
Particle Swarm Optimization in Reliability
Engineering

Gregory Levitin

The Israel Electric Corporation Ltd., Israel

Xiaohui Hu

Purdue School of Engineering and Technology, USA

Yuan-Shun Dai

Department of Computer & Information Science, Purdue University School

of Science, USA

Plenty of optimization meta-heuristics have been designed for various

purposes in optimization. They have also been extensively implemented in

reliability engineering. For example, Genetic Algorithm (Coit and Smith,

1996), Ant Colony Optimization (Liang and Smith, 2004), Tabu Search

(Kulturel-Konak, et al., 2003), Variable Neighbourhood Descent (Liang and

Wu, 2005), Great Deluge Algorithm (Ravi, 2004), Immune Algorithm

(Chen and You, 2005) and their combinations (hybrid optimization tech-

niques) exhibited effectiveness in solving various reliability optimization

problems.

As proved by Wolpert and Macready (1997), no meta-heuristic is versa-

tile, which could always outperform other meta-heuristics in solving all

kinds of problems. Therefore, inventing or introducing new, good optimi-

G. Levitin et al.: Particle Swarm Optimization in Reliability Engineering, Computational Intelligence

www.springerlink.com
in Reliability Engineering (SCI) 40, 83–112 (2007)

 © Springer-Verlag Berlin Heidelberg 2007

4.1 Introduction

84

zation approaches can be very helpful in some specific areas and benefit

practitioners with more options.

Since the hybrid optimization technique becomes another promising di-

rection, combining existing tools with new ones may produce robust and

effective solvers. This consideration also encourages researchers to seek

novel optimization meta-heuristics.

This chapter presents applications of a new Particle Swarm Optimization

(PSO) meta-heuristic for single- and multi-objective reliability optimization

problems.

Originally developed for the optimization of continuous unconstrained

functions, PSO did not attract much attention from the reliability commu-

nity because most reliability optimization problems are of discrete nature

and have constraints. However, in this chapter we show that properly

adapted PSO can be an effective tool for solving some discrete constrained

reliability optimization problems.

PSO is a population-based stochastic optimization technique invented by

Kennedy and Eberhart (Eberhart and Kennedy, 1995, Kennedy and Eber-

hart, 1995). PSO was originally developed to simulate the behavior of a

group of birds searching for food in a cornfield. The early versions of the

particle swarm model were developed for simulation purposes only. Later it

was discovered that the algorithms were extremely efficient when opti-

mizing continuous non-linear unconstrained functions. Due to its easy im-

plementation and excellent performance, PSO has been gradually applied to

many engineering fields in the last several years. Various improvements and

modifications have been proposed and adapted to solve a wide range of

optimization problems (Hu, et al., 2004).

4.2 Description of PSO and MO-PSO

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 85

PSO is similar to Genetic Algorithm (GA) in that the system is initialized

with a group of I random particles (solutions) and each particle Xi (1≤i≤I) is
represented by a string (vector of coordinates in the space of solutions):

 However, it is unlike GA in that a randomized ve-

locity is assigned to each particle i and new solutions

in every PSO iteration are not generated by crossover or mutation operators

but by the following formula:

}.1,{ DdxX idi ≤≤=

}1,{ DdvV idi ≤≤=

)(())(() xprandcxprandcvwv 2211 idndidididid −××+−××+×= (1)

ididid vxx += (2)

Eq. (1) calculates a new velocity for each particle i based on its previous

velocity vid, the location at which it achieved the best fitness so far p id, and

the neighbor's location p nd at which the best fitness in a neighborhood has

been achieved so far. Eq. (2) updates the position of the particle in the

problem space. In this equation, rand1() and rand2() are two random

numbers independently generated, c1 and c 2 are two learning factors that

control the influence of pid and pnd on the search process. The weight w is the

particle inertia that prevents it from making undesired jumps in the solution

space.

It can be learned from Eq. (1) that each particle is updated by the fol-

lowing two "best" values. The first one is the best solution pBest a particle

has achieved so far. The second one is the best solution nBest that any

neighbor of a particle has achieved so far. The neighborhood of a particle is

defined as a fixed subset of particles in the population. When a particle takes

the entire population as its neighbors, the best neighborhood solution be-

comes the global best (gBest).

The process of implementing the PSO is as follows:

1. Initialize the particle population (position and velocity) randomly.

2. Calculate fitness values of each particle.

4.2.1 Basic Algorithm

86

3. Update pBest for each particle: if the current fitness value is better than

pBest, set pBest to current fitness value.

4. Update nBest for each particle: set nBest to the particle with the best

fitness value of all neighbors.

5. Update particle velocity/position according to equation (1) and (2).

6. If stop criteria is not attained, go back to step 2.

7. Stop and return the best solution found.

It can be learned from the particle update formula that particles search for

better solutions by learning from their own and their neighbors’ experi-

ences. The two equations, Eq. (1) and (2), are the core part of the PSO al-

gorithm. The parameters used in the formula will determine the perform-

ance of the algorithm.

The learning factors c1 and c2 in Eq. (1) represent the weights of the sto-

chastic acceleration terms that pull each particle toward pBest and nBest

positions. From a psychological standpoint, the second term in Eq. (1)

represents cognition, or the private thinking of the particle (tendency of in-

dividuals to duplicate past behavior that have proven successful) whereas

the third term in Eq. (1) represents the social collaboration among the

particles (tendency to follow the successes of others).

Both c1 and c2 were set to 2.0 in initial PSO works (Eberhart and

Kennedy, 1995, Eberhart and Shi, 1998). The obvious reason is it will make

the search, which is centered at the pBest and nBest, cover all surrounding

regions. Clerc (Clerc, 1999) introduced the constriction coefficient, which

might be necessary to ensure convergence of PSO. c1 = c2 = 1.49445 is also

used according to the work by Clerc (Eberhart and Shi, 2001b)

In most cases, the learning factors are identical, which puts the same

weights on cognitive search and social search. Kennedy (Kennedy, 1997)

investigated two extreme cases: a cognitive-only model and a social-only

4.2.2 Parameter Selection in PSO

4.2.2.1 Learning Factors

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 87

model, and found out that both parts are essential to the success of particle

swarm search.

In the original version of particle swarm, there was no inertia weight. Inertia

weight w was first introduced by Shi and Eberhart (Shi and Eberhart, 1998).

The function of inertia weight is to balance global exploration and local

exploitation. Linearly decreasing inertia weights were recommended. Clerc

(Clerc, 1999) introduced the constriction coefficient and suggested it to

ensure convergence of PSO. Randomized inertia weight is also used in

several reports (Eberhart and Shi, 2001b, Hu and Eberhart, 2002c, Hu and

Eberhart, 2002b, Hu and Eberhart, 2002a). The inertia weight can be set to

[0.5 + (rand1/2.0)], which is selected in the spirit of Clerc's constriction

factor (Eberhart and Shi, 2001a).

Particles' velocities are clamped to a maximum velocity Vmax, which serves

as a constraint to control the global explosion speed of particles. It limits the

maximum step change of the particle, thus adjusting the moving speed of

the whole population in the hyperspace. Generally, Vmax is set to the value

of the dynamic range of each variable, which does not add any limit. If

Vmax is set to a lower value, it might slow the convergence speed of the

algorithm. However, it would help to prevent PSO from local convergence.

As mentioned before, nBest is selected from a neighborhood. The

neighborhood of a particle is usually pre-defined and does not change dur-

ing iterations. The neighborhood size could vary from 1 to the maximum

number of solutions in the population. This size affects the propagation of

information about the best particle in the group. The bigger the neighbor-

hood size, the faster the particles can learn from the global best solutions. In

an extreme case, the global version of PSO, every particle knows every

other particles’ movements and can learn that within one step, making PSO

4.2.2.2 Inertia Weight

4.2.2.3 Maximum Velocity

4.2.2.4 Neighborhood Size

88

converge very fast. However, it also causes premature convergence that can

be avoided by the injection of new solutions. Small neighborhood size may

prevent premature convergence at the price of slowing the convergence

speed.

The PSO terminates when the pre-specified number of iterations has been

performed or when no improvement of gBest has been achieved during a

specified number of iterations.

Some studies that have reported the extension of PSO to constrained opti-

mization problems (El-Gallad, et al., 2001, Hu, et al., 2003a, Hu and Eber-

hart, 2002a, Parsopoulos and Vrahatis, 2002, Ray and Liew, 2001). The

goals of constrained optimization problems are to find the solution that op-

timizes the fitness function while satisfying a set of linear and non-linear

constraints. The original PSO method needs to be modified in order to

handle those constraints.

Hu and Eberhart (Hu and Eberhart, 2002a) introduced an effective

method to deal with constraints based on a preserving feasibility strategy.

Two modifications were made to the PSO algorithm: First, when updating

the pBest values, all the particles consider only feasible solutions; Second,

during the initialization process, only feasible solutions form the initial

population. Various tests show that such modification of the PSO outper-

forms other evolutionary optimization techniques when dealing with opti-

mization problems with linear or nonlinear inequity constraints (Hu, et al.,

2003a, Hu and Eberhart, 2002a). The disadvantage of the method is that the

initial feasible solution set is sometimes hard to find.

El-Gallad (El-Gallad, et al., 2001) introduced a similar method. The

only difference is that when a particle gets outside of feasible region, it is

reset to the last best feasible solution found for this particle. He, et al. (He, et

al., 2004) reset the particle to a previous position instead of the last best

4.2.2.5 Termination Criteria

4.2.3 Handling Constraints in PSO

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 89

feasible solution. However, if there are several isolated feasible regions,

particles may be confined in their local regions with above approaches.

Parsopoulos, et. al (Parsopoulos and Vrahatis, 2002) converted the

constrained optimization problem into a non-constrained problem by using

a non-stationary multi-stage penalty function and then applied PSO to the

converted problems. It was reported that the obtained PSO outperformed

Evolution Strategy and GA on several benchmark problems (Parsopoulos

and Vrahatis, 2002).

Ray, et al. (Ray and Liew, 2001) proposed a swarm metaphor with a

multilevel information sharing strategy to deal with optimization problems.

It is assumed that there are some better performers (leaders) in a swarm that

set the direction of the search for the rest of the particles. A particle that does

not belong to the better performer list (BPL) improves its performance by

deriving information from its closest neighbor in BPL. The constraints are

handled by a constraint matrix. A multilevel Pareto ranking scheme is im-

plemented to generate the BPL based on the constraint matrix. In this case,

the particle should be updated using a simple generational operator instead

of the regular PSO formula. Tests of such PSO modifications have showed

much faster convergence and much lower number of function evaluations

compared to the GA approach (Ray and Liew, 2001)

The above mentioned works have showed that modified PSO can

successfully handle linear or non-linear constraints.

Multi-objective optimization addresses problems with several design ob-

jectives. In multi-objective optimization (MO) problems, objective func-

tions may be optimized separately from one another and the best solution

may be found for each objective. However, the objective functions are often

in conflict among themselves and a Pareto front represents the set of optimal

solutions. The family of solutions of a multi-objective optimization problem

is composed of all those potential solutions such that the components of the

corresponding objective vectors cannot be all simultaneously improved

(concept of Pareto optimality). The Pareto optimum usually gives a group of

4.2.4 Handling Multi-objective Problems with PSO

90

solutions called non-inferior or non-dominated solutions instead of a single

solution.

The traditional way of handling MO problems is to convert them to

single objective problems by using weights. Multiple optimal solutions

could be obtained through multiple runs with different weights. However,

methods that find groups of Pareto optimal solutions simultaneously can

save time and cost.

In PSO, a particle searches the problem space based on its own (pBest)

and its peers’ (nBest) experience. Both cognitive and social terms in Eq. (1)

play crucial roles in guiding the search process. Thus, the selection of the

cognitive and social leader (pBest and nBest) are key points of MO-PSO

algorithms. The selections should satisfy two rules: first, it should provide

effective guidance to the particle to reach the most promising Pareto front

region; second, it should provide a balanced search along the Pareto front to

maintain the population diversity.

The selection of cognitive leader (pBest) is almost the same as in the

original PSO (Hu, et al., 2003b, Hu and Eberhart, 2002b). The only dif-

ference is that the comparison is based on Pareto optimality (pBest is up-

dated only if the new solution dominates all solutions visited by the particle

so far).

The selection of the social leader (nBest) consists of two steps. The first

step is to define a candidate pool from which the leader is chosen, and the

second step is to define the process of choosing the leader from the candi-

date pool. Usually the candidate pool is the collection of all particles’ pBest

positions or an external repository that includes all the Pareto optimal so-

lutions found by the algorithm. For the selection procedure, two typical

approaches have been suggested in the literature:

1. In the roulette wheel selection scheme approach (Coello Coello, et al.,

2004, Coello Coello and Lechuga, 2002, Li, 2003, Ray and Liew, 2002),

all candidates are assigned weights based on some criteria (such as

crowding radius, crowding factor, niche count or other measures). The

general rule is to distribute the particles evenly. If there are too many

particles in a small region, the region is considered to be crowded, and the

particles belonging to the crowd region have less chance to be selected.

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 91

Thus they do not attract particles to this region anymore. Then, random

selection is used to choose the social leader. In this scheme, selection for

a candidate is stochastic and proportional to the weights. This technique

aims the process at maintaining the population diversity.

2. In the quantitative standard approach, the social leader is determined by

some procedure without any random selection involved, such as dynamic

neighborhood (Hu, et al., 2003b, Hu and Eberhart, 2002b), sigma

distance (Mostaghim and Teich, 2003), dominated tree (Fieldsend and

Singh, 2002), and etc.

Nowadays, considerable effort is concentrated on optimal system design

that balances system reliability, cost and performance. Many systems per-

form their intended functions at multiple levels, ranging from perfectly

working to completely failed. These kinds of systems are called multi-state

systems.

In the case of a multi-state system, the concept corresponding to that of

reliability in a binary system is state distribution. Having the system state

distribution, one can determine its reliability as a probability of being in

acceptable states and its expected performance named system utility (Aven,

1993).

There are two ways to improve the system reliability or utility: First, to

provide redundancies of components at each subsystem; Second, to improve

the component’s performance/reliability, such as allowing a component to

have more chances to stay at better states or allocating more test resources

on the component for reliability growth (Dai, et al., 2003). Finding an op-

timal balance between these two factors is a classical reliability allocation

problem that has been studied in many works (Hikita, et al., 1992, Prasad

and Kuo, 2000, Tillman, et al., 1977) from different aspects and by various

methods.

4.3 Single-Objective Reliability Allocation

4.3.1 Background

92

In this section, PSO has been tested on a single objective reliability al-

location problem and then compared with GA that has been carefully tuned

by Tian et al. (2005).

A multi-state series-parallel system consists of N subsystems connected in
series. Each subsystem i has identical components connected in paral-

lel, as depicted in Fig. 1.
in

Sub-i

in

Sub-1

1n

Sub-2

2n

Sub-N

Nn

Fig. 1. Series-Parallel System

The components and the system have M +1 possible states: 0, 1, …, M.

The states of the components in a subsystem are independent. The prob-

ability that the component belonging to subsystem i is in state j is pij. Since

the com s states compose the complete group of mutually exclusive

0

ponent'

events =∑ 1
=

M

ijp . Therefore the state distribution of any element i is deter-

mined b

j

y M probabilities pij for 1≤j≤M and pj0=1-∑
M

=

 some subsystems or by changing the component state

j
ijp

1
.

The system behavior can be improved by changing the number of parallel

components in

distribution.

Two types of decision variables are of concern in the reliability allocation

problem: real numbers pij (1≤i≤N, 1≤j≤M) representing state distribution of

4.3.2 Problem Formulation

4.3.2.1 Assumptions

4.3.2.2 Decision Variables

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 93

the components in each subsystem i, and integer numbers ni (1≤i≤N) rep-
resenting the number of compone

o

nts in each subsystem i. The total number

f decision variables is NM+N.

 that a multi-state series-parallel sys-

tem is in state s or above in the form

⎤

⎢
⎢
⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=≥

N

i

nM

sk
ik

i

psx
1

11])(Pr[φ , (3)

one can obtain the multi-state system utility U as

In the optimization problem, the system utility should be maximized

whereas its total cost should be limited within the given budget C0. The

system utility represents the expected performance of multi-state systems. It

is assumed that certain utility (performance) value us corresponds to any

system state s. Having the probability

∏ ∑
= = ⎥

⎥

⎦⎣

∑
=

=⋅=
M

s
s sxuU

0
])(Pr[φ , and (4)

])(Pr[sx =φ can be derived from Eq. (3) by

 (5)

gested by Tillman, et al. (1977) which for sub-

system i takes the form

β/ ln

wh

⎩
⎨
⎧

=≥
<≤+≥−≥

==
)(])(Pr[

)0(]1)(Pr[])(Pr[
])(Pr[

Mssx

Mssxsx
sx

φ
φφ

φ

The cost model used in Tian, et al. (2005) adopts the cost-reliability

relationship function sug

)]4 , (6) /exp()[(iiiii nnrcC +=

i
iiii rrc α)()(−= (7)

ere r

t

i and)(ii rc are reliability and cost of a single component, iα and

iβ are constants representing the inherent characteristics of components in

4.3.2.3 Objective Function

94

subsystem i, and t is the operating time during which the component should

not fail.

Eqs. (6) and (7) were adapted to fit the multi-state system model as

follows: the cost of component i as a function of its state distribution is

∑
=

−=
M

j
ijiMiii

ijrtpppc
1

21)/(),...,,(ln
β (8)

where

∑
=

=
M

k
ikijij ppr

0
/ , for 1≤j≤M, (9)

ijα and ijβ are characteristic constants with respect to state j, and t is the

operating time. The total system cost is

C= (10))]4/exp()[,...,,(21
1

iiiMiii
N

i
nnpppc +∑

=

The single objective optimization problem is formulated as follows:

Maximize (11) ∑
=

=⋅=
M

s
s sxuU

0

])(Pr[φ

Subject to: 0
1

21 4
exp),...,,(C

n
npppcC

N

i

i
iiMiii ≤⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=∑

=

pij∈[0,1], 1≤i≤N, 1≤j≤M,

1
1

≤∑
=

M

j
ijp , 1≤i≤N,

in<0 1≤i≤N,

where is the maximum allowed system cost (budget). 0C

4.3.2.4 The Problem

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 95

The multi-state series-parallel system considered by Tian et al. (2005)

contains three subsystems connected in series. Any individual component

and the entire system can have one of three states. The values of system

utility us corresponding to its states are u0=0, u1=0.5, u2=1.0. The cost

function parameters are presented in Table 1. The system operating time is

t = 1000.

Table 1. Cost function characteristic constants

Subsystem i ai1 ai2 βi1 βi2

1 1.5E-5 4E-5 1.2 1.5
2 0.9E-5 3.2E-5 1.2 1.5
3 5.2E-5 9E-5 1.2 1.5

This problem was solved by GA in Tian, et al. (2005) using the

physical programming framework. The optimal solution obtained by GA is

shown in Table 2.

In order to compare the PSO results with results presented in Tian et al.

(2005), C0 was set to 89.476. The following PSO parameters were chosen:

the population size of 40, the neighborhood size of 3. Maximum velocity

was set to 20% of the dynamical range of the variables, the reason to choose

a smaller maximum velocity is to control the convergence speed of the

swarm. Learning factors c1 and c2 are set to 1.49445. The inertia weight w

was set to [0.5 + (rand1/2.0)] as mentioned in previous section. The number

of iterations was 10000.

The best solution achieved by the PSO is shown in Table 2. This solution

provides greater utility than one obtained by the GA with the same budget.

The distribution of solutions obtained in 200 runs of the PSO with popula-

tion size of 20 is shown in Table 2. The best result over 200 runs is

U=0.9738, the worst one is U=0.9712, the average is U=0.9734 and the

standard deviation is 0.000515. The mean value obtained by the PSO runs

is the same as the best solution obtained by the GA.

4.3.3 Numerical Comparison

96

Table 2. Comparison of the best solutions achieved by PSO and GA

 Genetic Algorithm Particle Swarm Optimization

Subsystem i 1 2 3 1 2 3
pi1 0.2030 0.2109 0.2100 0.2124 0.2208 0.2042
pi2 0.4200 0.4300 0.4000 0.4579 0.4712 0.4066
ni 8 8 7 7 7 7

System Utility 0.9734 0.9738
System Cost 89.476 89.476

The classical redundancy allocation problem belongs to the type of integer

optimization problems. Many algorithms have been developed to solve the

problem, including the GA (Coit and Smith, 1996), Ant Colony Optimiza-

tion (Liang and Smith, 2004), Tabu Search (Kulturel-Konak, et al., 2003),

Immune Algorithm (Chen and You, 2005), and Specialized Heuristic (You

and Chen, 2005).

A system contains N subsystems connected in series. Each subsystem can

contain multiple binary components connected in parallel (Fig. 1). Com-

ponents composing each subsystem i can be different. They can be chosen

from a list of Mi options. Different types of component are characterized by

reliability, cost and weight. A subsystem fails if all its components fail. The

entire system fails if any subsystem fails.

The system structure in this problem is defined by integer numbers of

components selected from the corresponding lists. The element σij of the set

of decision variables σ = {σij, 1≤i≤N, 1≤j≤Mi} determines the number of

4.4 Single-Objective Redundancy Allocation

4.4.1 Problem Formulation

4.4.1.1 Assumptions

4.4.1.2 Decision Variable

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 97

components of type j included in subsystem i. The total number of decision

variables in the set σ is . ∑
=

N

i
iM

1

The general objective in this problem is to maximize the system reliability R

subject to constraints on the total system cost and weight. Suppose the
component of type j in subsystem i has reliability , cost , and

weight . For the given set of chosen components σ, the system re-

liability, cost and weight can be obtained by

),(jir),(jic

),(

]
⎟
⎟

⎠

⎞

ij

ij

jiw

[∏ ∏
= =⎜
⎜

⎝

⎛
−−=

N

i

M

j

i
ijjirR

1 1
),(11)(σσ (12)

∑ ∑
= =

=
N

i

M

j

i
jicC

1 1
),()(σσ (13)

∑ ∑
= =

=
N

i

M

j

i
jiwW

1 1
),()(σσ (14)

The optimization problem can be formulated as follows:
Maximize)(σR (15)

Subject to: 0)(CC ≤σ , 0)(WW ≤σ ,

iij M≤≤ σ0 , for 1≤i≤N,

iij

M

j
K

i
≤∑

=
σ

1

 , 1≤i≤N,

where C0 and W0 are maximal allowed system cost and weight, and Ki is a

maximal allowed number of components in subsystem i.

4.4.1.3 Objective Function

98

The Fyffe, et al. problems as devised by Nakagawa & Miyazaki (1981) are

used for comparison among different algorithms. The results of this com-

parison can be found in chapter 1 of this book. PSO has been tested on the

first 12 problems (W=191 to 180). For each problem the results of 100 runs

were obtained. The worst, best and average results over 100 runs are shown

in Table 3. It can be seen that PSO performs very poor compared to the

algorithm by You & Chen (2005). PSO just slightly outperforms the random

search algorithm running for the same time (the best PSO results are slightly

better than the results of random search whereas the worst PSO results are

even worse than the worst random search results).

Table 3. Results from PSO and Random Search

W PSO Worst Rand Worst PSO Mean Rand Mean PSO Best Rand Best Y&C-05

191 0.96918 0.97413 0.97792 0.97711 0.98209 0.97916 0.98681
190 0.96900 0.97342 0.97772 0.97605 0.98238 0.97859 0.98642
189 0.97017 0.97137 0.97673 0.97494 0.98214 0.97783 0.98592
188 0.96668 0.97153 0.97570 0.97467 0.98121 0.97773 0.98538
187 0.96812 0.96923 0.97480 0.97340 0.98047 0.97574 0.98469
186 0.96554 0.96963 0.97344 0.97356 0.97974 0.97654 0.98418
185 0.96594 0.96879 0.97201 0.97149 0.97984 0.97627 0.98350
184 0.96562 0.96803 0.97163 0.97168 0.97846 0.97554 0.98299
183 0.95826 0.96706 0.97032 0.96951 0.97802 0.97163 0.98226
182 0.95713 0.96556 0.96960 0.96872 0.97538 0.97072 0.98152
181 0.95800 0.96347 0.96793 0.96745 0.97416 0.97063 0.98103
180 0.96030 0.96334 0.96696 0.96684 0.97374 0.96854 0.98029

The major reason why PSO has such a poor performance is due to the

regular coding scheme of particles. There are poor correlations among

neighbors in the solutions space. The main assumption of PSO is that the

neighbors of a good solution are also good. However, it is not true in the

considered redundancy allocation problem.

4.4.2 Numerical Comparison

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 99

Optimization

Voting systems are widely used in human organization systems as well as in

technical decision making systems. The weighted voting systems (WVS)

are generalizations of the voting systems. The applications of WVS can be

found in imprecise data handling, safety monitoring and self-testing,

multi-channel signal processing, pattern recognition and target detection,

etc. (Levitin, 2005a).

A WVS makes a decision about propositions based on the decisions of n

statistically independent individual units of which it consists (for example,

in target detecting system speed detectors and heat radiation detectors pro-

vide the system with their individual decisions without communicating

among themselves). Each proposition is a priori right or wrong, but this

information is available for the units in implicit form. Therefore the units

are subject to the following three errors:

1. Acceptance of a proposition that should be rejected (fault of being too

optimistic),

2. Rejection of a proposition that should be accepted (fault of being too

pessimistic),

3. Abstaining from voting (fault of being unavailable or indecisive).

This can be modeled by considering system input I being either 1 (proposi-

tion to be accepted) or 0 (proposition to be rejected), which is supplied to

each unit. Each unit j produces its decision (unit output) dj(I) which can be 1,

0 or x (in the case of abstention). Inequality dj(I)≠I means that the decision
made by the unit is wrong. The listed above errors can be expressed as

1. dj(0)=1 (unit fails stuck-at-1),

2. dj(1)=0 (unit fails stuck-at-0),

3. dj(I)=x (unit fails stuck-at-x).

Accordingly, reliability of each unit j can be characterized by probabilities

of these errors: q01
(j) for the first one, q10

(j) for the second one, q1x
(j) and q0x

(j)

4.5 Single Objective Weighted Voting System

4.5.1 Problem Formulation

 100

for the third one (stuck-at-x probabilities can be different for inputs I=0 and

I=1).

Each voting unit j has two weights that express its relative importance

in the WVS: "negative" weight w0
j, which is assigned to the unit when it

votes for the proposition rejection, and "positive" weight w1
j, which is as-

signed to the unit when it votes for the proposition acceptance. To make a

decision about proposition acceptance, the system incorporates all the unit

decisions into a unanimous system output D. The proposition is rejected by

the WVS (D(I)=0) if the total weight of units voting for its acceptance is less

than a pre-specified fraction τ of total weight of not abstaining units (τ is
usually referred to as the threshold factor). The WVS abstains (D(I)=x) if all

of its voting units abstain.

The system fails if D(I)≠I. The entire WVS reliability can be defined as
R=Pr{D(I)=I}. One can see that the system reliability is a function of reli-

abilities of units it consists of. It also depends on the unit weights and the

threshold. While the units' reliabilities usually can not be changed when the

WVS is built, the weights and the threshold can be chosen in such a way that

maximizes the entire WVS reliability R(w0
1,w

1
1,…, w0

n,w
1
n,τ).

In many technical systems the time when the output (decision) of each

voting unit is available is predetermined. For example, the decision time of a

chemical analyzer is determined by the time of a chemical reaction. The

decision time of a target detection radar system is determined by the time of

the radio signal return and by the time of signal processing by the electronic

subsystem. In both these cases, the variation of the decision times is usually

negligible.

On the contrary, the decision time of the entire WVS composed from

voting units with different constant decision times can vary. Indeed, the

system does not need to wait for decisions of slow voting units, as long, as

the system can make a correct decision with reliability higher than a

pre-specified level. Moreover, in some cases the decisions of the slow

voting units do not affect the decision of the entire system since this

decision becomes evident after the fast units have voted. This happens when

the total weight of units voting for the proposition acceptance or rejection is

enough to guarantee the system decision independently of the decisions of

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 101

the units that have not voted yet. In such situations, the voting process can

be terminated without waiting for slow units' decisions, and the WVS de-

cision can be made in a shorter time.

The number of combinations of unit decisions that allow the entire

system decision to be obtained before the outputs of all of the units become

available depends on the unit weight distribution and on the threshold value.

By increasing the weights of the fastest units one makes the WVS more

decisive in the initial stage of voting and therefore reduces the mean system

decision time at the price of making it less reliable.

Since the units' weights and the threshold affect both the WVS's reli-

ability and its expected decision time, the problem of the optimal system

tuning can be formulated as follows: find the voting units' weights and the

threshold that maximize the system reliability R while providing the ex-

pected decision time T not greater than a pre-specified value T*:

Maximize R(w0
1,w

1
1,…, w 0

n,w
1
n,τ)

Subject to: T(w0
1,w

1
1,…, w 0

n,w
1
n,τ)≤T*

The method for calculating the WVS reliability and the expected decision

time T, GA-based procedure for solving the optimization problem (16), was

suggested in (Levitin 2005b). Here we compare PSO and GA optimization

techniques on the numerical example presented in (Levitin 2005b).

Experimentation was performed on a WVS consisting of six voting units

with voting times and fault probabilities presented in Table 4.

Both GA and PSO require the solution to be coded as a finite length string.

The natural representation of a WVS weight distribution is by an

2n+1-length integer string (s1, …, s2n+1) in which the values in 2j-1 and 2j

position corresponds to the weights w0
j and w1

j of j -th unit of the WVS and

the value in position 2n+1 corresponds to the threshold. The unit weights are

further normalized in such a way that their total weight is always equal to a

constant. As in (Levitin 2005b), the string elements take values in the range

[0, 150], and the normalization takes the form:

4.5.2 Numerical Comparison

 102

.150/,/10,/10 1
1

22
1

1
1212

0
+

==
−− === ∑∑ n

n

j
jjj

n

j
jjj ssswssw τ (17)

Table 4. Parameters of voting units

No of unit j tj q01(j) q0x(j) q10(j) q1x(j)

1 10 0.22 0.31 0.29 0.12
2 12 0.35 0.07 0.103 0.30
3 38 0.24 0.08 0.22 0.15
4 48 0.10 0.05 0.2 0.01
5 55 0.08 0.10 0.15 0.07
6 70 0.08 0.01 0.10 0.05

Each new solution is decoded, and its objective function (fitness) value

is estimated. In order to find the solution of Eq. (16), the fitness function is

defined as:

 F = R - α·min(T-T*,0), (18)

where α is a penalty coefficient. For solutions with T<T* the fitness of the
solution depends only on WVS reliability.

The population size for both PSO and GA was chosen 50. Initial ex-

perimentation with the PSO showed that the best composition of parameters

is: number of solution update cycles (PSO iterations) N=4500; Vmax=40;

c1=2; c2=1.5, w linearly decreases as PSO proceeds: w = 0.8+0.4(1-i/N).

In order to improve the PSO performance and avoid its convergence to

local optima, in each M-th solution update cycle, the solutions (besides the

best one in the population), instead of updating, were replaced by new

randomly generated solutions with probability p. These new solutions had

velocity 0. It is similar to the “mutation” operator in Genetic Algorithms, the

experiments show that “injection of new solutions” improves the perform-

ance and the composition M=100, and p=1/3 gives the best improvement.

In order to compare PSO with and without injection of random solutions

the optimal voting unit weights and thresholds were obtained for WVS with

parameters given in Table 4 and with different values of T*. For each T*,

100 solutions were obtained (for the same problem) by both modifications

of the PSO starting with different initial randomly generated sets of solu-

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 103

tions. The average obtained reliability A, the coefficient of variation V of the

obtained reliability over 100 solutions and the average running time Tr were

calculated. These indices are presented in Table 5, as well as relative in-

crease of average obtained reliability δA=100⋅(Ai-A)/A (%), increase in co-

efficient of variation ∆V= Vi-V , and relative increase of average running

time δTr =100⋅ (Tri-Tr)/Tr (%).

Table 5. Comparison of PSO with and without injection of random solutions

 No injection Injection Comparison

T* A V Tr Ai Vi Tri δA ∆V δTr
50 0.9498 0.0999 18.20 0.9501 0.0906 18.49 0.023 -0.009 1.593

48 0.9447 0.1400 18.29 0.9450 0.1313 19.01 0.033 -0.009 3.937

46 0.9436 0.1761 18.31 0.9440 0.1680 19.05 0.045 -0.008 4.042

44 0.9377 0.2431 16.28 0.9388 0.0669 17.37 0.110 -0.176 6.695

42 0.9321 0.7384 14.98 0.9337 0.2244 14.78 0.172 -0.514 -1.335

40 0.9222 1.2532 10.93 0.9254 0.3576 11.10 0.344 -0.896 1.555

38 0.9123 1.4015 13.14 0.9155 0.2526 13.20 0.350 -1.149 0.457

36 0.9053 2.6553 12.96 0.9147 0.2954 14.53 1.033 -2.360 12.114

34 0.9019 2.7998 12.31 0.9128 0.2686 14.09 1.208 -2.531 14.460

32 0.8846 4.3692 9.82 0.9106 0.0604 12.02 2.934 -4.309 22.403

30 0.8734 4.6231 7.05 0.8954 2.8278 8.25 2.515 -1.795 17.021

28 0.8711 3.2375 5.69 0.8834 0.8038 7.04 1.410 -2.434 23.726

26 0.8612 3.1374 4.20 0.8740 1.6292 4.08 1.489 -1.508 -2.857

It can be seen that the PSO with injection of random solutions always

outperforms the regular PSO. It produces better solutions with less variation

at the price of 8% increase of running time (on average).

In order to compare PSO with injection of random solutions with GA,

100 solutions were obtained by GA starting with different initial popula-

tions (100 seeds) for each one of the optimization problems. The parameters

of the GA were the same as in (Levitin, 2005b). The results of this com-

parison are presented in Table 6.

 104

Table 6. Comparison of PSO and GA results

GA PSO Comparison

T* Ag maxg ming Vg Trg Ap maxp minp Vp Trp δA δmax ∆V δTr

50 0.9502 0.9509 0.9478 0.0834 21.34 0.9501 0.9509 0.9466 0.0906 18.49 -0.018 0.0000 0.007 -13.355

48 0.9450 0.9466 0.9414 0.1661 21.96 0.9450 0.9466 0.9416 0.1313 19.01 0.003 0.0004 -0.035 -13.434

46 0.9420 0.9444 0.9265 0.2950 14.43 0.9440 0.9444 0.9324 0.1680 19.05 0.221 0.0000 -0.127 32.017

44 0.9379 0.9392 0.9336 0.1438 15.81 0.9388 0.9392 0.9358 0.0669 17.37 0.095 0.0004 -0.077 9.867

42 0.9317 0.9349 0.9225 0.3612 11.67 0.9337 0.9349 0.9232 0.2244 14.78 0.217 0.0005 -0.137 26.650

40 0.9252 0.9276 0.9192 0.3640 12.62 0.9254 0.9276 0.9181 0.3576 11.10 0.019 0.0000 -0.006 -12.044

38 0.9151 0.9180 0.9103 0.2154 16.15 0.9155 0.9180 0.9091 0.2526 13.20 0.045 0.0003 0.037 -18.266

36 0.9151 0.9159 0.9040 0.2867 16.74 0.9147 0.9160 0.9029 0.2954 14.53 -0.047 0.0008 0.009 -13.202

34 0.9130 0.9131 0.9123 0.0128 9.49 0.9128 0.9131 0.8887 0.2686 14.09 -0.020 0.0003 0.256 48.472

32 0.9107 0.9108 0.9086 0.0250 16.70 0.9106 0.9108 0.9074 0.0604 12.02 -0.013 0.0003 0.035 -28.024

30 0.9021 0.9036 0.8037 1.1327 12.13 0.8954 0.9037 0.8037 2.8278 8.25 -0.746 0.0049 1.695 -31.987

28 0.8736 0.8850 0.7950 3.0113 5.86 0.8834 0.8850 0.8214 0.8038 7.04 1.115 0.0000 -2.208 20.137

26 0.8695 0.8779 0.7460 2.8087 6.27 0.8740 0.8779 0.7893 1.6292 4.08 0.510 0.0010 -1.179 -34.928

For each problem, maximal, minimal and average reliability obtained

over 100 seeds (max , min and A respectively) are presented in Table 6, as

well as the coefficient of variation V and average running time Tr (seconds).

Relative indices δA=100⋅(Ap-A g)/Ag (%), δmax=100⋅(maxp-maxg)/maxg (%),

∆V= Vp-V g and δTr =100⋅ (Trp-Tr g)/Trg (%) are calculated. The comparison
shows that GA and PSO produce very close results. However, PSO usually

produces better solutions; the best PSO solutions over 100 seeds are always

better or the same as the best GA solutions (δmax≥0). The average value of

δA over all of the problems tested is 0.106%. PSO produces solutions with

less variation (average value of ∆V over all of the problems tested is -0.133)

in less running time (average value of δTr over all of the problems tested is
-2.16%).

The difference in variability over all of the test problems between the

PSO and the GA is shown in Fig. 2.

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 105

Fig. 2. Range of obtained WVS reliability over 100 seeds with mean
shown as horizontal dash

In order to demonstrate PSO’s ability to solve multi-objective optimization

problems, it was applied to the multi-objective formulation of the reliability

follows:

Maximize (19) ∑
=

=⋅=
M

s
s sxuU

0

])(Pr[φ

and Minimize C=)]/()[,...,,(4exp21
1

iiiMiii

N

i
nnpppc +∑

=

Subject to: , 0UU ≥ 0CC ≤ ,

]1,0[∈ijp , 1≤i≤N, 1≤j≤M,

1
1

≤∑
=

M

j
ijp , 1≤i≤N,

in<0 1≤i≤N,

GA

0.74

0.79

0.84

0.89

0.94

50 48 46 44 42 40 38 36 34 32 30 28 26

T*

R

PSO

0.74

0.79

0.84

0.89

0.94

50 48 46 44 42 40 38 36 34 32 30 28 26

T*

R

allocation problem presented in section 4.3. The problem formulation is as

4.6 Multi-Objective Reliability Allocation

4.6.1 Problem Formulation

106

where is the lower bound of the system utility, and is the upper

bound of the cost.
0U 0C

the budget and utility limits were C0=200 and U0=0.75. and.

 A dynamic neighborhood PSO developed by Hu, et al. (Hu, et al., 2003b,

Hu and Eberhart, 2002b) was employed to deal with this two-objective

problem. The system utility was set to be the optimization objective and the

cost was set to be the neighborhood objective. As mentioned before, the key

point is to find the cognitive leader and the social leader. The cognitive

leader (pBest) is updated when the particle is better than the old pBest in

both system utility and cost values. All the Pareto optimal solutions found

by PSO form the candidate pool for the selection of social leader nBest.

First, the differences of cost between the particle and all candidates in the

pool are calculated, then the particles with closest cost are chosen to be the

neighbors of the particle, finally the candidate with the greatest system

utility value became the social leader. Fig. 3 illustrates the selection process.

The black curve is the final Pareto front. The dots are the current Pareto

optimal solutions. The circle is a particle. The particle finds several nearest

Pareto optimal solutions in term of cost as neighbors. Then the neighbor

with highest utility fitness value is selected to be nBest.

The general procedure is as follows:

1. Initialize the population.

2. Calculate values of each objective function for the particles in the popu-

lation.

3. For each solution (particle): if the current fitness values of the particle are

better than any current solution in the Pareto optimal solution archive,

then put the particle into the archive.

4. Find the nBest and pBest according to the dynamic neighborhood

method.

5. Update particle velocity and position.

The same example problem parameters as in section 4.3 were used while

4.6.2 Numerical Comparison

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 107

6. If maximum iteration number is not reached, go back to step 2.

7. Find all Pareto optimal solutions in the archive and generate solution set.

Fig. 3. Illustration of dynamic neighborhood strategy

The population size of 20 and neighborhood size of 3 were used in the

optimization. Maximum velocity was set to 20% of the dynamical range of

the variables. Learning factors c1 and c2 are set to 1.49445.

Fig. 4. Pareto optimal solutions obtained by MO-PSO

The inertia weight w was set to [0.5 + (rand1/2.0)] as mentioned in the

previous section. Number of iterations was set to 10000. The average time

for each run of the PSO on a HP Pentium IV 2.8GHz personal computer was

less than 30 seconds.

utility

0 cost

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

Cost

Ut
ili

ty

 108

The Pareto optimal solutions obtained from a single PSO run are pre-

sented in Fig. 4. A total of 200 Pareto optimal solutions have been found

during the optimization. It can be seen in Fig. 4 that the solutions found by

MO-PSO cover all the regions in the Pareto front and are almost evenly

distributed along this front.

As it is reported in the PSO literature (Hu, et al., 2004), this algorithm has

several advantages compared to other meta-heuristics:

-It can be easily implemented and adapted to complex problems (for the

continuous optimization problems, the encoding is straightforward and does

not need extra conversion);

- It allows simple constraint handling;

- Its convergence properties are almost insensitive to the design of fitness

functions.

According to (Elbeltagi, et al., 2005), PSO often outperforms other

meta-heuristics on the wide range of optimization problems. The tests per-

formed in this study showed that PSO is able to at least get better results

than those obtained by GA for several single- and multi-objective reliability

optimization problems. However, PSO has showed poor performance when

it was applied to the discrete redundancy allocation problem. This can be

explained by the fact that the fundamental assumption in particle swarm is

that the neighbor regions of a good solution are also good, i.e., small varia-

tions in vector representing the solution causes small variations in the fitness

function (which lies on the base of the velocity update formula). This as-

sumption usually holds in reliability allocation problems where fitness

functions are relatively smooth. However, it is not always true in some

discrete problems such as redundancy optimization.

It seems that the main cause preventing good performance of the PSO

in solving discrete optimization problems with unsmooth fitness functions

lies in its studying behavior based on gradual learning from the best solu-

4.7 PSO Applicability and Efficiency

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 109

tion. The basic PSO principle of emulating social behavior of learning from

better examples becomes meaningless when approaching the best solution

causes degradation.

The possible directions of PSO performance improvement are design

of solution encoding schemes providing fitness function smoothness and

combining the PSO with other heuristics and local search methods.

As an emerging stochastic optimization method, PSO exhibits great

potential in solving reliability engineering problems. However, many issues

remain unsolved, which requires further investigation. The adaptation of

PSO for solving sequencing, partition and scheduling problems that arise in

reliability engineering is the main challenge for further research.

References

Aven, T., "On performance-measures for multi-state monotone systems," Reliabil-

ity Engineering & System Safety, vol. 41, no. 3, pp. 259-266, 1993.

Chen, T. C. and You, P. S., "Immune algorithms-based approach for redundant re-

liability problems with multiple component choices," Computers In Industry, vol.

56 pp. 195-205, 2005.

Clerc, M. The swarm and the queen: towards a deterministic and adaptive particle

swarm optimization. Proceedings of IEEE Congress on Evolutionary Computation,

Vol.3pp. -1957, 1999

Coello Coello, C. A. and Lechuga, M. S. MOPSO: a proposal for multiple objective

particle swarm optimization. Proceedings of IEEE Congress on Evolutionary

Computation, Vol.2pp. 1051-1056, 2002

Coello Coello, C. A., Pulido, G. T., and Lechuga, M. S., "Handling multiple ob-

jectives with particle swarm optimization," IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 256-279, 2004.

Coello Coello, C. A., "A comprehensive survey of evolutionary-based multiobjec-

tive optimization techniques," Knowledge and Information Systems, vol. 1, no. 3,

pp. 269-308, Aug.1999.

 110

Coit, D. W. and Smith, A. E., "Reliability optimization of series-parallel systems

using a genetic algorithm," IEEE Transactions on Reliability, vol. 5, no. 2, pp.

254-260, 1996.

Dai, Y., Xie, M., Poh, K. L., and Yang, B., "Optimal testing-resource allocation

with genetic algorithm for modular software systems," Journal of Systems and

Software, vol. 66, no. 1, pp. 47-55, Jan.2003.

Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory.

Proceedings of International Symposium on Micro Machine and Human Science,

pp. 39-43, 1995

Eberhart, R. C. and Shi, Y. Tracking and optimizing dynamic systems with particle

swarms. Proceedings of IEEE Congress on Evolutionary Computation, Vol.1pp.

94-100, 2001b

Eberhart, R. C. and Shi, Y. Particle swarm optimization: developments, applica-

tions and resources. Proceedings of IEEE Congress on Evolutionary Computation,

Vol.1pp. 81-86, 2001a

Eberhart, R. C. and Shi, Y. Evolving artificial neural networks. Proceedings of In-

ternational Conference on Neural Networks and Brain, Beijing, P. R. China. pp.

PL5-PL13, 1998

El-Gallad, A. I., El-Hawary, M. E., and Sallam, A. A., "Swarming of intelligent

particles for solving the nonlinear constrained optimization problem," Engineering

Intelligent Systems for Electrical Engineering and Communications, vol. 9, no. 3,

pp. 155-163, Sept.2001.

Elbeltagi, E., Hegazy, T., and Grierson, D., "Comparison among five evolution-

ary-based optimization algorithms," Advanced Engineering Informatics, vol. 19 pp.

43-53, 2005.

Fieldsend, J. E. and Singh, S. A multi-objective algorithm based upon particle

swarm optimisation, an efficient data structure and turbulence. Proceedings of

U.K.Workshop on Computational Intelligence, Birmingham, UK. pp. 37-44, 2002

He, S., Prempain, E., and Wu, Q. H., "An improved particle swarm optimizer for

mechanical design optimization problems," Engineering Optimization, vol. 36, no.

5, pp. 585-605, Oct.2004.

Hikita, M., Nakagawa, Y., Nakashima, K., and Narihisa, H., "Reliability optimiza-

tion of systems by a surrogatecon-straints algorithm," IEEE Transactions on Re-

liability, vol. 41, no. 3, pp. 473-480, 1992.

Gregory Levitin et al.

Particle Swarm Optimization in Reliability Engineering 111

Hu, X. and Eberhart, R. C. Multiobjective optimization using dynamic neighbor-

hood particle swarm optimization. Proceedings of IEEE Congress on Evolutionary

Computation, Vol.2pp. 1677-1681, 2002b

Hu, X. and Eberhart, R. C. Solving constrained nonlinear optimization problems

with particle swarm optimization. Proceedings of World Multiconference on Sys-

temics, Cybernetics and Informatics, Orlando, USA. 2002a

Hu, X. and Eberhart, R. C. Adaptive particle swarm optimization: detection and

response to dynamic systems. Proceedings of IEEE Congress on Evolutionary

Computation, Vol.2pp. 1666-1670, 2002c

Hu, X., Eberhart, R. C., and Shi, Y. Engineering optimization with particle swarm.

Proceedings of IEEE Swarm Intelligence Symposium, pp. 53-57, 2003a

Hu, X., Eberhart, R. C., and Shi, Y. Particle swarm with extended memory for

multiobjective optimization. Proceedings of IEEE Swarm Intelligence Symposium,

pp. 193-197, 2003b

Hu, X., Shi, Y., and Eberhart, R. C. Recent advances in particle swarm. Proceedings

of IEEE Congress on Evolutionary Computation, Vol.1pp. 90-97, 2004

Kennedy, J. Minds and cultures: particle swarm implications. Proceedings of AAAI

Fall Symposium: Socially Intelligent Agents, Menlo Park, CA. pp. 67-72, 1997

Kennedy, J. and Eberhart, R. C. Particle swarm optimization. Proceedings of IEEE

International Conference on Neural Networks, Vol.4pp. 1942-1948, 1995

Kulturel-Konak, S., Coit, D. W., and Smith, A. E., "Efficiently solving the redun-

dancy allocation problem using tabu search," IIE Transactions, vol. 35, no. 6, pp.

515-526, 2003.

Li, X. A non-dominated sorting particle swarm optimizer for multiobjective opti-

mization. Lecture Notes in Computer Science, Chicago, IL, USA. Vol.2723pp.

37-48, 2003

Liang, Y.-C. and Smith, A. E., "An ant colony optimization algorithm for the re-

dundancy allocation problem (RAP)," IEEE Transactions on Reliability, vol. 53,

no. 3, pp. 527-423, 2004.

Liang, Y.-C. and Wu, C.-C., "A variable neighborhood descent algorithm for the

redundancy allocation problem," Industrial Engineering and Management Systems,

vol. 4, no. 1, pp. 109-116, 2005.

 112

Mostaghim, S. and Teich, J. Strategies for finding good local guides in

multi-objective particle swarm optimization (MOPSO). Proceedings of IEEE

Swarm Intelligence Symposium, pp. 26-33, 2003

Nakagawa, Y. and Miyazaki, S., "Surrogate constraints algo-rithm for reliability

optimization problems with two constraints," IEEE Transactions on Reliability,

vol. R-30 pp. 175-180, 1981.

Parsopoulos, K. E. and Vrahatis, M. N. Particle swarm optimization method for

constrained optimization problems. Proceedings of Euro-International Symposium

on Computational Intelligence, 2002

Prasad, V. R. and Kuo, W., "Reliability optimization of coherent systems," IEEE

Transactions on Reliability, vol. 49, no. 3, pp. 323-330, 2000.

Ravi, V., "Optimization of complex system reliability by a modified great deluge

algorithm.," Asia-Pacific Journal of Operational Research, vol. 21, no. 4, pp.

487-497, 2004.

Ray, T. and Liew, K. M., "A swarm metaphor for multiobjective design optimiza-

tion," Engineering Optimization, vol. 34, no. 2, pp. 141-153, 2002.

Ray, T. and Liew, K. M. A swarm with an effective information sharing mechanism

for unconstrained and constrained single objective optimization problem. Pro-

ceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea. pp. 75-80,

2001.

Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proceedings of

IEEE Congress on Evolutionary Computation, pp. 69-73, 1998

Tian, Z., Zuo, M. J., and Huang, H. Reliability-redundancy allocation for

multi-state series-parallel systems. Proceedings of European Safety and Reliability

Conference, Tri City, Poland. pp. 1925-1930, 2005

Tillman, F. A., Hwang, C. L., and Kuo, W., "Determining component reliability and

redundancy for optimum system reliability," IEEE Transactions on Reliability, vol.

26, no. 3, pp. 162-165, 1977.

Wolpert, D. H. and Macready, W. G., "No Free Lunch Theorems for Optimization,"

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997.

You, P. S. and Chen, T. C., "An efficient heuristic for series-parallel redundant re-

liability problems," Computers and Operations Research, vol. 32 pp. 2117-2127,

2005.

Gregory Levitin et al.

