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It is obvious that the reliability modeling is the most important discipline 
of reliable engineering (Kaufmann and Gupta, 1988). Traditionally, the re-
liability of a system’s behavior is fully characterized in the context of 
probability measures. However, because of the inaccuracy and uncertain-
ties of data, the estimation of precise values of probability becomes very 
difficult in many systems (Chen, 1996). In recent years, some researchers 
have used the fuzzy set theory (Zadeh, 1965) for fuzzy system reliability 
analysis (Cai et al., 1991a; Cai et al., 1991b; Cai et al., 1991c; Cai, 1996; 
Chen, 1994; Chen and Jong, 1996; Chen, 1996; Chen, 1997a; Cheng and 
Mon, 1993; Mon and Cheng, 1994; Singer, 1990; Wu, 2004). 

Cai et al. (1991b) presented the following two assumptions for fuzzy 
system reliability analysis: 
(1) Fuzzy-state assumption: At any time, the system may be either in the 

fuzzy success state or the fuzzy failure state. 
(2) Possibility assumption: The system behavior can be fully characterized 

by possibility measures. 
Cai (1996) presented an introduction to system failure engineering and 

its use of fuzzy methodology. Chen (1994) presented a method for fuzzy 
system reliability analysis using fuzzy number arithmetic operations. Chen 
and Jong (1996) presented a method for analyzing fuzzy system reliability 
using intervals of confidence. Chen (1996) presented a method for fuzzy 
system reliability analysis based on fuzzy time series and theα–cuts op-
erations of fuzzy numbers. Cheng and Mon (1993) presented a method for 
fuzzy system reliability analysis by interval of confidence. Mon and Cheng 
(1994) presented a method for fuzzy system reliability analysis for compo-
nents with different membership functions using non-linear programming 
techniques. Singer (1990) presented a fuzzy set approach for fault tree and 
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reliability analysis. Suresh et al. (1996) presented a comparative study of 
probabilistic and fuzzy methodologies for uncertainty analysis using fault 
trees. Utkin and Gurov (1996) presented a general formal approach for 
fuzzy system reliability analysis in the possibility context. Wu (2004) pre-
sented a method for fuzzy reliability estimation using the Bayesian ap-
proach. 

In this article, we present a method for analyzing fuzzy system reliabil-
ity using the vague set theory (Chen, 1995; Gau and Buehrer, 1993), where 
the reliabilities of the components of a system are represented by vague 
sets defined in the universe of discourse [0, 1]. The grade of membership 
of an element x in a vague set is represented by a vague value [tx, 1 – fx] in 
[0, 1], where tx indicates the degree of truth, fx indicates the degree of false, 
1 – tx – fx indicates the unknown part, 0 ≤ tx ≤ 1 – fx ≤ 1, and tx + fx ≤ 1. The 
notion of vague sets is similar to that of intuitionistic fuzzy sets 
(Atanassov, 1986). Both of them are generalizations of fuzzy sets (Zadeh, 
1965). The proposed method can model and analyze fuzzy system reliabil-
ity in a more flexible and convenient manner.  

The rest of this article is organized as follows. In Section 2, we briefly 
review a method for fuzzy system reliability analysis from (Chen and Jong, 
1996). In Section 3, we briefly review some definitions and arithmetic 
operations of vague sets from (Chen, 1995) and (Gau and Buehrer, 1993). 
In Section 4, we present a method for analyzing fuzzy system reliability 
based on the vague set theory. The conclusions are discussed in Section 5. 

In this section, we briefly review a method for fuzzy system reliability 
analysis from (Chen and Jong, 1996). 

In (Kaufmann and Gupta, 1988, pp. 184-208), the reliability K(t) of a 
subsystem or system is represented by an interval of confidence K(t) = 
[Ka(t), Kb(t)], where Ka(t) and Kb(t) are the lower and upper bounds of the 

survival function at time t (t = 0, 1, 2, …), respectively, and 0 ≤ Ka(t)≤ 
Kb(t) ≤ 1. For example, Fig. 1 shows the lower and upper bounds of the 
survival function given subjectively by an expert. 

Chen and Jong (1996) considered the situation in which there are uncer-
tainties associated with the survival interval of confidence [Ka(t), Kb(t)] at 

time t (t = 0, 1, 2, …). In such a situation, the reliability of a subsystem Pi 

can be represented by [Kia(t), Kib(t)]/Ci(t), where Ci (t) indicates the degree 

Reliability Analysis Method                       
12.2 A Review of Chen and Jong’s Fuzzy System 
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of certainty that the reliability of the subsystem Pi at time t lies in interval 

[Kia(t), Kib(t)], 0 ≤  Kia(t) ≤ Kib(t) ≤ 1, 0 ≤  Ci(t) ≤ 1, and t  = 0, 1, 2, …. The 

values of Kia(t), Kib(t) and Ci(t) at time t (t = 0, 1, 2, …) are given by ex-
perts, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 1. Lower and upper bounds of the survival function 
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Chen and Jong (1996) presented a method for fuzzy system reliability 

analysis based on the interval of confidence, which is reviewed as follows. 
Let [a1, a2]/c1 and [b1, b2]/c2 be two survival intervals of confidence, where 
0 ≤ a1 ≤ a2  ≤ 1, 0 ≤  b1 ≤ b2 ≤ 1, 0 ≤  c1 ≤ 1, and 0 ≤ c2  ≤ 1. The multiplica-
tion operation and the subtraction operation between the survival intervals 
of confidence [a1, a 2]/c1 and [b1, b 2]/c2 are defined as follows:  

[
 
a1, a 2]/c1 ⊗  [b1, b 2]/c2 = [a1 × b1, a 2 × b2]/Min(c1, c 2),                  (1) 

[ a1, a 2]/c1  [b1, b 2]/c2 = [a1 – b2, a 2 – b1]/Min(c1, c 2),                   (2) 

where  and  are the multiplication operator and subtraction operator 
between the survival intervals of confidence, respectively.  

⊗

The complement of a survival interval of confidence [b1, b2]/c2  is de-
fined by   

1  [b1, b 2]/c2 = [1, 1]/1  [b1, b2]/c2 

 [1 – b2, 1 - b1]/Min(1, c2) = [1 – b 2, 1 – b 1]/ c2.   (3) = 

It is obvious that if a1 = a2 = a and b1 = b2 = b, then  

[a1, a 2]/c1 ⊗  [b1, b 2]/c2 = [a, a ]/ c1 ⊗  [b, b ]/c2

= [a × b, a  × b]/Min(c1, c 2) = (a × b)/ Min(c1, c 2),  (4)               
[a1, a 2]/c1  [b1, b 2]/c2 = [a, a ]/ c1  [b, b ]/c2

= [a – b, a  – b]/Min(c1, c 2) = (a – b)/ Min(c1, c 2).   (5)  
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 Because [x, y ] can be written as [x, y ]/1, where 0 ≤ x ≤ y ≤ 1, we can get 
 

[a1, a2] ⊗  [b1, b 2] = [a1, a 2] /1 ⊗ [b1, b 2]/1   (6) 

= [a1 × b1, a2 × b2]/Min(1, 1)= [a1 × b1, a 2 × b2]/1= [a1 × b1, a 2 × b2],   
 

 
[a1, a 2]  [b1, b 2] = [a1, a 2] /1  [b1, b 2]/1    (7) 

 = [a1 – b2, a 2 – b1]/Min(1, 1) = [a1 – b2, a 2 – b1]/1 = [a1 – b2, a 2 – b1]. 
 

Consider the series system shown in Fig. 2, where the reliability of sub-

system Pi at time t (t = 0, 1, 2, …) is represented by the survival interval 
confidence [Kia(t), Kib(t)]/Ci(t), where Kia(t) and Kib(t) are the lower and 
upper bounds of the survival function of subsystem P i at time t, respec-
tively, Ci(t) indicates the degree of certainty that the reliability of subsys-
tem Pi at time t is [Kia(t), Kib(t)], 0 ≤  Kia(t) ≤ Kib(t) ≤ 1, 0 ≤ Ci(t) ≤ 1, and 1 
≤ i ≤  n. In this situation, the reliability of the series system shown in Fig. 2 

at time t (t = 0, 1, 2, …) can be evaluated and is equal to 
 

[K1a(t), K 1b(t)]/C1(t)⊗ [K2a(t), K 2b(t)]/C2(t)⊗  … ⊗ [Kna(t), K nb(t)]/Cn(t) 

= [K1a(t) × K2a(t) × … × Kna(t), K1b(t) ×K2b(t) 

 × … × Knb(t)]/Min(C1(t),  C 2(t), …, C n(t)).     (8) 
 

 
 

… Pn Output P1 P2 In ut p 
 
 
 

Fig. 2. A series system 
 
Consider the parallel system shown in Fig. 3, where the reliability of 

subsystem Pi at time t (t = 0, 1, 2, …) is [Kia(t), Kib(t)]/Ci(t), where 0 ≤ 
Kia(t) ≤ Kib(t) ≤ 1, 0 ≤  Ci(t) ≤ 1, and 1 ≤ i ≤  n. Then, the reliability of the 
parallel system shown in Fig. 3 at time t can be evaluated and is equal to 
[Ka(t), K b(t)] /Cp(t), where  

 
(1) [Ka(t), K b(t)] = 1  (1  [ K1a(t), K 1b(t)])⊗ (1  [ K2a(t),     
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K2b(t)])⊗  … ⊗ (1  [ K2a(t), K 2b(t)])] = 1  ([1 – K 1b(t), 1  

– K1a(t)]) ([1 – K⊗ 2b(t), 1 – K 2a(t)])⊗  … ⊗ ([1 – K nb(t), 1 – K na(t)]). 
 

(2) The value of Cp(t) is evaluated as follows. Let X and Y be two real in-
tervals in [0, 1], where X = [x1, x2], Y = [y1, y2], 0 ≤  x1 ≤ x2 ≤ 1, and 0 ≤ 
y1 ≤ y2 ≤ 1. Based on the similarity function S presented in (Chen and 
Wang, 1995), we can calculate the degree of similarity between the in-
tervals X and Y, where S (X, Y) = 1 – (|x1 – y1| + |x2 – y2|)/2 and 0 ≤ S(X, 
Y) ≤ 1. The larger the value of S(X, Y), the more the similarity between 
the intervals X and Y. Because the reliability of the subsystem Pi at 

time t (t = 0, 1, 2, …) is [Kia(t), Kib(t)]/Ci(t), where 0 ≤ Kia(t) ≤ Kib(t) ≤ 
1, 0 ≤  Ci(t) ≤ 1, and 1 ≤ i ≤ n. Based on the similarity function S, we 
can get 

 
     S ([K1a(t), K 1b(t)], [Ka(t), K b(t)]) = s1, 
     S ([K2a(t), K 2b(t)], [Ka(t), K b(t)]) = s2, 

… 
     S ([Kna(t), K nb(t)], [Ka(t), K b(t)]) = sn, 
 

where 0 ≤ si ≤ 1 and i = 1, 2, …, n. If s j is the largest value among the val-

ues s1, s2, …, and sn, then let the value of C p(t) be equal to Cj(t), where 1 ≤ 
j ≤ n.  
 
 

Pn

…
 

P2

P1 
 
 OutputInput
 
 
 
 
 
 

Fig. 3. A parallel system 
 

Consider the series-parallel system shown in Fig. 4, where the reliability 

of the subsystem Pi at time t (t = 0, 1, 2, …) is represented by [Kia(t), K ib(t)] 
/Ci(t), where 0 ≤  Kia(t) ≤ Kib(t) ≤ 1, 0 ≤ Ci(t) ≤ 1, and 1 ≤  i ≤ 3. Then, the 
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reliability of the series-parallel system shown in Fig. 4 at time t (t = 0, 1, 

2, …) can be evaluated and is equal to 

  [K1a(t), K1b(t)]/C1(t) ⊗  [1 – ( 1 – K∏
=

3

2i
ia(t)), 1 – ( 1 – K∏

=

3

2i
ib(t))]/Cp(t) 

= [K1a(t), K1b(t)]/C1(t)  [1 – ( 1 – K⊗ 2a(t)) (1 – K3a(t)), 1 – (1 – K2b(t)) 

 (1 – K3b(t))]/Cp(t)  = [K1a(t) (1 – (1 – K2a(t))(1 – K3a(t)), K1b(t) (1 – (1 

– K2b(t))(1 – K3b(t))) /Min(C1(t), Cp(t)) = [K1a(t) – K1a(t) (1 – K2a(t))(1  

– K3a(t)), K1b(t) – K1b(t) (1 – K2b(t))(1 – K3b(t))] /Min(C1(t), Cp(t)), 

 
where the value of Cp(t) is evaluated as follows: 
 

Case 1: If S([1 – (1 – K∏
=

3

2i
ia(t)), 1 – (1 – K∏

=

3

2i
ib(t))], [K2a(t), K2b(t)]) ≥ 

S([1 – (1 – K∏
=

3

2i
ia(t)), 1 – (1 – K∏

=

3

2i
ib(t))], [K3a(t), K3b(t)]), then 

let the value of Cp(t) be equal to C2(t). 
 

Case 2: If S([1 – (1 – K∏
=

3

2i
ia(t)), 1 – (1 – K∏

=

3

2i
ib(t))], [K2a(t), K2b(t)]) < 

S([1 – (1 – K∏
=

3

2i
ia(t)), 1 – (1 – K∏

=

3

2i
ib(t))], [K3a(t), K3b(t)]), then 

let the value of Cp(t) be equal to C3(t).   
   

 
 
 
 
 
 
 
 

 

P1

P2

P3 

Output Input 

Fig. 4. A series-parallel system 
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The method presented in (Chen and Jong, 1996) is more flexible and 

more general than the one presented in (Kaufmann and Gupta, 1988, 
pp. 184-208) due to the fact that it allows the survival function of each 
subsystem at different times to be associated with different degrees of cer-
tainty between zero and one. 

In (Zadeh, 1965), Zadeh proposed the theory of fuzzy sets. Let U be the 

universe of discourse, U = {u1, u2, …, un}. The grade of membership of an 
element ui in a fuzzy set is represented by a real value between zero and 
one, where u i∈U. However, Gau and Buehrer (1993) pointed out that this 
single value combines the evidence for ui∈U and the evidence against 
ui∈U. They also pointed out that it does not indicate the evidence for 
ui∈U and the evidence against ui ∈U, respectively, and it does not indi-
cate how much there is of each. Furthermore, Gau and Buehrer also 
pointed out that the single value tells us nothing about its accuracy. There-
fore, Gau and Buehrer (1993) presented the concepts of vague sets. Chen 
(1995) have presented the arithmetic operations between vague sets.  

Let U be the universe of discourse, U = {u1, u2, …, un}, with a generic 
element of U denoted by ui. A vague set Ã in the universe of discourse U is 
characterized by a truth-membership function t Ã, tÃ: U → [0, 1], and a 
false-membership function fÃ, fÃ: U → [0, 1], where tÃ(ui) is a lower bound 
of the grade of membership of ui derived from the evidence for ui, fÃ(ui) is 
a lower bound of the negation of ui derived from the evidence against ui, 
and tÃ(ui) + f Ã(ui) ≤ 1. The grade of membership of ui in the vague set Ã is 
bounded by a subinterval [tÃ(ui), 1 – f Ã (ui)] of [0, 1]. The vague value 
[tÃ(ui), 1 – f Ã(ui)] indicates that the exact grade of membership μÃ(ui) of u i 
is bounded by tÃ(ui) ≤ μÃ(ui) ≤ 1 – f Ã(ui), where tÃ(ui) + f Ã(ui) ≤ 1. For ex-
ample, a vague set Ã in the universe of discourse U is shown in Fig. 5. 

If the universe of discourse U is a finite set, then a vague set Ã of the 
universe of discourse U can be represented as follows: 

            Ã = .                                              (9) [ i
n

i
iAiA uufut /)(1),(

1

~~∑
=

− ]
If the universe of discourse U is an infinite set, then a vague set Ã of the 

universe of discourse can be represented as  
 

12.3 Basic Concepts of Vague Sets 
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          Ã =  [ ] iU iAiA uufut /)(1),( ~~∫ −      ui∈U.                               (10) 

 
tÃ(U), 1- fÃ(U)  

 
 

0 
 

ui

1.0 

1 - ƒÃ(ui) 

tÃ(ui) 

1- fÃ(U) 

tÃ(U) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

U  
 
 

Fig. 5. A vague set 
 
Definition 3.1: Let Ã be a vague set of the universe of discourse U with 

the truth-membership function tÃ and the false-membership function fÃ, re-
spectively. The vague set Ã is convex if and only if for all u1, u2 in U, 

           tÃ(λu1 + (1 –λ)u2) ≥ Min(tÃ(u1), tÃ(u2)),                                (11) 

1 – fÃ (λu1 + (1 –λ) u2) ≥ Min(1 – fÃ(u1), 1 – fÃ(u2)),            (12) 
 

whereλ∈ [0, 1]. 
 
Definition 3.2: A vague set Ã of the universe of discourse U is called a 

normal vague set if  u∃ i ∈ U, such that 1– fÃ(ui) = 1. That is, fÃ(ui) = 0. 
 
Definition 3.3: A vague number is a vague subset in the universe of 

discourse U that is both convex and normal. 
 
 In the following, we introduce some arithmetic operations of triangular 

vague sets (Chen, 1995). Let us consider the triangular vague set Ã shown 
in Fig. 6, where the triangular vague set Ã can be parameterized by a tuple 
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<[(a, b, c); µ1], [(a, b, c); µ2]>. For convenience, the tuple <[(a , b, c); µ1], 
[(a, b, c); µ2]> can also be abbreviated into <[(a, b, c); µ1; µ2]>, where 0 ≤ 
µ1 ≤ µ2 ≤ 1. 

 
Some arithmetic operations between triangular vague sets are as 

follows: 

Case 1: Consider the triangular vague sets Ã and B shown in Fig. 7, 
where 

~

Ã = <[(a1, b1, c1); µ1], [(a1, b1, c1); µ2]>= <[(a1, b1, c1); µ1; µ2]>, 

B
~

= <[(a2, b2, c2); µ1], [(a2, b2, c2); µ2]> = <[(a2, b2, c2); µ1; µ2]>, 
 

and 0 ≤ µ1 ≤ µ2 ≤ 1. The arithmetic operations between the triangular vague 

sets Ã and are defined as follows: B
~

Ã = <[(a⊕ B
~

1, b 1, c 1); µ1], [(a1, b1, c 1); µ 2]> ⊕  <[(a2, b 2, c 2); µ1],  

[(a2, b 2, c 2); µ 2]>  
 

                = <[(a1 + a2, b 1 + b2, c 1 + c2); µ1], [(a1 + a2, b 1 + b2, c 1 + c2); µ2]> 
 

= <[(a1 + a2, b1 + b2, c 1 + c2); µ1; µ 2]>,                                           (13) 

B
~

 Ã = <[(a 2, b2, c 2); µ1], [(a2, b 2, c 2); µ2]>  <[(a1, b 1, c 1); µ1], 

[(a1, b 1, c 1); µ2]> 

                  = <[(a2 – c1, b 2 – b1, c 2 – a1); µ1], [(a2 – c1, b2 – b1, c 2 – a1); µ2]> 
 

= <[(a2 – c1, b 2 – b1, c 2 – a1); µ1; µ 2]>,                                       (14) 
 

Ã ⊗  = <[(aB
~

1, b 1, c 1); µ1], [(a1, b1, c 1); µ2]> ⊗  <[(a2, b 2, c 2); µ1],  

[(a2, b 2, c 2); µ2]> 
 

                    = <[(a1 × a2, b 1 × b2, c 1 × c2); µ1], [(a1 × a2, b 1 × b2, c 1 × c2); µ2]> 
 
                   = <[(a1 × a2, b 1 × b2, c 1 × c2); µ 1; µ 2]>,                                 (15)  

 

B
~ ⊘ Ã = <[(a2, b 2, c 2); µ1], [(a2, b 2, c 2); µ2]> ⊘ <[(a1, b 1, c 1); µ1],  

[(a1, b 1, c 1); µ2]> 
 

= <[(a2/c1, b 2/b1, c 2/a1); µ1], [(a2/c1, b 2/b1, c 2/a1); µ2]> 
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= <[(a2/c1, b2/b1, c2/a1); µ1; µ2]>.                                           (16) 

 
 
 tÃ(U), 1- fÃ(U) 
 
 
 
 
 
 
 
 

 
 

tÃ(U) 

1- fÃ(U) 
µ2

0 cba

µ1

U  
 

Fig. 6. A triangular vague set 
 
 (U)f(U), t

AA
~~ -1

(U)f(U), t
B
~

B
~-1

 
 
 
 

 
 
                                                              

                    
 
 
    
 

 
  

Fig. 7. Triangular vague sets Ã and (Case 1) B
~

(U)
B

t ~(U)
A

t ~

c2 b2 a2 c1 b1 a1 

(U)f
B
~-1(U)f

A
~-1

0 

μ2

μ1

U 
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Case 2: Consider the triangular vague sets Ã and shown in Fig. 8, 
where 

B
~

 
Ã = <[(a 1, b 1, c 1); µ1], [(a1, b1, c 1); µ2]>, 

B
~

= <[(a2, b 2, c 2); µ3], [(a2, b 2, c2); µ4]>, 
 

and 0 ≤ µ3  ≤ µ1 ≤ µ4 ≤ µ2  ≤ 1. 
 

(U)f(U), t
AA
~~ -1  

(U)f(U), t
BB
~~ -1  

 
 

 

(U)
A

  t ~

(U)
B

   t ~

 

1- f B
~ (U) 

 
1- f Ã(U) 

  c 2   b 2 a2  c1  b1  a1 

 
 
 μ2

 μ4

 μ1

μ3 
 
 

U  0 
 

Fig. 8. Triangular vague sets Ã and (Case 2) B
~

 
The arithmetic operations between the triangular vague sets Ã and 

are defined as follows: B
~

 

Ã = <[(a⊕ B
~

1, b 1, c 1); µ1], [(a1, b1, c 1); µ 2]> ⊕  <[(a2, b 2, c 2); µ3],  

[(a2, b 2, c 2); µ4]> 

= <[(a1 + a2, b 1 + b2, c 1 + c2); Min(µ1, µ3)], [(a1 + a2, b 1 + b2, c 1 + c2);  

Min(µ2, µ 4)]>,                                                            (17)  
 

B
~

  Ã = <[( a2, b2, c 2); µ 3], [(a2, b 2, c 2); µ4]>  <[(a1, b 1, c 1); µ1],  
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[(a1, b1, c1); µ2]> 

= <[(a2 – c1, b2 – b1, c2 – a1); Min(µ1, µ3)], [(a2 – c1, b2 – b1, c2 – a1);  

Min(µ2, µ4)]>,                                                                           (18) 

Ã = <[(a⊗ B
~

1, b1, c1);μ1], [(a1, b1, c1); µ2]> ⊗  <[(a2, b2, c2); µ3],  

[(a2, b2, c2); µ4]> 

= <[(a1 × a2, b1 × b2, c1 × c2); Min(µ1, µ3)], [(a1 × a2, b1 × b2, c1× c2); 

   Min(µ2, µ4)]>                                                                             (19) 
 

B
~ ⊘ Ã = <[(a2, b2, c2); µ3], [(a2, b2, c2); µ4]> ⊘ <[(a1, b1, c1); µ1],  

[(a1, b1, c1); µ2]> 

= <[(a2/c1, b2/b1, c2/a1); Min(µ1, µ3)], [(a2/c1, b2/b1, c2/a1);  

Min(µ2,µ4)]>.             (20)  

Sets  

In this section, we introduce a method for analyzing fuzzy system reliabil-
ity based on vague sets (Chen, 2003), where the reliabilities of the compo-
nents of a system are represented by triangular vague sets defined in the 
universe of discourse [0, 1]. 

Consider a series system shown in Fig. 2, where the reliability 
i

R
~

 of the 

subsystem Pi  is represented by a triangular vague set <[(ai, bi, ci); µi1; µi2]>, 

where 0 ≤ µi1 ≤ µi2  ≤ 1, and 1 ≤ i ≤ n. Then, the reliability R
~

of the series 
system shown in Fig. 2 can be evaluated as follows:  

R
~

= R
~

1 ⊗ R
~

2 ⊗  … ⊗ R
~

n= <[(a1, b1, c1); µ11; µ12]>⊗  

<[(a2, b2, c2); µ21; µ22]> ⊗  … ⊗  <[(an, bn, cn); µn1; µn2]> 
 

= <[( a∏
=

n

1i
i, b∏

=

n

1i
i, c∏

=

n

1i
i); Min(µ11, µ21, …, µn1);  

Min(µ12, µ22, …, µn2)]>.                (21)   
 

12.4 Analyzing Fuzzy System Reliability Based on Vague 
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Furthermore, consider the parallel system shown in Fig. 3, where the re-

liability 
i

R
~

 of the subsystem P i is represented by a triangular vague set 

<[(ai, bi, ci);μi1;μi2]>, where 0 ≤μi1 ≤μi2  ≤ 1, and 1 ≤ i ≤ n. Then, the re-

liability R
~

of the parallel system shown in Fig. 3 can be evaluated as fol-
lows: 

 

R
~

= 1 (1∏
=

n

1i
i

R
~

)= 1 (1 <[(a1, b 1, c1); µ11; µ12]>) 

⊗ (1  <[(a2, b 2, c 2); µ21; µ22]>)⊗  … ⊗  (1  <[(an, b n, c n); µn1; µn2]>) 

= 1 <[(1 – c1, 1 – b 1, 1 – a1); µ11; µ12]>⊗<[(1 – c2, 1 – b2, 1 – a2);

 µ21; µ22]>⊗  …  <[(1 – c⊗ n, 1 – b n, 1 – a n); µn1; µn2]>

=  1 <[ (1 – c∏
=

n

1i
i), (1 – b∏

=

n

1i
i), (1 – a∏

=

n

1i
i)); Min(µ11; µ21, …, µn1); 

Min(µ12; µ22, …, µn2))> 

= <[(1 – (1 –  a∏
=

n

1i
i), 1 – (1 – b∏

=

n

1i
i), 1 – (1 – c∏

=

n

1i
i));  

 Min(µ11; µ21, …, µn1);Min(µ12; µ 22, …, µn2))>                                     (22) 
 
In the following, we use an example to illustrate the fuzzy system reli-

ability analysis process of the proposed method. 

Consider the system shown in Fig. 9, where the reliabilities of the subsys-

tems P1, P2, P3 and P4 are represented by the triangular vague sets R
~

1, R
~

2, 

R
~

3 and R
~

4, respectively, where 
 

R
~

1  = <[(a1, b 1, c 1); µ 11; µ12]>, R
~

2  = <[(a2, b 2, c 2); µ 21; µ 22]>, 

R
~

3  = <[(a3, b 3, c 3); µ 31; µ 32]>, R
~

4 = <[(a4, b 4, c4); µ 41; µ 42]>, 
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0 ≤ µi1 ≤ µi2 ≤ 1 and 1 ≤ i ≤ 4. Based on the previous discussion, we can see 

that the reliability R
~

of the system shown in Fig. 9 can be evaluated as fol-
lows: 
 

R
~

 =      [1  (1 R
~

1) ⊗  (1 R
~

2)] ⊗  [1  (1  R
~

3)⊗ (1 R
~

4)] 
 

= [1  (1  <[(a1, b1, c1); µ11; µ12]>)⊗ (1  <[(a2, b2, c2); µ21; µ22]>)  

⊗  [1  (1  <[(a3, b3, c3); µ31; µ32]>)⊗ (1  <[(a4, b4, c4); µ41; µ42]>)] 
 
= [1 <[(1 – c1, 1 – b1, 1 – a1); µ11; µ12]>⊗<[(1 – c2, 1 – b2, 1 – a2); 

 µ21; µ22]>]  [1 <[(1 – c⊗ 3, 1 – b3, 1 – a3); µ31; µ32]> ⊗  

<[(1 – c4, 1 – b4, 1 – a4); µ41; µ42]>] 
 
= [1 <[((1 – c1)(1 – c2), (1 – b1)(1 – b2), (1 – a1)(1 – a2));  

Min(µ11; µ21); Min(µ12, µ22)]>] ⊗  [1 <[((1 – c3)(1 – c4), (1 – b3) 

(1 – b4), (1 – a3)(1 – a4)); Min(µ31; µ41); Min(µ32, µ42)]>] 
 
= <[(1 – (1 – a1)(1 – a2), 1 – (1 – b1)(1 – b2), 1 – (1 – c1)(1 – c2));  

Min(µ11; µ21); Min(µ12, µ22)]>] ⊗ <[(1 – (1 – a3)(1 – a4), 1 –  

(1 – b3)(1 – b4), 1 – (1 – c3)   (1 – c4)); Min(µ31; µ41); Min(µ32, µ42)]> 
 
= <[(a1 + a2 – a1a2, b1 + b2 – b1b2, c1 + c2 – c1c2); Min(µ11; µ21);  

Min(µ12, µ22)]> ⊗ <[(a3 + a4 – a3a4, b3 + b4 – b3b4,  

c3 + c4 – c3c4); Min(µ31; µ41); Min(µ32, µ42)]> 
 
= <[((a1 + a2 – a1a2)(a3 + a4 – a3a4), (b1 + b2 – b1b2)(b3 + b4 – b3b4),  

(c1 + c2 – c1c2)(c3 + c4 – c3c4)), Min(µ11, µ21, µ31, µ41);  

Min(µ12, µ22, µ32, µ42)]> 

= <[(a1a3 + a1a4 – a1a3a4 + a2a3 + a2a4 – a2a3a4 – a1a2a3 – a1a2a4  

+ a1a2a3a4, b1b3 + b1b4 – b1b3b4 + b2b3 + b2b4 – b2b3b4 – b1b2b3 – b1b2b4

+ b1b2b3b4, c1c3 + c1c4 – c1c3c4 + c2c3 + c2c4 – c2c3c4 – c1c2c3 – c1c2c4  

+ c1c2c3c4); Min(µ11, µ21, µ31, µ41); Min(µ12, µ22, µ32, µ42)]>.           (23)  
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Output 

P1

P2

P3

P4

Input 
 
 
 
 
 

 
Fig. 9. A system with four subsystems P1 , P2, P3 and P4

In this chapter, we have presented a method for analyzing fuzzy system re-
liability based on the vague set theory, where the components of a system 
are represented by triangular vague sets defined in the universe of dis-
course [0, 1]. The grade of membership of an element x in a vague set is 
represented by a vague value [tx, 1 – fx] in [0, 1], where tx indicates the de-
gree of truth, fx indicates the degree of false, 1 – tx – fx indicates the un-
known part, 0 ≤ tx ≤ 1 – fx ≤ 1, and tx + fx ≤ 1. The proposed method can 
model and analyze fuzzy system reliability in a more flexible and conven-
ient manner.  
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