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This chapter introduces a relatively new meta-heuristic for combinatorial 
optimization, the ant colony.  The ant colony algorithm is a multiple solu-
tion global optimizer that iterates to find optimal or near optimal solutions.  
Like its siblings genetic algorithms and simulated annealing, it is inspired 
by observation of natural systems, in this case, the behavior of ants in for-
aging for food.  Since there are many difficult combinatorial problems in 
the design of reliable systems, applying new meta-heuristics to this field 
makes sense.  The ant colony approach with its flexibility and exploitation 
of solution structure is a promising alternative to exact methods, rules of 
thumb and other meta-heuristics. 

The most studied design configuration of the reliability systems is a se-
ries system of s independent k-out-of-n :G subsystems as illustrated in Fig-
ure 1.  A subsystem i is functioning properly if at least ki of its n i compo-
nents are operational and a series-parallel system is where k i = one for all 
subsystems.  In this problem, multiple component choices are used in par-
allel in each subsystem.  Thus, the problem is to select the optimal combi-
nation of components and redundancy levels to meet system level con-
straints while maximizing system reliability.  Such a redundancy allocation 
problem (RAP) is NP-hard [6] and has been well studied (see Tillman, et 
al. [45] and Kuo & Prasad [25]). 
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1.1 Introduction 
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Fig. 1. Typical series-parallel system configuration. 

 
Exact optimization approaches to the RAP include dynamic program-

ming [2, 20, 35], integer programming [3, 22, 23, 33], and mixed-integer 
and nonlinear programming [31, 46].  Because of the exponential increase 
in search space with problem size, heuristics have become a common al-
ternative to exact methods.  Meta-heuristics, in particular, are global opti-
mizers that offer flexibility while not being confined to specific problem 
types or instances.  Genetic algorithms (GA) have been applied by Painton 
& Campbell [37], Levitin et al. [26], and Coit & Smith [7, 8].  Ravi et al. 
propose simulated annealing (SA) [39], fuzzy logic [40], and a modified 
great deluge algorithm [38] to optimize the complex system reliability.  
Kulturel-Konak et al. [24] use a Tabu search (TS) algorithm embedded 
with an adaptive version of the penalty function in [7] to solve RAPs.  
Three types of benchmark problems which consider the objectives of sys-
tem cost minimization and system reliability maximization respectively 
were used to evaluate the algorithm performance.  Liang and Wu [27] em-
ploy a variable neighborhood descent (VND) algorithm for the RAP.  Four 
neighborhood search methods are defined to explore both the feasible and 
infeasible solution space. 

Ant Colony Optimization (ACO) is one of the adaptive meta-heuristic 
optimization methods inspired by nature which include simulated anneal-
ing (SA), particle swarm optimization (PSO), GA and TS.  ACO is distinct 
from other meta-heuristic methods in that it constructs a new solution set 
(colony) in each generation (iteration), while others focus on improving the 
set of solutions or a single solution from previous iterations.  ACO was in-
spired by the behavior of physical ants.  Ethologists have studied how 
blind animals, such as ants, could establish shortest paths from their nest to 
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food sources and found that the medium used to communicate information 
among individual ants regarding paths is a chemical substance called 
pheromone.  A moving ant lays some pheromone on the ground, thus 
marking the path.  The pheromone, while dissipating over time, is rein-
forced if other ants use the same trail.  Therefore, superior trails increase 
their pheromone level over time while inferior ones reduce to nil.  Inspired 
by the behavior of ants, Marco Dorigo introduced the ant colony optimiza-
tion approach in his Ph.D. thesis in 1992 [13] and expanded it in his fur-
ther work including [14, 15, 18, 19].  The primary characteristics of ant 
colony optimization are: 
1. a method to construct solutions that balances pheromone trails (charac-

teristics of past solutions) with a problem-specific heuristic (normally, a 
simple greedy rule), 

2. a method to both reinforce and dissipate pheromone, 
3. a method capable of including local (neighborhood) search to improve 

solutions.   
ACO methods have been successfully applied to common combinatorial 

optimization problems including traveling salesman [16, 17], quadratic as-
signment [32, 44], vehicle routing [4, 5, 21], telecommunication networks 
[12], graph coloring [10], constraint satisfaction [38], Hamiltonian graphs 
[47] and scheduling [1, 9, 11].  A comprehensive survey of ACO algo-
rithms and applications can be found in [19].   

The application of ACO algorithms to reliability system problems was 
first proposed by Liang and Smith [28, 29], and then enhanced by the same 
authors in [30].  Liang and Smith employ ACO variations to solve a sys-
tem reliability maximization RAP.  Section III uses the ACO algorithm in 
[30] as a paradigm to demonstrate the application of ACO to RAP.   

Thus far, the applications of ACO to reliability system are still very lim-
ited.  Shelokar et al. [43] propose ant algorithms to solve three types of 
system reliability models: complex (neither series nor parallel), N-stage 
mixed series-parallel, and a complex bridge network system.  In order to 
solve problems with different number of objectives and different types of 
decision variables, the authors develop three ant algorithms for single ob-
jective combinatorial problem, single objective continuous problem, and 
bi-objective continuous problem, respectively.  The ant algorithm of single 
objective combinatorial version use the pheromone information only to 
construct the solutions, and no online pheromone updating rule is applied.  
Two local search methods, swap and random exchange, are performed to 
the best ant.  For continuous problems, the authors divided the colony into 
two groups – global ants and local ants.  The global ant concept can be 
considered as a pure GA mechanism since these ants apply crossover and 
mutation and no pheromone is deposited.  Local ants are improved by a 
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stochastic hill-climbing technique, and an improving ant can deposit the 
improvement magnitude of the objective on the trails.  Lastly, a clustering 
technique and Pareto concept are combined with the continuous version of 
ant algorithms to solve bi-objective problems.  The authors compared their 
algorithms with methods in the literature such as SA, a generalized La-
grange function approach, and a random search method.  The results on 
four sets of test problems show the superiority of ACO algorithms.   

Ouiddir et al. [36] develop an ACO algorithm for multi-state electrical 
power system problems.  In this system redesign problem, the objective is 
to minimize the investment over the study period while satisfying avail-
ability or performance criteria.  The proposed ant algorithm is based on the 
Ant Colony System (ACS) of [17] and [30].  A universal moment generat-
ing function is used to calculate the availability of the repairable multi-
state system.  The algorithm is tested on a small problem with five subsys-
tems, each with four to six component options.  Samrout et al. [41] apply 
ACO to determine the component replacement conditions in series-parallel 
systems minimizing the preventive maintenance cost.  Three algorithms 
are proposed – two based on Ant System (AS) [18] and one based on ACS 
[17].  Different transition rules and pheromone updating rules are em-
ployed in each algorithm.  Local search is not used.  Given different mis-
sion times and availability constraints, the performance of the ACO algo-
rithms is compared with a GA from the literature.  In this paper, results are 
mixed: one of the AS based methods and the ACS based method outper-
form the GA while the other AS algorithm is dominated by the GA.  Nahas 
and Nourelfath [34] use an AS algorithm to optimize the reliability of a se-
ries system with multiple choices and budget constraints.  Online phero-
mone updating and local search are not used.  The authors apply a penalty 
function to determine the magnitude of pheromone deposition.  Four ex-
amples with up to 25 component options are tested to verify the perform-
ance of the proposed algorithm.  The computational results show that the 
AS algorithm is effective with respect to solution quality and 
computational expense.   

The remaining chapter is organized as follows.  Section II offers the no-
tation list and defines the system reliability maximization RAP.  A detailed 
introduction of an ant colony paradigm on solving RAP is provided in Sec-
tion III using the work of Liang and Smith as a basis.  Computational re-
sults on a set of benchmark problems are discussed in Section IV.  Finally, 
concluding remarks are summarized in Section V. 
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Redundancy Allocation Problem (RAP) 
k minimum number of components required to function a 

pure parallel system  
n  total number of components used in a pure parallel system 
k-out-of-n: G a system that functions when at least k  of its n  components 

function 
R   overall reliability of the series-parallel system 
C   cost constraint 
W   weight constraint 
s   number of subsystems 

ia   number of available component choices for subsystem i  

ijr   reliability of component  available for subsystem i  j

ijc   cost of component  available for subsystem  j i

ijw   weight of component  available for subsystem i  j

ijy   quantity of component j  used in subsystem i  

iy    ),...,( 1 iiai yy

in   = ∑  total number of components used in subsystem i  
=

ia

j
ijy

1
,

maxn  maximum number of components that can be in parallel 

(user assigned) 

ik  minimum number of components in parallel required for 

subsystem  to function i
)|( iii kyR  reliability of subsystem i , given  ik

)( ii yC   total cost of subsystem  i
)( ii yW   total weight of subsystem  i

uR   unpenalized system reliability of solution u 

upR   penalized system reliability of solution u 

mpR   penalized system reliability of the rank mth solution 

uC   total system cost of solution u 

1.2  Problem Definition 

1.2.1 Notation 
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uW   total system weight of solution u 

AC   set of available component choices 
 
Ant Colony Optimization (ACO) 
i  index for subsystem, si ,...,1=  
j  index for components in a subsystem 

ijτ   pheromone trail intensity of combination ( ) ji,
old
ijτ  pheromone trail intensity of combination ( ) before up-

date 

ji,

new
ijτ  pheromone trail intensity of combination ( ) after up-

date 

ji,

0iτ   =1/ai, initial pheromone trail intensity of subsystem i  

ijP   transition probability of combination ( ) ji,

ijη   problem-specific heuristic of combination ( )  ji,

α   relative importance of the pheromone trail intensity 
β   relative importance of the problem-specific heuristic  
l  index for component choices from set AC 
ρ    trail persistence ],1,0[∈
q    a uniformly generated random number ],1,0[∈

0q   a parameter which determines the relative impor-

tance of exploitation versus exploration 

],1,0[∈

E number of best solutions chosen for offline pheromone 
update 

m  index (rank, best to worst) for solutions in a given iteration 
γ   amplification parameter in the penalty function 

The RAP can be formulated to maximize system reliability given re-
strictions on system cost of C and system weight of W.  It is assumed that 
system weight and system cost are linear combinations of component 
weight and cost, although this is a restriction that can be relaxed using heu-
ristics.  

max      (1) )|(
1

iii

s

i
kRR y

=
Π=

Subject to the constraints 

1.2.2 Redundancy Allocation Problem 
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∑ ≤
=

s

i
ii CC

1
,)(y        (2) 

,)(
1
∑ ≤
=

s

i
ii WW y       (3) 

If there is a known maximum number of components allowed in paral-
lel, the following constraint is added: 

∑
=

≤≤
ia

j
iji nyk

1
max      (4) si ,...,2,1=∀

Typical assumptions are: 
• The states of components and the system are either operating or failed. 
• Failed components do not damage the system and are not repaired. 
• The failure rates of components when not in use are the same as when in 

use (i.e., active redundancy is assumed). 
• Component attributes (reliability, weight and cost) are known and de-

terministic. 
• The supply of any component is unconstrained. 

This section is taken from the authors’ earlier work in using the ant col-
ony approach for reliable systems optimization [28, 29, 30].  The generic 
components of ant colony are each defined and the overall flow of the 
method is defined.  These should be applicable, with minor changes, to 
many problems in reliable systems combinatorial design. 

As with other meta-heuristics, it is important to devise a solution encod-
ing that provides (ideally) a one to one relationship with the solutions to be 
considered during search.  For combinatorial problems this generally takes 
the form of a binary or k-nery string although occasionally other represen-
tations such as real numbers can be used.  For the RAP, each ant represents 
a design of an entire system, a collection of  components in parallel 

 for  different subsystems.  The  components are cho-

sen from  available types of components.  The  types are sorted in de-

scending order of reliability; i.e., 1 represents the most reliable component 

in

)( maxnnk ii ≤≤ s in

ia ia

1.3  Ant Colony Optimization Approach 

1.3.1  Solution Encoding 



8      Yun-Chia Liang and Alice E. Smith 

type, etc.  An index of 1+ia  is assigned to a position where an additional 
component was not used (that is, was left blank) with attributes of zero.  
Each of the  subsystems is represented by  positions with each com-

ponent listed according to its reliability index, as in [7], therefore a com-
plete system design (that is, an ant) is an integer vector of length n

s maxn

max × s.  

Also, as with other meta-heuristics, an initial solution set must be gener-
ated.  For global optimizers the solution quality in this set is not usually 
important and that is true for the ant approach as well.  In the ACO-RAP 
algorithm, ants use problem-specific heuristic information, denoted by ijη , 

along with pheromone trail intensity, denoted by ijτ , to construct a solu-

tion.   components (in 41 max −≤≤+ nnk ii ) are selected for each sub-

system using the probabilities calculated by equations 5 and 6, below.  
This range of components encourages the construction of a solution that is 
likely to be feasible, that is, be reliable enough (satisfying the ki + 1 lower 
bound) but not violate the weight and cost constraints (satisfying the nmax – 
4 upper bound).  Solutions which contain more or less components per 
subsystem than these bounds are examined during the local search phase of 
the algorithm (described in Section III D).   

The ACO problem specific heuristic chosen is 
ijij

ij
ij wc

r

+
=η  where , 

, and  represent the associated reliability, cost and weight of compo-

nent j for subsystem i.  This favors components with higher reliability and 
smaller cost and weight.  Adhering to the ACO meta-heuristic concept, this 
is a simple and obvious rule.  Uniform pheromone trail intensities for the 
initial iteration (colony of ants) are set over the component choices, that is, 

ijr

ijc ijw

0iτ =1/ai.  The pheromone trail intensities are subsequently changed as de-

scribed in Section III E. 
A solution is constructed by selecting component j for subsystem i ac-

cording to: 

⎪
⎩

⎪
⎨

⎧

=
∈

J

j
ilil

ACl
])()[(maxarg βα ητ

 

0

0

qq

qq

>

≤
                 (5) 

1.3.2  Solution Construction 
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and J is chosen according to the transition probability mass function 
given by 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

∑
=

0

)()(

)()(

1

ia

l
ilil

ijij

ijP

βα

βα

ητ

ητ

 

Otherwise

ACj∈
   (6) 

where α  and β  control the relative weight of the pheromone and the 
local heuristic, respectively, AC is the set of available component choices 
for subsystem i,  is a uniform random number, and  determines the 

relative importance of the exploitation of superior solutions versus the di-
versification of search spaces.  When 

q 0q

0qq ≤  exploitation of known good 

solutions occurs.  The component selected is the best for that particular 
subsystem, that is, has the highest product of pheromone intensity and ratio 
of reliability to cost and weight.  When , the search favors more ex-

ploration as all components are considered for selection with some prob-
ability.   

0qq >

Fitness (the common term for the analogy to objective function value 
for nature inspired heuristics) plays an important role in the ant colony ap-
proach as it determines the construction probabilities for the subsequent 
generation.  After solution u is constructed, the unpenalized reliability  

is calculated using equation (1).  For solutions with cost that exceeds C 
and / or weight that exceeds W, the penalized reliability  is calculated: 

uR

upR
γγ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=

uu
uup C

C

W

W
RR      (7)  

where the exponent γ  is an amplification parameter and  and  

are the system weight and cost of solution u, respectively.  This penalty 
function encourages the ACO-RAP algorithm to explore the feasible re-

uW uC

1.3.3  Objective Function 
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gion and infeasible region that is near the border of the feasible area, and 
discourages, but allows, search further into the infeasible region.  

After an ant colony is generated, each ant is improved using local 
search.  Local search is an optional, but usually beneficial, aspect of the 
ant colony approach that allows a systematic enhancement of the con-
structed ants.  For the RAP, starting with the first subsystem, a chosen 
component type is deleted and a different component type is added.  All 
possibilities are enumerated.  For example, if a subsystem has one of com-
ponent 1, two of component 2 and one of component 3, then one alterna-
tive is to delete a component 1 and to add a component 2.  Another possi-
bility is to delete a component 3 and to add a component 1.  Whenever an 
improvement of the objective function is achieved, the new solution re-
places the old one and the process continues until all subsystems have been 
searched.  This local search does not require recalculating the system reli-
ability each time, only the reliability of the subsystem under consideration 
needs to be recalculated.   

The pheromone trail is a unique concept to the ant approach.  Naturally, 
this idea is taken directly from studying physical ants and their deposits of 
the pheromone chemical.  For the RAP, the pheromone trail update con-
sists of two phases – online (ant-by-ant) updating and offline (colony) up-
dating.  Online updating is done after each solution is constructed and its 
purpose is to lessen the pheromone intensity of the components of the so-
lution just constructed to encourage exploration of other component 
choices in the later solutions to be constructed.  Online updating is by  

o)1( i
old
ij

new
ij τρτρτ ⋅−+⋅=                 (8) 

where ]1,0[∈ρ  controls the pheromone persistence; i.e., ρ−1  repre-
sents the proportion of the pheromone evaporated.  After all solutions in a 
colony have been constructed and subject to local search, pheromone trails 
are updated offline.  Offline updating is to reflect the discoveries of this it-
eration.  The offline intensity update is: 

∑
=

⋅+−⋅−+⋅=
E

m
mp

old
ij

new
ij RmE

1
)1()1( ρτρτ   (9) 

1.3.4  Improving Constructed Solutions Through Local Search 

1.3.5  Pheromone Trail Intensity Update 
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where m = 1 is the best feasible solution yet found (which may or may 
not be in the current colony) and the remaining E-1 solutions are the best 
ones in the current colony.  In other words, only the best E ants are al-
lowed to contribute pheromone to the trail intensity and the magnitudes of 
contributions are weighted by their ranks in the colony.   

Generally, ant colony algorithms are similar to other meta-heuristics in 
that they iterate over generations (termed colonies for ACO) until some 
termination criteria are met.  If an algorithm is elitist (as most genetic algo-
rithms and ant colonies are) the best solution found is also contained in the 
final iteration (colony).  The termination criteria are usually a combination 
of total solutions considered (or total computational time) and lack of best 
solution improvement over some number iterations.  These are experimen-
tally determined.  Of course, there is no downside to running the ACO 
overly long except waste of computer time.   

The flow of the ACO-RAP is as follows: 
Set all parameter values and initialize the pheromone trail intensities 
Loop 

Sub-Loop 
Construct an ant using the pheromone trail intensity and the 
problem-specific heuristic (eqs. 5, 6) 
Apply the online pheromone intensity update rule (eq. 8) 

Continue until all ants in the colony have been generated 
Apply local search to each ant in the colony 
Evaluate all ants in the colony (eqs. 1, 7), rank them and record the 
best feasible one 
Apply the offline pheromone intensity update rule (eq. 9) 

Continue until a stopping criterion is reached 

To show the effectiveness of the ant colony approach for reliable sys-
tems design results from [30] are given here.  The ACO is coded in Bor-
land C++ and run using an Intel Pentium III 800 MHz PC with 256 MB 
RAM.  All computations use real float point precision without rounding or 
truncating values.  The system reliability of the final solution is rounded to 
four digits behind the decimal point in order to compare with results in the 
literature.  

1.3.6  Overall Ant Colony Algorithm 

1.4 Computational Experience 
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The parameters of the ACO algorithm are set to the following values: 
1=α , 5.0=β , , 9.00 =q 9.0=ρ  and E = 5.  This gives relatively more 

weight to the pheromone trail intensity than the problem-specific heuristic 
and greater emphasis on exploitation rather than exploration.  The ACO is 
not very sensitive these values and tested well for quite a range of them.  
For the penalty function, 1.0=γ except when the previous iteration has 
90% or more infeasible solutions, then 3.0=γ .  This increases the pen-
alty temporarily to move the search back into the feasible region when all 
or nearly all solutions in the current colony are infeasible.  This bi-level 
penalty improved performance on the most constrained instances of the 
test problems.  Because of varying magnitudes of R, C and W, all ijη  and 

ijτ  are normalized between (0,1) before solution construction.  100 ants 

are used in each colony.  The stopping criterion is when the number of 
colonies reaches 1000 or the best feasible solution has not changed for 500 
consecutive colonies.  This results in a maximum of 100,000 ants. 

The 33 variations of the Fyffe et al. problem [20] as devised by Naka-
gawa and Miyazaki [35] were used to test the performance of ACO.  In 
this problem set  and W is decreased incrementally from 191 to 
159.  In [20] and [35], the optimization approaches required that identical 
components be placed in redundancy, however for the ACO approach, as 
in Coit and Smith [7], different component types are allowed to reside in 
parallel (assuming that a value of  = 8 for all subsystems).  This 

makes the search space size larger than .  Since the heuristic 
benchmark for the RAP with component mixing is the GA of [7], it is cho-
sen for comparison.  Ten runs of each algorithm (GA and ACO) were 
made using different random number seeds for each problem instance. 

130=C

maxn
33106.7 ×

The results are summarized in Table 1 where the comparisons between 
the GA and ACO results over 10 runs are divided into three categories: 
maximum, mean and minimum system reliability (denoted by Max R, 
Mean R and Min R, respectively).  The shaded box shows the maximum 
reliability solution to an instance while considering all GA and ACO re-
sults.  The ACO solutions are equivalent to or superior to the GA over all 
categories and all problem instances.  When the problem instances are less 
constrained (the first 18), the ACO performs much better than the GA.  
When the problems become more constrained (the last 15), ACO is equal 
to GA for 12 instances and better than GA for three instances in terms of 
the Max R measure (best over ten runs).  However, for Min R (worst over 
10 runs) and Mean R (of 10 runs), ACO dominates GA.  
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Table 1.  Comparison of the GA [7] and the ACO over 10 random number seeds 
each for the test problems from [35].  These results are from [30]. 

 

No C W Max R Mean R Min R Max R Mean R Min R
1 130 191 0.9867 0.9862 0.9854 0.9868 0.9862 0.9860
2 130 190 0.9857 0.9855 0.9852 0.9859 0.9858 0.9857
3 130 189 0.9856 0.9850 0.9838 0.9858 0.9853 0.9852
4 130 188 0.9850 0.9848 0.9842 0.9853 0.9849 0.9848
5 130 187 0.9844 0.9841 0.9835 0.9847 0.9841 0.9837
6 130 186 0.9836 0.9833 0.9827 0.9838 0.9836 0.9835
7 130 185 0.9831 0.9826 0.9822 0.9835 0.9830 0.9828
8 130 184 0.9823 0.9819 0.9812 0.9830 0.9824 0.9820
9 130 183 0.9819 0.9814 0.9812 0.9822 0.9818 0.9817

10 130 182 0.9811 0.9806 0.9803 0.9815 0.9812 0.9806
11 130 181 0.9802 0.9801 0.9800 0.9807 0.9806 0.9804
12 130 180 0.9797 0.9793 0.9782 0.9803 0.9798 0.9796
13 130 179 0.9791 0.9786 0.9780 0.9795 0.9795 0.9795
14 130 178 0.9783 0.9780 0.9764 0.9784 0.9784 0.9783
15 130 177 0.9772 0.9771 0.9770 0.9776 0.9776 0.9776
16 130 176 0.9764 0.9760 0.9751 0.9765 0.9765 0.9765
17 130 175 0.9753 0.9753 0.9753 0.9757 0.9754 0.9753
18 130 174 0.9744 0.9732 0.9716 0.9749 0.9747 0.9741
19 130 173 0.9738 0.9732 0.9719 0.9738 0.9735 0.9731
20 130 172 0.9727 0.9725 0.9712 0.9730 0.9726 0.9714
21 130 171 0.9719 0.9712 0.9701 0.9719 0.9717 0.9710
22 130 170 0.9708 0.9705 0.9695 0.9708 0.9708 0.9708
23 130 169 0.9692 0.9689 0.9684 0.9693 0.9693 0.9693
24 130 168 0.9681 0.9674 0.9662 0.9681 0.9681 0.9681
25 130 167 0.9663 0.9661 0.9657 0.9663 0.9663 0.9663
26 130 166 0.9650 0.9647 0.9636 0.9650 0.9650 0.9650
27 130 165 0.9637 0.9632 0.9627 0.9637 0.9637 0.9637
28 130 164 0.9624 0.9620 0.9609 0.9624 0.9624 0.9624
29 130 163 0.9606 0.9602 0.9592 0.9606 0.9606 0.9606
30 130 162 0.9591 0.9587 0.9579 0.9592 0.9592 0.9592
31 130 161 0.9580 0.9572 0.9561 0.9580 0.9580 0.9580
32 130 160 0.9557 0.9556 0.9554 0.9557 0.9557 0.9557
33 130 159 0.9546 0.9538 0.9531 0.9546 0.9546 0.9546

C&S [7] GA - 10 runs ACO-RAP - 10 runs

 

Thus, the ACO tends to find better solutions than the GA, is signifi-
cantly less sensitive to random number seed, and for the 12 most con-
strained instances, finds the best solution each and every run.  While these 
differences in system reliability are not large, it is beneficial to use a 
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search method that performs well over different problem sizes and parame-
ters.  Moreover, any system reliability improvement while adhering to the 
design constraints is of some value, even if the reliability improvement re-
alized is relatively small. 

The best design and its system reliability, cost and weight for each of 
the 33 instances are shown in Table 2.  For instances 6 and 11, two designs 
with different system costs but with the same reliability and weight are 
found.  All but instance 33 involve mixing of components within a subsys-
tem which is an indication that superior designs can be identified by not 
restricting the search space to a single component type per subsystem. 

It is difficult to make a precise computational comparison.  CPU sec-
onds vary according to hardware, software and coding.  Both the ACO and 
the GA generate multiple solutions during each iteration, therefore the 
computational effort changes in direct proportion to number of solutions 
considered.  The number of solutions generated in [7] (a population size of 
40 with 1200 iterations) is about half of the ACO (a colony size of 100 
with up to 1000 iterations).  However, given the improved performance per 
seed of the ACO, a direct comparison per run is not meaningful.  If the av-
erage solution of the ACO over ten seeds is compared to the best perform-
ance of GA over ten seeds, in 13 instances ACO is better, in 9 instances 
GA is better and in the remaining instances (11) they are equal, as shown 
in Figure 2.  Since this is a comparison of average performance (ACO) 
versus best performance (GA), the additional computational effort of the 
ACO is more than compensated for.  In summary, an average run of ACO 
is likely to be as good or better than the best of ten runs of GA.  The dif-
ference in variability over all 33 test problems between ACO and the GA 
is clearly shown in Figure 3. 

Given the well-structured neighborhood of the RAP, a meta-heuristic 
that exploits it is likely to be more effective and more efficient than one 
that does not.  While the GA certainly performs well relative to previous 
approaches, the largely random mechanisms of crossover and mutation re-
sult in greater run to run variability than the ACO.  Since the ACO shares 
the GA’s attributes of flexibility, robustness and implementation ease and 
improves on its random behavior, it seems a very promising general 
method for other NP-hard reliability design problems such as those found 
in networks and complex structures. 
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Table 2. Configuration, reliability, cost and weight of the best solution to each 
problem.  These results are from [30]. 
 
No. W R Cost Weight Solution 

1 191 0.9868 130 191 333,11,111,2222,333,22,333,3333,23,122,333,4444,12,12
2 190 0.9859 129 190 333,11,111,2222,333,22,333,3333,22,112,333,4444,11,22
3 189 0.9858 130 189 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,12
4 188 0.9853 130 188 333,11,111,2222,333,22,333,3333,23,112,13,4444,12,12
5 187 0.9847 130 187 333,11,111,2222,333,22,333,3333,23,122,13,4444,11,12
6 186 0.9838 129 186 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,22

130 186 333,11,111,2222,333,24,333,3333,33,122,13,4444,12,12
7 185 0.9835 130 185 333,11,111,2222,333,22,333,3333,13,122,13,4444,11,22
8 184 0.9830 130 184 333,11,111,222,333,22,333,3333,33,112,11,4444,11,12
9 183 0.9822 128 183 333,11,111,222,333,22,333,3333,33,112,13,4444,11,12

10 182 0.9815 127 182 333,11,111,222,333,22,333,3333,33,122,13,4444,11,12
11 181 0.9807 125 181 333,11,111,222,333,22,333,3333,13,122,13,4444,11,22

126 181 333,11,111,222,333,22,333,3333,23,122,11,4444,11,22
12 180 0.9803 128 180 333,11,111,222,333,22,333,3333,33,122,11,4444,11,22
13 179 0.9795 126 179 333,11,111,222,333,22,333,3333,33,122,13,4444,11,22
14 178 0.9784 125 178 333,11,111,222,333,22,333,3333,33,222,13,4444,11,22
15 177 0.9776 126 177 333,11,111,222,333,22,333,133,33,122,13,4444,11,22
16 176 0.9765 125 176 333,11,111,222,333,22,333,133,33,222,13,4444,11,22
17 175 0.9757 125 175 333,11,111,222,333,22,13,3333,33,122,11,4444,11,22
18 174 0.9749 123 174 333,11,111,222,333,22,13,3333,33,122,13,4444,11,22
19 173 0.9738 122 173 333,11,111,222,333,22,13,3333,33,222,13,4444,11,22
20 172 0.9730 123 172 333,11,111,222,333,22,13,133,33,122,13,4444,11,22
21 171 0.9719 122 171 333,11,111,222,333,22,13,133,33,222,13,4444,11,22
22 170 0.9708 120 170 333,11,111,222,333,22,13,133,33,222,33,4444,11,22
23 169 0.9693 121 169 333,11,111,222,333,22,33,133,33,222,13,4444,11,22
24 168 0.9681 119 168 333,11,111,222,333,22,33,133,33,222,33,4444,11,22
25 167 0.9663 118 167 333,11,111,222,33,22,13,133,33,222,33,4444,11,22
26 166 0.9650 116 166 333,11,11,222,333,22,13,133,33,222,33,4444,11,22
27 165 0.9637 117 165 333,11,111,222,33,22,33,133,33,222,33,4444,11,22
28 164 0.9624 115 164 333,11,11,222,333,22,33,133,33,222,33,4444,11,22
29 163 0.9606 114 163 333,11,11,222,33,22,13,133,33,222,33,4444,11,22
30 162 0.9592 115 162 333,11,11,222,33,22,33,133,33,222,13,4444,11,22
31 161 0.9580 113 161 333,11,11,222,33,22,33,133,33,222,33,4444,11,22
32 160 0.9557 112 160 333,11,11,222,33,22,33,333,33,222,13,4444,11,22
33 159 0.9546 110 159 333,11,11,222,33,22,33,333,33,222,33,4444,11,22  
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Fig. 2.  Comparison of mean ACO with best GA performance over 10 seeds.  
These results are from [30]. 

This chapter cites the latest developments of ACO algorithms to reliabil-
ity system problems.  The main part of the chapter gives details of a gen-
eral ant colony meta-heuristic to solve the redundancy allocation problem 
(RAP) which was devised over the past several years by the authors and 
published in [28, 29, 30].  The RAP is a well known NP-hard problem that 
has been the subject of much prior work, generally in a restricted form 
where each subsystem must consist of identical components in parallel to 
make computations tractable.  Heuristic methods can overcome this limita-
tion and offer a practical way to solve large instances of a relaxed RAP 
where different components can be placed in parallel.  The ant colony al-
gorithm for the RAP is shown to perform well with little variability over 
problem instance or random number seed.  It is competitive with the best-
known heuristics for redundancy allocation.  Undoubtedly there will be 
much more work forthcoming in the literature that uses the ant colony 
paradigm to solve the many difficult combinatorial problems in the field of 
reliable system design. 
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Fig. 3.  Range of performance over 10 seeds with mean shown as 
horizontal dash.  These results are from [30]. 
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