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Plenty of optimization meta-heuristics have been designed for various 

purposes in optimization. They have also been extensively implemented in 

reliability engineering. For example, Genetic Algorithm (Coit and Smith, 

1996), Ant Colony Optimization (Liang and Smith, 2004), Tabu Search 

(Kulturel-Konak, et al., 2003), Variable Neighbourhood Descent (Liang and 

Wu, 2005), Great Deluge Algorithm (Ravi, 2004), Immune Algorithm 

(Chen and You, 2005) and their combinations (hybrid optimization tech-

niques) exhibited effectiveness in solving various reliability optimization 

problems.  

As proved by Wolpert and Macready (1997), no meta-heuristic is versa-

tile, which could always outperform other meta-heuristics in solving all 

kinds of problems. Therefore, inventing or introducing new, good optimi-
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zation approaches can be very helpful in some specific areas and benefit 

practitioners with more options.  

Since the hybrid optimization technique becomes another promising di-

rection, combining existing tools with new ones may produce robust and 

effective solvers. This consideration also encourages researchers to seek 

novel optimization meta-heuristics. 

This chapter presents applications of a new Particle Swarm Optimization 

(PSO) meta-heuristic for single- and multi-objective reliability optimization 

problems. 

Originally developed for the optimization of continuous unconstrained 

functions, PSO did not attract much attention from the reliability commu-

nity because most reliability optimization problems are of discrete nature 

and have constraints. However, in this chapter we show that properly 

adapted PSO can be an effective tool for solving some discrete constrained 

reliability optimization problems. 

PSO is a population-based stochastic optimization technique invented by 

Kennedy and Eberhart (Eberhart and Kennedy, 1995, Kennedy and Eber-

hart, 1995). PSO was originally developed to simulate the behavior of a 

group of birds searching for food in a cornfield. The early versions of the 

particle swarm model were developed for simulation purposes only. Later it 

was discovered that the algorithms were extremely efficient when opti-

mizing continuous non-linear unconstrained functions. Due to its easy im-

plementation and excellent performance, PSO has been gradually applied to 

many engineering fields in the last several years. Various improvements and 

modifications have been proposed and adapted to solve a wide range of 

optimization problems (Hu, et al., 2004). 

 

4.2 Description of PSO and MO-PSO 

Gregory Levitin et al.



Particle Swarm Optimization in Reliability Engineering 85

PSO is similar to Genetic Algorithm (GA) in that the system is initialized 

with a group of I random particles (solutions) and each particle Xi (1≤i≤I) is 
represented by a string (vector of coordinates in the space of solutions): 

 However, it is unlike GA in that a randomized ve-

locity  is assigned to each particle i and new solutions 

in every PSO iteration are not generated by crossover or mutation operators 

but by the following formula: 

}.1,{ DdxX idi ≤≤=

}1,{ DdvV idi ≤≤=

)(())(() xprandcxprandcvwv 2211 idndidididid −××+−××+×=   (1) 

ididid vxx +=             (2) 

Eq. (1) calculates a new velocity for each particle i  based on its previous 

velocity vid, the location at which it achieved the best fitness so far p id, and 

the neighbor's location p nd at which the best fitness in a neighborhood has 

been achieved so far.  Eq. (2) updates the position of the particle in the 

problem space.  In this equation, rand1() and rand2() are two random 

numbers independently generated, c1 and c 2 are two learning factors that 

control the influence of pid and pnd on the search process. The weight w is the 

particle inertia that prevents it from making undesired jumps in the solution 

space. 

It can be learned from Eq. (1) that each particle is updated by the fol-

lowing two "best" values. The first one is the best solution pBest a particle 

has achieved so far. The second one is the best solution nBest that any 

neighbor of a particle has achieved so far. The neighborhood of a particle is 

defined as a fixed subset of particles in the population. When a particle takes 

the entire population as its neighbors, the best neighborhood solution be-

comes the global best (gBest). 

The process of implementing the PSO is as follows: 

1. Initialize the particle population (position and velocity) randomly.  

2. Calculate fitness values of each particle. 

 

4.2.1 Basic Algorithm 
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3. Update pBest for each particle: if the current fitness value is better than 

pBest, set pBest to current fitness value. 

4. Update nBest for each particle: set nBest to the particle with the best 

fitness value of all neighbors. 

5. Update particle velocity/position according to equation (1) and (2).  

6. If stop criteria is not attained, go back to step 2. 

7. Stop and return the best solution found. 

It can be learned from the particle update formula that particles search for 

better solutions by learning from their own and their neighbors’ experi-

ences. The two equations, Eq. (1) and (2), are the core part of the PSO al-

gorithm. The parameters used in the formula will determine the perform-

ance of the algorithm.  

The learning factors c1 and c2 in Eq. (1) represent the weights of the sto-

chastic acceleration terms that pull each particle toward pBest and nBest 

positions. From a psychological standpoint, the second term in Eq. (1) 

represents cognition, or the private thinking of the particle (tendency of in-

dividuals to duplicate past behavior that have proven successful) whereas 

the third term in Eq. (1) represents the social collaboration among the 

particles (tendency to follow the successes of others).  

Both c1 and c2 were set to 2.0 in initial PSO works (Eberhart and 

Kennedy, 1995, Eberhart and Shi, 1998). The obvious reason is it will make 

the search, which is centered at the pBest and nBest, cover all surrounding 

regions. Clerc (Clerc, 1999) introduced the constriction coefficient, which 

might be necessary to ensure convergence of PSO. c1 = c2 = 1.49445 is also 

used according to the work by Clerc (Eberhart and Shi, 2001b) 

In most cases, the learning factors are identical, which puts the same 

weights on cognitive search and social search. Kennedy (Kennedy, 1997) 

investigated two extreme cases: a cognitive-only model and a social-only 
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4.2.2.1 Learning Factors 

Gregory Levitin et al.



Particle Swarm Optimization in Reliability Engineering 87

model, and found out that both parts are essential to the success of particle 

swarm search.   

In the original version of particle swarm, there was no inertia weight. Inertia 

weight w was first introduced by Shi and Eberhart (Shi and Eberhart, 1998). 

The function of inertia weight is to balance global exploration and local 

exploitation. Linearly decreasing inertia weights were recommended. Clerc 

(Clerc, 1999) introduced the constriction coefficient and suggested it to 

ensure convergence of PSO. Randomized inertia weight is also used in 

several reports (Eberhart and Shi, 2001b, Hu and Eberhart, 2002c, Hu and 

Eberhart, 2002b, Hu and Eberhart, 2002a). The inertia weight can be set to 

[0.5 + (rand1/2.0)], which is selected in the spirit of Clerc's constriction 

factor (Eberhart and Shi, 2001a).  

Particles' velocities are clamped to a maximum velocity Vmax, which serves 

as a constraint to control the global explosion speed of particles. It limits the 

maximum step change of the particle, thus adjusting the moving speed of 

the whole population in the hyperspace. Generally, Vmax is set to the value 

of the dynamic range of each variable, which does not add any limit. If 

Vmax is set to a lower value, it might slow the convergence speed of the 

algorithm. However, it would help to prevent PSO from local convergence.  

As mentioned before, nBest is selected from a neighborhood. The 

neighborhood of a particle is usually pre-defined and does not change dur-

ing iterations. The neighborhood size could vary from 1 to the maximum 

number of solutions in the population. This size affects the propagation of 

information about the best particle in the group. The bigger the neighbor-

hood size, the faster the particles can learn from the global best solutions. In 

an extreme case, the global version of PSO, every particle knows every 

other particles’ movements and can learn that within one step, making PSO 

 

4.2.2.2 Inertia Weight 

4.2.2.3 Maximum Velocity 

4.2.2.4 Neighborhood Size 
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converge very fast. However, it also causes premature convergence that can 

be avoided by the injection of new solutions. Small neighborhood size may 

prevent premature convergence at the price of slowing the convergence 

speed.  

The PSO terminates when the pre-specified number of iterations has been 

performed or when no improvement of gBest has been achieved during a 

specified number of iterations. 

Some studies that have reported the extension of PSO to constrained opti-

mization problems (El-Gallad, et al., 2001, Hu, et al., 2003a, Hu and Eber-

hart, 2002a,  Parsopoulos and Vrahatis, 2002, Ray and Liew, 2001). The 

goals of constrained optimization problems are to find the solution that op-

timizes the fitness function while satisfying a set of linear and non-linear 

constraints. The original PSO method needs to be modified in order to 

handle those constraints. 

Hu and Eberhart (Hu and Eberhart, 2002a) introduced an effective 

method to deal with constraints based on a preserving feasibility strategy. 

Two modifications were made to the PSO algorithm: First, when updating 

the pBest values, all the particles consider only feasible solutions; Second, 

during the initialization process, only feasible solutions form the initial 

population. Various tests show that such modification of the PSO outper-

forms other evolutionary optimization techniques when dealing with opti-

mization problems with linear or nonlinear inequity constraints (Hu, et al., 

2003a, Hu and Eberhart, 2002a). The disadvantage of the method is that the 

initial feasible solution set is sometimes hard to find.  

El-Gallad (El-Gallad, et al., 2001) introduced a similar method. The 

only difference is that when a particle gets outside of feasible region, it is 

reset to the last best feasible solution found for this particle. He, et al. (He, et 

al., 2004) reset the particle to a previous position instead of the last best 

 

4.2.2.5 Termination Criteria 

4.2.3 Handling Constraints in PSO 
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feasible solution. However, if there are several isolated feasible regions, 

particles may be confined in their local regions with above approaches. 

Parsopoulos, et. al (Parsopoulos and Vrahatis, 2002) converted the 

constrained optimization problem into a non-constrained problem by using 

a non-stationary multi-stage penalty function and then applied PSO to the 

converted problems. It was reported that the obtained PSO outperformed 

Evolution Strategy and GA on several benchmark problems (Parsopoulos 

and Vrahatis, 2002). 

Ray, et al. (Ray and Liew, 2001) proposed a swarm metaphor with a 

multilevel information sharing strategy to deal with optimization problems. 

It is assumed that there are some better performers (leaders) in a swarm that 

set the direction of the search for the rest of the particles. A particle that does 

not belong to the better performer list (BPL) improves its performance by 

deriving information from its closest neighbor in BPL. The constraints are 

handled by a constraint matrix. A multilevel Pareto ranking scheme is im-

plemented to generate the BPL based on the constraint matrix. In this case, 

the particle should be updated using a simple generational operator instead 

of the regular PSO formula. Tests of such PSO modifications have showed 

much faster convergence and much lower number of function evaluations 

compared to the GA approach (Ray and Liew, 2001) 

The above mentioned works have showed that modified PSO can 

successfully handle linear or non-linear constraints.  

Multi-objective optimization addresses problems with several design ob-

jectives. In multi-objective optimization (MO) problems, objective func-

tions may be optimized separately from one another and the best solution 

may be found for each objective. However, the objective functions are often 

in conflict among themselves and a Pareto front represents the set of optimal 

solutions. The family of solutions of a multi-objective optimization problem 

is composed of all those potential solutions such that the components of the 

corresponding objective vectors cannot be all simultaneously improved 

(concept of Pareto optimality). The Pareto optimum usually gives a group of 
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solutions called non-inferior or non-dominated solutions instead of a single 

solution. 

The traditional way of handling MO problems is to convert them to 

single objective problems by using weights. Multiple optimal solutions 

could be obtained through multiple runs with different weights. However, 

methods that find groups of Pareto optimal solutions simultaneously can 

save time and cost.  

In PSO, a particle searches the problem space based on its own (pBest) 

and its peers’ (nBest) experience. Both cognitive and social terms in Eq. (1) 

play crucial roles in guiding the search process. Thus, the selection of the 

cognitive and social leader (pBest and nBest) are key points of MO-PSO 

algorithms. The selections should satisfy two rules: first, it should provide 

effective guidance to the particle to reach the most promising Pareto front 

region; second, it should provide a balanced search along the Pareto front to 

maintain the population diversity. 

The selection of cognitive leader (pBest) is almost the same as in the 

original PSO (Hu, et al., 2003b, Hu and Eberhart, 2002b). The only dif-

ference is that the comparison is based on Pareto optimality (pBest is up-

dated only if the new solution dominates all solutions visited by the particle 

so far). 

The selection of the social leader (nBest) consists of two steps. The first 

step is to define a candidate pool from which the leader is chosen, and the 

second step is to define the process of choosing the leader from the candi-

date pool. Usually the candidate pool is the collection of all particles’ pBest 

positions or an external repository that includes all the Pareto optimal so-

lutions found by the algorithm. For the selection procedure, two typical 

approaches have been suggested in the literature:  

1. In the roulette wheel selection scheme approach (Coello Coello, et al., 

2004, Coello Coello and Lechuga, 2002, Li, 2003, Ray and Liew, 2002),  

all candidates are assigned weights based on some criteria (such as 

crowding radius, crowding factor, niche count or other measures). The 

general rule is to distribute the particles evenly. If there are too many 

particles in a small region, the region is considered to be crowded, and the 

particles belonging to the crowd region have less chance to be selected. 
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Thus they do not attract particles to this region anymore. Then, random 

selection is used to choose the social leader. In this scheme, selection for 

a candidate is stochastic and proportional to the weights. This technique 

aims the process at maintaining the population diversity. 

2. In the quantitative standard approach, the social leader is determined by 

some procedure without any random selection involved, such as dynamic 

neighborhood (Hu, et al., 2003b, Hu and Eberhart, 2002b), sigma 

distance (Mostaghim and Teich, 2003), dominated tree (Fieldsend and 

Singh, 2002), and etc. 

Nowadays, considerable effort is concentrated on optimal system design 

that balances system reliability, cost and performance. Many systems per-

form their intended functions at multiple levels, ranging from perfectly 

working to completely failed. These kinds of systems are called multi-state 

systems.  

In the case of a multi-state system, the concept corresponding to that of 

reliability in a binary system is state distribution. Having the system state 

distribution, one can determine its reliability as a probability of being in 

acceptable states and its expected performance named system utility (Aven, 

1993).  

There are two ways to improve the system reliability or utility: First, to 

provide redundancies of components at each subsystem; Second, to improve 

the component’s performance/reliability, such as allowing a component to 

have more chances to stay at better states or allocating more test resources 

on the component for reliability growth (Dai, et al., 2003). Finding an op-

timal balance between these two factors is a classical reliability allocation 

problem that has been studied in many works (Hikita, et al., 1992, Prasad 

and Kuo, 2000, Tillman, et al., 1977) from different aspects and by various 

methods.  

 

4.3 Single-Objective Reliability Allocation 

4.3.1 Background 
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In this section, PSO has been tested on a single objective reliability al-

location problem and then compared with GA that has been carefully tuned 

by Tian et al. (2005).  

A multi-state series-parallel system consists of N subsystems connected in 
series. Each subsystem i has  identical components connected in paral-

lel, as depicted in Fig. 1.  
in

Sub-i

in

Sub-1

1n

Sub-2

2n

Sub-N

Nn

 

Fig. 1. Series-Parallel System 

The components and the system have M +1 possible states: 0, 1, …, M. 

The states of the components in a subsystem are independent. The prob-

ability that the component belonging to subsystem i is in state j is pij. Since 

the com s states compose the complete group of mutually exclusive 

0

ponent'

events =∑ 1
=

M

ijp . Therefore the state distribution of any element i is deter-

mined b

j

y M probabilities pij for 1≤j≤M and pj0=1-∑
M

=

 some subsystems or by changing the component state 

j
ijp

1
. 

The system behavior can be improved by changing the number of parallel 

components in

distribution.  

Two types of decision variables are of concern in the reliability allocation 

problem: real numbers pij (1≤i≤N, 1≤j≤M) representing state distribution of 

 

4.3.2 Problem Formulation 

4.3.2.1 Assumptions 
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the components in each subsystem i, and integer numbers ni (1≤i≤N) rep-
resenting the number of compone

o

nts in each subsystem i. The total number 

f decision variables is NM+N.  

 

 that a multi-state series-parallel sys-

tem is in state s or above in the form 
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one can obtain the multi-state system utility U as 

In the optimization problem, the system utility should be maximized 

whereas its total cost should be limited within the given budget C0. The 

system utility represents the expected performance of multi-state systems. It 

is assumed that certain utility (performance) value us corresponds to any 

system state s. Having the probability

∏ ∑
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gested by Tillman, et al. (1977) which for sub-

system i takes the form  
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The cost model used in Tian, et al. (2005) adopts the cost-reliability 

relationship function sug
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ere r

t

i and )( ii rc are reliability and cost of a single component, iα  and 

iβ  are constants representing the inherent characteristics of components in 

 

4.3.2.3 Objective Function 
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subsystem i, and t is the operating time during which the component should 

not fail.  

Eqs. (6) and (7) were adapted to fit the multi-state system model as 

follows: the cost of component i as a function of its state distribution is 

∑
=

−=
M

j
ijiMiii

ijrtpppc
1

21 )/(),...,,( ln
β        (8) 

where  

∑
=

=
M

k
ikijij ppr

0
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ijα  and ijβ  are characteristic constants with respect to state j, and t is the 

operating time. The total system cost is  
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1
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N

i
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The single objective optimization problem is formulated as follows: 
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pij∈[0,1],   1≤i≤N, 1≤j≤M, 

1
1

≤∑
=

M

j
ijp ,   1≤i≤N, 

in<0    1≤i≤N, 

where  is the maximum allowed system cost (budget). 0C
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The multi-state series-parallel system considered by Tian et al. (2005) 

contains three subsystems connected in series. Any individual component 

and the entire system can have one of three states. The values of system 

utility us corresponding to its states are u0=0, u1=0.5, u2=1.0. The cost 

function parameters are presented in Table 1. The system operating time is  

t = 1000. 

Table 1. Cost function characteristic constants  

Subsystem i ai1 ai2 βi1 βi2

1 1.5E-5 4E-5 1.2 1.5
2 0.9E-5 3.2E-5 1.2 1.5 
3 5.2E-5 9E-5 1.2 1.5 

 

This problem was solved by GA in Tian, et al. (2005) using the 

physical programming framework. The optimal solution obtained by GA is 

shown in Table 2.  

In order to compare the PSO results with results presented in Tian et al. 

(2005), C0 was set to 89.476. The following PSO parameters were chosen: 

the population size of 40, the neighborhood size of 3. Maximum velocity 

was set to 20% of the dynamical range of the variables, the reason to choose 

a smaller maximum velocity is to control the convergence speed of the 

swarm. Learning factors c1 and c2 are set to 1.49445. The inertia weight w 

was set to [0.5 + (rand1/2.0)] as mentioned in previous section. The number 

of iterations was 10000. 

The best solution achieved by the PSO is shown in Table 2. This solution 

provides greater utility than one obtained by the GA with the same budget. 

The distribution of solutions obtained in 200 runs of the PSO with popula-

tion size of 20 is shown in Table 2. The best result over 200 runs is 

U=0.9738, the worst one is U=0.9712, the average is U=0.9734 and the 

standard deviation is 0.000515.  The mean value obtained by the PSO runs 

is the same as the best solution obtained by the GA. 

 

 

4.3.3 Numerical Comparison 
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Table 2. Comparison of the best solutions achieved by PSO and GA 

 Genetic Algorithm Particle Swarm Optimization 

Subsystem i 1 2 3 1 2 3 
pi1 0.2030 0.2109 0.2100 0.2124 0.2208 0.2042 
pi2 0.4200 0.4300 0.4000 0.4579 0.4712 0.4066 
ni 8 8 7 7 7 7 

System Utility 0.9734 0.9738 
System Cost 89.476 89.476 

The classical redundancy allocation problem belongs to the type of integer 

optimization problems. Many algorithms have been developed to solve the 

problem, including the GA (Coit and Smith, 1996), Ant Colony Optimiza-

tion (Liang and Smith, 2004), Tabu Search (Kulturel-Konak, et al., 2003), 

Immune Algorithm (Chen and You, 2005), and Specialized Heuristic (You 

and Chen, 2005).  

A system contains N subsystems connected in series. Each subsystem can 

contain multiple binary components connected in parallel (Fig. 1). Com-

ponents composing each subsystem i can be different. They can be chosen 

from a list of Mi options. Different types of component are characterized by 

reliability, cost and weight. A subsystem fails if all its components fail. The 

entire system fails if any subsystem fails. 

The system structure in this problem is defined by integer numbers of 

components selected from the corresponding lists. The element σij of the set 

of decision variables σ = {σij, 1≤i≤N, 1≤j≤Mi} determines the number of 
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components of type j included in subsystem i. The total number of decision 

variables in the set σ  is . ∑
=

N

i
iM

1

The general objective in this problem is to maximize the system reliability R 

subject to constraints on the total system cost and weight. Suppose the 
component of type j in subsystem i  has reliability , cost , and 

weight . For the given set of chosen components σ,  the system re-

liability, cost and weight can be obtained by 
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The optimization problem can be formulated as follows: 
Maximize   )(σR              (15) 

Subject to:  0)( CC ≤σ ,  0)( WW ≤σ , 

iij M≤≤ σ0 , for 1≤i≤N, 

iij

M

j
K

i
≤∑

=
σ

1

 , 1≤i≤N, 

where C0 and W0 are maximal allowed system cost and weight, and Ki is a 

maximal allowed number of components in subsystem i. 

 

4.4.1.3 Objective Function 
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The Fyffe, et al. problems as devised by Nakagawa & Miyazaki (1981) are 

used for comparison among different algorithms. The results of this com-

parison can be found in chapter 1 of this book. PSO has been tested on the 

first 12 problems (W=191 to 180). For each problem the results of 100 runs 

were obtained. The worst, best and average results over 100 runs are shown 

in Table 3. It can be seen that PSO performs very poor compared to the 

algorithm by You & Chen (2005). PSO just slightly outperforms the random 

search algorithm running for the same time (the best PSO results are slightly 

better than the results of random search whereas the worst PSO results are 

even worse than the worst random search results).   

 
Table 3. Results from PSO and Random Search 

W PSO Worst Rand Worst PSO Mean Rand Mean PSO Best Rand Best Y&C-05 

191 0.96918  0.97413  0.97792 0.97711 0.98209 0.97916  0.98681  
190 0.96900  0.97342  0.97772 0.97605 0.98238 0.97859  0.98642  
189 0.97017  0.97137  0.97673 0.97494 0.98214 0.97783  0.98592  
188 0.96668  0.97153  0.97570 0.97467 0.98121 0.97773  0.98538  
187 0.96812  0.96923  0.97480 0.97340 0.98047 0.97574  0.98469  
186 0.96554  0.96963  0.97344 0.97356 0.97974 0.97654  0.98418  
185 0.96594  0.96879  0.97201 0.97149 0.97984 0.97627  0.98350  
184 0.96562  0.96803  0.97163 0.97168 0.97846 0.97554  0.98299  
183 0.95826  0.96706  0.97032 0.96951 0.97802 0.97163  0.98226  
182 0.95713  0.96556  0.96960 0.96872 0.97538 0.97072  0.98152  
181 0.95800  0.96347  0.96793 0.96745 0.97416 0.97063  0.98103  
180 0.96030  0.96334  0.96696 0.96684 0.97374 0.96854  0.98029  

 

The major reason why PSO has such a poor performance is due to the 

regular coding scheme of particles. There are poor correlations among 

neighbors in the solutions space. The main assumption of PSO is that the 

neighbors of a good solution are also good. However, it is not true in the 

considered redundancy allocation problem.  

 

4.4.2 Numerical Comparison 
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Optimization 

Voting systems are widely used in human organization systems as well as in 

technical decision making systems. The weighted voting systems (WVS) 

are generalizations of the voting systems. The applications of WVS can be 

found in imprecise data handling, safety monitoring and self-testing, 

multi-channel signal processing, pattern recognition and target detection, 

etc. (Levitin, 2005a). 

A WVS makes a decision about propositions based on the decisions of n 

statistically independent individual units of which it consists (for example, 

in target detecting system speed detectors and heat radiation detectors pro-

vide the system with their individual decisions without communicating 

among themselves). Each proposition is a priori right or wrong, but this 

information is available for the units in implicit form. Therefore the units 

are subject to the following three errors: 

1. Acceptance of a proposition that should be rejected (fault of being too 

optimistic), 

2. Rejection of a proposition that should be accepted (fault of being too 

pessimistic), 

3. Abstaining from voting (fault of being unavailable or indecisive). 

This can be modeled by considering system input I being either 1 (proposi-

tion to be accepted) or 0 (proposition to be rejected), which is supplied to 

each unit. Each unit j produces its decision (unit output) dj(I) which can be 1, 

0 or x (in the case of abstention). Inequality dj(I)≠I means that the decision 
made by the unit is wrong. The listed above errors can be expressed as  

1. dj(0)=1 (unit fails stuck-at-1), 

2.  dj(1)=0 (unit fails stuck-at-0), 

3.  dj(I)=x (unit fails stuck-at-x). 

Accordingly, reliability of each unit j can be characterized by probabilities 

of these errors: q01
(j) for the first one, q10

(j) for the second one, q1x
(j) and q0x

(j) 

 

4.5 Single Objective Weighted Voting System 

4.5.1 Problem Formulation 
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for the third one (stuck-at-x probabilities can be different for inputs I=0 and 

I=1). 

Each voting unit j has two weights that express its relative importance 

in the WVS: "negative" weight w0
j, which is assigned to the unit when it 

votes for the proposition rejection, and "positive" weight w1
j, which is as-

signed to the unit when it votes for the proposition acceptance. To make a 

decision about proposition acceptance, the system incorporates all the unit 

decisions into a unanimous system output D. The proposition is rejected by 

the WVS (D(I)=0) if the total weight of units voting for its acceptance is less 

than a pre-specified fraction τ of total weight of not abstaining units (τ is 
usually referred to as the threshold factor). The WVS abstains (D(I)=x) if all 

of its voting units abstain. 

The system fails if D(I)≠I. The entire WVS reliability can be defined as 
R=Pr{D(I)=I}. One can see that the system reliability is a function of reli-

abilities of units it consists of. It also depends on the unit weights and the 

threshold. While the units' reliabilities usually can not be changed when the 

WVS is built, the weights and the threshold can be chosen in such a way that 

maximizes the entire WVS reliability R(w0
1,w

1
1,…, w0

n,w
1
n,τ).  

In many technical systems the time when the output (decision) of each 

voting unit is available is predetermined. For example, the decision time of a 

chemical analyzer is determined by the time of a chemical reaction. The 

decision time of a target detection radar system is determined by the time of 

the radio signal return and by the time of signal processing by the electronic 

subsystem. In both these cases, the variation of the decision times is usually 

negligible.  

On the contrary, the decision time of the entire WVS composed from 

voting units with different constant decision times can vary. Indeed, the 

system does not need to wait for decisions of slow voting units, as long, as 

the system can make a correct decision with reliability higher than a 

pre-specified level. Moreover, in some cases the decisions of the slow 

voting units do not affect the decision of the entire system since this 

decision becomes evident after the fast units have voted. This happens when 

the total weight of units voting for the proposition acceptance or rejection is 

enough to guarantee the system decision independently of the decisions of 
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the units that have not voted yet. In such situations, the voting process can 

be terminated without waiting for slow units' decisions, and the WVS de-

cision can be made in a shorter time. 

The number of combinations of unit decisions that allow the entire 

system decision to be obtained before the outputs of all of the units become 

available depends on the unit weight distribution and on the threshold value. 

By increasing the weights of the fastest units one makes the WVS more 

decisive in the initial stage of voting and therefore reduces the mean system 

decision time at the price of making it less reliable.  

Since the units' weights and the threshold affect both the WVS's reli-

ability and its expected decision time, the problem of the optimal system 

tuning can be formulated as follows: find the voting units' weights and the 

threshold that maximize the system reliability R  while providing the ex-

pected decision time T not greater than a pre-specified value T*: 

Maximize  R(w0
1,w

1
1,…, w 0

n,w
1
n,τ)          

Subject to: T(w0
1,w

1
1,…, w 0

n,w
1
n,τ)≤T* 

The method for calculating the WVS reliability and the expected decision 

time T, GA-based procedure for solving the optimization problem (16), was 

suggested in (Levitin 2005b). Here we compare PSO and GA optimization 

techniques on the numerical example presented in (Levitin 2005b). 

Experimentation was performed on a WVS consisting of six voting units 

with voting times and fault probabilities presented in Table 4.  

Both GA and PSO require the solution to be coded as a finite length string. 

The natural representation of a WVS weight distribution is by an 

2n+1-length integer string (s1, …, s2n+1) in which the values in 2j-1 and 2j 

position corresponds to the weights w0
j and w1

j of j -th unit of the WVS and 

the value in position 2n+1 corresponds to the threshold. The unit weights are 

further normalized in such a way that their total weight is always equal to a 

constant. As in (Levitin 2005b), the string elements take values in the range 

[0, 150], and the normalization takes the form: 

 

4.5.2 Numerical Comparison 



   102

.150/,/10,/10 1
1

22
1

1
1212

0
+

==
−− === ∑∑ n

n

j
jjj

n

j
jjj ssswssw τ   (17) 

Table 4. Parameters of voting units 

No of unit j tj q01(j) q0x(j) q10(j) q1x(j) 

1 10 0.22 0.31 0.29 0.12 
2 12 0.35 0.07 0.103 0.30 
3 38 0.24 0.08 0.22 0.15 
4 48 0.10 0.05 0.2 0.01 
5 55 0.08 0.10 0.15 0.07 
6 70 0.08 0.01 0.10 0.05 

 

Each new solution is decoded, and its objective function (fitness) value 

is estimated. In order to find the solution of Eq. (16), the fitness function is 

defined as: 

  F = R - α·min(T-T*,0),            (18) 

where α is a penalty coefficient. For solutions with T<T* the fitness of the 
solution depends only on WVS reliability. 

The population size for both PSO and GA was chosen 50. Initial ex-

perimentation with the PSO showed that the best composition of parameters 

is: number of solution update cycles (PSO iterations) N=4500; Vmax=40; 

c1=2; c2=1.5, w linearly decreases as PSO proceeds: w = 0.8+0.4(1-i/N).  

In order to improve the PSO performance and avoid its convergence to 

local optima, in each M-th solution update cycle, the solutions (besides the 

best one in the population), instead of updating, were replaced by new 

randomly generated solutions with probability p.  These new solutions had 

velocity 0. It is similar to the “mutation” operator in Genetic Algorithms, the 

experiments show that “injection of new solutions” improves the perform-

ance and the composition M=100, and p=1/3 gives the best improvement. 

In order to compare PSO with and without injection of random solutions 

the optimal voting unit weights and thresholds were obtained for WVS with 

parameters given in Table 4 and with different values of T*. For each T*, 

100 solutions were obtained (for the same problem) by both modifications 

of the PSO starting with different initial randomly generated sets of solu-
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tions. The average obtained reliability A, the coefficient of variation V of the 

obtained reliability over 100 solutions and the average running time Tr were 

calculated. These indices are presented in Table 5, as well as relative in-

crease of average obtained reliability δA=100⋅(Ai-A )/A (%), increase in co-

efficient of variation  ∆V= Vi-V , and relative increase of average running 

time δTr =100⋅ (Tri-Tr )/Tr (%).  

Table 5. Comparison of PSO with and without injection of random solutions 

 No injection Injection Comparison 

T* A V Tr Ai Vi Tri δA ∆V δTr 
50 0.9498 0.0999 18.20 0.9501 0.0906 18.49 0.023 -0.009 1.593 

48 0.9447 0.1400 18.29 0.9450 0.1313 19.01 0.033 -0.009 3.937 

46 0.9436 0.1761 18.31 0.9440 0.1680 19.05 0.045 -0.008 4.042 

44 0.9377 0.2431 16.28 0.9388 0.0669 17.37 0.110 -0.176 6.695 

42 0.9321 0.7384 14.98 0.9337 0.2244 14.78 0.172 -0.514 -1.335 

40 0.9222 1.2532 10.93 0.9254 0.3576 11.10 0.344 -0.896 1.555 

38 0.9123 1.4015 13.14 0.9155 0.2526 13.20 0.350 -1.149 0.457 

36 0.9053 2.6553 12.96 0.9147 0.2954 14.53 1.033 -2.360 12.114

34 0.9019 2.7998 12.31 0.9128 0.2686 14.09 1.208 -2.531 14.460

32 0.8846 4.3692 9.82 0.9106 0.0604 12.02 2.934 -4.309 22.403

30 0.8734 4.6231 7.05 0.8954 2.8278 8.25 2.515 -1.795 17.021

28 0.8711 3.2375 5.69 0.8834 0.8038 7.04 1.410 -2.434 23.726

26 0.8612 3.1374 4.20 0.8740 1.6292 4.08 1.489 -1.508 -2.857 

 
It can be seen that the PSO with injection of random solutions always 

outperforms the regular PSO. It produces better solutions with less variation 

at the price of 8% increase of running time (on average).  

In order to compare PSO with injection of random solutions with GA, 

100 solutions were obtained by GA starting with different initial popula-

tions (100 seeds) for each one of the optimization problems. The parameters 

of the GA were the same as in (Levitin, 2005b). The results of this com-

parison are presented in Table 6.  
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Table 6. Comparison of PSO and GA results 

GA PSO Comparison 

T* Ag maxg ming Vg Trg Ap maxp minp Vp Trp δA δmax ∆V δTr 

50 0.9502 0.9509 0.9478 0.0834 21.34 0.9501 0.9509 0.9466 0.0906 18.49 -0.018 0.0000 0.007 -13.355 

48 0.9450 0.9466 0.9414 0.1661 21.96 0.9450 0.9466 0.9416 0.1313 19.01 0.003 0.0004 -0.035 -13.434 

46 0.9420 0.9444 0.9265 0.2950 14.43 0.9440 0.9444 0.9324 0.1680 19.05 0.221 0.0000 -0.127 32.017 

44 0.9379 0.9392 0.9336 0.1438 15.81 0.9388 0.9392 0.9358 0.0669 17.37 0.095 0.0004 -0.077 9.867 

42 0.9317 0.9349 0.9225 0.3612 11.67 0.9337 0.9349 0.9232 0.2244 14.78 0.217 0.0005 -0.137 26.650 

40 0.9252 0.9276 0.9192 0.3640 12.62 0.9254 0.9276 0.9181 0.3576 11.10 0.019 0.0000 -0.006 -12.044 

38 0.9151 0.9180 0.9103 0.2154 16.15 0.9155 0.9180 0.9091 0.2526 13.20 0.045 0.0003 0.037 -18.266 

36 0.9151 0.9159 0.9040 0.2867 16.74 0.9147 0.9160 0.9029 0.2954 14.53 -0.047 0.0008 0.009 -13.202 

34 0.9130 0.9131 0.9123 0.0128 9.49 0.9128 0.9131 0.8887 0.2686 14.09 -0.020 0.0003 0.256 48.472 

32 0.9107 0.9108 0.9086 0.0250 16.70 0.9106 0.9108 0.9074 0.0604 12.02 -0.013 0.0003 0.035 -28.024 

30 0.9021 0.9036 0.8037 1.1327 12.13 0.8954 0.9037 0.8037 2.8278 8.25 -0.746 0.0049 1.695 -31.987 

28 0.8736 0.8850 0.7950 3.0113 5.86 0.8834 0.8850 0.8214 0.8038 7.04 1.115 0.0000 -2.208 20.137 

26 0.8695 0.8779 0.7460 2.8087 6.27 0.8740 0.8779 0.7893 1.6292 4.08 0.510 0.0010 -1.179 -34.928 

 

For each problem, maximal, minimal and average reliability obtained 

over 100 seeds (max , min and A respectively) are presented in Table 6, as 

well as the coefficient of variation V and average running time Tr (seconds). 

Relative indices δA=100⋅(Ap-A g)/Ag (%), δmax=100⋅(maxp-maxg)/maxg (%), 

∆V= Vp-V g and δTr =100⋅ (Trp-Tr g)/Trg (%) are calculated. The comparison 
shows that GA and PSO produce very close results. However, PSO usually 

produces better solutions; the best PSO solutions over 100 seeds are always 

better or the same as the best GA solutions (δmax≥0). The average value of 

δA over all of the problems tested is 0.106%. PSO produces solutions with 

less variation (average value of ∆V over all of the problems tested is -0.133) 

in less running time (average value of δTr over all of the problems tested is 
-2.16%). 

The difference in variability over all of the test problems between the 

PSO and the GA is shown in Fig. 2. 
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Fig. 2. Range of obtained WVS reliability over 100 seeds with mean 
shown as horizontal dash 

In order to demonstrate PSO’s ability to solve multi-objective optimization 

problems, it was applied to the multi-objective formulation of the reliability 

follows: 

Maximize             (19) ∑
=

=⋅=
M

s
s sxuU

0

])(Pr[φ

and Minimize C=  )]/()[,...,,( 4exp21
1

iiiMiii

N

i
nnpppc +∑

=

Subject to:   ,  0UU ≥ 0CC ≤ ,  

]1,0[∈ijp ,   1≤i≤N, 1≤j≤M, 

1
1
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=

M

j
ijp ,   1≤i≤N, 

in<0    1≤i≤N, 
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allocation problem presented in section 4.3. The problem formulation is as 

4.6 Multi-Objective Reliability Allocation 

4.6.1 Problem Formulation 
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where  is the lower bound of the system utility, and  is the upper 

bound of the cost. 
0U 0C

the budget and utility limits were C0=200 and U0=0.75. and. 

 A dynamic neighborhood PSO developed by Hu, et al. (Hu, et al., 2003b, 

Hu and Eberhart, 2002b) was employed to deal with this two-objective 

problem. The system utility was set to be the optimization objective and the 

cost was set to be the neighborhood objective. As mentioned before, the key 

point is to find the cognitive leader and the social leader. The cognitive 

leader (pBest) is updated when the particle is better than the old pBest in 

both system utility and cost values. All the Pareto optimal solutions found 

by PSO form the candidate pool for the selection of social leader nBest. 

First, the differences of cost between the particle and all candidates in the 

pool are calculated, then the particles with closest cost are chosen to be the 

neighbors of the particle, finally the candidate with the greatest system 

utility value became the social leader. Fig. 3 illustrates the selection process. 

The black curve is the final Pareto front. The dots are the current Pareto 

optimal solutions. The circle is a particle. The particle finds several nearest 

Pareto optimal solutions in term of cost as neighbors. Then the neighbor 

with highest utility fitness value is selected to be nBest.  

The general procedure is as follows: 

1. Initialize the population. 

2. Calculate values of each objective function for the particles in the popu-

lation. 

3. For each solution (particle): if the current fitness values of the particle are 

better than any current solution in the Pareto optimal solution archive, 

then put the particle into the archive.  

4. Find the nBest and pBest according to the dynamic neighborhood 

method. 

5. Update particle velocity and position. 

 

The same example problem parameters as in section 4.3 were used while 

4.6.2 Numerical Comparison 
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6. If maximum iteration number is not reached, go back to step 2. 

7. Find all Pareto optimal solutions in the archive and generate solution set.  

 

Fig. 3. Illustration of dynamic neighborhood strategy  

The population size of 20 and neighborhood size of 3 were used in the 

optimization. Maximum velocity was set to 20% of the dynamical range of 

the variables. Learning factors c1 and c2 are set to 1.49445.  

 
Fig. 4. Pareto optimal solutions obtained by MO-PSO 

The inertia weight w was set to [0.5 + (rand1/2.0)] as mentioned in the 

previous section. Number of iterations was set to 10000. The average time 

for each run of the PSO on a HP Pentium IV 2.8GHz personal computer was 

less than 30 seconds. 
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The Pareto optimal solutions obtained from a single PSO run are pre-

sented in Fig. 4. A total of 200 Pareto optimal solutions have been found 

during the optimization. It can be seen in Fig. 4 that the solutions found by 

MO-PSO cover all the regions in the Pareto front and are almost evenly 

distributed along this front.  

 

As it is reported in the PSO literature (Hu, et al., 2004), this algorithm has 

several advantages compared to other meta-heuristics: 

-It can be easily implemented and adapted to complex problems (for the 

continuous optimization problems, the encoding is straightforward and does 

not need extra conversion);  

- It allows simple constraint handling;  

- Its convergence properties are almost insensitive to the design of fitness 

functions.  

According to (Elbeltagi, et al., 2005), PSO often outperforms other 

meta-heuristics on the wide range of optimization problems. The tests per-

formed in this study showed that PSO is able to at least get better results 

than those obtained by GA for several single- and multi-objective reliability 

optimization problems. However, PSO has showed poor performance when 

it was applied to the discrete redundancy allocation problem. This can be 

explained by the fact that the fundamental assumption in particle swarm is 

that the neighbor regions of a good solution are also good, i.e., small varia-

tions in vector representing the solution causes small variations in the fitness 

function (which lies on the base of the velocity update formula). This as-

sumption usually holds in reliability allocation problems where fitness 

functions are relatively smooth. However, it is not always true in some 

discrete problems such as redundancy optimization.  

It seems that the main cause preventing good performance of the PSO 

in solving discrete optimization problems with unsmooth fitness functions 

lies in its studying behavior based on gradual learning from the best solu-

 

4.7 PSO Applicability and Efficiency 
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tion. The basic PSO principle of emulating social behavior of learning from 

better examples becomes meaningless when approaching the best solution 

causes degradation.  

The possible directions of PSO performance improvement are design 

of solution encoding schemes providing fitness function smoothness and 

combining the PSO with other heuristics and local search methods.  

As an emerging stochastic optimization method, PSO exhibits great 

potential in solving reliability engineering problems. However, many issues 

remain unsolved, which requires further investigation. The adaptation of 

PSO for solving sequencing, partition and scheduling problems that arise in 

reliability engineering is the main challenge for further research.  
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