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Today’s engineering systems are sophisticated in design and powerful in 
function. Examples of such systems include airplanes, space shuttles, tele-
communication networks, robots, and manufacturing facilities. Critical 
measures of performance of these systems include reliability, cost, and 
weight. Optimal system design aims to optimize such performance meas-
ures.  

The traditional system reliability theory assumes that a system and its 
components may only experience one of two possible states: working or 
failed. As a result, we call it binary reliability theory. Under the binary as-
sumption, the reliability of a system is defined to be the probability that the 
system will perform its functions satisfactorily for a certain period of time 
under specified conditions. The reliability of a system depends on the reli-
abilities of the constituent components and the configuration of the system. 
A design of a system provides a specification of the reliabilities of the 
components and the system configuration. In optimal system design, one 
aims to find the best design that optimizes various measures of perform-
ance of the system.  
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7  .1 Introduction 

7  .1.1 Reliability-based Optimal Design 



One of the most studied system configurations in the literature is the se-
ries-parallel system configuration. A series-parallel system consists of N 
subsystems connected in series such that the system works if and only if all 
the subsystems work wherein subsystem i (1≤i≤N) consists of ni compo-
nents connected in parallel such that the subsystem fails if and only if all 
the components in this subsystem fail. Fig. 1 shows such a series-parallel 
configuration. The reliability of such a series-parallel system is expressed 
as: 
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where pij is the reliability of component j in subsystem i.  For such a sys-
tem, a typical optimization problem involves finding the number of paral-
lel components in each subsystem to maximize system reliability subject to 
constraints on budget, volume, and/or weight. Requirement on system reli-
ability may be treated as a constraint while one of the constraints may be 
treated as the objective function to be maximized or minimized. It is a 
nonlinear programming problem involving integer variables. Since the fo-
cus is on finding the optimal redundancy level in each subsystem, such an 
optimal design problem is also referred to as a redundancy allocation prob-
lem.  
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Fig. 1. Structure of a series-parallel system 

Many variations of the redundancy allocation problem have been stud-
ied in the literature. The design variables may include the number of re-
dundant components in each subsystem, the reliability value of each com-
ponent, and the selection of component versions that are available on the 
market. The redundancy structure in each subsystem may be in the form of 
k-out-of-n (Coit and Smith 1996) or in the form of standby (Zhao and Liu 
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2004). The constituent components have also been modeled as being 
multi-state (Liu et al 2003) or having fuzzy lifetimes (Zhao and Liu 2004).  

Another well studied system configuration in the literature is a general 
network configuration. A network consists of nodes and links. One is in-
terested in determining what links should be present between pairs of 
nodes. The measure of performance of the network to be optimized may be 
cost, two-terminal reliability, or all-terminal reliability (AboElFotoh and 
Al-Sumait 2001 and Srivaree-ratana et al 2002). Such optimization prob-
lems are non-linear integer programming problems.  

A major challenge in reliability based optimal design problems is the 
evaluation of system reliability given a system design. This is a time-
consuming task for large systems. In optimal system design, system reli-
ability has to be evaluated frequently for each candidate design. Thus, effi-
cient algorithms for system reliability evaluation are essential for solving 
these problems.  

To search for optimal solutions of reliability-based optimal design prob-
lems, efficient optimization algorithms are needed. Kuo et al. (2001) sur-
veyed and classified optimization techniques for solving redundancy allo-
cation problems. They compared the pros and cons of the following 
classical optimization techniques: integer programming, transforming non-
linear to linear functions, dynamic programming, the sequential uncon-
strained minimization technique (SUMT), the generalized reduced gradient 
method (GRG), the modified sequential simplex pattern search, and the 
generalized Lagrangian function method. Other examples of integer pro-
gramming solutions to the redundancy allocation problems are presented 
by Misra and Sharma (1991), Gen et al. (1990), and Gen et al. (1993).  In 
the process of searching for more efficient optimization algorithms, re-
searchers have used artificial neural networks (ANN) as a function ap-
proximator and as an optimizer for solving all kinds of reliability based de-
sign problems.  

Neural networks consist of simple elements called neurons operating in 
parallel. The structure of neural networks is inspired by biological neuro-
logical systems.  According to Rojas (1996), McCulloch and Pitts intro-
duced the first abstract model of neurons by mimicking biological neurons 
and Hebb presented a learning law so that a network of neurons can be 

7  .1.2 Challenges in Reliability-based Optimal Design 

7  .1.3 Neural Networks 
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trained. The research on neural networks achieved significant progress in 
the 1980s. Neural network models have found many applications in the 
past fifteen years.  

Neural networks have been trained to perform complex functions in 
various fields of application including pattern recognition, identification, 
classification, speech, vision and control systems (Rojas, 1996). Neural 
networks can be trained to solve problems that are difficult for conven-
tional computers or human beings. The advantages of neural networks in-
clude: (1) Adaptive learning: an ability to learn how to do tasks based on 
the data given for training or initial experience. (2) Self-organization: an 
neural network can create its own organization or representation of the in-
formation it receives during learning time. (3) Real time operation: neural 
network computations may be carried out in parallel, and special hardware 
devices are being designed and manufactured which take advantage of this 
capability. (4) Fault tolerance via redundant information coding: partial 
destruction of a network leads to the corresponding degradation of per-
formance. However, some network capabilities may be retained even with 
major network damage. 

Two types of neural networks are most widely used in reliability-based 
optimal design: feed-forward neural networks as a function approximator, 
and Hopfield networks as an optimizer. These two types of neural net-
works and their applications will be discussed in details in the following 
sections. 

In this chapter, we explore the applications of artificial neural networks for 
solving reliability-based optimal design problems. The remaining part of 
this chapter is organized follows. In Section 2, we summarize the advan-
tages of artificial neural networks that are specifically useful for solving 
reliability based optimal design problems. The use of ANN as a function 
approximator is presented in Section 3 while the use of ANN as an opti-
mizer is given in Section 4. Section 5 provides a summary and points out 
future research topics in application of ANN for solving reliability based 
design problems. 

7  .1.4 Content of this Chapter 
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The most widely used type of neural networks is the feed-forward neural 
network. The structure of a feed-forward neural network with three layers 
is shown in Fig. 2. It has one input layer, one hidden layer, and one output 
layer. A feed-forward neural network is used for nonlinear mapping. That 
is, based on the available data sets of input and output pairs, a neural net-
work can be trained to model the mapping relationship between inputs and 
outputs.  

For example, from function , we generate five input/output pairs: 
[1, 1], [2, 4], [3, 9], [4, 16], and [5, 25]. The neural network we are using 
should have one neuron in the input layer and one neuron in the output 
layer, since there are only one input and one output. In this example, we 
can simply use one hidden layer with 3 hidden neurons. After training with 
the provided training pairs, the neural network can pretty much model the 
hidden mapping relationship , and thus we can calculate what is the 
output value when the input is say 1.5.  
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Fig. 2. Structure of a feed-forward neural network 

Approximator 
7  .2 Feed-forward Neural Networks as a Function 

7  .2.1 Feed-forward Neural Networks 
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A three-layer feed-forward neural network is capable of modeling any 
nonlinear mapping (Rojas, 1996). A feed-forward neural network may 
have more than three layers. However, too many hidden layers make the 
model more complex and the generalization capability of the network will 
become worse. Thus, feed-forward neural networks with one or two hid-
den layers are the most widely used ones in practical applications. Build-
ing nonlinear mapping relationship is a major advantage of feed-forward 
neural networks. We do not have to know the interior mechanism of the 
system to be modeled. As long as we have a set of input and output pairs, 
the feed-forward neural network can be trained to approximate the rela-
tionship between the output and the input to any specified degree of accu-
racy.  

The function represented by a neural network model is determined 
largely by the connections between neurons. We can train a neural network 
to perform a particular function by adjusting the values of the connections 
(weights) between neurons (Rojas, 1996). Typically many input/output 
pairs are used in the process called supervised learning to train a network. 
The back-propagation (BP) algorithm is a widely used training algorithm 
for feed-forward neural networks. The BP algorithm aims at minimizing 
the following error function: 

( )∑ −=
j
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where  represents all the neurons in the output layer,  is the desired 

output in the training pair, and  is the actual output from the current 

neural network. The procedure of BP algorithm is shown as follows (Fu, 
1994). 
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The Backpropagation Algorithm  

A. Initialization. Set all weights and node thresholds to small random 
numbers. Give each neuron an index (including the input neurons).  

B. Feed-forward calculation. Use  to denote the output of neuron . 

(1) The output of an input neuron is equal to the input value. (2) The out-
put of a hidden neuron or output neuron is: 
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where  is the weight from neuron i to j, jiw jθ  is the threshold, and F  is 

the so-called activation function. In a feed-forward neural network, a neu-
ron only gets inputs from the immediately preceding layer. A commonly 

used activation is the sigmoid function given by: ( ) ( )xexF −+= 11 .  
C. Backpropagation weight training. (1) Start from the output layer and 

work backward to the hidden layers recursively to calculate error jδ . For 

output neurons: 

( )( )jjjjj vTvv −−= 1δ  (4) 

For hidden neurons: 
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where kδ  is the error at neuron k  to which a connection points from hid-

den neuron . (2) Adjust the weights as follows: j
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where η  is the positive scalar and called learning rate.  
D. Repeat the feed-forward calculation and backpropagation weight 

training until the stopping criterion in terms of output errors is met.  
Other techniques can be applied to improve the BP algorithm, like using 

the momentum terms. There are also other training algorithms based on 
other optimization methods, such as quasi-Newton methods and conjugate 
gradient methods (Rojas, 1996). 

The ability of ANN to approximate a function of many variables to any 
degree of accuracy has been put into good use in solving reliability based 
optimal design problems. Coit and Smith (1996) used ANN to estimate the 
reliability of a series-parallel system wherein each subsystem has a k-out-
of-n configuration in order to solve the optimal redundancy allocation 
problem. Zhao and Liu (2004) considered a series-parallel system wherein 
the redundancy configuration may be either parallel or standby and the 
lifetime of the system and that of each component is modeled as a fuzzy 
random variable. They used an ANN model to approximate the expected 
system lifetime and system reliability as a function of the redundancy lev-
els and component lifetimes. Liu et al (2003) used ANN to approximate 
the expected system utility of a series-parallel system wherein the state of 
the system and that of each component is modeled as a continuous multi-
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state random variable. Huang et al (2005) used an ANN model to represent 
the relationship between a designer’s preference score and the performance 
measures such as cost, reliability, and weight of the system given a spe-
cific design as a part in their integrated interactive multi-objective optimi-
zation approach. Srivaree-ratana et al (2002) used an ANN model to repre-
sent the relationship between the all-terminal reliability of a network and 
the failure-prone links to be installed in the network. Papadrakakis and La-
garos (2002) used an ANN model to represent the relationship between 
performance measures such as stress and failure probability and the design 
variables in optimal design of large-scale 3-D frame structures. These uses 
of ANN as a function approximator will be discussed in details in this sec-
tion.  

In a feed-forward ANN, the number of layers, the number of neurons in 
each layer, and the connection weights between neurons define the struc-
ture of the ANN. Training data specify the desired relationship between 
output and input. Through training, a feed-forward ANN can be used to 
approximate any continuous function to any degree of accuracy (Cybenko 
1989). This capability has been used in many reliability based optimization 
problems. In this section, we summarize applications of ANN as a function 
approximator. 

Series-parallel System 

Liu et al (2003) report a study on optimal redundancy allocation for a con-
tinuous-state series-parallel system. The structure of the considered multi-
state series-parallel system can also be represented by Fig. 1. It consists of 
N subsystems, S1 to SN, connected in series. Each subsystem, say Si, has  

identical components connected in parallel. The state of each component 
and the system may be modeled as a continuous random variable taking 
values in the range of [0, 1]. The definition of a multi-state series-parallel 
system provided by Barlow and Wu (1978) is used here. That is, the state 
of a parallel system is the state of the best component in the system while 
the state of a series system is the state of the worst component in the sys-
tem.  Let x

in

ij denote the state of component j in subsystem Si. Then, the sys-
tem state can be expressed as 

ij
njNi

xφ
i
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7  .2.2 Evaluation of System Utility of a Continuous-state 
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When the system is in state s, the utility of the system is denoted by µ(s). 
Given the state density function of each component, namely fij (s), we can 
evaluate the state distribution of the system. With the system state distribu-
tion obtained, we can then find the expected utility of the system.  

The design problem concerned is maximization of the expected system 
utility subject to cost constraints through determination of the optimal re-
dundancy level in each subsystem. The optimization model is as follows: 
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where Cij is the cost of component j in subsystem i and CT is the total 
budget allowed.  

This optimization model includes both integration and differentiation in 
the objective function. The objective function is very complicated and the 
problem is very difficult to solve using a classical optimization algorithm. 
This situation arises when (1) the number of subsystems, N, is large; (2) 
the state distributions of components in the same subsystem are not identi-
cal; and/or (3) component state distribution is not a simple distribution. In 
addition, in some cases, the component state distribution function may 
have to be expressed in an empirical form and, as a result, no analytical 
expression of )( ,,, 21 NnnnU L is available. The critical problem is that 

evaluating this utility function directly is very time-consuming, and thus 
evaluating it repetitively in the optimization process is very hard and 
sometimes impossible.  

The system state distribution  is defined as: ),,,,( 21 Nnnnsg L
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Liu et al (2003) use feed-forward neural networks to approximate this sys-
tem state distribution. They use a three-layer neural network, with sigmoi-
dal activation functions used in the hidden layer, and linear activation 
functions used in the output layer. Training and testing (validation) data 
sets are generated as follows: first, a suitable number of input vectors, 
( ), are chosen or generated randomly from the allowed N21  ,,,s, nnn L
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value ranges of s , , , …, and ; next, the input vectors are normal-

ized and for each input vector, the desired output, , is 

calculated with equation (8). The training and testing data sets consist of 
different pairs of the input vector and its corresponding output.  

1n 2n Nn

),,,,( 21 Nnnnsg L

No matter how complicated  might be, the approxi-

mate analytical expression of system distribution function, 
, is always a linear combination of a finite number of 

sigmoidal functions. The approximate objective function 

),,,,( 21 Nnnnsg L
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constructed from  usually has analytical expression 

(Liu et al 2003), and thus much less time-consuming to calculate. And the 
redundancy allocation of continuous-state series-parallel systems can be 
implemented more efficiently. The following example is given to illustrate 
this approach (Liu et al 2003).  

),,,,(ˆ 21 Nnnnsg L

 
Example 1 

 
In this example, we use a 4-stage series-parallel system, in which N = 4; 

µ(s)=10s; C1i =3200; C2i=1700; C3i =830; C4i=2500; and CT =160,000. The 
probability density functions of components in the four subsystems are 
three commonly used distributions: unit distribution, triangular distribution 
and Beta distribution. 
f1i=1: unit distribution; 
f2i=2s: triangular distribution; 

11
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sssf i : Beta distribution where α = 5, β = 2. 

The density functions of the components in the 4 subsystems are plotted 
in Fig. 3. 

The desired output targets for ANN training, i.e., actual system distribu-
tion function, are calculated with  
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Fig. 3. Component state distribution functions for Example 1 

We can see that although equation (9) is also complicated, it is calcula-
ble.  But the objective function  as in Equation (7) is too 

complex and seems impossible to calculate analytically.  

)( 4321 ,n,n,nnU

On the contrary, it is straightforward to solve this optimization problem 
using the ANN approximation. After training the neural network and ob-
taining the approximate system distribution function , we 

can construct the approximate objective function 

)(ˆ 4321 ,n,n,nng

)( 4321 ,n,n,nnU
)

, which is 

an analytical expression (Liu et al 2003).  
The training data set containing 1600 training pairs is generated ran-

domly. The size of the hidden layer is 19. After 2500 epochs of training it-
erations, the actual percent training error is 0.9859%. The maximum vali-
dation error is 2.4532%. After an exhaustive search, the final optimal 
solution is   

M1=14;  M 2=9;  M 3=36;  M 4=15 
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and the corresponding approximate utility is 4384.8)32,(12,7,35 =U
)

. 

Approximator  

Coit and Smith (1996) consider the optimal design problem of a series sys-
tem with k-out-of-n redundancy. In such a system structure, there are N 
subsystems connected in series and each subsystem adopts a k-out-of-n 
structure. The optimal design model aims to find the optimal number of 
components ni in subsystem i (ni ≥ k) such that the system cost is mini-
mized subject to system reliability constraints. For each subsystem, several 
types of components are available for selection. The number of compo-
nents of each available type needs to be determined so that we can find the 
total number of components of possibly different types for each subsystem. 
The decision variable values are determined through an optimization proc-
ess using genetic algorithms. However, the reliability of the system for 
each candidate design must be evaluated. This may be a time-consuming 
process.  

In developing the ANN model for the purpose of reliability estimation 
of a k-out-of-n system, Coit and Smith (1996) use full factorial design of 
the critical parameters k, n, and three underlying distributions (uniform, 
quadratic skewed-left and quadratic skewed-right) in equal proportions for 
component reliabilities. The skewed distributions are used to make sure 
that the developed ANN model is accurate for high component reliabilities 
or low component failure probabilities. Analytical methods are used to find 
the training data for the neural networks.  

Since the ANN model is developed for estimation of the reliability of a 
k-out-of-n system structure, it actually includes the parallel redundancy as 
a special case. This makes the ANN model more general than for a simple 
parallel structure. However, caution has to be taken in assessing the error 
in the estimate of the reliability of the k-out-of-n subsystem. When these 
reliability values of the subsystems are multiplied together to get the sys-
tem reliability, these errors may be magnified (Coit and Smith 1996). One 
needs also to take into consideration the optimizer to be used in the train-
ing of the ANN model.  

7  .2.3 Other Applications of Neural Networks as a Function 

7  .2.3.1 Reliability Evaluation of a k-out-of-n System Structure 
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Under Fuzzy Environment 

Zhao and Liu (2004) consider the problem of redundancy allocation of a 
series system with parallel redundancy or standby redundancy. The system 
has n subsystems connected in series. Subsystem i (1 ≤ i ≤ n) has ni com-
ponents either connected in parallel or connected in standby. The lifetime 
of each component can be represented by a fuzzy random variable. The 
measures of performance of the system may be the expected lifetime of the 
system, system reliability, or the so-called (α,β)-system lifetime (Zhao and 
Liu 2004).  

The key for solving this optimal allocation problem is to evaluate the 
expected lifetime of the system, system reliability, and the so-called (α,β)-
system lifetime. For a given design, a random fuzzy simulation approach 
was proposed by Zhao and Liu (2004) to evaluate these performance 
measures. Since this approach is very time-consuming, they used it to gen-
erate training data to train a feedforward ANN which will then be used to 
approximate these measures of performance during the design optimiza-
tion process. The used ANN model has one input layer, one hidden layer, 
and one output layer. The number of neurons in the input layer is equal to 
the number of decision variables. The number of output neurons is equal to 
the number of performance measures of interest. The number of neurons in 
the hidden layer is determined by the pruning algorithm of Castellano et al 
(1997).  

Once the ANN model is trained, it is used as a function approximator in 
the optimization model. Genetic algorithms are used to solve the optimiza-
tion problems. Examples are used to illustrate this approach for solving re-
dundancy allocation problems including parallel redundancy and standby 
redundancy.  

Srivaree-ratana et al. (2002) consider a network design problem in which 
the nodes are fixed and perfect while the links are failure prone. The ques-
tion to be answered is what links should be installed to minimize the total 
cost of installing these selected links subject to requirement on all-terminal 
reliability of the network.  

The most time-consuming task in this network design problem is the 
evaluation of all-terminal reliability given a network design. Approaches 
such as enumeration and Monte Carlo simulation can be used for evalua-
tion or approximation of network reliability, but they are very time-
consuming. Srivaree-ratana et al (2002) decide to use ANN to estimate the 

7  .2.3.2 Performance Evaluation of a Series-parallel System 

7  .2.3.3 Evaluation of All-terminal Reliability in Network Design 
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all-terminal reliability as a function of a selected design. A feedforward 
ANN model is adopted and the backpropagation training algorithm is used. 
A hyperbolic activation function is used for all neurons and a learning rate 
of 0.3 is used for hidden neurons and of 0.15 is used for the output neu-
rons. The total number of hidden neurons is chosen to be identical to the 
number of input neurons.  

Experiment results provided by Srivaree-ratana et al (2002) show that 
the ANN model works very well for estimating all-terminal reliability. Fu-
ture research topics may include fine tuning the ANN model and imbed 
occasional evaluation of the exact all-terminal reliability of preferred de-
signs.  

scale Structural Design 

Reliability based optimal design of large-scale structural systems is ex-
tremely computation intensive. Papadrakakis and Lagaros (2002) address 
the optimal design of multi-storey 3-D frames. The goal is to minimize the 
weight of the structure subject to constraints on allowed stress, displace-
ment, and failure probability. Due to the randomness in loads to be ap-
plied, material properties, and member geometry, evaluation of the stress, 
displacement, and failure probability given a structure designed is very 
time-consuming.  

The measures such as stress, displacement, and failure probability can 
be evaluated using finite element method, the limit elasto-plastic method, 
and Monte Carlo simulations given certain design parameters. These cal-
culated values and the corresponding design parameters can then be used 
as the training data set for training of a feedforward ANN which can then 
be used for approximation of these measures during the optimization proc-
ess. The actual optimization algorithm used is the genetic algorithm. Nu-
merical results are presented to illustrate the effectiveness of the proposed 
approaches. 

There are more application examples of neural networks as function ap-
proximator in the literature, like the representation of the preference struc-
ture of the designer in multi-objective design optimisation (Huang et al 
2005). 

7  .2.3.4 Evaluation of Stress and Failure Probability in Large-
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Another widely used structure of ANN is the Hopfield network (Hopfield 
1982, Hopfield and Tank 1985). In a Hopfield network, all neurons are in a 
single layer (Fig. 4). Every pair of neurons are connected with the same 
connection weights. That is 

ijji ww = , for ji ≠  

0=iiw  
(10) 

Each neuron may represent a binary variable because its output may take 
values of 0 or 1 only. An activation function is used to map the total input 
to a neuron to a 0-1 output value.  

 
 

 
Fig. 4.  Structure of a Hopfield network 

Through a dynamic update equation of the input value of each neuron, 
the Hopfield ANN converges to a state that minimizes an energy function 
of the neural network. Consider a Hopfield ANN with n neurons wherein 
wij denotes the connection weight between neurons i and j, ui the input to 
neuron i, vi = F(ui) the output of neuron i through activation function F(.), 
and iθ  the bias of neuron i. Then, the energy function of the ANN is given 

by Hopfield and Tank (1985) as:  
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The dynamics of the Hopfield ANN is defined as 

7  .3 Hopfield Networks as an Optimizer 

7  .3.1 Hopfield Networks 
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j
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i vw
dt

du

1

θ  (12) 

Equation (12) actually represents the steepest descent direction of the en-
ergy function given in equation (11). If the input to neuron i, ui, is updated 
following the direction given by equation (12), the energy function will 
converge to a local minimum. This is why the Hopfield ANN can be used 
to solve optimization problems. 

A major advantage of Hopfield networks is their efficiency in solving 
optimization problems (Nourelfath and Nahas, 2003). Such an ANN as an 
optimizer was first introduced by Hopfield and Tank (1985). The concept 
of quantized neurons was introduced by Matsuda (1999). AboElFotoh and 
Al-Sumait (2001) used Hopfield networks for solving a network design 
problem. Nourelfath and Nahas (2003) used quantized Hopfield networks 
for selection of the components in a series system for system reliability 
maximization. These uses of ANN as an optimizer will be discussed in de-
tails in this section. 

The key in the use of a Hopfield ANN for solving reliability optimiza-
tion problems is in formulation of the energy function and definition of de-
cision variables vi. In this section, we summarize the work reported by 
AboElFotoh and Al-Sumait (2001) and Nourelfath and Nahas (2003) for 
this purpose.  

AboElFotoh and Al-Sumait (2001) considered a network design problem. 
There are n perfect nodes in the network. The question to be answered is 
what links should be installed to minimize the total cost of the network 
subject to all-terminal reliability requirement. The reliability and the cost 
of each possible link are given as data.  
 
Notation: 

n Number of nodes in the network 
i, j Network nodes 
(i, j) The link between node i and node j 
pi,j Reliability of link (i, j) 
ci,j Cost of link (i, j) 
R0 All-terminal reliability requirement of the network 
RS All-terminal reliability of the network 
vi,j Takes the value of 1 if link (i, j) is selected and 0 otherwise 

7  .3.2 Network Design with Hopfield ANN 
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A, B, C Positive constants that may be adjusted in the optimization 
process 

The optimization model for the network design problem is  

Minimize  ∑∑  
= =

n

i

n

j
jiji vc

1 1
,,

Subject to: RS ≥ R0

(13) 

 
To use a Hopfield ANN to solve this optimization problem, AboElFotoh 

and Al-Sumait (2001) use (i, j) to denote a neuron and the following to 
present the energy function: 

0
1 1

,, B RRCvcRAE S
n

i

n

ij
jijiS −⋅++⋅−= ∑ ∑

= +=
 (14) 

This energy function consists of three terms added together. Since we 
are to minimize this energy function, the first encourages network reliabil-
ity maximization, the second term encourages cost minimization, and the 
third term discourages the ANN from adding new links to increase net-
work reliability unnecessarily over R0.  The negative derivative of the en-
ergy function given in equation (14) with respect to each decision variable 
vi,j is given by  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<−
∂
∂

⋅+

>−
∂
∂

⋅−

=
∂
∂

−
0,

,

0,
,

, if)(

if,)(

RRBc
v

R
CA

RRBc
v

R
CA

v

E

Sji
ji

S

Sji
ji

S

ji
, (15) 

The update equation for the input ui,j is then given by 

ji
jiji v

E
tutu

,
,, )()1(

∂
∂

+=+  (16) 

To use the above equations, one has to have an algorithm to calculate 
the all-terminal reliability for each given network design. Since this is an 
NP-hard problem, AboElFotoh and Al-Sumait (2001) provide a lower 
bound and upper bound on this network reliability. Either bound may be 
used in equation (14) to approximate the reliability of the network. The ac-
tivation function used is a simple threshold function, namely 
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⎪
⎩

⎪
⎨

⎧
<
>

=
otherwise,unchanged

LTPif,0

UTPif,1

, i

i

ji u

u

v , (17) 

where UTP and LTP are the threshold values.  
Many network cases were generated to test the Hopfield ANN approach 

for this network design problem. AboElFotoh and Al-Sumait (2001) con-
clude that this approach is very efficient for design of large networks but 
does not guarantee global optimal solutions. Possible future research work 
include consideration of node failures, more efficient algorithm for evalua-
tion of all-terminal network reliability, and better rules for selection of pa-
rameters of the energy function.  

Nourelfath and Nahas (2003) considered a series system with N compo-
nents. For component j (1≤ j ≤ N), there are Mj choices available. These 
choices correspond to different costs, reliabilities, weights, and possibly 
other characteristics. We are interested in making a choice for each of the 
N components such that system reliability is maximized subject to cost and 
other constraints. The optimization model for this problem can be ex-
pressed as 

Maximize   =  SR ∏ ∑
= = ⎟⎟

⎟

⎠

⎞
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⎜

⎝
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j
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j
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j

BxC
1 1

Njx
jM

i

j
i ,,2,1,1

1
L=∀=∑

=
 

(18) 

where  is the system reliability,  is the reliability of choice i for 

component j,  is the cost of choice i for component j, B is the budget 

for the system, and  is a 0-1 variable that takes the value of 1 if choice i 

is selected for component j. This is a 0-1 non-linear programming problem. 
However, the objective function can be transformed into a linear function 
as follows (Nourelfath and Nahas 2003): 

SR j
iR

j
iC

j
ix
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Minimize  ∑ ∑
= =

=−=
N

j

M

i

j
i

j
iS

j

RxR
1 1

lnlnψ . (19) 

With this transformation, the optimization problem becomes a 0-1 linear 
programming problem.  

Without loss of generality, the budget amount B is assumed to be an in-
teger value. After introducing a slack variable t to convert the inequality 
constraint into an equality constraint, the optimization model becomes: 

Minimize  ∑ ∑
= =

=−=
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  are 0-1 variable and t is integer. j
ix

(20) 

Though the Hopfield ANN in its originally proposed form allows only 
0-1 variables, the quantized Hopfield ANN developed by Matsuda (1999) 
can be used to deal with integer variables too. Applying this model, 
Nourelfath and Nahas (2003) use the following energy function of the 
quantized Hopfield ANN for solving the series system optimization prob-
lem: 
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, (21) 

 
where A1, A 2, and A 3 are positive parameters.  

Simulation studies are conducted to test the quantized Hopfield ANN 
model for the series system optimization problem. The following two 
forms of optimization objectives other than that in equation (20) were 
tested as well 
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Minimize  ∑ ∑
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and simulation results showed that no effects occur when considering these 
forms of objective functions.   

Nourelfath and Nahas (2003) conclude that the quantized Hopfield 
ANN reduces the number of neurons needed to represent the series system 
optimization model and as a result reduces the computation time in finding 
optimal solutions. Unfortunately, the quantized Hopfield ANN does not 
guarantee global optimal solutions either. Other possible future research 
topics include application of this model to solving other reliability based 
optimization problems.  

Reliability based optimal design presents challenging optimization prob-
lems. These problems often involve time-consuming tasks of evaluation of 
various system performance measures such as reliability, expected utility, 
lifetime, stress, displacement, and failure probability. Neural network 
models have been used for the purpose of function approximation to sig-
nificantly reduce the computation needs in the on-line optimization process 
because ANN models can be trained off-line. The Hopfield ANN model 
has also been used as a local optimization routine in search for optimal so-
lutions.  

When ANN is used for function approximation, the main concern is its 
accuracy. Usually the ANN approximation can not be 100% accurate. To 
have a better accuracy, a larger training sample size is required, which 
leads to more computation efforts. The users need to verify the accuracy of 
ANN approximation, and find out whether or not the accuracy is accept-
able. When ANN is used as an optimizer, the main concern is its local op-
timisation characteristic. It is possible that the global optimum can never 
be reached.  

Future research directions for application of ANN models in reliability 
based design includes improvement of the global search ability of the Hop-
field neural networks, systematic selection of the parameters of the energy 
function of the Hopfield neural networks, combination of ANN function 
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approximator with occasional evaluation of the exact values of the func-
tions being approximated, the issue of error propagation in the function 
approximators, and the interaction between the function approximator and 
the actual optimization routine used. 
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