
Network Reliability Assessment through
Empirical Models using a Machine Learning
Approach

Claudio M. Rocco S.

Facultad de Ingeniería, Universidad Central Venezuela, Caracas

Marco Muselli

Istituto di Elettronica e di Ingegneria dell’Informazione e delle
Telecomunicazioni, Consiglio Nazionale delle Ricerche, Genova, Italy

Reliability Assessment

The reliability assessment of a system requires knowledge of how the sys-
tem can fail, failure consequences and modeling, as well as selection of the
evaluation technique [4].

For a reliability evaluation, almost all the systems are modeled using a
Reliability Block Diagram (RBD), that is, a set of components that interact
in some way to comply with the system purpose. System components are
represented by blocks connected together either in series, in parallel,
meshed or through a combination of these. For example, if the system fail-
ure occurs when all the components are failed, they are represented in a re-
liability network as a parallel set.

An RBD can be considered as an undirected or a directed connected
graph. For example, in a communication system each node represents a
communication center and each edge a transmission link between two such
centers. It is assumed that each edge (link) functions independently of all
other edges and that the edge operation probability is known.

The literature offers two main categories of techniques to evaluate the
reliability of a system: analytical and simulation methods. The first one
analyzes the topology of the equivalent graph to obtain a symbolic expres-

M.R.S. Claudio and M. Muselli: Network Reliability Assessment through Empirical Models using
a Machine Learning Approach, Computational Intelligence in Reliability Engineering (SCI) 40, 145–

www.springerlink.com
174 (2007)

 © Springer-Verlag Berlin Heidelberg 2007

6 .1 Introduction: Machine Learning (ML) Approach to

 Claudio M. Rocco S. and Marco Muselli 146

sion for the occurrence of a failure. On the other hand, the simulation ap-
proach allows a practical way of evaluating the reliability of the network in
specific situations. In particular, when complex operating conditions are
considered or the number of events is relatively large, Monte Carlo (MC)
techniques offer a valuable way of evaluating reliability [4]. This approach
is widely used when real engineering systems are to be analyzed.

In general, any reliability index can be obtained as the expected value of
a System Function (SF) [14] or of an Evaluation Function (EF) [25] ap-
plied to a system state x (vector representing the state of each element in
the network). This function determines whether a specific configuration
corresponds to an operating state or a failed one [24], according to a spe-
cific criterion. For example, if connectivity between two particular nodes, s
(the source) and t (the terminal) must be ensured, the system is operating if
there exists at least a working path from the source node s to the terminal
node t.

The corresponding reliability measure (s-t reliability) has been widely
studied in the literature; in this case a depth-first procedure [23, 29] can be
employed as an EF.

In other systems, for example in communication networks, the success
criterion assumes that a network performs well if and only if it is possible
to transmit successfully a specific required capacity. For these systems, the
connectivity is not a sufficient condition for success, as it is also required
that an adequate flow is guaranteed between s and t, taking into account
the capacity of the links involved. In this case, the max-flow min-cut algo-
rithm [23,29] can be adopted to evaluate if a given state is capable or not
of transporting a required flow; alternatively, procedures based on the con-
cept of composite paths [1, 28] can be used as the EF.

In general, the reliability assessment of a specific system requires the
computation of performance metrics using special EF. An important char-
acteristic of these metrics and their extensions is that the solution of an
NP-hard problem [35] is needed for their evaluation in almost all the con-
texts of interest. In this situation MC techniques are used to estimate per-
formance metrics. However, an MC simulation requires a large number of
EF evaluations to establish any reliability indices with high computational
effort. For this reason, it is convenient to approximate the EF using a Ma-
chine Learning (ML) method.

Two different situations can be identified: ML predictive methods re-
construct the desired SF through a black box device, whose functioning is
not directly comprehensible. On the contrary, ML descriptive methods
provide a set of intelligible rules describing the behavior of the SF for the
system at hand. Support Vector Machines (SVM) is a widely used predic-
tive method, successfully adopted in reliability assessment [30], whereas

Network Reliability Assessment using a Machine Learning Approach 147

Decision Trees (DT) [31] and Shadow Clustering (SC) [20] are two de-
scriptive methods that are able to discover relevant properties for reliabil-
ity analysis.

The chapter is organized as follows: In Sec. 2 some definitions are pre-
sented. Section 3 introduces the three machine learning methods consid-
ered for approximating the reliability of a network, while Sec. 4 compares
the results obtained by each method for a specific network. Finally, Sec. 5
contains the conclusions.

Acronyms:

ARE Approximate Reliability Expression
DT Decision Tree
EF Evaluation Function
HC Hamming Clustering
ML Machine Learning
RBD Reliability Block Diagram
RE Reliability Expression
SC Shadow Clustering
SF Structure Function
SVM Support Vector Machine

Consider a system S composed by several units interconnected by d links;
the functioning of S directly depends on the state xi, i = 1, …, d, of each
connection, which is viewed as an independent random variable assuming
two possible values 1 and 0, associated with the operating and the failed
condition, respectively. In particular, we have [3]:

⎩
⎨
⎧

=
−= iPiQ

iP
ix

1y probabilitwith state) (failed 0

 y probabilitwith state) (operating 1
 (1)

where Pi is the probability of success of component (link) i.
The state of a system S containing d components is then expressed by a

random vector x = (x1, x2, …, xd), which uniquely identifies the function-
ing of S. Again, it can be operating (coded by the value 1) or failed (coded
by 0). To establish if x leads to an operating or a failed state for S, we
adopt a proper Evaluation Function (EF):

⎩
⎨
⎧==

 x statein failed is system theif 0

x statein operating is system theif 1
)x(EFy (2)

6 .2 Definitions

 Claudio M. Rocco S. and Marco Muselli 148

If the criterion to be used for establishing reliability is simple connec-
tivity, a depth-first procedure [23,29] can be employed as an EF. In the
case of capacity requirements, the EF could be given by the max-flow
min-cut algorithm [23, 29]. For other metrics, special EF may be used.
Since x and y include only binary values, the functional dependence be-
tween y and x is given by a Boolean function, called Structure Function
(SF) [10], which can be written as a logical sum-of-products involving the
component states xi or their complements

ix . Consider the system in Fig. 1

that contains four links.

s t

1

2

3

4

Fig. 1. A 4-components network

If the connectivity between the source node s and the terminal node t

must be ensured in an operating state for the network, the following SF is
readily obtained:

y = SF(x) = x1x3+ x2x4 (3)

where the OR operation is denoted by ‘+’ and the AND operation is de-
noted by ‘⋅’. Like for standard product among real numbers, when no con-
fusion arises the AND operator can be omitted.

The reliability of a system is defined as the expected value of its struc-
ture function [15]. When the SF(x) has the form of a logical sum-of-
products, a closed-form expression for the system reliability, called Reli-
ability Expression (RE), can be directly obtained by substituting in the
logical sum-of-products, according to (1) and to the independence of the
random variables xi, every term xi with Pi and every

ix with Qi. After this

substitution logical sums and products must be changed into standard sums
and products among real numbers. For example, the RE deriving from the
SF(x) in (3) is P1P3+ P2P4, which gives the value of the system reliability
when substituting the actual values of Pi into this expression.

Since the Boolean expression for the SF of a system can be derived only
for very simple situations, it is important to develop methods that are able
to produce an estimate of the system reliability by examining a reduced
number of different system states xj, j = 1, …, N, obtained by as many ap-

Network Reliability Assessment using a Machine Learning Approach 149

plications of the EF. A possible approach consists in employing machine
learning techniques, which are able to reconstruct an estimate of the sys-
tem function SF(x) starting from the collection of N states xj, called in this
case training set. Some of these techniques generate the estimate of the SF
as a logical sum-of-products, which can be used to produce (through the
simple procedure described above) an Approximate Reliability Expression
(ARE) that is (hopefully) close to the actual RE.

In this case, the estimation of the system reliability can be easily per-
formed, by substituting into the ARE the actual values of the Pi. On the
other hand, when an approximation to the SF is available and cannot be
written in the form of a logical sum-of-products, a standard Monte Carlo
approach can be adopted to estimate the system reliability. By using the
approximate SF to establish the state y instead of the EF, the computa-
tional cost is reduced.

In this section three different machine learning techniques are described:
Support Vector Machines (SVM), Decision Trees (DT) and Shadow Clus-
tering (SC). All these methods are able to solve two-class classification
problems, where a decision function g: ℜd → {0,1} have to be recon-
structed starting from a collection of examples (x1,y1), (x2,y2), …, (xN,yN).
Every yj is a (possibly noisy) evaluation of g(xj) for every j = 1, …, N.
Thus, they can be employed to reconstruct the SF of a system S when a set
of N pairs (xj,yj), where xj is a system state and yj = EF(xj), is available.

In this case, DT and SC are able to generate a logical sum-of-products
that approximates the SF. On the other hand, SVM produces a linear com-
bination of real functions (Gaussians, polynomial, or others) that can be
used to establish the state y associated to a given vector x. Consequently,
SVM cannot be directly used to generate an ARE for the system at hand.

In the last ten years Support Vector Machines (SVM) have become one of
the most promising approach for solving classification problems [11,36].
Their application in a variety of fields, ranging from particle identification,
face identification and text categorization to engine detection, bioinformat-
ics and data base marketing, has produced interesting and reliable results,
outperforming other widely used paradigms, like multilayer perceptrons
and radial basis function networks.

6 .3 Machine Learning Predictive Methods

6 .3.1 Support Vector Machines

 Claudio M. Rocco S. and Marco Muselli 150

For symmetry reasons, SVM generates decision functions g : ℜd →
1,+1}; like other classification techniques, such as multilayer perceptrons
or radial basis function networks, SVM constructs a real function f : ℜd →
ℜ starting from the collection of N samples (xj,yj), then writing g(x) =
sign(f(x)), being sign(z) = +1 if z ≥ 0 and sign(z) = –1 otherwise.

The learning algorithm for SVM stems from specific results obtained in
statistical learning theory and is based on the following consideration [36]:
every classification problem can always be mapped in a high-dimensional
input domain ℜD with D » d, where a linear decision function performs
very well. Consequently, the solving procedure adopted by SVM amounts
to selecting a proper mapping Φ : ℜd → ℜD and a linear function f(x) = w0

+ w ⋅ Φ(x), such that the classifier g(x) = sign(w0 + w ⋅ Φ(x)) gives the cor-
rect output y when a new pattern x not included in the training set has to be
classified.

Some theoretical results ensure that, once chosen the mapping Φ, the
optimal linear function f(x) is obtained by solving the following quadratic
programming problem:

Njj

jjwjy

N

j
jC

,w

,...,1every for 0

1))(0(subject to
12

1

ξw,0

min

=≥

−≥Φ⋅+

∑
=

+⋅

ξ

ξ

ξ

xw

ww

 (4)

where the variables ξj take account of possible misclassifications of the
patterns in the training set. The term C is a regularization constant that
controls the trade-off between the training error ∑ j ξj and the regulariza-
tion factor w ⋅ w.

The parameters (w0, w) for the linear decision function f(x) can also be
retrieved by solving the Lagrange dual problem:

NjCj

N

j
jyj

N

j
j

N

j

N

k
kjkyjykj

,...,1every for 0

0
1

 subject to

11 1
)()(

2

1

α
min

=≤≤

=∑
=

∑
=

−∑
=

∑
=

Φ⋅Φ

α

α

ααα xx

(5)

which is again a quadratic programming problem where the unknowns αj
are the Lagrange multipliers for the original (primal) problem. The direc-
tional vector w can then be obtained by the solution α through the equation

Network Reliability Assessment using a Machine Learning Approach 151

)(
1

j
N

j
jyj xw Φ∑

=
= α (6)

It can be easily seen that there is a 1-1 correspondence between the sca-
lars αj and the examples (xj,yj) in the training set.

Now, the Karush-Kuhn-Tucker (KKT) conditions for optimization prob-
lems with inequality constraints [34], assert that in the minimum point of
the problem at hand it must be

0)1))(0((=+−Φ⋅+ jjwjyj ξα xw (7)

Thus, for every j = 1, …, N either the Lagrange multiplier αj is null or
the constraint yj (w0 + w ⋅ Φ(xj)) ≥ 1 – ξ j is satisfied with equality. It
should be noted that only the points x j with α j > 0 gives a contribution to
the sum in (6); these points are called support vectors. If and are

two support vectors with output +1 and –1, respectively, the bias w

−jx +jx

0 for the
function f(x) is given by

2

)()()()(

2

)()(11
0

−+
−+

Φ⋅Φ+Φ⋅Φ

=
Φ⋅+Φ⋅

=
∑∑
==

jj

N

j
jjjj

N

j
jj

jj

yy

w

xxxx
xwxw

αα

The real function f(x) is then completely determined if the mapping Φ :
ℜd → ℜD is properly defined according to the peculiarities of the classifi-
cation problem at hand. However, if the dimension D of the projected
space is very high, solving the quadratic programming problem (4) or (5)
requires a prohibitive computational cost.

A possible way of getting around this problem derives form the observa-
tion that both in the optimization problem (5) and in the expression for w0
always appears the inner product between two instances of the function Φ.
Therefore, it is sufficient to define a kernel function K: ℜ d × ℜd → ℜ+ that
implements the inner product, i.e. K(u,v) = Φ (u) ⋅ Φ(v). This allows control
of the computational cost of the solving procedure, since in this way the
dimension D of the projected space is not explicitly considered. As the
kernel function K gives the result of an inner product, it must be always
non negative and symmetric. In addition, specific technical constraints, de-
scribed by the Mercer’s theorem [38], have to be satisfied to guarantee
consistency.

Three typical choices for K (u,v) are [36]:

the linear kernel K(u,v) = u⋅v

 Claudio M. Rocco S. and Marco Muselli 152

the Gaussian radial basis kernel (GRBF) ⎟
⎠
⎞⎜

⎝
⎛ −−= 22 2/vuexp)v,u(σK

the polynomial kernel K(u,v) = (u⋅v + 1)p

where the parameters σ and p are to be chosen properly.
By substituting in (5) the kernel function K we obtain the following

quadratic programming problem:

NjC

y

Kyy

j

N

j
jj

N

j
j

N

j

N

k
kjkjkj

,...,1every for 0

0 subject to

),(
2
1

 min

1

11 1

=≤≤

=

−

∑

∑∑∑

=

== =

α

α

ααα xx
α

which leads to the decision function g(x) = sign(f(x)), being

),()(
1

0 xxx j

N

j
jj Kywf ∑

=
+= α (8)

Again, only support vectors with αj > 0 gives a contribution to the sum-
mation above; for this reason classifiers adopting (8) are called Support
Vector Machines (SVM). The average number of support vectors for a
given classification problem is strictly related to the generalization ability
of the corresponding SVM: the lower is the average number of support
vectors, the higher is the accuracy of the classifier g(x).

The bias w0 in (8) is given by:

)),(
1

),(
1

(
2

1
0 −∑

=
++∑

=
= jjK

N

j
jyjjjK

N

j
jyjw xxxx αα

where again and are two support vectors with output (+1) and

(–1), respectively.

−jx +jx

The application of SVM to the problem of estimating the system func-
tion SF(x) starting from a subset of possible system states can be directly
performed by employing the above general procedure to obtain a good ap-
proximation for the SF. Since SF is a Boolean function we must substitute
the output value y = –1 in place of y = 0 to use the standard training proce-
dure for SVM.

The choice of the kernel is a limitation of the SVM approach. Some
work has been done on selecting kernels using prior knowledge [7]. In any
case, the SVM with lower complexity should be preferred. Our experience

Network Reliability Assessment using a Machine Learning Approach 153

in the reliability field has confirmed the good quality of the GRBF kernel
having parameter (1/2σ2) = 1/d , as suggested in [9].

For example, consider the system shown in Fig. 1, whose component
and system states are listed in Tab. 1, if a continuity criterion is adopted.
As it is usually the case in a practical application, suppose that only a sub-
set of the whole collection of possible states (shown in Tab. 2) is available.

Table 1. Component and system states for the network shown in Fig. 1

x1 x2 x3 x4 y = EF (x)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Table 3 shows the support vectors obtained using the linear kernel and

the LIBSVM software [9]. Note that in this case only 6 support vectors are
derived. These support vectors are able to completely separate the training
set. However, when the model is applied to the test set (states from Tab. 1
not included in Tab. 2), only 6 out of 8 states are correctly classified, as
shown in Table 4.

From Tab. 3 it is clear that support vectors can not be easily interpreted,
since the expression generated does not correspond to a logical sum-of-
products.

 Claudio M. Rocco S. and Marco Muselli 154

Table 2. Available subset of states for the network shown in Fig. 1 (train-
ing set)

x1 x2 x3 x4 y = EF(x)
0 0 0 1 0
0 0 1 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 1 1

Table 3. Support vectors for the available subset of states shown in Tab. 2

x1 x2 x3 x4 y = EF(x)
0 0 0 1 0
0 0 1 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 1 1

Table 4. SVM estimation for the test set

x1 x2 x3 x4 y = EF(x) SVM estimate
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 0 1 0
1 1 1 0 1 1

Decision tree based methods represent a non-parametric approach that
turns out to be useful in the analysis of large data sets for which complex
data structures may be present [2,5,27]. A DT solves a complex problem
by dividing it into simpler sub-problems. The same strategy is recursively
applied to each of these sub-problems.

A DT is composed of nodes, branches and terminal nodes (leaves). For
our network problem, every node is associated with a component of the
network. From each node start two branches, corresponding to the operat-

6 .3.2 Decision Trees

Network Reliability Assessment using a Machine Learning Approach 155

ing or failed state of that component. Finally, every terminal node repre-
sents the network state: operating or failed. Many authors use the conven-
tion to draw the false branch on the left side of the node and the true
branch on the right.

Consider for example the DT shown in Fig. 2 and suppose a new system
state is presented for classification. At the root node the state of the com-
ponent x2 is checked: if it is failed, the left branch is chosen and a new test
on component x1 is performed. Again, if x1 is failed, the left branch is cho-
sen and y = 0 is concluded.

Even if it may seem reasonable to search for the smallest tree (in terms
of numbers of nodes) that perfectly classifies training data, there are two
problems:
1) its generation requires the solution of an NP-hard problem and
2) it is not guaranteed that this tree performs well on a new test sample.

�

� � �

� � � � � �

� � �� � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

�

�

�

��

�

�

�

Fig. 2. Example of a decision tree

For this reason DT methods usually exploit heuristics that locally per-
form a one-step look-ahead search, that is, once a decision is taken it is
never reconsidered. However, this heuristic search (hill-climbing without
backtracking) may be stuck in a local optimal solution. On the other hand,
this strategy allows building decision trees in a computation time that in-
creases linearly with the number of examples [26].

A DT can be used to derive a collection of intelligible rules in the form
if-then. It is sufficient to follow the different paths that connect the root to
the leaves: every node encountered is converted into a condition to be
added to the if part of the rule. The then part corresponds to the final leaf:
its output value is selected when all the conditions in the if part are satis-
fied.

 Claudio M. Rocco S. and Marco Muselli 156

Since the tree is a directed acyclic graph, the number of rules that can be
extracted from a DT is equal to the number of terminal nodes. As an ex-
ample, the tree in Fig. 2 leads to three rules for the output y = 0 and two
rules for y = 1.

All the conditions in the if part of a rule are connected by a logical AND
operation; different rules are considered as forming an if-then-else struc-
ture. For example, the problem in Fig. 1 is described by the following set
of rules:

if x1 = 0 AND x2 = 0 then y = 0
else if x1 = 0 AND x4 = 0 then y = 0
else if x2 = 0 AND x3 = 0 then y = 0
else if x3 = 0 AND x4 = 0 then y = 0
else y = 1

which is equivalent to the SF for this network SF(x) = x1x3+x2x4.
Since all the possible output values are considered for rule generation, a

complex decision tree can yield a very large set of rules, which is difficult
to be understood. To recover this problem, proper optimization procedures
have been proposed in the literature, which aim at simplifying the final set
of rules. Several different tests have shown that in many situations the re-
sulting set of rules is more accurate than the corresponding decision tree
[26].

In general, different algorithms use a top-down induction approach for
constructing decision trees [22]:
1. If all the examples in the training set T belong to one class, then halt.
2. Consider all the possible tests that divide T into two or more subsets.

Employ a proper measure to score how well each test splits up the ex-
amples in T.

3. Select the test that achieves the highest score.
4. Divide T into subsets according to the selected test. Run this procedure

recursively by considering each subset as the training set T.
For the problem at hand, a test on a component state with two possible

values will produce at most two child nodes, each of which corresponds to
a different value. The algorithm considers all the possible tests and
chooses the one that optimizes a pre-defined goodness measure.

Since small trees lead to simpler set of rules and to an increase in per-
formance, the procedure above is performed by searching for tests that best
separates the training set T. To achieve this goal, the most predictive com-
ponents are considered at Step 3 [5,27].

6 .3.2.1 Building the Tree

Network Reliability Assessment using a Machine Learning Approach 157

Several methods have been described in the literature to measure how ef-
fective is a split, that is how good is a component attribute (operating or
failed) to discriminate the system state. The most used are:
1. Measures depending on the difference between the training set T and

the subsets obtained after the splitting; a function of the class propor-
tion, e.g. the entropy, is typically employed.

2. Measures related to the difference between the subsets generated by
the splitting; a distance or an angle that takes into account the class
proportions is normally used.

3. Statistical measures of independence (typically a χ2) between the sub-
sets after the splitting and the class proportions.

In this paper the method used by C4.5 [27] is considered; it adopts the
information gain as a measure of the difference between the training set T
and the subsets generated by the splitting. Let p be the number of operating
states and n the number of failed states included in the training set T. The
entropy E(p,n) of T is defined as:

)log()log(),(
np

n

np

n

np

p

np

p
npE

++
−

++
−= (9)

Suppose the component xj is selected for adding a new node to the DT
under construction; if the test on attribute xj leads to a splitting of T in k
disjoint subsets, the average entropy Ej(p,n) after the splitting is given by

∑
= +

+
=

k

i
inipE

np
inip

npjE
1

),(),(
(10)

where pi and ni are the number of instances from each class in the ith sub-
set. Note that in our case k = 2 since every component has only two possi-
ble states (operating or failed).

The information gain Ij(p,n) is then given by the difference between the
values of the entropy before and after the splitting produced by the attrib-
ute xj:

Ij(p,n) = E(p,n) – Ej(p,n) (11)

At Step 3 of the DT procedure the component xj that scores the maxi-
mum information gain is selected; a test on that component will divide the
training set into k = 2 subsets.

For example, consider the system shown in Fig. 1 and the training set
shown in Tab. 2. There are p = 4 operating states and n = 4 failed states;
thus, the entropy E(4,4) assumes the value:

6 .3.2.2 Splitting Rules

 Claudio M. Rocco S. and Marco Muselli 158

E(4,4) =)]44/(4log[)44/(4)]44/(4log[)44/(4 ++−++− =1

Looking at the class proportion after the splitting we note that for x1 = 0
there are one system operating state and two failed states, whereas for x1 =
1 there are three system operating states and two failed states. Thus:

E(1,2) = 0.918296, E(3,2) = 0.970951
E1(4,4) = 3/8 · E(1,2) + 5/8 · E(3,2) = 0.951205
I1(4,4) = E(4,4) – E1(4,4) = 1 – 0.951205 = 0.048795

Now, for x2 = 0 and x3 = 0 there are one system operating state and three
failed states, whereas for x2 = 1 and x3 = 1 there are three system operating
states and one failed state. Consequently, we have:

E(1,3) = E(3,1) = 0.811278
E2(4,4) = E3(4,4) = 4/8 · E(1,3) + 4/8 · E(3,1) = 0.811278
I2(4,4) = I3(4,4) = 1 – 0.811278 = 0.188722

Finally, the fourth component x4 presents only one system failed state
for x4 = 0, whereas for x4 = 1 we detect four system operating states and
three failed states. Consequently, we obtain:

E(0,1) = 0 , E(4,3) = 0.985228
E4(4,4) = 1/8 · E(0,1) + 7/8 · E(4,3) = 0. 862075
I4(4,4) = 1 – 0. 862075 = 0.137925

Since both x2 and x3 score the maximum information gain, one of them
must be considered for the first node of the DT. Suppose that the second
component x2 is selected as the root node. It is important to note that, in
general, the component chosen for the first node holds a primary impor-
tance [2].

After this choice the training set in Tab. 2 is split into the following two
subsets:

x1 x2 x3 x4 y = EF(x) x1 x2 x3 x4 y = EF(x)
0 0 0 1 0 0 1 1 1 1
0 0 1 1 0 1 1 0 0 0
1 0 0 1 0 1 1 0 1 1
1 0 1 1 1 1 1 1 1 1

The former contains the examples with x2 = 0 and the latter those with

x2 = 1. If we repeat the procedure for the addition of a new node by con-
sidering the first subset as T, we obtain:

I1(1,3) = I3(3,1) = 0.311278 , I4(3,1) = 0
Consequently, the highest information gain is achieved with the choice

of x1 or x3; the same procedure allows to select the component x4 for the
second subset, which yields, after a further splitting, the DT in Fig. 2. A di-
rect inspection of the DT allows generating the following set of rules:

Network Reliability Assessment using a Machine Learning Approach 159

if x2 = 1 AND x4 = 0 then y = 0
else if x1 = 0 AND x2 = 0 then y = 0
else if x1 = 1 AND x2 = 0 AND x3 = 0 then y = 0
else y = 1
Although this set of rules correctly classifies all the system configura-

tions in Tab. 2, it is not equivalent to the desired system function SF(x) =
x1x3+x2x4. This means that the DT procedure is not able to recover the lack
of information deriving from the absence of eight feasible system configu-
rations, reported in Tab. 1 and not included in the training set.

The splitting strategy previously presented relies on a measure of the in-
formation gain based on the examples included in the available training
set. However, the size of the subset analyzed to add a new node to the DT
decreases with the depth of the tree. Unfortunately, estimates based on
small samples will not produce good results for unseen cases, thus leading
to models with poor predictive accuracy, which is usually known as over-
fitting problem [13]. As a consequence, small decision trees consistent
with the training set tend to perform better than large trees, according to
the Occam’s Razor principle [13].

The standard approach followed to take into account these considera-
tions amounts to pruning branches off the DT. Two general groups of
pruning techniques have been introduced in the literature: 1) pre-pruning
methods that stop building the tree when some criteria is satisfied, and 2)
post-pruning methods that first build a complete tree and then prune it
back. All these techniques decide if a branch is to be pruned by analyzing
the size of the tree and an estimate of the generalization error; for imple-
mentation details, the reader can refer to [26,27].

It is interesting to note that in the example presented in section 3.2.2
neither nodes nor branches can be removed from the final decision tree in
Fig. 2 without degrading significantly the accuracy on the examples of the
training set. In this case the pruning phase has no effect.

As one can note, every system state x can be associated with a binary
string of length d: it is sufficient to write the component states in the same
order as they appear within the vector x.

For example, the system state x = (0, 1, 1, 0, 1) for d = 5 will correspond
to the binary string 01101. Since also the variable y, denoting if the con-

6 .3.2.3 Shrinking the Tree

6 .3.3 Shadow Clustering (SC)

 Claudio M. Rocco S. and Marco Muselli 160

sidered system is operating or failed, is Boolean, at least in principle, any
technique for the synthesis of digital circuits can be adopted to reconstruct
the desired SF from a sufficiently large training set {(xj,yj), j = 1, …, N}.
Unfortunately, the target of classical techniques for Boolean function re-
construction, such as MINI [17], ESPRESSO [6], or the Quine-McCluskey
method [12], is to obtain the simplest logical sum-of-products that cor-
rectly classifies all the examples provided. As a consequence, they do not
generalize well, i.e. the output assigned to a binary string not included in
the given training set can be often incorrect.

To recover this drawback a new logical synthesis technique, called
Hamming Clustering (HC) [18,19] has been introduced. In several applica-
tion problems HC is able to achieve accuracy values comparable to those
of best classification methods, in terms of both efficiency and efficacy. In
addition, when we are facing with a classification problem the Boolean
function generated by HC can be directly converted into a set of intelligi-
ble rules underlying the problem at hand.

Nevertheless, the top-down approach adopted by HC to generate logical
products can require an excessive computational cost when the dimension
d of the input vector is very high, as it can be the case in the analysis of
system reliability. Furthermore, HC is not well suited for classification
problems that cannot be easily coded in a binary form. To overcome this
shortcoming, an alternative method, named Shadow Clustering (SC) [20],
has been proposed. It is essentially a technique for the synthesis of mono-
tone Boolean functions, writable as a logical sum-of-products not contain-
ing the complement (NOT) operator.

The application of a proper binary coding allows the treatment of gen-
eral classification problems; the approach followed by SC, which resem-
bles the procedure adopted by HC, leads to the generation of a set of intel-
ligible rules underlying the given classification problem. Preliminary tests
[21] show that the accuracy obtained by SC is significantly better than that
achieved by HC in real world situations.

Since the system function may not be a monotone Boolean function, an
initial coding β is needed to transform the training set, so as a logical sum-
of-products not including the complement operator can be adopted for re-
alizing the SF(x). A possible choice consists in using the coding β(x) that
produces a binary string z with length 2d, where every component xi in x
gives rise to two bits z2i–1 and z2i according to the following rule:

z2i–1 = 1, z2i = 0 if xi = 0, whereas z2i–1 = 0, z2i = 1 if xi = 1

It can be easily seen that this coding maps any binary training set into a
portion of the truth table for a monotone Boolean function, which can then
be reconstructed through SC. A basic concept in the procedure followed by

Network Reliability Assessment using a Machine Learning Approach 161

SC is the notion of cluster, sharing the same definition of implicant in
classic theory of logical synthesis.

A cluster is the collection of all the binary strings having the value 1 in a
same fixed subset of components. As an example, the eight binary strings
01001, 01011, 01101, 11001, 01111, 11011, 11101, 11111 form a cluster
since all of them only have the value 1 in the second and in the fifth com-
ponent. This cluster is usually written as 01001, since in the synthesis of
monotone Boolean functions the value 0 serves as a don’t care symbol and
is put in the positions that are not fixed. Usually the cluster 01001 is said
to be covered by the eight binary strings mentioned above.

Every cluster can be associated with a logical product among the com-
ponents of x, which gives output 1 for all and only the binary strings which
cover that cluster. For example, the cluster 01001 corresponds to the logi-
cal product x2x5, obtained by considering only the components having the
value 1 in the given cluster. The desired monotone Boolean function can
then be constructed by generating a valid collection of clusters for the bi-
nary strings in the training set with output 1. This collection is consistent,
if none of its elements is covered by binary strings of the training set hav-
ing output 0.

After the application of the binary coding β on the examples (xj,yj) of
the training set, we have obtained a new collection of input-output pairs
(zj,yj) with zj = β(xj), which can be viewed as a portion of the truth table of
a monotone Boolean function. If T and F contain the binary strings zj with
corresponding output yj = 1 and yj = 0, respectively, the procedure em-
ployed by SC to reconstruct the sum-of-products expression for the desired
monotone Boolean function f(z) consists of the following four steps:

1. Set S = T and C = ∅.
2. Starting from the implicant 000···0, turn some 0 in 1 to obtain a cluster

c that is covered by the greatest number of binary strings in S and by
no element of F.

3. Add the cluster c to the set C. Remove from S all the binary strings
that cover c. If S is not empty go to Step 2.

4. Simplify the collection C of clusters and build the corresponding
monotone Boolean function.

As one can note, SC generates the sum-of-products expression for the
desired monotone Boolean function f (Step 4) by examining a collection C
of clusters incrementally built through the iteration of Steps 2–3. To this
aim, SC employs an auxiliary set S to maintain the binary strings of T that
do not cover any cluster in the current collection C.

 Claudio M. Rocco S. and Marco Muselli 162

The following subsections describe the solutions adopted by SC to con-
struct the clusters to be added in C (Step 2) and to simplify the final collec-
tion C (Step 4), thus improving the generalization ability of the resulting
monotone Boolean function.

Starting from the largest cluster 0⋅⋅⋅00, containing only 0 values, an impli-
cant c has to be generated for its inclusion in the collection C. The only
prescription to be satisfied in constructing this cluster is that it cannot be
covered by any binary string in F.

As suggested by the Occam’s Razor principle, smaller sum-of-products
expressions for the monotone Boolean function to be retrieved perform
better; this leads to prefer clusters that are covered by as many as possible
training examples in S and contain more don’t care values 0 inside them.

However, searching for the optimal cluster in this sense leads to an NP-
hard problem; consequently, greedy alternatives must be employed to
avoid an excessive computing time. In these approaches an iterative proce-
dure changes one at a time the components with value 0 in the cluster un-
der construction, until no elements of F cover the resulting implicant c.

Every time a bit i in c is changed from 0 to 1 a (possibly empty) subset
Ri of binary strings in S do not cover anymore the new implicant. The same
happens for a (possibly empty) subset G i ⊂ F .

It can be easily seen that the subset Ri contains all the elements in S that
cover c and has a value 0 in the ith component; likewise, the subset Gi in-
cludes all and only the binary strings in F covering c and having a 0 as the
ith bit.

It follows that a greedy procedure for SC must minimize the cardinality
|Ri| of the subset Ri, while maximizing the number of elements in Gi, when
the ith bit of c is set. In general, it is impossible to satisfy both these pre-
scription; thus, it is necessary to privilege one of them over the other.

Trials on artificial and real-world classification problems suggest that
the most promising choice consists in privileging the minimization of |Ri|,
which leads to the Maximum-covering version of SC (MSC) [21]. Here, at
every iteration the cardinality of the sets Ri and Gi is computed for every
component i of c having value c i = 0. Then the index i* that minimizes |Ri|
is selected; ties are broken by taking the maximum of |Gi| under the same
value of |Ri|.

As an example, consider the network in Fig. 1, having system function
SF(x) = x1x3+x2x4, and the training set shown in Tab. 2. It can be noted that
in this case the SF is a monotone Boolean function and therefore can be
reconstructed by SC without recurring to the preliminary coding β. How-

6 .3.3.1 Building Clusters

Network Reliability Assessment using a Machine Learning Approach 163

ever, to illustrate the general procedure followed by SC, we apply anyway
the mapping β, thus obtaining the binary training set (zj,yj) in Tab. 5.

Table 5. Binary training set for the system in Fig. 1 obtained by applying
the coding β.

z1 z2 z3 z4 z5 z6 z7 z8 y = SF(x)
1 0 1 0 1 0 0 1 0
1 0 1 0 0 1 0 1 0
1 0 0 1 0 1 0 1 1
0 1 1 0 1 0 0 1 0
0 1 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 1

It can be directly obtained that the set T contains the strings 10010101,

01100101, 01011001, and 01010101, whereas F includes 10101001,
10100101, 01101001, and 01011010. Starting at Step 2 of SC with the ge-
neric implicant 00000000, we compute the cardinalities |Ri| and |Gi| for i =
1, …, 8, thus obtaining:

|R1| = 3, |R 2| = 1, |R3| = 3, |R 4| = 1, |R 5| = 3, |R6| = 1, |R 7| = 4, |R 8| = 0
|G1| = 2, |G 2| = 2, |G 3| = 1, |G4| = 3, |G 5| = 1, |G6| = 3, |G 7| = 3, |G8| = 1

(12)

Then, |Ri| is maximized for i = 8; by changing the eight bit from 0 to 1,
we obtain the cluster 00000001. At this time the subsets Ri for i = 1, …, 7
remain unchanged, whereas the cardinalities of the subsets Gi are

|G1| = 1, |G 2| = 2, |G 3| = 0, |G4| = 3, |G 5| = 1, |G6| = 2, |G 7| = 3

Now, the minimum value of |Ri| = 1 is obtained for i = 2, 4, 6, but the
maximization of |Gi| suggests to change from 0 to 1 the fourth bit, thus ob-
taining the cluster c = 00010001. Since this implicant is not covered by
any element of F, it can be inserted into C (Step 3). Then the set S is re-
duced by removing from it the binary strings that cover c, namely
10010101, 01011001, and 01010101; it follows that S = {01100101}.

The procedure is then repeated at Step 2, by considering again the ge-
neric implicant 00000000 and by computing the cardinalities |Ri| for i = 1,
…, 8. We obtain:

|R1| = 1, |R 2| = 0, |R3| = 0, |R4| = 1, |R 5| = 1, |R6| = 0, |R 7| = 1, |R 8| = 0

Note that the subsets Gi in (12) are not changed since F was not altered.
It is immediately seen that the best choice corresponds to i = 6; changing
the corresponding bit from 0 to 1 yields the cluster 00000100. The cardi-
nalities |Gi| now become

 Claudio M. Rocco S. and Marco Muselli 164

|G1| = 0, |G 2| = 1, |G 3| = 0, |G4| = 1, |G5| = 1, |G7| = 1, |G 8| = 0

Consequently, the index i = 2 is selected, thus leading to the implicant c
= 01000100 to be inserted into C.

Removing at Step 3 the last element from S, which covers c, we obtain
that S becomes empty and the execution of SC follows at Step 4 with the
simplification of the resulting collection C = {00010001, 01000100}.

Usually, the repeated execution of Steps 2-3 leads to a redundant set of
clusters, whose simplification can improve the prediction accuracy of the
corresponding monotone Boolean function. In analogy with methods for
decision trees, the techniques employed to reduce the complexity of the re-
sulting sum-of-products expressions are frequently called pruning algo-
rithms.

The easiest effective way of simplifying the set of clusters produced by
SC is to apply the minimal pruning [19,21]: According to this greedy tech-
nique the clusters that is covered by the maximum number of elements in T
are extracted one at a time. At each extraction, only the binary strings not
included in the clusters already selected are considered. Breaks are tied by
examining the whole covering.

The application of minimal pruning to the example analyzed in the pre-
vious subsection begins with the computation of the covering associated
with each of the two clusters generated in the training phase. It can be
readily observed that 00010001 covers three examples of Tab. 3 (precisely
the binary strings 10010101, 01011001 and 01010101), whereas the cover-
ing of 01000100 is equal to 2. Consequently, the cluster 00010001 is
firstly selected.

After this choice only the binary string 01100101 does not cover any
implicant, which leads to the selection of the second cluster 01000100. No
simplification is then possible in the collection C, which leads to the
monotone Boolean function z4 z8 + z2 z6. By applying in the opposite way
the coding β we obtain the desired expression for the system function
SF(x) = x2x4+ x 1x3, i.e. the correct SF for the system in Fig. 1.

To evaluate the performance of the methods presented in the previous sec-
tions, the network shown in Fig. 3 has been considered [39]. It is assumed
that each link has reliability Pi and capacity of 100 units. A system failure
occurs when the flow at the terminal node t falls below 200 units. Conse-

6 .3.3.2 Simplifying the Collection of Clusters

6 .4 Example

Network Reliability Assessment using a Machine Learning Approach 165

quently, a max-flow min-cut algorithm is used to establish the value of the
EF [23,29].

9

s t

18
19

20

21

1

5

7

9
10

11

13 14

15

8

12

2

3
4

16

17

61

2

3

4

5

6

7

8

Fig. 3. Network to be evaluated [39]

In order to apply a classification method it is first necessary to collect a
set of examples (x,y), where y = EF(x), to be used in the training phase
and in the subsequent performance evaluation of the resulting set of rules.
To this aim, 50000 system states have been randomly selected without re-
placement and for each of them the corresponding value of the EF has
been retrieved.

To analyze how the size of the training set influences the quality of the
solution provided by each method, 13 different cases were analyzed with
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 15000,
20000 and 25000 examples in the training set. These examples were ran-
domly extracted with uniform probability from the whole collection of
50000 system states; the remaining examples were then used to test the ac-
curacy of the model produced by the machine learning technique. An aver-
age over 30 different choices of the training set for each size value was
then performed to obtain statistically relevant results.

The performance of each model is evaluated using standard measures of
sensitivity, specificity and accuracy [37]:

sensitivity = TP/(TP+FN); specificity = TN/(TN+FP);

accuracy = (TP+TN)/(TP+TN+FP+FN)
where

• TP (resp. TN) is the number of examples belonging to the class
y = 1 (resp. y = 0) for which the classifier gives the correct output,

• FP (resp. FN) is the number of examples belonging to the class
y = 1 (resp. y = 0) for which the classifier gives the wrong output.

For reliability evaluation, sensitivity gives the percentage of correctly
classified operating states and specificity provides the percentage of cor-
rectly classified failed states.

 Claudio M. Rocco S. and Marco Muselli 166

Different kernels were tried when generating the SVM model and it was
found that the best performance is achieved with a Gaussian radial basis
function (GRBF) kernel with parameter (1/2σ2) = 0.05. All SVM models
obtained are able to completely separate the corresponding training set.
The optimization required in the training phase was performed using the
LIBSVM software [9]. Table 6 shows the average performance indices
during the testing phase.

Table 6. Average performance indices for SVM (test)

Training Set
Size

Accuracy
%

Sensitivity
%

Specificity
%

1000 95.12 93.93 95.61
2000 96.90 96.96 96.87
3000 97.63 97.93 97.51
4000 98.09 98.50 97.92
5000 98.42 98.84 98.25
6000 98.66 99.09 98.48
7000 98.83 99.27 98.64
8000 98.97 99.41 98.79
9000 99.07 99.50 98.90

10000 99.17 99.59 98.99
15000 99.48 99.81 99.35
20000 99.64 99.88 99.53
25000 99.73 99.93 99.64

Table 7. Average performance indices for DT

Accuracy (%) Sensitivity (%) Specificity (%) Training Set
Size Training Test Training Test Training Test
1000 98.71 95.65 98.26 92.67 98.90 96.91
2000 99.25 97.30 98.89 95.48 99.40 98.08
3000 99.42 98.06 99.15 96.52 99.54 98.71
4000 99.54 98.63 99.44 97.72 99.59 99.01
5000 99.63 98.94 99.51 98.17 99.68 99.27
6000 99.69 99.10 99.58 98.45 99.73 99.38
7000 99.74 99.23 99.67 98.70 99.77 99.45
8000 99.80 99.37 99.71 98.89 99.83 99.57
9000 99.81 99.42 99.75 98.94 99.84 99.63

10000 99.83 99.47 99.75 99.02 99.86 99.66
15000 99.90 99.69 99.85 99.42 99.92 99.80
20000 99.93 99.80 99.88 99.57 99.96 99.89
25000 99.95 99.85 99.92 99.71 99.97 99.92

6 .4.1 Performance Results

Network Reliability Assessment using a Machine Learning Approach 167

As for DT, the resulting models do not classify correctly all the exam-
ples in the training set. Table 7 presents the average performance indices
during training and testing. Finally, Table 8 shows the average perform-
ance indices obtained by SC only during testing, since also SC does not
commit errors on the system states of the training set.

Table 8. Average performance indices for SC (test)

Training Set
Size

Accuracy
%

Sensitivity
%

Specificity
%

1000 96.30 94.52 97.05
2000 98.07 97.34 98.38
3000 98.67 98.11 98.91
4000 99.01 98.64 99.16
5000 99.26 99.00 99.37
6000 99.45 99.32 99.50
7000 99.54 99.43 99.58
8000 99.60 99.49 99.64
9000 99.65 99.54 99.69

10000 99.69 99.59 99.73
15000 99.84 99.80 99.85
20000 99.89 99.89 99.90
25000 99.92 99.92 99.92

94,00

95,00

96,00

97,00

98,00

99,00

100,00

0 5 10 15 20 25 30
Training Dimension x 1000

%

Accuracy % svm

Accuracy % c

Accuracy % snn

Fig. 4. Average accuracy obtained by each ML method in the test phase

 Claudio M. Rocco S. and Marco Muselli 168

92,00

93,00

94,00

95,00

96,00

97,00

98,00

99,00

100,00

0 5 10 15 20 25 30
Training Dimension x 1000

%

Sensitivity % svm

Sensitivity % c

Sensitivity % snn

Fig. 5. Average sensitivity obtained by each ML method in the test phase

95,00

95,50

96,00

96,50

97,00

97,50

98,00

98,50

99,00

99,50

100,00

0 5 10 15 20 25 30
Training Dimension x 1000

%

Specificity % svm
Specificity %c
Specificity % snn

Fig. 6. Average specificity obtained by each ML method in the test phase

Figures 4–6 show the result comparison regarding accuracy, sensitivity
and specificity for the ML techniques considered. It is interesting to note
that the index under study for each model increases with the size of the
training set. SC has the best behavior for all the indices. However, for the

Network Reliability Assessment using a Machine Learning Approach 169

sensitivity index, the performances of SC and SVM are almost equal. For
the specificity index, the performance of SC and DT are almost equal.

This means that SC seems to be more stable when considering the three
indices simultaneously. In [33] different networks are evaluated using dif-
ferent EF: the behavior obtained is similar to the one observed in the net-
work analyzed in this chapter.

As previously mentioned, DT and SC are able to extract rules that explain
the behavior of the systems in the form of a logical sum-of-products ap-
proximating the SF. DT rules are in disjoint form, so the ARE can be easily
determined. Rules generated by SC are not disjoint; thus, an additional
procedure, such as the algorithm KDH88 [16], has to be used to perform
this task.

Table 9 shows the average number of paths and cuts generated by both
procedures. As can be seen in Fig. 7, both techniques are able to extract
more and more path and cut sets as long as the training set is increased (the
system under study has 43 minimal paths and 110 minimal cuts). However,
for a given training set size, SC can produce more path and cut sets than
DT.

Table 9. Average number of paths and cuts extracted by DT and SC

PATHS CUTS Training Set
Size DT SC DT SC
1000 2.2 3.5 17.5 21.2
2000 5.3 8.5 24.9 27.9
3000 7.9 12.5 29.1 34.3
4000 9.9 15.5 32.9 38.2
5000 11.6 18.6 36.1 41.4
6000 13.5 21.1 39.0 45.4
7000 14.7 23.0 41.0 48.5
8000 16.6 24.5 43.6 51.6
9000 18.2 26.1 45.5 52.7

10000 19.1 27.4 47.7 55.0
15000 23.0 31.6 55.8 64.9
20000 26.0 34.8 61.4 72.3
25000 27.9 36.3 66.2 77.7

6 .4.2 Rule Extraction Evaluation

 Claudio M. Rocco S. and Marco Muselli 170

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

0 5000 10000 15000 20000 25000 30000

Training Dimension

Paths DT
Paths SC
Cuts DT
Cuts SC

Fig. 7. Average number of paths and cuts extracted by DT and SNN

Once DT and SC are trained, their resulting ARE is used to evaluate the
network reliability. Table 10 shows the network reliability evaluated using
the correct RE and the ARE obtained by both models, for Pi = 0.90; the
relative errors are also included for completeness. Both models produce
excellent results, but SC errors are significantly lower. On the other hand,
for a specific relative error, SC requires a training set with lower size.

Table 10. Average network reliability and relative error using the path sets
extracted by DT and SC

ARE Evaluation Rel. Error (%) Training Set

Size DT SC DT SC
1000 0.64168 0.73433 28.85 18.57
2000 0.79388 0.87961 11.98 2.47
3000 0.85864 0.89315 4.80 0.97
4000 0.88066 0.89637 2.35 0.61
5000 0.88980 0.89830 1.34 0.39
6000 0.89234 0.89972 1.06 0.24
7000 0.89401 0.90034 0.87 0.17
8000 0.89701 0.90078 0.54 0.12
9000 0.89784 0.90087 0.45 0.11

10000 0.89812 0.90115 0.42 0.08
15000 0.89992 0.90180 0.22 0.01
20000 0.90084 0.90194 0.12 0.00
25000 0.90119 0.90200 0.08 0.00

Network Reliability Assessment using a Machine Learning Approach 171

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

0 5000 10000 15000 20000 25000 30000
Training Dimension

Rel error Reliability DT

Rel error Reliability SC

Fig. 8. Reliability relative error using the path sets extracted by DT and SC

This chapter has evaluated the excellent capability of three machine learn-
ing techniques (SVM, DT and SC) in performing reliability assessment, in
generating the Approximate Reliability Expression (ARE) of a system and
in determining cut and path sets for a network.

SVM produce an approximation to the SF, which cannot be written in
the form of a logical sum-of-products. However, the model generated can
be used within a standard Monte Carlo approach to replace the EF.

On the other hand, DT and SC are able to generate an approximation to
the SF in the form of a logical sum-of-products expression, even from a
small training set. The expression generated using DT is in disjoint form,
which allows to easily obtain the corresponding ARE. Expressions gener-
ated by SC need to be converted in disjoint form, so as to produce the de-
sired ARE. Both DT and SC provide information about minimum paths
and cuts.

The analysis of the results on a 21-link network has shown that SC is
more stable for all the performance indices evaluated, followed by DT and
SVM.

The same set of experiments has been used to evaluate the performance
of three ML techniques in two additional networks [33]. The first network

6 .5 Conclusions

 Claudio M. Rocco S. and Marco Muselli 172

has 20 nodes and 30 double-links. The EF is the connectivity between a
source node s and a terminal node t.

The second network analyzed has 52 nodes and 72 double links (the
Belgian telephone network) and the success criterion used is the all-
terminal reliability (defined as the probability that every node of the net-
work can communicate with every other node through some path). The be-
havior of SVM, DT and SC for these networks has been similar to the re-
sults reported here.

The analysis of different training sets has also shown that SC seems to
be more efficient than DT for extracting cut and paths sets: for a specific
data set size, SC can produce more sets and therefore, a more precise reli-
ability assessment.

Even if the machine-learning-based approach has been initially devel-
oped for approximating binary SF, it has been extended to deal also with
multi-state systems [32], obtaining again excellent results.

References

1. Aggarwal K.K., Chopra Y.C., Bajwa J.S.: Capacity consideration in reliability
analysis of communication systems, IEEE Transactions on Reliability, 31,
1982, pp. 177–181.

2. Bevilacqua M., Braglia M., Montanari R.: The classification and regression
tree approach to pump failure rate analysis, Reliability Engineering and Sys-
tem Safety, 79, 2002, pp. 59–67.

3. Billinton, R. Allan R.N: Reliability Evaluation of Engineering Systems, Con-
cepts and Techniques (second edition), Plenum Press, 1992.

4. Billinton, R. Li W.: Reliability Assessment of Electric Power System Using
Monte Carlo Methods, Plenum Press, 1994.

5. Breiman L., Friedman J. H., Olshen R. A., Stone C. J.: Classification and Re-
gression Trees, Belmont: Wadsworth, 1994.

6. Brayton R. K., Hachtel G. D., McMullen C. T., Sangiovanni-Vincentelli A.
L.: Logic Minimization Algorithms for VLSI Synthesis, Hingham, MA: Klu-
wer Academic Publishers, 1984.

7. Campbell C.: An introduction to kernel methods, In Howlett R.J. and Jain
L.C., editors, Radial Basis Function Networks: Design and Applications,
p. 31. Springer Verlag, Berlin, 2000.

8. Cappelli C., Mola F., Siciliano R.: A statistical approach to growing a reliable
honest tree, Computational Statistics & Data Analysis, 38, 2002, pp. 285–
299.

9. Chang C.-C., Lin C.-J.: LIBSVM: A Library for Support Vector Machines,
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,
2001.

Network Reliability Assessment using a Machine Learning Approach 173

10. Colbourn Ch.: The Combinatorics of Network Reliability, Oxford University
Press, 1987.

11. Cristianini N., Shawe-Taylor J.: An Introduction to Support Vector Machines,
Cambridge University Press, 2000.

12. Dietmeyer D. L., Logical Design of Digital Systems (third edition), Boston,
MA: Allyn and Bacon, 1988.

13. Duda R. O., Hart P. E., Stork D. G.: Pattern Classification, John Wiley &
Sons, 2001.

14. Dubi A.: Modeling of realistic system with the Monte Carlo method: A uni-
fied system engineering approach, Proceedings of the Annual Reliability and
Maintainability Symposium, Tutorial Notes, 2001.

15. Grosh D.L.: Primer of Reliability Theory, John Wiley & Sons, New York,
1989

16. Heidtmann K. D.: Smaller sums of disjoint products by subproducts inver-
sion, IEEE Transactions on Reliability, 38, 1989, pp. 305–311.

17. Hong S. J., Cain R. G., Ostapko D. L.: MINI: A heuristic approach for logic
minimization, IBM Journal of Research and Development, 18, 1974, pp. 443–
458.

18. Muselli M., Liberati D.: Training digital circuits with Hamming Clustering,
IEEE Transactions on Circuits and Systems, 47, 2000, pp. 513–527.

19. Muselli M., Liberati D.: Binary rule generation via Hamming Clustering,
IEEE Transactions on Knowledge and Data Engineering, 14, 2002, pp. 1258–
1268.

20. Muselli M., Quarati A.: Reconstructing positive Boolean functions with
Shadow Clustering, ECCTD 2005 – European Conference on Circuit Theory
and Design, Cork, Ireland, 2005.

21. Muselli M.: Switching Neural Networks: A new connectionist model for clas-
sification, WIRN ’05 – XVI Italian Workshop on Neural Networks, Vietri sul
Mare, Italy, 2005.

22. Murthy S., Kasif S., Salzberg S.: A system for induction of oblique decision
tree, Journal of Artificial Intelligence Research, 2, 1994, pp. 1–32.

23. Papadimitriou C. H., Steiglitz K.: Combinatorial Optimisation: Algorithms
and Complexity, Prentice Hall, New Jersey, 1982.

24. Pereira M. V. F., Pinto L. M. V. G.: A new computational tool for composite
reliability evaluation, IEEE Power System Engineering Society Summer Meet-
ing, 1991, 91SM443-2.

25. Pohl E. A., Mykyta E. F.: Simulation modeling for reliability analysis, Pro-
ceedings of the Annual Reliability and Maintainability Symposium, Tutorial
Notes, 2000.

26. Portela da Gama J. M.: Combining Classification Algorithms, PhD. Thesis,
Faculdade de Ciências da Universidade do Porto, 1999.

27. Quinlan J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann
Publishers, 1993.

28. Rai S, Soh S.: A computer approach for reliability evaluation of telecommu-
nication networks with heterogeneous link-capacities, IEEE Transactions on
Reliability, 40, 1991, pp. 441–451.

 Claudio M. Rocco S. and Marco Muselli 174

29. Reingold E., Nievergelt J., Deo N.: Combinatorial Algorithms: Theory and
Practice, Prentice Hall, New Jersey, 1977.

30. Rocco C. M., Moreno J. M.: Fast Monte Carlo reliability evaluation using
Support Vector Machine, Reliability Engineering and System Safety, 76,
2002, pp. 239–245.

31. Rocco C. M.: A rule induction approach to improve Monte Carlo system reli-
ability assessment, Reliability Engineering and System Safety, 82, 2003, pp.
87–94.

32. Rocco C. M., Muselli M.: Approximate multi-state reliability expressions us-
ing a new machine learning technique, Reliability Engineering and System
Safety, 89, 2005, pp. 261–270.

33. Rocco C. M., Muselli M.: Machine learning models for reliability assessment
of communication networks, submitted to IEEE Transactions on Neural Net-
works.

34. Shawe-Taylor J., Cristianini N.: Kernel Methods for Pattern Analysis, Cam-
bridge University Press, 2004.

35. Stivaros C., Sutner K.: Optimal link assignments for all-terminal network re-
liability, Discrete Applied Mathematics, 75, 1997, pp 285–295.

36. Vapnik V.: Statistical Learning Theory, John Wiley & Sons, 1998.
37. Veropoulos K., Campbell C., Cristianini N.: Controlling the sensitivity of

Support Vector Machines, Proceedings of the International Joint Conference
on Artificial Intelligence, Stockholm, Sweden, 1999, pp. 55–60.

38. Wahba G.: Spline Models for Observational Data, SIAM, 1990.
39. Yoo Y. B., Deo N.: A comparison of algorithm for terminal-pair reliability,

IEEE Transaction on Reliability, 37, 1988, pp. 210–215.

