
Neural Networks for Reliability-Based Optimal
Design

Ming J Zuo, Zhigang Tian

Department of Mechanical Engineering, University of Alberta, Canada

Hong-Zhong Huang

School of Mechanical and Electronic Engineering, University of Electronic
Science and Technology of China, P.R. China

Today’s engineering systems are sophisticated in design and powerful in
function. Examples of such systems include airplanes, space shuttles, tele-
communication networks, robots, and manufacturing facilities. Critical
measures of performance of these systems include reliability, cost, and
weight. Optimal system design aims to optimize such performance meas-
ures.

The traditional system reliability theory assumes that a system and its
components may only experience one of two possible states: working or
failed. As a result, we call it binary reliability theory. Under the binary as-
sumption, the reliability of a system is defined to be the probability that the
system will perform its functions satisfactorily for a certain period of time
under specified conditions. The reliability of a system depends on the reli-
abilities of the constituent components and the configuration of the system.
A design of a system provides a specification of the reliabilities of the
components and the system configuration. In optimal system design, one
aims to find the best design that optimizes various measures of perform-
ance of the system.

M.J. Zuo et al.: Neural Networks for Reliability-Based Optimal Design, Computational Intelligence

www.springerlink.com
in Reliability Engineering (SCI) 40, 175–196 (2007)

 © Springer-Verlag Berlin Heidelberg 2007

7 .1 Introduction

7 .1.1 Reliability-based Optimal Design

One of the most studied system configurations in the literature is the se-
ries-parallel system configuration. A series-parallel system consists of N
subsystems connected in series such that the system works if and only if all
the subsystems work wherein subsystem i (1≤i≤N) consists of ni compo-
nents connected in parallel such that the subsystem fails if and only if all
the components in this subsystem fail. Fig. 1 shows such a series-parallel
configuration. The reliability of such a series-parallel system is expressed
as:

1 1

1 (1)
inN

s i
i j

R p
= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∏ ∏ ,j (1)

where pij is the reliability of component j in subsystem i. For such a sys-
tem, a typical optimization problem involves finding the number of paral-
lel components in each subsystem to maximize system reliability subject to
constraints on budget, volume, and/or weight. Requirement on system reli-
ability may be treated as a constraint while one of the constraints may be
treated as the objective function to be maximized or minimized. It is a
nonlinear programming problem involving integer variables. Since the fo-
cus is on finding the optimal redundancy level in each subsystem, such an
optimal design problem is also referred to as a redundancy allocation prob-
lem.

……

1

2

n1

…

1

2

n2

…

1

2

nN

1S 2S NS

Fig. 1. Structure of a series-parallel system

Many variations of the redundancy allocation problem have been stud-
ied in the literature. The design variables may include the number of re-
dundant components in each subsystem, the reliability value of each com-
ponent, and the selection of component versions that are available on the
market. The redundancy structure in each subsystem may be in the form of
k-out-of-n (Coit and Smith 1996) or in the form of standby (Zhao and Liu

176 Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 177

2004). The constituent components have also been modeled as being
multi-state (Liu et al 2003) or having fuzzy lifetimes (Zhao and Liu 2004).

Another well studied system configuration in the literature is a general
network configuration. A network consists of nodes and links. One is in-
terested in determining what links should be present between pairs of
nodes. The measure of performance of the network to be optimized may be
cost, two-terminal reliability, or all-terminal reliability (AboElFotoh and
Al-Sumait 2001 and Srivaree-ratana et al 2002). Such optimization prob-
lems are non-linear integer programming problems.

A major challenge in reliability based optimal design problems is the
evaluation of system reliability given a system design. This is a time-
consuming task for large systems. In optimal system design, system reli-
ability has to be evaluated frequently for each candidate design. Thus, effi-
cient algorithms for system reliability evaluation are essential for solving
these problems.

To search for optimal solutions of reliability-based optimal design prob-
lems, efficient optimization algorithms are needed. Kuo et al. (2001) sur-
veyed and classified optimization techniques for solving redundancy allo-
cation problems. They compared the pros and cons of the following
classical optimization techniques: integer programming, transforming non-
linear to linear functions, dynamic programming, the sequential uncon-
strained minimization technique (SUMT), the generalized reduced gradient
method (GRG), the modified sequential simplex pattern search, and the
generalized Lagrangian function method. Other examples of integer pro-
gramming solutions to the redundancy allocation problems are presented
by Misra and Sharma (1991), Gen et al. (1990), and Gen et al. (1993). In
the process of searching for more efficient optimization algorithms, re-
searchers have used artificial neural networks (ANN) as a function ap-
proximator and as an optimizer for solving all kinds of reliability based de-
sign problems.

Neural networks consist of simple elements called neurons operating in
parallel. The structure of neural networks is inspired by biological neuro-
logical systems. According to Rojas (1996), McCulloch and Pitts intro-
duced the first abstract model of neurons by mimicking biological neurons
and Hebb presented a learning law so that a network of neurons can be

7 .1.2 Challenges in Reliability-based Optimal Design

7 .1.3 Neural Networks

178

trained. The research on neural networks achieved significant progress in
the 1980s. Neural network models have found many applications in the
past fifteen years.

Neural networks have been trained to perform complex functions in
various fields of application including pattern recognition, identification,
classification, speech, vision and control systems (Rojas, 1996). Neural
networks can be trained to solve problems that are difficult for conven-
tional computers or human beings. The advantages of neural networks in-
clude: (1) Adaptive learning: an ability to learn how to do tasks based on
the data given for training or initial experience. (2) Self-organization: an
neural network can create its own organization or representation of the in-
formation it receives during learning time. (3) Real time operation: neural
network computations may be carried out in parallel, and special hardware
devices are being designed and manufactured which take advantage of this
capability. (4) Fault tolerance via redundant information coding: partial
destruction of a network leads to the corresponding degradation of per-
formance. However, some network capabilities may be retained even with
major network damage.

Two types of neural networks are most widely used in reliability-based
optimal design: feed-forward neural networks as a function approximator,
and Hopfield networks as an optimizer. These two types of neural net-
works and their applications will be discussed in details in the following
sections.

In this chapter, we explore the applications of artificial neural networks for
solving reliability-based optimal design problems. The remaining part of
this chapter is organized follows. In Section 2, we summarize the advan-
tages of artificial neural networks that are specifically useful for solving
reliability based optimal design problems. The use of ANN as a function
approximator is presented in Section 3 while the use of ANN as an opti-
mizer is given in Section 4. Section 5 provides a summary and points out
future research topics in application of ANN for solving reliability based
design problems.

7 .1.4 Content of this Chapter

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 179

The most widely used type of neural networks is the feed-forward neural
network. The structure of a feed-forward neural network with three layers
is shown in Fig. 2. It has one input layer, one hidden layer, and one output
layer. A feed-forward neural network is used for nonlinear mapping. That
is, based on the available data sets of input and output pairs, a neural net-
work can be trained to model the mapping relationship between inputs and
outputs.

For example, from function , we generate five input/output pairs:
[1, 1], [2, 4], [3, 9], [4, 16], and [5, 25]. The neural network we are using
should have one neuron in the input layer and one neuron in the output
layer, since there are only one input and one output. In this example, we
can simply use one hidden layer with 3 hidden neurons. After training with
the provided training pairs, the neural network can pretty much model the
hidden mapping relationship , and thus we can calculate what is the
output value when the input is say 1.5.

2xy =

2xy =

Input
Layer

Output
Layer

Hidden
Layer

Fig. 2. Structure of a feed-forward neural network

Approximator
7 .2 Feed-forward Neural Networks as a Function

7 .2.1 Feed-forward Neural Networks

180

A three-layer feed-forward neural network is capable of modeling any
nonlinear mapping (Rojas, 1996). A feed-forward neural network may
have more than three layers. However, too many hidden layers make the
model more complex and the generalization capability of the network will
become worse. Thus, feed-forward neural networks with one or two hid-
den layers are the most widely used ones in practical applications. Build-
ing nonlinear mapping relationship is a major advantage of feed-forward
neural networks. We do not have to know the interior mechanism of the
system to be modeled. As long as we have a set of input and output pairs,
the feed-forward neural network can be trained to approximate the rela-
tionship between the output and the input to any specified degree of accu-
racy.

The function represented by a neural network model is determined
largely by the connections between neurons. We can train a neural network
to perform a particular function by adjusting the values of the connections
(weights) between neurons (Rojas, 1996). Typically many input/output
pairs are used in the process called supervised learning to train a network.
The back-propagation (BP) algorithm is a widely used training algorithm
for feed-forward neural networks. The BP algorithm aims at minimizing
the following error function:

()∑ −=
j

jj vTE 2
2
1

 (2)

where represents all the neurons in the output layer, is the desired

output in the training pair, and is the actual output from the current

neural network. The procedure of BP algorithm is shown as follows (Fu,
1994).

j jT

jv

The Backpropagation Algorithm

A. Initialization. Set all weights and node thresholds to small random
numbers. Give each neuron an index (including the input neurons).

B. Feed-forward calculation. Use to denote the output of neuron .

(1) The output of an input neuron is equal to the input value. (2) The out-
put of a hidden neuron or output neuron is:

jv j

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

i
jijij vwFv θ (3)

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 181

where is the weight from neuron i to j, jiw jθ is the threshold, and F is

the so-called activation function. In a feed-forward neural network, a neu-
ron only gets inputs from the immediately preceding layer. A commonly

used activation is the sigmoid function given by: () ()xexF −+= 11 .
C. Backpropagation weight training. (1) Start from the output layer and

work backward to the hidden layers recursively to calculate error jδ . For

output neurons:

()()jjjjj vTvv −−= 1δ (4)

For hidden neurons:
()∑−=

k
kjkjjj wvv δδ 1

(5)

where kδ is the error at neuron k to which a connection points from hid-

den neuron . (2) Adjust the weights as follows: j

ijji
jijiji

vw
wtwtw

ηδ=∆
∆+=+)()1(

 (6)

where η is the positive scalar and called learning rate.
D. Repeat the feed-forward calculation and backpropagation weight

training until the stopping criterion in terms of output errors is met.
Other techniques can be applied to improve the BP algorithm, like using

the momentum terms. There are also other training algorithms based on
other optimization methods, such as quasi-Newton methods and conjugate
gradient methods (Rojas, 1996).

The ability of ANN to approximate a function of many variables to any
degree of accuracy has been put into good use in solving reliability based
optimal design problems. Coit and Smith (1996) used ANN to estimate the
reliability of a series-parallel system wherein each subsystem has a k-out-
of-n configuration in order to solve the optimal redundancy allocation
problem. Zhao and Liu (2004) considered a series-parallel system wherein
the redundancy configuration may be either parallel or standby and the
lifetime of the system and that of each component is modeled as a fuzzy
random variable. They used an ANN model to approximate the expected
system lifetime and system reliability as a function of the redundancy lev-
els and component lifetimes. Liu et al (2003) used ANN to approximate
the expected system utility of a series-parallel system wherein the state of
the system and that of each component is modeled as a continuous multi-

182

state random variable. Huang et al (2005) used an ANN model to represent
the relationship between a designer’s preference score and the performance
measures such as cost, reliability, and weight of the system given a spe-
cific design as a part in their integrated interactive multi-objective optimi-
zation approach. Srivaree-ratana et al (2002) used an ANN model to repre-
sent the relationship between the all-terminal reliability of a network and
the failure-prone links to be installed in the network. Papadrakakis and La-
garos (2002) used an ANN model to represent the relationship between
performance measures such as stress and failure probability and the design
variables in optimal design of large-scale 3-D frame structures. These uses
of ANN as a function approximator will be discussed in details in this sec-
tion.

In a feed-forward ANN, the number of layers, the number of neurons in
each layer, and the connection weights between neurons define the struc-
ture of the ANN. Training data specify the desired relationship between
output and input. Through training, a feed-forward ANN can be used to
approximate any continuous function to any degree of accuracy (Cybenko
1989). This capability has been used in many reliability based optimization
problems. In this section, we summarize applications of ANN as a function
approximator.

Series-parallel System

Liu et al (2003) report a study on optimal redundancy allocation for a con-
tinuous-state series-parallel system. The structure of the considered multi-
state series-parallel system can also be represented by Fig. 1. It consists of
N subsystems, S1 to SN, connected in series. Each subsystem, say Si, has

identical components connected in parallel. The state of each component
and the system may be modeled as a continuous random variable taking
values in the range of [0, 1]. The definition of a multi-state series-parallel
system provided by Barlow and Wu (1978) is used here. That is, the state
of a parallel system is the state of the best component in the system while
the state of a series system is the state of the worst component in the sys-
tem. Let x

in

ij denote the state of component j in subsystem Si. Then, the sys-
tem state can be expressed as

ij
njNi

xφ
i

maxmin
11

)(
≤≤≤≤

=x

7 .2.2 Evaluation of System Utility of a Continuous-state

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 183

When the system is in state s, the utility of the system is denoted by µ(s).
Given the state density function of each component, namely fij (s), we can
evaluate the state distribution of the system. With the system state distribu-
tion obtained, we can then find the expected utility of the system.

The design problem concerned is maximization of the expected system
utility subject to cost constraints through determination of the optimal re-
dundancy level in each subsystem. The optimization model is as follows:

TC

s
N

i

in

j

s
ttijf

s
sµ),n,,nU(n

N

i

n

j
C

i
ij

N

≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∏
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏
=

−−=

∑
=

∑
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∫ ∫

1 1

:Subject to

 :Maximize

1

0
d

1 1 0
)d(1

d

d
)(21 L

(7)

where Cij is the cost of component j in subsystem i and CT is the total
budget allowed.

This optimization model includes both integration and differentiation in
the objective function. The objective function is very complicated and the
problem is very difficult to solve using a classical optimization algorithm.
This situation arises when (1) the number of subsystems, N, is large; (2)
the state distributions of components in the same subsystem are not identi-
cal; and/or (3) component state distribution is not a simple distribution. In
addition, in some cases, the component state distribution function may
have to be expressed in an empirical form and, as a result, no analytical
expression of)(,,, 21 NnnnU L is available. The critical problem is that

evaluating this utility function directly is very time-consuming, and thus
evaluating it repetitively in the optimization process is very hard and
sometimes impossible.

The system state distribution is defined as:),,,,(21 Nnnnsg L

∏ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫−=

= =

N

i

n

j

s
ijN

i
ttfnnnsg

1 1 0
21)d(1),,,,(L (8)

Liu et al (2003) use feed-forward neural networks to approximate this sys-
tem state distribution. They use a three-layer neural network, with sigmoi-
dal activation functions used in the hidden layer, and linear activation
functions used in the output layer. Training and testing (validation) data
sets are generated as follows: first, a suitable number of input vectors,
(), are chosen or generated randomly from the allowed N21 ,,,s, nnn L

184

value ranges of s , , , …, and ; next, the input vectors are normal-

ized and for each input vector, the desired output, , is

calculated with equation (8). The training and testing data sets consist of
different pairs of the input vector and its corresponding output.

1n 2n Nn

),,,,(21 Nnnnsg L

No matter how complicated might be, the approxi-

mate analytical expression of system distribution function,
, is always a linear combination of a finite number of

sigmoidal functions. The approximate objective function

),,,,(21 Nnnnsg L

),,,(ˆ 21 nnsg L, Nn

)(ˆ ,,, 21 NnnnU L

constructed from usually has analytical expression

(Liu et al 2003), and thus much less time-consuming to calculate. And the
redundancy allocation of continuous-state series-parallel systems can be
implemented more efficiently. The following example is given to illustrate
this approach (Liu et al 2003).

),,,,(ˆ 21 Nnnnsg L

Example 1

In this example, we use a 4-stage series-parallel system, in which N = 4;

µ(s)=10s; C1i =3200; C2i=1700; C3i =830; C4i=2500; and CT =160,000. The
probability density functions of components in the four subsystems are
three commonly used distributions: unit distribution, triangular distribution
and Beta distribution.
f1i=1: unit distribution;
f2i=2s: triangular distribution;

11
3)1(

)()(
)(

)(−− −
ΓΓ
+Γ

= βα
βα
βα

sssf i : Beta distribution where α = 2, β = 3.5;

11
4)1(

)()(
)(

)(−− −
ΓΓ
+Γ

= βα
βα
βα

sssf i : Beta distribution where α = 5, β = 2.

The density functions of the components in the 4 subsystems are plotted
in Fig. 3.

The desired output targets for ANN training, i.e., actual system distribu-
tion function, are calculated with

∏ ∏ ∫−=
= =

4

1 1
0 d14321

i j

s
ij))t(t)f(() n nng(s, n

in
,,, (9)

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 185

465561306350

5315454153122111

n
)ss(

n
).

).s(.).s(.((
n

)s(
n

s)(

+−+

−−−−−−=

Fig. 3. Component state distribution functions for Example 1

We can see that although equation (9) is also complicated, it is calcula-
ble. But the objective function as in Equation (7) is too

complex and seems impossible to calculate analytically.

)(4321 ,n,n,nnU

On the contrary, it is straightforward to solve this optimization problem
using the ANN approximation. After training the neural network and ob-
taining the approximate system distribution function , we

can construct the approximate objective function

)(ˆ 4321 ,n,n,nng

)(4321 ,n,n,nnU
)

, which is

an analytical expression (Liu et al 2003).
The training data set containing 1600 training pairs is generated ran-

domly. The size of the hidden layer is 19. After 2500 epochs of training it-
erations, the actual percent training error is 0.9859%. The maximum vali-
dation error is 2.4532%. After an exhaustive search, the final optimal
solution is

M1=14; M 2=9; M 3=36; M 4=15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

f1i
f2i
f3i
f4i

186

and the corresponding approximate utility is 4384.8)32,(12,7,35 =U
)

.

Approximator

Coit and Smith (1996) consider the optimal design problem of a series sys-
tem with k-out-of-n redundancy. In such a system structure, there are N
subsystems connected in series and each subsystem adopts a k-out-of-n
structure. The optimal design model aims to find the optimal number of
components ni in subsystem i (ni ≥ k) such that the system cost is mini-
mized subject to system reliability constraints. For each subsystem, several
types of components are available for selection. The number of compo-
nents of each available type needs to be determined so that we can find the
total number of components of possibly different types for each subsystem.
The decision variable values are determined through an optimization proc-
ess using genetic algorithms. However, the reliability of the system for
each candidate design must be evaluated. This may be a time-consuming
process.

In developing the ANN model for the purpose of reliability estimation
of a k-out-of-n system, Coit and Smith (1996) use full factorial design of
the critical parameters k, n, and three underlying distributions (uniform,
quadratic skewed-left and quadratic skewed-right) in equal proportions for
component reliabilities. The skewed distributions are used to make sure
that the developed ANN model is accurate for high component reliabilities
or low component failure probabilities. Analytical methods are used to find
the training data for the neural networks.

Since the ANN model is developed for estimation of the reliability of a
k-out-of-n system structure, it actually includes the parallel redundancy as
a special case. This makes the ANN model more general than for a simple
parallel structure. However, caution has to be taken in assessing the error
in the estimate of the reliability of the k-out-of-n subsystem. When these
reliability values of the subsystems are multiplied together to get the sys-
tem reliability, these errors may be magnified (Coit and Smith 1996). One
needs also to take into consideration the optimizer to be used in the train-
ing of the ANN model.

7 .2.3 Other Applications of Neural Networks as a Function

7 .2.3.1 Reliability Evaluation of a k-out-of-n System Structure

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 187

Under Fuzzy Environment

Zhao and Liu (2004) consider the problem of redundancy allocation of a
series system with parallel redundancy or standby redundancy. The system
has n subsystems connected in series. Subsystem i (1 ≤ i ≤ n) has ni com-
ponents either connected in parallel or connected in standby. The lifetime
of each component can be represented by a fuzzy random variable. The
measures of performance of the system may be the expected lifetime of the
system, system reliability, or the so-called (α,β)-system lifetime (Zhao and
Liu 2004).

The key for solving this optimal allocation problem is to evaluate the
expected lifetime of the system, system reliability, and the so-called (α,β)-
system lifetime. For a given design, a random fuzzy simulation approach
was proposed by Zhao and Liu (2004) to evaluate these performance
measures. Since this approach is very time-consuming, they used it to gen-
erate training data to train a feedforward ANN which will then be used to
approximate these measures of performance during the design optimiza-
tion process. The used ANN model has one input layer, one hidden layer,
and one output layer. The number of neurons in the input layer is equal to
the number of decision variables. The number of output neurons is equal to
the number of performance measures of interest. The number of neurons in
the hidden layer is determined by the pruning algorithm of Castellano et al
(1997).

Once the ANN model is trained, it is used as a function approximator in
the optimization model. Genetic algorithms are used to solve the optimiza-
tion problems. Examples are used to illustrate this approach for solving re-
dundancy allocation problems including parallel redundancy and standby
redundancy.

Srivaree-ratana et al. (2002) consider a network design problem in which
the nodes are fixed and perfect while the links are failure prone. The ques-
tion to be answered is what links should be installed to minimize the total
cost of installing these selected links subject to requirement on all-terminal
reliability of the network.

The most time-consuming task in this network design problem is the
evaluation of all-terminal reliability given a network design. Approaches
such as enumeration and Monte Carlo simulation can be used for evalua-
tion or approximation of network reliability, but they are very time-
consuming. Srivaree-ratana et al (2002) decide to use ANN to estimate the

7 .2.3.2 Performance Evaluation of a Series-parallel System

7 .2.3.3 Evaluation of All-terminal Reliability in Network Design

188

all-terminal reliability as a function of a selected design. A feedforward
ANN model is adopted and the backpropagation training algorithm is used.
A hyperbolic activation function is used for all neurons and a learning rate
of 0.3 is used for hidden neurons and of 0.15 is used for the output neu-
rons. The total number of hidden neurons is chosen to be identical to the
number of input neurons.

Experiment results provided by Srivaree-ratana et al (2002) show that
the ANN model works very well for estimating all-terminal reliability. Fu-
ture research topics may include fine tuning the ANN model and imbed
occasional evaluation of the exact all-terminal reliability of preferred de-
signs.

scale Structural Design

Reliability based optimal design of large-scale structural systems is ex-
tremely computation intensive. Papadrakakis and Lagaros (2002) address
the optimal design of multi-storey 3-D frames. The goal is to minimize the
weight of the structure subject to constraints on allowed stress, displace-
ment, and failure probability. Due to the randomness in loads to be ap-
plied, material properties, and member geometry, evaluation of the stress,
displacement, and failure probability given a structure designed is very
time-consuming.

The measures such as stress, displacement, and failure probability can
be evaluated using finite element method, the limit elasto-plastic method,
and Monte Carlo simulations given certain design parameters. These cal-
culated values and the corresponding design parameters can then be used
as the training data set for training of a feedforward ANN which can then
be used for approximation of these measures during the optimization proc-
ess. The actual optimization algorithm used is the genetic algorithm. Nu-
merical results are presented to illustrate the effectiveness of the proposed
approaches.

There are more application examples of neural networks as function ap-
proximator in the literature, like the representation of the preference struc-
ture of the designer in multi-objective design optimisation (Huang et al
2005).

7 .2.3.4 Evaluation of Stress and Failure Probability in Large-

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 189

Another widely used structure of ANN is the Hopfield network (Hopfield
1982, Hopfield and Tank 1985). In a Hopfield network, all neurons are in a
single layer (Fig. 4). Every pair of neurons are connected with the same
connection weights. That is

ijji ww = , for ji ≠

0=iiw
(10)

Each neuron may represent a binary variable because its output may take
values of 0 or 1 only. An activation function is used to map the total input
to a neuron to a 0-1 output value.

Fig. 4. Structure of a Hopfield network

Through a dynamic update equation of the input value of each neuron,
the Hopfield ANN converges to a state that minimizes an energy function
of the neural network. Consider a Hopfield ANN with n neurons wherein
wij denotes the connection weight between neurons i and j, ui the input to
neuron i, vi = F(ui) the output of neuron i through activation function F(.),
and iθ the bias of neuron i. Then, the energy function of the ANN is given

by Hopfield and Tank (1985) as:

E = ∑∑ ∑
== =

−−
n

i
ii

n

i

n

j
jiij vvvw

11 12
1 θ (11)

The dynamics of the Hopfield ANN is defined as

7 .3 Hopfield Networks as an Optimizer

7 .3.1 Hopfield Networks

190

∑
=

+=
n

j
ijij

i vw
dt

du

1

θ (12)

Equation (12) actually represents the steepest descent direction of the en-
ergy function given in equation (11). If the input to neuron i, ui, is updated
following the direction given by equation (12), the energy function will
converge to a local minimum. This is why the Hopfield ANN can be used
to solve optimization problems.

A major advantage of Hopfield networks is their efficiency in solving
optimization problems (Nourelfath and Nahas, 2003). Such an ANN as an
optimizer was first introduced by Hopfield and Tank (1985). The concept
of quantized neurons was introduced by Matsuda (1999). AboElFotoh and
Al-Sumait (2001) used Hopfield networks for solving a network design
problem. Nourelfath and Nahas (2003) used quantized Hopfield networks
for selection of the components in a series system for system reliability
maximization. These uses of ANN as an optimizer will be discussed in de-
tails in this section.

The key in the use of a Hopfield ANN for solving reliability optimiza-
tion problems is in formulation of the energy function and definition of de-
cision variables vi. In this section, we summarize the work reported by
AboElFotoh and Al-Sumait (2001) and Nourelfath and Nahas (2003) for
this purpose.

AboElFotoh and Al-Sumait (2001) considered a network design problem.
There are n perfect nodes in the network. The question to be answered is
what links should be installed to minimize the total cost of the network
subject to all-terminal reliability requirement. The reliability and the cost
of each possible link are given as data.

Notation:

n Number of nodes in the network
i, j Network nodes
(i, j) The link between node i and node j
pi,j Reliability of link (i, j)
ci,j Cost of link (i, j)
R0 All-terminal reliability requirement of the network
RS All-terminal reliability of the network
vi,j Takes the value of 1 if link (i, j) is selected and 0 otherwise

7 .3.2 Network Design with Hopfield ANN

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 191

A, B, C Positive constants that may be adjusted in the optimization
process

The optimization model for the network design problem is

Minimize ∑∑
= =

n

i

n

j
jiji vc

1 1
,,

Subject to: RS ≥ R0

(13)

To use a Hopfield ANN to solve this optimization problem, AboElFotoh

and Al-Sumait (2001) use (i, j) to denote a neuron and the following to
present the energy function:

0
1 1

,, B RRCvcRAE S
n

i

n

ij
jijiS −⋅++⋅−= ∑ ∑

= +=
 (14)

This energy function consists of three terms added together. Since we
are to minimize this energy function, the first encourages network reliabil-
ity maximization, the second term encourages cost minimization, and the
third term discourages the ANN from adding new links to increase net-
work reliability unnecessarily over R0. The negative derivative of the en-
ergy function given in equation (14) with respect to each decision variable
vi,j is given by

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<−
∂
∂

⋅+

>−
∂
∂

⋅−

=
∂
∂

−
0,

,

0,
,

, if)(

if,)(

RRBc
v

R
CA

RRBc
v

R
CA

v

E

Sji
ji

S

Sji
ji

S

ji
, (15)

The update equation for the input ui,j is then given by

ji
jiji v

E
tutu

,
,,)()1(

∂
∂

+=+ (16)

To use the above equations, one has to have an algorithm to calculate
the all-terminal reliability for each given network design. Since this is an
NP-hard problem, AboElFotoh and Al-Sumait (2001) provide a lower
bound and upper bound on this network reliability. Either bound may be
used in equation (14) to approximate the reliability of the network. The ac-
tivation function used is a simple threshold function, namely

192

⎪
⎩

⎪
⎨

⎧
<
>

=
otherwise,unchanged

LTPif,0

UTPif,1

, i

i

ji u

u

v , (17)

where UTP and LTP are the threshold values.
Many network cases were generated to test the Hopfield ANN approach

for this network design problem. AboElFotoh and Al-Sumait (2001) con-
clude that this approach is very efficient for design of large networks but
does not guarantee global optimal solutions. Possible future research work
include consideration of node failures, more efficient algorithm for evalua-
tion of all-terminal network reliability, and better rules for selection of pa-
rameters of the energy function.

Nourelfath and Nahas (2003) considered a series system with N compo-
nents. For component j (1≤ j ≤ N), there are Mj choices available. These
choices correspond to different costs, reliabilities, weights, and possibly
other characteristics. We are interested in making a choice for each of the
N components such that system reliability is maximized subject to cost and
other constraints. The optimization model for this problem can be ex-
pressed as

Maximize = SR ∏ ∑
= = ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛N

j

M

i

j
i

j
i

j

Rx
1 1

Subject to: ∑ ∑
= =

≤
N

j

M

i

j
i

j
i

j

BxC
1 1

Njx
jM

i

j
i ,,2,1,1

1
L=∀=∑

=

(18)

where is the system reliability, is the reliability of choice i for

component j, is the cost of choice i for component j, B is the budget

for the system, and is a 0-1 variable that takes the value of 1 if choice i

is selected for component j. This is a 0-1 non-linear programming problem.
However, the objective function can be transformed into a linear function
as follows (Nourelfath and Nahas 2003):

SR j
iR

j
iC

j
ix

7 .3.3 Series System Design with Quantized Hopfield ANN

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 193

Minimize ∑ ∑
= =

=−=
N

j

M

i

j
i

j
iS

j

RxR
1 1

lnlnψ . (19)

With this transformation, the optimization problem becomes a 0-1 linear
programming problem.

Without loss of generality, the budget amount B is assumed to be an in-
teger value. After introducing a slack variable t to convert the inequality
constraint into an equality constraint, the optimization model becomes:

Minimize ∑ ∑
= =

=−=
N

j

M

i

j
i

j
iS

j

RxR
1 1

lnlnψ

Subject to ∑∑
= =

=+
N

j

M

i

j
i

j
i

j

BtxC
1 1

 Njx
jM

i

j
i ,,2,1,1

1
L=∀=∑

=

 are 0-1 variable and t is integer. j
ix

(20)

Though the Hopfield ANN in its originally proposed form allows only
0-1 variables, the quantized Hopfield ANN developed by Matsuda (1999)
can be used to deal with integer variables too. Applying this model,
Nourelfath and Nahas (2003) use the following energy function of the
quantized Hopfield ANN for solving the series system optimization prob-
lem:

∑ ∑

∑ ∑∑ ∑

= =

= == =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−++

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

N

j

M

i

j
i

N

j

M

i

j
i

j
i

N

j

M

i

j
i

j
i

j

jj

x
A

BtCx
A

Rx
A

E

1

2

1

3

2

1 1

2

2

1 1

1

1
2

2
ln

2
, (21)

where A1, A 2, and A 3 are positive parameters.

Simulation studies are conducted to test the quantized Hopfield ANN
model for the series system optimization problem. The following two
forms of optimization objectives other than that in equation (20) were
tested as well

194

Minimize ∑ ∑
= =

=
N

j

M

i
j

i

j
i

j

R
x

1 1 ln

1ψ , and

Minimize , ∑ ∑
= =

⎟
⎠
⎞⎜

⎝
⎛ −=

N

j

M

i

j
i

j
i

j

Rx
1 1

ln1ψ

(22)

and simulation results showed that no effects occur when considering these
forms of objective functions.

Nourelfath and Nahas (2003) conclude that the quantized Hopfield
ANN reduces the number of neurons needed to represent the series system
optimization model and as a result reduces the computation time in finding
optimal solutions. Unfortunately, the quantized Hopfield ANN does not
guarantee global optimal solutions either. Other possible future research
topics include application of this model to solving other reliability based
optimization problems.

Reliability based optimal design presents challenging optimization prob-
lems. These problems often involve time-consuming tasks of evaluation of
various system performance measures such as reliability, expected utility,
lifetime, stress, displacement, and failure probability. Neural network
models have been used for the purpose of function approximation to sig-
nificantly reduce the computation needs in the on-line optimization process
because ANN models can be trained off-line. The Hopfield ANN model
has also been used as a local optimization routine in search for optimal so-
lutions.

When ANN is used for function approximation, the main concern is its
accuracy. Usually the ANN approximation can not be 100% accurate. To
have a better accuracy, a larger training sample size is required, which
leads to more computation efforts. The users need to verify the accuracy of
ANN approximation, and find out whether or not the accuracy is accept-
able. When ANN is used as an optimizer, the main concern is its local op-
timisation characteristic. It is possible that the global optimum can never
be reached.

Future research directions for application of ANN models in reliability
based design includes improvement of the global search ability of the Hop-
field neural networks, systematic selection of the parameters of the energy
function of the Hopfield neural networks, combination of ANN function

7 .4 Conclusions

Ming J Zuo et al.

Neural Networks for Reliability-Based Optimal Design 195

approximator with occasional evaluation of the exact values of the func-
tions being approximated, the issue of error propagation in the function
approximators, and the interaction between the function approximator and
the actual optimization routine used.

References

H.M.F. AboElFotoh and L.S. Al-Sumait, (2001) A neural approach to topological
optimization of communication networks, with reliability constraints. IEEE
Transactions on Reliability, Vol. 50, No. 4, pp. 397-408.

R.E. Barlow and A.S. Wu, (1978), Coherent systems with multi-state Compo-
nents, Mathematics of Operations Research, Vol. 3, No. 4, pp. 275-281.

G. Castellano, A.M. Fanelli and M. Pelillo, (1997) An iterative pruning algorithm
for feedforward neural networks, IEEE Transactions on Neural Network, Vol.
8, pp. 519–537.

G. Cybenko, (1989), Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals, and systems, Vol. 2, No. 4, pp. 303-314

D.W. Coit and A.E. Smith. (1996) Solving the redundancy allocation problem us-
ing a combined neural network/genetic algorithm approach. Computers &
Operations Research, Vol. 23, No. 6, pp. 515-526.

L. Fu, (1994), Neural Networks in Computer Intelligence, McGraw-Hill, Inc.,
New York.

M. Gen, K. Ida and J. U. Lee, (1990), A computational algorithm for solving 0-1
goal programming with GUB structures and its applications for optimization
problems in system reliability, Electronics and Communication in Japan: Part
3, Vol. 73, pp. 88-96.

M. Gen, K. Ida, Y. Tsujimura and C. E. Kim, (1993), Large scale 0-1 fuzzy goal
programming and its application to reliability optimization problem, Com-
puters and Industrial Engineering, Vol. 24, pp. 539-549.

J.J. Hopfield. (1982) Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences
of the United States of America-Biological Sciences, Vol. 79, No. 8, pp.
2554-2558.

J. J. Hopfield and D.W. Tank, (1985) Neural computation of decisions in optimi-
zation problems, Biological Cybernetics, vol. 52, pp. 141–152.

H. Huang, Z. Tian, and M.J. Zuo, (2005) Intelligent interactive multi-objective op-
timization method and its application to reliability optimization”. IIE Transac-
tions, Vol. 37, No. 11, pp. 983-993.

W. Kuo, V. R. Prasad, F. A. Tillman and C. L. Huang, (2001), Optimal Reliability
Design, Cambridge University Press, New York.

P.X. Liu, M.J. Zuo and M. Q-H Meng, (2003) A neural network approach to op-
timal design of continuous-state parallel-series systems. Computers and Op-
erations Research, Vol. 30, pp. 339–352.

196

S. Matsuda, (1999) Quantized Hopfield networks for integer programming. Sys-
tems and computers in Japan, pp. 1354–64.

K. B. Misra and U. Sharma, (1991), An efficient approach for multiple criteria re-
dundancy optimization problems, Microelectronics and Reliability, Vol. 31,
No. 2, pp. 303-321.

M. Nourelfath and N. Nahas. (2003) Quantized hopfield networks for reliability
optimization. Reliability Engineering & System Safety, Vol. 81, No. 2, pp.
191-196.

M. Papadrakakis and N.D. Lagaros. (2002) Reliability-based structural optimiza-
tion using neural networks and Monte Carlo simulation. Computer Methods in
Applied Mechanics and Engineering, Vol. 191, No. 32, pp. 3491-3507.

R. Rojas, (1996). Neural networks: a system introduction. Berlin: Springer.
C. Srivaree-Ratana, A. Konak and A.E. Smith. (2002) Estimation of all-terminal

network reliability using an artificial neural network. Computers & Opera-
tions Research, Vol. 29, No. 7, pp.: 849-868.

R.Q. Zhao and B.D. Liu. (2004) Redundancy optimization problems with uncer-
tainty of combining randomness and fuzziness. European Journal of Opera-
tional Research, Vol. 157, No. 3, pp. 716-735.

Ming J Zuo et al.

