sub-categories: non-
homogeneous Poisson process (NHPP) models, Markov models and 
Bayesian models. They are constructed by analyzing the dynamics of the 
software failure process, and their applications are developed by fitting 
them against software failure data. 

Denote N(t) as the cumulative number of software failures occurred by 
time t. The process {N(t); t≥ 0} is assumed to follow a Poisson distribution 
with characteristic MVF (Mean Value Function) m(t).By assuming perfect 
and immediate fault-correction, the failure (fault-detection) process is also 
a fault-removal process.  

Generally, different fault detection models can be obtained by using dif-
ferent nondecreasing MVF md(t). For finite md(t) models, there are two 
representative models as GO-model and S-shaped NHPP model. The GO-
model [8] describes the fault detection process with exponential decreasing 
intensity with MVF as. 

)1()( bt
d eatm −−⋅= ,  0, >ba (2.1) 

The S-shaped model [36] describes the fault detection process with an 
increasing-then-decreasing intensity, which can be interpreted as a learning 
process. The MVF is given as  

])1(1[)( bt
d ebtatm −+−⋅= , . 0, >ba (2.2) 

In both models, a is the final number of faults that can be detected by 
the testing process, and b can be interpreted as the failure occurrence rate 
per fault.  

8  .2 Overview of Software Reliability Models 

8  .2.1 Traditional Models for Fault Detection Process  

8  .2.1.1 NHPP Models 
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The best-known software reliability model, the JM-model, is a Markov 
model [14]. This model has the following underlying assumptions: 
− the number of initial software faults is an unknown but fixed constant; 
− a detected fault is removed immediately and no new fault is introduced; 
− times between failures are independent, exponentially distributed ran-

dom quantities; 
− all remaining software faults contribute the same amount to the software 

failure intensity as ψ. 
Denote N0 as the number of software faults in the software before test-

ing starts. From the assumptions, after the kth failure, there are (N0-k) 
faults left, and the failure intensity decreases to ψ(N0-k). Then the time be-
tween failures Ti, i = 1, …, N0, are independent exponentially distributed 
random variables with respective parameter as λ(i)=ψ[N0-(i-1)], i=1,…, N0. 

Bayesian analysis is a commonly accepted approach to incorporate previ-
ous knowledge in software testing. Most Bayesian formulations are based 
on the previous two kinds of models. One of the best-known Bayesian 
model is the LV-model [20]. It assumes that the time between failures are 
independent exponentially distributed with a parameter that is treated as 
random variable,  

ii tiii etf λλλ ⋅=)|( , i = 1, 2, …, n. (2.3) 

in which λi is assumed to have a Gamma prior distribution as  

( )
ii

eii
iif

λψ
α

αλαψ
ψαλ )(

1)]([
))(,|(

Γ

−
=  (2.4) 

where α is the shape parameter and )(iψ is the scale parameter depending 

on the number of detected faults. 

ANN approach to model software is originally proposed in [15]. The re-
liability prediction here is regarded as an explanatory or causal forecasting 
problem [38]. The mapping between inputs and outputs of ANN can be 
written as follows: for generalization training nt = f(tn); while for prediction 

8  .2.1.2 Markov Models 

8  .2.1.3 Bayesian Models 

8  .2.1.4 ANN Models 
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training nt = f(tn-1), where t is the time when n failures occur. Most of the 
recent models [3, 13, 25, 29] take software reliability prediction as a time 
series forecasting problem [38]. The mapping of ANN can be written as 
yt+1=f(yt ,yt -1,…,yt-p), as illustrated in Fig. 1. Different failure data and net-
work architectures are applied. yt could be the inter/accumulated failure 
time/number. Both feedforward and recurrent neural networks have been 
applied. Usually, one-step predictions are developed for the measurement 
of failure time or number, and after that multi-step predictions can be ob-
tained iteratively to show the trend of software failure behavior. ANN 
models have been successfully applied to solve software optimal release 
time problem with multi-step reliability prediction [7].  

 

Fig. 1. General Traditional ANN Model 

Analytical model extensions use SRGMs to model the fault detection 
process, and describe the fault correction process as a time-delayed process 
due to time delay for correction. With FDP modeled as Schneidewind’s 
SRGM, by assuming that fault correction has the same rate as detection, 
the FCP is modeled as a delayed FDP with a constant, random or time-
dependent time-lag [26, 27, 35]. Extensions can be made to model FDP 
with other NHPP (Non-Homogeneous Poisson Process) SRGMs and the 
FCP can be modeled as a correspondingly delayed process. GO-Model and 
delayed S-shaped model are typical NHPP models, with the S-shaped 
model focusing on describing the learning-phenomenon along with soft-
ware testing. Specifically, if FDP is modeled with GO-model, software 
FDP and FCP are described as two processes with the following paired 
characteristic MVFs (Mean Value Functions) 

General

Traditional

ANN Model

yt

yt-1
yt+1

y

8  .2.2 Models for Fault Detection and Correction Processes 

8  .2.2.1 Extensions on Analytical Models 
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If FDP is modeled as delayed S-shaped model to describe the learning 
phenomenon, the paired MVFs are given as  
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where  denotes the time-delay of FCP with respect to FDP, which can 

be a constant or a time-dependent value.  
t∆

In parallel, similar to the paired analytical models describing these two 
processes separately, traditional ANN models can also be extended to 
model both FDP and FCP in a separate way. Originally, software reliabil-
ity ANN models use the cumulative detected faults number data sequence 

{ }1 2, ,..., nd d d collected from FDP to establish the model presented in Fig. 

2a. Separately, the FCP model can be incorporated with the cumulative 
corrected faults number data sequence { }1 2, ,..., nc c c  collected from FCP. 

  

Fig. 2. Separate ANN Model Architecture, for FDP (a) and for FCP (b) 

The corresponding framework is shown in Fig. 2b. As the models for 
FDP and FCP constitute two separate networks, they are further referred to 
as separate ANN models.  
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8  .2.2.2 Extensions on ANN Models 
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In order to provide more accurate software reliability data prediction, it 
is essential to model the related dynamic phenomenon more realistically. 
Software testing (random testing) is a complicated and interactive process, 
and from the viewpoint of software reliability, there are both software fault 
detection and fault correction processes. These two processes are corre-
lated. Once a fault is detected, it will be submitted for correction. This re-
quires time for diagnosing, removal and verification. If the fault does not 
hamper the detection process, these two processes will proceed in parallel, 
but if it is so severe that the software is deemed inoperable, the detection 
process would wait until the fault is corrected; if the detection rate is very 
high, it will bring pressure to correction process, and vice versa.  

Traditional SRGMs and ANN models only describe the fault detection 
process by assuming immediate and perfect correction. The practical ex-
tensions, paired analytical models and separate ANN models mentioned in 
the previous section, account for the fault correction process. However, 
they fail to model the interactions between these two processes. In this sec-
tion, we propose the combined ANN models, as illustrated in Fig. 3, to 
model both FDP and FCP using the method of multivariate time series 
prediction [4] and to incorporate the interactions between these two proc-
esses.  

Fig. 3. General combined ANN Model 

The architecture combines the two processes in both the input and out-
put of the ANN model, and is the reason they are called combined ANN 
models. 

Specifically, there are two major kinds of ANNs: feedforward and re-
current, and both have their advantages in time series predictions. Feed-
forward ANNs have been adopted by most researchers and there are some 
“rules of thumb” to follow in modeling network architecture. Construction 
with this well-studied framework is effortless and effective. Although re-
current ANNs are less studied, they have the ability to incorporate tempo-

......
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dt+1

ct+1dt

ct

ct-w+1 General

Combined

ANN Model

8  .3 Combined ANN Models 
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ral information as they feedback inner states or outputs into the input layer. 
Both frameworks will be explored in this chapter.  

Within the framework of neural networks modeling [4, 15], we formulate 
our problem as follows. By denoting ( ), 1, 2,3...D i i =  and 

, as the cumulative number of detected faults and cor-
rected faults after testing period  respectively, we define software testing 
process as a bi-process combining both FDP and FCP, 

. With ongoing testing process, software fault-

related data can be collected as data sets 

of

( ), 1,2,3...C i i =
i
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, from the beginning of 

software system random testing until current testing period t .  and 

 are two correlated processes. To make testing related 
decisions, at the end of every testing period, we are interested in knowing 
the possible outcomes of the following time period. In other words, we 
need to develop one-step predictions based on the historical data sequence 

 to get
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, the predicted number of cumulative 

faults by the end of testing period t+1. Then with the updating of new data 
, we can evaluate the performance of the previous prediction and de-

velop the prediction for the fault number in the next interval 

. The prediction process is continually updated as new test-

ing data becomes available from ongoing testing.  

1ts +

2
2

2

ˆ
ˆ

ˆ
t

t

t

D
S

C

+
+

+

⎡ ⎤
= ⎢
⎢ ⎥⎣ ⎦

⎥

With pre-set configurations of the network, the prediction is a sequentially 
updating process, with stepwise prediction utilizing each newly collected 
software faults data from the ongoing testing.  At each point, with the lat-
est and all past data, the network is retrained for new prediction in three 

8  .3.1 Problem Formulation 

8  .3.2 General Prediction Procedure 
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specific steps: data normalization, network training, and prediction. The 
specific prediction procedure for any one point with the combined ANN 
model is described generally as follows.  

Collected cumulative software fault data  cannot be 

fed into networks directly as they need to be normalized between [0, 1]. 
Normalization functions varies, and for our case, the simple normalization 
scheme of s

1 2 1{ , ,..., , }t ts s s s−

i
norm=si/smax is adopted. As and C(i), i = 1,2,3… are in-

cremental processes, the collected or predicted data would show an in-
creasing trend, so we need to estimate the upper limit of 

and . With the available cumulative data, this value can 
be calculated by estimating the maximum possible increments of 

and . This number can be estimated from past experience of similar 
projects. Then  at the end of testing period  is calculated as 

( )D i

ˆ ( 1)D t + ˆ ( 1)C t +

d∆ c∆
maxs t

max ( , ) ( , )t
t ts Max d c Max d= + ∆ c∆  (3.1) 

To simplify our notation further we assume that { }tt ssss ,,,, 121 −K  is al-

ready normalized. 

With available normalized data, the neural networks with pre-defined con-
figuration can be trained to model these two processes. The collected his-
toric data sequence  should be grouped into as many as 

t-w past-to-future mapping patterns denoted as 
1 2 1{ , ,..., , }t ts s s s−

{ }kkwkwk ssss |,, 11, −+−− K twk ,,1, K+= .These training patterns abstract 

the historic input-output relationships of the network. The patterns are used 
to train the network by adjusting its weights and bias, which are initially 
set randomly. Typically, backpropagation algorithms are used to train the 
networks and there are some variations in the algorithms. These algorithms 
usually look for ANN parameters (weights of internodes’ connections and 
node biases) to fit the patterns by minimizing the deviation of the network 
outputs from the outputs of training patterns. To overcome the overfitting 
problem, usually the generalization technique is adopted.  

8  .3.2.1 Data Normalization 

8  .3.2.2 Network Training 
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With the trained network, which has “fit” the training patterns out of the 
collected data set , we can use the most recent w data set 

to generate the next pattern as 

. Then we can get our predictions for the 

next time point as .  
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An initialization problem exists in the training algorithms. Different ini-
tial values for network weights and bias would generate different training 
results. For the generalized training algorithm adopted here, the initial val-
ues are assigned randomly. For each point predictions, m replicated runs 
are usually performed with different initializations, and the mean is used as 
the prediction outputs [15, 29] given as 

∑
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The framework of the combined feedforward ANN model is illustrated in 
Fig. 4.  

 
Fig. 4. Combined Feedforward ANN Model Architecture 

It has inputs of both  and  and outputs of 

both  and . Specifically, the model is trained with the data from the 

bi-process  (both  and ), 

1{ ,..., }t w td − + d c

d

1{ ,..., }t w tc − +

1
ˆ

td + 1t̂c +

1 2 1{ , ,..., , }t ts s s s− 1{ ,..., }t w td − + 1{ ,..., }t w tc c− +

dt-w+1

ct-w+1

dt

dt+1

ct+1

ct

.....

.....

...

8  .3.2.3 Fault Prediction 

8  .3.3 Combined Feedforward ANN Model 

8  .3.3.1 ANN Framework 
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combined with the past information of these two interactive processes to-
gether. Then with the well trained networks, the prediction can be gener-
ated from the latest w data points 1 1,..., , , 0t w t tS S S w− + − t≤ ≤  as the fol-

lowing function: 

},,,(ˆ
111 ttwtt SSSFS −+−+ = K  (3.3) 

As an on-line prediction procedure, it starts tracking from the early 
stages of software testing. With the ongoing testing process, prediction is 
developed with the arrival of every updated data. For each single point 
prediction, the prediction is expected to be close to the collected data in the 
coming time period. Therefore, the prediction can not be evaluated until 
the next updated data is collected. As a whole, the prediction performance 
of the ANN model is evaluated with respect to all the past predictions with 
the data obtained from the whole testing process.  

Specifically, suppose dataset { }tsss ,,2,1 K  is used for network configu-

ration. Within this data set, we simulate the sequential stepwise prediction 
process as in real software testing. Assume t0 is the first point for predic-
tion, and all the preceding data points { }12,1 0

,, −tsss K  are used to train the 

network to get the prediction . With m different network initialization, 

m prediction repetitions are developed as , j = 1,2,…,m. This proce-

dure is carried on to get the following stepwise predictions , i = t

0
ˆts

jts ,0
ˆ

jis ,ˆ 0, …, 

t, j = 1,2,…,m.  
The prediction of each point is the average of the m repetitions 

∑
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j
jii s

m
s

1
,ˆ

1
ˆ ,  i = t0, …, t and the performance is evaluated with its de-

parture from the actual data as  
c
i

d
iiiiiiii SESEccddssSE +=−+−=−= 222

)ˆ()ˆ(ˆ , i = t0, …, t. 

It is expected that the selected model works well through the whole testing 
process. The overall performance of the configuration is then determined 
by 

 
 

8  .3.3.2 Performance Evaluation 
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Feedforward networks are the most common networks and are widely 
studied. There are several “rules of thumb” to develop these networks that 
we adopt here. Within the context of this specific feedforward model, we 
pre-configure the network as follows. The architecture has three layers: an 
input layer, a hidden layer, and an output layer. Each ANN has 2*w inputs, 
which corresponds to w data sets [d, c]’ presented to the network. In order 
to overcome the overfitting problem, the number of the hidden nodes 
should not be large. By comparing some practical recommendations, we 
chose this number as double the number of input nodes [38], i.e., 4*w. The 
sigmoid function (logistic) is used as the activation function for each node 
in both the hidden and the output layers. 

Using Eq. 3.4 as the performance criterion, the trial and error approach 
is used to determine the remaining parameters of the training algorithm.  

Similar to the combined feedforward ANN model, the proposed recur-
rent ANN model has the combined architecture as shown in Fig. 5, with 
feedback from the inner states to the input layer. Similarly, the model is 
trained with the data from the bi-process  (both 

 and ), combined with the past information of 

these two interactive processes together. Then with the well trained net-
works, the prediction can be generated from the latest w data points 

 as the following function: 

1 2 1{ , ,..., , }t ts s s s−

1{ ,..., }t w td − + d c

t

1{ ,..., }t w tc − +

1 1,..., , , 0t w t tS S S w− + − ≤ ≤

};,,,(ˆ
111 tttwtt StateSSSFS −+−+ = K  (3.5) 

With respect to the model constraints, some parameters can be pre-
configured as follows. Similar to the feedforward architecture, the basic 
Elman adopted here has architecture of three layers, one input layer, one 

8  .3.3.3 Network Configuration 

8  .3.4 Combined Recurrent ANN Model  

8  .3.4.1 ANN Framework 
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hidden layer, and one output layer. Differently, Elman network has feed-
back from the hidden states into the network inputs. This network has 

 inputs, which corresponds to w data sets [d, c]’ presented to the 
network. The sigmoid function (logistic) is used as the activation function 
for each node in both the hidden and the output layers. 

2*w

Fig. 5. Combined Recurrent ANN Model Architecture 

Unlike the evaluation on the combined feedforward network, the per-
formance for the combined recurrent network is evaluated differently. 
Similarly, for each single point prediction, the prediction is expected to be 
close to the collected data in the coming time period. In addition, because 
the prediction is random, some repetitions are generated and small vari-
ance is also expected. With a given dataset, which represents the history of 
a period of software testing, the configuration of network can be evaluated 
with its average performance in prediction through this period from the 
first prediction point. Different from the evaluation for the combined feed-
forward ANN model, robustness criterion is adopted for combined recur-
rent model.  

The prediction of each point is the average of the m repetitions 
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The dispersion of these m repetitions is given as  
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It is expected that the selected model works well through the whole testing 
process, and the overall performance of the configuration is evaluated by 
the following two criteria 
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However, as both criteria can be contradictory, in to balance both the 
prediction location and dispersion, their summation is used to evaluate the 
performance instead. Hence, for one specific network configurationθ , the 
performance function is expressed as 

2)( MSMSEL +=θ  (3.7) 

There is less guidance for recurrent network configuration, and also the 
network training requires much more time than feedforward networks. 
Therefore some automatic “trial-and-error” approach is useful. Evolution-
ary programming provides an approach to optimize complex problems 
with specific fitness function, which suits our problem well, i.e., to search 
for an optimal configuration setting  from the parameter space with re-
spect to fitness function of L(θ) in Eq. 3.7. In fault detection prediction, 
genetic algorithm has been applied to optimize the network architecture 
parameters to determine the number of inputs and hidden nodes for feed-
forward architecture [29]. Specially, we also make the configuration set-
ting include the algorithm parameters, for they are found to have great in-
fluence on the performance.  

∗θ

The configuration evolving process is described as following steps: 
− Step 1: Encode the configuration setting θ into chromosome. 
− Step 2: Generate an initial population of l individuals lθθθ ,...,, 21  

− Step 3: Calculate the fitness function L(θ i), i=1,2,…,l for each individ-
ual 

8  .3.4.3 Network Configuration through Evolution 
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− Step 4: Select parent settings for next generation according to the fitness 
values: 
• Crossover breeding operator 
• Mutation operator 
• Cull inferior solution 

− Step 5. Repeat step 3 until stopping criteria are met and return optimal 

setting . ∗θ

To illustrate the application of combined ANN models we apply the two 
suggested models to real data collected from a middle sized application 
software testing process. The collected interval data set includes both fault 
detection and correction data, ΔD(t) and ΔC(t), as shown in Table 1.  

Table 1. Fault detection and correction data (number per week) 

Week ∆ d(t) d(t) ∆ c(t) c(t) 

1 12 12 3 3
2 11 23 0 3
3 20 43 9 12
4 21 64 20 32
5 20 84 21 53
6 13 97 25 78
7 12 109 11 89
8 2 111 9 98
9 1 112 9 107

10 2 114 2 109
11 2 116 4 113
12 7 123 7 120
13 3 126 5 125
14 2 128 2 127
15 4 132 0 127
16 9 141 8 135
17 3 144 8 143

 
The proposed combined ANN models are used to develop one-step pre-

diction for both  and , starting from some early point and track-
ing the software testing process till the end with the continuous updating of 
collected cumulative data .  

( )D t ( )C t

With the combined ANN model, using either the feedforward or recur-
rent network architecture, some pre-configuration can be developed with 

8  .4 Numerical Analysis 
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respect to the constraints of the specific problem. At the beginning of this 
testing process, available data is scarce. Therefore, prediction needs to be 
developed as soon as possible, providing timely decision-making assis-
tance for the testing procedure. However, for such data-driven modeling 
approaches like ANN, the model cannot be well adjusted without essential 
number of data points. As a result prediction cannot begin until enough 
data is collected. To compromise, the size of sliding window w cannot be 
large, and we set it to w = 3, and start prediction from the 6th testing period. 
Then we know our combined ANN model will have 6 inputs. As to the 
number of hidden nodes and some parameters related to algorithm, they 
are configured differently for feedforward and recurrent networks. Obvi-
ously, the network model has two outputs.  

As a common “rule of thumb”, the number of hidden nodes is set to be 
double the number of input nodes. With different configurations on the 
training algorithm parameters, the following procedure is developed with 
trial-and-error to get a fully-configured network for further prediction out 
of sample. With the available data sequence as  the pre-

diction can be developed as follows.  
1 2 1{ , ,..., , }t ts s s s−

1. Data normalization:  
Based on experience from similar past projects and current testing person-
nel allocation, the expected incremental number of ( )D t∆  and  

cannot exceed 25: Max(∆d,∆c) = 25. This number if set fixed for the whole 
prediction process with ongoing testing process. The data is normalized 
with the maximum number calculated from Eq. 3.1.  

( )C t∆

2. Network training:  
With the normalized data set, the training patterns are generated for both 
frameworks respectively as { } twkssss kkwkwk ,,1,|,, 11, KK +=−+−− . 

For our case, backpropagation algorithm is adopted to train the ANN with 
the generated patterns. To improve generalization of the training, the regu-
larization method is implemented by adding the mean of the sum of 
squares of network weights and biases gi, i = 1,…,l, MSW, to the network 
performance function MSE in the following form  

(1 )regMSE MSE MSWγ γ= ⋅ + − ⋅  (4.1) 

8  .4.1 Feedforward ANN Application 
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where γ  is the performance ratio, and .
1

1

2∑
=

=
l

j
jg

l
MSW Such regulariza-

tion can force the network to have smaller weights and biases, which pro-
vides the smoother network response. It also reduces the chance of overfit-
ting.  The parameter γ  is set by trial and error  
3. Prediction:  
With the well-trained network, the latest w data is fed and the prediction is 
generated as the network outputs. 50 runs of prediction for each point are 
performed, yielding 50 predictions for point i , , i = 6, j = 1, …, 50.  

Related variances are calculated to estimate the robustness of the model.  
jis ,ˆ

The prediction process is performed from the 6th testing period till the end 
of the testing. The prediction for each point is evaluated with the updated 
fault data. The prediction sequence is obtained in the form 

{ }6 7 16 17
ˆ ˆ ˆ ˆ, ,..., ,d d d d  and { }6 7 16 17ˆ ˆ ˆ ˆ, ,..., ,c c c c . Then the prediction per-

formance of the model over the whole testing process is evaluated by 
comparing with the true data with mean squared errors calculated with Eq. 
3.4. The corresponding prediction results are summarized in Table 2.   

Table 2. One-step Predictions with Combined Feedforward ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 96.29 0.4324 0.50 73.43 0.7162 20.87
7 102.48 0.0895 42.55 94.53 0.9200 30.58 
8 113.21 0.0032 4.88 91.66 0.0138 40.23 
9 116.02 0.0024 16.12 97.76 1.0854 85.47 

10 112.80 0.0838 1.43 110.17 0.9192 1.38 
11 113.38 0.0550 6.86 111.63 0.0029 1.87 
12 118.28 0.0024 22.31 115.25 0.0012 22.53 
13 129.78 0.0062 14.30 123.50 0.0097 2.25 
14 126.86 0.0682 1.29 127.18 0.0906 0.03 
15 128.68 0.1775 11.03 129.45 0.0036 5.99 
16 134.82 0.0019 38.21 130.10 0.0153 23.99 
17 144.54 0.0066 0.29 140.42 0.0011 6.66 

Ave.  0.0774 13.31 0.3149 20.15 
 
Var in the table denotes the variance of the repeated predictions at each 

point. From Table 2, we can see that under this network configuration, the 
predictions along the period of this dataset can fit the observed value well 
with small variances.  
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Adopting similar preset architecture parameters as the feedforward 
model, the remaining architecture parameter for the recurrent model is the 
number of hidden nodes . Besides the architecture parameter, the net-

work configuration θ should also include critical training algorithm pa-
rameters. The specific prediction procedure for this dataset is similar to 
that in section 3.1. From the former analysis, we have found that the per-
formance ratio

hn

γ  is a critical parameter. Here, back-propagation algorithm 
with learning rate and momentum is adopted. These two parameters are 
important to the algorithm performance. As the learning rate is adaptive, it 
is important for network training to set a proper value for momentum .  om
The network parameters to be configured can be determined as 

[ ]γθ oh mn= , i.e. the hidden nodes number, the momentum, and the 

performance ratio. For each specific configuration, such a prediction proc-
ess is performed from the 6th testing period till the last one, obtaining pre-
dictions , i = 6,7,…,17, j =1,2,…,5. The corresponding fitness function 

value, i.e., the network performance value, can be calculated through  
jis ,ˆ

2),,( MSMSEmnL oh +=γ . 

This way, the evolving procedure in the former section is developed to find 
the proper value of [ ]∗∗∗∗ = γθ oh mn . 

Table 3. One-step Predictions with Combined Recurrent ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 95.68 0.3919 1.76 72.64 1.4984 28.71
7 102.60 0.5183 40.96 86.78 1.9346 4.94 
8 112.93 0.1001 3.72 98.83 0.2321 0.69 
9 114.82 0.0887 7.95 102.81 0.1440 17.56 

10 116.62 0.0113 6.86 108.82 0.0476 0.03 
11 117.85 0.0376 3.42 110.86 0.1338 4.58 
12 119.31 0.0517 13.62 113.52 0.1996 41.99 
13 124.07 0.1142 3.72 121.06 0.3803 15.52 
14 127.34 0.0099 0.44 126.34 0.0332 0.44 
15 129.51 0.0708 6.20 129.85 0.1820 8.12 
16 131.65 0.0000 87.42 132.73 0.0000 5.15 
17 136.02 0.0389 63.68 137.77 0.0815 27.35 

Ave.  0.1194 19.98 0.4056 12.92 

8  .4.2 Recurrent ANN Application 
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With respect to this dataset, a configuration of network has been 
evolved with genetic algorithm as the hidden nodes number = 14; perform-
ance ratio = 0.9450; momentum = 0.9711. With this configuration, 20 
more repeated predictions are obtained again for each time point. The pre-
diction results are shown in the Table 3.    

From these results, we can see that under this network configuration, the 
predictions along the period of this dataset can fit the observed value very 
well with small variances.  

Model  

Both these two types of ANN models have been applied to model soft-
ware reliability prediction. These two architectures have been also com-
pared through different criteria with respect to different dataset [7, 13, 15, 
29]. Although Elman architecture is advocated to incorporate the temporal 
patterns, there is no consistent advantage from these experimental results. 
As far as our dataset is concerned, we compare these two architectures 
with their predictive performance using both location (MSE) and disper-
sion (MS2). This is summarized in Table 4.  

Table 4. Comparison: Combined Feedforward VS Recurrent ANN 

 MSE MS2 L 
Combined Feedforward ANN models 33.46 0.3923 33.8523 

Combined Recurrent ANN models 32.90 0.5250 33.4250 

 
From this table, we can see that there is slight advantage of combined 

recurrent ANN model over feedforward model, with respect to the “ro-
bust” performance L. However, if we take the criteria of either MSE or 
MS2, contradictory conclusions will be drawn, although the differences are 
small. With respect to this data set, these two models are nearly the same. 
Therefore, both configured models can be set to develop predictions for 
the coming data points. Comparatively, combined feedforward ANN 
model would be more effective.  

In this section, we proceed to verify that the proposed combined model 
would perform better than separate models. Accordingly, the comparisons 

8  .4.3 Comparison of Combined Feedforward & Recurrent 

8  .5 Comparisons with Separate Models 
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of the combined ANN models with those two separate models mentioned 
in section 1 are developed.   

In the separate ANN model (Fig. 1.) two separate networks are mod-
eled: one for  and the other for . The comparison between com-
bined and separate ANN models is of interest because both of them are 
data-driven ANN models and their differences would focus on the effec-
tiveness of the incorporating the correlations between these two processes. 

( )D t ( )C t

For the data set in Table 1, the “online” prediction process is developed 
with separate ANN model as follows. Feedforward network is adopted and 
the configuration is as follows. In the combined ANN models, the size of 
sliding window is set at w=3 and the prediction starts from the 6th point. 
The training, prediction and evaluation procedures are also the same as 
combined models. The prediction results are listed in Table 5. 

Table 5. One-step Predictions with Separate ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 95.64 0.2296 1.84 66.17 0.3204 139.85
7 102.35 0.0263 44.23 89.78 1.4164 0.61 
8 114.27 3.4484 10.69 91.49 0.0002 42.33 
9 116.49 0.0007 20.18 100.13 0.0306 47.22 

10 108.13 0.0039 34.41 109.78 0.0025 0.61 
11 113.69 0.0014 5.35 112.23 0.0003 0.59 
12 114.90 0.0000 65.68 114.89 0.0001 26.09 
13 122.67 5.6761 11.12 117.44 0.0002 57.08 
14 129.32 0.9281 1.75 125.94 0.0002 1.13 
15 130.79 0.3720 1.47 129.84 0.0010 8.08 
16 134.54 0.0515 41.71 129.80 0.0006 27.01 
17 144.07 0.0002 0.00 135.14 0.0004 61.85 

Ave.  0.8949 19.87 0.1477 34.37 
 
From the results shown in Tables 2 - 5, we can compare these two kinds 

of models in two ways. With respect to the overall performance of MSE, 
the combined models outperform the separate one, which verifies the ad-
vantages of modeling the two processes together. In addition, from the 

prediction performance for each point,  and , we observe an in-

teresting phenomenon: prediction of the first point for  is not accept-

d
tSE c

tSE
ˆ ( )C t

8  .5.1 Combined ANN Models vs Separate ANN Model   
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able, however the first prediction for ˆ ( )D t  performs well. This reflects 
the delay of FCP over FDP, which results in some data shortage for predic-

tion of at the initial phase. Fortunately, prediction is reinforced by 

combining outputs of  and  in the combined ANN model.  

ˆ ( )C t
( )C t ( )D t

When applying paired analytical models to the fault data, one faces the 
problem of model selection for FDP from many available NHPP SRGMs. 
As far as our case (Table 1) is concerned, the interval detected faults show 
an increasing trend in the early phase of software testing. Delayed S-
shaped NHPP model is designed to describe such learning phenomenon. In 
addition, as this project takes relatively short testing period and is common 
application software, detected faults should be common ones and they are 
handed to available correctors that are stable though testing process. 
Therefore, instead of using Schneidewind’s model directly, the slight ex-
tension as described in Eq. 2.6 is adopted, assuming constant time-delay 
between FDP and FCP.  

In a similar way, “on-line” prediction is developed by fitting the model 
against historical data collected with the ongoing testing process. As a 
model-driven method, the prediction can be started from earlier points. 
However, in order to compare with the combined ANN model in the same 
time horizon, the prediction is also developed from the 6th point. The ap-
plication results of the actual data with analytical models are presented in 
Table 6.  

From the results shown in Tables 2, 3 and 6, we can see that combined 
ANN model performs over analytical model in prediction of both fault de-
tection and correction. Further observations show that large prediction er-
rors happen in the 8th, 9th, 16th and 17th points. Referring to Table 1, we see 
that these are the points where some unusual changes happen. Compara-
tively, ANN models work better on these points, showing more flexibility 
and sensitivity to the abnormal change. This difference can also be re-
garded as the difference in prediction approaches. The analytical model 
develops the prediction through fitting the historical data with respect to 
time; however, the ANN models develop networks to fit input-output pat-
terns which incorporate the trend of data inside. More importantly, the 
simple time-delay assumption between the relationship of fault detection 
and correction does not fit this dataset well. The ANN models perform bet-
ter in capturing the correlated relationships between these two processes.  

8  .5.2 Combined ANN Models vs Paired Analytical Model  
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Table 6. One-step Prediction with Paired Analytical Models 

Week ˆ( )d t  d
tSE  ˆ( )c t  c

tSE  

6 100.97 15.74 72.71 27.95
7 113.36 18.99 91.17 4.71
8 120.71 94.28 103.71 32.64
9 121.48 89.79 110.07 9.45

10 121.55 57.00 114.10 26.05
11 120.97 24.72 116.19 10.18
12 120.93 4.29 117.80 4.82
13 122.80 10.22 120.56 19.73
14 124.78 10.36 123.13 14.98
15 126.34 32.04 125.13 3.49
16 127.70 176.84 126.81 67.01
17 130.37 185.82 129.65 178.27

Ave. 55.15 28.95
 
As a short conclusion, the software fault detection and correction proc-

esses are two correlated processes, and to develop accurate predictions, in-
formation about both of them should be incorporated into the model. 
Combined ANN models are a flexible way to implement this. Paired ana-
lytical model can describe one-directional effects, and in some cases it can 
perform better. However, the combined ANN models provide a unified 
approach to model the two processes together, which is more favorable 
than the analytical approach since more effort is needed on model selection 
in the analytical approach. 

In this chapter we have studied the use of neural networks to model both 
the software fault detection and correction processes together (referred to 
as combined ANN model), focusing on describing the interactions between 
these two correlated processes. This approach is regarded as an extension 
of separate ANN model under the same modeling framework, and is a 
complement to analytical models which only describe the influence of 
FDP on FCP as a time delay. With practical software testing data, this ap-
proach shows its advantage in incorporating more information than the 
separate ANN model and paired analytical model. Also, within the com-
bined ANN models, both feedforward and recurrent frameworks perform 
well with the given dataset. 

The combined ANN models are beneficial in incorporating the correla-
tion between FDP and FCP. They model the software debugging process 
more realistically, with more accurate predictions. However, this model 

8  .6 Conclusions and Discussions 
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still has some aspects for further investigation. First, faults number is one 
important measure of software reliability, and predictions on some other 
measure such as detection rate would be interesting. [33] showed detection 
rate can be assumed to be the same as earlier projects/versions, and ANN 
models would help abstract this information when datasets from previous 
projects are available. Second, FCP is different from FDP, where some 
fault-correction factors (such as personnel) can be controlled. With more 
understanding of the interactions between FDP and FCP, some useful 
software fault correction policies can be proposed for more effective test-
ing resource allocation. Third, software reliability prediction is just an ini-
tial step of reliability analysis. The prediction results need to provide assis-
tance on decision-making for testing management. With potential to 
provide more accurate and multi-step predictions, and with the modeling 
of both fault-detection and correction processes, the combined ANN mod-
els are expected to be more helpful in testing management, such as deci-
sions on stopping time. Application of this software reliability approach to 
decision problems with larger datasets will be useful in further understand-
ing its potential. 
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