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Preface 

This two-volume book covers the recent applications of computational intelli-
gence techniques in reliability engineering. Research in the area of computational 
intelligence is growing rapidly due to the many successful applications of these 
new techniques in very diverse problems. “Computational Intelligence” covers 
many fields such as neural networks, fuzzy logic, evolutionary computing, and 
their hybrids and derivatives. Many industries have benefited from adopting this 
technology. The increased number of patents and diverse range of products devel-
oped using computational intelligence methods is evidence of this fact. 
 
These techniques have attracted increasing attention in recent years for solving 
many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving 
many complex problems where traditional problem-solving methods have failed.  
 
The book aims to be a repository for the current and cutting-edge applications of 
computational intelligent techniques in reliability analysis and optimization.  
 
In recent years, many studies on reliability optimization use a universal optimiza-
tion approach based on metaheuristics. These metaheuristics hardly depend on the 
specific nature of the problem that is solved and, therefore, can be easily applied 
to solve a wide range of optimization problems. The metaheuristics are based on 
artificial reasoning rather than on classical mathematical programming. Their im-
portant advantage is that they do not require any information about the objective 
function besides its values corresponding to the points visited in the solution 
space. All metaheuristics use the idea of randomness when performing a search, 
but they also use past knowledge in order to direct the search. Such algorithms are 
known as randomized search techniques.  
 
Genetic algorithms are one of the most widely used metaheuristics. They were in-
spired by the optimization procedure that exists in nature, the biological phenome-
non of evolution. The first volume of this book starts with a survey of the contri-
butions made to the optimal reliability design literature in the resent years. The 
next chapter is devoted to using the metaheuristics in multiobjective reliability op-
timization. The volume also contains chapters devoted to different applications of 
the genetic algorithms in reliability engineering and to combinations of this algo-
rithm with other computational intelligence techniques. 



The second volume contains chapters presenting applications of other metaheuris-
tics such as ant colony optimization, great deluge algorithm, cross-entropy method 
and particle swarm optimization. It also includes chapters devoted to such novel 
methods as cellular automata and support vector machines. Several chapters pre-
sent different applications of artificial neural networks, a powerful adaptive tech-
nique that can be used for learning, prediction and optimization. The volume also 
contains several chapters describing different aspects of imprecise reliability and 
applications of fuzzy and vague set theory.  
 
All of the chapters are written by leading researchers applying the computational 
intelligence methods in reliability engineering.  
 
This two-volume book will be useful to postgraduate students, researchers, doc-
toral students, instructors, reliability practitioners and engineers, computer scien-
tists and mathematicians with interest in reliability. 
 
I would like to express my sincere appreciation to Professor Janusz Kacprzyk 
from the Systems Research Institute, Polish Academy of Sciences, Editor-in-Chief 
of the Springer series "Studies in Computational Intelligence", for providing me 
with the chance to include this book in the series.  
 
I wish to thank all the authors for their insights and excellent contributions to this 
book. I would like to acknowledge the assistance of all involved in the review 
process of the book, without whose support this book could not have been suc-
cessfully completed. I want to thank the authors of the book who participated in 
the reviewing process and also Prof. F. Belli, University of Paderborn, Germany, 
Prof. Kai-Yuan Cai, Beijing University of Aeronautics and Astronautics, Dr. M. 
Cepin, Jozef Stefan Institute, Ljubljana , Slovenia, Prof. M. Finkelstein, Univer-
sity of the Free State, South Africa, Prof. A. M. Leite da Silva, Federal University 
of Itajuba, Brazil, Prof. Baoding Liu, Tsinghua University, Beijing, China, Dr. M. 
Muselli, Institute of Electronics, Computer and Telecommunication Engineering, 
Genoa, Italy, Prof. M. Nourelfath, Université Laval, Quebec, Canada, Prof. W. 
Pedrycz, University of Alberta, Edmonton, Canada, Dr. S. Porotsky, FavoWeb, Is-
rael, Prof. D. Torres, Universidad Central de Venezuela, Dr. Xuemei Zhang, Lu-
cent Technologies, USA for their insightful comments on the book chapters. 
 
I would like to thank the Springer editor Dr. Thomas Ditzinger for his professional 
and technical assistance during the preparation of this book.  
 
 

Gregory Levitin      Haifa, Israel, 2006

VI      Preface 



Contents 

 

1 The Ant Colony Paradigm for Reliable Systems Design 
Yun-Chia Liang, Alice E. Smith...............................................................................1 

1.1 Introduction..................................................................................................1 
1.2 Problem Definition ......................................................................................5 

1.2.1 Notation................................................................................................5 
1.2.2 Redundancy Allocation Problem..........................................................6 

1.3 Ant Colony Optimization Approach ............................................................7 
1.3.1 Solution Encoding ................................................................................7 
1.3.2 Solution Construction...........................................................................8 
1.3.3 Objective Function ...............................................................................9 
1.3.4 Improving Constructed Solutions Through Local Search ..................10 
1.3.5 Pheromone Trail Intensity Update......................................................10 
1.3.6 Overall Ant Colony Algorithm...........................................................11 

1.4 Computational Experience.........................................................................11 
1.5 Conclusions................................................................................................16 
References........................................................................................................18 

2 Modified Great Deluge Algorithm versus Other Metaheuristics  
in Reliability Optimization 
Vadlamani Ravi .....................................................................................................21 

2.1 Introduction................................................................................................21 
2.2 Problem Description ..................................................................................23 
2.3 Description of Various Metaheuristics ......................................................25 

2.3.1 Simulated Annealing (SA) .................................................................25 
2.3.2 Improved Non-equilibrium Simulated Annealing (INESA)...............26 
2.3.3 Modified Great Deluge Algorithm (MGDA) .....................................26 

2.3.3.1 Great Deluge Algorithm ..........................................................27 
2.3.3.2 The MGDA..............................................................................27 

2.4 Discussion of Results.................................................................................30 
2.5 Conclusions................................................................................................33 
References........................................................................................................33 
Appendix .........................................................................................................34 
 
 



VIII      Contents 

3 Applications of the Cross-Entropy Method in Reliability 
Dirk P. Kroese, Kin-Ping Hui ............................................................................... 37 

3.1 Introduction ............................................................................................... 37 
3.1.1 Network Reliability Estimation.......................................................... 37 
3.1.2 Network Design ................................................................................. 38 

3.2 Reliability .................................................................................................. 39 
3.2.1 Reliability Function............................................................................ 42 
3.2.2 Network Reliability ............................................................................ 44 

3.3 Monte Carlo Simulation ............................................................................ 45 
3.3.1 Permutation Monte Carlo and the Construction Process.................... 46 
3.3.2 Merge Process .................................................................................... 48 

3.4 Reliability Estimation using the CE Method ............................................. 50 
3.4.1 CE Method ......................................................................................... 52 
3.4.2 Tail Probability Estimation ................................................................ 53 
3.4.3 CMC and CE (CMC-CE) ................................................................... 54 
3.4.4 CP and CE (CP-CE) ........................................................................... 56 
3.4.5 MP and CE (MP-CE) ......................................................................... 57 
3.4.6 Numerical Experiments...................................................................... 59 
3.4.7 Summary of Results ........................................................................... 62 

3.5 Network Design and Planning ................................................................... 62 
3.5.1 Problem Description........................................................................... 63 
3.5.2 The CE Method for Combinatorial Optimization............................... 64 

3.5.2.1 Random Network Generation.................................................. 64 
3.5.2.2 Updating Generation Parameters............................................. 65 
3.5.2.3 Noisy Optimization ................................................................. 66 

3.5.3 Numerical Experiment ....................................................................... 66 
3.6 Network Recovery and Expansion ............................................................ 68 

3.6.1 Problem Description........................................................................... 68 
3.6.2 Reliability Ranking ............................................................................ 69 

3.6.2.1 Edge Relocated Networks ....................................................... 69 
3.6.2.2 Coupled Sampling ................................................................... 70 
3.6.2.3 Synchronous Construction Ranking (SCR) ............................. 71 

3.6.3 CE Method ......................................................................................... 74 
3.6.3.1 Random Network Generation.................................................. 74 
3.6.3.2 Updating Generation Parameters............................................. 74 

3.6.4 Hybrid Optimization Method ............................................................. 77 
3.6.4.1 Multi-optima Termination ....................................................... 77 
3.6.4.2 Mode Switching....................................................................... 78 

3.6.5 Comparison Between the Methods..................................................... 79 
References ....................................................................................................... 80 

4 Particle Swarm Optimization in Reliability Engineering 
Gregory Levitin, Xiaohui Hu, Yuan-Shun Dai ...................................................... 83 

4.1 Introduction ............................................................................................... 83 
4.2 Description of PSO and MO-PSO ............................................................. 84 

4.2.1 Basic Algorithm ................................................................................. 85 



      Contents      IX 

4.2.2 Parameter Selection in PSO................................................................86 
4.2.2.1 Learning Factors ......................................................................86 
4.2.2.2 Inertia Weight ..........................................................................87 
4.2.2.3 Maximum Velocity..................................................................87 
4.2.2.4 Neighborhood Size ..................................................................87 
4.2.2.5 Termination Criteria ................................................................88 

4.2.3 Handling Constraints in PSO..............................................................88 
4.2.4 Handling Multi-objective Problems with PSO...................................89 

4.3 Single-Objective Reliability Allocation.....................................................91 
4.3.1 Background ........................................................................................91 
4.3.2 Problem Formulation..........................................................................92 

4.3.2.1 Assumptions ............................................................................92 
4.3.2.2 Decision variables....................................................................92 
4.3.2.3 Objective Function ..................................................................93 
4.3.2.4 The Problem ............................................................................94 

4.3.3 Numerical Comparison.......................................................................95 
4.4 Single-Objective Redundancy Allocation..................................................96 

4.4.1 Problem Formulation..........................................................................96 
4.4.1.1 Assumptions ............................................................................96 
4.4.1.2 Decision Variable ....................................................................96 
4.4.1.3 Objective Function ..................................................................97 

4.4.2 Numerical Comparison.......................................................................98 
4.5 Single Objective Weighted Voting System Optimization..........................99 

4.5.1 Problem Formulation..........................................................................99 
4.5.2 Numerical Comparison.....................................................................101 

4.6 Multi-Objective Reliability Allocation ....................................................105 
4.6.1 Problem Formulation........................................................................105 
4.6.2 Numerical Comparison.....................................................................106 

4.7 PSO Applicability and Efficiency............................................................108 
References......................................................................................................109 

5 Cellular Automata and Monte Carlo Simulation for Network Reliability 
and Availability Assessment 
Claudio M. Rocco S., Enrico Zio.........................................................................113 

5.1 Introduction..............................................................................................113 
5.2 Basics of CA Computing .........................................................................115 

5.2.1 One-dimensional CA........................................................................116 
5.2.2 Two-dimensional CA .......................................................................118 
5.2.3 CA Behavioral Classes.....................................................................118 

5.3 Fundamentals of Monte Carlo Sampling and Simulation ........................119 
5.3.1 The System Transport Model ...........................................................119 
5.3.2 Monte Carlo Simulation for Reliability Modeling ...........................120 

5.4 Application of CA for the Reliability Assessment of Network Systems .122 
5.4.1 S-T Connectivity Evaluation Problem..............................................123 
5.4.2 S-T Network Steady-state Reliability Assessment ...........................124 

5.4.2.1 Example.................................................................................125 



X      Contents 

5.4.2.2 Connectivity Changes............................................................ 125 
5.4.2.3 Steady-state Reliability Assessment ...................................... 126 

5.4.3 The All-Terminal Evaluation Problem............................................. 127 
5.4.3.1 The CA Model....................................................................... 127 
5.4.3.2 Example................................................................................. 128 
5.4.3.3 All-terminal Reliability Assessment: Application ................. 128 

5.4.4 The k-Terminal Evaluation Problem ................................................ 130 
5.4.5 Maximum Unsplittable Flow Problem ............................................. 130 

5.4.5.1 The CA Model....................................................................... 130 
5.4.5.2 Example................................................................................. 132 

5.4.6 Maximum Reliability Path ............................................................... 134 
5.4.6.1 Shortest Path.......................................................................... 134 
5.4.6.2 Example................................................................................. 135 
5.4.6.3 Example................................................................................. 136 
5.4.6.4 Maximum Reliability Path Determination............................. 136 

5.5 MC-CA network availability assessment................................................. 138 
5.5.1 Introduction ...................................................................................... 138 
5.5.2 A Case Study of Literature............................................................... 140 

5.6 Conclusions ............................................................................................. 141 
References ..................................................................................................... 142 
Appendix ....................................................................................................... 143 

6 Network Reliability Assessment through Empirical Models Using  
a Machine Learning Approach 
Claudio M. Rocco S., Marco Muselli .................................................................. 145 

6.1 Introduction: Machine Learning (ML) Approach to Reliability  
Assessment .................................................................................................... 145 
6.2 Definitions ............................................................................................... 147 
6.3 Machine Learning Predictive Methods.................................................... 149 

6.3.1 Support Vector Machines................................................................. 149 
6.3.2 Decision Trees.................................................................................. 154 

6.3.2.1 Building the Tree................................................................... 156 
6.3.2.2 Splitting Rules ....................................................................... 157 
6.3.2.3 Shrinking the Tree ................................................................. 159 

6.3.3 Shadow Clustering (SC)................................................................... 159 
6.3.3.1 Building Clusters ................................................................... 162 
6.3.3.2 Simplifying the Collection of Clusters .................................. 164 

6.4 Example ................................................................................................... 164 
6.4.1 Performance Results......................................................................... 166 
6.4.2 Rule Extraction Evaluation .............................................................. 169 

6.5 Conclusions ............................................................................................. 171 
References ..................................................................................................... 172 

7 Neural Networks for Reliability-Based Optimal Design 
Ming J Zuo, Zhigang Tian, Hong-Zhong Huang................................................. 175 

7.1 Introduction ............................................................................................. 175 



      Contents      XI 

7.1.1 Reliability-based Optimal Design ....................................................175 
7.1.2 Challenges in Reliability-based Optimal Design..............................177 
7.1.3 Neural Networks...............................................................................177 
7.1.4 Content of this Chapter.....................................................................178 

7.2 Feed-forward Neural Networks as a Function Approximator..................179 
7.2.1 Feed-forward Neural Networks........................................................179 
7.2.2 Evaluation of System Utility of a Continuous-state Series-parallel 
System.......................................................................................................182 
7.2.3 Other Applications of Neural Networks as a Function  
Approximator ............................................................................................186 

7.2.3.1 Reliability Evaluation of a k-out-of-n System Structure........186 
7.2.3.2 Performance Evaluation of a Series-parallel System Under 
Fuzzy Environment............................................................................187 
7.2.3.3 Evaluation of All-terminal Reliability in Network Design ....187 
7.2.3.4 Evaluation of Stress and Failure Probability in Large-scale 
Structural Design ...............................................................................188 

7.3 Hopfield Networks as an Optimizer.........................................................189 
7.3.1 Hopfield Networks ...........................................................................189 
7.3.2 Network Design with Hopfield ANN...............................................190 
7.3.3 Series System Design with Quantized Hopfield ANN .....................192 

7.4 Conclusions..............................................................................................194 
References......................................................................................................195 

8 Software Reliability Predictions using Artificial Neural Networks 
Q.P. Hu, M. Xie and S.H. Ng...............................................................................197 

8.1 Introduction..............................................................................................197 
8.2 Overview of Software Reliability Models ...............................................200 

8.2.1 Traditional Models for Fault Detection Process...............................200 
8.2.1.1 NHPP Models ........................................................................200 
8.2.1.2 Markov Models......................................................................201 
8.2.1.3 Bayesian Models....................................................................201 
8.2.1.4 ANN Models..........................................................................201 

8.2.2 Models for Fault Detection and Correction Processes......................202 
8.2.2.1 Extensions on Analytical Models ..........................................202 
8.2.2.2 Extensions on ANN Models ..................................................203 

8.3 Combined ANN Models ..........................................................................204 
8.3.1 Problem Formulation........................................................................205 
8.3.2 General Prediction Procedure...........................................................205 

8.3.2.1 Data Normalization................................................................206 
8.3.2.2 Network Training ..................................................................206 
8.3.2.3 Fault Prediction......................................................................207 

8.3.3 Combined Feedforward ANN Model ...............................................207 
8.3.3.1 ANN Framework ...................................................................207 
8.3.3.2 Performance Evaluation.........................................................208 
8.3.3.3 Network Configuration..........................................................209 

8.3.4 Combined Recurrent ANN Model....................................................209 



XII      Contents 

8.3.4.1 ANN Framework ................................................................... 209 
8.3.4.2 Robust Configuration Evaluation .......................................... 210 
8.3.4.3 Network Configuration through Evolution............................ 211 

8.4 Numerical Analysis ................................................................................. 212 
8.4.1 Feedforward ANN Application ........................................................ 213 
8.4.2 Recurrent ANN Application............................................................. 215 
8.4.3 Comparison of Combined Feedforward & Recurrent Model ........... 216 

8.5 Comparisons with Separate Models......................................................... 216 
8.5.1 Combined ANN Models vs Separate ANN Model .......................... 217 
8.5.2 Combined ANN Models vs Paired Analytical Model ...................... 218 

8.6 Conclusions and Discussions................................................................... 219 
References ..................................................................................................... 220 

9 Computation Intelligence in Online Reliability Monitoring 
Ratna Babu Chinnam, Bharatendra Rai ............................................................. 223 

9.1 Introduction ............................................................................................. 223 
9.1.1 Individual Component versus Population Characteristics................ 223 
9.1.2 Diagnostics and Prognostics for Condition-Based Maintenance...... 225 

9.2 Performance Reliability Theory............................................................... 228 
9.3 Feature Extraction from Degradation Signals.......................................... 230 

9.3.1 Time, Frequency, and Mixed-Domain Analysis .............................. 231 
9.3.2 Wavelet Preprocessing of Degradation Signals................................ 233 
9.3.3 Multivariate Methods for Feature Extraction ................................... 236 

9.4 Fuzzy Inference Models for Failure Definition ....................................... 237 
9.5 Online Reliability Monitoring with Neural Networks ............................. 239 

9.5.1 Motivation for Using FFNs for Degradation Signal Modeling ........ 240 
9.5.2 Finite-Duration Impulse Response Multi-layer Perceptron  
Networks ................................................................................................... 241 
9.5.3 Self-Organizing Maps ...................................................................... 242 
9.5.4 Modeling Dispersion Characteristics of Degradation Signals.......... 243 

9.6 Drilling Process Case Study .................................................................... 246 
9.6.1 Experimental Setup .......................................................................... 247 
9.6.2 Actual Experimentation.................................................................... 247 
9.6.3 Sugeno FIS for Failure Definition.................................................... 248 
9.6.4 Online Reliability Estimation using Neural Networks ..................... 251 

9.7 Summary, Conclusions and Future Research .......................................... 253 
References ..................................................................................................... 254 

10 Imprecise reliability: An introductory overview  
Lev V. Utkin, Frank P.A. Coolen......................................................................... 261 

10.1 Introduction ........................................................................................... 261 
10.2 System Reliability Analysis................................................................... 266 
10.3 Judgements in Imprecise Reliability...................................................... 272 
10.4 Imprecise Probability Models for Inference .......................................... 274 
10.5 Second-order Reliability Models ........................................................... 278 
10.6 Reliability of Monotone Systems .......................................................... 281 



      Contents      XIII 

10.7 Multi-state and Continuum-state Systems .............................................283 
10.8 Fault Tree Analysis ................................................................................284 
10.9 Repairable Systems................................................................................285 
10.10 Structural Reliability............................................................................287 
10.11 Software Reliability .............................................................................288 
10.12 Human Reliability................................................................................291 
10.13 Risk Analysis .......................................................................................292 
10.14 Security Engineering............................................................................293 
10.15 Concluding Remarks and Open Problems ...........................................295 
References......................................................................................................297 

11 Posbist Reliability Theory for Coherent Systems 
Hong-Zhong Huang, Xin Tong, Ming J Zuo........................................................307 

11.1 Introduction............................................................................................307 
11.2 Basic Concepts in the Possibility Context .............................................310 

11.2.1 Lifetime of the System ...................................................................311 
11.2.2 State of the System.........................................................................312 

11.3 Posbist Reliability Analysis of Typical Systems ...................................313 
11.3.1 Posbist Reliability of a Series System ............................................313 
11.3.2 Posbist Reliability of a Parallel System..........................................315 
11.3.3 Posbist Reliability of a Series-parallel Systems .............................316 
11.3.4 Posbist Reliability of a Parallel-series System ...............................317 
11.3.5 Posbist Reliability of a Cold Standby System ................................317 

11.4 Posbist Fault Tree Analysis of Coherent Systems .................................319 
11.4.1 Posbist Fault Tree Analysis of Coherent Systems..........................321 

11.4.1.1 Basic Definitions of Coherent Systems ...............................321 
11.4.1.2 Basic Assumptions...............................................................322 

11.4.2 Construction of the Model of Posbist Fault Tree Analysis.............322 
11.4.2.1 The Structure Function of Posbist Fault Tree ......................323 

11.5 The Methods for Developing Possibility Distributions..........................326 
11.5.1 Possibility Distributions Based on Membership Functions ............326 

11.5.1.1 Fuzzy Statistics ....................................................................327 
11.5.1.2 Transformation of Probability Distributions to Possibility 
Distributions ......................................................................................327 
11.5.1.3 Heuristic Methods................................................................328 
11.5.1.4 Expert Opinions...................................................................330 

11.5.2 Transformation of Probability Distributions to Possibility 
Distributions..............................................................................................330 

11.5.2.1 The Bijective Transformation Method.................................330 
11.5.2.2 The Conservation of Uncertainty Method ...........................331 

11.5.3 Subjective Manipulations of Fatigue Data .....................................333 
11.6 Examples................................................................................................335 

11.6.1 Example 1.......................................................................................335 
11.6.1.1 The Series System ...............................................................336 
11.6.1.2 The Parallel System .............................................................336 

11.4.2.2 Quantitative Analysis...........................................................324 



XIV      Contents 

11.6.1.3 The Cold Standby System ................................................... 337 
11.6.2 Example 2....................................................................................... 337 
11.6.3 Example 3....................................................................................... 339 

11.7 Conclusions ........................................................................................... 342 
References ..................................................................................................... 344 

12 Analyzing Fuzzy System Reliability Based on the Vague Set Theory  
Shyi-Ming  Chen.................................................................................................. 347 

12.1 Introduction ........................................................................................... 347 
12.2 A Review of Chen and Jong’s Fuzzy System Reliability Analysis  
Method........................................................................................................... 348 
12.3 Basic Concepts of Vague Sets ............................................................... 353 
12.4 Analyzing Fuzzy System Reliability Based on Vague Sets................... 358 

12.4.1 Example ......................................................................................... 359 
12.5 Conclusions ........................................................................................... 361 
References ..................................................................................................... 361 

13 Fuzzy Sets in the Evaluation of Reliability  
Olgierd Hryniewicz ............................................................................................. 363 

13.1 Introduction ........................................................................................... 363 
13.2 Evaluation of Reliability in Case of Imprecise Probabilities ................. 365 
13.3 Possibilistic Approach to the Evaluation of Reliability ......................... 371 
13.4 Statistical Inference with Imprecise Reliability Data............................. 374 

13.4.1 Fuzzy Estimation of Reliability Characteristics ............................. 374 
13.4.2 Fuzzy Bayes Estimation of Reliability Characteristics .................. 381 

13.5 Conclusions ........................................................................................... 383 
References ..................................................................................................... 384 

14 Grey Differential Equation GM(1,1) Modeling In Repairable System 
Modeling 
Renkuan Guo....................................................................................................... 387 

14.1 Introduction ........................................................................................... 387 
14.1.1 Small Sample Difficulties and Grey Thinking ............................... 387 
14.1.2 Repair Effect Models and Grey Approximation............................. 389 

14.2 The Foundation of GM(1,1) Model ....................................................... 391 
14.2.1 Equal-Spaced GM(1,1) Model ....................................................... 391 
14.2.2 The Unequal-Spaced GM(1,1) Model............................................ 394 
14.2.3 A two-stage GM(1,1) Model for Continuous Data......................... 396 
14.2.4 The Weight Factor in GM(1,1) Model ........................................... 397 

14.3 A Grey Analysis on Repairable System Data ........................................ 399 
14.3.1 Cement Roller Data........................................................................ 399 
14.3.2 An Interpolation-least-square Modeling......................................... 400 
14.3.3 A two-stage Least-square Modeling Approach .............................. 404 
14.3.4 Prediction of Next Failure Time..................................................... 407 

14.4 Concluding Remarks ............................................................................. 408 
References ..................................................................................................... 409 



The Ant Colony Paradigm for Reliable Systems 
Design 

Yun-Chia Liang 

Department of Industrial Engineering and Management,                        
Yuan Ze University  

Alice E. Smith 

Department of Industrial and Systems Engineering, Auburn University 

This chapter introduces a relatively new meta-heuristic for combinatorial 
optimization, the ant colony.  The ant colony algorithm is a multiple solu-
tion global optimizer that iterates to find optimal or near optimal solutions.  
Like its siblings genetic algorithms and simulated annealing, it is inspired 
by observation of natural systems, in this case, the behavior of ants in for-
aging for food.  Since there are many difficult combinatorial problems in 
the design of reliable systems, applying new meta-heuristics to this field 
makes sense.  The ant colony approach with its flexibility and exploitation 
of solution structure is a promising alternative to exact methods, rules of 
thumb and other meta-heuristics. 

The most studied design configuration of the reliability systems is a se-
ries system of s independent k-out-of-n :G subsystems as illustrated in Fig-
ure 1.  A subsystem i is functioning properly if at least ki of its n i compo-
nents are operational and a series-parallel system is where k i = one for all 
subsystems.  In this problem, multiple component choices are used in par-
allel in each subsystem.  Thus, the problem is to select the optimal combi-
nation of components and redundancy levels to meet system level con-
straints while maximizing system reliability.  Such a redundancy allocation 
problem (RAP) is NP-hard [6] and has been well studied (see Tillman, et 
al. [45] and Kuo & Prasad [25]). 
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Fig. 1. Typical series-parallel system configuration. 

 
Exact optimization approaches to the RAP include dynamic program-

ming [2, 20, 35], integer programming [3, 22, 23, 33], and mixed-integer 
and nonlinear programming [31, 46].  Because of the exponential increase 
in search space with problem size, heuristics have become a common al-
ternative to exact methods.  Meta-heuristics, in particular, are global opti-
mizers that offer flexibility while not being confined to specific problem 
types or instances.  Genetic algorithms (GA) have been applied by Painton 
& Campbell [37], Levitin et al. [26], and Coit & Smith [7, 8].  Ravi et al. 
propose simulated annealing (SA) [39], fuzzy logic [40], and a modified 
great deluge algorithm [38] to optimize the complex system reliability.  
Kulturel-Konak et al. [24] use a Tabu search (TS) algorithm embedded 
with an adaptive version of the penalty function in [7] to solve RAPs.  
Three types of benchmark problems which consider the objectives of sys-
tem cost minimization and system reliability maximization respectively 
were used to evaluate the algorithm performance.  Liang and Wu [27] em-
ploy a variable neighborhood descent (VND) algorithm for the RAP.  Four 
neighborhood search methods are defined to explore both the feasible and 
infeasible solution space. 

Ant Colony Optimization (ACO) is one of the adaptive meta-heuristic 
optimization methods inspired by nature which include simulated anneal-
ing (SA), particle swarm optimization (PSO), GA and TS.  ACO is distinct 
from other meta-heuristic methods in that it constructs a new solution set 
(colony) in each generation (iteration), while others focus on improving the 
set of solutions or a single solution from previous iterations.  ACO was in-
spired by the behavior of physical ants.  Ethologists have studied how 
blind animals, such as ants, could establish shortest paths from their nest to 
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food sources and found that the medium used to communicate information 
among individual ants regarding paths is a chemical substance called 
pheromone.  A moving ant lays some pheromone on the ground, thus 
marking the path.  The pheromone, while dissipating over time, is rein-
forced if other ants use the same trail.  Therefore, superior trails increase 
their pheromone level over time while inferior ones reduce to nil.  Inspired 
by the behavior of ants, Marco Dorigo introduced the ant colony optimiza-
tion approach in his Ph.D. thesis in 1992 [13] and expanded it in his fur-
ther work including [14, 15, 18, 19].  The primary characteristics of ant 
colony optimization are: 
1. a method to construct solutions that balances pheromone trails (charac-

teristics of past solutions) with a problem-specific heuristic (normally, a 
simple greedy rule), 

2. a method to both reinforce and dissipate pheromone, 
3. a method capable of including local (neighborhood) search to improve 

solutions.   
ACO methods have been successfully applied to common combinatorial 

optimization problems including traveling salesman [16, 17], quadratic as-
signment [32, 44], vehicle routing [4, 5, 21], telecommunication networks 
[12], graph coloring [10], constraint satisfaction [38], Hamiltonian graphs 
[47] and scheduling [1, 9, 11].  A comprehensive survey of ACO algo-
rithms and applications can be found in [19].   

The application of ACO algorithms to reliability system problems was 
first proposed by Liang and Smith [28, 29], and then enhanced by the same 
authors in [30].  Liang and Smith employ ACO variations to solve a sys-
tem reliability maximization RAP.  Section III uses the ACO algorithm in 
[30] as a paradigm to demonstrate the application of ACO to RAP.   

Thus far, the applications of ACO to reliability system are still very lim-
ited.  Shelokar et al. [43] propose ant algorithms to solve three types of 
system reliability models: complex (neither series nor parallel), N-stage 
mixed series-parallel, and a complex bridge network system.  In order to 
solve problems with different number of objectives and different types of 
decision variables, the authors develop three ant algorithms for single ob-
jective combinatorial problem, single objective continuous problem, and 
bi-objective continuous problem, respectively.  The ant algorithm of single 
objective combinatorial version use the pheromone information only to 
construct the solutions, and no online pheromone updating rule is applied.  
Two local search methods, swap and random exchange, are performed to 
the best ant.  For continuous problems, the authors divided the colony into 
two groups – global ants and local ants.  The global ant concept can be 
considered as a pure GA mechanism since these ants apply crossover and 
mutation and no pheromone is deposited.  Local ants are improved by a 
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stochastic hill-climbing technique, and an improving ant can deposit the 
improvement magnitude of the objective on the trails.  Lastly, a clustering 
technique and Pareto concept are combined with the continuous version of 
ant algorithms to solve bi-objective problems.  The authors compared their 
algorithms with methods in the literature such as SA, a generalized La-
grange function approach, and a random search method.  The results on 
four sets of test problems show the superiority of ACO algorithms.   

Ouiddir et al. [36] develop an ACO algorithm for multi-state electrical 
power system problems.  In this system redesign problem, the objective is 
to minimize the investment over the study period while satisfying avail-
ability or performance criteria.  The proposed ant algorithm is based on the 
Ant Colony System (ACS) of [17] and [30].  A universal moment generat-
ing function is used to calculate the availability of the repairable multi-
state system.  The algorithm is tested on a small problem with five subsys-
tems, each with four to six component options.  Samrout et al. [41] apply 
ACO to determine the component replacement conditions in series-parallel 
systems minimizing the preventive maintenance cost.  Three algorithms 
are proposed – two based on Ant System (AS) [18] and one based on ACS 
[17].  Different transition rules and pheromone updating rules are em-
ployed in each algorithm.  Local search is not used.  Given different mis-
sion times and availability constraints, the performance of the ACO algo-
rithms is compared with a GA from the literature.  In this paper, results are 
mixed: one of the AS based methods and the ACS based method outper-
form the GA while the other AS algorithm is dominated by the GA.  Nahas 
and Nourelfath [34] use an AS algorithm to optimize the reliability of a se-
ries system with multiple choices and budget constraints.  Online phero-
mone updating and local search are not used.  The authors apply a penalty 
function to determine the magnitude of pheromone deposition.  Four ex-
amples with up to 25 component options are tested to verify the perform-
ance of the proposed algorithm.  The computational results show that the 
AS algorithm is effective with respect to solution quality and 
computational expense.   

The remaining chapter is organized as follows.  Section II offers the no-
tation list and defines the system reliability maximization RAP.  A detailed 
introduction of an ant colony paradigm on solving RAP is provided in Sec-
tion III using the work of Liang and Smith as a basis.  Computational re-
sults on a set of benchmark problems are discussed in Section IV.  Finally, 
concluding remarks are summarized in Section V. 
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Redundancy Allocation Problem (RAP) 
k minimum number of components required to function a 

pure parallel system  
n  total number of components used in a pure parallel system 
k-out-of-n: G a system that functions when at least k  of its n  components 

function 
R   overall reliability of the series-parallel system 
C   cost constraint 
W   weight constraint 
s   number of subsystems 

ia   number of available component choices for subsystem i  

ijr   reliability of component  available for subsystem i  j

ijc   cost of component  available for subsystem  j i

ijw   weight of component  available for subsystem i  j

ijy   quantity of component j  used in subsystem i  

iy    ),...,( 1 iiai yy

in   = �  total number of components used in subsystem i  
�

ia

j
ijy

1
,

maxn  maximum number of components that can be in parallel 

(user assigned) 

ik  minimum number of components in parallel required for 

subsystem  to function i
)|( iii kyR  reliability of subsystem i , given  ik

)( ii yC   total cost of subsystem  i
)( ii yW   total weight of subsystem  i

uR   unpenalized system reliability of solution u 

upR   penalized system reliability of solution u 

mpR   penalized system reliability of the rank mth solution 

uC   total system cost of solution u 

1.2  Problem Definition 

1.2.1 Notation 
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uW   total system weight of solution u 

AC   set of available component choices 
 
Ant Colony Optimization (ACO) 
i  index for subsystem, si ,...,1�  
j  index for components in a subsystem 

ij�   pheromone trail intensity of combination ( ) ji,
old
ij�  pheromone trail intensity of combination ( ) before up-

date 

ji,

new
ij�  pheromone trail intensity of combination ( ) after up-

date 

ji,

0i�   =1/ai, initial pheromone trail intensity of subsystem i  

ijP   transition probability of combination ( ) ji,

ij�   problem-specific heuristic of combination ( )  ji,

�   relative importance of the pheromone trail intensity 
�   relative importance of the problem-specific heuristic  
l  index for component choices from set AC 
�    trail persistence ],1,0[	
q    a uniformly generated random number ],1,0[	

0q   a parameter which determines the relative impor-

tance of exploitation versus exploration 

],1,0[	

E number of best solutions chosen for offline pheromone 
update 

m  index (rank, best to worst) for solutions in a given iteration 

   amplification parameter in the penalty function 

The RAP can be formulated to maximize system reliability given re-
strictions on system cost of C and system weight of W.  It is assumed that 
system weight and system cost are linear combinations of component 
weight and cost, although this is a restriction that can be relaxed using heu-
ristics.  

max      (1) )|(
1

iii

s

i
kRR y

�
��

Subject to the constraints 

1.2.2 Redundancy Allocation Problem 
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� �
�

s

i
ii CC

1
,)(y        (2) 

,)(
1

� �
�

s

i
ii WW y       (3) 

If there is a known maximum number of components allowed in paral-
lel, the following constraint is added: 

�
�

��
ia

j
iji nyk

1
max      (4) si ,...,2,1�


Typical assumptions are: 
� The states of components and the system are either operating or failed. 
� Failed components do not damage the system and are not repaired. 
� The failure rates of components when not in use are the same as when in 

use (i.e., active redundancy is assumed). 
� Component attributes (reliability, weight and cost) are known and de-

terministic. 
� The supply of any component is unconstrained. 

This section is taken from the authors’ earlier work in using the ant col-
ony approach for reliable systems optimization [28, 29, 30].  The generic 
components of ant colony are each defined and the overall flow of the 
method is defined.  These should be applicable, with minor changes, to 
many problems in reliable systems combinatorial design. 

As with other meta-heuristics, it is important to devise a solution encod-
ing that provides (ideally) a one to one relationship with the solutions to be 
considered during search.  For combinatorial problems this generally takes 
the form of a binary or k-nery string although occasionally other represen-
tations such as real numbers can be used.  For the RAP, each ant represents 
a design of an entire system, a collection of  components in parallel 

 for  different subsystems.  The  components are cho-

sen from  available types of components.  The  types are sorted in de-

scending order of reliability; i.e., 1 represents the most reliable component 

in

)( maxnnk ii �� s in

ia ia

1.3  Ant Colony Optimization Approach 

1.3.1  Solution Encoding 
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type, etc.  An index of 1�ia  is assigned to a position where an additional 
component was not used (that is, was left blank) with attributes of zero.  
Each of the  subsystems is represented by  positions with each com-

ponent listed according to its reliability index, as in [7], therefore a com-
plete system design (that is, an ant) is an integer vector of length n

s maxn

max � s.  

Also, as with other meta-heuristics, an initial solution set must be gener-
ated.  For global optimizers the solution quality in this set is not usually 
important and that is true for the ant approach as well.  In the ACO-RAP 
algorithm, ants use problem-specific heuristic information, denoted by ij� , 

along with pheromone trail intensity, denoted by ij� , to construct a solu-

tion.   components (in 41 max ���� nnk ii ) are selected for each sub-

system using the probabilities calculated by equations 5 and 6, below.  
This range of components encourages the construction of a solution that is 
likely to be feasible, that is, be reliable enough (satisfying the ki + 1 lower 
bound) but not violate the weight and cost constraints (satisfying the nmax – 
4 upper bound).  Solutions which contain more or less components per 
subsystem than these bounds are examined during the local search phase of 
the algorithm (described in Section III D).   

The ACO problem specific heuristic chosen is 
ijij

ij
ij wc

r

�
��  where , 

, and  represent the associated reliability, cost and weight of compo-

nent j for subsystem i.  This favors components with higher reliability and 
smaller cost and weight.  Adhering to the ACO meta-heuristic concept, this 
is a simple and obvious rule.  Uniform pheromone trail intensities for the 
initial iteration (colony of ants) are set over the component choices, that is, 

ijr

ijc ijw

0i� =1/ai.  The pheromone trail intensities are subsequently changed as de-

scribed in Section III E. 
A solution is constructed by selecting component j for subsystem i ac-

cording to: 

�
�

�
�

�

�
	

J

j
ilil

ACl
])()[(maxarg �� ��

 

0

0

qq

qq

�

�
                 (5) 

1.3.2  Solution Construction 
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and J is chosen according to the transition probability mass function 
given by 

�
�
�
�
�

�

�
�
�
�
�

�

�

�

�
�

0

)()(

)()(

1

ia

l
ilil

ijij

ijP

��

��

��

��

 

Otherwise

ACj 	
   (6) 

where �  and �  control the relative weight of the pheromone and the 
local heuristic, respectively, AC is the set of available component choices 
for subsystem i,  is a uniform random number, and  determines the 

relative importance of the exploitation of superior solutions versus the di-
versification of search spaces.  When 

q 0q

0qq �  exploitation of known good 

solutions occurs.  The component selected is the best for that particular 
subsystem, that is, has the highest product of pheromone intensity and ratio 
of reliability to cost and weight.  When , the search favors more ex-

ploration as all components are considered for selection with some prob-
ability.   

0qq �

Fitness (the common term for the analogy to objective function value 
for nature inspired heuristics) plays an important role in the ant colony ap-
proach as it determines the construction probabilities for the subsequent 
generation.  After solution u is constructed, the unpenalized reliability  

is calculated using equation (1).  For solutions with cost that exceeds C 
and / or weight that exceeds W, the penalized reliability  is calculated: 

uR

upR




��
�

�
��
�

�
���

�

�
��
�

�
��

uu
uup C

C

W

W
RR      (7)  

where the exponent 
  is an amplification parameter and  and  

are the system weight and cost of solution u, respectively.  This penalty 
function encourages the ACO-RAP algorithm to explore the feasible re-

uW uC

1.3.3  Objective Function 
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gion and infeasible region that is near the border of the feasible area, and 
discourages, but allows, search further into the infeasible region.  

After an ant colony is generated, each ant is improved using local 
search.  Local search is an optional, but usually beneficial, aspect of the 
ant colony approach that allows a systematic enhancement of the con-
structed ants.  For the RAP, starting with the first subsystem, a chosen 
component type is deleted and a different component type is added.  All 
possibilities are enumerated.  For example, if a subsystem has one of com-
ponent 1, two of component 2 and one of component 3, then one alterna-
tive is to delete a component 1 and to add a component 2.  Another possi-
bility is to delete a component 3 and to add a component 1.  Whenever an 
improvement of the objective function is achieved, the new solution re-
places the old one and the process continues until all subsystems have been 
searched.  This local search does not require recalculating the system reli-
ability each time, only the reliability of the subsystem under consideration 
needs to be recalculated.   

The pheromone trail is a unique concept to the ant approach.  Naturally, 
this idea is taken directly from studying physical ants and their deposits of 
the pheromone chemical.  For the RAP, the pheromone trail update con-
sists of two phases – online (ant-by-ant) updating and offline (colony) up-
dating.  Online updating is done after each solution is constructed and its 
purpose is to lessen the pheromone intensity of the components of the so-
lution just constructed to encourage exploration of other component 
choices in the later solutions to be constructed.  Online updating is by  

o)1( i
old
ij

new
ij ����� �����                 (8) 

where ]1,0[	�  controls the pheromone persistence; i.e., ��1  repre-
sents the proportion of the pheromone evaporated.  After all solutions in a 
colony have been constructed and subject to local search, pheromone trails 
are updated offline.  Offline updating is to reflect the discoveries of this it-
eration.  The offline intensity update is: 

�
�

��������
E

m
mp

old
ij

new
ij RmE

1
)1()1( ����   (9) 

1.3.4  Improving Constructed Solutions Through Local Search 

1.3.5  Pheromone Trail Intensity Update 
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where m = 1 is the best feasible solution yet found (which may or may 
not be in the current colony) and the remaining E-1 solutions are the best 
ones in the current colony.  In other words, only the best E ants are al-
lowed to contribute pheromone to the trail intensity and the magnitudes of 
contributions are weighted by their ranks in the colony.   

Generally, ant colony algorithms are similar to other meta-heuristics in 
that they iterate over generations (termed colonies for ACO) until some 
termination criteria are met.  If an algorithm is elitist (as most genetic algo-
rithms and ant colonies are) the best solution found is also contained in the 
final iteration (colony).  The termination criteria are usually a combination 
of total solutions considered (or total computational time) and lack of best 
solution improvement over some number iterations.  These are experimen-
tally determined.  Of course, there is no downside to running the ACO 
overly long except waste of computer time.   

The flow of the ACO-RAP is as follows: 
Set all parameter values and initialize the pheromone trail intensities 
Loop 

Sub-Loop 
Construct an ant using the pheromone trail intensity and the 
problem-specific heuristic (eqs. 5, 6) 
Apply the online pheromone intensity update rule (eq. 8) 

Continue until all ants in the colony have been generated 
Apply local search to each ant in the colony 
Evaluate all ants in the colony (eqs. 1, 7), rank them and record the 
best feasible one 
Apply the offline pheromone intensity update rule (eq. 9) 

Continue until a stopping criterion is reached 

To show the effectiveness of the ant colony approach for reliable sys-
tems design results from [30] are given here.  The ACO is coded in Bor-
land C++ and run using an Intel Pentium III 800 MHz PC with 256 MB 
RAM.  All computations use real float point precision without rounding or 
truncating values.  The system reliability of the final solution is rounded to 
four digits behind the decimal point in order to compare with results in the 
literature.  

1.3.6  Overall Ant Colony Algorithm 

1.4 Computational Experience 
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The parameters of the ACO algorithm are set to the following values: 
1�� , 5.0�� , , 9.00 �q 9.0��  and E = 5.  This gives relatively more 

weight to the pheromone trail intensity than the problem-specific heuristic 
and greater emphasis on exploitation rather than exploration.  The ACO is 
not very sensitive these values and tested well for quite a range of them.  
For the penalty function, 1.0�
 except when the previous iteration has 
90% or more infeasible solutions, then 3.0�
 .  This increases the pen-
alty temporarily to move the search back into the feasible region when all 
or nearly all solutions in the current colony are infeasible.  This bi-level 
penalty improved performance on the most constrained instances of the 
test problems.  Because of varying magnitudes of R, C and W, all ij�  and 

ij�  are normalized between (0,1) before solution construction.  100 ants 

are used in each colony.  The stopping criterion is when the number of 
colonies reaches 1000 or the best feasible solution has not changed for 500 
consecutive colonies.  This results in a maximum of 100,000 ants. 

The 33 variations of the Fyffe et al. problem [20] as devised by Naka-
gawa and Miyazaki [35] were used to test the performance of ACO.  In 
this problem set  and W is decreased incrementally from 191 to 
159.  In [20] and [35], the optimization approaches required that identical 
components be placed in redundancy, however for the ACO approach, as 
in Coit and Smith [7], different component types are allowed to reside in 
parallel (assuming that a value of  = 8 for all subsystems).  This 

makes the search space size larger than .  Since the heuristic 
benchmark for the RAP with component mixing is the GA of [7], it is cho-
sen for comparison.  Ten runs of each algorithm (GA and ACO) were 
made using different random number seeds for each problem instance. 

130�C

maxn
33106.7 �

The results are summarized in Table 1 where the comparisons between 
the GA and ACO results over 10 runs are divided into three categories: 
maximum, mean and minimum system reliability (denoted by Max R, 
Mean R and Min R, respectively).  The shaded box shows the maximum 
reliability solution to an instance while considering all GA and ACO re-
sults.  The ACO solutions are equivalent to or superior to the GA over all 
categories and all problem instances.  When the problem instances are less 
constrained (the first 18), the ACO performs much better than the GA.  
When the problems become more constrained (the last 15), ACO is equal 
to GA for 12 instances and better than GA for three instances in terms of 
the Max R measure (best over ten runs).  However, for Min R (worst over 
10 runs) and Mean R (of 10 runs), ACO dominates GA.  
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Table 1.  Comparison of the GA [7] and the ACO over 10 random number seeds 
each for the test problems from [35].  These results are from [30]. 

 

No C W Max R Mean R Min R Max R Mean R Min R
1 130 191 0.9867 0.9862 0.9854 0.9868 0.9862 0.9860
2 130 190 0.9857 0.9855 0.9852 0.9859 0.9858 0.9857
3 130 189 0.9856 0.9850 0.9838 0.9858 0.9853 0.9852
4 130 188 0.9850 0.9848 0.9842 0.9853 0.9849 0.9848
5 130 187 0.9844 0.9841 0.9835 0.9847 0.9841 0.9837
6 130 186 0.9836 0.9833 0.9827 0.9838 0.9836 0.9835
7 130 185 0.9831 0.9826 0.9822 0.9835 0.9830 0.9828
8 130 184 0.9823 0.9819 0.9812 0.9830 0.9824 0.9820
9 130 183 0.9819 0.9814 0.9812 0.9822 0.9818 0.9817

10 130 182 0.9811 0.9806 0.9803 0.9815 0.9812 0.9806
11 130 181 0.9802 0.9801 0.9800 0.9807 0.9806 0.9804
12 130 180 0.9797 0.9793 0.9782 0.9803 0.9798 0.9796
13 130 179 0.9791 0.9786 0.9780 0.9795 0.9795 0.9795
14 130 178 0.9783 0.9780 0.9764 0.9784 0.9784 0.9783
15 130 177 0.9772 0.9771 0.9770 0.9776 0.9776 0.9776
16 130 176 0.9764 0.9760 0.9751 0.9765 0.9765 0.9765
17 130 175 0.9753 0.9753 0.9753 0.9757 0.9754 0.9753
18 130 174 0.9744 0.9732 0.9716 0.9749 0.9747 0.9741
19 130 173 0.9738 0.9732 0.9719 0.9738 0.9735 0.9731
20 130 172 0.9727 0.9725 0.9712 0.9730 0.9726 0.9714
21 130 171 0.9719 0.9712 0.9701 0.9719 0.9717 0.9710
22 130 170 0.9708 0.9705 0.9695 0.9708 0.9708 0.9708
23 130 169 0.9692 0.9689 0.9684 0.9693 0.9693 0.9693
24 130 168 0.9681 0.9674 0.9662 0.9681 0.9681 0.9681
25 130 167 0.9663 0.9661 0.9657 0.9663 0.9663 0.9663
26 130 166 0.9650 0.9647 0.9636 0.9650 0.9650 0.9650
27 130 165 0.9637 0.9632 0.9627 0.9637 0.9637 0.9637
28 130 164 0.9624 0.9620 0.9609 0.9624 0.9624 0.9624
29 130 163 0.9606 0.9602 0.9592 0.9606 0.9606 0.9606
30 130 162 0.9591 0.9587 0.9579 0.9592 0.9592 0.9592
31 130 161 0.9580 0.9572 0.9561 0.9580 0.9580 0.9580
32 130 160 0.9557 0.9556 0.9554 0.9557 0.9557 0.9557
33 130 159 0.9546 0.9538 0.9531 0.9546 0.9546 0.9546

C&S [7] GA - 10 runs ACO-RAP - 10 runs

 

Thus, the ACO tends to find better solutions than the GA, is signifi-
cantly less sensitive to random number seed, and for the 12 most con-
strained instances, finds the best solution each and every run.  While these 
differences in system reliability are not large, it is beneficial to use a 
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search method that performs well over different problem sizes and parame-
ters.  Moreover, any system reliability improvement while adhering to the 
design constraints is of some value, even if the reliability improvement re-
alized is relatively small. 

The best design and its system reliability, cost and weight for each of 
the 33 instances are shown in Table 2.  For instances 6 and 11, two designs 
with different system costs but with the same reliability and weight are 
found.  All but instance 33 involve mixing of components within a subsys-
tem which is an indication that superior designs can be identified by not 
restricting the search space to a single component type per subsystem. 

It is difficult to make a precise computational comparison.  CPU sec-
onds vary according to hardware, software and coding.  Both the ACO and 
the GA generate multiple solutions during each iteration, therefore the 
computational effort changes in direct proportion to number of solutions 
considered.  The number of solutions generated in [7] (a population size of 
40 with 1200 iterations) is about half of the ACO (a colony size of 100 
with up to 1000 iterations).  However, given the improved performance per 
seed of the ACO, a direct comparison per run is not meaningful.  If the av-
erage solution of the ACO over ten seeds is compared to the best perform-
ance of GA over ten seeds, in 13 instances ACO is better, in 9 instances 
GA is better and in the remaining instances (11) they are equal, as shown 
in Figure 2.  Since this is a comparison of average performance (ACO) 
versus best performance (GA), the additional computational effort of the 
ACO is more than compensated for.  In summary, an average run of ACO 
is likely to be as good or better than the best of ten runs of GA.  The dif-
ference in variability over all 33 test problems between ACO and the GA 
is clearly shown in Figure 3. 

Given the well-structured neighborhood of the RAP, a meta-heuristic 
that exploits it is likely to be more effective and more efficient than one 
that does not.  While the GA certainly performs well relative to previous 
approaches, the largely random mechanisms of crossover and mutation re-
sult in greater run to run variability than the ACO.  Since the ACO shares 
the GA’s attributes of flexibility, robustness and implementation ease and 
improves on its random behavior, it seems a very promising general 
method for other NP-hard reliability design problems such as those found 
in networks and complex structures. 
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Table 2. Configuration, reliability, cost and weight of the best solution to each 
problem.  These results are from [30]. 
 
No. W R Cost Weight Solution 

1 191 0.9868 130 191 333,11,111,2222,333,22,333,3333,23,122,333,4444,12,12
2 190 0.9859 129 190 333,11,111,2222,333,22,333,3333,22,112,333,4444,11,22
3 189 0.9858 130 189 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,12
4 188 0.9853 130 188 333,11,111,2222,333,22,333,3333,23,112,13,4444,12,12
5 187 0.9847 130 187 333,11,111,2222,333,22,333,3333,23,122,13,4444,11,12
6 186 0.9838 129 186 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,22

130 186 333,11,111,2222,333,24,333,3333,33,122,13,4444,12,12
7 185 0.9835 130 185 333,11,111,2222,333,22,333,3333,13,122,13,4444,11,22
8 184 0.9830 130 184 333,11,111,222,333,22,333,3333,33,112,11,4444,11,12
9 183 0.9822 128 183 333,11,111,222,333,22,333,3333,33,112,13,4444,11,12

10 182 0.9815 127 182 333,11,111,222,333,22,333,3333,33,122,13,4444,11,12
11 181 0.9807 125 181 333,11,111,222,333,22,333,3333,13,122,13,4444,11,22

126 181 333,11,111,222,333,22,333,3333,23,122,11,4444,11,22
12 180 0.9803 128 180 333,11,111,222,333,22,333,3333,33,122,11,4444,11,22
13 179 0.9795 126 179 333,11,111,222,333,22,333,3333,33,122,13,4444,11,22
14 178 0.9784 125 178 333,11,111,222,333,22,333,3333,33,222,13,4444,11,22
15 177 0.9776 126 177 333,11,111,222,333,22,333,133,33,122,13,4444,11,22
16 176 0.9765 125 176 333,11,111,222,333,22,333,133,33,222,13,4444,11,22
17 175 0.9757 125 175 333,11,111,222,333,22,13,3333,33,122,11,4444,11,22
18 174 0.9749 123 174 333,11,111,222,333,22,13,3333,33,122,13,4444,11,22
19 173 0.9738 122 173 333,11,111,222,333,22,13,3333,33,222,13,4444,11,22
20 172 0.9730 123 172 333,11,111,222,333,22,13,133,33,122,13,4444,11,22
21 171 0.9719 122 171 333,11,111,222,333,22,13,133,33,222,13,4444,11,22
22 170 0.9708 120 170 333,11,111,222,333,22,13,133,33,222,33,4444,11,22
23 169 0.9693 121 169 333,11,111,222,333,22,33,133,33,222,13,4444,11,22
24 168 0.9681 119 168 333,11,111,222,333,22,33,133,33,222,33,4444,11,22
25 167 0.9663 118 167 333,11,111,222,33,22,13,133,33,222,33,4444,11,22
26 166 0.9650 116 166 333,11,11,222,333,22,13,133,33,222,33,4444,11,22
27 165 0.9637 117 165 333,11,111,222,33,22,33,133,33,222,33,4444,11,22
28 164 0.9624 115 164 333,11,11,222,333,22,33,133,33,222,33,4444,11,22
29 163 0.9606 114 163 333,11,11,222,33,22,13,133,33,222,33,4444,11,22
30 162 0.9592 115 162 333,11,11,222,33,22,33,133,33,222,13,4444,11,22
31 161 0.9580 113 161 333,11,11,222,33,22,33,133,33,222,33,4444,11,22
32 160 0.9557 112 160 333,11,11,222,33,22,33,333,33,222,13,4444,11,22
33 159 0.9546 110 159 333,11,11,222,33,22,33,333,33,222,33,4444,11,22  
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Fig. 2.  Comparison of mean ACO with best GA performance over 10 seeds.  
These results are from [30]. 

This chapter cites the latest developments of ACO algorithms to reliabil-
ity system problems.  The main part of the chapter gives details of a gen-
eral ant colony meta-heuristic to solve the redundancy allocation problem 
(RAP) which was devised over the past several years by the authors and 
published in [28, 29, 30].  The RAP is a well known NP-hard problem that 
has been the subject of much prior work, generally in a restricted form 
where each subsystem must consist of identical components in parallel to 
make computations tractable.  Heuristic methods can overcome this limita-
tion and offer a practical way to solve large instances of a relaxed RAP 
where different components can be placed in parallel.  The ant colony al-
gorithm for the RAP is shown to perform well with little variability over 
problem instance or random number seed.  It is competitive with the best-
known heuristics for redundancy allocation.  Undoubtedly there will be 
much more work forthcoming in the literature that uses the ant colony 
paradigm to solve the many difficult combinatorial problems in the field of 
reliable system design. 

 

1.5  Conclusions 
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Fig. 3.  Range of performance over 10 seeds with mean shown as 
horizontal dash.  These results are from [30]. 
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Modified Great Deluge Algorithm versus Other 
Metaheuristics in Reliability Optimization  
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Optimization of reliability of complex systems is an extremely important 
issue in the field of reliability engineering.  Over the past three decades, re-
liability optimization problems have been formulated as non-linear pro-
gramming problems within either single-objective or multi-objective envi-
ronment. Tillman et al.. (1980) provides an excellent overview of a variety 
of optimization techniques applied to solve these problems. However, he 
reviewed the application of only derivative-based optimization techniques, 
as metaheuristics were not applied to the reliability optimization problems 
by that time. 

Over the last decade, metaheuristics have also been applied to solve the 
reliability optimization problems. To list a few of them, Coit and Smith 
(1996) were the first to employ a genetic algorithm to solve reliability op-
timization problems. Later, Ravi et al. (1997) developed an improved ver-
sion of non-equilibrium simulated annealing called INESA and applied it 
to solve a variety of reliability optimization problems. Further, Ravi et al. 
(2000) first formulated various complex system reliability optimization 
problems with single and multi objectives as fuzzy global optimization 
problems. They also developed and applied the non-combinatorial version 
of another meta-heuristic viz. threshold accepting to solve these problems. 
Threshold accepting (Dueck and Sheurer, 1990) is a faster variation of the 
simulated annealing and often leads to superior optimal solutions than does 
the simulated annealing. Recently, Shelokar et al. (2002) applied the ant 
colony optimization algorithm (Dorigo et al., 1997) to these problems and 
obtained superior results compared to those reported by Ravi et al. (1997). 
Most recently, Ravi (2004) developed an extended version of the great 

 
V. Ravi: Modified Great Deluge Algorithm versus Other Metaheuristics in Reliability Optimization,  

www.springerlink.com   
 

Computational Intelligence in Reliability Engineering (SCI) 40, 21–36 (2007) 
        © Springer-Verlag Berlin Heidelberg 2007 

2.1 Introduction 
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deluge algorithm and demonstrated its effectiveness in solving the reliabil-
ity optimization problems. 

The objective of the chapter is primarily to discuss the relative perform-
ance of various metaheuristics such as the modified great deluge algorithm 
(MGDA), simulated annealing (SA), improved non-equilibrium simulated 
annealing (INESA) and ant colony optimization (ACO) on the reliability 
optimization problems in complex systems. The performance of other 
methods such as generalized Lagrange function approach, sequential un-
constrained minimization technique, a random search technique and an in-
teger programming approach would also be discussed. 

The remainder of the chapter is arranged as follows: Section 2 describes 
the problems studied here. In section 3 a brief description of the algorithms 
SA, INESA and MGDA is presented. Section 4 compares the performance 
of these algorithms on three reliability optimization problems occurring in 
complex systems. Section 5 concludes the chapter. The numerical prob-
lems solved are described in the appendix.  
 
Notation 

RS, CS   [reliability , cost ] of the system 
ri, Ci   [reliability , cost ] of the ith   component 
Ri     Reliability of the ith   stage 
m  number of constraints 
n  number of decision variables (number  of  components  

in  a complex system or the number of stages  in  a  
multi  stage  mixed system) 

ri, min      lower bound on the reliability of the ith   component 
 RS,min  lower bound on the system reliability  
Ki , �i    constants  associated  with  cost  function  of  the  ith   

component 
xi       number of the redundancies of the ith   component 
gi     ith   constraint 
itr, limit  number of [global, inner] iterations 
xlli, xuli  lower and upper bounds on the ith decision variable 
fo, fc  Objective function value of the old and candidate 

solutions respectively 
rnd(0,1) or u  uniform random number generated between 0 and 1 

o
i

c
i xx ,   ith decision variable of the candidate and old solution 

vectors respectively 
p  Pre-specified odd-integer 
LEVEL  Water level , a parameter used in the solution 

acceptance criterion 



Modified Great Deluge Algorithm in Reliability Optimization 23 

UP  A parameter reduces or increases the LEVEL 
according as it is a minimization or maximization 
problem 

old, new  Dummy variables represent  the objective function of 
the old and current solutions respectively 

itrmax  Maximum number of global iterations 
SA  Simulated Annealing 
INESA  Improved Non-Equilibrium Simulated Annealing 
ACO  Ant Colony Optimization 
MGDA  Modified Great Deluge Algorithm 

A complex system in the field of reliability engineering consists of sev-
eral components connected to one another neither purely in series nor 
purely in parallel. The block diagrams of two such complex systems and a 
multistage mixed system studied here are depicted in Figures 1, 2 and 3.  
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Fig. 1. Life support system in a space capsule 
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Fig. 3. Multi-stage mixed system 

The number in circles (rectangles) in each of the figures represents the 
type of component in the system. In this chapter, two types of problems are 
studied. 
 

Type 1 Problem: 

Minimize      Cs

subject to         
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where Cs  is the system cost, ri,min and Rs,min are respectively the lower 
bounds on  the  reliabilities  of  the  ith  component and system. 

Type 2 Problem:  

Find the optimal number of components xi � 1, ( i = 1,..,n)  which maxi-
mizes the system reliability given by  
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subject to  a set of m constraints gj (x1 ,x2,...,xn ) � 0,  j = 1,...,m.   
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SA is developed based on the principles of statistical mechanics. It found a 
number of applications in diverse disciplines such as science, engineering 
and economics in finding global solution to highly nonlinear constrained 
optimization problems and combinatorial optimization problems.  SA is 
very much analogous to the physical process of annealing.  Annealing 
refers to the physical thermal process of melting a solid by first heating it 
and then cooloing it slowly in order to allow the molecules in the material 
to attain the lowest energy level (stable or ground state). If the cooling rate 
is not carefully controlled or the initial temperature is not sufficiently high, 
then the cooling solid does not attain thermal equilibrium at each 
temperature.  Therefore, under such circumstances, local optimal lattice 
structures may occur that translate into lattice imperfections, also known 
as, metastable state. Thermal equilibrium at a given temperature is 
characterized by Boltzmann distribution of the energy states.  Under these 
conditions, even at a low temperature,  a transition can occur from low 
energy level to a high energy level, although with a small probability.  
Presumably, such transitions are responsible for the system reaching a 
global minimum energy state instead of being trapped in a local metastable 
state (Cardoso et al., 1993).  It was Metropolis et al. (1953) who first to 
proposed an SA algorithm to simulate the process.  While applying the SA 
to determine global optimum of a multivariable function, the following 
observation can be made: 

 
� The energy state of the system is analogous to the objective 

function in the problem; 
� the molecular positions are the analogues of decision variables; 
� the ground state corresponds to the global minimum; 
� attaining a metastable state implies reaching a local minimum. 
 

Kirkpatrick et al. (1983) rejuvinated interest in SA by formally building 
the connection between statistical mechanics and combinatorial 
optimization problems. They applied SA to solve two combinatorially 
large optimization problems: 1) traveling salesman problem, and 2) 
designing the layout of very large scale integration (VLSI) computer chips.  
The SA also found applications in (i) Chemical sciences such as heat 
exchanger network, pressure relief header  networks (Dolan et al., 1989) 

2.3 Description of Various Metaheuristics  

2.3.1 Simulated Annealing (SA) 
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and global optimization of molecular geometry (Dutta et al., 1991) (ii) 
Biology such as multiple sequence alignment for studying molecular 
evolution and analyzing structure sequence relationships (Kim et al., 1994) 
(iii) Economics such as determining optimal portfolio considering all 
possible utility functions of an investor (Dueck and Winker, 1992). 

Cardoso et al. (1993) presented an improved version of the SA that re-
sulted in reduced computation time as well as improved convergence as-
pects.  They introduced non-equilibrium simulated annealing (NESA) by 
modifying the original Metropolis et al. (1953) and Glauber (1963) algo-
rithms.  They argued that it is not necessary to achieve equilibrium at each 
temperature level in order to obtain near-global optimal solutions. Unlike 
the original SA algorithm, NESA operates at a non-equilibrium condition, 
i.e., the cooling schedule is enforced as soon as an improved solution is ob-
tained, without waiting for the occurrence of near-equilibrium condition at 
each temperature.  This feature overcomes the slowness of the SA algo-
rithm, without actually comprising on the quality of the global optimal so-
lution (Cardoso et al. 1993). Further, this aspect significantly lowers the 
computational time. 

Later, Ravi et al. (1997) developed an extended version of the NESA, 
called INESA, by proposing a two-phase approach. In INESA, the phase-1 
implements the NESA with relaxed temparature conditions and the phase-
2 employs a simplex-like heuristic which works on the sampled solutions 
obtained from the progress of phase-1 along with the best solutions 
obtained before the termination of phase-1. They applied INESA to solve 
the relaibility optimization problems in complex systems and optimal 
redundancy allocation problems in a multistage mixed system. They 
reported that INESA using the Glauber algorithm and exponential cooling 
schedule outperformed the SA and NESA by yielding superior optimal 
solutions and improving the speed of convergence.  

Ravi (2004) developed the modified great deluge algorithm (MGDA) as an 
extended version of the great deluge algorithm (GDA). Here a brief 
description of the GDA is first presented. Then, the MGDA is described.  

2.3.2 Improved Non-equilibrium Simulated Annealing (INESA) 

2.3.3 Modified Great Deluge Algorithm (MGDA) 
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Dueck and Scheuer (1990) proposed a faster and superior variant of simu-
lated annealing namely the threshold accepting (TA) algorithm by employ-
ing a deterministic criterion compared to the probabilistic one used in SA 
while accepting/rejecting a candidate solution. Later, Dueck (1993) further 
extended the ideas proposed in TA and suggested two new optimization 
meta-heuristics viz. the great deluge algorithm (GDA) and record-to-
record travel (RRT). He observed that GDA outperformed the original TA 
in the case of some hard, benchmark instances of the traveling salesman 
problem.  Then, Sinclair (1993) applied GDA and RRT to 37 real exam-
ples of hydraulic turbine runner balancing problem, which is a special case 
of quadratic assignment problem. In this study, he compared their per-
formance with that of SA, genetic algorithms and tabu search. For more in-
formation on RRT, the reader is referred to Sinclair (1993). 

 
The motivation for the GDA is as follows: Imagine the goal is to find 

the highest point in a country. Assume that it rains incessantly on this 
piece of land. The algorithm moves around on the uncovered land without 
getting its feet wet. As the water level increases, the algorithm will eventu-
ally end up on some high point of land. The similarity with simulated an-
nealing is that the temperature parameter is analogous to the water level in 
GDA (Dueck, 1993; Sinclair 1993).  An important feature of GDA is that 
it is governed by a single parameter unlike SA.  

While developing the MGDA the following issues are carefully consid-
ered. As with any other metaheuristic, the choice of a powerful neighbor-
hood search scheme and initialization and updating of controlling parame-
ters is critical to the performance of the GDA. Accordingly, in MGDA, a 
new neighborhood search scheme is devised along with the addition of a 
new parameter limit. Further, the initialization scheme and updating for-
mula of the parameter LEVEL is also redesigned. 

 
(i) Generate the initial feasible solution randomly in the range (xlli, xuli) 

using a uniform random number generator, where xlli and xuli are 
respectively the lower and upper limits on the ith  decision variable 
given in the problem. 

 

2.3.3.1 Great Deluge Algorithm 

2.3.3.2 The MGDA  
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(ii) Compute the objective function value for this initial feasible solution 
and store it in fo. Let the initial values of some parameters be as 
follows: itr = 0 ; old = 9999 and LEVEL= fo. 

 
(iii) Increment the global iteration counter: itr = itr +1. 

 
(iv) The inner iterations essentially perform a neighbourhood search. To 

accomplish this, the following stochastic procedure is deas compared 
withed and employed resulting in a neighbouring solution of the 
original (old) one.  

       nipu10xo
ixc

i ,...,2,1;5)( ��&��

where u is a random number drown from uniform distribution in the 
range (0,1), p is a pre-specified odd integer and the superscripts c and 
o indicate the candidate solution and the old solution respectively. 
 This stochastic perturbation does not necessarily result in a feasible 
solution. Hence, this perturbation is perfomed several times until a 
feasible solution is obtained. If the number of such trials, say, limit, 
exceeds a large pre-specified number, then it is understood/assumed 
that the algorithm is unable to find a feasible solution and hence the 
algorithm is forced to stop and the old solution at this stage is 
reported as the optimal solution.  This parameter value is, however, 
problem-dependent. 

(v) Compute the value of the objective function for the candidate solution 

and store it in  .  cf
 
(vi)  If ( < LEVEL) then,    cf

                    

)(* cfLEVELUPLEVELLEVEL

n1,2,...,i,c
i

o
i

cfof

���

��

�

xx

                        new =    and go to step (vii). of
        Else go to step (iv)  
 
(vii) If ( itr < itrmax)  

If ((new-old)/old<0.000001)  
 Report xi

c, i = 1, 2, ..., n as the global optimal solution with fc as the 
global optimum. 

    Else go to step (iii) 
Else 
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Report xi
c, i = 1, 2, ..., n as the global optimal solution with fc as the 

global optimum. 
 
In the above algorithm, the convergence criterion in step (vii) normally 

takes care of convergence in the case of many problems. However, in the 
case of difficult problems, when sufficiently large number of global itera-
tions have passed and generation of feasible solution itself becomes diffi-
cult in the neighborhood search, then the parameter limit will be invoked 
and convergence is achieved. Here, LEVEL is the “water level“ value; UP 
>0, is the factor used in the reduction of the LEVEL; old is the arbitrarily 
specified initial large value; itr is the global iteration counter; itrmax is the 
maximum number of global iterations and limit is the number of trials al-
lowed to find a feasible solution in the neighbourhood search. The most 
important parameters that govern the accuracy and speed of the MGDA are 
UP and p used in Step (iv) to perform the neighborhood search. The pa-
rameter limit is also important to increase the speed of convergence. Thus, 
MGDA has an additional parameter compared to the original GDA. In 
GDA, LEVEL is treated as a parameter, but in MGDA, the objective func-
tion value corresponding to the initial solution is assigned to LEVEL. This 
trick saved us one parameter. 

 
The modifications suggested to the GDA by Ravi (2004) are as follows: 

(1) devising a new neighborhood search scheme different from the one 
used in Ravi et al. (2000); (2) assigning the objective function value corre-
sponding to the initial solution to the parameter LEVEL (3) employing the 
method of Sinclair (1993) to update LEVEL in step (vi) and finally (4) in-
troducing the parameter limit.  

 
The second modification reduces the need to specify the initial value of 

LEVEL. In the fourth modification, the parameter limit restricts the number 
of trials to find a feasible solution in the neighbourhood of a candidate so-
lution to a fixed number. This is necessitated owing to the inherent prop-
erty of the original GDA and RRT algorithm to perform several “unpro-
ductive” trials in the neighbourhood search. This phenomenon was 
observed in the case of examples 1 and 2 where the algorithm took exces-
sively long time even after reaching a better optimal solution than the ones 
reported in literature. First and third modifications improved the speed and 
accuracy of the algorithm. 
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The results of all the algorithms are presented in Tables 1, 2, 3 and 4. 
The results obtained by MGDA are compared to those obtained by the ant 
colony optimization (ACO) algorithm (Shelokar et al. 2002), simulated 
annealing (SA), improved non-equilibrium simulated annealing (INESA) 
(Ravi et al., 1997) and generalized Lagrange function approach, sequential 
unconstrained minimization technique (Tillman et al., 1980), a random 
search technique (Mohan and Shanker, 1988) and an integer programming 
approach (Luus, 1975). The function evaluations are presented for the 
MGDA and the ACO algorithm only. This information is missing for other 
algorithms. 

In case (i) of Problem 1 (see Table 1), MGDA obtained 641.823608 as 
the optimal system cost with 65,603 function evaluations, while ACO ob-
tained 641.823562 with 20,100 function evaluations. The system reliability 
of 0.9 is obtained in both cases. Thus, for this problem, ACO obtained a 
marginal improvement over MGDA in terms of accuracy and also con-
sumed far less function evaluations.  However, MGDA outperformed the 
INESA, SA (Ravi et al., 1997) and generalized Lagrange function ap-
proach (Tillman et al., 1980) in terms of both accuracy and speed. 

Table 1.  Results of Problem 1- Case (i) 

 

Solution MGDA 
Ravi 
(2004) 

ACO 
Shelokar et 
al. (2002) 

INESA 
Ravi et al. 
(1997) 

SA 
Ravi et 
al. 
(1997) 

Tillman 
et al. 
(1980) 

R1 0.50001 0.5 0.50006 0.50095 0.50001 
R2 0.838919 0.838920 0.83887 0.83775 0.84062 
R3 0.5 0.5 0.50001 0.50025 0.50000 
R4 0.5 0.5 0.50002 0.50015 0.50000 
RS 0.9 0.9 0.90001 0.90001 0.90005 
CS 641.823608 641.823562 641.8332 641.903 642.04 
FE* 65,603 20,100 NA NA NA 

*: Numer of Function Evaluations  

In case (ii) of Problem 1 (see Table 2), MGDA yielded 390.570190 as 
the optimal system cost with 188,777 function evaluations, while ACO 
yielded 390.570892 with 54,140 function evaluations. Both algorithms ob-
tained the same optimal system reliability of 0.99. Thus, in this case, 
MGDA outperformed the ACO in terms of accuracy but consumed more 
CPU time.  Once again, MGDA outperformed the INESA, SA (Ravi et al., 

2.4 Discussion of Results 
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1997) and a sequential unconstrained minimization technique (Tillman et 
al., 1980) in terms of both accuracy and speed. 

Table 2. Results of Problem 1- Case (ii) 

Solution MGDA 
Ravi 
(2004) 

ACO  
Shelokar et 
al. (2002) 

INESA 
Ravi et 
al. 
(1997) 

SA 
Ravi et 
al. 
(1997) 

Tillman 
et al. 
(1980) 

R1 0.825808 0.825895 0.82516 0.82529 0.825895 
R2 0.890148 0.890089 0.89013 0.89169 0.890089 
R3 0.627478 0.627426 0.62825 0.62161 0.627426 
R4 0.728662 0.728794 0.72917 0.72791 0.728794 
RS 0.99 0.99 0.99 0.990003 0.99041 
CS 390.570190 390.570892 390.572 390.6327 397.88 
FE* 188,777 54,140 NA NA NA 
*: Numer of Function Evaluations  
 

As regards Problem 2 (see Table 3), MGDA yielded 5.019919 as the op-
timal system cost and 0.99 as the optimal system reliability with 50,942 
function evaluations thereby outperforming the ACO, which obtained an 
optimal system cost of 5.019923 and optimal system reliability of 
0.990001 with 80,160 function evaluations. Yet again, the MGDA outper-
formed the INESA, SA (Ravi et al., 1997) and a random search technique 
(Mohan and Shanker, 1988) in terms of both accuracy and speed. Thus, in 
this problem, the MGDA yielded the best performance over all the algo-
rithms that are compared in this study. 

Table 3. Results of Problem 2 

Solution MGDA 
Ravi 
(2004) 

ACO 
Shelokar  
et al. 
(2002) 

INESA 
Ravi et 
al. (1997) 

SA 
Ravi et 
al. (1997) 

Mohan 
and 
Shanker 
(1988) 

R1 0.935400 0.933869 0.93747 0.93566 0.93924 
R2 0.935403 0.935073 0.93291 0.93674 0.93454 
R3 0.788027 0.798365 0.78485 0.79299 0.77154 
R4 0.935060 0.935804 0.93641 0.93873 0.93938 
R5 0.934111 0.934223 0.93342 0.92816 0.92844 
RS 0.99 0.990001 0.99 0.99001 0.99004 
CS 5.019919 5.019923 5.01993 5.01997 5.02001 
FE* 50,942 80,160 NA NA NA 
*: Numer of Function Evaluations  
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In the case of Problem 3 (see Table 4), which is an optimal redundancy 
allocation problem, modeled as a non-linear integer-programming prob-
lem, both MGDA and ACO produced the identical optimal system reliabil-
ity of 0.945613, but MGDA fared much better than ACO in terms of 
speed.  However, as in the case of other problems, MGDA scored over the 
INESA, SA (Ravi et al., 1997) and an integer programming technique 
(Luus, 1975) in terms of both accuracy and speed. 
 
Table 4. Results of Problem 3 

*: Numer of Function Evaluations 

Algrithm / 
Solution 

MGDA ACO INESA SA LUUS  
(1975) 

X1 3 3 3 3 3 
X2 4 4 4 4 4 
X3 6 6 5 5 5 
X4 4 4 3 4 3 
X5 3 3 3 3 3 
X6 2 2 2 2 2 
X7 4 4 4 4 4 
X8 5 5 5 5 5 
X9 4 4 4 4 4 
X10 2 2 3 3 3 
X11 3 3 3 3 3 
X12 4 4 4 4 4 
X13 5 5 5 5 5 
X14 4 4 5 5 5 
X15 5 5 5 4 5 
RS 0.945613 0.945613 0.944749 0.943259 0.944749 
CS 392 392 389 380 389 
Ws 414 414 414 414 414 
FE* 217,157 244,000 NA NA NA 

  

Thus, in summary, for all the problems, the MGDA comprehensively 
outperformed all the algorithms SA, INESA and generalized Lagrange 
function approach, sequential unconstrained minimization technique, a 
random search technique and an integer programming approach except the 
ACO algorithm in terms of both accuracy and speed. When accuracy and 
speed are considered simultaneously, MGDA and ACO are clear winners 
in one problem each. In the problem, where they produced the same solu-
tion, MGDA scored over ACO in terms of speed.  However, in another 
problem, MGDA outperformed ACO in terms of accuracy, but lost in 
terms of speed. Thus, based on the numerical experiments conducted in 
this study it can be inferred that in choosing between MGDA and ACO, 
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one ends up with mixed results, when the criteria accuracy and speed are 
considered simultaneously.   

This chapter reviews the application of several metaheuristics to solve reli-
ability optimization problems occurring in complex systems. Further, it 
presents a new global optimization meta-heuristics, the modified great del-
uge algorithm (MGDA) and compares its performance with that of other 
metaheuristics namely SA, INESA, ACO and some derivative-based opti-
mization techniques on some reliability optimization problems of complex 
systems. Two different kinds of problems (i) Reliability optimization of a 
complex system with constraints on component and system reliabilities (ii) 
Optimal redundancy allocation in a multi-stage mixed system with con-
straints on cost and weight are solved to illustrate the effectiveness of the 
algorithm. Based on the results, it is concluded that MGDA succeeded in 
yielding better optimal solutions in two instances when compared to ACO. 
However, MGDA comprehensively outperformed the SA and INESA and 
other optimization algorithms reported in literature in terms of accuracy 
and speed. Hence, it can be inferred that the MGDA can be used as a 
sound alternative to ACO and other optimization techniques in reliability 
optimization. 
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Appendix 

Problem 1: Life support system in a space capsule 

The block-diagram is presented in Figure 1. The system reliability is given 
by (Tillman et al., 1980): 

 

' ( ) *' (2)41)(11(121)31(
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mize Cs  
subject to   ri,min � ri �  1.0, i = 1,2,3,4   and   RS,min �  RS �  1.0  
where, CS  is the system cost, ri,min (= 0.5) and  RS,min are respectively the 
low

Two different forms of system cost functions are considered as follows  

ase (i)

er bounds on  the    reliabilities  of  the ith component and the system.  

 

C :  

00, K2 =100, K3 =200, K4 =150, RS,min =0.9 and �i = 0.6 for     
i = 1,2,3,4.  

Case (ii)
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w 2 = 25, K3  = 50, K4  = 37.5, ri, min  = 0.5, RS,min = 0.99 and 
�i = 1.0 for all i. 

,...,5.  The system reliability, RS, is given by 
ohan and Shanker, 1997) 
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here, K1 = 25, K

Problem 2: Bridge network. 

A bridge network system as shown in figure 2 is considered, with a com-
ponent reliability, ri , i= 1,2
(M
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subject to  0 � ri  < 1, i =1,..,5 and 0.99 � Rs  � 1,  

    where ai  = 1 and bi = 0.0003, for i = 1,..,5.  
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Problem 3: Fifteen-stage mixed system (Luus, 1975) 

The block-diagram for this problem is shown in Figure 3. Find the optimal 
number of components xj � 1,  j =  1,..,15  which maximizes system reli-
ability 
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The constants for the fifteen stage problem are as follows  

 
i ri Ci Wi i ri Ci Wi

1 0.9 5 8 9 0.78 4 7 
2 0.75 4 9 10 0.91 5 8 
3 0.65 9 6 11 0.79 6 9 
4 0.8 7 7 12 0.77 7 7 
5 0.85 7 8 13 0.67 9 6 
6 0.93 5 9 14 0.79 8 5 
7 0.78 6 9 15 0.67 6 7 
8 0.66 9 6     
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Telecommunication networks, oil platforms, chemical plants and airplanes 
consist of a great number of subsystems and components that are all sub-
ject to failure.  Reliability theory studies the failure behavior of such sys-
tems in relation to the failure behavior of their components, which is often 
easier to analyze. However, even for the most basic reliability models, the 
overall reliability of the system can be difficult to compute. In this chapter 
we give an introduction to modern Monte Carlo methods for fast and accu-
rate reliability estimation.  We focus in particular on Monte Carlo tech-
niques for network reliability estimation, and network design. 

It is well known that for large networks the exact calculation of the net-
work reliability is difficult (indeed, this problem can be shown to be #P-
complete [ 6, 24]), and hence simulation becomes an option. However, in 
highly reliable networks such as modern communication networks, net-
work failure is very infrequent, and direct simulation – also called crude 
Monte Carlo (CMC) simulation – of such rare events is computationally 
expensive. Various techniques have been developed to speed up the esti-
mation procedure. For example, Kumamoto proposed a very simple tech-
nique called Dagger Sampling to improve the CMC simulation [ 20]. 
Fishman proposed Procedure Q, which can provide reliability estimates as 
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3.1 Introduction 

3.1.1 Network Reliability Estimation 
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well as bound [ 13]. Colbourn and Harms proposed a technique that will 
provide progressive bounds that will eventually converge to an exact reli-
ability value [ 7]. Easton and Wong proposed a sequential construction 
method [ 10]. Elperin, Gertsbakh and Lomonosov proposed Evolution 
Models for estimating the reliability of highly reliable networks [ 11,  12, 
 22]. Hui et al. [ 18] proposed a hybrid scheme that provides bounds and can 
provide a speed-up by several orders of magnitude in certain classes of 
networks. They also proposed another scheme [ 19] which employs the 
Cross-Entropy technique to speed-up the estimation in general classes of 
networks.  Other relevant references on network reliability include [ 15,  31, 
 32]. We note that the network reliability in this chapter is always consid-
ered in the static, that is, non-repairable, case. However, for repairable sys-
tems a similar approach can be employed if instead of the system reliabil-
ity the system availability is used. We will briefly discuss this issue in 
Section 2. 

Accurate reliability estimation is essential for the proper design, planning 
and improvement of an unreliable network, such as a telecommunications 
network. A typical question in network design is, for example, which 
components (links, nodes) to purchase, subject to a fixed budget, in order 
to achieve the most reliable network. There are several reasons why net-
work planning is difficult. Firstly, the problem in question is a complex 
constrained integer programming problem. Secondly, for large networks 
the value of the objective function – that is, the network reliability – is dif-
ficult or impractical to evaluate [ 6,  24]. Thirdly, when Monte Carlo simu-
lation is used to estimate the network reliability, the objective function be-
comes noisy (random). Finally, for highly reliable networks, sophisticated 
variance reduction techniques are required to estimate the reliability accu-
rately. The literature on network planning is not extensive, and virtually all 
studies pertain to networks for which the system reliability can either be 
evaluated exactly, or sharp reliability bounds can be established. Colbourn 
and Harms [ 7] proposed a technique that provides progressive bounds that 
eventually converge to an exact reliability value. Cancela and Urquhart [ 4] 
employed a Simulated Annealing scheme to obtain a more reliable alterna-
tive network, given a user-defined network topology. Dengiz et al. used a 
Genetic Algorithm to optimize the design of communication network to-
pologies subject to the minimum reliability requirement [ 9]. Yeh et al. [ 33] 
proposed a method based on a Genetic Algorithm to optimize the k-node 
set reliability subject to a specified capacity constraint. Reichelt et al. used 

3.1.2 Network Design 
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a Genetic Algorithm in combination with a repair heuristic to minimize the 
network cost with specified network reliability constraints [ 25]. 

We show that the Cross-Entropy (CE) method [ 28] provides an effective 
way to solve both the network reliability estimation and the network plan-
ning/improvement problems. The CE method was first introduced in [ 26] 
as an adaptive algorithm for estimating probabilities of rare events in com-
plex stochastic networks. It was soon realized [ 27,  29] that it could be used 
not only for rare event simulations but for solving difficult combinatorial 
optimization problems as well. Moreover, the CE method is well-suited for 
solving noisy optimization problems.  A tutorial on the CE method can be 
found in [ 8], which is also available on-line from the CE homepage: 
http://www.cemethod.org. 

The rest of the chapter is organized as follows. Network reliability is in-

can be applied to improve the Monte Carlo simulations. The more chal-

generalized optimization problem in the context of network recovery and 
extension. 

The most basic mathematical model to describe complex unreliable sys-
tems is the following (see for example [ 1]): Consider a system that consists 
of m components. Each component is either functioning or failed. Suppose 
that the state of the system is also only functioning or failed. We wish to 
express the state of the system in term of the states of the components.  
This can be established by defining binary variables xi, i = 1,…,m repre-
senting the states of the components: xi = 1 if the i-th component works, 
and 0 else. The state of the system, s say, is a binary variable as well (1 if 
the system works and 0 else). We assume that s is completely determined 
by the vector x=(x1,…,xm) of component states. In other words, we assume 
that there exists a function , : {1,0}m-{1,0} such that 
 . /.s ,� x  

This function is called the structure function of the system.  To determine 
the structure function of the system it is useful to have a graphical repre-
sentation of system. 

described in Section  3.3. In Section  3.4, we present how the CE method 
troduced in Section  3.2. Various Monte Carlo simulation techniques are 

lenging problem of reliability optimization is tackled in Section  3.5 using 
the CE method. In Section  3.6, we show how to adapt the CE method to a 

3.2 Reliability 
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Example 1 

Suppose a four-engine airplane is able to fly on just one engine on each 
wing. Number the engines 1, 2 (left wing) and 3, 4 (right wing). The net-
work in Fig.1 represents the system symbolically. The structure function 
can be written as 

 . / . /. /. / . /. /. /1 2 3 41 1 1 1 1 1x x x x, � � � � � � �x .  

 

 

            

 

 

 
Fig. 1. An airplane with 4 engines, the system works if there is a  

“path” from A to B. 

A system that only functions when all components are operational is 
called a series system. The structure function is given by 

 . / ) *1 1
1

min , , .
m

m m
i

ix x x x x,
�

� � ��x � �  

A system that functions as long as at least one component is operational is 
called a parallel system. Its structure function is  

 . / ) * . / . /1 1
1

max , , 1 1 1 .
m

m m
i

ix x x x,
�

� � � � �x � � � x0  

A k-out-of-m system is a system, which works if and only if at least k of 
the m components are functioning. 

We mention two well-know techniques for establishing the structure 
function. The first is the modular decomposition technique. Often a system 
consists of combinations of series and parallel structures. The determina-
tion of the structure function for such systems can be handled in stages. 
The following example explains the procedure. Consider the upper-most 
system in Fig. 2. We can view the system as consisting of component 1 
and modules 1* and 2*. This gives the second system in Fig. 2. Similarly, 
we can view this last system as a series system consisting of component 1 
and module 1** (last system in Fig. 2). 
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Fig. 2. Decomposition into modules 

Now define s as the state of the system, z1 as the state of module 1**, yi 
the state of module i* and xi the state of component i. Then, working 
“backwards”, we have 

  . /. /
1 1

1 1 2

1 2 3 2 4 5

,

1 1 1 ,

and .

s x z

z y y

y x x y x x

�

� � � �

� �
Successive substitution gives 

 . / . /. /. /1 2 3 41 1 1s x x x x x, � � � � �x 5 .  

A second technique for determining structure functions is the method of 
paths and cuts. Here, the structure function is assumed to be monotone, 
that is, x < y 1 ,(x) � ,(y), for all vectors x and y, where x < y means that 
xi  � yi for all i and xi < yi for at least one i.  A minimal path vector (MPV) 
is a vector x such that ,(x) = 1 and ,(y) = 0 for all y < x.  A minimal cut 
vector (MCV) is a vector x such that ,(x) = 0 and ,(y) = 1 for all y > x.  
The minimal path set corresponding to the MPV x is the set of indices i for 
which xi = 1.  The minimal cut set corresponding to the MCV x is the set of 
indices i for which xi = 0. 

The minimal path and cut sets determine the structure function. Namely, 
let P1,…,Pp be the minimal path sets and K1,…,Kk be the minimal cut sets 
of a system with structure function ,. Then, 

 . /
1

,
j

p

i
i Pj

x,
	�

� �x �  

and 

 . /
1

.
j

k

i
j i K

x,
� 	

��x �  

The first equation is explained by observing that the system works if and 
only if there is at least one minimal path set with all components working. 
Similarly, the second equation means that the system working if and only 
if at least one component is working for each of the cut sets. 

3 

1 
5 

1 1**1 

3* 

2* 2 

4 
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Example 2 (Bridge Network) 

Consider the simple network in Fig.3, called a bridge network. The bridge 
network will serve as a convenient reference example throughout this 
chapter.  Here we have five unreliable edges, labelled 1,…,5. The network 
is operating if the two terminal nodes A and B are connected by opera-
tional edges. 

 
Fig. 3. Two-terminal bridge network 

A

The minimal path sets are {1,4}, {2,5}, {1,3,5}, {2,3,4}, and the minimal 
cuts sets are {1,2}, {4,5}, {1,3,5}, {2,3,4}. The minimal path vector corre-
sponding to the minimal path set {1,4} is the vector (1,0,0,1,0). The mini-
mal cut vector corresponding to the minimal cut set {1,2} is the vector 
(0,0,1,1,1). It follows that the structure function , is given by 

. / . /. /. /. /1 3 5 2 3 4 1 4 2 51 1 1 1 1 .x x x x x x x x x x, � � � � � �x  (1) 

We now turn to the case where the system's components are random.  The 
reliability of a component is defined as the probability that the component 
will perform a required function under stated conditions for a stated period 
of time. Consider a system with m components and structure function ,, 
where the state of each component i is represented by a random variable 
Xi, with 

  mi
p

pX
i

i
i ,...,1

1yprobabilitwith0
yprobabilitwith1 �

��

�
�
�

�
�

We gather the component reliabilities pi into a vector p = (p1,…,pm). The 
reliability of the system, i.e., the probability that the system works, is 

  )],([]1)([]worksSystem[ XX ,, EPP ���
 

B

1 4

3

52

3.2.1 Reliability Function 
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where X is the random vector (X1,…,Xm). Under the assumption that the 
component states are independent, �[,(X) = 1] can be expressed in terms 
of p1,…,pm. The function r(p) =2�[,(X) = 1] is called the reliability func-
tion of the system. Note that for the series and parallel systems the reliabil-

ity function is and , respectively.   . /
1

m

ii
r p

�
��p . /

1

m

ii
r

�
�p � p

Example 3 

For the bridge system we have by (1) 
 

. / . /. / . /. /1 3 5 2 3 4 2 5 1 41 1 1 1 1 .X X X X X X X X X XX, � � � � � �  

 
Using the fact that Xi = Xi

2, the expansion of , (X) can be written as 
 

1 3 5 2 3 4 2 5 1 4 1 2 3 5

1 2 4 5 1 3 4 5 1 2 3 4 2 3 4 5

1 2 3 4 5

( )

2 .

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X

, � � � � �
� � � �
�

X

 

 
Because all the terms are products of independent random variables the re-
liability r = r(p) is given by 

  1 3 5 2 3 4 2 5 1 4 1 2 3 5 1 2 4 5

1 3 4 5 1 2 3 4 2 3 4 5 1 2 3 4 52 .

r p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p

� � � � � �
� � � �

For highly reliable networks it is sometimes more useful to analyze or es-
timate the system unreliability  
 1 .r r� �  
In this case the system unreliability is equal to  

 1 2 2 3 4 1 2 3 4 1 3 5 1 2 3 5 4 5

1 2 4 5 1 3 4 5 2 3 4 5 1 2 3 4 52 ,

r q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q

� � � � � �
� � � �

 

where qi = 1–pi is the unreliability of component i, i = 1,…,5. 

Remark 1 (Availability) 

A concept closely related to reliability is the availability of a repairable 
system, defined as the long-run average fraction of the time that the system 
works.  
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Consider the simplest model of a repairable system where the system 
state is, as before, given by a structure function ,(x). Suppose that each 
component  has a lifetime with cdf  and is being repaired according to 

a repair time cdf . Assume that all the life and repair times are inde-

pendent of each other. Note that the component state process {X

i Fi

iG

i(t), t�0} 
alternates between “up” and “down” (1 and 0), and forms a so-called al-
ternating renewal process. The availability, , of component  time  

is defined as the probability that it works at time , that is,  

( )ia t i t
t

[ ]( ) ( ) 1i ia t X t= P[ = . From renewal theory the long-run average fraction 

of the time that works, the limiting availability of i , is given by  i

,]1)([Plim)(lim
ii

i
i

r
i

r
i du

u
tXtaa

�
����

3-3-
 

where is the expected lifetime or Mean Time To Failure (MTTF), and 

 is the expected repair time or Mean Time To Repair (MTTR) of com-

ponent i . Thus, the limiting availability depends only on the means of the 
distributions. 

iu

id

The system availability at time t , say, is given by ( )a t

)).(),...,((]1)([P)( 1 tatartXta m���  

For each , converges to a constant , as t-3. Since  is a con-

tinuous function, we therefore have  

i ( )ia t ia r

  )).(),...,(()( 1 tatarta m-
as t-3. This means that all the theory in this chapter for non-repairable or 
static systems can be applied to repairable systems, provided the notion of 
reliability is replaced by that of (limiting) availability.  

The reliability modeling of systems such as the airplane engines in Fig. 1 
and the bridge network in Fig. 3 can be generalized to network reliability 
systems in the following way.  Consider an undirected graph (or network) 
4(5,6,7), where 5 is the set of n vertices (or nodes), 6 is the set of m edges 
(or links), and 728825 is a set of terminal nodes, with |7| �22. Associated 
with each edge e 	26 is a binary random variable Xe, denoting the failure 
state of the edge. In particular, {Xe = 1} is the event that the edge is opera-
tional, and {Xe = 0} is the event that it has failed. We label the edges from 

3.2.2 Network Reliability 



Applications of the Cross-Entropy Method in Reliability      45 

1 to m, and call the vector X = (X1,…,Xm) the (failure) state of the network, 
or the state of the set 6. Let 9 be the set of all 2m possible states of 6. 

Notation A 

For :28826, let x = (x1,…,xm) be the vector in {0,1}m with  

  
��

�
�
�

;
	�

A.

A

i
ixi

,0
,1

We can identify x with the set :. Henceforth we will use this identification 
whenever this is convenient. 

 
Next, we assume that the random variables {Xe, e	6} are mutually in-

dependent. Let pe and qe denote the reliability and unreliability of e	6 re-
spectively. That is pe =2P[Xe = 1], and qe = P[X e= 0] = 1 – pe. Let p = 
(p1,…,pm). The reliability r = r(p) of the network  is defined as the prob-
ability of 7 being connected by operational edges. Thus, 
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where 

.
otherwise0

connectedisKif1)(
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�
�
�

�x,  (3) 

Monte Carlo Simulation 

The evaluation of network reliability in general is a #P-complete problem. 
When direct evaluation, e.g., via (2), is not feasible, estimation via Monte 
Carlo simulation becomes a viable option.  The easiest way to estimate the 
reliability r (or unreliability r ) is to use CMC simulation, that is, let 
X(1),…,X(N) be independent identically distributed random vectors with the 
same distribution as X. Then 

 . /CMC ( )
1

1
ˆ

N

i
i

r
N

,
�

� � X  

is an unbiased estimator of r. Its sample variance is given by 

3.3 
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 ./)1()ˆvar( Nrrr
CMC

��  

An important measure for the efficiency of an estimator is its relative er-

ror, defined as

��

. /Std % "
$ !E�� �� . The relative error for is thus given by 
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Similarly, the relative error for �CMCr is 

 �. /CMC

1
re .

r
r

N r

�
�  

This shows that for small r (which is typical in communication networks), 
a large sample size is needed to estimate r accurately. When r is small, 
the event that the terminal nodes are not connected is a rare event. Next, 
we discuss methods to increase the accuracy of simulation procedures that 
work well for rare events. 

A more efficient way than CMC for estimating the static network unreli-
ability is Permutation Monte Carlo simulation [ 11]. This approach can be 
applied to estimating equilibrium renewal parameters (see [ 21]) such as 
availability described in Remark 1. The idea is as follows. Consider the 
network 4(5,<) in which each edge e has an exponential repair time with 
repair rate =(e) = – ln(qe) where qe is the failure probability of e. That is, 
the repair time of edge e is exponentially distributed with mean 1/=(e). We 
assume that at time t = 0 all edges are failed and that all repair times are 
independent of each other. The state of e at time t is denoted by Xe(t) and 
the state of the edge set < at time t is given by the vector X(t), defined in a 
similar way as before. Thus, (X(t), t �20) is a Markov process [ 2,  16,  23] 
with state space {0,1}m or, in view of Notation A, a Markov process on the 
subsets of <. This process is called the Construction Process (CP) of the 
network. 

Let � denote the order in which the edges come up (become opera-
tional), and let S0, S0+S1,…, S0+…+Sm-1 be the times when those edges are 
constructed. Hence, the Si are sojourn times of (X(t), t �20). � is a random 
variable which takes values in the space of permutations of < denoted by >. 
For any permutation + = (e1,…,em) define 

 

3.3.1 Permutation Monte Carlo and the Construction Process 
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and let  
 }1)\({min)( �� i

i
b <<,+  

be the critical number of +, that is, the number of repairs required to bring 
up the network.  From the general theory of Markov processes it is not dif-
ficult to see that 

  )].(/)([][ 1
1

�
�
���� j
m

j
je <==+P

Moreover, conditional on �, the sojourn times S0,…,Sm-1 are independent 
and each Si is exponentially distributed with parameter =(<i), i = 0,…,m–1. 

Note that the probability of each edge e being operational at time t = 1 is 
pe. It follows that the network reliability at time t = 1 is the same as in 
equation (2). Hence, by conditioning on � we have 

 . /. / ' ( . /. /1 1r
+

1 | ,, + , +
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Using the definitions of Si and b(+), we can write the last probability in 
terms of convolutions of exponential distribution functions. Namely, for 
any t �20 we have 
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Let 

. / . /. /g 1 0 |C ,+ , +% "� � �$ !XP �  (6) 

as given in equation (5). Equation (4) can be rewritten as  

. /Cg ,r % "� �$ !E  (7) 
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and this shows how the CP simulation scheme works. Namely, for 
�(1),…,�(N) independent identically distributed random permutations, each 
distributed according to �, one has 

� . /( )
1

1
CP

N

c i
i

r g
N �

� ��  (8) 

as an unbiased estimator for r .   We note that the CP estimation scheme is 
a particular instance of conditional Monte Carlo estimation. It is well 
known that conditioning always reduces variance; see for example Sec-
tion 4.4 of [ 30]. As a result, the CP estimator has a smaller variance than 
the corresponding CMC estimator. However this accuracy comes at the 
expense of more complex computations. 

A closer look at the evolution of the CP process reveals that many of the 
above results remain valid when we merge various states into “super 
states” at various stages of the process. This is known as the Merge Proc-
ess (MP). We briefly describe the ideas below (see [ 22] for a detailed de-
scription and [ 21] for its application to estimating equilibrium renewal pa-
rameters) 
   To begin with, any subset @28826 of edges partitions the nodeset 5 into 
connected components known as a proper partition. Let A22= {51,…,5k} be 
the proper partition of the subgraph 4(5,@) (including isolated nodes, if 
any). Let Ii denote the edge-set of the induced subgraph 4(5i). The set IA2= 
I1B…BIk of inner edges, that is, the edges within the components, is the 
closure of @ (denoted by C@D). Denote its complement (the inter-
component edges) by 6A2= 6\ IA. Fig. 4 shows an example of a complete 6-
node graph (K6), a subgraph, and its corresponding closure. 

 
Fig. 4. K6, a subgraph, and its corresponding closure. 

Let E(4) be the collection of all proper partitions of 4(5,6). The states in 
E(4) are ordered by the relation �+A  F  I� G IA (that is, A is obtained by 

3.3.2 Merge Process 
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merging components of �). Any state A in E(4) has a transition path to the 
terminal state AH = 4. Therefore E(4) is a lattice. 

We consider now the CP (X(t)) of the network. By restricting the proc-
ess (X(t)) to E(4) we  obtain another Markov process (>(t)), called the 
Merge Process (MP) of the network. This process starts from the initial 
state A0 of isolated nodes and ends at the terminal state AH corresponding 
to 4(5,6). Fig. 5 shows E(K4), the lattice of all proper partitions  of the 
complete 4-node graph K4, grouped into 4 different levels according to the 
number of components. The arrows show the direct successions in E(K4),  
thus forming the transition graph of the Markov process (>(t)). 

 

 
Fig. 5. State transition diagram for merge process of K4

For each A2	2E(4) the sojourn time in A has an exponential distribution 
with parameter . / . /

e
e

A
= A =

	
�� E

, independent of everything else. 

Moreover, the transition probability from � to A (where A is a direct suc-
cessor of �) is given by: 
  [=(�)-=(A)]/=(�). 

Next, in analogy to the results for the CP, we define a trajectory of (>(t)) 
as a  sequence I  = (A0,…,Ab), where b = b(I) is the first index i such that 
Ai is “up”, that is, the network is operational. Since ,(>(t)) = ,(X(t)), we  
have 

 . /. / . /M1 0 gr ,% " ,% "� � � J$ !$ !P X E  

where J is the random trajectory of (>(t)). For each outcome I  = 
(A0,…,Ab) of J, gM(I) is given by 
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],|...[]|0))1(([)( 1)(b0M II,I I �J����J�� �SSPXPg

 
(9) 

where Si is the sojourn time at Ai. Therefore, gM(I) is given  by the value 
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at t = 1. Let J(1),…,J(N) be independent identically distributed random tra-
jectories distributed according to J. Then, 
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is an unbiased estimator for r .  It can be shown that the MP estimator has 
a smaller variance than the CP estimator, due to the state space reduction.2

Reliability Estimation using the CE Method 

Consider the bridge network in Example 2. We assume the typical situa-
tion where the edges are highly reliable, that is, the qi are close to 0. The 
probability of the rare event {,(X)=0} is very small under CMC simula-
tion and hence the accuracy of this sampling scheme is low. One way to 
combat the low accuracy problem is to “tilt” the probability mass function 
(pmf) of the component state vector X so that the rare event happens more 
often, and then multiply the structure function with a likelihood ratio to un-
bias the estimate. More precisely, let f(x) = �[X = x] be the original pmf  
of X and g(x) be a new pmf. Then, 
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where W(x) is the likelihood ratio for an outcome x, and 6g is the expecta-
tion under the pmf g. This indicates that we can estimate r also via 

 . /. / . /. /. /
1

1
W 1

N

i i
iN

,
�

�� X X ,  

where X(1),…,X(N) is a random sample from g. This is the well-know con-
cept of Importance Sampling (IS). 

3.4 
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Example 4 (Bridge Example (Continued)) 

Suppose that the edge failure probabilities are all the same, qi=0.001. After 
choosing to “tilt” their probabilities to qi’=0.5, the likelihood ratio be-
comes 

  .5.0/))1(001.0999/0()(
5

1

5�
�

���
i

ii XXXW

Table 1 shows a simulation result with 105 samples. With a network failure 
probability of about two in a million, the CMC with 105 samples cannot es-
timate r accurately, while the CMC with IS (CMC-IS) delivers a much 
better result. This simple example demonstrates how Importance Sampling 
can help improve estimate accuracy. 

Table 1. Results for CMC and CMC-IS 

Scheme �r  êr  

CMC 0.000e-00 undefined 
CMC-IS 2.022e-06 2.22e-00 
True r  2.002e-06  

 
However, the question of how we should tilt the parameters still remains 
open and that is where the CE technique can help. Before we discuss the 
CE technique, we first look at how to construct the ideal probability meas-
ure. 

Consider the scenario where one wants to estimate the expectation of 
a positive function H(X). In the case of network reliability estimation, 

�

r�� and H(X) = 1–,(X). It is possible to construct a probability measure 
such that one can accurately estimate �with zero sample variance. Namely, 
since 

 . / . / . / . / . /f H f W H
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x x

x x x x x
S S

� ,  

if we take . / . / . / . /g g* f H� 0x x x x � , then . / . /W H�x � x and thus 

under g* we have . / . /W H �X X � with probability 1. In other words, we 

only need one sample from g* to obtain an exact estimate. Obviously such 
construction is of little practical use, as we need to know in order to con-
struct g*(x). Moreover, f often comes from a parametric family f(x;u) 
where  u is a parameter vector. One would like to keep g in the same fam-
ily, that is g(x)=f(x;v) such that the likelihood ratio W(x;u,v)=f(x;u)/f(x;v) 
is easier to compute. 

�
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It is not our intention to give a detailed account of the CE method for esti-
mation – for this we refer to [ 8] and [ 28] – but in order to keep this chapter 
self-contained, we mention the main points. Consider the problem of esti-
mating 

. / . / . /H H dF% "� �$ ! ; .Ku Y y y uE�  (11) 

Here H(y) is some positive function of y = (y1,…,ym), and F(y;u) is a prob-
ability distribution function with pmf or probability density function (pdf) 
f(y;u) that depends on  some reference parameter u. We consider for sim-
plicity only the pdf case. The expectation operator under which the random 
vector Y = (Y1,…,Ym) has pdf  f(y;u) is denoted by 6u. We can estimate 

using IS as �

. /. / . /. /
1

1
H W ; ,

N

i i
iN �

� � Y Y u�� ,v  (12) 

where Y(1),…,Y(N) is a random sample from f(�; v) –  using a different ref-
erence parameter v – and  

                   ),()/()( vY;fuf;Wvu,Y;W �  (13) 

is the likelihood ratio. We can choose any reference vector v in 
equation (12) but we would like to use one that is in some sense “close” to 
the ideal (zero variance) IS pdf 

 ./)()()(* �uy;fyHyg �  

One could choose the parameter that minimizes the sample variance 

 . / . /. /var H W ; ,v Y Y u v  

 through the optimization program 

             . / . /2 2min H W ; , .% "$ !v
Y Y u vE  (14) 

The optimal solution of program (14) is typically hard to find and often not 
available analytically since the variance of H(Y)W(Y;u,v) is not either. 
One can view the variance as a “distance” measure, and the program (14) 
is to find a parameter vector v that minimizes the “variance distance” be-
tween g*(y) and g(y). An alternate distance measure is the Kullback-Leiber 
CE distance (or simply CE distance). The CE distance between two prob-
ability densities f(y) and g(y) can be written as 

3.4.1 CE Method 
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The optimal reference parameter in the CE sense (that is, for which 
L(g*,f(�;v)) is minimal) is then 
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Since H(y) ln(H(y) f(y;u)) does not depend on v, we have 

 . / . /* arg max H ln f ;% "� $ !u
v

v y y vE  

Note that the expectation is under the original pdf f(y;u). However, we can 
apply the IS technique and use any pdf with parameter w to get the same 
optimal solution 

. / . / . /* arg max H W ; , ln f ;% "� $ !w
v

v .y y u w y vE  (15) 

Therefore, we can estimate the optimal CE reference vector as the solution 
of the iterative procedure 

. /. / . /. / . /. /1
1
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arg max H W ; , ln f ; ,

N

t ti i i
iN �
�

� �
v

v Y Y u v Y v  (16) 

where at each iteration t a random sample from f(�;vt-1) is  taken. The solu-
tion of program (16) can often be determined analytically. One example is 
when f is in an exponential family of distributions. 

In the rare-event setting, H(Y) is of the form H(Y) = I{S(Y)� 
} where I is 
the indicator function, 
 is a constant, and  

. /S 
% "� �$ !YP�  (17) 

is a small tail probability. The function S is called the performance func-
tion. For rare-event estimation problems, program (16) is difficult to carry 

3.4.2 Tail Probability Estimation 
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out because the rareness of the event causes most of the indicators H(Y(i)) 
to be zero. For such problems, a two-phase CE procedure is employed: 
Apart from the reference parameter v, we also choose to update the level 
, 
creating a sequence of pairs {(vt,
t)} with the goal of estimating the opti-
mal CE reference parameter v*.  Starting with v0 = u (the original or nomi-
nal parameter vector), the updating formulas are as follows: 

Given a random sample Y(1),…,Y(N) from f(�; vt-1), we  use the best per-
forming �–portion of the samples. Let 
t be the sample (1–�)–quantile of 
the performances S(Y(i)),  i = 1,…,N, provided the sample quantile is less 
than 
; otherwise we set 
t  equal to 
. In other words, set 

. /. /) *1
min , ,t N

S
�


 

% � "#  

�  
(18) 

where S(j) is the j-th order-statistic of the performances. Using the same 
sample, we let 

. /. /) * . /. / . /.1
1

1
arg max I S W ; , ln f ; .

N

t t ti i
iN


 �
�

� ��
v

v Y Y u v /iY v  (19) 

When 
t reaches 
, we stop the iteration procedure and take vt as the esti-
mate of v*. 

Again, it is important to understand that in many cases an explicit for-
mula for vt can be given, that is, we do not need to “solve” the optimiza-
tion problem (19). Provided � is small and N is large enough, vt in pro-
gram (19) converges to the optimal v* in program (15) (see [ 28]). 

The standard interpretation of the CMC scheme does not naturally allow 
for the application of the CE method. However, if we interpret CMC sam-
pling using the CP framework, the CE method can be applied naturally. In-
stead of sampling the up/down state of individual edges, we can sample the 
up time of each edge. Then we check if the network is functioning at time 
t=1, and this probability is the network reliability estimate. In order to 
maintain the CMC features, we treat all edges independently and do not 
consider the concept of permutations. 

In other words, we translate the original problem (estimating r ), which 
involves independent Bernoulli random variables X1,…,Xm, into an  esti-
mation problem involving independent exponential random variables  
Y1,…,Ym. Specifically, imagine that we have a time-dependent system in 
which at time 0 all edges have failed and are under repair, and let  

3.4.3 CMC and CE (CMC-CE) 
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Y1,…,Ym, with Yi M Exp(ui
–1) and ui = 1/=(i) = – 1/ln qi, be the independent 

repair times of the edges. Note that, by definition  

 ' ( 1/1 e 1, ,iu
i iY q i�� � � � �P .m  

Now, for each Y = (Y1,…,Ym), let S(Y) be the (random) time at which  the 
system “comes up” (the terminal nodes become connected). Then, we can 
write 

 . /S 1r .% "� �$ !YP  

Hence, we have written the estimation of r in the standard rare event for-
mulation of equation (17) and we can thus apply the CE method from [ 8], 
as described above. Note that 
2= 1 in this situation. 

Instead of sampling independently for each i from Exp(–1/ui), we  sam-
ple from  Exp(–1/vi). The vector v = (v1,…,vm) is thus our reference pa-
rameter. We now construct a sequence of pairs {(vt,
t)} such that vt con-
verges to a reference vector close to the  optimal CE reference parameter 
and 
t  eventually  reaches one.  Starting with v0 = u = (u1,…,um), at each 
iteration t we draw a  random sample Y(1),…,Y(N) from the pdf f(�;vt-1}) of  
Y and update the level parameter 
t using equation (18) and the reference 
parameter vt using equation (19), which  in this case has the analytical so-
lution 
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where W is the likelihood ratio 
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After iteration T, when 
T reaches one, we estimate r using IS as 

 �
. /. /) * . /. /
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Example 5 (Bridge Network, CMC with CE) 

Consider now the bridge network in Fig. 3. Suppose the “nominal” pa-
rameter vector is u = (0.3, 0.1, 0.8, 0.1, 0.2), that is  q = (3.57e-2, 4.54e-5, 
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2.87e-1, 4.54e-5, 6.74e-3). A result of simulations is given in Table 2. The 
following CE parameters were used:  (initial) sample size N=2000 and rar-
ity parameter �=0.01 in equation (18). In both CMC and CMC-CE, a final 
sample size of one million was used to estimate r . 

Table 2. Results for CMC and CMC-CE 

Scheme �r  êr  

CMC-CE 6.991e-05 1.67e-02   
CMC 6.100e-05 1.28e-01   
True r  7.079e-05  

 
By using the CE method we have achieved, with minimal effort, a 98% 

reduction in variance compared to the CMC method. The CMC-CE algo-
rithm required two iterations only to converge, as illustrated in Table 3. 
Notice that the algorithm tilted the parameters of the mincut elements 
{1,3,5} to higher values, which means they will fail much more often in 
the simulations. One can interpret this as the algorithm placing more im-
portance on the mincut elements than on the remaining edges. 

Table 3. Convergence of the parameters 

t t
  tv  

0 – 0.3 0.1 0.8 0.1 0.2 
1 0.507 0.964833 0.216927 1.20908 0.0892952 0.567551 
2 1.000 1.19792 0.120166 1.57409 0.0630103 1.15137 

We now apply the CE method to the CP simulation using reference pa-
rameters determined by the CE method rather than the nominal parameters. 
There are many ways to define a distribution on the space of permutations. 
However, note that the original distribution of � is determined by the ex-
ponential distribution of Y. In fact, � can be viewed as a function of Y. To 
see this, we generate Y1,…,Ym independently according to Yi M Exp(ui

–1) 
and order the Yi's such that 

1 2 m
Y Y Y� � �� � �� . Then we take �(Y) = 

(�1,…,�m) as our random permutation. 
We can express the network failure probability by 

3.4.4 CP and CE (CP-CE) 
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. /. / . /S ,Cr g% " % "� � � $ !$ !u uY YE E  (21) 

where we redefine S(Y) as gC(�(Y)), with gC being the  Markov process 
function for the permutation defined in equation (6). A natural way of de-
fining a change of measure is to choose different parameters vi (instead of 
the nominal ui) for the exponential distributions of the edge lifetimes, in a 

1 m

mean “repair” times. However, we have a slightly different situation from 

ability �[S(Y) �21] we now have to  estimate the (small) expectation 
6[S(Y)]. We can no longer use a two-phase procedure (updating 
 and v), 
but instead use the one-phase procedure in which we only update vt.  The 
analytic solution to program (16) for the i-th component of vt is 
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where Y(k)i is the i-th component of Y(k). To improve convergence in ran-
dom sampling situations, it is often beneficial to use a smoothing parame-
ter � to blend the old with the new estimates. That is we take 
 . / 11t t� � t�N � � �v v v  

as the new parameter vector for the next iteration. 

The situation can be further generalized by employing CE for MP simula-
tion. Recall that for each permutation + in the CP, there is a corresponding 
trajectory I in the MP. Let J: + � I be the mapping that assigns to each 
permutation + the corresponding unique trajectory I. Then equation (21) 
can be rewritten as 

 . /. /. / . /S ,Mr g% " % "� J � � $ !$ !u uY YE E  

where S(Y) has been redefined as gM(J(�(Y))), with gM being the Markov 
process function for the trajectory I defined in  equation (9). The same CE 

well. 

.4.3. Thus  v = (v ,…,v ) is  still the vector of similar way to Section 3

Section  3.4.3, because instead of  having to estimate a rare event prob-

procedure (22) described in Section 3.4.4 can be applied to the MP as 

3.4.5 MP and CE (MP-CE) 
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Example 6 (Bridge Network, MP and CP with CE) 

We return to the bridge network of Example 5.  Table 4 lists the results for 
the standard MP and CP simulations, compared with their counterparts 
with IS in which the reference parameters are determined by the CE 
method. The nominal reference parameter remains unchanged. That is, u = 
(0.3, 0.1, 0.8, 0.1, 0.2), and we use  the CE parameters �2= 0.7 and N = 
2000. The final sample sizes are N = 105 in all the original and CE simula-
tions. 

Table 4. Results for CP-CE and MP-CE 

Scheme �r  êr  

MP-CE 7.082e-05 1.16e-03 
MP 7.081e-05 1.32e-03 
CP-CE 7.079e-05 1.21e-03 
CP 7.079e-05 1.32e-03 
CMC-CE 6.991e-05 1.67e-02 
True r  7.079e-05  

 
We have repeated this experiment numerous times and have consistently 
found that the Merge Process and the CP have very close performance in 
such a small example network. We also found that the CE technique pro-
vides an improvement (reduction) in variance of roughly 20% in both 
cases. 

Note that the CMC simulation with CE still has over 100 times the vari-
ance of that in MP, MP-CE, CP or CP-CE simulations. This shows that no 
matter how much one modifies the CMC scheme with smart sampling 
techniques, the scheme still cannot compare to the simple CP sampling. In 
other words, it is the “structure” of sampling in the CP that makes it supe-
rior. 

With the MP-CE or CP-CE sampling, there is no parameter 
 to indicate 
when to stop the CE parameter tuning, therefore we need to use other 
strategies. Since we have imprecise knowledge of the performance func-
tion, we have to resort to simulation to evaluate that function at each point 
in order to optimize program (16). On the other hand, we do not want to 
spend too long on the CE parameter estimation effort, compared to the real 
simulation.  As a result, we cannot use classic convergence criteria such as 
“stop when two consecutive vectors are < close in some norm”. Fortu-
nately, permutation (and trajectory) sampling depends on the relative 
weight of each edge and hence the sampling is fairly insensitive to the pre-
cise values of the Importance Sampling parameter vt. Therefore we only 
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require a vector that is in the “right” region. As a rule of thumb, we rec-
ommend 5% to 10% of the final estimation effort to be spent on the CE pa-
rameter estimation. 

Table 5 displays the evolution of the reference parameters for the MP-
CE, where we stopped the CE algorithm after only three iterations, when 
the estimates “stabilized” (the values stop fluctuating). Again the algo-
rithm allocated more attention to the mincut elements {1,3,5} and treated 
the rest as less important. 

Table 5. Evolution of the reference parameters 

t tv  

0 0.3 0.1 0.8 0.1 0.2 
1 0.35768 0.07378 0.86343 0.06899 0.2548 
2 0.37752 0.06507 0.86312 0.05950 0.2718 
3 0.38688 0.05956 0.85218 0.05764 0.2785 

In this section we give a few larger examples that might be found in com-
munication networks. Fig. 6 shows a 3�3 and a 6�6 grid network, each 
network has four terminals at the corners. All links have the same failure 
probability. All experiments use a final sample size of 106 and the CE tun-
ing batch sample size of 5000. In the tables, T denotes the CE tuning itera-
tion and � denotes the smoothing parameter. The CMC-CE had a rarity pa-
rameter �=0.02.  

 

 

Fig. 6. A 3�3 and a 6�6 grid network 

The estimated relative error ( ), sample variance ( ), simulation time 
(t) as well as Relative Time Variance (RTV) are also provided for com-
parisons. The RTV is defined as the product of the simulation time t (in 
seconds) and the estimated sample variance . It can be used as a metric 
to compare different algorithms. For a large number of samples N, the 
simulation time is proportional to N and the sample variance is inversely 

er̂ ravˆ

ravˆ

3.4.6 Numerical Experiments 
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proportional to N. Therefore the RTV is a number that largely depends on 
the network and the performance of the algorithm under investigation 
rather than on N. The smaller the RTV value, the more efficient is the 
simulation algorithm. 

For verification purposes, the exact network failure probabilities are 
evaluated and listed as well. Note that in these trivial examples, alternative 
approaches such as approximation [ 3,  14] can also be used to obtain fairly 
accurate results. 

Example 7 (3�3 unreliable grid) 

In this example, all links of the 3�3 grid network have the same failure 
probability q = 10–3. A result of the simulation is given in Table 6. 

The CMC method gives a poor variance and relative error as expected. 
The CMC-CE shows a 95% reduction in variance but the variance is still 
too high to make this scheme very useful. In fact, the CMC-CE scheme has 
not converged in this example (also indicated by a relatively high ). The 
CP method gives a much smaller variance (0.1% of CMC-CE) while the 
CE method achieved a further reduction of 20-25% on average. The MP 
method has an even smaller variance (10% of CP) and the CE method pro-
vides roughly a 10% further reduction. Taking into account the computa-
tion overhead introduced by the CE method (approximately 10%), the MP-
CE has a slight overall speed advantage over the MP algorithm, making 
the MP-CE the most efficient method to use. 

êr

Table 6. Simulation results for the 3�3 unreliable grid network 

Scheme T � �r  êr  râv  t RTV 
MP-CE 10 0.1 4.012e-06 1.07e-03 1.85e-17 18 3.34e-16 
MP - - 4.012e-06 1.12e-03 2.03e-17 17 3.39e-16 
CP-CE 10 0.1 4.011e-06 3.42e-03 1.88e-16 10 1.96e-15 
CP - - 4.016e-06 3.89e-03 2.45e-16 9 2.24e-15 
CMC-CE 4 1 2.830e-06 1.51e-01 1.81e-13 9 1.66e-12 
CMC - - 4.000e-06 5.00e-01 4.00e-12 8 3.14e-11 
True value   4.012e-06     

Example 8 (6�6 reliable grid) 

This is a larger network example consisting of 36 nodes and 60 edges with 
equal link failure probability q=10–6. A result of the simulation is given in 
Table 7. 
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Table 7. Simulation results for the 6�6 reliable grid network 

Scheme T � �r  êr  râv  t RTV 
MP-CE 10 0.1 3.999e-12 1.53e-03 3.76e-29 122 4.60e-27 
MP – – 3.998e-12 1.75e-03 4.89e-29 113 5.55e-27 
CP-CE 10 0.1 4.005e-12 1.28e-02 2.61e-27 66 1.72e-25 
CP – – 4.006e-12 2.10e-02 7.07e-27 56 3.99e-25 
CMC-CE 5 1 8.625e-14 9.08e-01 6.13e-27 41 2.51e-25 
CMC – – 0 undefined 0 34 – 
True value   4.000e-12     

 
The CMC and CMC-CE methods cannot handle such a low probability 
with a million samples. The CP provides good estimates and yet the CE 
method reduces the sample variances further by about 65% in the CP-CE. 
The MP starts with a much lower (1%) sample variance than that of CP 
and the CE further reduces it by 25% in the MP-CE. The RTV of the MP-
CE and the CP-CE show a 20% and 130% speed up over the MP and the 
CP, respectively. 

Example 9 (20-node 30-link unreliable network) 

The next example is a 20-node 30-link network shown Fig. 7 with equal 
link failure probability of 3%. Two terminal reliability (the two terminal 
nodes are marked by thick circles in the figure) is to be estimated using 
different simulation schemes. A result of the simulation is given in Ta-
ble 8. Note that in this example, the simple Minimum Cut Approximation 
method described in [ 6] will estimate a network failure probability of 
5.4�10–5, a 12% deviation from the true value of 6.138�10–5. 

 

 
Fig. 7. A 20-node 30-link network 

The CMC method performed poorly as reflected in high variance and rela-
tive error. The CMC-CE method has significant improvement over CMC 
but is still far from ideal. Both CP and MP provide good estimates and the 
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CE method improves them much further. In terms of RTV, the MP-CE and 
CP-CE have around 50% and 270% speed up over the MP and CP respec-
tively. 

Table 8. Simulation results for the 20-node 30-link network 

Scheme T � �r  êr  râv  t RTV 
MP-CE 10 0.1 6.128e-5 3.15e-3 3.72e-14 54 2.00e-12 
MP – – 6.111e-5 3.99e-3 5.94e-14 50 2.94e-12 
CP-CE 10 0.1 6.124e-5 1.13e-2 4.80e-13 26 1.24e-11 
CP – – 6.192e-5 2.32e-2 2.06e-12 22 4.55e-11 
CMC-CE 7 0.5 6.091e-5 6.46e-2 1.55e-11 18 2.80e-10 
CMC – – 6.500e-5 1.24e-1 6.50e-11 16 1.04e-09 
True value   6.138e-5     

With a better “sampling structure” and smart conditioning, the MP and CP 
schemes are superior to the CMC scheme. The CE technique further im-
proves the performance of the MP and the CP schemes; the degree of im-
provement becomes more prominent as the network size grows. Close in-
spection of the IS parameter vT reveals that the bottleneck-cut edges have 
been allocated higher importance than the rest. 

Another point to note is the smoothing parameter �. If we keep �2= 0.7 
as in the bridge example, the IS parameters v might oscillate instead of 
converge to the optimal v* and as a consequence give poor estimates. We 
found that in larger networks, a smaller smoothing parameter such as �2= 
0.1 is much more robust and always gave good results in our experiments.  
Numerical experience suggests that an increase in the tuning sample size N 
can alleviate the need to reduce the smoothing parameter � in larger prob-
lems. Of course, this means more effort has to be spent estimating each 
Importance Sampling parameter vt. However, if we leave � very small, 
more iterations are required for convergence towards v*. This raises the 
question of the most efficient way to allocate effort in estimating v*. 

Network Design and Planning 

This section is concerned with a network planning problem where the ob-
jective is to maximize the network's reliability subject to a fixed budget.  
More precisely, given a fixed amount of money and starting with a non-

3.4.7 Summary of Results 

3.5 
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existent network, the question is which network links should be purchased, 
in order to maximize the reliability of the finished network. Each link car-
ries a pre-specified price and reliability. This Network Planning Problem 
(NPP) is difficult to solve, not only because it is a constrained integer pro-
gramming problem, which complexity grows exponentially in the number 
of links, but also because for large networks the value of the objective 
function – that is, the network reliability – becomes  difficult or impracti-
cal to evaluate. 

As before, consider a network represented as an undirected graph 4(5,6),  
with set 5 of nodes (vertices), and set 6 of links (edges).  The number of 
links is |6| = m. Without loss of generality we may label the links 1,…,m. 
Let 728825 be the set of terminal nodes. With each of the links is associated 
a cost ce and reliability pe. The objective is to buy those links that optimize 
the reliability of the network – defined as the probability that the terminal 
nodes are connected by functioning links – subject to a total budget Cmax. 
Let c = (c1,…,cm) denote vector of link costs, and p = (p1,…,pm)  the vector 
of link reliabilities. 

We introduce the following notation. For each link e let ye be such that 
ye = 1 if link e is purchased, and 0 otherwise. We call the vector y = 
(y1,…,ym) the purchase vector and y* the optimal  purchase vector. Simi-
larly, to identify the operational links, we define for each link e the link 
state by xe = 1 if link e is bought and is functioning, and 0 otherwise. The 
vector x = (x1,…,xm) is thus the state vector. For each purchase vector y let 
,y be the structure function of the purchased system. Thus, ,y assigns to 
each state vector x the state of the system (working = terminal nodes are 
connected = 1, or failed = 0). Let Xe be random state of link e, and let X be 
the corresponding random state vector. Note that for each link e that is not 
bought, the state Xe is per definition equal to 0.   The reliability of the net-
work determined by y is (see Equation (2)) given by 

. / . / . / ' (.r , ,% "� �$ ! ��y y
x

y X x XE  P x  (23) 

We assume from now on that the links fail independently, that is, X is a 
vector of independent Bernoulli random variables, with success probability 
pe for each purchased link e and 0 otherwise. Defining py = (y1p1,…,ympm), 
we write X M Ber(py). Our main purpose is to determine 

3.5.1 Problem Description 
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Let r* 0 r(y*) denote the optimal reliability of the network. 

The CE method is not only useful for rare-event estimation problems, but 
can also be applied to solve difficult discrete and continuous optimization 
problems. In this context, the method involves the following main steps, 
which are iterated: 

1. Generate random states in the search space according to some 
specified random mechanism. 

2. Update the parameters of this mechanism in order to obtain better 
scoring states in the next iteration. This last step involves minimiz-
ing the CE distance between two distributions. 

We now specify these two steps for the NPP. 

A simple method to generate the random purchase vectors is describe be-
low: Let a = (a1,…,am) be the probability vector where ae is the probability 
of purchasing edge e. Further let Y(k) be the k-th random purchase vector 
where Y(k),e=1 denotes edge e is purchased or else 0. Following is a simple 
algorithm to generate K random purchase vectors by rejecting the invalid 
(cost exceed maximum) ones. 

Algorithm 1 (Generation Algorithm) 

1. Generate a uniform random permutation +2= (e1,…,em). Set k = 1. 

2. Calculate  
1

1
.

k i

k

e ei
C c Y c

�

�
� �� ie

3. If C � Cmax, draw  Otherwise set).(Ber~
kk ee aY 0

keY � . 

4. If k = m, then stop; otherwise set k = k + 1 and reiterate from step 2. 

Remark 2 

We note that, when drawing via Algorithm 1, the purchase vectors have 
some correlation bias.  Theoretically, in order to generate random net-
works without such bias, one should sample from the conditional Bernoulli 
distribution (see [ 5]). However this is significantly more involved than the 

3.5.2 The CE Method for Combinatorial Optimization 

3.5.2.1 Random Network Generation 
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present algorithm/heuristic, and from our experience does not yield much 
gain.  

The usual CE procedure [ 28] proceeds by constructing a sequence of refer-
ence vectors {at, t �20} (i.e., purchase probability vectors), such that {at,   t 
�20} converges to the degenerate (i.e., binary) probability vector a*=y*. 
The sequence of reference vectors is obtained via a two-step procedure, 
involving an auxiliary sequence of reliability levels {
t, t �20} that tend to 
the optimal reliability 
* = r* at the same time as the  at tend to a*. At each 
iteration t, for a given at-1, 
t is the sample (1–�)-quantile of performances 
(reliabilities). Typically � is chosen between 0.01 and 0.1. That is, generate 
a random sample Y(1),…,Y(K) using the generation algorithm above; com-
pute the performances r(Y(i)), I = 1,…,K and let . /. 1t /K

r
�



�% "#  

� , where r(1) � 

… � r(K) are the order statistics of the performances. The reference vector 
is updated via CE minimization, which (see [ 28]) reduces to the following:  
For a given fixed at-1 and 
t, let the j-th component of at  be 
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where we use the same random sample Y(1),…,Y(k) and  where Y(i)j is the 
j-th coordinate of Y(i). 

The main CE algorithm for optimizing Equation (24) using the above 
generation algorithm is thus summarized as follows. 

Algorithm 2 (Main CE Algorithm for Optimization) 

1. Initialize .  Set t = 1 (iteration counter). 0a

2. Generate a random sample Y(1),…,Y(K)  using Algorithm with . 

Compute the sample (1–�)-sample of performances 
1t��a a

t
 . 

3. Use the same sample to update , using Equation (25). ta

4. If . /. /max min ,1t t �� �a a for some small fixed � then stop (let T 

be the final iteration); otherwise set t = t + 1 and reiterate from step 2. 

3.5.2.2 Updating Generation Parameters 
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As mentioned earlier, for networks involving a large number of links the 
exact evaluation of the network reliability is in general not feasible, and 
simulation becomes a viable option.  

In order to adapt Algorithm 2 to noisy NPPs, we again, at iteration t, 
generate a random sample Y(1),…,Y(N) according the . /1t�aBer  distribu-

tion. However, the corresponding performances (network reliabilities) are 
now not computed exactly, but estimated by means of Monte Carlo simu-
lations such as Equation (10). During the optimization process, one might 
need to estimate the reliability of a large number of networks using a  lim-
ited number of samples. An efficient estimation algorithm is the MP de-
scribed in previous section. It works well with relatively small sample size 
even for highly reliable networks. 

To illustrate the effectiveness of the proposed CE approach, consider the 
6-node fully-connected graph with 3 terminal nodes given in Figure 8. The 
links costs and reliabilities are given in Table 9. Note that the direct links 
between the terminal nodes have infinite costs. We have deliberately ex-
cluded such links to make the problem more difficult to solve. The total 
budget is set to Cmax = 3000. 

7

 
Fig. 8. Network with 3 terminal nodes, denoted by black vertices. 

Table 9. Link costs and reliabilities 

i ci pi i ci pi i ci pi

1 382 0.990 6 380 0.998 11 397 0.990 
2 392 0.991 7 390 0.997 12 380 0.991 
3 3 0.992 8 395 0.996 13 3 0.993 
4 3 0.993 9 396 0.995 14 399 0.992 
5 320 0.994 10 381 0.999 15 392 0.994 

1

5

4

3

2 15

14
136

12

11

8 10 9

3.5.2.3 Noisy Optimization 

3.5.3 Numerical Experiment 
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Note that for a typical purchase vector y the network reliability r(y) will 

be high, since all links are quite reliable. Consequently, to obtain an accu-
rate estimate of the network reliability, or better, the network unreliability 

. / . /1r r� �y y , via conventional Monte Carlo methods, would require a 

large simulation effort. The optimal purchase vector for this problem –
computed by brute force – is y* = (1,1,0,0,1,0,1,1,0,1,0,0,0,0,1), which 
yields a minimum network  unreliability of *r  = 7.9762 � 10–5. 

We used the following parameters for our algorithm: the sample size in 
Step 2 of the CE algorithm K = 300; the sample size in Equation (10) N = 
100; the initial purchase probability  = (0.5,…,0.5). The algorithm stops 

when all elements of are less than � = 0.01 away from either 0 or 1.  Let 

T denote the final iteration counter. We round to the nearest binary vec-

tor and take this as our solution a* to the problem. 

0a

ta

ˆTa

Table 10 displays a typical evolution of the CE method. Here, t denotes 
the iteration counter, t
 the sample (1–�)-quantile of the  estimated unreli-

abilities, and the purchase probability vector,  at  iteration t.  The impor-

tant thing to notice is that quickly converges to the optimal degenerate 

vector a* = y*. The simulation time was 154 seconds on a 3.0GHz com-
puter using a Matlab implementation. 

ta

ta

In repeated experiments, the proposed CE algorithm performed effec-
tively and reliably in solving the noisy NPP, which constantly obtained the 
optimal purchase vector. Moreover, the algorithm only required on average 
9 iterations with a CPU time of 180 seconds. 

Table 10. A typical evolution of the purchase vector 

t t
  ta  
0  0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
1 4.0e-03 0.66 0.69 0.15 0.15 0.62 0.48 0.59 0.64 0.38 0.62 0.52 0.38 0.15 0.41 0.62 
2 2.6e-04 0.69 0.63 0.05 0.05 0.72 0.21 0.88 0.71 0.33 0.75 0.58 0.26 0.05 0.38 0.77 
3 1.4e-04 0.67 0.75 0.01 0.01 0.78 0.11 0.89 0.89 0.12 0.76 0.57 0.22 0.01 0.44 0.77 
4 1.0e-04 0.76 0.76 0.00 0.00 0.89 0.03 0.97 0.90 0.06 0.83 0.43 0.11 0.00 0.41 0.84 
5 8.1e-05 0.79 0.88 0.00 0.00 0.97 0.01 0.99 0.97 0.02 0.90 0.15 0.03 0.00 0.33 0.95 
6 6.7e-05 0.94 0.96 0.00 0.00 0.97 0.00 1.00 0.99 0.01 0.97 0.07 0.01 0.00 0.10 0.99 
7 6.3e-05 0.98 0.99 0.00 0.00 0.99 0.00 1.00 1.00 0.00 0.99 0.02 0.00 0.00 0.03 1.00 
8 5.8e-05 0.99 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.01 0.00 0.00 0.01 1.00 
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Network Recovery and Expansion 

This section looks at the optimal network design problem in an incre-
mental sense, that is, one starts with a baseline network and has to decide 
which additional links should be bought, in order to optimally improve the 
reliability of the network. This situation occurs for example in military 
networks, where as a result of components failures or attacks, part of the 
network has become isolated and must be reconnected. Another example is 
when new nodes are being deployed, and one has to choose between many 
available options to connect them to the existing network. 

Consider an existing network (may be non-functional) as a base network. 
Additional links are bought to improve the network reliability. In situations 
where multiple possible configurations are available, the goal is to find the 
configuration those results in highest network reliability. Let 6B denotes 
the edge set of the base network and 6i denotes the additional links in the 
i-th network 4I = 4(5,6BB6i,7). Here we assume the node set and termi-
nals are the same among all the networks. If ri denotes the reliability of the 
network 4i, then the goal is to find the network 4o among all possible con-
figurations such that ) *max .o i

i
r r�  

In some situations where the connection points are limited – for exam-
ple satellite terminals may be available to only a few nodes – the choices 
of alternate bearer (link) locations may not be extensive. In that case, the 
simplest approach is to use exhaustive search. Thus, the process can be di-
vided into two steps: 

1. generate all the valid configurations (or candidate networks 4i); and 
2. compare their reliabilities and find the optimal network 4o. 
Fig. 9 shows an example network being separated into two groups. In 

order to rejoin the two groups, at least one link is needed and there are 12 
possible ways to connect the node sets {A1, A2, A3} and  {B1, B2, B3, 
B4}. It is easy enough to generate all the 12 candidate networks and com-
pare their reliability to find the optimal location of the alternate bearer. 

If the existing network is large and/or multiple links are being added, 
the number of possible candidate networks grows very quickly. Often the 
computational cost of enumerating all networks and comparing their reli-
ability becomes prohibitive. Another approach is to use simulation-based 
combinatorial optimization techniques under multiple constraints. The 
constraints of the optimization program can be as simple as fixing the 

3.6.1 Problem Description 

3.6 
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maximum number of additional links, or specifying some maximum limit 
on the total cost of adding the links.  

 

Fig. 9. Example with small number of candidates 

As for large networks the exact calculation of network reliability is diffi-
cult, estimating it via Monte Carlo simulation becomes favourable. Note 
that in applications like network reliability optimization, one needs to 
compare the reliability of multiple similar networks. When simulation is 
used to estimate network reliability, sampling error (noise) is introduced. If 
the two networks are similar, the noise can become so significant that it 
may impair the accuracy of the comparisons. Hui et al. proposed a coupled 
approach to estimate reliability difference of two similar networks with 
high confidence [ 17]. In this section we demonstrate how a similar concept 
can be used and specialized to compare many similar networks very effec-
tively. The concept is somewhat similar to using common random numbers 
to reduce variance in Monte Carlo simulation. 

The concept of Edge Relocated Networks [ 17] refers to networks having 
the same number of edges with matched link reliabilities1. The differences 
between the networks are thus restricted to a few links being reconnected 
to different nodes. In other words, if 4i and 4j are edge relocated networks, 
they share the same edge reliability vector p. Fig. 10 shows two edge relo-
cated networks derived from the same base network.  

 

                                                      
1   Note that if there are unmatched links between the networks, redundant self-

loops can be introduced to bring the networks to edge relocated versions of 
each other (see [ 17]). 

A1

A2

A3 B4 B3

B2B1

3.6.2 Reliability Ranking 

3.6.2.1 Edge Relocated Networks 



70      Dirk P. Kroese and Kin-Ping Hui 

 
 

Fig. 10. Example of Edge Relocated Networks 

Since the edge relocated networks share the same edge reliability vector p, 
it is proven [ 17] that their reliability can be compared very efficiently.  The 
idea is to sample the edge states and observe them in different edge relo-
cated networks. When dealing with many edge-relocated networks simul-
taneously, one sampling scheme is of particular interest, namely edge per-
mutation sampling. 

Edge permutation sampling starts from the Construction Process in Sec-

cally by repairing links independently and with an exponential repair time.  
At time t = 0 each edge e is failed and is being repaired at a repair rate =(e) 
= – ln(qe).  The network unreliability is equal to the probability of the dy-
namic network not being operational at time t = 1, and is of the form (see 

Equation (7)) . /gr %� �$E "! , where g is a know function involving con-

volutions and  � is a permutation describing the random order in which the 
links come up. By sampling from �, r can be efficiently estimated via 
Equation (8). 

This edge permutation sampling (or simply permutation sampling) 
scheme is superior to other combinatorial sampling schemes because it 
elegantly avoids the rare event problem. In highly reliable networks such 
as communication networks, the networks are functioning most of the 
time, and hence it is hard for the combinatorial schemes to sample the fail-
ure state and estimate its probability.  As a consequence, it is more difficult 
to compare the reliability of similar networks. In permutation sampling, 
however, the networks always start at the same failure state and will even-
tually come up. The only question is when will they come up or what is 
their operational probability at time t=1. 

When comparing reliability of networks, the Coupled CP proposed in 
[ 17] is very efficient in finding the reliability difference of two networks. It 
can achieve 1011 times speedup over the best known independent sampling 
scheme. The scheme uses the simple observation of the following equation  

 

tion  3.3.1. In particular, we imagine the network is constructed dynami-

3.6.2.2 Coupled Sampling 
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The method takes samples of permutations and observes how the two net-
works behave under the same edge permutation. Figure 11 shows an ex-
ample edge construction sequence on two edge-relocated networks. As-
suming the black nodes are the terminals, network 4A will come up (i.e. all 
terminal nodes become connected) on the 5-th edge while network 4B will 
be on the 6-th edge. Hence their probability functions gA(+) and gB(+) will 
be different.  

Fig. 11. Example of Coupled CP 

If we take N random permutations {�(1),…,�(N)} and observe them on both 
networks, their reliability difference can be estimated by 

 .
)()(

ˆ
1

)()(
, �

� �
�

�
�

N

i

iBiA
BA N

gg
r  

In our reliability optimization problem, the prime interest is searching for 
the most reliable network among the candidates. Therefore the actual dif-
ference in reliability is not our main concern. All we need to find is which 
network is more reliable than others.  

In the edge permutation sampling scheme, the most reliable network is 
expected to come up earlier than others. Therefore one can sample edge 
permutations and observe how all the candidate networks evolve simulta-
neously. The most reliable network should come up first most often. 

Let bi(+) denotes the critical number of graph 4i on permutation +, that 
is the ordinal number when the network comes up. For example in Fig. 11, 
bA(+) = 5 and bB(+) = 6. Let b*(+) be the smallest critical number among 
the candidate networks on a given permutation +, that is b*(+)=  b

i
min i(+). 

Then 4o is the most reliable network if and only if it has the highest chance 
of coming up before any other candidates. Mathematically, it is the net-
work that corresponds to the solution of the program  

8 8

2 2

7 71

1

5

5

4 4

3 3

6 6

A B

3.6.2.3 Synchronous Construction Ranking (SCR) 
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)].(*b)(b[max ���i
i

P  

This is how the SCR scheme works: First randomly sample N permutations 
and then estimate the probability of network 4i being the best by 

  ./)}((*b)(b{)(
1

)()(0 �
�

����
N

j
jjii NIP G

Finally, find the network with the maximal Po and take it as the optimal 4o. 

Example 10 

Fig. 12 shows an example of a surviving network that consists of 18 nodes 
and 28 links. {C1,…,C5} are the core routers and  {A0,…,A12} are the 
access routers. A0 is currently isolated and needs to be re-connected to the 
network. Assuming there are enough resources to provide two wireless 
links connecting any nodes, the question is where the extra links should be 
attached in order to achieve maximal all-terminal reliability.  Table 11 lists 
the reliabilities of different types of link in the example. 

Fig. 12. Example isolated network 

Since there are 18 nodes, there are 18C2 = 153 ways to form a link. Hence 
there are 153C2 = 11628 ways to add 2 different links. In order to reconnect 
A0 to the network, at least one of the links must attach to A0. Therefore, 
those configurations for which both links are not attached to A0 can be 
ruled out, and this leaves 153C2 – 136C2 = 2448 valid configurations to 
choose from. 

We applied the SCR scheme to the 2448 candidate networks using 
100,000 samples, it took 341 seconds on a 2.8GHz Pentium 4 machine to 
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find the optimal network as shown in Fig. 13. The optimal network has a 
failure probability of 1.2485�10–4. Intuitively, one might place the two 
links connecting A0 to its nearest core routers C3 and C4 as shown in 
Fig. 14. However, the intuitive network has a failure probability of 
1.1069�10–3, almost nine times that of the optimal network. It shows that 
spending a little time on searching for the optimal configuration can have 
significant benefits. 

Table 11. Link reliabilities 

Link Core–core Access–Core Access–Access Wireless links 
Reliability 0.9999 0.999 0.999 0.99 
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Fig. 13. Optimal network with two added links 
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Fig. 14. Intuitive way to add two links 
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Direct reliability comparison using the SCR scheme is effective when the 
number of candidates is small, however, it not practical to compare large 
number of networks even with the efficient SCR scheme. For example, 
there are 585,276 candidate networks if we want to add three links to the 
network in Figure 12. It quickly grows to nearly 22 million candidates if 
four links are to be added. Obviously we need a different approach to the 
problem and the CE-method is a good one. 

The first step in the CE method is to generate random network according 
to some random mechanism. One such mechanism involves drawing with-
out replacement. Imagine that each additional link is present in a lucky 
draw barrel from which we draw a fixed number of links to build our net-
work. Initially, each link has an equal weight/probability of being picked. 
As the CE method progresses, the selection probabilities of the links are 
being modified until each one is close to either 0 or 1. 

Let w = (w1,…,wm) denote the weight vector, with we 	2[0,1] being the 
weight of edge e. If B represents the set of edges still in the barrel, then the 
probability of edge i being picked is  

 .i

e
e B

w

w
	
�

 

The edges are drawn without replacement until the required number of 
edges is reached. The weights are updated at the end of each iteration of 
the CE method.  Each weight we is increased if edge e is more likely to be 
involved in the high scoring networks or decreased otherwise. At the end 
of the CE optimization, we will be close to either 1 (part of the optimal net-
work) or 0 (not part of the optimal network). 

The second part of the CE-method concerns updating the random network 
generation parameters we. It involves taking the best performing (e.g. 5%) 
random networks generated and finding which links are more likely being 
involved. 

To find the elite portion of the candidate networks, one can extend the 
SCR scheme to search the top � portion instead of just the best network. 
For each permutation +, order the K candidate networks in ascending criti-
cal number.  Then find the %��K"-th number and call it the elite critical 

3.6.3 CE Method 

3.6.3.1 Random Network Generation 

3.6.3.2 Updating Generation Parameters 
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number b�(+). With N random permutations, we can estimate the probabil-
ity of network 4i in the elite � portion by 

 . /
. / . /) *( ) ( )
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The elite network set 4� consists of the %��K" networks that have the high-
est P�(4i). Once we have the elite network set, we can update each edge 
weight by finding the probability of the edge being used in the elite net-
works, that is, 

 
) *

.
i

i
e

I e
w

�
�

	

	
N � �

G G

G

G
 

It is often beneficial to “smooth” the parameter update by incorporating 
part of the past history, especially when dealing with a noisy optimization 
problem. Let wt be the weight vector used in the t-th iteration of the CE-
method. A smoothing parameter �2	2[0,1] is used to update the weight for  
the next iteration: 
 1 (1 ) .t t t� �� N� � �w w w  

Putting the sample generation and updating together, the CE-method algo-
rithm can be summarized as follows: 

Algorithm 3 (Simple CE Algorithm) 

1. Initialization. Set all edge weight to equal value w0,e = 0.5. 
2. Generation. Generate K (e.g. 1000) random networks by drawing ma 

additional edges from the candidate edges without replacement. 
3. Elite Networks. Rank the random networks using the SCR scheme to 

find the best � portion (e.g. 5%) for edge weight update. 
4. Updating. Update the edge weight by 

) *
1, , (1 ) .

i

i
t e t e

I e
w w
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G

G
 (26) 

5. Termination. Repeat from Step 2 until every element in wt lies in the 
ranges [0,0.01] or [0.99,1], say. The ma edges with we 	2[0.99,1] are 
the optimal edges to be added. 

Example 11 

In this example, three links are to be added to the base network in Fig. 12 
and the result is shown in Fig. 15. 
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Fig. 15. Optimal network with three added links 

Fig. 16. Evolution of edge weights 

In each iteration, K = 1000 random networks are generated and �2= 5% or 
50 elite networks are used to update the edge weights. The smoothing pa-

50 100 150
0

0.2

0.4

0.6

0.8

1

E
dg

e 
w

ei
gh

t

Iteration 4

50 100 150
0

0.2

0.4

0.6

0.8

1

E
dg

e 
w

ei
gh

t

Iteration 9

50 100 150
0

0.2

0.4

0.6

0.8

1

Edge #

E
dg

e 
w

ei
gh

t

Iteration 14

50 100 150
0

0.2

0.4

0.6

0.8

1

Edge #

E
dg

e 
w

ei
gh

t

Final weights

 



Applications of the Cross-Entropy Method in Reliability      77 

rameter of �2= 0.5 is used and 5000 random permutations are used to find 
the elite network set. It took 19 iterations and 142 seconds on a 2.8GHz 
Pentium 4 machine to find the optimal configuration. Fig. 16 shows how 
the edge weights evolve over the iterations. It shows how the weights of 
the prospective links grow while the others decay toward zero. Eventually, 
the weights become “degenerate”, so that the edge weights of the optimal 
edge set stay at 1 while the remaining ones stay at 0. 
This program was also used to find the optimal configuration for the two 
added links case.  The same configuration as in Fig. 13 was found in 15 it-
erations using 105 seconds on the same machine using the same CE pa-
rameters.  It demonstrates that the CE-method is an efficient and effective 
approach to finding the optimal configuration. 

Algorithm  3 described above is tailored to finding a single optimal solu-
tion. If there is more than one solution, the algorithm has trouble deciding 
which one is better and as a consequence the weights “oscillate” and this 
keeps the algorithm from converging. Another situation where this occurs 
is when there are networks with performances that are very close to the op-
timal one. 

Consider for instance in the previous examples the case where only one 
link is to be added to reconnect the network. There are 17 ways to recon-
nect node A0 to the rest of the network and each resultant network has ex-
actly the same reliability. In this multiple optima situation, the Simple CE 
algorithm above will not converge.  

One way to avoid the non-converging situation in the Simple CE algorithm 
is to terminate the algorithm once oscillating behavior is detected. In the 
case where the candidate networks have the same reliability and are per-
fectly matched, the SCP ranking scheme can detect the non-converging 
situation effectively, unlike independent sampling schemes, which will 
have real trouble telling whether two networks have the same reliability. If 
each of the N (e.g. 5000) samples indicates that every network comes up at 
exactly the same point, it is quite certain that all the K networks indeed 
have the same reliability. In that case the CE-method can stop and take the 
distinct networks as multiple optimal solutions. 

Take the single additional link example described above using K = 1000 
networks in each iteration and take N = 5000 samples to estimate the rank-

3.6.4 Hybrid Optimization Method 

3.6.4.1 Multi-optima Termination 
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ing. After 18 iterations that took 97 seconds, all the networks appeared to 
have the same reliability and the program finished. Among the 1000 gen-
erated networks, only 17 distinct networks exist and they are the 17 possi-
ble optimal solutions. 

In the situation where only one single optimal solution exists but there are 
other networks with reliabilities very close to the optimal, the Multi-
optima Termination method may not work. One may try to terminate a 
prolonged simulation by detecting edge weight fluctuations, but unfortu-
nately sometimes edge weight fluctuation before converging is part of the 
normal process. Therefore it is not easy to decide how long one should 
wait before the simulation is deemed to be non-converging. Even if it can 
be detected, it still does not help in searching for the optimal solution. 

A more practical approach is to stop the CE iterations once the number 
of prospective links drops below a certain threshold, and then generate all 
the candidate networks using the prospective links and search for the opti-
mal network using the SCR scheme. Since the edge weights will be polar-
ized (close to either 0 or 1) in the CE-method, prospective links are simply 
those that have higher than the mean weight. Effectively, the CE-method is 
used as a filter removing those edges that are unlikely to be part of the op-
timal network.  

To demonstrate how the scheme works, we repeat the two additional 
link examples with a much smaller sample size. Instead of 5000 samples, 
100 were used to rank the 1000 generated networks. With such small num-
ber of samples, the confidence of the ranks is much reduced or, in other 
words, there is much more noise in the elite estimates. There is a high 
chance that the confidence intervals of top few candidate networks overlap 
each other. Therefore the algorithm is more likely to oscillate or even pick 
a sub-optimal solution if let to run indefinitely. However, we set the pro-
gram to switch to SCR scheme when the number of candidate links drop 
below 15. Then 100,000 samples are used to search for the optimal con-
figuration.  The algorithm took eight iterations to filter out 140 of the 153 
possible links and overall took 17 seconds to decide the optimal configura-
tion is to add (A0, A11) and (A0, A7) links as shown in  Fig. 13. Compare 
to 341 seconds required by the SCR algorithm alone, this hybrid scheme is 
much more robust and efficient. We applied the same scheme to the three 
additional link example with the switch-over point set to 10 links or below. 
The simulation took 21 seconds to find the same optimal solution depicted 
in Fig. 15. 

To summarize, the Hybrid procedure is as follows: 

3.6.4.2 Mode Switching 
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Algorithm 4 (Hybrid CE Algorithm) 

1. Initialization. Set all edge weight to an equal value w0,e = 0.5. 
2. Generation. Generate K (e.g. 1000) random networks by drawing ma 

additional edges from the candidate edges without replacement. 
3. Elite Networks. Rank the random networks using the SCR scheme to 

find the best � portion (e.g. 5%) for edge weight update. 
4. Multi-optima Condition. Check if all generated networks have iden-

tical reliability. If yes, output distinct networks and terminate proce-
dure. 

5. Mode Switching. If the number of prospective links drops to or below 
a threshold mp, generate all candidate network using the prospective 
links and use SCR to search for the optimal network. Output the opti-
mal network and terminate the procedure. 

6. Updating. Update the edge weight using Equation (26). 
7. Termination. Repeat from Step 2 until every element in wt lies in the 

ranges [0,0.01] or [0.99,1]. The ma edges with we in the [0.99,1] range 
are the optimal edge set to be added. 

To compare the different schemes, the examples of 1, 2 and 3 additional 
links are re-run with more comparable parameters. For the SCR scheme, 
500,000 samples are used to compare different networks. In the CE-
methods, each iteration uses 10,000 samples to compare 1000 generated 
networks. The elite portion is set to 5% and a smoothing factor of 0.5 is 
used as well. With the Hybrid CE algorithm, the CE parameters are the 
same as for the Simple CE except a sample size of 1000 is used.  The 
maximum prospective link is set so that the prospective network count is 
no more than 100.  Once the threshold is reached, the prospective networks 
are generated for a final comparison using SCR with 500,000 samples. The 
average run-time in seconds are tabulated in Table 12.  

Table 12. Comparison of different schemes 

 1-Link 2-Link 3-Link 
SCR scheme 16s 1572s n/a 
Simple CE non-converging 234s 288s 
Hybrid CE 18s 56s 53s 

 
In the 1-Link case, which has 17 multiple optimal solutions, the Simple CE 
algorithm does not converge and will run indefinitely if allowed. The SCR 

3.6.5 Comparison Between the Methods 
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scheme quickly determined that the 17 candidate networks have the same 
reliability. Note that in this case the SCR scheme is a semi-automatic proc-
ess. It requires manual filtering of the candidate networks that will not re-
connect the node A0. If all possible candidates were used in the compari-
son, it would take 102 seconds. With the Hybrid CE algorithm, it took only 
2 seconds to filter out the 136 candidates and another 16 seconds to find 
out that the remaining 17 networks have the same reliability. It is a fully 
automatic process without the need of manual filtering. 

In the 2-Link case, there are 2448 networks to compare for the SCR 
scheme and it takes a fairly long time (over 25 minutes) to finish. On the 
other hand, the Simple CE algorithm converges to the optimal solution in 
less than 4 minutes. The Hybrid CE algorithm is able to cut the computa-
tion time by 75% to less than 1 minute. This is achieved by switching 
about half-way during the iterations and uses the SCR scheme to compare 
a small number of prospective candidates.  

In the 3-Link case, the SCR method was not performed because it would 
have taken too long. Since the number of valid network grows exponen-
tially with the added links, the 3-Link example is projected to take over 30 
hours to compute using the SCR scheme. The Simple CE and the Hybrid 
CE algorithms behave similar to the 2-Link case. It is interesting to note 
that the Hybrid CE algorithm is faster in the 3-Link case than the 2-Link 
case. This is due to quantization of combinations: the three highest 2-Link 
combinations under 100 are {91, 78, 55} while that of the 3-Link case are 
{84, 56, 35}. In fact at the point of switch over, the 2-Link case has an av-
erage of 67 networks to compare while the 3-Link case has 48. 
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Plenty of optimization meta-heuristics have been designed for various 

purposes in optimization. They have also been extensively implemented in 

reliability engineering. For example, Genetic Algorithm (Coit and Smith, 

1996), Ant Colony Optimization (Liang and Smith, 2004), Tabu Search 

(Kulturel-Konak, et al., 2003), Variable Neighbourhood Descent (Liang and 

Wu, 2005), Great Deluge Algorithm (Ravi, 2004), Immune Algorithm 

(Chen and You, 2005) and their combinations (hybrid optimization tech-

niques) exhibited effectiveness in solving various reliability optimization 

problems.  

As proved by Wolpert and Macready (1997), no meta-heuristic is versa-

tile, which could always outperform other meta-heuristics in solving all 

kinds of problems. Therefore, inventing or introducing new, good optimi-
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zation approaches can be very helpful in some specific areas and benefit 

practitioners with more options.  

Since the hybrid optimization technique becomes another promising di-

rection, combining existing tools with new ones may produce robust and 

effective solvers. This consideration also encourages researchers to seek 

novel optimization meta-heuristics. 

This chapter presents applications of a new Particle Swarm Optimization 

(PSO) meta-heuristic for single- and multi-objective reliability optimization 

problems. 

Originally developed for the optimization of continuous unconstrained 

functions, PSO did not attract much attention from the reliability commu-

nity because most reliability optimization problems are of discrete nature 

and have constraints. However, in this chapter we show that properly 

adapted PSO can be an effective tool for solving some discrete constrained 

reliability optimization problems. 

PSO is a population-based stochastic optimization technique invented by 

Kennedy and Eberhart (Eberhart and Kennedy, 1995, Kennedy and Eber-

hart, 1995). PSO was originally developed to simulate the behavior of a 

group of birds searching for food in a cornfield. The early versions of the 

particle swarm model were developed for simulation purposes only. Later it 

was discovered that the algorithms were extremely efficient when opti-

mizing continuous non-linear unconstrained functions. Due to its easy im-

plementation and excellent performance, PSO has been gradually applied to 

many engineering fields in the last several years. Various improvements and 

modifications have been proposed and adapted to solve a wide range of 

optimization problems (Hu, et al., 2004). 

 

4.2 Description of PSO and MO-PSO 
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PSO is similar to Genetic Algorithm (GA) in that the system is initialized 

with a group of I random particles (solutions) and each particle Xi (1�i�I) is 
represented by a string (vector of coordinates in the space of solutions): 

 However, it is unlike GA in that a randomized ve-

locity  is assigned to each particle i and new solutions 

in every PSO iteration are not generated by crossover or mutation operators 

but by the following formula: 

}.1,{ DdxX idi ���

}1,{ DdvV idi ���

)(())(() xprandcxprandcvwv 2211 idndidididid ����������   (1) 

ididid vxx ��             (2) 

Eq. (1) calculates a new velocity for each particle i  based on its previous 

velocity vid, the location at which it achieved the best fitness so far p id, and 

the neighbor's location p nd at which the best fitness in a neighborhood has 

been achieved so far.  Eq. (2) updates the position of the particle in the 

problem space.  In this equation, rand1() and rand2() are two random 

numbers independently generated, c1 and c 2 are two learning factors that 

control the influence of pid and pnd on the search process. The weight w is the 

particle inertia that prevents it from making undesired jumps in the solution 

space. 

It can be learned from Eq. (1) that each particle is updated by the fol-

lowing two "best" values. The first one is the best solution pBest a particle 

has achieved so far. The second one is the best solution nBest that any 

neighbor of a particle has achieved so far. The neighborhood of a particle is 

defined as a fixed subset of particles in the population. When a particle takes 

the entire population as its neighbors, the best neighborhood solution be-

comes the global best (gBest). 

The process of implementing the PSO is as follows: 

1. Initialize the particle population (position and velocity) randomly.  

2. Calculate fitness values of each particle. 

 

4.2.1 Basic Algorithm 



86

3. Update pBest for each particle: if the current fitness value is better than 

pBest, set pBest to current fitness value. 

4. Update nBest for each particle: set nBest to the particle with the best 

fitness value of all neighbors. 

5. Update particle velocity/position according to equation (1) and (2).  

6. If stop criteria is not attained, go back to step 2. 

7. Stop and return the best solution found. 

It can be learned from the particle update formula that particles search for 

better solutions by learning from their own and their neighbors’ experi-

ences. The two equations, Eq. (1) and (2), are the core part of the PSO al-

gorithm. The parameters used in the formula will determine the perform-

ance of the algorithm.  

The learning factors c1 and c2 in Eq. (1) represent the weights of the sto-

chastic acceleration terms that pull each particle toward pBest and nBest 

positions. From a psychological standpoint, the second term in Eq. (1) 

represents cognition, or the private thinking of the particle (tendency of in-

dividuals to duplicate past behavior that have proven successful) whereas 

the third term in Eq. (1) represents the social collaboration among the 

particles (tendency to follow the successes of others).  

Both c1 and c2 were set to 2.0 in initial PSO works (Eberhart and 

Kennedy, 1995, Eberhart and Shi, 1998). The obvious reason is it will make 

the search, which is centered at the pBest and nBest, cover all surrounding 

regions. Clerc (Clerc, 1999) introduced the constriction coefficient, which 

might be necessary to ensure convergence of PSO. c1 = c2 = 1.49445 is also 

used according to the work by Clerc (Eberhart and Shi, 2001b) 

In most cases, the learning factors are identical, which puts the same 

weights on cognitive search and social search. Kennedy (Kennedy, 1997) 

investigated two extreme cases: a cognitive-only model and a social-only 
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model, and found out that both parts are essential to the success of particle 

swarm search.   

In the original version of particle swarm, there was no inertia weight. Inertia 

weight w was first introduced by Shi and Eberhart (Shi and Eberhart, 1998). 

The function of inertia weight is to balance global exploration and local 

exploitation. Linearly decreasing inertia weights were recommended. Clerc 

(Clerc, 1999) introduced the constriction coefficient and suggested it to 

ensure convergence of PSO. Randomized inertia weight is also used in 

several reports (Eberhart and Shi, 2001b, Hu and Eberhart, 2002c, Hu and 

Eberhart, 2002b, Hu and Eberhart, 2002a). The inertia weight can be set to 

[0.5 + (rand1/2.0)], which is selected in the spirit of Clerc's constriction 

factor (Eberhart and Shi, 2001a).  

Particles' velocities are clamped to a maximum velocity Vmax, which serves 

as a constraint to control the global explosion speed of particles. It limits the 

maximum step change of the particle, thus adjusting the moving speed of 

the whole population in the hyperspace. Generally, Vmax is set to the value 

of the dynamic range of each variable, which does not add any limit. If 

Vmax is set to a lower value, it might slow the convergence speed of the 

algorithm. However, it would help to prevent PSO from local convergence.  

As mentioned before, nBest is selected from a neighborhood. The 

neighborhood of a particle is usually pre-defined and does not change dur-

ing iterations. The neighborhood size could vary from 1 to the maximum 

number of solutions in the population. This size affects the propagation of 

information about the best particle in the group. The bigger the neighbor-

hood size, the faster the particles can learn from the global best solutions. In 

an extreme case, the global version of PSO, every particle knows every 

other particles’ movements and can learn that within one step, making PSO 

 

4.2.2.2 Inertia Weight 

4.2.2.3 Maximum Velocity 

4.2.2.4 Neighborhood Size 
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converge very fast. However, it also causes premature convergence that can 

be avoided by the injection of new solutions. Small neighborhood size may 

prevent premature convergence at the price of slowing the convergence 

speed.  

The PSO terminates when the pre-specified number of iterations has been 

performed or when no improvement of gBest has been achieved during a 

specified number of iterations. 

Some studies that have reported the extension of PSO to constrained opti-

mization problems (El-Gallad, et al., 2001, Hu, et al., 2003a, Hu and Eber-

hart, 2002a,  Parsopoulos and Vrahatis, 2002, Ray and Liew, 2001). The 

goals of constrained optimization problems are to find the solution that op-

timizes the fitness function while satisfying a set of linear and non-linear 

constraints. The original PSO method needs to be modified in order to 

handle those constraints. 

Hu and Eberhart (Hu and Eberhart, 2002a) introduced an effective 

method to deal with constraints based on a preserving feasibility strategy. 

Two modifications were made to the PSO algorithm: First, when updating 

the pBest values, all the particles consider only feasible solutions; Second, 

during the initialization process, only feasible solutions form the initial 

population. Various tests show that such modification of the PSO outper-

forms other evolutionary optimization techniques when dealing with opti-

mization problems with linear or nonlinear inequity constraints (Hu, et al., 

2003a, Hu and Eberhart, 2002a). The disadvantage of the method is that the 

initial feasible solution set is sometimes hard to find.  

El-Gallad (El-Gallad, et al., 2001) introduced a similar method. The 

only difference is that when a particle gets outside of feasible region, it is 

reset to the last best feasible solution found for this particle. He, et al. (He, et 

al., 2004) reset the particle to a previous position instead of the last best 
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feasible solution. However, if there are several isolated feasible regions, 

particles may be confined in their local regions with above approaches. 

Parsopoulos, et. al (Parsopoulos and Vrahatis, 2002) converted the 

constrained optimization problem into a non-constrained problem by using 

a non-stationary multi-stage penalty function and then applied PSO to the 

converted problems. It was reported that the obtained PSO outperformed 

Evolution Strategy and GA on several benchmark problems (Parsopoulos 

and Vrahatis, 2002). 

Ray, et al. (Ray and Liew, 2001) proposed a swarm metaphor with a 

multilevel information sharing strategy to deal with optimization problems. 

It is assumed that there are some better performers (leaders) in a swarm that 

set the direction of the search for the rest of the particles. A particle that does 

not belong to the better performer list (BPL) improves its performance by 

deriving information from its closest neighbor in BPL. The constraints are 

handled by a constraint matrix. A multilevel Pareto ranking scheme is im-

plemented to generate the BPL based on the constraint matrix. In this case, 

the particle should be updated using a simple generational operator instead 

of the regular PSO formula. Tests of such PSO modifications have showed 

much faster convergence and much lower number of function evaluations 

compared to the GA approach (Ray and Liew, 2001) 

The above mentioned works have showed that modified PSO can 

successfully handle linear or non-linear constraints.  

Multi-objective optimization addresses problems with several design ob-

jectives. In multi-objective optimization (MO) problems, objective func-

tions may be optimized separately from one another and the best solution 

may be found for each objective. However, the objective functions are often 

in conflict among themselves and a Pareto front represents the set of optimal 

solutions. The family of solutions of a multi-objective optimization problem 

is composed of all those potential solutions such that the components of the 

corresponding objective vectors cannot be all simultaneously improved 

(concept of Pareto optimality). The Pareto optimum usually gives a group of 
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solutions called non-inferior or non-dominated solutions instead of a single 

solution. 

The traditional way of handling MO problems is to convert them to 

single objective problems by using weights. Multiple optimal solutions 

could be obtained through multiple runs with different weights. However, 

methods that find groups of Pareto optimal solutions simultaneously can 

save time and cost.  

In PSO, a particle searches the problem space based on its own (pBest) 

and its peers’ (nBest) experience. Both cognitive and social terms in Eq. (1) 

play crucial roles in guiding the search process. Thus, the selection of the 

cognitive and social leader (pBest and nBest) are key points of MO-PSO 

algorithms. The selections should satisfy two rules: first, it should provide 

effective guidance to the particle to reach the most promising Pareto front 

region; second, it should provide a balanced search along the Pareto front to 

maintain the population diversity. 

The selection of cognitive leader (pBest) is almost the same as in the 

original PSO (Hu, et al., 2003b, Hu and Eberhart, 2002b). The only dif-

ference is that the comparison is based on Pareto optimality (pBest is up-

dated only if the new solution dominates all solutions visited by the particle 

so far). 

The selection of the social leader (nBest) consists of two steps. The first 

step is to define a candidate pool from which the leader is chosen, and the 

second step is to define the process of choosing the leader from the candi-

date pool. Usually the candidate pool is the collection of all particles’ pBest 

positions or an external repository that includes all the Pareto optimal so-

lutions found by the algorithm. For the selection procedure, two typical 

approaches have been suggested in the literature:  

1. In the roulette wheel selection scheme approach (Coello Coello, et al., 

2004, Coello Coello and Lechuga, 2002, Li, 2003, Ray and Liew, 2002),  

all candidates are assigned weights based on some criteria (such as 

crowding radius, crowding factor, niche count or other measures). The 

general rule is to distribute the particles evenly. If there are too many 

particles in a small region, the region is considered to be crowded, and the 

particles belonging to the crowd region have less chance to be selected. 
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Thus they do not attract particles to this region anymore. Then, random 

selection is used to choose the social leader. In this scheme, selection for 

a candidate is stochastic and proportional to the weights. This technique 

aims the process at maintaining the population diversity. 

2. In the quantitative standard approach, the social leader is determined by 

some procedure without any random selection involved, such as dynamic 

neighborhood (Hu, et al., 2003b, Hu and Eberhart, 2002b), sigma 

distance (Mostaghim and Teich, 2003), dominated tree (Fieldsend and 

Singh, 2002), and etc. 

Nowadays, considerable effort is concentrated on optimal system design 

that balances system reliability, cost and performance. Many systems per-

form their intended functions at multiple levels, ranging from perfectly 

working to completely failed. These kinds of systems are called multi-state 

systems.  

In the case of a multi-state system, the concept corresponding to that of 

reliability in a binary system is state distribution. Having the system state 

distribution, one can determine its reliability as a probability of being in 

acceptable states and its expected performance named system utility (Aven, 

1993).  

There are two ways to improve the system reliability or utility: First, to 

provide redundancies of components at each subsystem; Second, to improve 

the component’s performance/reliability, such as allowing a component to 

have more chances to stay at better states or allocating more test resources 

on the component for reliability growth (Dai, et al., 2003). Finding an op-

timal balance between these two factors is a classical reliability allocation 

problem that has been studied in many works (Hikita, et al., 1992, Prasad 

and Kuo, 2000, Tillman, et al., 1977) from different aspects and by various 

methods.  

 

4.3 Single-Objective Reliability Allocation 
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In this section, PSO has been tested on a single objective reliability al-

location problem and then compared with GA that has been carefully tuned 

by Tian et al. (2005).  

A multi-state series-parallel system consists of N subsystems connected in 
series. Each subsystem i has  identical components connected in paral-

lel, as depicted in Fig. 1.  
in

Sub-i

in

Sub-1

1n

Sub-2

2n

Sub-N

Nn

 

Fig. 1. Series-Parallel System 

The components and the system have M +1 possible states: 0, 1, …, M. 

The states of the components in a subsystem are independent. The prob-

ability that the component belonging to subsystem i is in state j is pij. Since 

the com s states compose the complete group of mutually exclusive 

0

ponent'

events �� 1
�

M

ijp . Therefore the state distribution of any element i is deter-

mined b

j

y M probabilities pij for 1�j�M and pj0=1-�
M

�

 some subsystems or by changing the component state 

j
ijp

1
. 

The system behavior can be improved by changing the number of parallel 

components in

distribution.  

Two types of decision variables are of concern in the reliability allocation 

problem: real numbers pij (1�i�N, 1�j�M) representing state distribution of 
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the components in each subsystem i, and integer numbers ni (1�i�N) rep-
resenting the number of compone

o

nts in each subsystem i. The total number 

f decision variables is NM+N.  

 

 that a multi-state series-parallel sys-

tem is in state s or above in the form 
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one can obtain the multi-state system utility U as 

In the optimization problem, the system utility should be maximized 

whereas its total cost should be limited within the given budget C0. The 

system utility represents the expected performance of multi-state systems. It 

is assumed that certain utility (performance) value us corresponds to any 

system state s. Having the probability
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gested by Tillman, et al. (1977) which for sub-
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The cost model used in Tian, et al. (2005) adopts the cost-reliability 

relationship function sug
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i�  are constants representing the inherent characteristics of components in 
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subsystem i, and t is the operating time during which the component should 

not fail.  

Eqs. (6) and (7) were adapted to fit the multi-state system model as 

follows: the cost of component i as a function of its state distribution is 
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where  is the maximum allowed system cost (budget). 0C
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The multi-state series-parallel system considered by Tian et al. (2005) 

contains three subsystems connected in series. Any individual component 

and the entire system can have one of three states. The values of system 

utility us corresponding to its states are u0=0, u1=0.5, u2=1.0. The cost 

function parameters are presented in Table 1. The system operating time is  

t 1000. 

Table 1. Cost function characteristic constants  

Subsystem i ai1 ai2 �i1 �i2

1 1.5E-5 4E-5 1.2 1.5
2 0.9E-5 3.2E-5 1.2 1.5 
3 5.2E-5 9E-5 1.2 1.5 

 

This problem was solved by GA in Tian, et al. (2005) using the 

physical programming framework. The optimal solution obtained by GA is 

shown in Table 2.  

In order to compare the PSO results with results presented in Tian et al. 

(2005), C0 was set to 89.476. The following PSO parameters were chosen: 

the population size of 40, the neighborhood size of 3. Maximum velocity 

was set to 20% of the dynamical range of the variables, the reason to choose 

a smaller maximum velocity is to control the convergence speed of the 

swarm. Learning factors c1 and c2 are set to 1.49445. The inertia weight w 

was set to [0.5 + (rand1/2.0)] as mentioned in previous section. The number 

of iterations was 10000. 

The best solution achieved by the PSO is shown in Table 2. This solution 

provides greater utility than one obtained by the GA with the same budget. 

The distribution of solutions obtained in 200 runs of the PSO with popula-

tion size of 20 is shown in Table 2. The best result over 200 runs is 

U=0.9738, the worst one is U=0.9712, the average is U=0.9734 and the 

standard deviation is 0.000515.  The mean value obtained by the PSO runs 

is the same as the best solution obtained by the GA. 
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Table 2. Comparison of the best solutions achieved by PSO and GA 

 Genetic Algorithm Particle Swarm Optimization 

Subsystem i 1 2 3 1 2 3 
pi1 0.2030 0.2109 0.2100 0.2124 0.2208 0.2042 
pi2 0.4200 0.4300 0.4000 0.4579 0.4712 0.4066 
ni 8 8 7 7 7 7 

System Utility 0.9734 0.9738 
System Cost 89.476 89.476 

The classical redundancy allocation problem belongs to the type of integer 

optimization problems. Many algorithms have been developed to solve the 

problem, including the GA (Coit and Smith, 1996), Ant Colony Optimiza-

tion (Liang and Smith, 2004), Tabu Search (Kulturel-Konak, et al., 2003), 

Immune Algorithm (Chen and You, 2005), and Specialized Heuristic (You 

and Chen, 2005).  

A system contains N subsystems connected in series. Each subsystem can 

contain multiple binary components connected in parallel (Fig. 1). Com-

ponents composing each subsystem i can be different. They can be chosen 

from a list of Mi options. Different types of component are characterized by 

reliability, cost and weight. A subsystem fails if all its components fail. The 

entire system fails if any subsystem fails. 

The system structure in this problem is defined by integer numbers of 

components selected from the corresponding lists. The element Aij of the set 

of decision variables A = {Aij, 1�i�N, 1�j�Mi} determines the number of 

 

4.4 Single-Objective Redundancy Allocation  

4.4.1 Problem Formulation  

4.4.1.1 Assumptions 

4.4.1.2 Decision Variable 
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components of type j included in subsystem i. The total number of decision 

variables in the set A  is . �
�

N

i
iM

1

The general objective in this problem is to maximize the system reliability R 

subject to constraints on the total system cost and weight. Suppose the 
component of type j in subsystem i  has reliability , cost , and 

weight . For the given set of chosen components A,  the system re-

liability, cost and weight can be obtained by 
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The optimization problem can be formulated as follows: 
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where C0 and W0 are maximal allowed system cost and weight, and Ki is a 

maximal allowed number of components in subsystem i. 
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The Fyffe, et al. problems as devised by Nakagawa & Miyazaki (1981) are 

used for comparison among different algorithms. The results of this com-

parison can be found in chapter 1 of this book. PSO has been tested on the 

first 12 problems (W=191 to 180). For each problem the results of 100 runs 

were obtained. The worst, best and average results over 100 runs are shown 

in Table 3. It can be seen that PSO performs very poor compared to the 

algorithm by You & Chen (2005). PSO just slightly outperforms the random 

search algorithm running for the same time (the best PSO results are slightly 

better than the results of random search whereas the worst PSO results are 

even worse than the worst random search results).   

 
Table 3. Results from PSO and Random Search 

W PSO Worst Rand Worst PSO Mean Rand Mean PSO Best Rand Best Y&C-05 

191 0.96918  0.97413  0.97792 0.97711 0.98209 0.97916  0.98681  
190 0.96900  0.97342  0.97772 0.97605 0.98238 0.97859  0.98642  
189 0.97017  0.97137  0.97673 0.97494 0.98214 0.97783  0.98592  
188 0.96668  0.97153  0.97570 0.97467 0.98121 0.97773  0.98538  
187 0.96812  0.96923  0.97480 0.97340 0.98047 0.97574  0.98469  
186 0.96554  0.96963  0.97344 0.97356 0.97974 0.97654  0.98418  
185 0.96594  0.96879  0.97201 0.97149 0.97984 0.97627  0.98350  
184 0.96562  0.96803  0.97163 0.97168 0.97846 0.97554  0.98299  
183 0.95826  0.96706  0.97032 0.96951 0.97802 0.97163  0.98226  
182 0.95713  0.96556  0.96960 0.96872 0.97538 0.97072  0.98152  
181 0.95800  0.96347  0.96793 0.96745 0.97416 0.97063  0.98103  
180 0.96030  0.96334  0.96696 0.96684 0.97374 0.96854  0.98029  

 

The major reason why PSO has such a poor performance is due to the 

regular coding scheme of particles. There are poor correlations among 

neighbors in the solutions space. The main assumption of PSO is that the 

neighbors of a good solution are also good. However, it is not true in the 

considered redundancy allocation problem.  

 

4.4.2 Numerical Comparison 
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Optimization 

Voting systems are widely used in human organization systems as well as in 

technical decision making systems. The weighted voting systems (WVS) 

are generalizations of the voting systems. The applications of WVS can be 

found in imprecise data handling, safety monitoring and self-testing, 

multi-channel signal processing, pattern recognition and target detection, 

etc. (Levitin, 2005a). 

A WVS makes a decision about propositions based on the decisions of n 

statistically independent individual units of which it consists (for example, 

in target detecting system speed detectors and heat radiation detectors pro-

vide the system with their individual decisions without communicating 

among themselves). Each proposition is a priori right or wrong, but this 

information is available for the units in implicit form. Therefore the units 

are subject to the following three errors: 

1. Acceptance of a proposition that should be rejected (fault of being too 

optimistic), 

2. Rejection of a proposition that should be accepted (fault of being too 

pessimistic), 

3. Abstaining from voting (fault of being unavailable or indecisive). 

This can be modeled by considering system input I being either 1 (proposi-

tion to be accepted) or 0 (proposition to be rejected), which is supplied to 

each unit. Each unit j produces its decision (unit output) dj(I) which can be 1, 

0 or x (in the case of abstention). Inequality dj(I)PI means that the decision 
made by the unit is wrong. The listed above errors can be expressed as  

1. dj(0)=1 (unit fails stuck-at-1), 

2.  dj(1)=0 (unit fails stuck-at-0), 

3.  dj(I)=x (unit fails stuck-at-x). 

Accordingly, reliability of each unit j can be characterized by probabilities 

of these errors: q01
(j) for the first one, q10

(j) for the second one, q1x
(j) and q0x

(j) 

 

4.5 Single Objective Weighted Voting System 

4.5.1 Problem Formulation 
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for the third one (stuck-at-x probabilities can be different for inputs I=0 and 

I=1). 

Each voting unit j has two weights that express its relative importance 

in the WVS: "negative" weight w0
j, which is assigned to the unit when it 

votes for the proposition rejection, and "positive" weight w1
j, which is as-

signed to the unit when it votes for the proposition acceptance. To make a 

decision about proposition acceptance, the system incorporates all the unit 

decisions into a unanimous system output D. The proposition is rejected by 

the WVS (D(I)=0) if the total weight of units voting for its acceptance is less 

than a pre-specified fraction � of total weight of not abstaining units (� is 
usually referred to as the threshold factor). The WVS abstains (D(I)=x) if all 

of its voting units abstain. 

The system fails if D(I)PI. The entire WVS reliability can be defined as 
R=Pr{D(I)=I}. One can see that the system reliability is a function of reli-

abilities of units it consists of. It also depends on the unit weights and the 

threshold. While the units' reliabilities usually can not be changed when the 

WVS is built, the weights and the threshold can be chosen in such a way that 

maximizes the entire WVS reliability R(w0
1,w

1
1,…, w0

n,w
1
n,�).  

In many technical systems the time when the output (decision) of each 

voting unit is available is predetermined. For example, the decision time of a 

chemical analyzer is determined by the time of a chemical reaction. The 

decision time of a target detection radar system is determined by the time of 

the radio signal return and by the time of signal processing by the electronic 

subsystem. In both these cases, the variation of the decision times is usually 

negligible.  

On the contrary, the decision time of the entire WVS composed from 

voting units with different constant decision times can vary. Indeed, the 

system does not need to wait for decisions of slow voting units, as long, as 

the system can make a correct decision with reliability higher than a 

pre-specified level. Moreover, in some cases the decisions of the slow 

voting units do not affect the decision of the entire system since this 

decision becomes evident after the fast units have voted. This happens when 

the total weight of units voting for the proposition acceptance or rejection is 

enough to guarantee the system decision independently of the decisions of 
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the units that have not voted yet. In such situations, the voting process can 

be terminated without waiting for slow units' decisions, and the WVS de-

cision can be made in a shorter time. 

The number of combinations of unit decisions that allow the entire 

system decision to be obtained before the outputs of all of the units become 

available depends on the unit weight distribution and on the threshold value. 

By increasing the weights of the fastest units one makes the WVS more 

decisive in the initial stage of voting and therefore reduces the mean system 

decision time at the price of making it less reliable.  

Since the units' weights and the threshold affect both the WVS's reli-

ability and its expected decision time, the problem of the optimal system 

tuning can be formulated as follows: find the voting units' weights and the 

threshold that maximize the system reliability R  while providing the ex-

pected decision time T not greater than a pre-specified value T*: 

Maximize  R(w0
1,w

1
1,…, w 0

n,w
1
n,�)          

Subject to: T(w0
1,w

1
1,…, w 0

n,w
1
n,�)�T* 

The method for calculating the WVS reliability and the expected decision 

time T, GA-based procedure for solving the optimization problem (16), was 

suggested in (Levitin 2005b). Here we compare PSO and GA optimization 

techniques on the numerical example presented in (Levitin 2005b). 

Experimentation was performed on a WVS consisting of six voting units 

with voting times and fault probabilities presented in Table 4.  

Both GA and PSO require the solution to be coded as a finite length string. 

The natural representation of a WVS weight distribution is by an 

2n+1-length integer string (s1, …, s2n+1) in which the values in 2j-1 and 2j 

position corresponds to the weights w0
j and w1

j of j -th unit of the WVS and 

the value in position 2n+1 corresponds to the threshold. The unit weights are 

further normalized in such a way that their total weight is always equal to a 

constant. As in (Levitin 2005b), the string elements take values in the range 

[0, 150], and the normalization takes the form: 

 

4.5.2 Numerical Comparison 
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Table 4. Parameters of voting units 

No of unit j tj q01(j) q0x(j) q10(j) q1x(j) 

1 10 0.22 0.31 0.29 0.12 
2 12 0.35 0.07 0.103 0.30 
3 38 0.24 0.08 0.22 0.15 
4 48 0.10 0.05 0.2 0.01 
5 55 0.08 0.10 0.15 0.07 
6 70 0.08 0.01 0.10 0.05 

 

Each new solution is decoded, and its objective function (fitness) value 

is estimated. In order to find the solution of Eq. (16), the fitness function is 

defined as: 

  F = R - �·min(T-T*,0),            (18) 

where � is a penalty coefficient. For solutions with T<T* the fitness of the 
solution depends only on WVS reliability. 

The population size for both PSO and GA was chosen 50. Initial ex-

perimentation with the PSO showed that the best composition of parameters 

is: number of solution update cycles (PSO iterations) N=4500; Vmax=40; 

c1=2; c2=1.5, w linearly decreases as PSO proceeds: w = 0.8+0.4(1-i/N).  

In order to improve the PSO performance and avoid its convergence to 

local optima, in each M-th solution update cycle, the solutions (besides the 

best one in the population), instead of updating, were replaced by new 

randomly generated solutions with probability p.  These new solutions had 

velocity 0. It is similar to the “mutation” operator in Genetic Algorithms, the 

experiments show that “injection of new solutions” improves the perform-

ance and the composition M=100, and p=1/3 gives the best improvement. 

In order to compare PSO with and without injection of random solutions 

the optimal voting unit weights and thresholds were obtained for WVS with 

parameters given in Table 4 and with different values of T*. For each T*, 

100 solutions were obtained (for the same problem) by both modifications 

of the PSO starting with different initial randomly generated sets of solu-
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tions. The average obtained reliability A, the coefficient of variation V of the 

obtained reliability over 100 solutions and the average running time Tr were 

calculated. These indices are presented in Table 5, as well as relative in-

crease of average obtained reliability QA=100�(Ai-A )/A (%), increase in co-

efficient of variation  LV= Vi-V , and relative increase of average running 

time QTr =100� (Tri-Tr )/Tr (%).  

Table 5. Comparison of PSO with and without injection of random solutions 

 No injection Injection Comparison 

T* A V Tr Ai Vi Tri QA LV QTr 
50 0.9498 0.0999 18.20 0.9501 0.0906 18.49 0.023 -0.009 1.593 

48 0.9447 0.1400 18.29 0.9450 0.1313 19.01 0.033 -0.009 3.937 

46 0.9436 0.1761 18.31 0.9440 0.1680 19.05 0.045 -0.008 4.042 

44 0.9377 0.2431 16.28 0.9388 0.0669 17.37 0.110 -0.176 6.695 

42 0.9321 0.7384 14.98 0.9337 0.2244 14.78 0.172 -0.514 -1.335 

40 0.9222 1.2532 10.93 0.9254 0.3576 11.10 0.344 -0.896 1.555 

38 0.9123 1.4015 13.14 0.9155 0.2526 13.20 0.350 -1.149 0.457 

36 0.9053 2.6553 12.96 0.9147 0.2954 14.53 1.033 -2.360 12.114

34 0.9019 2.7998 12.31 0.9128 0.2686 14.09 1.208 -2.531 14.460

32 0.8846 4.3692 9.82 0.9106 0.0604 12.02 2.934 -4.309 22.403

30 0.8734 4.6231 7.05 0.8954 2.8278 8.25 2.515 -1.795 17.021

28 0.8711 3.2375 5.69 0.8834 0.8038 7.04 1.410 -2.434 23.726

26 0.8612 3.1374 4.20 0.8740 1.6292 4.08 1.489 -1.508 -2.857 

 
It can be seen that the PSO with injection of random solutions always 

outperforms the regular PSO. It produces better solutions with less variation 

at the price of 8% increase of running time (on average).  

In order to compare PSO with injection of random solutions with GA, 

100 solutions were obtained by GA starting with different initial popula-

tions (100 seeds) for each one of the optimization problems. The parameters 

of the GA were the same as in (Levitin, 2005b). The results of this com-

parison are presented in Table 6.  
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Table 6. Comparison of PSO and GA results 

GA PSO Comparison 

T* Ag maxg ming Vg Trg Ap maxp minp Vp Trp QA Qmax LV QTr 

50 0.9502 0.9509 0.9478 0.0834 21.34 0.9501 0.9509 0.9466 0.0906 18.49 -0.018 0.0000 0.007 -13.355 

48 0.9450 0.9466 0.9414 0.1661 21.96 0.9450 0.9466 0.9416 0.1313 19.01 0.003 0.0004 -0.035 -13.434 

46 0.9420 0.9444 0.9265 0.2950 14.43 0.9440 0.9444 0.9324 0.1680 19.05 0.221 0.0000 -0.127 32.017 

44 0.9379 0.9392 0.9336 0.1438 15.81 0.9388 0.9392 0.9358 0.0669 17.37 0.095 0.0004 -0.077 9.867 

42 0.9317 0.9349 0.9225 0.3612 11.67 0.9337 0.9349 0.9232 0.2244 14.78 0.217 0.0005 -0.137 26.650 

40 0.9252 0.9276 0.9192 0.3640 12.62 0.9254 0.9276 0.9181 0.3576 11.10 0.019 0.0000 -0.006 -12.044 

38 0.9151 0.9180 0.9103 0.2154 16.15 0.9155 0.9180 0.9091 0.2526 13.20 0.045 0.0003 0.037 -18.266 

36 0.9151 0.9159 0.9040 0.2867 16.74 0.9147 0.9160 0.9029 0.2954 14.53 -0.047 0.0008 0.009 -13.202 

34 0.9130 0.9131 0.9123 0.0128 9.49 0.9128 0.9131 0.8887 0.2686 14.09 -0.020 0.0003 0.256 48.472 

32 0.9107 0.9108 0.9086 0.0250 16.70 0.9106 0.9108 0.9074 0.0604 12.02 -0.013 0.0003 0.035 -28.024 

30 0.9021 0.9036 0.8037 1.1327 12.13 0.8954 0.9037 0.8037 2.8278 8.25 -0.746 0.0049 1.695 -31.987 

28 0.8736 0.8850 0.7950 3.0113 5.86 0.8834 0.8850 0.8214 0.8038 7.04 1.115 0.0000 -2.208 20.137 

26 0.8695 0.8779 0.7460 2.8087 6.27 0.8740 0.8779 0.7893 1.6292 4.08 0.510 0.0010 -1.179 -34.928 

 

For each problem, maximal, minimal and average reliability obtained 

over 100 seeds (max , min and A respectively) are presented in Table 6, as 

well as the coefficient of variation V and average running time Tr (seconds). 

Relative indices QA=100�(Ap-A g)/Ag (%), Qmax=100�(maxp-maxg)/maxg (%), 

LV= Vp-V g and QTr =100� (Trp-Tr g)/Trg (%) are calculated. The comparison 
shows that GA and PSO produce very close results. However, PSO usually 

produces better solutions; the best PSO solutions over 100 seeds are always 

better or the same as the best GA solutions (Qmax�0). The average value of 

QA over all of the problems tested is 0.106%. PSO produces solutions with 

less variation (average value of LV over all of the problems tested is -0.133) 

in less running time (average value of QTr over all of the problems tested is 
-2.16%). 

The difference in variability over all of the test problems between the 

PSO and the GA is shown in Fig. 2. 
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Fig. 2. Range of obtained WVS reliability over 100 seeds with mean 
shown as horizontal dash 

In order to demonstrate PSO’s ability to solve multi-objective optimization 

problems, it was applied to the multi-objective formulation of the reliability 

follows: 
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allocation problem presented in section 4.3. The problem formulation is as 

4.6 Multi-Objective Reliability Allocation 

4.6.1 Problem Formulation 
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where  is the lower bound of the system utility, and  is the upper 

bound of the cost. 
0U 0C

the budget and utility limits were C0=200 and U0=0.75. and. 

 A dynamic neighborhood PSO developed by Hu, et al. (Hu, et al., 2003b, 

Hu and Eberhart, 2002b) was employed to deal with this two-objective 

problem. The system utility was set to be the optimization objective and the 

cost was set to be the neighborhood objective. As mentioned before, the key 

point is to find the cognitive leader and the social leader. The cognitive 

leader (pBest) is updated when the particle is better than the old pBest in 

both system utility and cost values. All the Pareto optimal solutions found 

by PSO form the candidate pool for the selection of social leader nBest. 

First, the differences of cost between the particle and all candidates in the 

pool are calculated, then the particles with closest cost are chosen to be the 

neighbors of the particle, finally the candidate with the greatest system 

utility value became the social leader. Fig. 3 illustrates the selection process. 

The black curve is the final Pareto front. The dots are the current Pareto 

optimal solutions. The circle is a particle. The particle finds several nearest 

Pareto optimal solutions in term of cost as neighbors. Then the neighbor 

with highest utility fitness value is selected to be nBest.  

The general procedure is as follows: 

1. Initialize the population. 

2. Calculate values of each objective function for the particles in the popu-

lation. 

3. For each solution (particle): if the current fitness values of the particle are 

better than any current solution in the Pareto optimal solution archive, 

then put the particle into the archive.  

4. Find the nBest and pBest according to the dynamic neighborhood 

method. 

5. Update particle velocity and position. 

 

The same example problem parameters as in section 4.3 were used while 

4.6.2 Numerical Comparison 
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6. If maximum iteration number is not reached, go back to step 2. 

7. Find all Pareto optimal solutions in the archive and generate solution set.  

 

Fig. 3. Illustration of dynamic neighborhood strategy  

The population size of 20 and neighborhood size of 3 were used in the 

optimization. Maximum velocity was set to 20% of the dynamical range of 

the variables. Learning factors c1 and c2 are set to 1.49445.  

 
Fig. 4. Pareto optimal solutions obtained by MO-PSO 

The inertia weight w was set to [0.5 + (rand1/2.0)] as mentioned in the 

previous section. Number of iterations was set to 10000. The average time 

for each run of the PSO on a HP Pentium IV 2.8GHz personal computer was 

less than 30 seconds. 
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The Pareto optimal solutions obtained from a single PSO run are pre-

sented in Fig. 4. A total of 200 Pareto optimal solutions have been found 

during the optimization. It can be seen in Fig. 4 that the solutions found by 

MO-PSO cover all the regions in the Pareto front and are almost evenly 

distributed along this front.  

 

As it is reported in the PSO literature (Hu, et al., 2004), this algorithm has 

several advantages compared to other meta-heuristics: 

-It can be easily implemented and adapted to complex problems (for the 

continuous optimization problems, the encoding is straightforward and does 

not need extra conversion);  

- It allows simple constraint handling;  

- Its convergence properties are almost insensitive to the design of fitness 

functions.  

According to (Elbeltagi, et al., 2005), PSO often outperforms other 

meta-heuristics on the wide range of optimization problems. The tests per-

formed in this study showed that PSO is able to at least get better results 

than those obtained by GA for several single- and multi-objective reliability 

optimization problems. However, PSO has showed poor performance when 

it was applied to the discrete redundancy allocation problem. This can be 

explained by the fact that the fundamental assumption in particle swarm is 

that the neighbor regions of a good solution are also good, i.e., small varia-

tions in vector representing the solution causes small variations in the fitness 

function (which lies on the base of the velocity update formula). This as-

sumption usually holds in reliability allocation problems where fitness 

functions are relatively smooth. However, it is not always true in some 

discrete problems such as redundancy optimization.  

It seems that the main cause preventing good performance of the PSO 

in solving discrete optimization problems with unsmooth fitness functions 

lies in its studying behavior based on gradual learning from the best solu-

 

4.7 PSO Applicability and Efficiency 
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tion. The basic PSO principle of emulating social behavior of learning from 

better examples becomes meaningless when approaching the best solution 

causes degradation.  

The possible directions of PSO performance improvement are design 

of solution encoding schemes providing fitness function smoothness and 

combining the PSO with other heuristics and local search methods.  

As an emerging stochastic optimization method, PSO exhibits great 

potential in solving reliability engineering problems. However, many issues 

remain unsolved, which requires further investigation. The adaptation of 

PSO for solving sequencing, partition and scheduling problems that arise in 

reliability engineering is the main challenge for further research.  
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The aim of this chapter is to illustrate the computational benefits in 
network reliability assessment which results from combining the modeling 
power of Cellular Automata [23] and Monte Carlo sampling and 
simulation [10, 19]. 

In recent years, network reliability analysis has received considerable 
attention for the verification of the design and the evaluation of the 
performance of many real world distributed systems, such as computer and 
communication systems [2, 15, 24], power transmission and distribution 
systems [14, 28], rail and road transportation systems [4], oil/gas 
production systems [4, 5], among others. 

The assessment of the reliability of a network system entails 
ascertaining the connectivity of a set of sources to a set of targets in the 
network. This could be done knowing the system cut or path sets or by a 
depth-first procedure [7, 12, 22]. However, these approaches lead to NP-
hard problems, which require cumbersome and mathematically intensive 
methods of solution.  

Furthermore, in practice the modification of an existing network may be 
required for expansion or reinforcement planning or occur inadvertently 
due to link failures. In such cases, the standard algorithms entail 
recomputing the network connection and reliability from scratch. 
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5.1 Introduction 



      Claudio M. Rocco S. and Enrico Zio 114

The above limitations can be overcome by resorting to the powerful 
modeling and computational framework offered by Cellular Automata 
(CA) and Monte Carlo (MC) sampling and simulation. 

Cellular Automata form a general class of mathematical models, which 
are appealingly simple and yet capture a rich complexity of behavior of 
dynamical systems [26]. As such, CA have been used to study and model 
the dynamics of many real complex systems, including fluids, neural 
networks, molecular systems, ecological systems, economical systems, 
network systems. CA also offer a significant computational potential due 
to their spatially and temporally discrete nature characterized by local 
interaction and an inherently parallel form of evolution.  

When applied for the reliability assessment of a network system, CA 
operate in a way to basically mimic traditional graph methods, such as 
Depth First Search or Breadth First Search [7, 12, 22]. However, CA 
algorithms allow for a straightforward parallel implementation and 
therefore enhance the performance of classical algorithms used in 
reliability evaluation. 

The Monte Carlo method allows simulating the stochastic behavior of a 
complex system during its life by sampling the state of its components 
from given probability distributions. This entails modeling the 
components’ failure/repair stochastic dynamics. Many realizations of 
system evolution are sampled and statistical estimates of its reliability and 
availability are computed. 

Within the network reliability assessment problem, the combination of 
CA and MC techniques is used for different types of problems to:  
1. Verify the existence of the connection between a single source and a 

single terminal target in a network of interconnected nodes;  
2. Solve problem type 1 after a network connectivity reconfiguration, 

without the need of recomputing the whole network from scratch;  
3. Evaluating the network reliability. 
4. Evaluate the All-Terminal reliability of a network. This is defined as the 

probability that every node of the network can communicate with every 
other node through some path. This implies that the network forms at 
least a spanning tree [9], i.e. a set of arcs that connect all nodes. To 
address the problem by means of CA, a generalized class of Boolean 
networks is introduced. An algorithm to solve the k-terminal reliability 
problem is also provided as a simplified case of the All-Terminal one.  

5. Solve the maximum unsplittable flow problem, a simplified case of the 
maximum flow distribution problem.  

6. Determine the maximum reliability path in a network, by modeling the 
well know Dijkstra algorithm [11] used for short path determination. 
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7. Compute the availability of renewable network systems. This entails 
modeling the elements’ failure/repair stochastic dynamics. 

The solution to problems of types 1-6 is obtained by effectively combining 
CA for the connectivity evaluation with MC sampling of the network 
configurations. Problem 7 instead, requires that CA be coupled with a MC 
simulation model of the stochastic dynamics of the network states [10, 19]. 
In few qualitative words, several system life-histories are simulated by the 
MC approach and after each system stochastic transition, CA are used to 
check the connectivity between the source and the target nodes. Further, 
the approach allows extracting from the simulation and with no significant 
additional computational burden, the information regarding the importance 
of the elements with respect to the network availability. 

An advantage of modeling the connectivity of a network by CA is that 
the computational complexity does not suffer from changing environments 
where the connectivity or the capacity of the links is modified. This 
computing efficiency is of utmost importance in Monte Carlo 
reliability/availability evaluations, where a large number of connectivity 
assessments are typically needed. 

The chapter is organized as follows: in Sec. 2 we introduce the basics of 
CA computing. Sec. 3 presents the fundamentals of Monte Carlo sampling 
and simulation. Sec. 4 describes the application of CA and MC sampling 
for the reliability assessment of network systems whereas Sec. 5 presents 
the use of CA and MC simulation for network availability assessment. 
Finally, Sec. 6 contains the conclusions. 

The state space upon which the dynamics of CA unfolds is a discrete 
lattice of cells L, assumed homogeneous (all cells bear the same 
properties). For example, in a three-dimensional cellular state space, the 
state at the discrete time t of the generic cell ijl, of co-ordinates xi, yj, zl 
with i,j,l 	 Z, is described by the state variable sijl(t). Each cell of L is a 
finite automaton which can assume one of a finite number of discrete 
values in a local value space S0 {0,1,2,…,k-1}. 

The generic cell ijl  interacts only with a fixed number n  of cells that 
belong to its predefined local neighborhood Nijl. At the next discrete time 
t+1, the cell ijl updates its state )1( �tsijl  according to a transition rule 

, which is a function of the state variables at time t of the n cells 
in N

SS n -:O
ijl, viz. 

5.2 Basics of CA Computing 



      Claudio M. Rocco S. and Enrico Zio 116

. / . / ],[1 ijlrspijl Nrsptsts 	�� O  (2.1) 

Notice that the functional form of the rule is assumed to be the same 
everywhere in the cellular state space, i.e. there is no space index attached 
to O. Differences between what is happening at different locations are due 
only to differences in the values of the state variables of the local 
neighborhood, not to the update rule. The rule is also homogeneous in 
time. One “iteration step” of the dynamical evolution of the CA is 
achieved after the simultaneous application of the rule O to each cell in the 
lattice L. 

In the following, we introduce some of the basic concepts of CA 
computing with reference to one and two-dimensional lattices. 

Consider a generic cell i of a one-dimensional lattice, such as the one 
depicted in Figure 1. The size of the neighborhood Ni is defined by the 
radius, r, viz. 

) *ririiiiririN i ��������� ,1,...,1,,1,...,1,  (2.2) 

The dynamics of the system is governed by an arbitrary transition rule 
 SS r -�12:O

. / . / . / . /' (tstststs riirii ���� ,...,,...,1 O  (2.3) 

Fig. 1. Sketch of the neighborhood Ni of cell i with radius r 

Since cells can take any one of k values in the local value space 
S={0,1,2,…,k-1}, to completely define O one must assign a value in S to 
si(t+1) for each of the k2r+1 possible (2r+1)-tuple configurations which can 
occur to the radius-r neighborhood Ni of the generic cell i. 

Since in correspondence of each of the k2r+1 possible configurations of 
the radius-r neighborhood Ni any one of the k values in S can be assigned 

to si(t+1), there are possible rules. 
12 �rkk

 i-r-1 i-r i-r+1 i+r-1 i+r i+r+1i-1 i i+1

5.2.1 One-dimensional CA 
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For example, let k=2, so that S0{0,1}, and r=1. To define a rule one 
must specify the values of the generic cell i corresponding to the 8 possible 
triplets of the neighborhood ) *1,,1 ��0 iiiN i . For example, the addition 

modulo 2 rule, symbolically denoted as R2, can be represented as follows: 

. / . / . / . /' ( . / . / . /) *tststststststs iiiiiii 112112 ,,mod1 ���� R0����  (2.4) 

and sets the value of the i-th cell to 1 if the number of cells with value 0 in 
the neighborhood is even and to 0 if this number is odd: 

 
. / . / . /tititi 1,,1 ��  1,1,1 1,1,0 1,0,1 1,0,0 0,1,1 0,1,0 0,0,1 0,0,0 

. /1�ti  1 0 0 1 0 1 1 0 

 
The temporal evolution of this CA is obtained by: 

1. specifying the finite size M of the lattice L 
2. specifying the boundary conditions 
3. specifying the initial condition . / . / . / . /' (0,...,0,00 21 Mssss �

�
 

4. simultaneously applying the rule O to each of the M lattice cells, in an 
iterative manner. 

Figure 2 shows the evolution obtained for a lattice of M=16 cells, with 
periodic boundary conditions (e.g. s 17=s1) and initial condition 
. / ' 00110010110001010 �s
� ( . Following a sequence of states very different 
from each other, the CA recovers the initial configuration after eight 
updates. This cycle of length 8 results from a space periodicity of 4 [6]. 

 
010 1 1 1 1 110 0 0 0 0 0 0 0

01 0 0 1 1 001 0 1 0 1 1 1 11

Rule

10 0 1 0 0 111 0 0 0 1 0 0 12
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t

 
Fig. 2. Example of evolution of a one-dimensional CA under rule (2.4) 
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Two-dimensional CA provide a great opportunity for describing physical 
systems. A variety of different neighborhood structures can be defined in 
two-dimensional CA (Fig. 3). The von-Neumann neighborhood consists of 
the four cells, which are horizontally and vertically adjacent to the center 
cell of interest; the Moore neighborhood consists of all eight cells, which 
are immediately adjacent to the center cell. Both these neighborhood have 
unit radius. A rule defined on a von–Neumann neighborhood would take 
the following form: 

. / . / . / . / . / . /],,,,[1 1111 tstststststs ijijjijiijij ������ O  (2.5) 

whereas on a Moore neighborhood it would read 

. / . / . / . / . / . / . / . / . / . /],,,,,,,,[1 111111111111 tstststststststststs jiijjijiijjijiijjiij �������������� O

 
(2.6) 

Triangular and hexagonal lattices, which are special cases of the Moore 
neighborhood, can also be used. 

i , j 

von Neumann 

i,j

Moore Hexagonal

i,j

 
Fig. 3. Two-dimensional neighborhoods Nij. 

CA may be classified with respect to the nature of their limiting behavior. 
Indeed, in the mono-dimensional case there is extensive empirical 
evidence (but not yet any decisive analytical demonstration) that all CA 
rules evolving from disordered initial states fall into one of the following 
four basic qualitative behavioral classes [26, 27]: 
1. Fixed points (the CA evolution reaches a fixed homogeneous lattice 

configuration in which each cell attains the same state value) 
2. Inhomogeneous configuration or cycles (the CA evolution leads to 

simple stable configurations or to the emergence of periodic and 
separated structures) 

5.2.2 Two-dimensional CA 

5.2.3 CA Behavioral Classes 
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 3. Chaotic, aperiodic patterns 
4. Complex, localized, propagating structures 

All CA within a given class yield a qualitatively similar behavior, 
regardless of the specific underlying transition rule. The behaviors of the 
first three classes bear a strong resemblance to those observed in 
continuous dynamical systems. The homogeneous final configurations 
occurring for the CA in class 1, for example, are essentially the same as 
fixed points attractors. Class 2 automata usually create patterns that repeat 
periodically, similarly to continuous limit cycles. The aperiodic, chaotic 
patterns emerging from class 3 automata are analogous to the strange 
attractors appearing in continuous dynamical systems. The statistical 
properties of the limit patterns and of the starting one are almost identical, 
giving rise to a kind of self-similar fractal curves. The more complicated 
localized structures emerging from class 4 CA do not appear to have any 
obvious continuous analogue. This last class of CA is capable of 
performing universal computation and shows a high invariability in their 
time development.  

Simulation 

The development of computer power has led to a strong increase in the use 
of MC methods for system engineering calculations.  

In the past, restrictive assumptions had to be introduced to fit the system 
models to the numerical methods available for their solution, at the cost of 
drifting away from the actual system operation and at the risk of obtaining 
sometimes dangerously misleading results. Thanks to the inherent 
modeling flexibility of MC simulation, these assumptions can be relaxed, 
so that realistic operating rules can be accounted for in the system models 
for reliability, maintainability and safety applications. 

This Section synthesizes the principles underlying the MC simulation 
method for application to the evaluation of the reliability and availability 
of complex systems [19]. 

Let us consider a system whose state is defined by the values of a set of 
variables, i.e. by a point P in the phase space S. The evolution of the 

5.3 Fundamentals of Monte Carlo Sampling and 

5.3.1 The System Transport Model 



      Claudio M. Rocco S. and Enrico Zio 120

system, i.e. the succession of the states occupied in time, is a stochastic 
process, represented by a trajectory of P in S. The system dynamics can be 
studied by calculating the ensemble values of quantities of interest, e.g. 
probability distributions of state occupancy and expected values. 

The MC method allows generating the sample function of the ensemble 
by simulating a large number of system stochastic evolutions. Every MC 
trial, or history, simulates one system evolution, i.e. a trajectory of P in S. 
In the course of the simulation, the occurrences of events of interest (e.g. 
system failure) are accumulated in appropriate counters. At the end of the 
simulation, after the large number of trials has been generated, the sample 
averages of the cumulated quantities give the MC (ensemble) estimates of 
the quantities of interest (e.g. system unreliability) [10, 19]. 

In the case here under consideration, the network is made up of physical 
components (arcs) subject to failures and repairs that occur stochastically 
in time. Each arc can be in two states, e.g. working or failed, and for each 
arc we assign the probabilities for the transitions between different states. 
Each MC trial represents one possible realization of the ensemble of the 
stochastic process. It describes what happens to the system during the time 
interval of interest, called mission time, in terms of state transitions, i.e. the 
sequence of states randomly visited by the arcs, starting from a given 
initial configuration. 

The next Section provides details on the actual MC procedure for 
generating the system life histories and thereby estimating the system 
reliability and availability. 

The problem of estimating the reliability and availability of a system can 
be framed in general terms as the problem of evaluating functionals of the 
kind [19]:  

0
( ) ( , ) ( , )

t

k
k

G t k R t dT � �
	4

��K �  (3.1) 

where T(�,k) is the probability density of entering a state k of the system 
at time � and 4  is the set of possible system states which contribute to the 
function of interest Rk(�,t).  

In particular, the functionals we are interested in for reliability 
applications are the system unreliability and unavailability at time t, so that 
4  is the subset of all failed states and Rk(�,t) is unity, in the former case of 
unreliability, or the probability of the system not exiting before t from the 

5.3.2  Monte Carlo Simulation for Reliability Modeling 
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failed state k entered at � < t, in the latter case of unavailability. Note that 
the above expression (3.1) is quite general, independent of any particular 
system model for which the T(�,k)‘s are computed. In what follows we 
show the details on how Eq. (3.1) can be solved by MC simulation, with 
reference to the system unavailability estimation problem which provides a 
more interesting case than unreliability because of the presence of repairs.   

Let us consider a single trial and suppose that the system enters a failed 
state k	4 at time �in, exiting from it at the next transition at time �out. The 
time is suitably discretized in intervals of length �t and counters are 
introduced which accumulate the contributions to G(t) in the time 
channels: in this case, we accumulate a unitary weight in the counters for 
all the time channels within [�in, �out], to count that in this realization the 
system is unavailable. After performing a large number, M, of MC 
histories, the content of each counter divided by the time interval �t and by 
the number of histories gives an estimate of the unavailability at that 
counter time. This procedure corresponds to performing an ensemble 
average of the realizations of the stochastic process governing the system 
life. 

The system transport formulation of Eq. (3.1) suggests another analog 
MC procedure, consistent with the solution of definite integrals by MC 
sampling [10, 19]. In a single MC trial, the contributions to the 
unavailability at a generic time t are obtained by considering all the 
preceding entrances, during this trial, into failed states k	4. Each such 
entrance at a time � gives rise to a contribution in the counters of 
unavailability for all successive times t up to the mission time, represented 
by the probability Rk(�,t) of remaining in that failed state at least up to t. In 
case of a system made up of components with exponentially distributed 
failure and repair times, we have  

)(),( �=� ��� t
k

k
etR  

(3.2) 

where =k is the sum of the transition rates (repairs or further failures) out of 
state k. 

Again, after performing all the MC histories, the contents of each 
unavailability counter are divided by the time channel length and by the 
total number of histories M to provide an estimate of the time-dependent 
unavailability. 

The two analog MC procedures presented above are equivalent and both 
lead to satisfactory estimates. Indeed, consider an entrance in state k	4 at 
time �, which occurs with probability density T(�,k), and a subsequent 
time t: in the first procedure a one is scored in the counter pertaining to t 
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only if the system has not left the state k before t and this occurs with 
probability Rk(�,t). In this case, the collection of ones in t obeys a Bernoulli 
process with parameter T(�,k)�Rk(�,t) and after M trials the mean 
contribution to the unavailability counter at t is given by M�T(�,k)�Rk(�,t). 
Thus, the process of collecting ones in correspondence of a given t over M 
MC trials and then dividing by M and �t leads to estimating the quantity of 
interest G(t). On the other hand, the second procedure leads, in 
correspondence of each entrance in state k	4 at time �, which again occurs 
with probability density T(�,k), to scoring a contribution Rk(�,t) in all the 
counters corresponding to t>� so that the total accumulated contribution in 
all the M histories is again M�T(�,k)�Rk(�,t). Dividing the accumulated 
score by M and �t yields the estimate of G(t). In synthesis, given T(�,k), 
with the first procedure for all t’s from � up to the next transition time we 
collect a one with a Bernoulli probability Rk(�,t), while with the second 
procedure we collect Rk(�,t) for all t’s from � up to the mission time: the 
two procedures lead to equivalent ensemble averages, even if with 
different variances. We shall not discuss further the subject of the variance, 
for space limitation. 

The MC procedures just described, which rely on sampling realizations 
of the random transitions from the true probability distributions of the 
system stochastic process, are called “analog” or “unbiased”. Different is 
the case of a non-analog or biased MC computation in which the 
probability distributions from which the transitions are sampled are 
properly varied so as to render the simulation more efficient. The 
interested reader can consult Refs. [19, 20] for further details on this. 

Finally, in the case that the quantity of interest G(t), t	[0,TM], is the 
system unreliability, Rk(�,t) is set equal to one so that the above MC 
estimation procedure still applies with the only difference being that in 
each MC trial a one is scored only once in all time channels following the 
first system entrance at �  in a failed state k	4. 

Network Systems 

In this Section, we first recall the algorithm introduced in [23] for the 
verification of the existence of the connection from a source node (S) to a 
target node (T). This will set the stage for the successive extensions 
introduced to treat the All-Terminal, k-Terminal, maximum unsplittable 
flow and maximum reliability path problems.  

5.4 Application of CA for the Reliability Assessment of 
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The results of the CA algorithms presented are obtained by simulating 
their parallel behavior on a serial machine. 

Consider a network of m binary nodes whose function is to deliver a given 
throughput from a source S to a target node T . Ascertaining the 
connectivity of the network from source to target would require knowledge 
of the system cut or path sets or a depth-first procedure [7, 12, 22]. These 
approaches may be cumbersome and mathematically intensive for realistic 
networks. 

Let us map each node i into a spatial cell whose neighborhood Ni is the 
set of cells (i.e. network elements) which provide their input to it. The state 
variable si of cell i is binary, assuming the value of 1 when node i  is 
operating (active, i.e. receiving input) and of 0 when not operating 
(passive, i.e. not receiving input). 

The transition rule governing the evolution of cell i consists of the 
application of the logic operator OR ( ) to the states of the nodes in its 
neighborhood: 

U

)(...)()()1( tstststs rqpi UUU�� ,              iNrqp 	,...,,  (4.1) 

where t is the iteration step. 
According to this rule, a cell is activated if there is at least one active 

cell in its neighborhood, i.e. if it receives input from at least one of its 
connected nodes. 

At the beginning of the evolution, the source S is the only active cell. 
The successive application of the transition rule to each node of the 
network generates the paths of transmission through the network. The 
computation ends either when the target node is activated or the process 
stagnates. Since the longest possible path from active S  to T activates all 
the remaining m - 1 nodes, the S-T connection can be computed in O(m) 
iterations, i.e. the computation ends after m-1 steps or the process 
stagnates. 

The basic algorithm proceeds as follows: 
1. t = 0 
2. Set all the cells state values to 0 (passive) 
3. Set  (source activated) 1)0( �ss
4. While t < m-1 

{ t = t + 1 
Update all cells states by means of rule (4.1) 

5.4.1 S-T Connectivity Evaluation Problem 
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If , stop (target activated) } 1)( �tsT
5.  (target passive): there is no connection path from S to T 0)1( ��msT

For an example of application of this algorithm, the interested reader is 
referred to the original work of [23]. 

Assume now that the generic connecting element (arc) ji from node j to i 
can be in two states, success ( 1�jiw ) or failure ( 0�jiw ), with 

probabilities  and jip jiji pq ��1  respectively. The ji arc state variable 

 defines the operational state of the arc. jiw

The transition rule governing the evolution of the generic cell i consists 
of the application of the logic operator OR ( U ) on the results of the logic 
operator AND (V) applied to the states of the nodes in its neighborhood 
and to the states of their connection with i: 

])([...])([])([)1( rirqiqpipi wtswtswtsts VUUVUV��  

     iNrqp 	,...,,  

 

(4.2) 

The network reliability , i.e. the probability of a successful 

connection from S to T, can then be computed by the following steps i) 
Monte Carlo ( MC )–sampling a large number M of random realizations of 
the states of the connecting arcs; ii) CA–computing, for each realization, if 
a path from S to T exists: the ratio of the number of successful S-T paths 
over the total number of realizations evaluated gives the network 
reliability. 

STp

The basic algorithm proceeds as follows: 
1. n = 0 
2. While MC – iteration n < M 

{ n = n + 1 
Sample by MC a realization of the states of the connecting arcs w 
Apply the previously illustrated CA algorithm for S-T connectivity, 
to evaluate if there is a path from S to T  
If a path exists, then update the counter of successful system states } 

3. Network reliability = STp
  number of S T successful paths

M

�
 

5.4.2 S-T Network Steady-state Reliability Assessment 
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Fig. 4a shows the example network to be evaluated [29]: a path between 
the source node S and the terminal node T is required. Initially the source 
node S is activated. In iteration 1 nodes 1, 2, 3 and 4 are activated. Fig. 4b 
shows the network status for this iteration: dotted circles represent 
activated nodes. In the next iteration, nodes 5, 7, 8 and 9 are activated 
since they all have an activated node in their respective neighborhood (see 
Fig. 4c). In the next iteration, node 5 activates node 6, node 7 activates 
node T (Fig. 4d). Since the terminal node T has been activated, a path from 
node S to node T exists. 

Fig. 4. Network for example 4.2.2 [29]: a) Iteration 0; b) Iteration 1;  
c) Iteration 2; d) Iteration 3 

Assume that a path is found in the network previously analyzed and a 
change occurs in the connectivity. For example arcs are eliminated or 
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5.4.2.1 Example  

5.4.2.2 Connectivity Changes 
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included. In these conditions it is not necessary to reinitiate the CA 
evaluation from the beginning. 

For instance, in the previous example of Section 4.2.1  assume that the 
CA reached the status shown in Fig. 4d and arcs (4,9), (7,T) and (6,T) are 
eliminated. The network status for this case is shown in Fig. 5a. 

Updating the current network configuration by means of (4.2), it can be 
seen that node 9 changes to the quiescent state since its neighborhood is 
empty. In the next iteration node T changes to its quiescent state since the 
only node in its neighborhood is also quiescent and the process stagnates. 
In this case the network has no S-T path (Fig. 5b). 

 

 
Fig. 5. Network changes for example 4.2.2: a) Iteration 0; b) Iteration 1;  

c) Iteration 2 

Assume the following reliability values of the arcs in the network of 
Figure 4a [29]: r2,7 = 0.81, rS,4 = r4,8 = r4,9 = r9,7 = 0.981, others ri,j = 0.9. By 
the proposed evaluation approach with M=104 trials, the system reliability 
is estimated to be 0.997, which compares well with the value reported in 
[29].  

9

S T

1

2

3

4

5

6

7

8

9

S T

1

2

3

4

5

6

7

8

a) b)

9

S T

1

2

3

4

5

6

7

8

c)

5.4.2.3 Steady-state Reliability Assessment 
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As mentioned in the previous Section 4.2, step 4 is performed 
considering the quiescent status of the network topology before any 
changes. The network evaluation from scratch requires on average 3.5 
iterations whereas using the available information from the previous 
evaluated topology requires on average 1.01 steps. The number of 
removed/added arcs among consecutive trials varies between 1 and 14, 
with an average of 7.07. 

The All-Terminal reliability of a network is defined as the probability that 
every node can communicate with every other node through some path. 
This means that the network forms at least a spanning tree (A spanning 
tree of a graph is a set of m-1 arcs that connect all vertices of the graph) 
[9].  

To solve the problem using Cellular Automata computing, the procedure 
for the S-T connectivity evaluation problem of Section 4.1 needs to be 
properly modified. An additional cell is introduced whose neighborhood 
contains all other m cells, i.e. Nm+1 = {j: j =1,2,.., m}. 

As defined in Section 4.1, the transition rule governing the evolution of 
cell i P m+1 consists of the application of (4.1) to the states of the nodes in 
its neighborhood. At the same iteration step t, cell m+1 is subject to a 
different transition rule which consists in the application of the logic 
operator AND ( ) to the states of all m cells in its neighborhood: V

)(...)()()1( 211 tstststs mm VVV��� ,               (4.3) 

According to this rule, cell m+1 is activated if all of the m  cells in its 
neighborhood are activated. 

The computation ends when cell m+1 is activated or the process 
stagnates. The complete connectivity of all the m cells in the network can 
be computed in O(m) time. 

The basic algorithm proceeds as follows: 
1. t = 0 
2. Set all the cells state values to 0 (passive) 
3. Set  (a generic cell jP m+1 is activated) 1)0( �js

4. While t < m 
{ t = t + 1 
Update cells: 

5.4.3 The All-Terminal Evaluation Problem  

5.4.3.1 The CA Model 
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 a. Update all cells states, excluding cell m+1, by means of rule (4.1) 
 b. Update the state of cell m+1, by means of rule (4.3) 
If , stop (all cells are connected) } 1)1( ��msT

5. : there is no spanning tree  0)1( ��msT

Consider the 11-nodes network shown in Fig. 6 [29]. Fig. 7a shows the 
network configuration at t=0: Cell 11 is initially activated. Note that we 
have included the additional cell m+1=12 (arcs from the other cells into 
cell 12 are not shown for preserving the clarity of the picture). 

Fig. 7b shows the state of the network at t=1. Cells 1 to 4 are activated. 
At the next time iteration, t=2, cells 5,7,8, and 9 are activated (Fig. 7c). 
Fig. 7d shows the cells states at t=3: the remaining cells 6 and 10 are 
activated. At t=4, all the network cells have been activated, so that cell 12 
is also activated, which means that at least a spanning tree exists. 

 

9

11 10

1

2

3

4

5

6

7

8

 
 

Fig. 6. Network used to illustrate the All-Terminal CA [29] 

Consider the network of 52 nodes and 72 links of the Belgian telephone 
inter-zones network shown in Fig. 8 [18]. The reliability of each arc is 
0.90. Applying the MC approach described in Section 4.3, with M=104 
samples, combined with the CA presented in Section 4.3.1, the all-
terminal reliability estimate turns out to be (65.28 W 0.47)�10-2 which 
compares well with the value of (65.45 W 0.01)�10-2 obtained in [18] with 
M=105 samples. 

 

5.4.3.2 Example 

5.4.3.3 All-terminal Reliability Assessment: Application 
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Fig. 7. Network configuration at different times for example 4.3.2 

 

Fig. 8. Telephone network considered for example 4.3.3 [18]. 
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7b: NetworkConfiguration at t=1.Cells1 to 4 are
activated.
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7c: Network Configuration at t=2. Cells 5,7,
8 and 9 are activated.
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7d: Network Configuration at t=3. Cells 6 and 10
areactivated. At t = 4, cell12 is activated
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The k-terminal reliability is the probability that considering k specified 
target cells of a network there exist paths between each pairs of the k 
nodes [9]. To solve the problem using CA, we modify slightly the 
procedure for the All-Terminal evaluation problem of Section 4.3.  

First of all, the neighborhood Nm+1 of the additional cell m+1 now 
contains only the k specified target cells. Second, the evolution of cell m+1 
is governed by the following transition rule:  

11 ,......,,),(...)()()1( �� 	VVV�� mrqpm Nrqptstststs  (4.4) 

The CA is then modified as: 
1. t = 0 
2. Set all the cells state values to 0 (passive) 
3. Set  ( j 	 {specified target cells}) 1)0( �js

4. While t < m 
{ t = t + 1 
Update cells: 
a. Update all cells states, excluding cell m+1, by means of rule (4.1) 
b. Update the state of cell m+1, by means of rule (4.4) 

If , stop (all specified target cells are connected) } 1)1( ��msT
5. : specified target cells are not connected 0)1( ��msT
Note that if k=2, the problem reduces to the S-T connectivity evaluation 
problem whereas if k=m, one deals with the All-terminal problem. 

Consider a network of m nodes whose function is to deliver a throughput 
from a source node S to a target node T. The generic arc ji connecting node 
j to i may deliver different values of throughput kjiji wW ,�  depending on 

its level of performance k = 0, 1, 2, ... ,  in ascending order ( e.g. 

, , 
jim

00, �jiw 201, �jiw 502, �jiw , ... , 100, �
jimjiw  in arbitrary units ). 

5.4.4 The k-Terminal Evaluation Problem  

5.4.5 Maximum Unsplittable Flow Problem 

5.4.5.1 The CA Model 
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The generic node i can handle different values of throughput, , 

l = 0, 1, 2, ... ,  in ascending order ( e.g. 

lii xX ,�

im 00, �ix  , 301, �ix , , 

... , 

602, �ix

100, �
imix  in arbitrary units ). 

Physically, the generic node i receives as input from its generic neighbor 
 a throughput XiNj 	 j(t) which is the minimum of node j throughput s j(t) 

=  and of arc ji capacity (t): )(tX j jiW

)](),([min)( twtst jijj �X  (4.5) 

Among the inputs Xj(t) received from all the neighbors iNj 	 , node i 

processes the maximum possible, but with the constraint of its own 
intrinsic throughput limitation . Hence, the transition rule governing 

the evolution of the generic cell i consists of the application of the 
minimum operator to the current throughput level (t) of node i itself 

and to the maximum of the input throughput X

iX

iX

j.t/ received from the 
neighboring nodes : iNj 	

' (
�Y

�
Z
[

��

�
�
�

��
	

)(max),(min)1( ttXts j
Nj

ii
i

X  
(4.6) 

According to this rule a cell ( node ) is activated at the lowest level of 
throughput provided by the maximum input it receives and its own 
intrinsic capacity. 

At the beginning of the evolution, the source S is the only active cell at a 
level . The successive applications of the above transition rule to each 

node of the network, generates the paths of throughput transmission 
through the network. The computation ends when the target node is 
activated or the process stagnates. 

SX

In order to find the S-T path of maximum allowable throughput, for a 
fixed node – capacity and arc – throughput configuration, the following 
algorithm of CA evolution may be applied: 
1. t = 0 
2. Set all cells state values to 0 
3. Set , the source capacity SS Xs �)0(
4. While t < m-1 

{ t = t + 1 
Update all cells states by means of rule (4.6) 
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If , stop (target activated at the throughput level ) } 0)( P� TT Xts TX
5.  (target passive: there is no connection path from S to T ). 0)1( ��msT

Consider the network in Figure 9 [8] and assume that all the nodes have a 
throughput of 100, in arbitrary units. 

Let . The computation of the network throughput proceeds as 
follows. At t=1 we have: 

71)0( �Ss

) * 12))12,71max(min(,100(min)1(2 ��s ;

) * 35))35,71max(min(,100(min)1(3 ��s ;

) * 24))24,71max(min(,100(min)1(4 ��s  
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Fig. 9. Network considered for example 4.5.2 [8]. The numbers on the arcs 
represent their capacities 

At t=2 we have: 
) * 30))30,35min(,12max(,100(min)2(2 ��s ;
) * 35))12,24min(,35max(,100(min)2(3 ��s ; 
) * 2424,100(min)2(4 ��s ;  
) * 101012minmax100min25 �� ),((,()(s ; 
) * 10)10,35max(min(,100(min)2(6 ��s ; 
) * 12)50,12max(min(,100(min)2(7 ��s ;
) * 24)24,35max(min(,100(min)2(8 ��s ;
) * 24)45,24max(min(,100(min)2(9 ��s  

 

5.4.5.2 Example 
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At t=3 we have: 
)2()3( 22 ss = ; { } 35))12,12min(,35max(,100(min)3(3 ==s ;
{ } 24))45,10min(,24max(,100(min)3(4 ==s

{ } 24))40,24min(),10,30max(min(,100(min)3(5 ==s ;
{ } 15))15,24min(),10,35max(min(,100(min)3(6 ==s ;
{ } 30))36,10min(),50,30max(min(,100(min)3(7 ==s ; 

24))24,24min(),15,10min(
),24,35min(),50,10min(),18,12max(min(,100min{)3(8

=
=s  

 
Finally, at t=4 we have for the target node: 

{ } 25))30,24min(),20,24min(),25,30max(min(,100(min)4( ==Ts  
 
Thus, even if the S-T maximum splittable flow is potentially 71 units 

(the source throughput), the maximum unsplittable flow that can be 
transferred from S to T  is only 25 units. 

Finally, let us evaluate the reliability of the network of Figure 9 within 
the framework of unsplittable flow. We assume that starting from a source 
of 71, in arbitrary units, a maximum throughput of x units is required at the 
target and that the reliability of each arc is 0.90. Hence, a network 
configuration is successful if it provides at the target node a throughput sT 

 x. Figure 10 shows the network reliability point estimate as a function of 
the throughput required, calculated by the combined procedure MC-CA 
with M=104 samples. 
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Fig. 10. Network reliability as a function of the minimum throughput required 

≥



      Claudio M. Rocco S. and Enrico Zio 134

The problem of finding the shortest path (SP) from a single source to a 
single destination in a graph arises as a sub-problem to many broader 
problems [11, 25]. In general, different path metrics are used for different 
application. For example, in communication systems, if each link cost is 1 
then the minimum number of hubs is found. But cost can also represent the 
propagation delay, the link congestion or the reliability of each link. In the 
latter case, if the individual communication links operate independently, 
then the problem can be stated as to find what path has the maximum 
reliability [25].   

This problem has some well-known polynomial algorithmic solutions, 
namely Bellman-Ford’s or Dijkstra’s [11, 25]. Recently neural networks 
have also been proposed to find the SP [3, 21].  Problems that require 
multiple fast computation of shortest path can benefit from more efficient 
methods, such as the application of a CA approach. In [1] an algorithm 
based on CA consisting of a discrete d-dimensional lattice of n cells with a 
neighborhood of variable radius is presented. The CA model to be 
considered is similar but rely on a faster and simpler implementation.  

As described in Section 4.1, each node i is mapped into a spatial cell 
whose neighborhood Ni is the set of cells (i.e. network elements) which 
provide their input to it. Associated with each arc ji 	 �1,2,…,mZ x 
�1,2,…,mZ , iPj, is a nonnegative number Cji that stands for the cost of arc 
from node j to node i. Non-existing arc costs are set to infinite. Let PST be a 
path from a source node S to a destination node T, defined as the set of 
consecutive connected nodes: PST ={S, n1, n2, .... ni, T} [3]. 

The cost associated with each path consists on the sum of all partial 
costs of the arcs connecting the nodes participating in the path. The 
shortest path problem consists in finding the path PST of minimum cost. 

The state of each node, at each iteration step t, is represented by a vector 
with two entries Vi(t) = { (t), (t)}: the first component is a pointer to 
the previous node in the path while the second is the cost of the partial path 
up to node i [21]. (t) is not necessary for evaluating the shortest path 
length but it is used only for indicating the shortest path itself. 

1
iV 2

iV

1
iV

Initially the state of node S VS(0)={S,0} and for the rest of nodes 
Vi(0)={i,3}. The transition function for each automaton i calculates the 
minimum of the quantity Ui,j(ts) = ( 2

jV (t)+Cj,i) among the members in Ni. 

The node producing that minimum, will be denoted as node k. Then, the 

5.4.6.1 Shortest Path  

5.4.6 Maximum Reliability Path [23] 
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value of the second component  is set to (t) + C2
iV 2

kV k,i [21]. In case of 
conflicts when two or more nodes of the neighborhood have the same 
Ui,j(t) quantity, then the k node is selected as the one with the minimum 

(t). The effect of this rule is the incremental calculation of the cost for 
all paths starting at node S.  

2
kV

At t=0, node S  is in a stable state and it will not change during the 
evaluations. During each iteration step at least a new node will become 
stable [21]. Since the longest path in the network consists of n-1 nodes, it 
can be computed in O(n) time. This means that the computation ends after 
n-1 iteration steps or the process stagnates. The algorithm presented in [1] 
requires O(\n)upper time, where \ = max (Cpq) and Cpq 	 N. 

The basic algorithm is: 
1. Initialize the state of the cells as VS(0)={S,0} and V i(0)={i,]}, iP S, t = 0 
2. While t P  n-1 or the process stagnates  

{ Synchronously update each automaton i, iPS finding k 	 Ni that 
minimize 
Ui,k(t) = ( (t)+C2

kV k,i) or, in case of conflict, minimize (t) and set  2
kV

Vi(t +1)={k, (t)+C2
kV k,i} 

t = t +1 } 
3. Stop 
The minimum S-T path cost is the second component of the state vector of 
node T . In case that this value is infinity then there exists no S-T path. 

Fig. 11 shows the network to be evaluated [22]: the shortest path between 
the source node S and the terminal node T is required.  
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Fig. 11. Network for example 4.6.2 [22] 

Fig. 12 presents the status of the network and Vi(t) for each successive 
iteration step. After 4 time steps, the CA model gives the SP required. 

5.4.6.2 Example 
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Note that the model also provides the shortest path from the source node S 
to every node in the network. Fig. 12f) presents the shortest path between S 
and T (cost = 6). 

When the connectivity and/or the cost of the arcs in the network change, a 
CA evaluation from scratch is not required (Section 4.2.2). Let us consider 
the previous example and assume that the costs of the links (3, T) and (1,3) 
change to 1 and 10 respectively. Fig. 13 presents the status of the network 
for each successive iteration step. After 3 iteration steps, the new SP is 
obtained with a total cost of 3.  
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Fig. 12. Network status and Vi(t): a) t=0; b) t=1; c) t=2; d) t=3 ; e) t=4; f) SP 

If the individual links operate independently, then the reliability of a path 
PST ={S, n1, n2, .... , T} is determined as: 

2 1 2 iST S,n n ,n n ,TR R R ..... R�  

where is the reliability of the link between n
1 2n ,nR 1 and n2. Taking the 

logarithm, . 
ST 2 1 2S,n n ,n n ,Tlog(R ) log(R ) log(R ) ..... log(R )� � � �

i

5.4.6.3 Example 

5.4.6.4 Maximum Reliability Path Determination 
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Finding the maximum reliability RST is equivalent to maximize log 
(RST). Since 0 < Ri,j � 1, then log(Ri,j) < 0 and the problem is equivalent to 
minimize 

2 1 2S,n n ,n n ,log(R ) log(R ) ..... log(R )T1
� � � � . 
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Fig. 13. Network changes for example 4.6.2 a) t=0; b) t=1; c) t=2; d) t=3; e) SP 
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Fig. 14. Network configuration [25] considered for Maximum Reliability Path 
determination 

As an example consider the network in Fig. 14 [25]. Table 1 presents 
the reliability of each arc and the corresponding log values. The maximum 
reliability path between nodes 1 and 7 corresponds to the shortest path 
evaluation, using –log (Ri,j) as cost, and is given by 1-3-5-7. 
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Table 1. Data for network in Figure 14 

 (i,j) Ri,j log (Ri,j) - log (Ri,j)
1,2 0.20 -0.69897 0.69897 
1,3 0.90 -0.04576 0.04576 
2,3 0.60 -0.22185 0.22185 
2,4 0.80 -0.09691 0.09691 
3,4 0.10 -1.00000 1.00000 
3,5 0.30 -0.52288 0.52288 
4,5 0.40 -0.39794 0.39794 
4,6 0.35 -0.45593 0.45593 
5,7 0.25 -0.60206 0.60206 
6,7 0.50 -0.30103 0.30103 

Let us assume that the generic element ji 	 {1,2,…,m} � {1,2,…,m} of the 
network system (arc ji if iPj; node i if i=j) can fail at stochastic times with 
constant failure rate �ji. Restoration is immediately started upon failure, 
lasting a stochastic time which, for simplicity and without loss of 
generality, is also assumed to be exponentially distributed with constant 
repair rates μji. The outcome of the restoration action is a full renovation of 
the functionality of the network element to an as good as new condition. 
These assumptions allow the system availability to be computed 
analytically, for comparison purposes and without loss of generality. 

The approach here proposed to evaluate the time-dependent network 
availability combines the flexibility offered by Monte Carlo simulation 
(Section 3), for modeling the failure and repair dynamics, with the 
efficiency of Cellular Automata (Section 2), for verifying the source-target 
connectivity in correspondence of the different system configurations 
(Section 4.1).  As recalled in Section 3, the MC approach amounts to 
simulating a large number of realizations of the system life up to its 
mission time TM. Each of these simulated histories corresponds to a virtual 
experiment in which the system is followed in its evolution throughout the 
mission time. During the simulation, in correspondence to each system 
stochastic transition, we check the S-T connectivity by running the CA 
solver (Section 4.1) and collect, in appropriately devised counters, the 
quantities of interest for the estimation of the system instantaneous 
availability (Section 3). 

5.5 MC-CA network availability assessment  

5.5.1 Introduction 
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To simulate the network evolution we use the direct Monte Carlo 
approach according to which the transition times of all network elements 
are individually sampled and the minimum of them identifies the time at 
which the next transition occurs [16]. A single MC trial then corresponds 
to a realization of a random walk of the system: 

),( 0ts ot , , …, , , … ),( 11 tst ),( eet ts ),( 11 �� eet ts

After the e-th transition occurring at time te, the system state is 
identified by the binary state ste of the terminal node T (active or non 
active) as resulting from the CA-based S-T connectivity evaluation 
procedure, and remains unchanged until the next transition at te+1. 
Correspondingly, we update the discrete counters for the estimation of the 
quantities of interest associated to the times t2	2[te,2te+1]. By performing 
several Monte Carlo histories, we obtain many independent realizations of 
the system random walks and by ensemble averaging the quantities in the 
counters we estimate the time-dependent system availability A(t). The 
basic algorithm is presented in Appendix. 

If there are dependences among the failure and repair behaviors of 
different elements, the procedure must be modified to allow re-sampling of 
the dependent elements transitions when one of them has changed state 
[16]. 

Notice that in correspondence of each system transition, i.e. the failure 
or repair of an arc or node, the CA solver must be applied to the 
reconfigured network. This does not require repeating the propagation of 
the CA activation pulse starting from the initial network configuration, i.e. 
with the only active cell in the CA being the source. It is indeed more 
efficient to proceed inversely to activate or deactivate those cells whose 
neighbors turn out, as a result of the system transition, to contain newly 
active cells or to be empty of any active cell, respectively (Section 4.2.2).  

Note that, when combining the CA and MC approaches, the CA parallel 
computation strategy can still be applied at all times that the network 
connectivity evaluation is required.  Instead, the general direct MC 
approach is based on a series computation procedure.  Indeed, the 
evaluation of the next system transition time te+1 requires sampling of the 
transition time for only the element which made the last transition at time 
te. In the meantime, in order to compute te+1, all other network elements 
should “wait” for the outcome of this sampling operation so that they are 
computationally inactive.  However, it still seems attractive to exploit a 
parallel computational strategy even if effective only for the evaluation of 
the network connectivity: for large-sized networks this is indeed where 
computation burden resides the most, as opposed to the evaluation of the 
next transition time. 
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Consider the network of Fig. 14 [25]. Table 2 reports the failure rates of 
each arc, in arbitrary units of inverse of time. Repair rates are assumed an 
order of magnitude larger than the corresponding failure rates. On the 
contrary, the nodes are assumed to be perfect, i.e. non-failing.  

Table 2. Failure rates of the arcs in the network of Fig. 14 (in arbitrary units) 

( j,i ) =ji

2,1 1.609 10-2  
3,1 1.054 10-3

3,2 5.108 10-3

4,2 2.231 10-3

4,3 2.303 10-2

5,3 1.204 10-2

5,4 9.163 10-3

6,4 1.049 10-2

7,5 1.386 10-2

7,6 6.931 10-3

Fig. 15. Instantaneous availability A(t) of the network of Fig. 14. Solid line = 
analytical solution from minimal cut-sets; symbol *, with error bar of one standard 
deviation = MC-CA simulation with 105 MC trials of the network with only arcs 
failing; symbol �, with error bar of one standard deviation = MC-CA simulation 
with 105 MC trials of the network with also failing nodes 

 
The analytical expression of the instantaneous availability A(t) can be 

obtained from the minimal cut-sets of the network. Fig. 15 shows the 
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5.5.2 A Case Study of Literature  
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agreement of the analytical solution (solid line) with the results of the MC-
CA approach with 105 MC trials (symbol *) with error bar of one standard 
deviation. The CPU time required was approximately 4 minutes in an 
Athlon 1400 MHz computer. 

The significance of the use of the MC-CA procedure for the 
computation of the availability of a network system increases with the 
system complexity. When only connection arcs undergo stochastic 
transitions, in principle one can use the cut or path sets of the network to 
compute the analytical availability, with possibly intensive and 
computational burdensome methods. However, if the number of nodes and 
connections is large and/or if also the nodes can make transitions, as in 
realistic networks, the analytical procedures become impractical. It is in 
these cases that the MC-CA procedure can become a very powerful 
modeling and computational method. 

The circles in Fig. 15 show, as an example, the instantaneous 
availability of the network of Fig. 14 when also the nodes can fail and be 
repaired, with constant rates equal to those of connection arc 31 (the more 
available one). The CPU time required was approximately 4min 30sec in 
an Athlon 1400 MHz computer. 

CA are a general class of mathematical models, which are appealingly 
simple and yet capture a rich complexity of behavior of dynamical 
systems. They offer a significant computational potential due to their 
spatially and temporally discrete nature characterized by local interaction 
and an inherently parallel form of evolution. 

MC sampling and simulation is a useful computational tool for 
reproducing several realizations of a system by sampling from known 
probability distributions the state of its components.  

The combination of CA and MC is an attractive road for efficiently 
solving advanced network reliability problems. Besides the intuitive, 
physical simplicity of CA modeling and MC computing, their combination 
can enhance the performance of classical algorithms with respect to the 
reliability assessment of complex network systems and allow a 
straightforward parallel computing implementation.  

The algorithms presented extend the simple CA approach previously 
developed for the S-T connectivity evaluation to the assessment of a 
network, with respect to the all-terminal, k-terminal and maximum 
unsplittable flow reliability and to its availability. 

5.6 Conclusions 
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Appendix. Computation of the Time-dependent 
Availability of Network Systems with the MC-CA 
Approach 

The basic algorithm for simulating M Monte Carlo trials proceeds as 
follows: 
1. n = 0  
2. While MC – iteration n < M, 

{ 
  n = n + 1  (cycle on MC trials) 
  Sample by direct MC the transition times of the elements of the 
network 
Order the times of transitions which are smaller than the mission 
time in a schedule of   system transitions, e.g. t1, t2, …, te, te+1 on 
Figure A1 
While the time of transition is � the mission time 

{ 
Move the clock time of the system life to the next occurring 
transition in the schedule, for example identifying the generic te of 
Figure A1  
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Re-configure the system as a result of the occurred transition  
Apply the CA algorithm for S-T connectivity to evaluate if there is 
a path from S to T, e.g. determining ste (Figure A1) 
If a path exists, then collect in the availability counters of the 
corresponding time channels the portion of time the system is 
available  
} 

} 
3. Network availability at time t:  

Content of the counter of the corresponding time channel
A(t)  

M *time channel length
�  

Note that, as said at step 8, in each time channel the portion of time during 
which the system is available is collected. This is done to account for the 
fact that, in general, the system transitions occur at time-points within the 
channels, e.g. te in Fig. A1, so that the unavailability contribution covers 
only a portion of the time channel. 

 
 

0

t1 t2 te te+1t0

ste+1st1 stest2st0

CA CA CA CA CA

…
 

Fig. A1: A realization of the system life. The mission time is divided in time 
channels. The system configuration changes after each transition time of one of its 

elements and CA is used to evaluate the state of the re-configured system (i.e. 
available or unavailable). 
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Reliability Assessment 

The reliability assessment of a system requires knowledge of how the sys-
tem can fail, failure consequences and modeling, as well as selection of the 
evaluation technique [4]. 

For a reliability evaluation, almost all the systems are modeled using a 
Reliability Block Diagram (RBD), that is, a set of components that interact 
in some way to comply with the system purpose. System components are 
represented by blocks connected together either in series, in parallel, 
meshed or through a combination of these. For example, if the system fail-
ure occurs when all the components are failed, they are represented in a re-
liability network as a parallel set.  

An RBD can be considered as an undirected or a directed connected 
graph. For example, in a communication system each node represents a 
communication center and each edge a transmission link between two such 
centers. It is assumed that each edge (link) functions independently of all 
other edges and that the edge operation probability is known.  

The literature offers two main categories of techniques to evaluate the 
reliability of a system: analytical and simulation methods. The first one 
analyzes the topology of the equivalent graph to obtain a symbolic expres-
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6  .1 Introduction: Machine Learning (ML) Approach to 



      Claudio M. Rocco S. and Marco Muselli 146

sion for the occurrence of a failure. On the other hand, the simulation ap-
proach allows a practical way of evaluating the reliability of the network in 
specific situations. In particular, when complex operating conditions are 
considered or the number of events is relatively large, Monte Carlo (MC) 
techniques offer a valuable way of evaluating reliability [4]. This approach 
is widely used when real engineering systems are to be analyzed. 

In general, any reliability index can be obtained as the expected value of 
a System Function (SF) [14] or of an Evaluation Function (EF) [25] ap-
plied to a system state x (vector representing the state of each element in 
the network). This function determines whether a specific configuration 
corresponds to an operating state or a failed one [24], according to a spe-
cific criterion. For example, if connectivity between two particular nodes, s 
(the source) and t (the terminal) must be ensured, the system is operating if 
there exists at least a working path from the source node s to the terminal 
node t.  

The corresponding reliability measure (s-t reliability) has been widely 
studied in the literature; in this case a depth-first procedure [23, 29] can be 
employed as an EF. 

In other systems, for example in communication networks, the success 
criterion assumes that a network performs well if and only if it is possible 
to transmit successfully a specific required capacity. For these systems, the 
connectivity is not a sufficient condition for success, as it is also required 
that an adequate flow is guaranteed between s and t, taking into account 
the capacity of the links involved. In this case, the max-flow min-cut algo-
rithm [23,29] can be adopted to evaluate if a given state is capable or not 
of transporting a required flow; alternatively, procedures based on the con-
cept of composite paths [1, 28] can be used as the EF. 

In general, the reliability assessment of a specific system requires the 
computation of performance metrics using special EF. An important char-
acteristic of these metrics and their extensions is that the solution of an 
NP-hard problem [35] is needed for their evaluation in almost all the con-
texts of interest. In this situation MC techniques are used to estimate per-
formance metrics. However, an MC simulation requires a large number of 
EF evaluations to establish any reliability indices with high computational 
effort. For this reason, it is convenient to approximate the EF using a Ma-
chine Learning (ML) method.  

Two different situations can be identified: ML predictive methods re-
construct the desired SF through a black box device, whose functioning is 
not directly comprehensible. On the contrary, ML descriptive methods 
provide a set of intelligible rules describing the behavior of the SF for the 
system at hand. Support Vector Machines (SVM) is a widely used predic-
tive method, successfully adopted in reliability assessment [30], whereas 
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Decision Trees (DT) [31] and Shadow Clustering (SC) [20] are two de-
scriptive methods that are able to discover relevant properties for reliabil-
ity analysis. 

The chapter is organized as follows: In Sec. 2 some definitions are pre-
sented. Section 3 introduces the three machine learning methods consid-
ered for approximating the reliability of a network, while Sec. 4 compares 
the results obtained by each method for a specific network. Finally, Sec. 5 
contains the conclusions. 

Acronyms:  

ARE Approximate Reliability Expression 
DT Decision Tree 
EF Evaluation Function 
HC Hamming Clustering 
ML Machine Learning 
RBD Reliability Block Diagram 
RE Reliability Expression 
SC Shadow Clustering 
SF Structure Function 
SVM Support Vector Machine 

Consider a system S composed by several units interconnected by d links; 
the functioning of S directly depends on the state xi, i = 1, …, d, of each 
connection, which is viewed as an independent random variable assuming 
two possible values 1 and 0, associated with the operating and the failed 
condition, respectively. In particular, we have [3]: 

�
�
�

�
�� iPiQ

iP
ix

1y probabilitwith       state) (failed  0

              y probabilitwith state) (operating  1
 (1) 

where Pi is the probability of success of component (link) i. 
The state of a system S containing d components is then expressed by a 

random vector x  = (x1, x2, …, xd), which uniquely identifies the function-
ing of S. Again, it can be operating (coded by the value 1) or failed (coded 
by 0). To establish if x leads to an operating or a failed state for S, we 
adopt a proper Evaluation Function (EF): 

�
�
���

      x statein  failed is system  theif   0

x statein  operating is system  theif   1
)x(EFy  (2) 

6  .2 Definitions 
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If the criterion to be used for establishing reliability is simple connec-
tivity, a depth-first procedure [23,29] can be employed as an EF. In the 
case of capacity requirements, the EF could be given by the max-flow 
min-cut algorithm [23, 29]. For other metrics, special EF may be used.  
Since x and y include only binary values, the functional dependence be-
tween y and x is given by a Boolean function, called Structure Function 
(SF) [10], which can be written as a logical sum-of-products involving the 
component states xi or their complements 

ix . Consider the system in Fig. 1 

that contains four links.  

s t

1

2

3

4

 
Fig. 1. A 4-components network 

 
If the connectivity between the source node s and the terminal node t 

must be ensured in an operating state for the network, the following SF is 
readily obtained: 

y = SF(x) = x1x3+ x2x4 (3) 

where the OR operation is denoted by ‘+’ and the AND operation is de-
noted by ‘�’. Like for standard product among real numbers, when no con-
fusion arises the AND operator can be omitted. 

The reliability of a system is defined as the expected value of its struc-
ture function [15]. When the SF(x) has the form of a logical sum-of-
products, a closed-form expression for the system reliability, called Reli-
ability Expression (RE), can be directly obtained by substituting in the 
logical sum-of-products, according to (1) and to the independence of the 
random variables xi, every term xi with Pi and every 

ix  with Qi. After this 

substitution logical sums and products must be changed into standard sums 
and products among real numbers. For example, the RE deriving from the 
SF(x) in (3) is P1P3+ P2P4, which gives the value of the system reliability 
when substituting the actual values of Pi into this expression. 

Since the Boolean expression for the SF of a system can be derived only 
for very simple situations, it is important to develop methods that are able 
to produce an estimate of the system reliability by examining a reduced 
number of different system states xj, j = 1, …, N, obtained by as many ap-



Network Reliability Assessment using a Machine Learning Approach 149 

plications of the EF. A possible approach consists in employing machine 
learning techniques, which are able to reconstruct an estimate of the sys-
tem function SF(x) starting from the collection of N states xj, called in this 
case training set. Some of these techniques generate the estimate of the SF 
as a logical sum-of-products, which can be used to produce (through the 
simple procedure described above) an Approximate Reliability Expression 
(ARE) that is (hopefully) close to the actual RE. 

In this case, the estimation of the system reliability can be easily per-
formed, by substituting into the ARE the actual values of the Pi. On the 
other hand, when an approximation to the SF is available and cannot be 
written in the form of a logical sum-of-products, a standard Monte Carlo 
approach can be adopted to estimate the system reliability. By using the 
approximate SF to establish the state y instead of the EF, the computa-
tional cost is reduced. 

In this section three different machine learning techniques are described: 
Support Vector Machines (SVM), Decision Trees (DT) and Shadow Clus-
tering (SC). All these methods are able to solve two-class classification 
problems, where a decision function g: ^d - {0,1} have to be recon-
structed starting from a collection of examples (x1,y1), (x2,y2), …, (xN,yN). 
Every yj is a (possibly noisy) evaluation of g(xj) for every j = 1, …, N. 
Thus, they can be employed to reconstruct the SF of a system S when a set 
of N pairs (xj,yj), where xj is a system state and yj = EF(xj), is available. 

In this case, DT and SC are able to generate a logical sum-of-products 
that approximates the SF. On the other hand, SVM produces a linear com-
bination of real functions (Gaussians, polynomial, or others) that can be 
used to establish the state y associated to a given vector x. Consequently, 
SVM cannot be directly used to generate an ARE for the system at hand. 

In the last ten years Support Vector Machines (SVM) have become one of 
the most promising approach for solving classification problems [11,36]. 
Their application in a variety of fields, ranging from particle identification, 
face identification and text categorization to engine detection, bioinformat-
ics and data base marketing, has produced interesting and reliable results, 
outperforming other widely used paradigms, like multilayer perceptrons 
and radial basis function networks. 

6  .3 Machine Learning Predictive Methods 

6  .3.1 Support Vector Machines 
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For symmetry reasons, SVM generates decision functions g : ^d -   
1,+1}; like other classification techniques, such as multilayer perceptrons 
or radial basis function networks, SVM constructs a real function f : ^d - 
^ starting from the collection of N samples (xj,yj), then writing g(x) = 
sign(f(x)), being sign(z) = +1 if z � 0 and sign(z) = –1 otherwise. 

The learning algorithm for SVM stems from specific results obtained in 
statistical learning theory and is based on the following consideration [36]: 
every classification problem can always be mapped in a high-dimensional 
input domain ^D with D » d, where a linear decision function performs 
very well. Consequently, the solving procedure adopted by SVM amounts 
to selecting a proper mapping � : ^d - ^D and a linear function f(x) = w0 

+ w � �(x), such that the classifier g(x) = sign(w0 + w � �(x)) gives the cor-
rect output y when a new pattern x not included in the training set has to be 
classified. 

Some theoretical results ensure that, once chosen the mapping �, the 
optimal linear function f(x) is obtained by solving the following quadratic 
programming problem: 
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where the variables �j take account of possible misclassifications of the 
patterns in the training set. The term C is a regularization constant that 
controls the trade-off between the training error � j �j and the regulariza-
tion factor w � w. 

The parameters (w0, w) for the linear decision function f(x) can also be 
retrieved by solving the Lagrange dual problem: 
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which is again a quadratic programming problem where the unknowns �j 
are the Lagrange multipliers for the original (primal) problem. The direc-
tional vector w can then be obtained by the solution � through the equation 
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It can be easily seen that there is a 1-1 correspondence between the sca-
lars �j and the examples (xj,yj) in the training set.  

Now, the Karush-Kuhn-Tucker (KKT) conditions for optimization prob-
lems with inequality constraints [34], assert that in the minimum point of 
the problem at hand it must be 

0)1))(0(( ���@�� jjwjyj _� xw  (7) 

Thus, for every j = 1, …, N either the Lagrange multiplier �j is null or 
the constraint  yj (w0 + w � �(xj)) � 1 – � j  is satisfied with equality. It 
should be noted that only the points x j with � j > 0 gives a contribution to 
the sum in (6); these points are called support vectors. If and are 

two support vectors with output +1 and –1, respectively, the bias w

�jx �jx

0 for the 
function f(x) is given by 
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The real function f(x ) is then completely determined if the mapping � : 
^d - ^D is properly defined according to the peculiarities of the classifi-
cation problem at hand. However, if the dimension D of the projected 
space is very high, solving the quadratic programming problem (4) or (5) 
requires a prohibitive computational cost. 

A possible way of getting around this problem derives form the observa-
tion that both in the optimization problem (5) and in the expression for w0 
always appears the inner product between two instances of the function �. 
Therefore, it is sufficient to define a kernel function K: ̂ d � ^d - ^+  that 
implements the inner product, i.e. K(u,v) = � (u) � �(v). This allows control 
of the computational cost of the solving procedure, since in this way the 
dimension D of the projected space is not explicitly considered. As the 
kernel function K gives the result of an inner product, it must be always 
non negative and symmetric. In addition, specific technical constraints, de-
scribed by the Mercer’s theorem [38], have to be satisfied to guarantee 
consistency. 

Three typical choices for K (u,v) are [36]: 

the linear kernel  K(u,v) = u�v 
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the Gaussian radial basis kernel (GRBF) �
�
��

�
� ��� 22 2/vuexp )v,u( AK   

the polynomial kernel  K(u,v) = (u�v + 1)p  

where the parameters A and p are to be chosen properly. 
By substituting in (5) the kernel function K we obtain the following 

quadratic programming problem: 
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which leads to the decision function g(x) = sign(f(x)), being 
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Again, only support vectors with �j > 0 gives a contribution to the sum-
mation above; for this reason classifiers adopting (8) are called Support 
Vector Machines (SVM). The average number of support vectors for a 
given classification problem is strictly related to the generalization ability 
of the corresponding SVM: the lower is the average number of support 
vectors, the higher is the accuracy of the classifier g(x).  

The bias w0 in (8) is given by: 
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where again and are two support vectors with output (+1) and   

(–1), respectively. 

�jx �jx

The application of SVM to the problem of estimating the system func-
tion SF(x) starting from a subset of possible system states can be directly 
performed by employing the above general procedure to obtain a good ap-
proximation for the SF. Since SF is a Boolean function we must substitute 
the output value y = –1 in place of y = 0 to use the standard training proce-
dure for SVM. 

The choice of the kernel is a limitation of the SVM approach. Some 
work has been done on selecting kernels using prior knowledge [7]. In any 
case, the SVM with lower complexity should be preferred. Our experience 
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in the reliability field has confirmed the good quality of the GRBF kernel 
having parameter (1/2A2) = 1/d , as suggested in [9]. 

For example, consider the system shown in Fig. 1, whose component 
and system states are listed in Tab. 1, if a continuity criterion is adopted. 
As it is usually the case in a practical application, suppose that only a sub-
set of the whole collection of possible states (shown in Tab. 2) is available. 

 
Table 1. Component and system states for the network shown in Fig. 1 
 

x1 x2 x3 x4 y = EF (x) 
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

 
Table 3 shows the support vectors obtained using the linear kernel and 

the LIBSVM software [9]. Note that in this case only 6 support vectors are 
derived. These support vectors are able to completely separate the training 
set. However, when the model is applied to the test set (states from Tab. 1 
not included in Tab. 2), only 6 out of 8 states are correctly classified, as 
shown in Table 4. 

From Tab. 3 it is clear that support vectors can not be easily interpreted, 
since the expression generated does not correspond to a logical sum-of-
products.  
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Table 2. Available subset of states for the network shown in Fig. 1 (train-
ing set) 

x1 x2 x3 x4 y = EF(x) 
0 0 0 1 0
0 0 1 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 1 1

Table 3. Support vectors for the available subset of states shown in Tab. 2 

x1 x2 x3 x4 y = EF(x) 
0 0 0 1 0
0 0 1 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 1 1

Table 4. SVM estimation for the test set 

x1 x2 x3 x4 y = EF(x) SVM estimate 
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 0 1 0
1 1 1 0 1 1

Decision tree based methods represent a non-parametric approach that 
turns out to be useful in the analysis of large data sets for which complex 
data structures may be present [2,5,27]. A DT solves a complex problem 
by dividing it into simpler sub-problems. The same strategy is recursively 
applied to each of these sub-problems.  

A DT is composed of nodes, branches and terminal nodes (leaves). For 
our network problem, every node is associated with a component of the 
network. From each node start two branches, corresponding to the operat-

6  .3.2 Decision Trees  
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ing or failed state of that component. Finally, every terminal node repre-
sents the network state: operating or failed. Many authors use the conven-
tion to draw the false branch on the left side of the node and the true 
branch on the right. 

Consider for example the DT shown in Fig. 2 and suppose a new system 
state is presented for classification.  At the root node the state of the com-
ponent x2 is checked: if it is failed, the left branch is chosen and a new test 
on component x1 is performed. Again, if x1 is failed, the left branch is cho-
sen and y = 0 is concluded. 

Even if it may seem reasonable to search for the smallest tree (in terms 
of numbers of nodes) that perfectly classifies training data, there are two 
problems:  
1) its generation requires the solution of an NP-hard problem and  
2) it is not guaranteed that this tree performs well on a new test sample. 
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Fig. 2. Example of a decision tree 

For this reason DT methods usually exploit heuristics that locally per-
form a one-step look-ahead search, that is, once a decision is taken it is 
never reconsidered. However, this heuristic search (hill-climbing without 
backtracking) may be stuck in a local optimal solution. On the other hand, 
this strategy allows building decision trees in a computation time that in-
creases linearly with the number of examples [26]. 

A DT can be used to derive a collection of intelligible rules in the form 
if-then. It is sufficient to follow the different paths that connect the root to 
the leaves: every node encountered is converted into a condition to be 
added to the if part of the rule. The then part corresponds to the final leaf: 
its output value is selected when all the conditions in the if part are satis-
fied.  
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Since the tree is a directed acyclic graph, the number of rules that can be 
extracted from a DT is equal to the number of terminal nodes. As an ex-
ample, the tree in Fig. 2 leads to three rules for the output y = 0 and two 
rules for y = 1. 

All the conditions in the if part of a rule are connected by a logical AND 
operation; different rules are considered as forming an if-then-else struc-
ture.  For example, the problem in Fig. 1 is described by the following set 
of rules: 

if x1 = 0 AND x2 = 0  then y = 0 
else if x1 = 0 AND x4 = 0 then y = 0 
else if x2 = 0 AND x3 = 0 then y = 0 
else if x3 = 0 AND x4 = 0 then y = 0 
else y = 1 

which is equivalent to the SF for this network SF(x) = x1x3+x2x4. 
Since all the possible output values are considered for rule generation, a 

complex decision tree can yield a very large set of rules, which is difficult 
to be understood. To recover this problem, proper optimization procedures 
have been proposed in the literature, which aim at simplifying the final set 
of rules. Several different tests have shown that in many situations the re-
sulting set of rules is more accurate than the corresponding decision tree 
[26]. 

In general, different algorithms use a top-down induction approach for 
constructing decision trees [22]: 
1. If all the examples in the training set T belong to one class, then halt. 
2. Consider all the possible tests that divide T into two or more subsets. 

Employ a proper measure to score how well each test splits up the ex-
amples in T. 

3. Select the test that achieves the highest score.  
4. Divide T into subsets according to the selected test. Run this procedure 

recursively by considering each subset as the training set T. 
For the problem at hand, a test on a component state with two possible 

values will produce at most two child nodes, each of which corresponds to 
a different value. The algorithm considers all the possible tests and 
chooses the one that optimizes a pre-defined goodness measure. 

Since small trees lead to simpler set of rules and to an increase in per-
formance, the procedure above is performed by searching for tests that best 
separates the training set T. To achieve this goal, the most predictive com-
ponents are considered at Step 3 [5,27]. 

6  .3.2.1 Building the Tree 
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Several methods have been described in the literature to measure how ef-
fective is a split, that is how good is a component attribute (operating or 
failed) to discriminate the system state. The most used are: 
1. Measures depending on the difference between the training set T and 

the subsets obtained after the splitting; a function of the class propor-
tion, e.g. the entropy, is typically employed.  

2. Measures related to the difference between the subsets generated by 
the splitting; a distance or an angle that takes into account the class 
proportions is normally used. 

3. Statistical measures of independence (typically a `2) between the sub-
sets after the splitting and the class proportions.  

In this paper the method used by C4.5 [27] is considered; it adopts the 
information gain as a measure of the difference between the training set T 
and the subsets generated by the splitting. Let p be the number of operating 
states and n the number of failed states included in the training set T. The 
entropy E(p,n) of T is defined as: 
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Suppose the component xj is selected for adding a new node to the DT 
under construction; if the test on attribute xj leads to a splitting of T in k 
disjoint subsets, the average entropy Ej(p,n) after the splitting is given by 
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where pi and ni are the number of instances from each class in the ith sub-
set. Note that in our case k = 2 since every component has only two possi-
ble states (operating or failed). 

The information gain Ij(p,n) is then given by the difference between the 
values of the entropy before and after the splitting produced by the attrib-
ute xj: 

Ij(p,n) = E(p,n) – Ej(p,n) (11) 

At Step 3 of the DT procedure the component xj that scores the maxi-
mum information gain is selected; a test on that component will divide the 
training set into k = 2 subsets.  

For example, consider the system shown in Fig. 1 and the training set 
shown in Tab. 2. There are p = 4 operating states and n = 4 failed states; 
thus, the entropy E(4,4) assumes the value: 

6  .3.2.2 Splitting Rules 
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E(4,4) = )]44/(4log[)44/(4)]44/(4log[)44/(4 ������ =1 

Looking at the class proportion after the splitting we note that for x1 = 0 
there are one system operating state and two failed states, whereas for x1 = 
1 there are three system operating states and two failed states. Thus: 

E(1,2) = 0.918296, E(3,2) = 0.970951 
E1(4,4) = 3/8 · E(1,2) + 5/8 · E(3,2) = 0.951205 
I1(4,4) = E(4,4) – E1(4,4) = 1 – 0.951205 = 0.048795 

Now, for x2 = 0 and x3 = 0 there are one system operating state and three 
failed states, whereas for x2 = 1 and x3 = 1 there are three system operating 
states and one failed state. Consequently, we have: 

E(1,3) = E(3,1) = 0.811278 
E2(4,4) = E3(4,4) = 4/8 · E(1,3) + 4/8 · E(3,1) = 0.811278 
I2(4,4) = I3(4,4) = 1 – 0.811278 = 0.188722 

Finally, the fourth component x4 presents only one system failed state 
for x4 = 0, whereas for x4 = 1 we detect four system operating states and 
three failed states. Consequently, we obtain: 

E(0,1) = 0 , E(4,3) = 0.985228 
E4(4,4) = 1/8 · E(0,1) + 7/8 · E(4,3) = 0. 862075 
I4(4,4) = 1 – 0. 862075 = 0.137925 

Since both x2 and x3 score the maximum information gain, one of them 
must be considered for the first node of the DT. Suppose that the second 
component x2 is selected as the root node. It is important to note that, in 
general, the component chosen for the first node holds a primary impor-
tance [2]. 

After this choice the training set in Tab. 2 is split into the following two 
subsets: 

x1 x2 x3 x4 y = EF(x)  x1 x2 x3 x4 y = EF(x) 
0 0 0 1 0 0 1 1 1 1 
0 0 1 1 0 1 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 
1 0 1 1 1 1 1 1 1 1 
 
The former contains the examples with x2 = 0 and the latter those with  

x2 = 1. If we repeat the procedure for the addition of a new node by con-
sidering the first subset as T, we obtain: 

I1(1,3) = I3(3,1) = 0.311278 ,   I4(3,1) = 0 
Consequently, the highest information gain is achieved with the choice 

of x1 or x3; the same procedure allows to select the component x4 for the 
second subset, which yields, after a further splitting, the DT in Fig. 2. A di-
rect inspection of the DT allows generating the following set of rules: 
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if x2 = 1 AND x4 = 0 then y = 0 
else if x1 = 0 AND x2 = 0 then y = 0 
else if x1 = 1 AND x2 = 0 AND x3 = 0 then y = 0 
else y = 1 
Although this set of rules correctly classifies all the system configura-

tions in Tab. 2, it is not equivalent to the desired system function SF(x) = 
x1x3+x2x4. This means that the DT procedure is not able to recover the lack 
of information deriving from the absence of eight feasible system configu-
rations, reported in Tab. 1 and not included in the training set. 

The splitting strategy previously presented relies on a measure of the in-
formation gain based on the examples included in the available training 
set. However, the size of the subset analyzed to add a new node to the DT 
decreases with the depth of the tree. Unfortunately, estimates based on 
small samples will not produce good results for unseen cases, thus leading 
to models with poor predictive accuracy, which is usually known as over-
fitting problem [13]. As a consequence, small decision trees consistent 
with the training set tend to perform better than large trees, according to 
the Occam’s Razor principle [13]. 

The standard approach followed to take into account these considera-
tions amounts to pruning branches off the DT. Two general groups of 
pruning techniques have been introduced in the literature: 1) pre-pruning 
methods that stop building the tree when some criteria is satisfied, and 2) 
post-pruning methods that first build a complete tree and then prune it 
back. All these techniques decide if a branch is to be pruned by analyzing 
the size of the tree and an estimate of the generalization error; for imple-
mentation details, the reader can refer to [26,27]. 

It is interesting to note that in the example presented in section 3.2.2 
neither nodes nor branches can be removed from the final decision tree in 
Fig. 2 without degrading significantly the accuracy on the examples of the 
training set. In this case the pruning phase has no effect. 

As one can note, every system state x can be associated with a binary 
string of length d: it is sufficient to write the component states in the same 
order as they appear within the vector x.  

For example, the system state x = (0, 1, 1, 0, 1) for d = 5 will correspond 
to the binary string 01101. Since also the variable y, denoting if the con-

6  .3.2.3 Shrinking the Tree 

6  .3.3 Shadow Clustering (SC)  
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sidered system is operating or failed, is Boolean, at least in principle, any 
technique for the synthesis of digital circuits can be adopted to reconstruct 
the desired SF from a sufficiently large training set {(xj,yj), j = 1, …, N}. 
Unfortunately, the target of classical techniques for Boolean function re-
construction, such as MINI [17], ESPRESSO [6], or the Quine-McCluskey 
method [12], is to obtain the simplest logical sum-of-products that cor-
rectly classifies all the examples provided. As a consequence, they do not 
generalize well, i.e. the output assigned to a binary string not included in 
the given training set can be often incorrect. 

To recover this drawback a new logical synthesis technique, called 
Hamming Clustering (HC) [18,19] has been introduced. In several applica-
tion problems HC is able to achieve accuracy values comparable to those 
of best classification methods, in terms of both efficiency and efficacy. In 
addition, when we are facing with a classification problem the Boolean 
function generated by HC can be directly converted into a set of intelligi-
ble rules underlying the problem at hand. 

Nevertheless, the top-down approach adopted by HC to generate logical 
products can require an excessive computational cost when the dimension 
d of the input vector is very high, as it can be the case in the analysis of 
system reliability. Furthermore, HC is not well suited for classification 
problems that cannot be easily coded in a binary form. To overcome this 
shortcoming, an alternative method, named Shadow Clustering (SC) [20], 
has been proposed. It is essentially a technique for the synthesis of mono-
tone Boolean functions, writable as a logical sum-of-products not contain-
ing the complement (NOT) operator. 

The application of a proper binary coding allows the treatment of gen-
eral classification problems; the approach followed by SC, which resem-
bles the procedure adopted by HC, leads to the generation of a set of intel-
ligible rules underlying the given classification problem. Preliminary tests 
[21] show that the accuracy obtained by SC is significantly better than that 
achieved by HC in real world situations. 

Since the system function may not be a monotone Boolean function, an 
initial coding � is needed to transform the training set, so as a logical sum-
of-products not including the complement operator can be adopted for re-
alizing the SF(x). A possible choice consists in using the coding �(x) that 
produces a binary string z with length 2d, where every component xi in x 
gives rise to two bits z2i–1 and z2i according to the following rule: 

z2i–1 = 1, z2i = 0   if  xi = 0, whereas z2i–1 = 0, z2i = 1   if  xi = 1 

It can be easily seen that this coding maps any binary training set into a 
portion of the truth table for a monotone Boolean function, which can then 
be reconstructed through SC. A basic concept in the procedure followed by 
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SC is the notion of cluster, sharing the same definition of implicant  in 
classic theory of logical synthesis.  

A cluster is the collection of all the binary strings having the value 1 in a 
same fixed subset of components. As an example, the eight binary strings 
01001, 01011, 01101, 11001, 01111, 11011, 11101, 11111 form a cluster 
since all of them only have the value 1 in the second and in the fifth com-
ponent. This cluster is usually written as 01001, since in the synthesis of 
monotone Boolean functions the value 0 serves as a don’t care symbol and 
is put in the positions that are not fixed. Usually the cluster 01001 is said 
to be covered  by the eight binary strings mentioned above. 

Every cluster can be associated with a logical product among the com-
ponents of x, which gives output 1 for all and only the binary strings which 
cover that cluster. For example, the cluster 01001 corresponds to the logi-
cal product x2x5, obtained by considering only the components having the 
value 1 in the given cluster. The desired monotone Boolean function can 
then be constructed by generating a valid collection of clusters for the bi-
nary strings in the training set with output 1. This collection is consistent, 
if none of its elements is covered by binary strings of the training set hav-
ing output 0. 

After the application of the binary coding � on the examples (xj,yj) of 
the training set, we have obtained a new collection of input-output pairs 
(zj,yj) with zj = �(xj), which can be viewed as a portion of the truth table of 
a monotone Boolean function. If T and F contain the binary strings zj with 
corresponding output yj = 1 and yj = 0, respectively, the procedure em-
ployed by SC to reconstruct the sum-of-products expression for the desired 
monotone Boolean function f(z) consists of the following four steps: 

1. Set S  = T and C  = a.  
2. Starting from the implicant 000···0, turn some 0 in 1 to obtain a cluster 

c that is covered by the greatest number of binary strings in S  and by 
no element of F. 

3. Add the cluster c to the set C. Remove from S  all the binary strings 
that cover c. If S is not empty go to Step 2. 

4. Simplify the collection C of clusters and build the corresponding 
monotone Boolean function. 

As one can note, SC generates the sum-of-products expression for the 
desired monotone Boolean function f (Step 4) by examining a collection C 
of clusters incrementally built through the iteration of Steps 2–3. To this 
aim, SC employs an auxiliary set S to maintain the binary strings of T that 
do not cover any cluster in the current collection C.  
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The following subsections describe the solutions adopted by SC to con-
struct the clusters to be added in C (Step 2) and to simplify the final collec-
tion C (Step 4), thus improving the generalization ability of the resulting 
monotone Boolean function. 

Starting from the largest cluster 0���00, containing only 0 values, an impli-
cant c has to be generated for its inclusion in the collection C.  The only 
prescription to be satisfied in constructing this cluster is that it cannot be 
covered by any binary string in F.  

As suggested by the Occam’s Razor principle, smaller sum-of-products 
expressions for the monotone Boolean function to be retrieved perform 
better; this leads to prefer clusters that are covered by as many as possible 
training examples in S and contain more don’t care values 0 inside them. 

However, searching for the optimal cluster in this sense leads to an NP-
hard problem; consequently, greedy alternatives must be employed to 
avoid an excessive computing time. In these approaches an iterative proce-
dure changes one at a time the components with value 0 in the cluster un-
der construction, until no elements of F cover the resulting implicant c. 

Every time a bit i  in c is changed from 0 to 1 a (possibly empty) subset 
Ri of binary strings in S do not cover anymore the new implicant. The same 
happens for a (possibly empty) subset G i G  F .  

It can be easily seen that the subset Ri contains all the elements in S that 
cover c and has a value 0 in the ith component; likewise, the subset Gi in-
cludes all and only the binary strings in F covering c and having a 0 as the 
ith bit. 

It follows that a greedy procedure for SC must minimize the cardinality 
|Ri| of the subset Ri, while maximizing the number of elements in Gi, when 
the ith bit of c is set. In general, it is impossible to satisfy both these pre-
scription; thus, it is necessary to privilege one of them over the other. 

Trials on artificial and real-world classification problems suggest that 
the most promising choice consists in privileging the minimization of |Ri|, 
which leads to the Maximum-covering version of SC (MSC) [21]. Here, at 
every iteration the cardinality of the sets Ri and Gi is computed for every 
component i of c having value c i = 0. Then the index i* that minimizes |Ri| 
is selected; ties are broken by taking the maximum of |Gi| under the same 
value of |Ri|. 

As an example, consider the network in Fig. 1, having system function 
SF(x) = x1x3+x2x4, and the training set shown in Tab. 2. It can be noted that 
in this case the SF is a monotone Boolean function and therefore can be 
reconstructed by SC without recurring to the preliminary coding �. How-

6  .3.3.1 Building Clusters 
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ever, to illustrate the general procedure followed by SC, we apply anyway 
the mapping �, thus obtaining the binary training set (zj,yj) in Tab. 5. 

Table 5. Binary training set for the system in Fig. 1 obtained by applying 
the coding �. 

z1 z2 z3 z4 z5 z6 z7 z8 y = SF(x) 
1 0 1 0 1 0 0 1 0
1 0 1 0 0 1 0 1 0
1 0 0 1 0 1 0 1 1
0 1 1 0 1 0 0 1 0
0 1 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 1

 
It can be directly obtained that the set T contains the strings 10010101, 

01100101, 01011001, and 01010101, whereas F includes 10101001, 
10100101, 01101001, and 01011010. Starting at Step 2 of SC with the ge-
neric implicant 00000000, we compute the cardinalities |Ri| and |Gi| for i = 
1, …, 8, thus obtaining: 

|R1| = 3, |R 2| = 1, |R3| = 3, |R 4| = 1, |R 5| = 3, |R6| = 1, |R 7| = 4, |R 8| = 0 
|G1| = 2, |G 2| = 2, |G 3| = 1, |G4| = 3, |G 5| = 1, |G6| = 3, |G 7| = 3, |G8| = 1 

(12) 

Then, |Ri| is maximized for i = 8; by changing the eight bit from 0 to 1, 
we obtain the cluster 00000001. At this time the subsets Ri for i = 1, …, 7 
remain unchanged, whereas the cardinalities of the subsets Gi are 

|G1| = 1, |G 2| = 2, |G 3| = 0, |G4| = 3, |G 5| = 1, |G6| = 2, |G 7| = 3 

Now, the minimum value of |Ri| = 1 is obtained for i = 2, 4, 6, but the 
maximization of |Gi| suggests to change from 0 to 1 the fourth bit, thus ob-
taining the cluster c = 00010001. Since this implicant is not covered by 
any element of F, it can be inserted into C (Step 3). Then the set S is re-
duced by removing from it the binary strings that cover c, namely 
10010101, 01011001, and 01010101; it follows that S  = {01100101}. 

The procedure is then repeated at Step 2, by considering again the ge-
neric implicant 00000000 and by computing the cardinalities |Ri| for i = 1, 
…, 8. We obtain: 

|R1| = 1, |R 2| = 0, |R3| = 0, |R4| = 1, |R 5| = 1, |R6| = 0, |R 7| = 1, |R 8| = 0 

Note that the subsets Gi in (12) are not changed since F was not altered. 
It is immediately seen that the best choice corresponds to i = 6; changing 
the corresponding bit from 0 to 1 yields the cluster 00000100. The cardi-
nalities |Gi| now become 
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|G1| = 0, |G 2| = 1, |G 3| = 0, |G4| = 1, |G5| = 1, |G7| = 1, |G 8| = 0 

Consequently, the index i = 2 is selected, thus leading to the implicant c 
= 01000100 to be inserted into C.  

Removing at Step 3 the last element from S, which covers c, we obtain 
that S becomes empty and the execution of SC follows at Step 4 with the 
simplification of the resulting collection C = {00010001, 01000100}. 

Usually, the repeated execution of Steps 2-3 leads to a redundant set of 
clusters, whose simplification can improve the prediction accuracy of the 
corresponding monotone Boolean function. In analogy with methods for 
decision trees, the techniques employed to reduce the complexity of the re-
sulting sum-of-products expressions are frequently called pruning algo-
rithms. 

The easiest effective way of simplifying the set of clusters produced by 
SC is to apply the minimal pruning [19,21]: According to this greedy tech-
nique the clusters that is covered by the maximum number of elements in T 
are extracted one at a time. At each extraction, only the binary strings not 
included in the clusters already selected are considered. Breaks are tied by 
examining the whole covering. 

The application of minimal pruning to the example analyzed in the pre-
vious subsection begins with the computation of the covering associated 
with each of the two clusters generated in the training phase. It can be 
readily observed that 00010001 covers three examples of Tab. 3 (precisely 
the binary strings 10010101, 01011001 and 01010101), whereas the cover-
ing of 01000100 is equal to 2. Consequently, the cluster 00010001 is 
firstly selected. 

After this choice only the binary string 01100101 does not cover any 
implicant, which leads to the selection of the second cluster 01000100. No 
simplification is then possible in the collection C, which leads to the 
monotone Boolean function z4 z8 + z2 z6. By applying in the opposite way 
the coding � we obtain the desired expression for the system function 
SF(x) = x2x4+ x 1x3, i.e. the correct SF for the system in Fig. 1. 

To evaluate the performance of the methods presented in the previous sec-
tions, the network shown in Fig. 3 has been considered [39]. It is assumed 
that each link has reliability Pi and capacity of 100 units. A system failure 
occurs when the flow at the terminal node t falls below 200 units. Conse-

6  .3.3.2 Simplifying the Collection of Clusters 

6  .4 Example 
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quently, a max-flow min-cut algorithm is used to establish the value of the 
EF [23,29]. 
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Fig. 3. Network to be evaluated [39] 

In order to apply a classification method it is first necessary to collect a 
set of examples (x,y), where y = EF(x), to be used in the training phase 
and in the subsequent performance evaluation of the resulting set of rules. 
To this aim, 50000 system states have been randomly selected without re-
placement and for each of them the corresponding value of the EF has 
been retrieved.  

To analyze how the size of the training set influences the quality of the 
solution provided by each method, 13 different cases were analyzed with 
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 15000, 
20000 and 25000 examples in the training set. These examples were ran-
domly extracted with uniform probability from the whole collection of 
50000 system states; the remaining examples were then used to test the ac-
curacy of the model produced by the machine learning technique. An aver-
age over 30 different choices of the training set for each size value was 
then performed to obtain statistically relevant results. 

The performance of each model is evaluated using standard measures of 
sensitivity, specificity and accuracy [37]: 

sensitivity = TP/(TP+FN); specificity = TN/(TN+FP);  

accuracy = (TP+TN)/(TP+TN+FP+FN) 
where 

� TP (resp. TN) is the number of examples belonging to the class     
y = 1 (resp. y = 0) for which the classifier gives the correct output,  

� FP (resp. FN) is the number of examples belonging to the class     
y = 1 (resp. y = 0) for which the classifier gives the wrong output. 

For reliability evaluation, sensitivity gives the percentage of correctly 
classified operating states and specificity provides the percentage of cor-
rectly classified failed states. 
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Different kernels were tried when generating the SVM model and it was 
found that the best performance is achieved with a Gaussian radial basis 
function (GRBF) kernel with parameter (1/2A2) = 0.05. All SVM models 
obtained are able to completely separate the corresponding training set. 
The optimization required in the training phase was performed using the 
LIBSVM software [9]. Table 6 shows the average performance indices 
during the testing phase. 

 
Table 6. Average performance indices for SVM (test) 

Training Set 
Size 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

1000 95.12 93.93 95.61
2000 96.90 96.96 96.87
3000 97.63 97.93 97.51
4000 98.09 98.50 97.92
5000 98.42 98.84 98.25
6000 98.66 99.09 98.48
7000 98.83 99.27 98.64
8000 98.97 99.41 98.79
9000 99.07 99.50 98.90

10000 99.17 99.59 98.99
15000 99.48 99.81 99.35
20000 99.64 99.88 99.53
25000 99.73 99.93 99.64

 

Table 7. Average performance indices for DT 

Accuracy (%) Sensitivity (%) Specificity (%) Training Set 
Size Training Test Training Test Training Test 
1000 98.71 95.65 98.26 92.67 98.90 96.91
2000 99.25 97.30 98.89 95.48 99.40 98.08 
3000 99.42 98.06 99.15 96.52 99.54 98.71 
4000 99.54 98.63 99.44 97.72 99.59 99.01 
5000 99.63 98.94 99.51 98.17 99.68 99.27 
6000 99.69 99.10 99.58 98.45 99.73 99.38 
7000 99.74 99.23 99.67 98.70 99.77 99.45 
8000 99.80 99.37 99.71 98.89 99.83 99.57 
9000 99.81 99.42 99.75 98.94 99.84 99.63 

10000 99.83 99.47 99.75 99.02 99.86 99.66 
15000 99.90 99.69 99.85 99.42 99.92 99.80 
20000 99.93 99.80 99.88 99.57 99.96 99.89 
25000 99.95 99.85 99.92 99.71 99.97 99.92 

 

6  .4.1 Performance Results 
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As for DT, the resulting models do not classify correctly all the exam-
ples in the training set. Table 7 presents the average performance indices 
during training and testing. Finally, Table 8 shows the average perform-
ance indices obtained by SC only during testing, since also SC does not 
commit errors on the system states of the training set.  

Table 8. Average performance indices for SC (test) 

Training Set 
Size 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

1000 96.30 94.52 97.05 
2000 98.07 97.34 98.38 
3000 98.67 98.11 98.91 
4000 99.01 98.64 99.16 
5000 99.26 99.00 99.37 
6000 99.45 99.32 99.50 
7000 99.54 99.43 99.58 
8000 99.60 99.49 99.64 
9000 99.65 99.54 99.69 

10000 99.69 99.59 99.73 
15000 99.84 99.80 99.85 
20000 99.89 99.89 99.90 
25000 99.92 99.92 99.92 
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Fig. 4. Average accuracy obtained by each ML method in the test phase 
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Fig. 5. Average sensitivity obtained by each ML method in the test phase 
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Fig. 6. Average specificity obtained by each ML method in the test phase 

Figures 4–6 show the result comparison regarding accuracy, sensitivity 
and specificity for the ML techniques considered. It is interesting to note 
that the index under study for each model increases with the size of the 
training set. SC has the best behavior for all the indices. However, for the 
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sensitivity index, the performances of SC and SVM are almost equal. For 
the specificity index, the performance of SC and DT are almost equal.  

This means that SC seems to be more stable when considering the three 
indices simultaneously. In [33] different networks are evaluated using dif-
ferent EF: the behavior obtained is similar to the one observed in the net-
work analyzed in this chapter. 

As previously mentioned, DT and SC are able to extract rules that explain 
the behavior of the systems in the form of a logical sum-of-products ap-
proximating the SF. DT rules are in disjoint form, so the ARE can be easily 
determined.  Rules generated by SC are not disjoint; thus, an additional 
procedure, such as the algorithm KDH88 [16], has to be used to perform 
this task.  

Table 9 shows the average number of paths and cuts generated by both 
procedures. As can be seen in Fig. 7, both techniques are able to extract 
more and more path and cut sets as long as the training set is increased (the 
system under study has 43 minimal paths and 110 minimal cuts). However, 
for a given training set size, SC can produce more path and cut sets than 
DT. 

Table 9. Average number of paths and cuts extracted by DT and SC 

PATHS CUTS Training Set 
Size DT SC DT SC 
1000 2.2 3.5 17.5 21.2
2000 5.3 8.5 24.9 27.9 
3000 7.9 12.5 29.1 34.3 
4000 9.9 15.5 32.9 38.2 
5000 11.6 18.6 36.1 41.4 
6000 13.5 21.1 39.0 45.4 
7000 14.7 23.0 41.0 48.5 
8000 16.6 24.5 43.6 51.6 
9000 18.2 26.1 45.5 52.7 

10000 19.1 27.4 47.7 55.0 
15000 23.0 31.6 55.8 64.9 
20000 26.0 34.8 61.4 72.3 
25000 27.9 36.3 66.2 77.7 

 

6  .4.2 Rule Extraction Evaluation 
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Fig. 7. Average number of paths and cuts extracted by DT and SNN 

Once DT and SC are trained, their resulting ARE is used to evaluate the 
network reliability. Table 10 shows the network reliability evaluated using 
the correct RE and the ARE obtained by both models, for Pi = 0.90; the 
relative errors are also included for completeness. Both models produce 
excellent results, but SC errors are significantly lower. On the other hand, 
for a specific relative error, SC requires a training set with lower size.  
 
Table 10. Average network reliability and relative error using the path sets 
extracted by DT and SC 

 
ARE Evaluation Rel. Error (%) Training Set 

Size  DT SC DT SC 
1000 0.64168 0.73433 28.85 18.57
2000 0.79388 0.87961 11.98 2.47 
3000 0.85864 0.89315 4.80 0.97 
4000 0.88066 0.89637 2.35 0.61 
5000 0.88980 0.89830 1.34 0.39 
6000 0.89234 0.89972 1.06 0.24 
7000 0.89401 0.90034 0.87 0.17 
8000 0.89701 0.90078 0.54 0.12 
9000 0.89784 0.90087 0.45 0.11 

10000 0.89812 0.90115 0.42 0.08 
15000 0.89992 0.90180 0.22 0.01 
20000 0.90084 0.90194 0.12 0.00 
25000 0.90119 0.90200 0.08 0.00 
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Fig. 8. Reliability relative error using the path sets extracted by DT and SC 

This chapter has evaluated the excellent capability of three machine learn-
ing techniques (SVM, DT and SC) in performing reliability assessment, in 
generating the Approximate Reliability Expression (ARE) of a system and 
in determining cut and path sets for a network.  

SVM produce an approximation to the SF, which cannot be written in 
the form of a logical sum-of-products. However, the model generated can 
be used within a standard Monte Carlo approach to replace the EF.  

On the other hand, DT and SC are able to generate an approximation to 
the SF in the form of a logical sum-of-products expression, even from a 
small training set. The expression generated using DT is in disjoint form, 
which allows to easily obtain the corresponding ARE. Expressions gener-
ated by SC need to be converted in disjoint form, so as to produce the de-
sired ARE. Both DT and SC provide information about minimum paths 
and cuts. 

The analysis of the results on a 21-link network has shown that SC is 
more stable for all the performance indices evaluated, followed by DT and 
SVM.  

The same set of experiments has been used to evaluate the performance 
of three ML techniques in two additional networks [33]. The first network 

6  .5 Conclusions 
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has 20 nodes and 30 double-links. The EF is the connectivity between a 
source node s and a terminal node t.  

The second network analyzed has 52 nodes and 72 double links (the 
Belgian telephone network) and the success criterion used is the all-
terminal reliability (defined as the probability that every node of the net-
work can communicate with every other node through some path). The be-
havior of SVM, DT and SC for these networks has been similar to the re-
sults reported here.  

The analysis of different training sets has also shown that SC seems to 
be more efficient than DT for extracting cut and paths sets: for a specific 
data set size, SC can produce more sets and therefore, a more precise reli-
ability assessment. 

Even if the machine-learning-based approach has been initially devel-
oped for approximating binary SF, it has been extended to deal also with 
multi-state systems [32], obtaining again excellent results. 
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Today’s engineering systems are sophisticated in design and powerful in 
function. Examples of such systems include airplanes, space shuttles, tele-
communication networks, robots, and manufacturing facilities. Critical 
measures of performance of these systems include reliability, cost, and 
weight. Optimal system design aims to optimize such performance meas-
ures.  

The traditional system reliability theory assumes that a system and its 
components may only experience one of two possible states: working or 
failed. As a result, we call it binary reliability theory. Under the binary as-
sumption, the reliability of a system is defined to be the probability that the 
system will perform its functions satisfactorily for a certain period of time 
under specified conditions. The reliability of a system depends on the reli-
abilities of the constituent components and the configuration of the system. 
A design of a system provides a specification of the reliabilities of the 
components and the system configuration. In optimal system design, one 
aims to find the best design that optimizes various measures of perform-
ance of the system.  
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7  .1 Introduction 

7  .1.1 Reliability-based Optimal Design 



One of the most studied system configurations in the literature is the se-
ries-parallel system configuration. A series-parallel system consists of N 
subsystems connected in series such that the system works if and only if all 
the subsystems work wherein subsystem i (1 i N) consists of ni compo-
nents connected in parallel such that the subsystem fails if and only if all 
the components in this subsystem fail. Fig. 1 shows such a series-parallel 
configuration. The reliability of such a series-parallel system is expressed 
as: 

1 1

1 (1 )
inN

s i
i j

R p
� �

� �
� � �� �

� �
� � ,j  (1) 

where pij is the reliability of component j in subsystem i.  For such a sys-
tem, a typical optimization problem involves finding the number of paral-
lel components in each subsystem to maximize system reliability subject to 
constraints on budget, volume, and/or weight. Requirement on system reli-
ability may be treated as a constraint while one of the constraints may be 
treated as the objective function to be maximized or minimized. It is a 
nonlinear programming problem involving integer variables. Since the fo-
cus is on finding the optimal redundancy level in each subsystem, such an 
optimal design problem is also referred to as a redundancy allocation prob-
lem.  
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Fig. 1. Structure of a series-parallel system 

Many variations of the redundancy allocation problem have been stud-
ied in the literature. The design variables may include the number of re-
dundant components in each subsystem, the reliability value of each com-
ponent, and the selection of component versions that are available on the 
market. The redundancy structure in each subsystem may be in the form of 
k-out-of-n (Coit and Smith 1996) or in the form of standby (Zhao and Liu 
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2004). The constituent components have also been modeled as being 
multi-state (Liu et al 2003) or having fuzzy lifetimes (Zhao and Liu 2004).  

Another well studied system configuration in the literature is a general 
network configuration. A network consists of nodes and links. One is in-
terested in determining what links should be present between pairs of 
nodes. The measure of performance of the network to be optimized may be 
cost, two-terminal reliability, or all-terminal reliability (AboElFotoh and 
Al-Sumait 2001 and Srivaree-ratana et al 2002). Such optimization prob-
lems are non-linear integer programming problems.  

A major challenge in reliability based optimal design problems is the 
evaluation of system reliability given a system design. This is a time-
consuming task for large systems. In optimal system design, system reli-
ability has to be evaluated frequently for each candidate design. Thus, effi-
cient algorithms for system reliability evaluation are essential for solving 
these problems.  

To search for optimal solutions of reliability-based optimal design prob-
lems, efficient optimization algorithms are needed. Kuo et al. (2001) sur-
veyed and classified optimization techniques for solving redundancy allo-
cation problems. They compared the pros and cons of the following 
classical optimization techniques: integer programming, transforming non-
linear to linear functions, dynamic programming, the sequential uncon-
strained minimization technique (SUMT), the generalized reduced gradient 
method (GRG), the modified sequential simplex pattern search, and the 
generalized Lagrangian function method. Other examples of integer pro-
gramming solutions to the redundancy allocation problems are presented 
by Misra and Sharma (1991), Gen et al. (1990), and Gen et al. (1993).  In 
the process of searching for more efficient optimization algorithms, re-
searchers have used artificial neural networks (ANN) as a function ap-
proximator and as an optimizer for solving all kinds of reliability based de-
sign problems.  

Neural networks consist of simple elements called neurons operating in 
parallel. The structure of neural networks is inspired by biological neuro-
logical systems.  According to Rojas (1996), McCulloch and Pitts intro-
duced the first abstract model of neurons by mimicking biological neurons 
and Hebb presented a learning law so that a network of neurons can be 

7  .1.2 Challenges in Reliability-based Optimal Design 

7  .1.3 Neural Networks 
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trained. The research on neural networks achieved significant progress in 
the 1980s. Neural network models have found many applications in the 
past fifteen years.  

Neural networks have been trained to perform complex functions in 
various fields of application including pattern recognition, identification, 
classification, speech, vision and control systems (Rojas, 1996). Neural 
networks can be trained to solve problems that are difficult for conven-
tional computers or human beings. The advantages of neural networks in-
clude: (1) Adaptive learning: an ability to learn how to do tasks based on 
the data given for training or initial experience. (2) Self-organization: an 
neural network can create its own organization or representation of the in-
formation it receives during learning time. (3) Real time operation: neural 
network computations may be carried out in parallel, and special hardware 
devices are being designed and manufactured which take advantage of this 
capability. (4) Fault tolerance via redundant information coding: partial 
destruction of a network leads to the corresponding degradation of per-
formance. However, some network capabilities may be retained even with 
major network damage. 

Two types of neural networks are most widely used in reliability-based 
optimal design: feed-forward neural networks as a function approximator, 
and Hopfield networks as an optimizer. These two types of neural net-
works and their applications will be discussed in details in the following 
sections. 

In this chapter, we explore the applications of artificial neural networks for 
solving reliability-based optimal design problems. The remaining part of 
this chapter is organized follows. In Section 2, we summarize the advan-
tages of artificial neural networks that are specifically useful for solving 
reliability based optimal design problems. The use of ANN as a function 
approximator is presented in Section 3 while the use of ANN as an opti-
mizer is given in Section 4. Section 5 provides a summary and points out 
future research topics in application of ANN for solving reliability based 
design problems. 

7  .1.4 Content of this Chapter 
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The most widely used type of neural networks is the feed-forward neural 
network. The structure of a feed-forward neural network with three layers 
is shown in Fig. 2. It has one input layer, one hidden layer, and one output 
layer. A feed-forward neural network is used for nonlinear mapping. That 
is, based on the available data sets of input and output pairs, a neural net-
work can be trained to model the mapping relationship between inputs and 
outputs.  

For example, from function , we generate five input/output pairs: 
[1, 1], [2, 4], [3, 9], [4, 16], and [5, 25]. The neural network we are using 
should have one neuron in the input layer and one neuron in the output 
layer, since there are only one input and one output. In this example, we 
can simply use one hidden layer with 3 hidden neurons. After training with 
the provided training pairs, the neural network can pretty much model the 
hidden mapping relationship , and thus we can calculate what is the 
output value when the input is say 1.5.  

2xy �

2xy �

 
 

Input 
Layer

Output 
Layer

Hidden
Layer 

 

Fig. 2. Structure of a feed-forward neural network 

Approximator 
7  .2 Feed-forward Neural Networks as a Function 

7  .2.1 Feed-forward Neural Networks 



180 

A three-layer feed-forward neural network is capable of modeling any 
nonlinear mapping (Rojas, 1996). A feed-forward neural network may 
have more than three layers. However, too many hidden layers make the 
model more complex and the generalization capability of the network will 
become worse. Thus, feed-forward neural networks with one or two hid-
den layers are the most widely used ones in practical applications. Build-
ing nonlinear mapping relationship is a major advantage of feed-forward 
neural networks. We do not have to know the interior mechanism of the 
system to be modeled. As long as we have a set of input and output pairs, 
the feed-forward neural network can be trained to approximate the rela-
tionship between the output and the input to any specified degree of accu-
racy.  

The function represented by a neural network model is determined 
largely by the connections between neurons. We can train a neural network 
to perform a particular function by adjusting the values of the connections 
(weights) between neurons (Rojas, 1996). Typically many input/output 
pairs are used in the process called supervised learning to train a network. 
The back-propagation (BP) algorithm is a widely used training algorithm 
for feed-forward neural networks. The BP algorithm aims at minimizing 
the following error function: 

. /� ��
j

jj vTE 2
2
1

 (2) 

where  represents all the neurons in the output layer,  is the desired 

output in the training pair, and  is the actual output from the current 

neural network. The procedure of BP algorithm is shown as follows (Fu, 
1994). 

j jT

jv

The Backpropagation Algorithm  

A. Initialization. Set all weights and node thresholds to small random 
numbers. Give each neuron an index (including the input neurons).  

B. Feed-forward calculation. Use  to denote the output of neuron . 

(1) The output of an input neuron is equal to the input value. (2) The out-
put of a hidden neuron or output neuron is: 

jv j
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�
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where  is the weight from neuron i to j, jiw jI  is the threshold, and F  is 

the so-called activation function. In a feed-forward neural network, a neu-
ron only gets inputs from the immediately preceding layer. A commonly 

used activation is the sigmoid function given by: . / . /xexF ��� 11 .  
C. Backpropagation weight training. (1) Start from the output layer and 

work backward to the hidden layers recursively to calculate error jQ . For 

output neurons: 

. /. /jjjjj vTvv ��� 1Q  (4) 

For hidden neurons: 
. /���

k
kjkjjj wvv QQ 1  

(5) 

 
where kQ  is the error at neuron k  to which a connection points from hid-

den neuron . (2) Adjust the weights as follows: j

ijji
jijiji

vw
wtwtw
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where �  is the positive scalar and called learning rate.  
D. Repeat the feed-forward calculation and backpropagation weight 

training until the stopping criterion in terms of output errors is met.  
Other techniques can be applied to improve the BP algorithm, like using 

the momentum terms. There are also other training algorithms based on 
other optimization methods, such as quasi-Newton methods and conjugate 
gradient methods (Rojas, 1996). 

The ability of ANN to approximate a function of many variables to any 
degree of accuracy has been put into good use in solving reliability based 
optimal design problems. Coit and Smith (1996) used ANN to estimate the 
reliability of a series-parallel system wherein each subsystem has a k-out-
of-n configuration in order to solve the optimal redundancy allocation 
problem. Zhao and Liu (2004) considered a series-parallel system wherein 
the redundancy configuration may be either parallel or standby and the 
lifetime of the system and that of each component is modeled as a fuzzy 
random variable. They used an ANN model to approximate the expected 
system lifetime and system reliability as a function of the redundancy lev-
els and component lifetimes. Liu et al (2003) used ANN to approximate 
the expected system utility of a series-parallel system wherein the state of 
the system and that of each component is modeled as a continuous multi-
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state random variable. Huang et al (2005) used an ANN model to represent 
the relationship between a designer’s preference score and the performance 
measures such as cost, reliability, and weight of the system given a spe-
cific design as a part in their integrated interactive multi-objective optimi-
zation approach. Srivaree-ratana et al (2002) used an ANN model to repre-
sent the relationship between the all-terminal reliability of a network and 
the failure-prone links to be installed in the network. Papadrakakis and La-
garos (2002) used an ANN model to represent the relationship between 
performance measures such as stress and failure probability and the design 
variables in optimal design of large-scale 3-D frame structures. These uses 
of ANN as a function approximator will be discussed in details in this sec-
tion.  

In a feed-forward ANN, the number of layers, the number of neurons in 
each layer, and the connection weights between neurons define the struc-
ture of the ANN. Training data specify the desired relationship between 
output and input. Through training, a feed-forward ANN can be used to 
approximate any continuous function to any degree of accuracy (Cybenko 
1989). This capability has been used in many reliability based optimization 
problems. In this section, we summarize applications of ANN as a function 
approximator. 

Series-parallel System 

Liu et al (2003) report a study on optimal redundancy allocation for a con-
tinuous-state series-parallel system. The structure of the considered multi-
state series-parallel system can also be represented by Fig. 1. It consists of 
N subsystems, S1 to SN, connected in series. Each subsystem, say Si, has  

identical components connected in parallel. The state of each component 
and the system may be modeled as a continuous random variable taking 
values in the range of [0, 1]. The definition of a multi-state series-parallel 
system provided by Barlow and Wu (1978) is used here. That is, the state 
of a parallel system is the state of the best component in the system while 
the state of a series system is the state of the worst component in the sys-
tem.  Let x

in

ij denote the state of component j in subsystem Si. Then, the sys-
tem state can be expressed as 

ij
njNi

x�
i

maxmin
11

)(
����

�x  
 

7  .2.2 Evaluation of System Utility of a Continuous-state 

Ming J Zuo et al.



Neural Networks for Reliability-Based Optimal Design      183 

When the system is in state s, the utility of the system is denoted by b(s). 
Given the state density function of each component, namely fij (s), we can 
evaluate the state distribution of the system. With the system state distribu-
tion obtained, we can then find the expected utility of the system.  

The design problem concerned is maximization of the expected system 
utility subject to cost constraints through determination of the optimal re-
dundancy level in each subsystem. The optimization model is as follows: 
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where Cij is the cost of component j in subsystem i and CT is the total 
budget allowed.  

This optimization model includes both integration and differentiation in 
the objective function. The objective function is very complicated and the 
problem is very difficult to solve using a classical optimization algorithm. 
This situation arises when (1) the number of subsystems, N, is large; (2) 
the state distributions of components in the same subsystem are not identi-
cal; and/or (3) component state distribution is not a simple distribution. In 
addition, in some cases, the component state distribution function may 
have to be expressed in an empirical form and, as a result, no analytical 
expression of )( ,,, 21 NnnnU � is available. The critical problem is that 

evaluating this utility function directly is very time-consuming, and thus 
evaluating it repetitively in the optimization process is very hard and 
sometimes impossible.  

The system state distribution  is defined as: ),,,,( 21 Nnnnsg �
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Liu et al (2003) use feed-forward neural networks to approximate this sys-
tem state distribution. They use a three-layer neural network, with sigmoi-
dal activation functions used in the hidden layer, and linear activation 
functions used in the output layer. Training and testing (validation) data 
sets are generated as follows: first, a suitable number of input vectors, 
( ), are chosen or generated randomly from the allowed N21  ,,,s, nnn �
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value ranges of s , , , …, and ; next, the input vectors are normal-

ized and for each input vector, the desired output, , is 

calculated with equation (8). The training and testing data sets consist of 
different pairs of the input vector and its corresponding output.  

1n 2n Nn

),,,,( 21 Nnnnsg �

No matter how complicated  might be, the approxi-

mate analytical expression of system distribution function, 
, is always a linear combination of a finite number of 

sigmoidal functions. The approximate objective function 

),,,,( 21 Nnnnsg �

),,,(ˆ 21 nnsg �, Nn

)(ˆ ,,, 21 NnnnU �  

constructed from  usually has analytical expression 

(Liu et al 2003), and thus much less time-consuming to calculate. And the 
redundancy allocation of continuous-state series-parallel systems can be 
implemented more efficiently. The following example is given to illustrate 
this approach (Liu et al 2003).  

),,,,(ˆ 21 Nnnnsg �

 
Example 1 

 
In this example, we use a 4-stage series-parallel system, in which N = 4; 

b(s)=10s; C1i =3200; C2i=1700; C3i =830; C4i=2500; and CT =160,000. The 
probability density functions of components in the four subsystems are 
three commonly used distributions: unit distribution, triangular distribution 
and Beta distribution. 
f1i=1: unit distribution; 
f2i=2s: triangular distribution; 
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sssf i : Beta distribution where � = 2, � = 3.5; 
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sssf i : Beta distribution where � = 5, � = 2. 

The density functions of the components in the 4 subsystems are plotted 
in Fig. 3. 

The desired output targets for ANN training, i.e., actual system distribu-
tion function, are calculated with  
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Fig. 3. Component state distribution functions for Example 1 

We can see that although equation (9) is also complicated, it is calcula-
ble.  But the objective function  as in Equation (7) is too 

complex and seems impossible to calculate analytically.  

)( 4321 ,n,n,nnU

On the contrary, it is straightforward to solve this optimization problem 
using the ANN approximation. After training the neural network and ob-
taining the approximate system distribution function , we 

can construct the approximate objective function 

)(ˆ 4321 ,n,n,nng

)( 4321 ,n,n,nnU
	

, which is 

an analytical expression (Liu et al 2003).  
The training data set containing 1600 training pairs is generated ran-

domly. The size of the hidden layer is 19. After 2500 epochs of training it-
erations, the actual percent training error is 0.9859%. The maximum vali-
dation error is 2.4532%. After an exhaustive search, the final optimal 
solution is   

M1=14;  M 2=9;  M 3=36;  M 4=15 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

f1i
f2i
f3i
f4i



186 

and the corresponding approximate utility is 4384.8)32,(12,7,35 �U
	

. 

Approximator  

Coit and Smith (1996) consider the optimal design problem of a series sys-
tem with k-out-of-n redundancy. In such a system structure, there are N 
subsystems connected in series and each subsystem adopts a k-out-of-n 
structure. The optimal design model aims to find the optimal number of 
components ni in subsystem i (ni � k) such that the system cost is mini-
mized subject to system reliability constraints. For each subsystem, several 
types of components are available for selection. The number of compo-
nents of each available type needs to be determined so that we can find the 
total number of components of possibly different types for each subsystem. 
The decision variable values are determined through an optimization proc-
ess using genetic algorithms. However, the reliability of the system for 
each candidate design must be evaluated. This may be a time-consuming 
process.  

In developing the ANN model for the purpose of reliability estimation 
of a k-out-of-n system, Coit and Smith (1996) use full factorial design of 
the critical parameters k, n, and three underlying distributions (uniform, 
quadratic skewed-left and quadratic skewed-right) in equal proportions for 
component reliabilities. The skewed distributions are used to make sure 
that the developed ANN model is accurate for high component reliabilities 
or low component failure probabilities. Analytical methods are used to find 
the training data for the neural networks.  

Since the ANN model is developed for estimation of the reliability of a 
k-out-of-n system structure, it actually includes the parallel redundancy as 
a special case. This makes the ANN model more general than for a simple 
parallel structure. However, caution has to be taken in assessing the error 
in the estimate of the reliability of the k-out-of-n subsystem. When these 
reliability values of the subsystems are multiplied together to get the sys-
tem reliability, these errors may be magnified (Coit and Smith 1996). One 
needs also to take into consideration the optimizer to be used in the train-
ing of the ANN model.  

7  .2.3 Other Applications of Neural Networks as a Function 

7  .2.3.1 Reliability Evaluation of a k-out-of-n System Structure 

Ming J Zuo et al.



Neural Networks for Reliability-Based Optimal Design      187 

Under Fuzzy Environment 

Zhao and Liu (2004) consider the problem of redundancy allocation of a 
series system with parallel redundancy or standby redundancy. The system 
has n subsystems connected in series. Subsystem i (1 	 i 	 n) has ni com-
ponents either connected in parallel or connected in standby. The lifetime 
of each component can be represented by a fuzzy random variable. The 
measures of performance of the system may be the expected lifetime of the 
system, system reliability, or the so-called (�,�)-system lifetime (Zhao and 
Liu 2004).  

The key for solving this optimal allocation problem is to evaluate the 
expected lifetime of the system, system reliability, and the so-called (�,�)-
system lifetime. For a given design, a random fuzzy simulation approach 
was proposed by Zhao and Liu (2004) to evaluate these performance 
measures. Since this approach is very time-consuming, they used it to gen-
erate training data to train a feedforward ANN which will then be used to 
approximate these measures of performance during the design optimiza-
tion process. The used ANN model has one input layer, one hidden layer, 
and one output layer. The number of neurons in the input layer is equal to 
the number of decision variables. The number of output neurons is equal to 
the number of performance measures of interest. The number of neurons in 
the hidden layer is determined by the pruning algorithm of Castellano et al 
(1997).  

Once the ANN model is trained, it is used as a function approximator in 
the optimization model. Genetic algorithms are used to solve the optimiza-
tion problems. Examples are used to illustrate this approach for solving re-
dundancy allocation problems including parallel redundancy and standby 
redundancy.  

Srivaree-ratana et al. (2002) consider a network design problem in which 
the nodes are fixed and perfect while the links are failure prone. The ques-
tion to be answered is what links should be installed to minimize the total 
cost of installing these selected links subject to requirement on all-terminal 
reliability of the network.  

The most time-consuming task in this network design problem is the 
evaluation of all-terminal reliability given a network design. Approaches 
such as enumeration and Monte Carlo simulation can be used for evalua-
tion or approximation of network reliability, but they are very time-
consuming. Srivaree-ratana et al (2002) decide to use ANN to estimate the 

7  .2.3.2 Performance Evaluation of a Series-parallel System 

7  .2.3.3 Evaluation of All-terminal Reliability in Network Design 
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all-terminal reliability as a function of a selected design. A feedforward 
ANN model is adopted and the backpropagation training algorithm is used. 
A hyperbolic activation function is used for all neurons and a learning rate 
of 0.3 is used for hidden neurons and of 0.15 is used for the output neu-
rons. The total number of hidden neurons is chosen to be identical to the 
number of input neurons.  

Experiment results provided by Srivaree-ratana et al (2002) show that 
the ANN model works very well for estimating all-terminal reliability. Fu-
ture research topics may include fine tuning the ANN model and imbed 
occasional evaluation of the exact all-terminal reliability of preferred de-
signs.  

scale Structural Design 

Reliability based optimal design of large-scale structural systems is ex-
tremely computation intensive. Papadrakakis and Lagaros (2002) address 
the optimal design of multi-storey 3-D frames. The goal is to minimize the 
weight of the structure subject to constraints on allowed stress, displace-
ment, and failure probability. Due to the randomness in loads to be ap-
plied, material properties, and member geometry, evaluation of the stress, 
displacement, and failure probability given a structure designed is very 
time-consuming.  

The measures such as stress, displacement, and failure probability can 
be evaluated using finite element method, the limit elasto-plastic method, 
and Monte Carlo simulations given certain design parameters. These cal-
culated values and the corresponding design parameters can then be used 
as the training data set for training of a feedforward ANN which can then 
be used for approximation of these measures during the optimization proc-
ess. The actual optimization algorithm used is the genetic algorithm. Nu-
merical results are presented to illustrate the effectiveness of the proposed 
approaches. 

There are more application examples of neural networks as function ap-
proximator in the literature, like the representation of the preference struc-
ture of the designer in multi-objective design optimisation (Huang et al 
2005). 

7  .2.3.4 Evaluation of Stress and Failure Probability in Large-
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Another widely used structure of ANN is the Hopfield network (Hopfield 
1982, Hopfield and Tank 1985). In a Hopfield network, all neurons are in a 
single layer (Fig. 4). Every pair of neurons are connected with the same 
connection weights. That is 

ijji ww � , for ji P  

0�iiw  
(10) 

Each neuron may represent a binary variable because its output may take 
values of 0 or 1 only. An activation function is used to map the total input 
to a neuron to a 0-1 output value.  

 
 

 
Fig. 4.  Structure of a Hopfield network 

Through a dynamic update equation of the input value of each neuron, 
the Hopfield ANN converges to a state that minimizes an energy function 
of the neural network. Consider a Hopfield ANN with n neurons wherein 
wij denotes the connection weight between neurons i and j, ui the input to 
neuron i, vi = F(ui) the output of neuron i through activation function F(.), 
and iI  the bias of neuron i. Then, the energy function of the ANN is given 

by Hopfield and Tank (1985) as:  
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The dynamics of the Hopfield ANN is defined as 

7  .3 Hopfield Networks as an Optimizer 

7  .3.1 Hopfield Networks 
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Equation (12) actually represents the steepest descent direction of the en-
ergy function given in equation (11). If the input to neuron i, ui, is updated 
following the direction given by equation (12), the energy function will 
converge to a local minimum. This is why the Hopfield ANN can be used 
to solve optimization problems. 

A major advantage of Hopfield networks is their efficiency in solving 
optimization problems (Nourelfath and Nahas, 2003). Such an ANN as an 
optimizer was first introduced by Hopfield and Tank (1985). The concept 
of quantized neurons was introduced by Matsuda (1999). AboElFotoh and 
Al-Sumait (2001) used Hopfield networks for solving a network design 
problem. Nourelfath and Nahas (2003) used quantized Hopfield networks 
for selection of the components in a series system for system reliability 
maximization. These uses of ANN as an optimizer will be discussed in de-
tails in this section. 

The key in the use of a Hopfield ANN for solving reliability optimiza-
tion problems is in formulation of the energy function and definition of de-
cision variables vi. In this section, we summarize the work reported by 
AboElFotoh and Al-Sumait (2001) and Nourelfath and Nahas (2003) for 
this purpose.  

AboElFotoh and Al-Sumait (2001) considered a network design problem. 
There are n perfect nodes in the network. The question to be answered is 
what links should be installed to minimize the total cost of the network 
subject to all-terminal reliability requirement. The reliability and the cost 
of each possible link are given as data.  
 
Notation: 

n Number of nodes in the network 
i, j Network nodes 
(i, j) The link between node i and node j 
pi,j Reliability of link (i, j) 
ci,j Cost of link (i, j) 
R0 All-terminal reliability requirement of the network 
RS All-terminal reliability of the network 
vi,j Takes the value of 1 if link (i, j) is selected and 0 otherwise 

7  .3.2 Network Design with Hopfield ANN 
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A, B, C Positive constants that may be adjusted in the optimization 
process 

The optimization model for the network design problem is  

Minimize  ��  
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(13) 

 
To use a Hopfield ANN to solve this optimization problem, AboElFotoh 

and Al-Sumait (2001) use (i, j) to denote a neuron and the following to 
present the energy function: 
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This energy function consists of three terms added together. Since we 
are to minimize this energy function, the first encourages network reliabil-
ity maximization, the second term encourages cost minimization, and the 
third term discourages the ANN from adding new links to increase net-
work reliability unnecessarily over R0.  The negative derivative of the en-
ergy function given in equation (14) with respect to each decision variable 
vi,j is given by  
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The update equation for the input ui,j is then given by 
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To use the above equations, one has to have an algorithm to calculate 
the all-terminal reliability for each given network design. Since this is an 
NP-hard problem, AboElFotoh and Al-Sumait (2001) provide a lower 
bound and upper bound on this network reliability. Either bound may be 
used in equation (14) to approximate the reliability of the network. The ac-
tivation function used is a simple threshold function, namely 
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where UTP and LTP are the threshold values.  
Many network cases were generated to test the Hopfield ANN approach 

for this network design problem. AboElFotoh and Al-Sumait (2001) con-
clude that this approach is very efficient for design of large networks but 
does not guarantee global optimal solutions. Possible future research work 
include consideration of node failures, more efficient algorithm for evalua-
tion of all-terminal network reliability, and better rules for selection of pa-
rameters of the energy function.  

Nourelfath and Nahas (2003) considered a series system with N compo-
nents. For component j (1	 j 	 N), there are Mj choices available. These 
choices correspond to different costs, reliabilities, weights, and possibly 
other characteristics. We are interested in making a choice for each of the 
N components such that system reliability is maximized subject to cost and 
other constraints. The optimization model for this problem can be ex-
pressed as 
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where  is the system reliability,  is the reliability of choice i for 

component j,  is the cost of choice i for component j, B is the budget 

for the system, and  is a 0-1 variable that takes the value of 1 if choice i 

is selected for component j. This is a 0-1 non-linear programming problem. 
However, the objective function can be transformed into a linear function 
as follows (Nourelfath and Nahas 2003): 
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With this transformation, the optimization problem becomes a 0-1 linear 
programming problem.  

Without loss of generality, the budget amount B is assumed to be an in-
teger value. After introducing a slack variable t to convert the inequality 
constraint into an equality constraint, the optimization model becomes: 
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(20) 

Though the Hopfield ANN in its originally proposed form allows only 
0-1 variables, the quantized Hopfield ANN developed by Matsuda (1999) 
can be used to deal with integer variables too. Applying this model, 
Nourelfath and Nahas (2003) use the following energy function of the 
quantized Hopfield ANN for solving the series system optimization prob-
lem: 
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where A1, A 2, and A 3 are positive parameters.  

Simulation studies are conducted to test the quantized Hopfield ANN 
model for the series system optimization problem. The following two 
forms of optimization objectives other than that in equation (20) were 
tested as well 
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and simulation results showed that no effects occur when considering these 
forms of objective functions.   

Nourelfath and Nahas (2003) conclude that the quantized Hopfield 
ANN reduces the number of neurons needed to represent the series system 
optimization model and as a result reduces the computation time in finding 
optimal solutions. Unfortunately, the quantized Hopfield ANN does not 
guarantee global optimal solutions either. Other possible future research 
topics include application of this model to solving other reliability based 
optimization problems.  

Reliability based optimal design presents challenging optimization prob-
lems. These problems often involve time-consuming tasks of evaluation of 
various system performance measures such as reliability, expected utility, 
lifetime, stress, displacement, and failure probability. Neural network 
models have been used for the purpose of function approximation to sig-
nificantly reduce the computation needs in the on-line optimization process 
because ANN models can be trained off-line. The Hopfield ANN model 
has also been used as a local optimization routine in search for optimal so-
lutions.  

When ANN is used for function approximation, the main concern is its 
accuracy. Usually the ANN approximation can not be 100% accurate. To 
have a better accuracy, a larger training sample size is required, which 
leads to more computation efforts. The users need to verify the accuracy of 
ANN approximation, and find out whether or not the accuracy is accept-
able. When ANN is used as an optimizer, the main concern is its local op-
timisation characteristic. It is possible that the global optimum can never 
be reached.  

Future research directions for application of ANN models in reliability 
based design includes improvement of the global search ability of the Hop-
field neural networks, systematic selection of the parameters of the energy 
function of the Hopfield neural networks, combination of ANN function 

7  .4 Conclusions 
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approximator with occasional evaluation of the exact values of the func-
tions being approximated, the issue of error propagation in the function 
approximators, and the interaction between the function approximator and 
the actual optimization routine used. 
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Software Reliability Predictions using Artificial 
Neural Networks  
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Computer-based artificial systems have been widely applied in nearly 
every field of human activities. Whenever people rely heavily on some 
product/technique, they want to make sure that it is reliable. However, 
computer systems are not as reliable as expected, and software has always 
been a major cause of the problems. With the increasing reliability of 
hardware and growing complexity of software, the software reliability is a 
rising concern for both developer and users. Software reliability engineer-
ing (SRE) has attracted a lot of interests and research in the software 
community and software reliability modeling is one major part of SRE re-
search.  

Software reliability modeling describes the fault-related behaviors of 
the software testing process and is one of the important achievements in 
software reliability research activities. The information provided by the 
models is helpful in making management decisions on issues regarding the 
software reliability. They have been successfully applied in practical soft-
ware projects, such as cost-analysis [17, 34], testing-resource allocation [6, 
37], test-stopping decision [21, 32] and fault-tolerance system analysis [11, 
19]. 

Generally, software reliability models can be grouped into two catego-
ries: analytical software reliability growth models (SRGMs) and data-
driven models. Analytical SRGMs use stochastic models to describe the 
software failure process under several assumptions to provide mathemati-
cal tractability [18, 22, 23, 24, 31]. The major drawbacks of these models 
are their restrictive assumptions. On the other hand, most data-driven 
models follow the approach of time series analysis, including both tradi-
tional autoregressive methods [5] and modern artificial neural network 
(ANN) techniques [15]. These models are developed from past software 
failure history data. Specially, ANNs are universal functional approxima-
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tors. They are generally nonlinear and have the capability for generaliza-
tion [12]. ANN models have recently attracted more and more attention [3, 
10, 13, 16, 25, 28, 29]. ANN models are developed with respect to soft-
ware failure data under specific network architecture. Compared to 
SRGMs, ANN models are much less restrictive in assumptions. Besides 
these major kinds of models, there are also some models recently devel-
oped through Fuzzy theory [2], Bayesian networks [1], etc.  

Currently, most software reliability models, both analytical and data-
driven models, assume (explicitly or implicitly) that software faults can be 
removed immediately once they are detected. As a result, these models 
only describe the dynamic behavior of the software fault detection process 
(FDP). In real practice, after a fault is detected, it has to be reported, diag-
nosed, removed and verified before it can be noted as corrected. This re-
lated correction time is not that trivial to be ignored [30, 39]. Furthermore, 
the fault-correction time is an important factor in some management deci-
sion analysis, such as stopping time for testing, fault-correction control, 
and fault correction resource allocation. Therefore, utilizing only software 
fault detection data series can result in highly inaccurate predictions of the 
software reliability. When both fault detection and correction data series 
are available, they can be utilized by incorporating fault correction process 
(FCP) into software reliability models to make the software reliability 
models more realistic.  

Some extensions on current software reliability models have been ex-
plored. For analytical models, Schneidewind (1975) proposed to model 
fault correction process as a separate process following the fault detection 
process with a constant time lag [26]. This idea was extended in several 
ways in [35]. Schneidewind (2001) further extended the original model by 
assuming the time lag is a random variable [27]. These works are based on 
non-homogeneous Poisson process (NHPP) models where the time delay is 
the critical aspect of the modeling. As this approach is based on the tradi-
tional software reliability models, much time on modeling is saved. In ad-
dition, with only one extra factor of correction time, this model provides a 
simple analysis approach. Within the Markov framework, a non-
homogeneous continuous time Markov chain has been proposed [9]. Due 
to its complexity, analysis is not tractable and is often done trough simula-
tion. Moreover, there is a state explosion problem with such models. Simi-
larly, ANN models can also be extended to model both FDP and FCP. This 
can be done with a separate network for FCP in addition to the original one 
for FDP. As a general designation, all these modeling approaches will be 
called separate approaches, for they are developed through a separate way.  

However, applying this separate approach to either analytical or ANN 
model still fails to describe the interactions between FDP and FCP. Spe-
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cifically, the paired analytical models treat the software FDP as a NHPP  
independent from FCP and no influence from FCP is considered, while the 
influence of FDP on FCP is described by the time delay, which is not al-
ways the case for variant software testing processes. As for a separate 
ANN model, no interactions between these two processes are considered at 
all, and the two processes are treated as uncorrelated from each other. 
However, the feedback of fault correction on detection can not be ignored. 
Intuitively, slow fault correction should have negative effects on the fault 
detection process, and in extreme, it can make the successive detection 
process halt; while fast correction process would add pressure to the fault 
detection indirectly, through action on the testing personnel. In addition, as 
a following process to FDP, FCP can be described better by incorporating 
more information from FDP models. None of the above described ap-
proaches can meet this requirement. 

Compared with the analytical approach, the ANN modeling framework 
is flexible in combining multiple processes together [4], and has the poten-
tial to overcome the deficiencies described above. This problem is ex-
plored comprehensively in this chapter under this framework. The com-
bined ANN models with both the fault detection and correction processes 
are studied, focusing on the incorporation of the bi-directional influences 
between these two processes. In comparison with the former two schemes, 
more accurate prediction can be expected. Specifically, comparing with 
paired analytical models, the combined ANN model extracts the feedback 
from FCP on FDP, enabling better prediction for FDP. However, as the 
analytical models can describe the impact of FDP on FCP with time delay 
assumption, these two models would compete in predicting FCP. Com-
pared to the separate ANN model, the combined model describes better the 
influences between the two processes, so they can be expected to perform 
better in both FDP and FCP prediction. Further in this chapter two kinds of 
framework for the combined ANN model are proposed and comparisons 
among these available models are made.  

This chapter is organized as follows. In section 2, an overview on tradi-
tional software reliability models and their extensions to incorporate FCP 
is presented. In section 3, with the formulation of this problem, combined 
ANN models are described in detail. Two specific frameworks are intro-
duced, one feedforward and one recurrent, which are modeled through dif-
ferent approaches. Section 4 applies these two combined ANN models to 
real software reliability data, presenting the comparisons within the two 
frameworks. Detailed comparisons with the paired analytical models and 
separate ANN model are given in section 5. Section 6 presents our conclu-
sions and discussions on further studies on combined ANN model.  
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In this section, we provide an overview of the major modeling approaches, 
adopting the classification approach similar to [31]. Generally, software re-
liability growth models (SRGMs) have both analytical and data-driven 
models. Analytical SRGMs have three major sub-categories: non-
homogeneous Poisson process (NHPP) models, Markov models and 
Bayesian models. They are constructed by analyzing the dynamics of the 
software failure process, and their applications are developed by fitting 
them against software failure data. 

Denote N(t) as the cumulative number of software failures occurred by 
time t. The process {N(t); t� 0} is assumed to follow a Poisson distribution 
with characteristic MVF (Mean Value Function) m(t).By assuming perfect 
and immediate fault-correction, the failure (fault-detection) process is also 
a fault-removal process.  

Generally, different fault detection models can be obtained by using dif-
ferent nondecreasing MVF md(t). For finite md(t) models, there are two 
representative models as GO-model and S-shaped NHPP model. The GO-
model [8] describes the fault detection process with exponential decreasing 
intensity with MVF as. 

)1()( bt
d eatm ���� ,  0, �ba (2.1) 

The S-shaped model [36] describes the fault detection process with an 
increasing-then-decreasing intensity, which can be interpreted as a learning 
process. The MVF is given as  

])1(1[)( bt
d ebtatm ����� , . 0, �ba (2.2) 

In both models, a is the final number of faults that can be detected by 
the testing process, and b can be interpreted as the failure occurrence rate 
per fault.  

8  .2 Overview of Software Reliability Models 

8  .2.1 Traditional Models for Fault Detection Process  

8  .2.1.1 NHPP Models 
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The best-known software reliability model, the JM-model, is a Markov 
model [14]. This model has the following underlying assumptions: 
� the number of initial software faults is an unknown but fixed constant; 
� a detected fault is removed immediately and no new fault is introduced; 
� times between failures are independent, exponentially distributed ran-

dom quantities; 
� all remaining software faults contribute the same amount to the software 

failure intensity as �. 
Denote N0 as the number of software faults in the software before test-

ing starts. From the assumptions, after the kth failure, there are (N0-k) 
faults left, and the failure intensity decreases to �(N0-k). Then the time be-
tween failures Ti, i = 1, …, N0, are independent exponentially distributed 
random variables with respective parameter as �(i)=�[N0-(i-1)], i=1,…, N0. 

Bayesian analysis is a commonly accepted approach to incorporate previ-
ous knowledge in software testing. Most Bayesian formulations are based 
on the previous two kinds of models. One of the best-known Bayesian 
model is the LV-model [20]. It assumes that the time between failures are 
independent exponentially distributed with a parameter that is treated as 
random variable,  

ii tiii etf === ��)|( , i = 1, 2, …, n. (2.3) 

in which �i is assumed to have a Gamma prior distribution as  
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where � is the shape parameter and )(iT is the scale parameter depending 

on the number of detected faults. 

ANN approach to model software is originally proposed in [15]. The re-
liability prediction here is regarded as an explanatory or causal forecasting 
problem [38]. The mapping between inputs and outputs of ANN can be 
written as follows: for generalization training nt = f(tn); while for prediction 

8  .2.1.2 Markov Models 

8  .2.1.3 Bayesian Models 

8  .2.1.4 ANN Models 
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training nt = f(tn-1), where t is the time when n failures occur. Most of the 
recent models [3, 13, 25, 29] take software reliability prediction as a time 
series forecasting problem [38]. The mapping of ANN can be written as 
yt+1=f(yt ,yt -1,…,yt-p), as illustrated in Fig. 1. Different failure data and net-
work architectures are applied. yt could be the inter/accumulated failure 
time/number. Both feedforward and recurrent neural networks have been 
applied. Usually, one-step predictions are developed for the measurement 
of failure time or number, and after that multi-step predictions can be ob-
tained iteratively to show the trend of software failure behavior. ANN 
models have been successfully applied to solve software optimal release 
time problem with multi-step reliability prediction [7].  

 

Fig. 1. General Traditional ANN Model 

Analytical model extensions use SRGMs to model the fault detection 
process, and describe the fault correction process as a time-delayed process 
due to time delay for correction. With FDP modeled as Schneidewind’s 
SRGM, by assuming that fault correction has the same rate as detection, 
the FCP is modeled as a delayed FDP with a constant, random or time-
dependent time-lag [26, 27, 35]. Extensions can be made to model FDP 
with other NHPP (Non-Homogeneous Poisson Process) SRGMs and the 
FCP can be modeled as a correspondingly delayed process. GO-Model and 
delayed S-shaped model are typical NHPP models, with the S-shaped 
model focusing on describing the learning-phenomenon along with soft-
ware testing. Specifically, if FDP is modeled with GO-model, software 
FDP and FCP are described as two processes with the following paired 
characteristic MVFs (Mean Value Functions) 

General

Traditional

ANN Model

yt

yt-1
yt+1

y

8  .2.2 Models for Fault Detection and Correction Processes 

8  .2.2.1 Extensions on Analytical Models 
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If FDP is modeled as delayed S-shaped model to describe the learning 
phenomenon, the paired MVFs are given as  
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where  denotes the time-delay of FCP with respect to FDP, which can 

be a constant or a time-dependent value.  
tL

In parallel, similar to the paired analytical models describing these two 
processes separately, traditional ANN models can also be extended to 
model both FDP and FCP in a separate way. Originally, software reliabil-
ity ANN models use the cumulative detected faults number data sequence 

) *1 2, ,..., nd d d collected from FDP to establish the model presented in Fig. 

2a. Separately, the FCP model can be incorporated with the cumulative 
corrected faults number data sequence ) *1 2, ,..., nc c c  collected from FCP. 

  

Fig. 2. Separate ANN Model Architecture, for FDP (a) and for FCP (b) 

The corresponding framework is shown in Fig. 2b. As the models for 
FDP and FCP constitute two separate networks, they are further referred to 
as separate ANN models.  
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8  .2.2.2 Extensions on ANN Models 
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In order to provide more accurate software reliability data prediction, it 
is essential to model the related dynamic phenomenon more realistically. 
Software testing (random testing) is a complicated and interactive process, 
and from the viewpoint of software reliability, there are both software fault 
detection and fault correction processes. These two processes are corre-
lated. Once a fault is detected, it will be submitted for correction. This re-
quires time for diagnosing, removal and verification. If the fault does not 
hamper the detection process, these two processes will proceed in parallel, 
but if it is so severe that the software is deemed inoperable, the detection 
process would wait until the fault is corrected; if the detection rate is very 
high, it will bring pressure to correction process, and vice versa.  

Traditional SRGMs and ANN models only describe the fault detection 
process by assuming immediate and perfect correction. The practical ex-
tensions, paired analytical models and separate ANN models mentioned in 
the previous section, account for the fault correction process. However, 
they fail to model the interactions between these two processes. In this sec-
tion, we propose the combined ANN models, as illustrated in Fig. 3, to 
model both FDP and FCP using the method of multivariate time series 
prediction [4] and to incorporate the interactions between these two proc-
esses.  

Fig. 3. General combined ANN Model 

The architecture combines the two processes in both the input and out-
put of the ANN model, and is the reason they are called combined ANN 
models. 

Specifically, there are two major kinds of ANNs: feedforward and re-
current, and both have their advantages in time series predictions. Feed-
forward ANNs have been adopted by most researchers and there are some 
“rules of thumb” to follow in modeling network architecture. Construction 
with this well-studied framework is effortless and effective. Although re-
current ANNs are less studied, they have the ability to incorporate tempo-
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ral information as they feedback inner states or outputs into the input layer. 
Both frameworks will be explored in this chapter.  

Within the framework of neural networks modeling [4, 15], we formulate 
our problem as follows. By denoting ( ), 1, 2,3...D i i �  and 

, as the cumulative number of detected faults and cor-
rected faults after testing period  respectively, we define software testing 
process as a bi-process combining both FDP and FCP, 

. With ongoing testing process, software fault-

related data can be collected as data sets 

of
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, from the beginning of 

software system random testing until current testing period t .  and 

 are two correlated processes. To make testing related 
decisions, at the end of every testing period, we are interested in knowing 
the possible outcomes of the following time period. In other words, we 
need to develop one-step predictions based on the historical data sequence 

 to get
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, the predicted number of cumulative 

faults by the end of testing period t+1. Then with the updating of new data 
, we can evaluate the performance of the previous prediction and de-

velop the prediction for the fault number in the next interval 

. The prediction process is continually updated as new test-

ing data becomes available from ongoing testing.  
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With pre-set configurations of the network, the prediction is a sequentially 
updating process, with stepwise prediction utilizing each newly collected 
software faults data from the ongoing testing.  At each point, with the lat-
est and all past data, the network is retrained for new prediction in three 

8  .3.1 Problem Formulation 

8  .3.2 General Prediction Procedure 
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specific steps: data normalization, network training, and prediction. The 
specific prediction procedure for any one point with the combined ANN 
model is described generally as follows.  

Collected cumulative software fault data  cannot be 

fed into networks directly as they need to be normalized between [0, 1]. 
Normalization functions varies, and for our case, the simple normalization 
scheme of s

1 2 1{ , ,..., , }t ts s s s�

i
norm=si/smax is adopted. As and C(i), i = 1,2,3… are in-

cremental processes, the collected or predicted data would show an in-
creasing trend, so we need to estimate the upper limit of 

and . With the available cumulative data, this value can 
be calculated by estimating the maximum possible increments of 

and . This number can be estimated from past experience of similar 
projects. Then  at the end of testing period  is calculated as 

( )D i

ˆ ( 1)D t � ˆ ( 1)C t �

dL cL
maxs t

max ( , ) ( , )t
t ts Max d c Max d� � L cL  (3.1) 

To simplify our notation further we assume that ) *tt ssss ,,,, 121 ��  is al-

ready normalized. 

With available normalized data, the neural networks with pre-defined con-
figuration can be trained to model these two processes. The collected his-
toric data sequence  should be grouped into as many as 

t-w past-to-future mapping patterns denoted as 
1 2 1{ , ,..., , }t ts s s s�

) *kkwkwk ssss |,, 11, ���� � twk ,,1, ��� .These training patterns abstract 

the historic input-output relationships of the network. The patterns are used 
to train the network by adjusting its weights and bias, which are initially 
set randomly. Typically, backpropagation algorithms are used to train the 
networks and there are some variations in the algorithms. These algorithms 
usually look for ANN parameters (weights of internodes’ connections and 
node biases) to fit the patterns by minimizing the deviation of the network 
outputs from the outputs of training patterns. To overcome the overfitting 
problem, usually the generalization technique is adopted.  

8  .3.2.1 Data Normalization 

8  .3.2.2 Network Training 
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With the trained network, which has “fit” the training patterns out of the 
collected data set , we can use the most recent w data set 

to generate the next pattern as 

. Then we can get our predictions for the 

next time point as .  

1 2 1{ , ,..., , }t ts s s s�

},,{ 2,1 twtwt sss �����
}ˆ|,,{ 12,1 ����� ttwtwt ssss �
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An initialization problem exists in the training algorithms. Different ini-
tial values for network weights and bias would generate different training 
results. For the generalized training algorithm adopted here, the initial val-
ues are assigned randomly. For each point predictions, m replicated runs 
are usually performed with different initializations, and the mean is used as 
the prediction outputs [15, 29] given as 
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tt s
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1
11 ˆ

1
ˆ  (3.2) 

The framework of the combined feedforward ANN model is illustrated in 
Fig. 4.  

 
Fig. 4. Combined Feedforward ANN Model Architecture 

It has inputs of both  and  and outputs of 

both  and . Specifically, the model is trained with the data from the 

bi-process  (both  and ), 
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8  .3.2.3 Fault Prediction 

8  .3.3 Combined Feedforward ANN Model 

8  .3.3.1 ANN Framework 
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combined with the past information of these two interactive processes to-
gether. Then with the well trained networks, the prediction can be gener-
ated from the latest w data points 1 1,..., , , 0t w t tS S S w� � � t� �  as the fol-

lowing function: 

},,,(ˆ
111 ttwtt SSSFS ���� � �  (3.3) 

As an on-line prediction procedure, it starts tracking from the early 
stages of software testing. With the ongoing testing process, prediction is 
developed with the arrival of every updated data. For each single point 
prediction, the prediction is expected to be close to the collected data in the 
coming time period. Therefore, the prediction can not be evaluated until 
the next updated data is collected. As a whole, the prediction performance 
of the ANN model is evaluated with respect to all the past predictions with 
the data obtained from the whole testing process.  

Specifically, suppose dataset ) *tsss ,,2,1 �  is used for network configu-

ration. Within this data set, we simulate the sequential stepwise prediction 
process as in real software testing. Assume t0 is the first point for predic-
tion, and all the preceding data points ) *12,1 0

,, �tsss �  are used to train the 

network to get the prediction . With m different network initialization, 

m prediction repetitions are developed as , j = 1,2,…,m. This proce-

dure is carried on to get the following stepwise predictions , i = t

0
ˆts

jts ,0
ˆ

jis ,ˆ 0, …, 

t, j = 1,2,…,m.  
The prediction of each point is the average of the m repetitions 

�
�

�
m

j
jii s

m
s

1
,ˆ

1
ˆ ,  i = t0, …, t and the performance is evaluated with its de-

parture from the actual data as  
c
i

d
iiiiiiii SESEccddssSE �������� 222

)ˆ()ˆ(ˆ , i = t0, …, t. 

It is expected that the selected model works well through the whole testing 
process. The overall performance of the configuration is then determined 
by 
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Feedforward networks are the most common networks and are widely 
studied. There are several “rules of thumb” to develop these networks that 
we adopt here. Within the context of this specific feedforward model, we 
pre-configure the network as follows. The architecture has three layers: an 
input layer, a hidden layer, and an output layer. Each ANN has 2*w inputs, 
which corresponds to w data sets [d, c]’ presented to the network. In order 
to overcome the overfitting problem, the number of the hidden nodes 
should not be large. By comparing some practical recommendations, we 
chose this number as double the number of input nodes [38], i.e., 4*w. The 
sigmoid function (logistic) is used as the activation function for each node 
in both the hidden and the output layers. 

Using Eq. 3.4 as the performance criterion, the trial and error approach 
is used to determine the remaining parameters of the training algorithm.  

Similar to the combined feedforward ANN model, the proposed recur-
rent ANN model has the combined architecture as shown in Fig. 5, with 
feedback from the inner states to the input layer. Similarly, the model is 
trained with the data from the bi-process  (both 

 and ), combined with the past information of 

these two interactive processes together. Then with the well trained net-
works, the prediction can be generated from the latest w data points 

 as the following function: 

1 2 1{ , ,..., , }t ts s s s�

1{ ,..., }t w td � � d c

t

1{ ,..., }t w tc � �

1 1,..., , , 0t w t tS S S w� � � � �

};,,,(ˆ
111 tttwtt StateSSSFS ���� � �  (3.5) 

With respect to the model constraints, some parameters can be pre-
configured as follows. Similar to the feedforward architecture, the basic 
Elman adopted here has architecture of three layers, one input layer, one 

8  .3.3.3 Network Configuration 

8  .3.4 Combined Recurrent ANN Model  

8  .3.4.1 ANN Framework 
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hidden layer, and one output layer. Differently, Elman network has feed-
back from the hidden states into the network inputs. This network has 

 inputs, which corresponds to w data sets [d, c]’ presented to the 
network. The sigmoid function (logistic) is used as the activation function 
for each node in both the hidden and the output layers. 

2*w

Fig. 5. Combined Recurrent ANN Model Architecture 

Unlike the evaluation on the combined feedforward network, the per-
formance for the combined recurrent network is evaluated differently. 
Similarly, for each single point prediction, the prediction is expected to be 
close to the collected data in the coming time period. In addition, because 
the prediction is random, some repetitions are generated and small vari-
ance is also expected. With a given dataset, which represents the history of 
a period of software testing, the configuration of network can be evaluated 
with its average performance in prediction through this period from the 
first prediction point. Different from the evaluation for the combined feed-
forward ANN model, robustness criterion is adopted for combined recur-
rent model.  

The prediction of each point is the average of the m repetitions 
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The dispersion of these m repetitions is given as  
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It is expected that the selected model works well through the whole testing 
process, and the overall performance of the configuration is evaluated by 
the following two criteria 
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However, as both criteria can be contradictory, in to balance both the 
prediction location and dispersion, their summation is used to evaluate the 
performance instead. Hence, for one specific network configurationI , the 
performance function is expressed as 

2)( MSMSEL ��I  (3.7) 

There is less guidance for recurrent network configuration, and also the 
network training requires much more time than feedforward networks. 
Therefore some automatic “trial-and-error” approach is useful. Evolution-
ary programming provides an approach to optimize complex problems 
with specific fitness function, which suits our problem well, i.e., to search 

for an optimal configuration setting  from the parameter space with re-
spect to fitness function of L(�) in Eq. 3.7. In fault detection prediction, 
genetic algorithm has been applied to optimize the network architecture 
parameters to determine the number of inputs and hidden nodes for feed-
forward architecture [29]. Specially, we also make the configuration set-
ting include the algorithm parameters, for they are found to have great in-
fluence on the performance.  

&I

The configuration evolving process is described as following steps: 
� Step 1: Encode the configuration setting � into chromosome. 
� Step 2: Generate an initial population of l individuals lIII ,...,, 21  

� Step 3: Calculate the fitness function L(� i), i=1,2,…,l for each individ-
ual 

8  .3.4.3 Network Configuration through Evolution 
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� Step 4: Select parent settings for next generation according to the fitness 
values: 
� Crossover breeding operator 
� Mutation operator 
� Cull inferior solution 

� Step 5. Repeat step 3 until stopping criteria are met and return optimal 

setting . &I

To illustrate the application of combined ANN models we apply the two 
suggested models to real data collected from a middle sized application 
software testing process. The collected interval data set includes both fault 
detection and correction data, D(t) and C(t), as shown in Table 1.  

Table 1. Fault detection and correction data (number per week) 

Week � d(t) d(t) � c(t) c(t) 

1 12 12 3 3
2 11 23 0 3
3 20 43 9 12
4 21 64 20 32
5 20 84 21 53
6 13 97 25 78
7 12 109 11 89
8 2 111 9 98
9 1 112 9 107

10 2 114 2 109
11 2 116 4 113
12 7 123 7 120
13 3 126 5 125
14 2 128 2 127
15 4 132 0 127
16 9 141 8 135
17 3 144 8 143

 
The proposed combined ANN models are used to develop one-step pre-

diction for both  and , starting from some early point and track-
ing the software testing process till the end with the continuous updating of 
collected cumulative data .  

( )D t ( )C t

With the combined ANN model, using either the feedforward or recur-
rent network architecture, some pre-configuration can be developed with 

8  .4 Numerical Analysis 
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respect to the constraints of the specific problem. At the beginning of this 
testing process, available data is scarce. Therefore, prediction needs to be 
developed as soon as possible, providing timely decision-making assis-
tance for the testing procedure. However, for such data-driven modeling 
approaches like ANN, the model cannot be well adjusted without essential 
number of data points. As a result prediction cannot begin until enough 
data is collected. To compromise, the size of sliding window w cannot be 
large, and we set it to w = 3, and start prediction from the 6th testing period. 
Then we know our combined ANN model will have 6 inputs. As to the 
number of hidden nodes and some parameters related to algorithm, they 
are configured differently for feedforward and recurrent networks. Obvi-
ously, the network model has two outputs.  

As a common “rule of thumb”, the number of hidden nodes is set to be 
double the number of input nodes. With different configurations on the 
training algorithm parameters, the following procedure is developed with 
trial-and-error to get a fully-configured network for further prediction out 
of sample. With the available data sequence as  the pre-

diction can be developed as follows.  
1 2 1{ , ,..., , }t ts s s s�

1. Data normalization:  
Based on experience from similar past projects and current testing person-
nel allocation, the expected incremental number of ( )D tL  and  

cannot exceed 25: Max(Ld,Lc) = 25. This number if set fixed for the whole 
prediction process with ongoing testing process. The data is normalized 
with the maximum number calculated from Eq. 3.1.  

( )C tL

2. Network training:  
With the normalized data set, the training patterns are generated for both 
frameworks respectively as ) * twkssss kkwkwk ,,1,|,, 11, �� ������ . 

For our case, backpropagation algorithm is adopted to train the ANN with 
the generated patterns. To improve generalization of the training, the regu-
larization method is implemented by adding the mean of the sum of 
squares of network weights and biases gi, i = 1,…,l, MSW, to the network 
performance function MSE in the following form  

(1 )regMSE MSE MSW
 
� � � � �  (4.1) 

8  .4.1 Feedforward ANN Application 



   214

where 
  is the performance ratio, and .
1

1

2�
�

�
l

j
jg

l
MSW Such regulariza-

tion can force the network to have smaller weights and biases, which pro-
vides the smoother network response. It also reduces the chance of overfit-
ting.  The parameter 
  is set by trial and error  
3. Prediction:  
With the well-trained network, the latest w data is fed and the prediction is 
generated as the network outputs. 50 runs of prediction for each point are 
performed, yielding 50 predictions for point i , , i = 6, j = 1, …, 50.  

Related variances are calculated to estimate the robustness of the model.  
jis ,ˆ

The prediction process is performed from the 6th testing period till the end 
of the testing. The prediction for each point is evaluated with the updated 
fault data. The prediction sequence is obtained in the form 

) *6 7 16 17
ˆ ˆ ˆ ˆ, ,..., ,d d d d  and ) *6 7 16 17ˆ ˆ ˆ ˆ, ,..., ,c c c c . Then the prediction per-

formance of the model over the whole testing process is evaluated by 
comparing with the true data with mean squared errors calculated with Eq. 
3.4. The corresponding prediction results are summarized in Table 2.   

Table 2. One-step Predictions with Combined Feedforward ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 96.29 0.4324 0.50 73.43 0.7162 20.87
7 102.48 0.0895 42.55 94.53 0.9200 30.58 
8 113.21 0.0032 4.88 91.66 0.0138 40.23 
9 116.02 0.0024 16.12 97.76 1.0854 85.47 

10 112.80 0.0838 1.43 110.17 0.9192 1.38 
11 113.38 0.0550 6.86 111.63 0.0029 1.87 
12 118.28 0.0024 22.31 115.25 0.0012 22.53 
13 129.78 0.0062 14.30 123.50 0.0097 2.25 
14 126.86 0.0682 1.29 127.18 0.0906 0.03 
15 128.68 0.1775 11.03 129.45 0.0036 5.99 
16 134.82 0.0019 38.21 130.10 0.0153 23.99 
17 144.54 0.0066 0.29 140.42 0.0011 6.66 

Ave.  0.0774 13.31 0.3149 20.15 
 
Var in the table denotes the variance of the repeated predictions at each 

point. From Table 2, we can see that under this network configuration, the 
predictions along the period of this dataset can fit the observed value well 
with small variances.  

Q.P. Hu et al.
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Adopting similar preset architecture parameters as the feedforward 
model, the remaining architecture parameter for the recurrent model is the 
number of hidden nodes . Besides the architecture parameter, the net-

work configuration � should also include critical training algorithm pa-
rameters. The specific prediction procedure for this dataset is similar to 
that in section 3.1. From the former analysis, we have found that the per-
formance ratio

hn


  is a critical parameter. Here, back-propagation algorithm 
with learning rate and momentum is adopted. These two parameters are 
important to the algorithm performance. As the learning rate is adaptive, it 
is important for network training to set a proper value for momentum .  om
The network parameters to be configured can be determined as 

' (
I oh mn� , i.e. the hidden nodes number, the momentum, and the 

performance ratio. For each specific configuration, such a prediction proc-
ess is performed from the 6th testing period till the last one, obtaining pre-
dictions , i = 6,7,…,17, j =1,2,…,5. The corresponding fitness function 

value, i.e., the network performance value, can be calculated through  
jis ,ˆ

2),,( MSMSEmnL oh ��
 . 

This way, the evolving procedure in the former section is developed to find 
the proper value of ' (&&&& � 
I oh mn . 

Table 3. One-step Predictions with Combined Recurrent ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 95.68 0.3919 1.76 72.64 1.4984 28.71
7 102.60 0.5183 40.96 86.78 1.9346 4.94 
8 112.93 0.1001 3.72 98.83 0.2321 0.69 
9 114.82 0.0887 7.95 102.81 0.1440 17.56 

10 116.62 0.0113 6.86 108.82 0.0476 0.03 
11 117.85 0.0376 3.42 110.86 0.1338 4.58 
12 119.31 0.0517 13.62 113.52 0.1996 41.99 
13 124.07 0.1142 3.72 121.06 0.3803 15.52 
14 127.34 0.0099 0.44 126.34 0.0332 0.44 
15 129.51 0.0708 6.20 129.85 0.1820 8.12 
16 131.65 0.0000 87.42 132.73 0.0000 5.15 
17 136.02 0.0389 63.68 137.77 0.0815 27.35 

Ave.  0.1194 19.98 0.4056 12.92 

8  .4.2 Recurrent ANN Application 
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With respect to this dataset, a configuration of network has been 
evolved with genetic algorithm as the hidden nodes number = 14; perform-
ance ratio = 0.9450; momentum = 0.9711. With this configuration, 20 
more repeated predictions are obtained again for each time point. The pre-
diction results are shown in the Table 3.    

From these results, we can see that under this network configuration, the 
predictions along the period of this dataset can fit the observed value very 
well with small variances.  

Model  

Both these two types of ANN models have been applied to model soft-
ware reliability prediction. These two architectures have been also com-
pared through different criteria with respect to different dataset [7, 13, 15, 
29]. Although Elman architecture is advocated to incorporate the temporal 
patterns, there is no consistent advantage from these experimental results. 
As far as our dataset is concerned, we compare these two architectures 
with their predictive performance using both location (MSE) and disper-
sion (MS2). This is summarized in Table 4.  

Table 4. Comparison: Combined Feedforward VS Recurrent ANN 

 MSE MS2 L 
Combined Feedforward ANN models 33.46 0.3923 33.8523 

Combined Recurrent ANN models 32.90 0.5250 33.4250 

 
From this table, we can see that there is slight advantage of combined 

recurrent ANN model over feedforward model, with respect to the “ro-
bust” performance L. However, if we take the criteria of either MSE or 
MS2, contradictory conclusions will be drawn, although the differences are 
small. With respect to this data set, these two models are nearly the same. 
Therefore, both configured models can be set to develop predictions for 
the coming data points. Comparatively, combined feedforward ANN 
model would be more effective.  

In this section, we proceed to verify that the proposed combined model 
would perform better than separate models. Accordingly, the comparisons 

8  .4.3 Comparison of Combined Feedforward & Recurrent 

8  .5 Comparisons with Separate Models 
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of the combined ANN models with those two separate models mentioned 
in section 1 are developed.   

In the separate ANN model (Fig. 1.) two separate networks are mod-
eled: one for  and the other for . The comparison between com-
bined and separate ANN models is of interest because both of them are 
data-driven ANN models and their differences would focus on the effec-
tiveness of the incorporating the correlations between these two processes. 

( )D t ( )C t

For the data set in Table 1, the “online” prediction process is developed 
with separate ANN model as follows. Feedforward network is adopted and 
the configuration is as follows. In the combined ANN models, the size of 
sliding window is set at w=3 and the prediction starts from the 6th point. 
The training, prediction and evaluation procedures are also the same as 
combined models. The prediction results are listed in Table 5. 

Table 5. One-step Predictions with Separate ANN Model 

ˆ( )d t  ˆ( )c t  
Week 

Mean Var 

d
tSE  

Mean Var 

c
tSE  

6 95.64 0.2296 1.84 66.17 0.3204 139.85
7 102.35 0.0263 44.23 89.78 1.4164 0.61 
8 114.27 3.4484 10.69 91.49 0.0002 42.33 
9 116.49 0.0007 20.18 100.13 0.0306 47.22 

10 108.13 0.0039 34.41 109.78 0.0025 0.61 
11 113.69 0.0014 5.35 112.23 0.0003 0.59 
12 114.90 0.0000 65.68 114.89 0.0001 26.09 
13 122.67 5.6761 11.12 117.44 0.0002 57.08 
14 129.32 0.9281 1.75 125.94 0.0002 1.13 
15 130.79 0.3720 1.47 129.84 0.0010 8.08 
16 134.54 0.0515 41.71 129.80 0.0006 27.01 
17 144.07 0.0002 0.00 135.14 0.0004 61.85 

Ave.  0.8949 19.87 0.1477 34.37 
 
From the results shown in Tables 2 - 5, we can compare these two kinds 

of models in two ways. With respect to the overall performance of MSE, 
the combined models outperform the separate one, which verifies the ad-
vantages of modeling the two processes together. In addition, from the 

prediction performance for each point,  and , we observe an in-

teresting phenomenon: prediction of the first point for  is not accept-

d
tSE c

tSE
ˆ ( )C t

8  .5.1 Combined ANN Models vs Separate ANN Model   
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able, however the first prediction for ˆ ( )D t  performs well. This reflects 
the delay of FCP over FDP, which results in some data shortage for predic-

tion of at the initial phase. Fortunately, prediction is reinforced by 

combining outputs of  and  in the combined ANN model.  

ˆ ( )C t
( )C t ( )D t

When applying paired analytical models to the fault data, one faces the 
problem of model selection for FDP from many available NHPP SRGMs. 
As far as our case (Table 1) is concerned, the interval detected faults show 
an increasing trend in the early phase of software testing. Delayed S-
shaped NHPP model is designed to describe such learning phenomenon. In 
addition, as this project takes relatively short testing period and is common 
application software, detected faults should be common ones and they are 
handed to available correctors that are stable though testing process. 
Therefore, instead of using Schneidewind’s model directly, the slight ex-
tension as described in Eq. 2.6 is adopted, assuming constant time-delay 
between FDP and FCP.  

In a similar way, “on-line” prediction is developed by fitting the model 
against historical data collected with the ongoing testing process. As a 
model-driven method, the prediction can be started from earlier points. 
However, in order to compare with the combined ANN model in the same 
time horizon, the prediction is also developed from the 6th point. The ap-
plication results of the actual data with analytical models are presented in 
Table 6.  

From the results shown in Tables 2, 3 and 6, we can see that combined 
ANN model performs over analytical model in prediction of both fault de-
tection and correction. Further observations show that large prediction er-
rors happen in the 8th, 9th, 16th and 17th points. Referring to Table 1, we see 
that these are the points where some unusual changes happen. Compara-
tively, ANN models work better on these points, showing more flexibility 
and sensitivity to the abnormal change. This difference can also be re-
garded as the difference in prediction approaches. The analytical model 
develops the prediction through fitting the historical data with respect to 
time; however, the ANN models develop networks to fit input-output pat-
terns which incorporate the trend of data inside. More importantly, the 
simple time-delay assumption between the relationship of fault detection 
and correction does not fit this dataset well. The ANN models perform bet-
ter in capturing the correlated relationships between these two processes.  

8  .5.2 Combined ANN Models vs Paired Analytical Model  

Q.P. Hu et al.
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Table 6. One-step Prediction with Paired Analytical Models 

Week ˆ( )d t  d
tSE  ˆ( )c t  c

tSE  

6 100.97 15.74 72.71 27.95
7 113.36 18.99 91.17 4.71
8 120.71 94.28 103.71 32.64
9 121.48 89.79 110.07 9.45

10 121.55 57.00 114.10 26.05
11 120.97 24.72 116.19 10.18
12 120.93 4.29 117.80 4.82
13 122.80 10.22 120.56 19.73
14 124.78 10.36 123.13 14.98
15 126.34 32.04 125.13 3.49
16 127.70 176.84 126.81 67.01
17 130.37 185.82 129.65 178.27

Ave. 55.15 28.95
 
As a short conclusion, the software fault detection and correction proc-

esses are two correlated processes, and to develop accurate predictions, in-
formation about both of them should be incorporated into the model. 
Combined ANN models are a flexible way to implement this. Paired ana-
lytical model can describe one-directional effects, and in some cases it can 
perform better. However, the combined ANN models provide a unified 
approach to model the two processes together, which is more favorable 
than the analytical approach since more effort is needed on model selection 
in the analytical approach. 

In this chapter we have studied the use of neural networks to model both 
the software fault detection and correction processes together (referred to 
as combined ANN model), focusing on describing the interactions between 
these two correlated processes. This approach is regarded as an extension 
of separate ANN model under the same modeling framework, and is a 
complement to analytical models which only describe the influence of 
FDP on FCP as a time delay. With practical software testing data, this ap-
proach shows its advantage in incorporating more information than the 
separate ANN model and paired analytical model. Also, within the com-
bined ANN models, both feedforward and recurrent frameworks perform 
well with the given dataset. 

The combined ANN models are beneficial in incorporating the correla-
tion between FDP and FCP. They model the software debugging process 
more realistically, with more accurate predictions. However, this model 

8  .6 Conclusions and Discussions 
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still has some aspects for further investigation. First, faults number is one 
important measure of software reliability, and predictions on some other 
measure such as detection rate would be interesting. [33] showed detection 
rate can be assumed to be the same as earlier projects/versions, and ANN 
models would help abstract this information when datasets from previous 
projects are available. Second, FCP is different from FDP, where some 
fault-correction factors (such as personnel) can be controlled. With more 
understanding of the interactions between FDP and FCP, some useful 
software fault correction policies can be proposed for more effective test-
ing resource allocation. Third, software reliability prediction is just an ini-
tial step of reliability analysis. The prediction results need to provide assis-
tance on decision-making for testing management. With potential to 
provide more accurate and multi-step predictions, and with the modeling 
of both fault-detection and correction processes, the combined ANN mod-
els are expected to be more helpful in testing management, such as deci-
sions on stopping time. Application of this software reliability approach to 
decision problems with larger datasets will be useful in further understand-
ing its potential. 
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The lifecycle of a product is generally associated with two key players 
viz., a producer and an end-user. Although producers and end-users de-
pend on each other, they have their own priorities. For a producer, the 
characteristics of a population of units are more important than the indi-
vidual units, whereas for an end-user the opposite is true. The government 
makes laws for the population of a country, but a parent may be more con-
cerned about its impact on the future of their individual children. A car 
manufacturer targets consistency in fuel efficiency for a population of cars, 
whereas a car owner has concerns about the fuel efficiency of his/her car. 
Similar differences in concerns also apply to tennis racquet manufacturer 
versus a tennis player or a cutting tool manufacturer versus cutting tool 
user. 

The producer commonly uses time-to-failure data to assess and predict 
reliability of a population of products. For highly reliable products, when 
time-to-failure data are difficult to obtain, degradation data are also used 
for such an analysis. On the other hand, for an end-user assessing and pre-
dicting reliability of an individual part or component often assumes more 
importance. For example, a producer involved in voluminous production 
of drill-bits needs to assess and monitor reliability on a regular basis to en-
sure consistent population characteristics for end users. However, the end-
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9  .1 Introduction 

9  .1.1 Individual Component versus Population Characteristics 
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user of such drill-bits generally has more interest in the reliability of the 
individual drill-bits. Voluminous amount of work has been published for 
reliability modeling and analysis related to population characteristics (Ka-
pur and Lamberson 1977; Lawless 1982; Nelson 1982; Lewis 1987; El-
sayed 1996; Meeker and Escobar 1998). A good review of literature on 
degradation signals can be obtained from Tomsky (1982), Lu and Pantula 
(1989), Nelson (1990), Lu and Meeker (1993), Tseng et al. (1995), Tang et 
al. (1995), Chinnam et al. (1996), Lu et al. (1997), Meeker et al. (1998), 
Wu and Shao (1999), Wu and Tsai (2000), and Gebraeel et al. (2004). 

This chapter focuses on monitoring of reliability from end-users view-
point. For monitoring reliability of individual unit, time-to-failure data are 
not of much use. For example, Fig. 1 gives a plot of the life of 16 M-1 
grade quarter-inch high speed twist drills, measured in number of holes 
successfully drilled in quarter-inch steel plates, when operated with no 
coolant at a speed 2000 rpm and a feed 20 inches/min (Chinnam 1999).  
Even though the drill-bits came from the same manufacturer in the same 
box, it is obvious from the figure that the dispersion in life (ranging from 
17 holes to 58 holes) is far too large with respect to the mean time-to-
failure (around 28 holes), and hence, information about the population 
would be of little value to the end user.  In contrast, the end user would 
greatly benefit from an on-line estimate of the reliability of the drill-bit, to 
make effective decisions regarding optimal drill bit replacement strategies, 
essentially lowering production costs by fully utilizing the drill-bit.   
 

10 20 30 40 50 60

Drillbit Life in Holes
 

Fig. 1. A plot of life of 16 drill-bits, measured in number of holes successfully 
drilled 

For individual units, condition at different points of time or degradation 
levels are more useful to arrive at optimal component replacement or 
maintenance strategies leading to improved system utilization, while re-
ducing the risk and maintenance costs. While gathering data based on di-
rect measurements of the condition or degradation level of a unit is not im-
possible, such methods are not practical due to the intrusive nature for 
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applications requiring online monitoring of reliability. For example, meas-
uring the amount of wear on a milling insert or a drill bit after every opera-
tion would slow down the production drastically. Thus, applications re-
quiring online reliability monitoring of individual units more often use 
indirect and non-intrusive measurements. The nature and type of such indi-
rect measurements may vary from application to application, however, 
their selection is critical for an effective decision making process. A basic 
criterion they need to fulfill, apart from being non-intrusive, is to have a 
good correlation with the degradation level of the part/component of inter-
est. 

Maintenance 

In many physical and electro-mechanical systems, the system or unit under 
consideration generates degradation signals that contain valuable informa-
tion about the health/well-being of the system. These degradation signals, 
such as power consumption of a metal cutting machine tool, error rate of a 
computer hard disk, temperature of a drill-bit, vibration in machinery, 
color spectrum from an arc welder, loads acting on a structure, tend to be 
non-stationary or transitory signals having drifts, trends, abrupt changes, 
and beginnings and ends of events. Despite considerable advances in intel-
ligent degradation monitoring for the last several decades, on-line condi-
tion monitoring and diagnostics are still largely reserved for only the most 
critical system components and have not found their place in mainstream 
machinery and equipment health management (Kacprzynski and Roemer, 
2000). If one were to talk about predictive maintenance technologies, in 
particular prognostics and on-line reliability assessment, there exist no ro-
bust methods for even the most critical system components. Diagnostics 
has traditionally been defined as the ability to detect and classify fault 
conditions. Literature is extremely vast in this area. Prognostics on the 
contrary is defined here as the capability to provide early detection of the 
precursor to a failure condition and to manage and predict the progres-
sion of this fault condition to component failure. Recognizing the inability 
to prevent costly unscheduled equipment breakdowns through Preventive 
Maintenance (PM) activities and basic diagnostic condition monitoring 
methods, there seem to be consensus among industry and federal agencies 
that one of the next great opportunities for product differentiation and suc-
cessful competition in the world markets lies in true prognostics based 
condition-based maintenance (CBM). 

9  .1.2 Diagnostics and Prognostics for Condition-Based 
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Condition-Based Maintenance (CBM) is a philosophy of performing 
maintenance on a machine or system only when there is objective evidence 
of need or impending failure. CBM typically involves mounting non-
intrusive sensors on the component to capture signals of interest and sub-
sequent interpretation of these signals for the purpose of developing a cus-
tomized maintenance policy. Given recent advances in the areas of non-
intrusive sensors, data acquisition hardware, and signal processing algo-
rithms, combined with drastic reductions in computing and networking 
costs and proliferation of information technology products that integrate 
factory information systems and industrial networks with web-based visual 
plant front-ends, it is now possible to realize systems that can deliver cost 
effective diagnostics, prognostics, and CBM for a variety of industrial sys-
tems. The basic elements necessary for successful diagnostics and prog-
nostics for CBM are illustrated in Fig. 2 (Chinnam and Baruah 2004). 
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Fig. 2. Basic elements of diagnostics and prognostics for CBM. 

Sensor signal(s): Sensing techniques commonly used include touch sen-
sors, temperature, thrust force, vibration, torque, acoustic emission, volt-
age, noise, vision systems, etc. The data obtained from sensor signals con-
tain useful information about the condition or degradation levels of a unit. 
As data recording is automated, it is not uncommon to see several thou-
sands of measurements recorded per incremental usage condition. Extrac-
tion of appropriate and useful features from such data is critical before 
models for online monitoring and prediction of individual component reli-
ability can be developed. 
 
Feature extraction: Extraction of useful features typically involves analy-
sis of data in several different domains. Basic time domain signal parame-
ters utilized in conventional diagnostics include amplitude, crest factor, 
kurtosis, RMS values, and various measures of instantaneous and cumula-
tive energy (Zhou et al. 1995; Quan et al. 1998; Kuo 2000; Dzenis and 
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Qian 2001; Sung et al. 2002). Frequency domain spectral parameters in-
clude the Fourier transform and linear spectral density, while advanced 
spectral measures include higher-order (or displaced) power spectral den-
sity. Extensive research over the last two decades has resulted in a long list 
of promising features or Figures-of-Merit (FOMs) for different applica-
tions. For example, Lebold et al. (2000) discussed 14 FOMs for gearbox 
diagnostics and prognostics, employing a vibration signal alone. The litera-
ture offers FOMs for monitoring and diagnosis of mechanical systems 
such as gearboxes, pumps, motors, engines, and metal cutting tools. In re-
cent years, mixed-domain analysis methods such as Wavelets are gaining 
popularity for their ability to offer a shorter yet accurate description of a 
signal by employing scale-based basis functions. Wavelet analysis, while 
still being researched for machine diagnostics and prognostics (Chinnam 
and Mohan 2002; Vachtsevanos et al. 1999), is well established for such 
applications as image processing. In the last few years, the Empirical 
Mode Decomposition method has received much attention for its ability to 
analyze non-stationary and nonlinear time series, something not possible 
with methods such as Wavelet analysis (Huang et al. 1998). 
 
Failure Definition in the Feature Space: A specified level of degradation 
in feature space is generally used to define failure.  Such a threshold limit 
is required to assess and predict reliability of a unit. Sometimes the fea-
tures of interest may consistently show significantly different degradation 
levels before the physical failure occurs. In such situations, failure defini-
tion in the feature space may be easier to determine. In situations where 
this is not the case, arriving at a failure definition may be more involved. 
We later discuss a fuzzy inference model to arrive at failure definition in 
the feature space in Section 4. 
 
Diagnostics: During the diagnostics process, specific FOMs are typically 
compared to threshold limits (Begg et al. 1999). Additional processing 
may determine a signature pattern in one, or multiple, fault measure(s). 
Automated reasoning is often used to identify the faulty type (cracked gear 
tooth, bearing spall, imbalance etc.), location, and severity. The core prob-
lem of diagnostics is essentially a problem of classification (Elverson 
1997). Discriminant transformations are often used to map the data charac-
teristic of different failure mode effects into distinct regions in the feature 
subspace (Byington and Garga 2001). The task is relatively straightfor-
ward in the presence of robust FOMs.  The literature is vast in this area 
and commercial technologies are well established. Depending on the ap-
plication, these systems employ model-based methods, any number of sta-
tistical methods, and a variety of computational intelligence methods. 
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Dimla et al. (1997) provide a critical review of the neural network methods 
used for tool condition monitoring. 
 
Prognostics: Contrary to diagnostics, the literature on prognostics, called 
the Achilles’ heel of the CBM architecture (Vachtsevanos et al. 1999), is 
extremely sparse. Unfortunately, the large majority of the literature that 
employs the term ‘prognostics’ in the title ends up discussing diagnostics. 
To achieve prognostics, there need to be features that are suitable for track-
ing and prediction (Begg et al. 1999). It is for this reason that prognostics 
is receiving the most attention for systems consisting of mechanical and 
structural components, for unlike electronic or electrical systems, me-
chanical systems typically fail slowly as structural faults progress to a 
critical level (Mathur et al., 2001).  

Let  represent a scalar time-series generated by sampling the per-
formance degradation signal (or a transformation thereof).  Suppose that 

 can be described by a nonlinear regressive model of order  as 
follows: 

{ ( )}y s

{ ( )}y s p

( ) ( ( 1), ( 2), , ( )) ( )� � � � � <�y s f y s y s y s p s  (1) 

where f  is a nonlinear function and ( )< s a residual drawn from a white 

Gaussian noise process. In general, the nonlinear function 

 is 

f  is u nown, 
and the only information we have available to us is a set of observables: 

(1),y y e S  is the total length of the time-series.  Given 
the data set, the requirement is to construct a physical model of the time-
series.  To do so, we can use any number of statistical (for example, Box 
and Jenkin’s auto-regressive integrated moving average (ARIMA) models) 
or computational intelligence based (for example, feed-forward neural 
networks such as multi-layer perceptron (MLP)) forecasting techniques as 
a one-step predictor of order p.  Specifically, the model is estimated to 
make a prediction of the sample ( )y s , giv e immediate past p  sam-

s ( 1)�y s wn by 

nk

y S , wher
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9  .2 Performance Reliability Theory 
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The nonlinear function 
f  is the approximation of the unknown func-

tion f , built in general to minimize some cost function ( ) of the predic-
tion error  

J

ˆ( ) ( ) ( ),   1� � � � �e s y s y s p s S  (3) 

Note that a single model can be potentially built to simultaneously work 
with many degradation signals and also allow different prediction orders 
for different signals.  Of course, the structure and complexity of the model 
will increase with an increase in the number of degradation signals jointly 
modeled. 

Now, let  denote the probability that failure of a component takes 

place at a time or usage less than or equal to  (i.e., 

( )F t
t ( ) ( )� �F t P T t ), 

where the random variable T  denotes the time to failure.  From the defini-
tion of conditional probability, the conditional reliability that the compo-
nent will fail at some time or usage , given that it has not yet 
failed at time  will be: 

� � LT t t
�T t

. /. / . / . /| 1% "� L � � � � L �$ ! .R t t t P T t t P T t  (4) 

Let  denote the vector of  degradation signals (or 

a transformation thereof) being monitored from the system under evalua-

tion. Let  denote the vector of deterministic per-

formance critical limits (PCLs), which represent an appropriate definition 
of failure in terms of the amplitude of the  degradation signals.  For any 
given operating/environmental conditions, performance reliability can be 

defined as “the conditional probability that y does not exceed 

1 2[ , ,..., ]� my y yy m

1 2[ , ,..., ]�pcl pcl pcl pcl
my y yy

m

pcly , for a 
specified period of time or usage.”  Obviously, the above definition di-
rectly applies to the case where the amplitudes of the degradation signals 
are preferred to be low (lower-the-better signals with higher critical limits), 
and can be easily extended to deal with higher-the-better signals (with 
lower critical limits) and nominal-value-is-best signals (with two-sided 
critical limits), and any combinations in between.  Without loss of general-
ity, for illustrative purposes, let us make the assumption here that all the 

 degradation signals are of lower-is-better type signals.   m
Since a model estimated using past degradation signals collected from 

other similar components keeps providing us with an estimate of  into 

the future, denoted by 

y
ˆ ( )fty , under the assumption that the change in  y
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from the current time point ( ) to the predicted time point (ct ft ) is either 

monotonically decreasing or increasing, the reliability that the component 
or system will operate without failure until ft  is given by: 

. /. / . /. /
1 2

1 2

1 2ˆ| ..
��3 ��3 ��3

� � K K K
pcl pcl pcl

m

m

y y y

..f c f

y y y

mR T t t g t dy dy dyy  
(5) 

where . /. /ˆ fg ty  denotes the probability density function of ˆ ( )fty . The 

assumption here is that  is a constant for any given  and is independ-

ent of 

pcl
iy i

( )fty . Under these conditions, the failure space is bounded by or-

thogonal hyper planes. If the independence assumption is not justified, one 
could use a hyper-surface to define the failure boundary (Lu et al. 2001). If 
need be, one could even relax the assumption of a deterministic boundary 
and replace it with a stochastic boundary model. However, such an exten-
sion is non-trivial.  

For the special case where there exists just one lower-the-better degra-
dation signal, this process is illustrated in Fig. 3 (Chinnam and Baruah 

2004). The shaded area of . /. /ˆ fg ty  at any ft  denotes the conditional-

unreliability of the unit. That is, given that the unit has survived until , 

the shaded area denotes the probability that the unit will fail by 
ct

ft . To ob-

tain mean residual life (MRL), using , the least acceptable reliability, 

one can estimate , the time instant/usage at which the reliability of the 

unit reaches . Thus, one can calculate the MRL to be the time differ-

ence between  and .  

MRLr

MRLt

MRLr

ct MRLt

Feature extraction is an important step in developing effective procedures 
for online reliability monitoring using degradation signals. In this section 
we discuss time, frequency and mixed-domain analysis techniques for pre-
processing degradation signals and feature extraction. 

9  .3 Feature Extraction from Degradation Signals 
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As is pointed out in the introduction, the most important and fundamental 
variables in degradation signal processing are time and frequency. In addi-
tion, the degradation signals often tend to be stochastically non-stationary, 
rendering the fast Fourier transform (FFT) spectrum (a transform that is 
quite popular for frequency analysis) inadequate, for it can only evaluate 
an average spectrum over a definite time period and loses the non-
stationary characteristics of the signals (Yen and Lin 2000). Given this, in 
many real world applications, it is far more useful to characterize the sig-
nal in both the time- and frequency- domains, simultaneously.  
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Fig. 3. Degradation signal forecasting model coupled with a failure definition PCL 
to estimate MRL 

Several joint time-frequency (or mixed-domain) alternatives have been 
proposed in the literature. Some of the alternatives include the short term 
Fourier transform (STFT) and the Wavelet transform (WT), to name a few. 
Joint time-frequency methods are conventionally classified into two cate-
gories: linear and quadratic (Qian and Chen, 1996). The principle of linear 
time-frequency representation involves decomposing any signal into a lin-
ear expansion of functions that belong to a set of redundant elementary 
functions. All linear transformations are achieved by comparing the ana-

9  .3.1 Time, Frequency, and Mixed-Domain Analysis 
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lyzed signal with a set of prudently selected elementary functions. While 
the functions for STFT are obtained by frequency modulation of sine and 
cosine waves in STFT, in the WT, the functions are obtained by scaling 
and shifting the mother wavelet.  

The most important relationship in terms of joint time-frequency analy-
sis is the relation between signal’s time window duration and frequency 
bandwidth. Several different definitions are offered in the literature for 
specifying the time window duration and frequency bandwidth (Qian and 
Chen, 1996; Akay and Mello, 1998). In general, for mixed-domain meth-
ods, there is a tradeoff between time resolution and frequency resolution 
for there is an upper bound on the product of the two resolutions. In other 
words, an increase in the time resolution results in a loss of frequency 
resolution, and vice versa. In STFT, since the elementary function is the 
same for all the frequency components, time and frequency resolutions are 
fixed on the time-frequency plane once the elementary function has been 
chosen. Hence, the choice of time window duration is the key for any good 
STFT representation. In WT, time and frequency resolutions are not fixed 
over the entire time-frequency plane. 
 

f

t

 
f

t

f

t

 
(a) STFT (small window 

length) 
 

(b) STFT (long window 
length) 
 

(c) Wavelet Transform 

Fig. 4. Comparison of the STFT and the wavelet transform in terms of time and 
frequency resolution. 

The tiling of the windows in the joint time-frequency plane is illustrated 
for STFT and WT in Fig. 4. While the STFT tilling is linear, the WT tilling 
is logarithmic. In Fig. 4(a) and 4(b), when the length of window is speci-
fied, the time and frequency resolution remains constant throughout the 
plane. In Fig. 4(c), time and frequency resolution is not fixed over the en-
tire time-frequency domain: time resolution becomes good at higher fre-
quencies whereas frequency resolution becomes good at lower frequency. 
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As discussed in the introduction, degradation signals often tend to be rich 
in time and frequency components, and hence, lend themselves for better 
representation in mixed-domain analysis. The treatment on wavelets that 
follows is borrowed heavily from DeVore and Lucier (1992). The term 
wavelet denotes a univariate function T (multivariate wavelets exist as 

well), defined on , which, when subjected to the fundamental operations 
of shifts (i.e., translation by integers) and dyadic dilation, yields an or-
thogonal basis of . That is, the functions 

R

2 ( )L R / 2
, : 2 (2 )k k

j k jT � T �� , 

, form a complete orthonormal system for . Such functions 
are generally called orthogonal wavelets, since there are many generaliza-
tions of wavelets that drop the requirement of orthogonality.  

,j k 	Z 2 ( )L R

One can view a wavelet T as a "bump" and think of it as having com-
pact support, though it need not. Dilation squeezes or expands the bump 
and translation shifts it. Thus, ,j kT  is a scaled version of T  centered at 

the dyadic integer 2 kj � . If is large positive, then k ,j kT  is a bump with 

small support; if is large negative, the support k ,j kT  is large. The re-

quirement that the set ) *, ,j k j k	
T

Z
 forms an orthonormal system means 

that any function  can be represented as a series 2 ( )f L	 R

, ,
,

,  j k j k
j k

f f
	

� T T�
Z

 (6) 

with , :f g fgdx� KR
 the usual inner product of two 2 (L R ctions. 

One can view Eq. (6) as building up the function 

)  fun

f  from the bumps. 

Bumps corresponding to small values of  contribute to the broad resolu-
tion of 

k
f ; those corresponding to large values of  give finer detail. k

The decomposition of Eq. (6) is analogous to the Fourier decomposition 

of a function  in terms of the exponential functions , 

but there are important differences. The exponential functions have 

global support. Thus, all terms in the Fourier decomposition contribute to 
the value of 

2 ( )f L	 R : ik
ke e ��

ke

f  at a point x . On the other hand, wavelets are usually either 
of compact support or fall off exponentially at infinity. Thus, only the 

9  .3.2 Wavelet Preprocessing of Degradation Signals 
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terms in Eq. (6) corresponding to ,j kT  with 2 kj �  near x  make a large 

contribution to x . The representation Eq. (6) is in this sense local.  
All this would be of little more than theoretical interest if it were not for 

the fact that one can efficiently compute wavelet coefficients and recon-
struct functions from these coefficients. These algorithms, known as "fast 
wavelet transforms" are the analogue of the Fast Fourier Transform and 
follow simply from the refinement of the dilation and shift equation men-
tioned above. 

In summary, the wavelet transform results in many wavelet coefficients, 
which are a function of scale (or level or frequency) and position. Hence, a 
wavelet plot is a plot of coefficients on time-scale axis. The higher the 
scale, the more stretched the wavelet. The more stretched the wavelet, the 
longer the portion of the signal with which it is compared, and thus the 
coarser the signal features being measured by the wavelet coefficients. 
Multiplying each coefficient by the appropriately scaled and shifted wave-
let yields the constituent wavelets of the original signal. The coefficients 
constitute the results of a regression of the original signal performed on the 
wavelets.  
 

Fig. 5. Daubechies DB4 wavelet tranform. 

Fig. 6. Thrust-force degradation signal from drill-bit #8 hole #1 and their 
transformed DB4 wavelet coefficients. 
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Fig. 7. Discrete wavelet analysis of thrust-force signal from drill-bit #8 hole #1 

The particular wavelet transform considered in this paper is the com-
pactly supported Daubechies' wavelet transform. The transform is com-
pactly supported with extreme phase and highest number of vanishing 
moments for a given support width. One particular Daubechies' wavelet 
transform, the DB4 discrete wavelet transform function and its associated 
scaling function, is shown in Fig. 5. For illustrative purposes, the thrust-
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force degradation signal measured from drill-bit #8 while drilling hole #4 
is shown in Fig. 6(a). The wavelet plot resulting from the DB4 transform 
of this degradation signal is shown in Fig. 6(b). In this plot, the x-axis 
represents time while the y-axis represents scales, and the darker cells in 
the plot represent coefficients that are low in amplitude. The reconstruction 
of this signal at different levels (or scales) is shown in Fig. 7 along with 
the detail counterparts. The transform is performed using MatLab's Wave-
let Toolbox. We request the reader to see Daubechies (1990) for a detailed 
treatment of this transform. 

When multiple features are used to represent degradation signals, multi-
variate methods can also be used for extracting useful features. Rai, Chin-
nam, and Singh (2004) used Mahalanobis-Taguchi System (MTS) analysis 
for predicting drill-bit breakage from degradation signals. A MTS analysis 
consists of four stages (Taguchi and Jugulum 2002). In the first stage of 
analysis a measurement scale is constructed from a standardized (by sub-
tracting the mean and dividing by the standard deviation) ‘normal’ group 
of features using Mahalanobis distances (MDs) given by, 

ijijjj ZCZ
k

DMD 1'2 1 ���  
(7) 

where, 
 j = Observation number in the normal group (1 to m) 
 i = Feature number (1 to k) 
 = Standardized vector ),...,,( 21 kjjjij zzzZ �

 Inverse of the correlation matrix. ��1C

In the second stage, larger values of MDs obtained from an abnormal 
group are used for validating the measurement scale developed in the first 
stage. In the third stage, useful features are extracted from those under 
study using signal-to-noise ratio values. A S/N ratio for say qth trial with 
‘t’ features present in the combination can be obtained as, 
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For a given feature, an average value of the S/N ratio is determined 
separately at level-1 indicating presence and at level-2 indicating absence 

9  .3.3 Multivariate Methods for Feature Extraction 
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of a feature. Subsequently, gain in S/N ratio values is obtained by taking 
difference of the two average values as, 

Gain = (Avg. S/N Ratio)Level-1 - (Avg. S/N Ratio)Level-2  (9) 

A positive gain for a feature indicates its usefulness and vice-versa. And 
finally, in the fourth stage of analysis a threshold value for the MDs is de-
veloped from the normal group to enable degradation level prediction us-
ing the useful features. 

Most prognostics methods in the literature for on-line estimation of MRL 
utilize trending or forecasting models in combination with mechanistic or 
empirical failure definition models. However, in spite of significant ad-
vances made throughout the last century, our understanding of the physics 
of failure is not quite complete for many electro-mechanical systems. In 
the absence of sound knowledge for the mechanics of degradation and/or 
adequate failure data, it is not possible to establish practical failure defini-
tion models in the degradation signal space. Under these circumstances, 
the sort of procedures illustrated in Section 2 is not feasible. However, if 
there exist domain experts with strong experiential knowledge, one can po-
tentially establish fuzzy inference models for failure definition. In this sec-
tion, we suggest the incorporation of fuzzy inference models to introduce 
the definition of failure in the degradation signal space using domain ex-
perts with strong experiential knowledge. While the trending or forecasting 
subcomponent will predict the future states of the system in the degrada-
tion signal space, it is now the task of the fuzzy inference model to esti-
mate the reliability associated with that forecast state. If one were to com-
pare this procedure with that discussed in Section 2, it is equivalent to 
replacing the right hand side of Eq. (5) with a fuzzy inference model. 

One might argue that probabilistic models could be potentially used for 
modeling experiential knowledge of domain experts. However, it is widely 
accepted that classical probability theory has some fundamental shortcom-
ings when it comes to modeling the nature of human concepts and 
thoughts, which tend to be abstract and imprecise. While probability the-
ory is developed to model and explain randomness, fuzzy arithmetic and 
logic is developed to model and explain the uncertain and imprecise nature 
of abstract thoughts and concepts. Over the last three decades, since Lofti 
Zadeh authored his seminal paper in 1965 on fuzzy set theory (Zadeh 
1965), the scientific community had made major strides in extending the 

9  .4 Fuzzy Inference Models for Failure Definition 
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set theory to address applications in areas such as automatic control, data 
classification, decision analysis, and time series prediction (Jang et al. 
1997).  

Fig. 8. Sugeno FIM with two inputs (X, Y) and one output (F). 

In the context of prognostics and failure definition, Sugeno Fuzzy Infer-
ence Model (FIM), illustrated in Fig. 8(a), is particularly attractive for fail-
ure definition for three reasons:  

1. It makes a provision for incorporating subjective knowledge of domain 
experts and experienced operators,  

2. Model can be viewed as a feed-forward neural network (labeled Adap-
tive-Network based Fuzzy Inference Systems or ANFIS), and hence, 
can be adapted using empirical/historical data coupled with gradient 
search methods (Jang 1993), and  

3. Computationally efficient for the absence of a de-fuzzification operator 
prevalent in other fuzzy inference models.  

The illustrated two-input ( X andY ) one-output ( F ) Sugeno FIM car-
ries two membership functions for each of the two input variables, 
namely ,  and1A 2A 1B , 2B . The model is made of two rules. For example, 

Rule-1 states that if X  is 1A  and Y  is 1B , then the output is given 

by 1 1 1� � � 1f p x q y r . Here, 1A  and 1B  denote linguistic variables (such 
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as “thrust is low” or “vibration is high”). Even though the consequent of 
each rule constitutes a first-order model, the overall relationship is often 
highly nonlinear. The equivalent ANFIS model is shown in the illustration 
as well.  

For the application considered here, typically, the number of input vari-
ables for the Sugeno FIM will be equal to the number of degradation sig-
nals under investigation, and there is one output variable predicting the re-
liability of the unit (i.e., ). The number of membership functions and 
the number of rules needed to fully describe the failure definition will be 
dictated by the specific application and input from domain experts. In the 
absence of first-principles models, rules can be initially formulated with 
the help of domain experts and experienced operators. All the parameters 
of the Sugeno FIM can be adapted to best describe any historical dataset 
using the ANFIS framework. For more details regarding Sugeno fuzzy in-
ference models or their ANFIS equivalents (Jang et al. 1997). 

( )r t

In general, artificial neural networks are composed of many non-linear 
computational elements, called nodes, operating in parallel and arranged in 
patterns reminiscent of biological neural nets (Lippmann 1987).  These 
processing elements are connected by weight values, responsible for modi-
fying signals propagating along connections (also called synapses) and 
used for the training process.  The number of nodes plus the connectivity 
define the topology/structure of the network, and is intimately connected 
with the learning algorithm used to train the network Haykin (1999). The 
higher the number of nodes per layer and/or the number of layers, the 
higher the ability of the network to extract higher-order statistics (Church-
land and Sejnowski 1992) and approximate more complex relationships 
between inputs and outputs.   

One of the most significant properties of a neural network is its ability 
to learn from its environment that normally involves an iterative process of 
adjustments applied to the synaptic weights.  There is no unique learning 
algorithm for the design of neural networks and they differ from each other 
in the way in which the adjustment of synaptic weights takes place.  Two 
popular learning algorithms are the error-correction learning algorithm (in 
essence a stochastic gradient-descent search technique) used normally for 
training FFNs such as FIR MLPs discussed in Section 5.2 and the competi-
tive learning algorithm used for training networks such as SOMs discussed 
in Section 5.3.  It is beyond the scope of this chapter to discuss the nature 

9  .5 Online Reliability Monitoring with Neural Networks 
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of these learning algorithms in detail, and the reader is referred to Haykin 
(1999). 

Two popular learning paradigms for neural networks involve supervised 
learning and unsupervised (self-organized) learning.  FFNs, such as the 
FIR MLP, are trained in a supervised learning mode. In essence, there is a 
teacher present (metaphorically speaking) to guide the network toward 
making accurate predictions. Unsupervised learning is performed in a self-
organized manner in that no external teacher or critic is required to instruct 
synaptic changes in the network, and is the case with SOMs. For a more 
thorough treatment of the general topic of neural networks, the reader is re-
ferred to Haykin (1999). 

Modeling 

FFNs have proven to be very effective in function approximation and time 
series forecasting (Wan 1994; Sharda and Patil 1990; Tang et al. 1991; 
Harnik et al. 1989; Haykin 1999; Cheng and Titterington 1994; Balazinski 
et al. 2002).  They are flexible models that are widely used to model high 
dimensional, nonlinear data (De Veaux et al. 1998). In fact, FFNs with 
nonlinear sigmoidal nodal functions are universal approximators (proved 
by Hornik et al. (1989), using the Stone-Weierstrass theorem), meaning 
that a network with finite number of hidden layers and finite number of 
nodes per hidden layer can approximate any continuous function  (RN, RM) 
over a compact subset of RN to arbitrary precision. However, since the FFN 
model parameters are generally not interpretable, they are not recom-
mended for process understanding. However, if the emphasis is simply on 
accurate prediction, they tend to be extremely good and tend to outperform 
most traditional methods. This is not to say that traditional methods cannot 
be effectively used for modeling degradation signals. The method for on-
line estimation of individual component reliability introduced in this chap-
ter is compatible with traditional methods of modeling degradation signals 
as well. However, there are other motivations for using FFNs for degrada-
tion signal modeling. These include their nonparametric properties and su-
perior ability to adapt to changes in surrounding environment (neural net-
work trained to operate in a specific environment can be easily retrained to 
deal with minor changes in the environmental conditions).  

9  .5.1  Motivation for Using FFNs for Degradation Signal 
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Perceptron Networks 

A FIR MLP is an extension to the popular MLP network in which each 
scalar synaptic weight in an MLP network is replaced by a FIR synaptic 
filter.  The additional memory allows the network dynamic properties nec-
essary to make the network responsive to time-varying signals. A standard 
MLP network trained using an algorithm such as back-propagation is only 
capable of learning an input-output mapping that is static, and hence, is 
only capable of performing nonlinear prediction on a stationary time series 
(Haykin 1999). However, most degradation signals measured from physi-
cal systems, as they degrade with time, tend to be non-stationary. A typical 
FIR MLP network with an input layer, an output layer, and two hidden 
layers is shown in Fig. 9(a), whose synaptic FIR filter structure is defined 

by the signal-flow graph of Fig. 9(b). Here Tx otes the 

input vector while Ty the output vector. 

 and  are the outputs at the first 

and second hidden layers, respectively.  , ,  are 

matrices of FIR weight vectors associated with the three layers.  For ex-
ample, , where  denotes the weight 

connected to the rth memory tap of the FIR filter modeling the synapse 
that connects the input neuron j to neuron i in the first hidden layer.  As 
shown in Fig. 9(b), the index r ranges from 0 to M, where M is the total 
number of delay units (element z
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and s denotes a discrete-time variable) built into the design of the FIR fil-
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During network training, the weights of the network are adjusted using 
an adaptive algorithm based on a given set of input-output pairs. An error-
correction learning algorithm will be briefly discussed here, and readers 
can see Haykin (1999) for further details and information regarding other 
training algorithms. If the weights of the networks are considered as ele-

                                                      
1 The most popular non-linear nodal function for FIR MLP networks is the sig-

moid [unipolar - f (x) = 1/(1 + e-x) and bipolar  - f (x) = (1 - e -x )/(1 + e-x )]. 

9  .5.2  Finite-Duration Impulse Response Multi-layer 
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ments of a parameter vector2 , the error-correction learning process in-

volves the determination of the vector  which optimizes a performance 

function J based on the output error.

�
*�

2  In error-correction learning, the 
weights are adjusted along the negative gradient of the performance func-
tion as follows: 

)(

)(
)()1(

s

s
ss J

�
��

c
c

����  
(10) 

where �  is a positive constant that determines the rate of learning and 
the superscript refers to the iteration step.  In the literature, a method for 
determining this gradient for FIR MLP networks is the temporal back-
propagation learning, which is not repeated here due its complexity. For 
further information on the algorithm, see Haykin (1999) or Wan (1990). 

The principal goal of the SOM developed by Kohonen (1982) is to trans-
form an incoming signal pattern of arbitrary dimension into a one- or two- 
dimensional discrete map, and to perform this transformation adaptively in 
a topological ordered fashion.  The presentation of an input pattern causes 
a corresponding "localized group of neurons" in the output layer of the 
network to be active (Haykin 1999), introducing the concept of a 
neighborhood.   

Let @ denote a non-linear SOM transformation which maps the spatially 
continuous input space X onto a spatially discrete output space (made up 
of a set of N computation nodes of a lattice) A.  Given an input vector x, 
the SOM identifies a best-matching neuron i(x) in the output space A, in 
accordance with the Map @. For information on the unsupervised competi-
tive learning algorithm typically used for training SOMs (Haykin 1999).  
For a typical SOM, trained in such a fashion, the map @ has the following 
properties (Haykin 1999): 

Property 1: Approximation of the Input Space–The SOM @, represented 
by the set of synaptic weight vectors {wj| j = 1, 2,..., N}, in the output 
space A, provides a good approximation of the input space X.  

Property 2: Topological Ordering–The Map @ computed by the SOM 
algorithm is topologically ordered in the sense that the spatial location of a 

                                                      
2 A popular performance function in the literature is the sum of the squared values 

of the prediction error for all training patterns. 

9  .5.3 Self-Organizing Maps 



Computation Intelligence in Online Reliability Monitoring 243 

neuron in the lattice corresponds to a particular domain or feature of input 
patterns. 

Property 3: Density Matching–The Map @ reflects variations in the sta-
tistics of the input distribution. 

 

Fig. 9. A typical network and its structure 

Signals 

The proposed approach for on-line performance reliability estimation of 
physical systems calls for modeling degradation signals as well as the dis-
persion characteristics of the signals around the degradation models.  
Globally generalizing neural networks such as FFNs do not easily lend 
themselves for modeling dispersion characteristics.  In contrast, locally 
generalizing networks such as radial-basis function (RBF) networks and 
cerebellar model arithmetic computer (CMAC) networks have a naturally 
well-defined concept of local neighborhoods and lend themselves for mod-
eling dispersion.  Such networks have been extended in the literature to in-
clude dispersion attributes such as prediction limits (PLs).  For example, 
the validity index (VI) network derived from an RBF network, fits func-
tions (Park and Sandberg 1991) and calculates PLs/error bounds for its 
predictions (Leonard et al. 1992).  
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Since globally generalizing neural networks concentrate on global ap-
proximation and tend to produce highly compact and effective models, we 
need a method for estimating prediction limits for these networks. Most of 
the very few extensions to FFNs discussed in the literature that facilitate 
estimation of prediction intervals make the strong assumption that residual 
dispersion or variance in the output space is constant (for example, see De 
Veaux et al. 1998; Chryssolouris et al. 1996). Our experience with degra-
dation signals reveals that this is not true. This section introduces an ap-
proach that integrates SOMs with FFNs to facilitate modeling of disper-
sion characteristics using FFNs without making such an assumption. In 
addition, the method allows the dispersion properties in the output space to 
be modeled using non-diagonal covariance matrices in those cases where 
there are multiple output variables.  The intent is to utilize a SOM to intro-
duce the concept of a "local neighborhood" even with globally approximat-
ing FFNs, critical for modeling dispersion characteristics. 

Let M represent the total number of training patterns spanning the entire 
input space X.  Let Mj the "membership" of neuron j in the discrete output 
space A represent the subset of training patterns from input space X that ac-
tivate it. This is shown by: 

 i(x) = j  for all x 	 Mj,   j = 1, 2, ..., N. (11) 

It is also true that the sum of the memberships of the neurons in the lat-
tice output space must equal the total number of training patterns for the 
SOM, as shown by: 

  M Mj
j

N

�
� �

1

. (12) 

The three properties exhibited by SOMs (discussed earlier) provide the 
motivation to utilize the SOM to break the input space X into N distinct re-
gions (denoted by Xj) that are mutually exclusive, and hence satisfy the fol-
lowing relationship: 

   X Xj
j

N

�
� �

1

. (13) 

All the signal patterns from any given distinct region Xj, when provided 
as input to the Map @, will activate the same output neuron j.  This is 
shown by: 

 i(x) = j  for all  x 	 Xj,  j = 1, 2, ..., N. (14) 

Thus, using SOMs, one can introduce the concept of a "local neighbor-
hood," the resolution depending on the number of neurons (N) in the dis-
crete output space. 
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From the above definition of local neighborhood, input signal patterns 
can be associated unambiguously with one of the distinct regions Xj. As-
suming that a FFN is being used for function approximation or time series 
forecasting, an estimate of the covariance matrix for the FFN model re-
siduals within the domain of region Xj is given by: 
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where: 

Spq = . / . /. kq

M

k
kp

j
EE

M

j

�
�� 11

1 /, and denotes the covariance between out-

put variables p  and q , 
 Ekp denotes the FFN model residual for output variable p for pattern k, 

O denotes the number of output variables predicted by the FFN. 

Assuming that the residuals are independent and Gaussian distributed 
with a constant covariance matrix over the domain of any region but vary-
ing from domain to domain, one can even estimate the PLs. In fact, the 1-

quantile is given by the point x satisfying the following condition: �

. / . / . /�`��� � 21
Ojj

T
j Cov μxμx  (16) 

where: 

. /` �O
2  denotes the (1-� ) quantile of the Chi-Square distribution   

with O  degrees of freedom. 

jμ  denotes the mean residual vector for domain Xj, and 

Covj
�1  is the inverse of the matrix . Covj

Investigation through simulation studies and statistical analysis have re-
vealed that the residuals do tend to exhibit Gaussian distribution in differ-
ent neighborhoods as long as the overall noise in the data is Gaussian. If 
the FFN has adequate representational capacity, the fit should not be sig-
nificantly biased, and the mean residual vector can be a null vector.  In a 
similar fashion, one could also determine the limits of the dispersion of the 
mean, i.e., the range of possible values for the mean predicted value, rather 
than the value for a single sample. 
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A drilling operation was chosen as the physical test-bed for the reason that 
it is a commonly used machining process. El-Wardany et al. (1996) note 
that of all the cutting operations performed in the mechanical industries, 
drilling operations contribute approximately 40%. Broad steps involved 
and methodology used is briefly described in Fig. 10 as a guide to the case 
study followed-up with detailed description of the last two steps. 
 

 
 

 

 

Fig. 10. Broad steps and methodology for online reliability prediction for drilling 
process 
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The development of reliable tool-wear sensors has been an active area 
of metal cutting research (Andrews and Tlusty 1983). Machining literature 
has shown that there is a strong correlation between thrust-force (and 
torque) acting on a drill-bit and the bit's future life expectancy (Kim and 
Kolarik 1992, Dimla 2000, Dimla and Lister 2000). Dimla and Lister 
(2000) applied multi-layer perceptron neural network for tool-state classi-
fication using online data on the cutting forces and vibration, and reported 
achieving approximately 90% accuracy in tool-state classification. Jan-
tunen (2002) summarizes monitoring methods that have been studied for 
tool condition monitoring in drilling with thrust force and torque being 
most popular. Hence, thrust force and torque signals are appropriate deg-
radation signals for estimating on-line drill-bit reliability.  

As thousands of data points are recorded for thrust force and torque for 
each hole drilled, the data are condensed using root mean square value af-
ter systematically grouping the data points for each drilled hole. Sun et al 
(2006) discuss a systematic procedure for sampling the training data that 
helps to reduce the size of the training data without trading off the gener-
alization performance. For defining failure in feature space, Sugeno fuzzy 
inference model as explained in Section 4 is used and demonstrated for the 
drilling process. For reliability prediction, a methodology using finite-
duration impulse response multi-layer perceptron neural networks along 
with self-organizing maps as detailed in Section 5 is demonstrated.  

9  .6 Drilling Process Case Study 
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A dynamometer was available in-house for measuring on-line the thrust-
force and torque acting on the drill-bit. The experimental setup consists of 
a HAAS VF-1 CNC milling machine, a workstation with LabVIEW soft-
ware for signal processing, a Kistler 9257B piezo-dynamometer for meas-
uring thrust-force and torque, and a National Instruments PCI-MIO-16XE-
10 card for data acquisition. The experimental setup is depicted in Fig. 11.  

Kistler 5017
Multi-Channel

Charge Amplifier

DAQ Card
NI PCI-MIO-16XE-10
LABView 5.1 Interface
for Signal Processing

IBM PC Compatible
Computer

HAAS VF-1
Machining Center

Drillbit

Dynamometer
Kistler 9257 B

(Force and Torque Sensor)

Fixture
Workpiece

 

Fig. 11. Experimental setup for capturing thrust-force and torque degradation sig-
nals from a ¼” HSS drill-bit. 

A series of drilling tests were conducted using quarter-inch drill-bits on a 
HAAS VF-1 Machining Center. Stainless steel bars with quarter-inch 
thickness are used as specimens for the tests. The drill-bits were high-
speed twist drill-bits with two flutes, and were operated under the follow-
ing conditions without any coolant: feed-rate of 4.5 inches-per-minute 
(ipm) and spindle-speed of 800 revolutions-per-minute (rpm). 

Twelve drill-bits were used in the experiment. Each drill-bit was used 
until it reached a state of physical failure, either due to macro chipping or 
gross plastic deformation of the tool tip due to excessive temperature. Col-
lectively, the drill-bits demonstrated significant variation in life (varying 
between eight and twenty five successfully drilled holes) even though they 
came from the same manufacturer in the same box. This further validates 
the need to develop good on-line reliability estimation methods to help end 
users arrive at optimal tool or component replacement strategies.  

The thrust-force and torque data were collected for each hole from the 
time instant the drill penetrated the work piece through the time instant the 
drill tip protruded out from the other side of the work piece. The data was 
initially collected at 250 Hz and later condensed using RMS techniques to 

9  .6.1 Experimental Setup 

9  .6.2. Actual Experimentation 
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24 data points per hole, considered normally adequate for the task at hand. 
Throughout the rest of this paper, in all illustrations, one time unit is 
equivalent to the time it takes to drill 1/24th of a hole. For illustrative pur-
poses, data collected from drill-bit #8 is depicted in Fig. 12.  

 

Fig. 12. Plots of thrust-force and torque signals collected from drill-bit #8. 

Experimental data has revealed a lot of variation between drill-bits, in 
the amplitudes of thrust-force and torque observed during the final hole. 
This invalidates the concept of a deterministic critical limit for establishing 
failure definition in the thrust-force and torque signal space. While one 
could potentially introduce a probabilistic critical plane, here, we utilize 
fuzzy logic to introduce an FIS failure definition model in the degradation 
signal space.   

It was decided initially to use two membership functions for represent-
ing the “low” and “high” linguistic levels for each of the degradation sig-
nals. Sigmoid membership functions were considered appropriate for three 
reasons:  

1.  They are open-ended on one side,  
2. They are monotonous functions (always increase or decrease but not 

both), and  
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9  .6.3 Sugeno FIS for Failure Definition  
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3. They are compatible with most ANFIS training algorithms. 

Past experience suggested that thrust-force typically varies between 0 to 
3000 Newtons for the drilling operation at hand. Similarly, it was common 
to see torque vary between 0 to 6 Newton-meters. Initially, the member-
ship functions were set up to equally divide the ranges of the variables, as 
illustrated in Fig. 13(a) and 13(c) for thrust-force and torque, respectively. 
It was expected that ANFIS training would address any misrepresentations 
in these membership functions. 
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Fig. 13. Plots of membership functions before and after ANFIS training (a) 
Thrust-force MFs – before training. (b) Thrust-force MFs – after training. 

(c)Torque MFs – before training. (d) Torque MFs – after training. 

Two rules were initially formulated with the understanding that more 
rules can be added to address any serious violations by the FIS model. The 
rules are as follows: 

IF thrust-force is low AND torque is low, THEN, drill-bit reliability = 1.0. 
IF thrust-force is high AND torque is high, THEN, drill-bit reliability = 0.0. 
Thus, the consequent of each rule constitutes a zero-order model. The 

resulting FIS model relationship is illustrated in Fig. 14(a). It is clear that 
the overall relationship is highly non-linear and certainly seems plausible. 
At this stage, it was decided to extract training data to further refine the 
FIS model using the ANFIS framework. The training, validation, and test-
ing datasets used for developing the forecasting model were once again 
exploited to refine the FIS model. The reasoning behind the generation of 
training data is as follows. Given any drill-bit and the provided operating 
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conditions, it is totally reasonable to assume that the drill-bit will survive 
the very first hole. This implies that the FIS model should estimate the 
drill-bit reliability to be 1.0 when exposed to the sort of thrust-force and 
torque conditions witnessed during the machining of the first hole for all 
the eight training set drill-bits. Similarly, it is only reasonable to expect the 
FIS model to estimate the drill-bit reliability to be 0.0 when exposed to the 
sort of thrust -force and torque conditions witnessed during the machining 
of the last hole for all the eight training set drill-bits. Thus, in total, 16 data 
points were developed from the eight training set drill-bits. Validation and 
testing datasets were also developed similarly, using the corresponding 
drill-bit data. Note that while labeled data could be generated for repre-
senting extreme states of the drill-bits, it is not easily possible to develop 
any such data for intermediate states (i.e., states other than those represent-
ing either an extremely sharp/good or extremely dull/bad drill-bits). 
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(a)      FIM Surface – before training.  (b)      FIM Surface – after training. 

Fig. 14. Failure definition model surface. 

Training the ANFIS formulation of our FIS model using these datasets 
resulted in the final relationship illustrated in Fig. 14(b). The correspond-
ing changes to the membership functions by the ANFIS training algo-
rithms are also illustrated in Fig. 13. Close observation of Fig. 13 and 14 
reveals that the FIS model is predominantly utilizing the torque degrada-
tion signal in comparison with the thrust-force signal for estimating the on-
line reliability of the drill-bit. This is partially attributed to the fact that 
torque exerted on a drill-bit is more sensitive to most of the failure modes 
that dominate drilling operations (i.e., it offers better signal-to-noise ratio 
in comparison with the thrust-force signal). 
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Structured experiments revealed that a FIR MLP network with the follow-
ing configuration appeared to be good at maintaining generalization with 
respect to predicting the thrust force and torque levels into the future: 
1. Input layer:  

� Number of neurons: 2  
(One for each of the two (thrust force & torque) degradation signals.) 

� Number of taps per synaptic filter: 15 
2. Hidden layer   

� Number of neurons: 25 
� Number of taps per synaptic filter: 5 

3. Output layer 
�  Number of neurons: 6 

(Three neurons for each of the two degradation signals.  First neuron 
is used for predicting one-step into the future, second neuron for pre-
dicting three-steps into the future, and the third neuron is used for 
predicting six-steps into the future.  Networks with simultaneous 
multi-step predictions into the future outperformed networks with just 
one-step ahead prediction, in terms of generalization.) 

Of the information collected from the 16 drill-bits, information from 12 
randomly picked drill-bits was used for training purposes (labeled #1 to 
#12), and the information from the remaining 4 drill-bits was used for test-
ing purposes (labeled #13 to #16).  The network was designed to reduce 
the mean-square-error associated with testing patterns. 

A SOM with a two-dimensional lattice of neurons (8�8) was used in di-
viding the 42 dimensional continuous input space into 64 distinct regions 
in an adaptive, topologically ordered fashion. The 42 dimensions are made 
up of (20+1) dimensional thrust force input vector and (20+1) dimensional 
torque input vector. The adaptive training scheme and parameter selection 
process discussed by Haykin (1999) was utilized in training the network.  
The covariance matrix, for each of the 64 distinct regions, for the FIR 
MLP model residuals in the output space, has been computed as per the 
procedure discussed in Section 5.4.  Statistical analysis using Chi-Square 
tests and normal probability plots revealed that the residuals in distinct 
SOM neighborhoods tend to follow a Gaussian distribution.  The reliability 
integral shown in equation (13) is calculated for these experiments using 
the Romberg method (Press et al. 1988). 

The conditional performance reliability predictions for drill-bit #16 used 
for testing is shown in Fig. 15.  All the conditional performance reliabil-
ities are based on the assumption that the critical plane for the drill-bit with 

9  .6.4 Online Reliability Estimation using Neural Networks 
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respect to thrust is 700 pounds and critical plane for the drill-bit with re-
spect to torque is 42.5 inch-pounds, levels set from data available from the 
drill-bit manufacturer and laboratory experiments. Here again, the condi-
tional performance reliability is equivalent to mission reliability where the 
mission constitutes the probability of successfully drilling the hole for the 
next cf TTT ��L , given that it has survived thus far ( ).  cT

Fig. 15. Conditional performance reliability exhibited by drill-bit #16. 

Fig. 16. Performance reliability exhibited by drill-bits #13, #14, #15, and #16. 

Fig. 16 depicts the changes in the performance reliabilities (uncondi-
tional) for the 4 drill-bits used for testing. These unconditional perform-
ance reliabilities are calculated from their respective conditional reliabil-
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ities developed above. For example, the performance reliability that a par-
ticular drill-bit would survive Z intervals (interval width or sampling pe-
riod in time units = 1/sampling rate = 1/150 = 0.0067 seconds) is the prod-
uct of the conditional performance reliabilities of surviving each of these Z 
intervals (basically the product of Z conditional performance reliabilities).  
Since the FIR MLP is of prediction order 21, these calculations are based 
on the assumption that each drill-bit will survive the first 21 intervals (i.e., 

0.14 seconds) with certainty.3

Traditional approaches to reliability analysis are based on life tests that re-
cord only time-to-failure.  With very few exceptions, all such analyses are 
aimed at estimating a population characteristic or characteristics of a sys-
tem, subsystem, or component. For some components, it is possible to ob-
tain degradation measurements over time, and these measurements contain 
useful information regarding component reliability. Then, one can define 
component failure in terms of a specified level of degradation, and esti-
mate the reliability of that "particular" component based on its unique deg-
radation measures. This chapter demonstrates that fuzzy inference models 
can be used to introduce failure definition in the degradation signal space 
using expert opinion and/or empirical data. This is particularly valuable for 
carrying out prognostics activities in the absence of sound knowledge for 
the mechanics of degradation and/or lack of adequate failure data. The 
specific application considered is in-process monitoring of the condition of 
the drill-bit in a drilling process utilizing the torque and thrust signals. The 
drilling process case study demonstrates the feasibility of on-line reliability 
estimation for individual components using the neuro-fuzzy approach. Fur-
ther, this chapter provides an approach that allows the determination of a 
component's reliability as it degrades with time by monitoring its degrada-
tion measures. The concepts have been implemented using finite-duration 
impulse response multi-layer perceptron neural networks for modeling 
degradation measures and self-organizing maps for modeling degradation 
variation.  An approach to compute prediction limits for any feed-forward 
neural network, critical for on-line performance reliability monitoring of 
systems using neural networks, is also introduced by combining the net-

                                                      
3 The prediction order for a FIR MLP is equal to the sum of the memory taps for 

the input and hidden layers plus one for the current state. For this particular 
network, p = 15 + 5 +1 = 21.   

9  .7 Summary, Conclusions and Future Research 
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work with a self-organizing map. Experimental results reveal that neural 
networks are effective in modeling the degradation characteristics of the 
monitored drill-bits, and predicting conditional and unconditional per-
formance reliabilities as they degrade with time or usage.  In contrast to 
traditional approaches, this approach to on-line performance reliability 
monitoring opens new avenues for better understanding and monitoring 
systems that exhibit failures through degradation. Essentially, implementa-
tion of the proposed performance reliability monitoring approach reduces 
overall operations costs by facilitating optimal component replacement and 
maintenance strategies. 

However, there are still several unanswered questions. For example, 
there is no evidence that all types of failure modes prevalent in critical 
equipment could be adequately captured by the proposed Sugeno FIS 
model. Secondly, the inability to easily generate labeled training data for 
the ANFIS model from intermediate states (i.e., when the unit is neither 
brand new nor completely worn out) might jeopardize the interpolation ca-
pability of the FIS model. This issue, however, may not be significant from 
a practical perspective, for in general, there isn’t a lot of interest in the in-
termediate states, at least from the standpoint of CBM. Typically, there is 
no provision to estimate MRL using the proposed method for the sug-
gested neural network forecasting models are not capable of making long-
term forecasts. This is beginning to change with the introduction of the so-
called structural learning neural networks (Zimmerman et al. 2002). Means 
to develop confidence intervals is of paramount importance as well, with-
out which, there is no provision to gauge the accuracy of the overall prog-
nostics procedure. 
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A lot of methods and models in classical reliability theory assume that all 
probabilities are precise, that is, that every probability involved is perfectly 
determinable. Moreover, it is usually assumed that there exists some 
complete probabilistic information about the system and component 
reliability behavior. The completeness of the probabilistic information 
means that two conditions must be fulfilled: 
1) all probabilities or probability distributions are known or perfectly 

determinable; 
2) the system components are independent, i.e., all random variables, 

describing the component reliability behavior, are independent, or, 
alternatively, their dependence is precisely known. 

The precise system reliability measures can always (at least 
theoretically) be computed if both these conditions are satisfied (it is 
assumed here that the system structure is precisely defined and that there is 
a known function linking the system time to failure (TTF) and TTFs of 
components or some logical system function [ 8]). If at least one of these 
conditions is violated, then only interval reliability measures can be 
obtained. In reality, it is difficult to expect that the first condition is 
fulfilled. If the information we have about the functioning of components 
and systems is based on a statistical analysis, then a probabilistic 
uncertainty model should be used in order to mathematically represent and 
manipulate that information. However, the reliability assessments that are 
combined to describe systems and components may come from various 
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sources. Some of them may be objective measures based on relative 
frequencies or on well-established statistical models. A part of the 
reliability assessments may be supplied by experts. If a system is new or 
exists only as a project, then there are often not sufficient statistical data on 
which to base precise probability distributions. Even if such data exist, we 
do not always observe their stability from the statistical point of view. 
Moreover, failure times may not be accurately observed or may even be 
missed. Sometimes, failures do not occur at all or occur partially, leading 
to censored observations of failure times, and the censoring mechanisms 
themselves may be complex and not precisely known. As a result, only 
partial information about reliability of system components may be 
available, for example, the mean time to failure (MTTF) or bounds for the 
probability of failure at a time. Of course, one can always assume that the 
TTF has a certain probability distribution, where, for example, 
exponential, Weibull and lognormal are popular choices. However, how 
should we trust the obtained results of reliability analyses if our 
assumptions are only based on our experiences or on those of experts. One 
can reply that if an expert provides an interval for the MTTF on the basis 
of his experience, why should we reject his assumptions concerning the 
probability distribution of TTFs? The fact is that judgements elicited from 
experts are usually imprecise and unreliable due to the limited precision of 
human assessments. Therefore, any assumption concerning a certain 
probability distribution in combination with imprecision of expert 
judgements may lead to incorrect results which often cannot be validated 
due to lack of (experimental) data. 

In many situations, it is unrealistic to assume that components of 
systems are independent. Let us consider two programs functioning in 
parallel (two-version programming). If these programs were developed by 
means of the same programming language, then possible errors in a 
language library of typical functions produce dependent faults in both 
programs. Several experimental studies show that the assumption of 
independence of failures between independently developed programs does 
not hold. However, the main difficulty here is that the degree of 
dependence between components is unknown, and one typically does not 
get sufficient data from which to learn about such dependence in detail. 
Similar examples can be presented for various applications. This implies 
that the second condition for complete information is also violated in most 
practical applications, and it is difficult to obtain precise reliability 
measures for a system, indeed such measures are mostly based on strong 
assumptions. 

Dependence modelling is particularly important for large systems, for 
example to support high reliability software testing under practical 
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constraints [ 86]. Wooff et al [ 150] present an approach based on Bayesian 
graphical modelling to support software testers, and thus enhance the 
reliability of software systems, in which dependencies are quantified 
precisely via elicitation of expert judgements. Due to the enormous 
elicitation task this is difficult to achieve completely in practice, hence 
imprecise probability assessments may be needed to enable wide-scale 
implementation of such methods, where imprecision at varying levels of 
model structuring and belief quantification can be used to guide efficient 
elicitation. This is an important research topic both from the perspective of 
statistical theory based on imprecise probability and reliability theory. 
Another possible way to model and quantify dependence structures is via 
Bayes linear methods [ 35], where expectation (`prevision') rather than 
probability is the central concept. In principle, due to linearity of 
expectation, it promises to be easier to generalize this statistical framework 
to allow imprecision than it is for probability theory, but this is still an 
open topic for research. 

One of the tools to cope with imprecision of available information in 
reliability analysis is fuzzy reliability theory [ 17, 18, 48, 127, 129], which is 
based on using fuzzy and possibilistic models [ 51], models of fuzzy 
statistics [ 143]. However, the framework of this theory does not cover a 
large variety of possible judgements in reliability. Moreover, it requires to 
assume a certain type of possibility distributions of TTF or time to repair, 
and may be unreasonable in a wide scope of cases. Existing models of 
fuzzy reliability theory meet some difficulties from the practical point of 
view. Let us consider one of the most powerful models proposed by Cai 
[ 17], according to which the TTF of the i-th component is considered to be 
a fuzzy variable governed by a possibility distribution function ( )i tb  [ 51]. 
Then the reliability measure (possibility of failure before time ) of a 
series system consisting of  components is defined as 

t
n

1,...,max sup ( )i n u t i ub� � . If all components are identical, then the possibility 

of failure does not depend on . This controversial result is due to the 
operations min and max used in calculations, which practitioners cannot 
accept because it is well known that system reliability decreases with n . 
In this approach, a similarly problematic property holds for parallel 
systems. Other problems with this theory are the lack of clear 
interpretation of the possibility function, and lack of consistent and well 
founded theory for relating the possibility distribution function to 
statistical data. Cai [ 16] proposed a method based on computing the 
possibilistic likelihood function. However, this method has a shortcoming. 
By increasing the number of observations, the imprecision of the obtained 
possibility distribution function does not decrease and may even increase, 

n
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which is not acceptable for practitioners in reliability analysis. It should be 
noted that the first point can be explained [ 107] by interpreting the 
possibility distribution by means of lower and upper probability 
distributions [ 52] and considering conditions of independence of random 
variables. Some models use fuzzy probabilities to describe the system 
reliability behavior. This representation can be regarded as a special type 
of second-order uncertainty models. However, most existing models using 
fuzzy probabilities also have shortcomings due to unreasonable usage of 
fuzzy operations and comparison indices. Moreover, the fuzzy sets and 
possibility theory are often used in reliability analysis as an alternative to 
the classical probability theory that cannot be accepted by many 
practitioners. In spite of these shortcomings, fuzzy reliability models can 
be viewed as an interesting class of models for taking incompleteness of 
information into account, with a variety of challenging open research 
problems. 

Another approach to reliability analysis under incomplete information, 
based on the use of random set and evidence theories [ 89], has been 
proposed in the literature [ 6, 65, 93]. Random set theory offers an 
appropriate mathematical model of uncertainty when the information is not 
complete or when the result of each observation is not point-valued but 
set-valued, so that it is not possible to assume the existence of a unique 
probability measure. However, this approach also does not cover all 
possible judgements in reliability. 

To overcome every difficulty of the methods considered above, the 
theory of imprecise probabilities [ 144] and its analogues (the theory of 
interval statistical models [ 77], the theory of interval probability 
[ 148, 149]) can be used, which can be a general and promising tool for 
reliability analysis. 

Coolen [ 28] provided an insight into imprecise reliability, discussing a 
variety of issues and reviewing suggested applications of imprecise 
probabilities in reliability. The idea of using some aspects of imprecise 
probability theory in reliability had already been considered in the 
literature. For example, Barlow and Proschan [ 8] studied a case of the lack 
of information about independence of components (Frechet bounds [ 55]) 
and nonparametric interval reliability analysis of ageing classes of TTF 
distributions. Barzilovich and Kashtanov [ 10] considered interval methods 
for optimal preventive maintenance under incomplete information. It has 
also been shown [ 26, 27, 37] how several commonly used concepts in 
reliability theory can be generalized, and combined with prior knowledge, 
through the use of imprecise probabilities in a generalized Bayesian 
statistical framework. Recently, nonparametric predictive inference has 
been developed, see Coolen et al [ 34] for an introductory overview, as a 
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coherent statistical framework offering exciting application opportunities 
in reliability in situations where sufficient data are available. In this 
approach, only few mathematical assumptions are made, leading to 
imprecision, and further sources of uncertainty such as censored 
observations also lead to imprecision. Applications of this approach to 
maintenance and replacement problems have also been presented. We 
discuss this approach in more detail in Sec. Imprecise probability models 
for inference. 

Further examples of applications of imprecise probabilities to reliability 
analysis have been presented by Utkin and Gurov [ 63, 133], we briefly 
consider some of these examples. Suppose that the following information 
is available about components of a two-component series system. The 
MTTF of the first component is 10 hours, and the probability that the 
second component fails before 2 hours is 0.01. Without additional 
assumptions, the reliability of the system cannot be determined by means 
conventional reliability theory because the probability distribution of TTF 
is unknown. Any assumption about a certain probability distribution of 
TTF may lead to incorrect results. The reliability can also not be 
determined by means of methods of fuzzy reliability theory without further 
assumptions. However, this problem can be solved by using imprecise 
probabilities, with the restricted information leading to imprecise 
reliability quantifications. 

A main objective of imprecise reliability is the analysis of system 
reliability using only available information without additional assumptions 
or, with a minimal number of assumptions. This theory also allows clear 
insights into the effects of any such further assumptions, as reflected via 
their effect on the imprecision in the system reliability measures. The 
following virtues of imprecise probability theory can be pointed out: 
1) It is not necessary to make assumptions about probability distributions 

of random variables characterizing the component reliability behavior 
(TTFs, numbers of failures in a unit of time, etc.). 

2) Imprecise probability theory is completely based on classical 
probability theory and can be regarded as its generalization. Therefore, 
imprecise reliability models can be interpreted in terms of classical 
probability theory. Conventional reliability models can be regarded as 
a special case of imprecise models. 

3) Imprecise probability theory provides a unified tool (natural extension) 
for computing system reliability measures under partial information 
about the component reliability behavior. 

4) Imprecise probability theory provides a generalization of possibility 
theory and evidence theory, and allows us to explain and understand 
some results of these approaches in reliability analysis. 
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5) Reliability measures that are different in kind can be combined and 
involved into the natural extension in a straightforward way. This 
implies that quite different reliability measures and estimates can be 
combined for computing the system reliability measures. 

6) Imprecise probability theory allows us to obtain the best possible 
bounds for the system reliability given any information about 
component reliability and dependence structures. 

7) The possible large imprecision of resulting system reliability measures 
reflects the available incompleteness of initial information and can 
direct the search for effective additional information sources. 

 At the same time, we can not assert that imprecise probability theory is 
the best and unique tool for reliability analysis under incomplete 
information. Ben-Haim [ 12, 13] developed info-gap decision theory which 
has been successfully applied to solving some reliability problems. Info-
gap models differ from the models of possibility, random set, and 
probability theories using real-valued measures functions defined on the 
space of events, which express either a probability or a possibility for each 
event in the space. An info-gap model of uncertainty is a family of nested 
sets. Each set corresponds to a particular degree of knowledge-deficiency, 
according to its level of nesting. There are no measure functions in an info-
gap model of uncertainty. 

This introductory overview of imprecise reliability is not intended as an 
exhaustive and comprehensive review of the literature. Instead, its aim is 
to show that imprecise reliability theory offers exciting opportunities and 
has been developed, yet this process is still at a relatively early stage, in 
particular with regard to (large-scale) practical applications.  

Consider a system consisting of  components. Suppose that partial 
information about reliability of components is represented as a set of lower 
and upper expectations 

n

ijfE  and ijfE , 1,...,i n� , 1,..., ij m� , of functions 

ijf . Here  is a number of judgements that are related to the i-th 

component; 
im

( )ij if X  is a function of the random TTF iX  of the i-th 

component or some different random variable, describing the i-th 
component reliability and corresponding to the j-th judgement about this 
component. For example, the interval-valued probability that a failure is in 
the interval  can be represented as expectations of the indicator [ , ]a b

10.2 System Reliability Analysis 
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function  such that [ , ] ( )a b iI X [ , ] ( ) 1a b iI X �  if [ , ]iX a b	  and  

if 
[ , ] ( ) 0a b iI X �

[ , ]iX a b; . The lower and upper MTTFs are expectations of the 

function ( )i if X X� . 

Denote 1( ,..., )nx x�X  and 1X ( ,..., )nX X� . Here 1,..., nx x  are values of 

random variables 1,..., nX X , respectively. It is assumed that the random 

variable iX  is defined on a sample space S  and the random vector  is 

defined on a sample space 

X

...nS � S� �S . If iX  is the TTF, then 

. If �S � R iX  is a random state of a multi-state system [ 9], then 
, where  is a number of states of the multi-state system. In 

the case of a discrete TTF, 

{1,..., }LS � L

{1,2,...}S � , i.e. �S � Z . According to Barlow 
and Proschan [ 8], the system TTF can be uniquely determined by the 
component TTFs. Then there exists a function  of the component 
lifetimes characterizing the system reliability behavior. The same holds for 
a multi-state system. If 

(X)g

iX  is a random state, then a state of the multi-state 
system is determined by states of its components, i.e., there exists a 
function  called a structure function. (X)g

In terms of imprecise probability theory the lower and upper 
expectations can be regarded as lower and upper previsions. The functions 

ijf  and g  can be regarded as gambles (the case of unbounded gambles is 

studied by Troffaes and de Cooman [ 96]). The lower and upper previsions 

ijfE  and ijfE  can be also viewed as bounds for an unknown precise 

prevision ijfE  which will be called a linear prevision. Since the function 

g  is the system TTF, then, for computing the reliability measures (such as 
the probability of failure, MTTF, k-th moment of TTF), it is necessary to 
find lower and upper previsions of a gamble , where the function  
is defined by the system reliability measure which has to be found. For 
example, if this measure is the probability of failure before time t , then 

. 

( )h g h

[0, ]( ) ( )th g I g�

If we assume that the vector  is governed by some unknown joint 

density 

X

( )� X , then ( )h gE  and ( )h gE  can be computed by solving the 
following optimization problems (natural extension):  

( ) min ( ( )) ( ) ,
n

h g h g �
S

� KE X
P

dX X  

( ) max ( ( )) ( ) ,
n

h g h g �
S

� KE X
P

dX X  

subject to 
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( ) 0, ( ) 1,
n

� �
S

� �KX X dX  

( ) ( ) , , .
nij ij i ij if f x f i n j m�

S
� � �KE X X Ed �  

Here the minimum and maximum are taken over the set P  of all 
possible density functions { ( )}� X  satisfying the above constraints, i.e., 
solutions to the problems are defined on the set P  of densities that are 
consistent with partial information expressed in the form of the constraints. 
These optimization problems mean that we only have to find the largest 
and smallest possible values of  over all densities from the set . ( )h gE P

If the considered random variables are discrete and the sample space 
 is finite, then integrals and densities in the optimization problems are 

replaced by sums and probability mass functions, respectively. 

nS

It should be noted that only joint densities are used in the above 
optimization problems because, in a general case, we may not be aware 
whether the variables 1,..., nX X  are dependent or not. If it is known that 

components are independent, then 1 1( ) ( ) ( )n nx x� � �� ��� ��X . In this 
case, the set P  is reduced and consists only of the densities that can be 
represented as a product of marginal densities. This results in more precise 
reliability assessments. The manner in which the condition of 
independence influences on the precision of assessments is often an 
interesting topic of study, as it may provide useful insights into the effect 
of independence assumptions. 

If the set P  is empty, this means that the set of available evidence is 
conflicting and the optimization problems become irrelevant, hence this 
method would not provide any solutions. For example, if two experts 
provide [10,12] and [14,15] as bounds for the MTTF of a component, this 
information is clearly conflicting because these bounds produce non-
intersecting sets of probability distributions, so the set P  of common 
distributions is empty. There are several ways to cope with conflicting 
evidence. One is to localize the conflicting evidence and discard it, another 
is to somehow correct the conflicting evidence making it non-conflicting 
[ 102]. A third possibility is to introduce some beliefs to every judgement 
and to deal with second-order hierarchical models [ 109, 110] which will be 
considered below. 

The dual optimization problems for computing the lower ( )h gE  and 

upper ( )h gE  previsions of  are [300, 133]:  ( )h g

. /
1 1

( ) max ,
imn

ij ij ij ij
i j

h g c c f d f
� �

� [� �� � �� Z
� �� Y

��E E E  
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subject to , , ,ij ijc d �	R 1,...,i n� 1,..., ij m� , c	R , and n
 	SX , 

. /
1 1

( ( )).
imn

ij ij ij
i j

c c d f h g
� �

� � ��� X  

The dual optimization problem for computing the upper prevision 
( )h gE  of the system function  is ( )h g

. /
1 1

( ) min ,
imn

ij ij ij ij
i j

h g c c f d f
� �

� [� �� � �� Z
� �� Y

��E E E  

subject to , , ,ij ijc d �	R 1,...,i n� 1,..., ij m� , c	R , and n
 	SX , 

. /
1 1

( ( )).
imn

ij ij ij
i j

c c d f h g
� �

� � ��� X  

Here , ,  are optimization variables such that  corresponds to 

the constraint 

c ijc ijd c

( ) 1n �S �K X Xd ,  corresponds to the constraint ijc

( ) ( )n ij i ijf x �S �K X X Ed f , and  corresponds to the constraint ijd

( ) ( )nij ij if f x �S� KE dX X . It turns out that dual optimization problems are 

simpler in comparison with primal ones in many applications, because this 
representation allows avoidance of situations with infinite numbers of 
optimization variables. 

Most reliability measures (probabilities of failure, MTTFs, failure rates, 
moments of TTF, etc.) can be represented in the form of lower and upper 
previsions or expectations. Each measure is defined by a gamble ijf . 

Precise reliability information is a special case of imprecise information 
when lower and upper previsions of the gamble ijf  coincide, i.e., 

ij ijf f�E E . 

For example, let us consider a series system consisting of two 
components. Suppose that the following information about reliability of 
components is available. The probability of the first component failure 
before 10 hours is 0.01. The MTTF of the second component is between 
50 and 60 hours. It can be seen from the example that the available 
information is heterogeneous and it is impossible to find system reliability 
measures on the basis of conventional reliability models without using 
additional assumptions about probability distributions. At the same time, 
this information can be formalized as follows:  

[0,10] 1 [0,10] 1 2 2( ) ( ) 0.01, 50, 60I X I X X X� � �E E E E ,�  

or 
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2 [0,10] 1 1 2 1 20.01 ( ) ( , ) 0.01,I x x x x x�
�

� �K R
d d  

2 2 1 2 1 250 ( , ) 60.x x x x x�
�

� �K R
d d  

If it is known that components are statistically independent, then the 
constraint 1 2 1 1 2 2( , ) ( ) ( )x x x x� � ��  is added. The above constraints form a 
set  of possible joint densities. Suppose that we want to find the 
probability of system failure after time 100 hours. This measure can be 
regarded as previsions of the gamble , i.e., 

 and 

P

[100, ) 1 2(min( , ))I X3 X

X1 2(X) min( , )g X� [100, )( ) ( )h g I g3� . Then the objective functions 

are of the form: 

2 [100, ) 1 2 1 2 1 2( ) min (min( , )) ( , ) ,h g I x x x x x x�
�

3� K R
E

P
d d  

2 [100, ) 1 2 1 2 1 2( ) max (min( , )) ( , ) .h g I x x x x x x�
�

3� K R
E

P
d d  

Solutions to the problems are ( ) 0h g �E  and ( ) 0.59h g �E , which are 
the sharpest bounds for the probability of system failure after time 100 
hours based solely on the given information. If there is no information 
about independence, then optimization problems for computing ( )h gE  

and ( )h gE  can be written as 

) *11 11 21 21( ) max 0.01 0.01 50 60 ,h g c c d c d� � � � �E  

subject to 11 11 21 21,, , ,c d c d �	R , c	R , and 2
1 2( , )x x �
 	R , 

11 11 [0,10] 1 21 21 2 [100, ) 1 2( ) ( ) ( ) (min( , )),c c d I x c d x I x x3� � � � �  

and 

) *11 11 21 21( ) min 0.01 0.01 60 50h g c c d c d� � � � �E ,  

subject to 11 11 21 21,, , ,c d c d �	R , c	R , and 2
1 2( , )x x �
 	R , 

11 11 [0,10] 1 21 21 2 [100, ) 1 2( ) ( ) ( ) (min( , )),c c d I x c d x I x x3� � � � �  

The solutions to these problems are ( ) 0h g �E  and ( ) 0.99h g �E . This 
example clearly shows the possible influence of independence 
assumptions. 

Another method for computing ( )h gE  and ( )h gE  is based on an 
assertion that optimal densities in the primal optimization problems are the 
weighted sums of Dirac functions [ 138] which have unit area concentrated 
in the immediate vicinity of some point. In this case, the infinite 
dimensional optimization problems are reduced to a problem with a finite 
number of variables equal to the number of constraints (pieces of 
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evidence). The optimization problems, unfortunately, become non-linear, 
but it turns out that in some special cases [ 108, 114, 117, 140] their solution 
is rather simple. If there is no information about independence of 
components, then  

1

,
1

( ) min ( ( )),
k k

N

k k
c

k

h g c h g
�

�

� �
X

E X  

1

,
1

( ) max ( ( )),
k k

N

k k
c

k

h g c h g
�

�

� �
X

E X  

subject to 
1

1

1, 0, 1,..., 1,
N

k k
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c c k N
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� � � ��  

1
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1

( ) , ,
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k
ij k ij i ij i
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where ( ) ( )
1( ,..., )k k n

��X R kc	 , �	R , . 1
n
i iN m�� �

Here ,  are optimization variables. If components are independent, 
then  

kX kc

1
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( ) , ,
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l
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Let us introduce the notion of the imprecise reliability model of the -th 
component as a set of  available lower and upper previsions and 
corresponding gambles 

i

im

1 1, , ( ), 1,..., , , ( ) .i im m
ij ijij iji ij i i j ij j ijf X j m f X� �� C � D � V � V C DE E E EM M i  

Our aim is to get the imprecise reliability model , , ( (X))h g� C DE EM  of 
the system. This can be done by using the natural extension which will be 
regarded as a transformation of the component imprecise models to the 
system model and denoted . The models in the above 

considered example are 
1

n
i i�V -M M

]0.01,0.01, ( )I X1 [0,10 1� C DM 2 250,60, X� C DM, , 
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[100, ) 1 2, , (min( , ))I X X3� C DE EM . 

Different forms of optimization problems for computing system 
reliability measures are studied by Utkin and Kozine [ 138]. However, if 
the number of judgements about component reliability behavior, , 
and the number of components, , are large, optimization problems for 

computing 

1
n
i im��

n

( )h gE  and ( )h gE  cannot be practically solved due to their 
extremely large dimensionality. This fact restricts the application of 
imprecise calculations to reliability analysis. Therefore, simplified 
algorithms for approximate solutions to such optimization problems must 
be developed, together with analytical solutions for some special types of 
systems and initial information. Some efficient algorithms are proposed by 
Utkin and Kozine [ 115, 137]. The main idea underlying these algorithms is 
to decompose the difficult non-linear optimization problems into several 
linear programming problems which are easy to solve. For example, in 
terms of the introduced imprecise reliability models, an algorithm given in 
[ 115] allows us to replace the complex transformation  by a 
set of  simple transformations  

1
n
i i�V -M M

1n �
0 , , ( ) , 1,..., ,i i ih X i n- � C D �E EM M  

0
1 .n

i i�V -M M  

The judgements considered above can be related to direct ones, which are 
a straightforward way to elicit the imprecise reliability characteristics of 
interest. Moreover, the condition of independence of components can be 
related to structural judgements. However, there is a wide variety of 
possible judgements [ 76] that imprecise reliability theory can deal with, 
and other types of initial information have to be pointed out. 

Comparative judgements are based on comparison of reliability 
measures concerning one or two components [ 76, 99]. An example of a 
comparative judgement related to one component is the probability of the 

-th component failure before time  is less than the probability of the 
same component failure in time interval . This judgement can be 

formally represented as 

i t

1 2[ , ]t t

1 2[ , ] [0, ]( ( ) ( ))t t i t iI X I X 0� �E . An example of a 

comparative judgement related to two components is the MTTF of the -th 
component is less than the -th component MTTF, which can be rewritten 

as 

i
k

( )k iX X� �E 0 . By using the property of previsions ( )X X� � �E E , 

10.3 Judgements in Imprecise Reliability 
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for instance, the last comparative judgement can be rewritten as 
( )i kX X� �E 0 . 
Many reliability measures are based on conditional probabilities or 

conditional previsions, for example, failure rate, mean residual TTF, 
probability of residual TTF, etc. Moreover, experts sometimes find it 
easier to quantify uncertainties using probabilities of outcomes 
conditionally on the occurrence of other events. The lower and upper 
residual MTTFs can be formally represented as [ , )( | (t ))X t I X3�E  and 

[ , )( | (t ))X t I X3�E , where X t�  is the residual lifetime. The lower and 

upper probabilities of residual TTF after time  (lower and upper residual 
survivor functions) are similarly written as 

z

[ , ) [ , )( ( ) | ( )z tI X t I X3 3 )�E  and 

[ , ) [ , )( ( ) | ( )z tI X t I X3 3�E ) . It should be noted that the imprecise conditional 

reliability measures may be computed from unconditional ones by using 
the generalized Bayes rule [ 144]. For example, if lower XE  and upper 

XE  MTTFs are known, then the lower and upper residual MTTFs 
produced by the generalized Bayes rule are max{0, }X t�E  and XE , 
respectively. A more detailed description of conditional judgements in 
reliability analysis can be found in [ 136]. 

It is often reasonable to assume that lifetime probability distribution 
functions are unimodal. Therefore, additional information about 
unimodality of lifetime probability distributions may be taken into account 
for imprecise reliability calculations [ 104, 106]. Implementing an 
unimodality condition on discrete probability distributions into imprecise 
reliability calculations has been studied in [ 106]. 

Some qualitative or quantitative judgements about kurtosis, skewness, 
and variance can also be taken into account in imprecise reliability 
calculations [ 104]. For example, we may know that the component TTF 
typically has a flat density function, which is rather constant near zero, and 
very small for larger values of the variable (negative kurtosis). This 
qualitative judgement can be represented by the lower and upper 
previsions 2 2X X� �E E h  together with 4 2( 3 )X h 0� �E , where 

. If, for instance, we know that data are skewed to the 
right (positive skewness), then this information can be formalized by the 
lower and upper previsions 

2[inf ,sup ]h X X	 2

X X h� �E E  together with 
2 3(3 ) 2hX X h� �E 3 . If we know that the variance of the component TTF 

is less than the expectation squared, then additional constraints to 
optimization problems for computing lower and upper previsions are of the 
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form: X X h� �E E  and 2 2 2X h�E . In such cases, the natural extension 
can be conveniently formulated as a parametric linear optimization 
problem with the parameter . h

Experts are often asked about k%-quantiles of the TTF X , i.e., they 
supply points ix  such that Pr{ } /100iX x k� � . As pointed out by Dubois 
and Kalfsbeek [ 50], experts are often more confident at supplying intervals 
rather than point-values, because their knowledge is often restricted. So 

experts may provide intervals for quantiles in the form [ , ]iix x . This 
information can be written as 

Pr{ [ , ]} ,ii iX x x q� �  
and it can be interpreted as I do not know the true value of the quantile 

exactly, but I belief one of the values in the interval [ , ]iix x  to be its true 
value. It is worth noting that the considered model of uncertainty differs 
from standard uncertainty models used in the imprecise probability theory, 
where there exists an interval of previsions of a certain gamble. In the 
models of quantiles, the gamble is viewed as a set of gambles for which 
the same previsions are defined. The model is represented as the union of 
imprecise models  

[0, ][ , ]
, , ( ) .

ii
i i tt x x

q q I X
	

U C D  

The symbol 
[ , ]iit x x	

U  means that at least one of the models 

 is true. Then arbitrary reliability measures may be 

computed by using the natural extension. For example, if there are  
judgements about imprecise quantiles ( 

[0, ], , ( )i i tq q I XC D

q
n

1 ... nq � � ) and a sample space of 

TTF of a component is bounded by values 0x  and Nx , then the lower and 
upper MTTFs of the component are 

1 0 1 1
1,...,

1

( ) max ,
n

ki i n
k i

i

X q x q q x q� ��
�

� � � ��E 1,  

1 0,...,
1

(1 ) ( ) min , 0.
n

kn N i i
k i n

i

X q x q q x q� �
�

� � � � ��E  

Standard models for inference usually require a large number of 
observations of events, e.g. failures, or assume that an appropriate precise 
prior probability distribution is available (for Bayesian models). A possible 

10.4 Imprecise Probability Models for Inference 
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way to avoiding these assumptions is by use of imprecise probability 
models or models with imprecise prior distribution for statistical inference 
[ 37]. As an alternative to the kind of models also used in robust Bayesian 
analysis [ 14], which provide useful models in the imprecise probability 
context although requiring a different interpretation of the lower and upper 
bounds for inferences, Coolen [ 24] presents a generalization by including a 
further parameter which explicitly controls the level of imprecision in case 
of updating with newly available data. For all these models, computation 
of lower and upper previsions, as required for many reliability 
applications, may seem to involve complex nonlinear optimization 
problems, in particular if multi-dimensional parameters are involved. 
Coolen [ 25] shows how these optimization problems can be replaced by 
relatively straightforward one-dimensional search problems, independent 
of the dimensionality of the original parameter space, which makes such 
methods far more readily available for use in imprecise reliability. 

The imprecise Dirichlet model (IDM) was introduced by Walley [ 145] 
as a model for objective statistical inference from multinomial data. In the 
IDM, prior or posterior uncertainty about the multinomial distribution 
parameter I  are described by sets of Dirichlet distributions, and inferences 
about events are summarized by lower and upper probabilities which 
depend on the choice of a hyperparameter s . The hyperparameter 
determines how quickly upper and lower probabilities of events converge 
as statistical data accumulate. There are several arguments [ 145] in favour 
of . The IDM avoids some shortcomings of alternative objective 
models, either frequentist or Bayesian. Coolen [ 27] presented a 
generalization of the IDM, suitable for lifetime data including right-
censored observations, which are common in reliability theory and 
survival analysis. The resulting imprecise inferences typically encompass 
frequentist results for the same setting. For statistical inference on interval-
valued data, Utkin [ 116, 119] considered a set of IDMs produced by these 
data. The set of IDMs in this case does not require to divide the time-axis 
into a number of intervals for constructing the multinomial model. These 
intervals are produced by bounds of interval-valued data. The following 
example illustrates the above. Suppose that we observe 

1 s� � 2

5N �  intervals of 
TTF , , 1 [10,14]A � 2 [12,16]A � 3 [9,11]A � , 4 [12,14]A � , 5 [13, )A � 3 . 
Then the lower and upper probabilities of an arbitrary interval A  are of the 
form:  

: :1 1
( | ) , ( | ) .i ii A A i A A s

P A s P A s
N s N s

8 d Pa �� �
� �

� �
 

Let  and . Then [0,14]A � 1s � ([0,14] |1) 3/ 6P � , ([0,14] |1) 1P � . It 
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can be seen from the above expressions that the lower and upper 
probabilities do not depend on the division of the time-axis into intervals 
and right-censored observations ( ) can be analyzed by the set of IDMs. 5A

Quaeghebeur and de Cooman [ 88] applied the main ideas underlying the 
IDM to all distributions belonging to the exponential family, and 
constructed similar imprecise probability models for sampling from these 
distributions. Although the IDM has been established as an attractive 
model for statistical inference using imprecise probabilities, in reliability 
and other application areas, it has several serious shortcomings that were 
raised both by Walley himself in the paper introducing the IDM and by 
several discussion contributors to this paper [ 145]. These shortcomings 
were mostly apparent in situations where one has few observations, as is 
regularly the case in reliability problems. Recently, Coolen and Augustin 
[ 31] presented an alternative imprecise probability model for inference in 
case of multinomial data, which overcomes the reported shortcomings of 
the IDM. Applications of this model to reliability problems have not yet 
been presented. 

Walley [ 145] proposed a bounded derivative model for statistical 
inference about a real-valued parameter in problems where there is little or 
no prior information. Prior ignorance about the parameter is modelled by a 
set of all continuous probability density functions for which the derivative 
of the log-density is bounded by a positive constant. This is also a 
promising model, which as far as we are aware has not yet been applied to 
reliability problems. 

For restricting to a set of possible distribution functions of TTF, and for 
formalizing judgements about the ageing aspects of lifetime distributions, 
various nonparametric or semi-parametric classes of probability 
distributions can be used. In particular, the classes of all IFRA (increasing 
failure rate average) and DFRA (decreasing failure rate average) 
distributions have been studied by Barlow and Proschan [ 8]. In order to 
formalize judgements about the ageing aspects of lifetime distributions, 
new flexible classes of distributions, denoted as  ( , )r sH classes 
[ 64, 131, 132, 134], have been proposed and investigated. The probability 
distribution of the component (or system) lifetime X  can be written as 

, where  and ( ) Pr( ) exp( ( ))H t X t t� � � �E 0( ) ( )tt x=E � K dx ( )t=  is the 

time-dependent failure rate, also known as the hazard rate. Let  and r s  be 
numbers such that 0 . A probability distribution belongs to a 
class  with parameters  and 

r s� � � �3
( , )r sH r s  if  increases and ( ) / rt tE ( ) / st tE  

decreases as  increases. In particular, t (1, )�3H  is the class of all IFRA 
distributions;  with 1( , )r sH r s� ?  is the class of all IFRA distributions 
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whose failure rate increases with rate bounded by  and r s ;  is the 
class of all DFRA distributions;  with 

(0,1)H

( , )r sH 1r s? �  is the class of all 
DFRA distributions whose failure rate decreases with rate bounded by r  
and s ; and ,  is a class containing distributions whose 
failure rate is non-monotone. Inferences for such classes, and solutions to 
corresponding computational problems, were presented by Utkin and 
others in the papers referred to above. To make these promising 
distributional classes available for imprecise reliability analysis in practice, 
a number of interesting research problems are still open, including the 
important question of how to fit such classes to available data. 

( , )r sH 1r ? ? s

From statistical perspective, imprecise probability enables inferential 
methods based on relatively few mathematical assumptions, in particular 
in situations where data are available. During the last decade, Coolen, with 
a number of co-authors, has developed nonparametric predictive inference 
(NPI), where inferences are directly on future observable random 
quantities, e.g. the random time to failure of the next system. In this 
approach, imprecision depends in an intuitively logical way on the 
available data, as it decreases if information is added, yet aspects as 
censoring or grouping of data result in an increase of imprecision. 
Foundations of NPI, including proofs of its consistency in theory of 
interval probability, are presented by Augustin and Coolen [ 4]. An 
introduction to NPI in reliability is presented in [ 34], and theory for 
dealing with right-censored observations in NPI in [ 41], with applications 
to some specific reliability problems presented in [ 39, 40]. This framework 
is also suitable for guidance on high reliability demonstration, answering 
the important question of how many failure-free observations are required 
in order to accept a system in a critical operation [ 32]. The fact that, in 
such situations, imprecise reliability theory allows decisions to be based on 
the more pessimistic one of the lower and upper probabilities, e.g. lower 
probability of failure-free operation over a period of specified length, is an 
intuitively attractive manner for dealing with indeterminacy. Recently, 
Coolen also considered probability safety assessment from similar 
perspective [ 30]. 

In early work, Coolen and Newby [ 38] showed how NPI can also be 
applied for support of replacement decisions for technical systems, which 
is often a core reliability activity. Along such lines, Coolen-Schrijner and 
Coolen [ 32, 42, 43, 44, 45] investigated NPI-based alternatives to established 
replacement strategies based on the length of time a system has been in 
operation. These methods are fully adaptive to available failure data, and 
imprecision is reflected in bounds of cost functions. In addition, their 
results provide clear insights into the influence of a variety of assumptions 
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which are often used for the more established methods, and which may 
frequently be rather unrealistic if considered in detail. Hence, the fact that 
their NPI-based method can do without most of such assumptions and still 
be useful under quite a reasonable data requirement is interesting, and 
suggests that further development of NPI-based methods for imprecise 
reliability is an interesting topic of research. 

Natural extension is a powerful tool for analyzing the system reliability on 
the basis of available partial information about the component reliability. 
However, it has a disadvantage. Let us imagine that two experts provide 
the following judgements about the MTTF of a component: (1) MTTF is 
not greater than 10 hours; (2) MTTF is not less than 10 hours. The natural 
extension produces the resulting MTTF [0,10] [10, ) 10d 3 � . In other 
words, the absolutely precise MTTF is obtained from extremely imprecise 
initial data. This is unrealistic in the practice of reliability analysis. The 
reason of such results is that probabilities of judgements are assumed to be 
1. If we assign some different probabilities to judgements, then we obtain 
more realistic assessments. For example, if the belief to each judgement is 
0.5, then, according to [ 73], the resulting MTTF is greater than 5 hours. 
Let us consider another example. Suppose that many experts, say 1000, 
provide the same interval for some probability of failure, say [0.9, 0.99] 
and one expert provides the interval [0, 0.89]. Clearly, these judgements 
are conflicting and the set of probability distributions produced by these 
intervals is empty. As a result, we can not use the natural extension. Of 
course, we can use the so called unanimity rule defined as the envelope of 
the expert previsions [ 97], which is guaranteed to exist, but leads to 
extremely imprecise results (in the considered example, the resulting 
interval is [0, 0.99]). On the other hand, it is intuitively obvious that our 
belief to the judgement supplied by the last expert is rather low in 
comparison with our belief to the judgement provided by 1000 experts, 
and the unreliable judgement could be removed from consideration. One 
might say that this example is highly artificial. Of course, the example is 
given here only for illustration purposes. However, what to do if only 2 
experts instead of 1000 provide the interval [0.9, 0.99] and one expert 
provides the interval [0, 0.99]. In this case, it is difficult to remove the 
contradictory interval. Of course, the inconsistency of the assessments in 
this artificial example were trivial, but in practice, with a variety of 
assessments on possibly different random variables, it may actually be 

10.5 Second-order Reliability Models 
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difficult to discover whether or not the assessments are inconsistent, 
providing a further difficulty. However, in case of precise judgements, it is 
extremely unlikely that different assessments, even when made by a single 
expert, are consistent, so the generalization to interval reliability offers 
powerful methods for checking and dealing with realistic uncertainty 
judgements. 

The above examples imply that in order to obtain accurate and realistic 
system reliability assessments it is necessary to take into account some 
vagueness of information about the component reliability measures, i.e., to 
assume that expert judgements and statistical information about reliability 
of a system or its components may be unreliable. one possible solution is 
the use of second-order uncertainty models, also known as hierarchical 
uncertainty models, on which much attention has been focused in recent 
years, particularly in the statistics literature. These models describe the 
uncertainty of a random quantity by means of two levels. For example, 
suppose that an expert provides a judgement about the mean level of 
component performance [ 131]. If this expert sometimes provides incorrect 
judgements, we have to take into account some degree of belief to this 
judgement. In this case, the information about the mean level of 
component performance can be considered on the first level of the 
hierarchical model (first-order information) and the degree of belief to the 
expert judgements is considered on the second level (second-order 
information). Many papers are devoted to the theoretical [ 62, 81, 147] and 
practical [ 58, 82] aspects of second-order uncertainty models. Lindqvist 
and Langseth [ 79] investigated monotone multi-state systems under the 
assumption that probabilities of the component states (first-order 
probabilities) can be regarded as random variables governed by the 
Dirichlet probability distribution (second-order probabilities). A 
comprehensive review of hierarchical models is given in [ 49], where it is 
argued that Bayesian hierarchical models are most common [ 61]. 
However, the use of Bayesian hierarchical models may be unrealistic in 
problems where only partial information is available about the system 
behavior. 

Troffaes and de Cooman [ 97] specify and discuss two general ways for 
approaching the problem of aggregating expert opinions: axiomatic and ad 
hoc. Axiomatic approaches aim at deriving a preferably unique rule of 
aggregation from axioms or properties that this rule should satisfy. Ad hoc 
approaches are not as much concerned with axioms: one simply proposes 
or derives a mathematical formula, together with some form of 
justification. Both approaches have shortcomings and virtues, but 
axiomatic ones can be justified for various applications and initial data, 
whereas ad hoc approaches depend on specific applications and data. 
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Various methods of the pooling of assessments, taking into account the 
quality of experts, are available in the literature [ 23, 57, 80]. These methods 
use the concept of precise probabilities for modelling uncertainty, and the 
quality of experts is modelled by means of weights assigned to each expert 
in accordance with some rules. It should be noted that most of these rules 
use some available information about correctness of previous expert 
opinions. This might meet several difficulties. First, the behavior of 
experts is unstable, i.e., exact judgements related to a system elicited from 
an expert do not mean that this expert will provide results of the same 
quality for new systems. Second, when experts provide imprecise values of 
an evaluated quantity, the weighted rules can lead to controversial results. 
For instance, if an expert with a small weight, say 0.1, provides a very 
large interval, say [0, 10], for a quantity (covering its sample space), it is 
obvious that this expert is too cautious and the interval he supplies is non-
informative, although this interval covers a true value of the quantity. On 
the other hand, if an expert with a large weight, say 0.9, supplies a very 
narrow interval, say [5, 5.01], the probability that true value of the quantity 
lies in this interval is rather small. We can see that the values of weights 
contradict with the probabilities of provided intervals. It should be noted 
that sometimes we do not know anything about the quality of experts, and 
assignment of weights might meet some psychological difficulties. This 
implies that weights for experts as measures of the quality of their 
expertise should not normally be interpreted as measures of the quality of 
provided opinions [ 113, 116, 119]. 

Most axiomatic second-order uncertainty models assume that there is a 
precise second-order probability distribution (or possibility distribution). 
Moreover, most models use precise probabilities for the first-level 
uncertainty quantification. Unfortunately, such information is often absent 
in many applications and additional assumptions may lead to some 
inaccuracy in results. A study of some tasks related to the homogeneous 
second-order models without any assumptions about probability 
distributions has been presented by Kozine and Utkin [ 73, 75]. However, 
these models are of limited use due to homogeneity of gambles considered 
on the first-order level. A hierarchical uncertainty model for combining 
different types of evidence was proposed by Utkin [ 103, 109], where the 
second-order probabilities can be regarded as confidence weights and the 
first-order uncertainty is modelled by lower and upper previsions of 
different gambles. However, the proposed model [ 103, 109] supposes that 
the second-order initial information is analyzed only for one random 
variable. At the same time, the reliability applications suppose that there is 
a set of random variables (component TTFs) described by a second-order 
uncertainty model, and it is necessary to find a model for some function of 
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these variables (system TTF). Suppose that we have a set of weighted 
expert judgements related to some measures ( )ij if XE  of the component 

reliability behavior, , 1,...,i n� 1,..., ij m� , i.e., there are lower and upper 

previsions ijfE  and ijfE . Here  is the number of components,  is the 

number of judgements that are related to the i-th component. Suppose that 
each expert is characterized by an interval of probabilities 

n im

[ , ]ijij

 
 . Then 

the judgements can be represented as  

) *Pr [ , ], , .ij ij ij iijij
f f f i n j m
 
� � 	 � �E E E  

Here the set { ,ij ij}f fE E  contains the first-order previsions, the set { , }ijij

 
  

contains the second-order probabilities. Our aim is to produce new 
judgements which can be regarded as combinations of available ones. In 
other words, the following tasks can be solved: 
1) Computing the probability bounds [ , ]
 
  for some new interval 

[ , ]g gE E  of the system linear prevision gE . 

2) Computing an average interval [ , ]g gEE EE  for the system linear 
prevision gE  (reduction of the second-order model to first-order one). 

An imprecise hierarchical reliability model of systems has been studied 
by Utkin [ 111]. This model supposes that there is no information about 
independence of components. A model taking into account the possible 
independence of components leads to complex non-linear optimization 
problems. However, this difficulty can be overcome by means of 
approaches proposed in [ 112, 121]. Some hierarchical models of reliability 
taking into account the imprecision of parameters of known lifetime 
distributions are investigated in [ 118, 120]. 

A system is called monotone if it does not become better by a failure of 
one or more components. Various results have been obtained for 
computing imprecise reliability measures of typical monotone systems 
based on some particular types of initial information. 

Some results concerning the reliability of typical systems are given in 
[ 70, 71]. If initial information about reliability of components is restricted 
by lower and upper MTTFs, then the lower and upper system MTTFs have 
been obtained in explicit form for series and parallel systems [ 98, 128]. 

10.6 Reliability of Monotone Systems 
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The MTTFs of cold standby systems have been obtained by Utkin and 
Gurov [ 63, 133]. The cold standby systems do not belong to a class of 
monotone systems. Nevertheless, we consider these systems as typical 
ones. It is worth noticing that expressions in the explicit form have been 
derived for the cases of independent components and complete lack of 
information about independence. 

Suppose that the probability distribution functions of the component 
TTFs iX  are known only at some points , i.e., the available initial 

information is represented in the form of lower 

ijt

[0, ]( )
ijt iI XE  and upper 

[0, ]( )
ijt iI XE  previsions, , 1,...,i n� 1,..., ij m� . Here  is the -th point of 

the -th component TTF. Explicit expressions for lower and upper 
probabilities of the system failures before some time  have been obtained 
for series, parallel [ 114], 

ijt j

i
t

m-out-of-n [ 117], cold standby [ 108] systems. For 
example, the lower and upper probabilities of the -component parallel 
system failure before time t , for independent components, are  

n

. /[0, ] [0, ]
1,...,

1

max ( ),
iwi

n

t i t
i n

i

I X I
�

�

��E E iX  

. /[0, ] [0, ]
1,...,

1

max ( ),
ivi

n

t i t
i n

i

I X I
�

�

��E E iX  

and, in case of complete lack of knowledge about independence,  

. /[0, ] [0, ]
1,..., 1,...,

max max ( ),
iwi

t i t
i n i n

I X I
� �

�E E iX  

. /[0, ] [0, ]
1,...,

1

max min 1, ( ) ,
ivi

n

t i t i
i n

i

I X I X
�

�

� �
� � �

� �
�E E  

where  and min{ : }i iv j t� �j t j tmax{ : }i iw j t� � . 

General expressions for the reliability of arbitrary monotone systems 
under the same conditions are given by Utkin [ 110]. Moreover, it is proved 
that the lower (upper) bound for the system reliability of arbitrary 
monotone systems by given lower and upper points of probability 
distributions of the component TTFs depends only on these upper (lower) 
points. This result allows us to simplify the system reliability analysis. 

It is interesting to study a case when the initial information about 
reliability of components is given in the form:  

Pr{ } , 1,..., , 1,..., ,ijij i iijij
p X p i n j� �� � � � � � m  

where  

1 21 2[ , ] [ , ] ... [ , ], 1,..., .ii
i i imi i im i n� � � � � �G G G �  
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So there are nested intervals [ , ]ijij� � , with interval probabilities 

[ , ijij
]p p  for the event that the failure of the -th component is inside these 

intervals. If we denote 

i

max{ : }ijiv j t�� �  and max{ : }ijiw j � t� � , 

then the lower and upper probabilities, for instance, of the n -component 
series system failure before time t, under the assumption of independent 
components, are  

. /[0, ] 1,...,
1

min 1 (1 ),
i

n

t i iwi n
i

I X p
�

�

� � ��E  

. /[0, ] 1,...,
1

min 1 .
i

n

t i ivi n
i

I X
�

�

� ��E p  

If there is no information about independence, then  

. /[0, ] 1,..., 1,...,
min max ,

i
t i iwi n i n

I X
� �

�E p  

. /[0, ] 1,...,
1

min 1 max 0, ( 1) .
i

n

t i ivi n
i

I X p n
�

�

� �
� � � �� �

� �
�E  

It can be seen that the lower and upper bounds for the system 
unreliability depend only on the lower probabilities of the nested intervals. 
This implies that knowledge of upper probabilities does not give any 
useful information in this case. The same is valid for arbitrary monotone 
systems. Moreover, the initial information can be regarded as the 
possibility and necessity measures [ 51]. It is proved that the system 
reliability measures [0, ]( )tI �E  and [0, ] ( )tI �E  also can be regarded as the 

possibility and necessity measures. This result allows us to obtain and to 
explain the reliability measures of systems by fuzzy initial data. 

The reliability behavior of many system can be formalized by means of 
multi-state and continuum-state models which can be viewed as an 
extension of binary-state models [  78]. Let  be a set representing levels of 
component performance ranging from perfect functioning, , to 
complete failure, 

L
sup L

inf L . A general model of the structure function of a 
system consisting of  multi-state components can be written as 

. If , we have a classical 
n

: nS L L- {0,1}L � binary system; if 

, we have a {0,1, , }L � � m multi-state system; if [0, ]L T� , T �	R , we 

10.7 Multi-state and Continuum-state Systems 
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have a continuum system. The -th component may be in a state i ( )ix t  at 
arbitrary time . This implies that the component is described by the 
random process { , 

t
( ), 0}iX t t � ( )iX t L	 . Then the probability distribution 

function of the -th component states at time  is defined as the mapping 
 such that 
i t

: [0,iF L - 1] ( , ) Pr{ ( ) }i iF r t X t r� � , r L
 	 . The state of the 
system at time  is determined by states of its  components, i.e., 

  
t n

1( ) ( , , ) .nS S X X� 	X � L

The mean level of component performance is defined as { ( )}iX tE . For 
a system, we write the mean level of system performance . 
Suppose that probability distributions of the component states are 
unknown and we have only partial information in the form of lower 

{ ( )}SE X

{ ( )}iX tE  and upper { ( )}iX tE  mean levels of component performance. It 
is proved by Utkin and Gurov [ 131], that the number of states in this case 
does not influence on the mean level of system performance which is 
defined only by boundary states inf L  and . This implies that 
reliability analysis of multi-state and continuum-state systems by such 
initial data is reduced to analysis of a binary system. A number of 
expressions for these systems have been obtained in explicit form [ 131]. 

sup L

At the same time, incomplete information about reliability of the multi-
state and continuum-state components can be represented as a set of 
reliability measures (precise or imprecise) defined for different time 
moments. For example, interval probabilities of some states of a multi-
state unit at time  may be known. How to compute the probabilities of 

states at time  without any information about the probability distribution 
of time to transitions between states? This problem has been solved by 
using the imprecise probabilities models [ 139]. 

1t

2t

Fault tree analysis (FTA) is a logical and diagrammatic method to 
evaluate the probability of an accident resulting from sequences and 
combinations of faults and failure events. Fault tree analysis can be 
regarded as a special case of event tree analysis. A comprehensive study of 
event trees by representing initial information in the framework of convex 
sets of probabilities has been proposed by Cano and Moral [ 22]. Therefore, 
this work may be a basis for investigating fault trees. One of the 
advantages of imprecise fault tree analysis is a possibility to consider 

10.8  Fault Tree Analysis 
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dependent events in a straightforward way, although complete lack of 
knowledge about the level of dependence is likely to lead to too much 
imprecision for practical use of such methods. However, the influence of 
any additional assumptions about dependence will then easily show in the 
final results, which in itself may provide valuable information, as well as 
guidance on the information requirement for practically useful 
conclusions. 

Other substantial topics include the influence of events in a fault tree on 
a top event, and the influence of uncertainty of the event description on 
uncertainty of the top event description. This may be done by introducing 
and computing importance measures of events and uncertainty importance 
measures of their description. However, we are not aware of any reported 
study on this topic within the framework of interval reliability, which 
clearly suggests an important area of research. 

Reliability analysis of repairable systems often involves difficult 
computational tasks, even when based on precise initial information. In 
addition, such analyses tend to require a substantial information input, 
often not in line with practical experience as many state descriptors are 
typically not observable or directly measurable without serious effort, if at 
all. A simple repairable process with instantaneous repair (the time to 
repair (TTR) is equal to 0), and under complete lack of information about 
dependence of random TTFs iX , has been studied in [ 133]. According to 
this work, if the lower and upper MTTFs of a system are known, then the 

time-dependent lower ( )B t  and upper ( )B t  mean time between failures 

(MTBF) before time  are t ( ) 0B t � ,  

1
1

1
( ) min min , .

1

k

k
i

t k X t k X
B t X

i k k� ?�3
�

� �� �� �
� �� �� �� ��� �� �

� E E
E  

These bounds are of limited interest because ( ) 0B t �  and ( )B t  becomes 

very large for large values of  (with t ( )B t - 3  for ), due to the 
lack of information about dependence. 

t - 3

Another basic and interesting model for repairable systems, based on 
interval-valued Markov chains, has been considered by Kozine and Utkin 
[ 72, 74]. Some results on optimal preventive maintenance under incomplete 
information are presented in [ 10]. Useful preventive replacement 
guidelines for situations where failure data are available are presented 

10.9  Repairable Systems 
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within the NPI framework, as discussed in Sec. Imprecise probability 
models for inference. A quite general approach for reliability analysis of 
repairable systems, proposed by Gurov and Utkin, is to substitute the 
optimal density functions of TTF and time to repair, which are weighted 
sums of Dirac functions [ 138], into integral equations modelling arbitrary 
repairable systems, and to solve the obtained optimization problems. Let 
us illustrate this approach for computing the lower and upper probabilities 
of the working state at time  (the time-dependent availability) under 
condition that the distributions of TTF and TTR are unknown and only the 
precise MTTF, denoted , and the precise 

t

a mean time to repair, denoted 
, are specified. For the component, the following system of integral 

equations holds:  
b

0 10

1 00

( , ) ( ) (0, ) ( )
.

( , ) ( ) (0, )

t

t

y s t f x s y t x x f t s

y t g x y t x x� �

� � � � � �K�
�

� � �K��

d

d
 

Here ( )f x  and ( )g x  are unknown densities of the TTF and TTR such that 

0 ( )xf x x a3 �K d  and 0 ( )xg x x b3 �K d . The probability of the working state 

0( )p t  at time  is computed as  t

0 00
( ) ( , ) .p t y s t

3
� K ds  

The optimal densities ( )of x  and  are in the classes of densities of 
the form (the weighted sums of Dirac functions 

( )og x
( )x cQ � , see Sec. System 

reliability analysis): 

2 1
1 2

2 1 2 1

( ) ( ) ( ),o

x a a x
f x x x x

x x x x
Q Q� �

� � � �
� �

x  

2 1
1 2

2 1 2 1

( ) ( ) ( ).o

z b b z
g x x z x z

z z z z
Q Q� �

� � �
� �

�  

Here  are optimization variables. Then the lower (upper) 

bound for 
1 2 1 2, , ,x x z z �	R

0( )p t  is computed by minimizing (maximizing) 0( )p t  over all 

possible values of 1 2 1 2, , ,x x z z  after substituting the densities ( )of x  and 

 into integral equations. ( )og x
Although it is possible, in principle, to analyze arbitrary systems in this 

manner, this approach requires extremely complex non-linear optimization 
problems. An efficient and practical approach for imprecise reliability 
analysis of repairable systems remains an open problem. 
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A probabilistic model of structural reliability and safety has been 
introduced by Freudenthal [ 56]. Following his work, a number of studies 
have been carried out to compute the probability of failure under different 
assumptions about initial information. The problem of structural reliability 
can be stated as follows. Let Y  represent a random variable describing the 
strength of a system and let X  represent a random variable describing the 
stress or load placed on the system. By assuming that X  and Y  are 
defined on X  and , respectively, system failure occurs when the stress 
on the system exceeds the strength of the system: 

Y

{( , ) : }x y x@ � 	 	 �X Y y . Here @  is a region where the combination of 
system parameters leads to an unacceptable or unsafe system response. 
Then the reliability of the system is determined as ) *PrR X Y� � , and the 

unreliability is determined as ) *Pr 1Q X Y R� � � � . 

Uncertainty of parameters in engineering design was successfully 
modelled by means of interval analysis [ 84]. Several authors [ 7, 85] used 
fuzzy set and possibility theories to cope with a lack of complete statistical 
information about stress and strength. The main idea of their approaches is 
to consider the stress and strength as fuzzy variables or fuzzy random 
variables. Another approach to structural reliability analysis based on 
using random set and evidence theories has been proposed by several 
authors [ 6, 65, 92]. Several solutions to structural problems by means of 
random set theory have been presented in [ 93, 94, 95]. 

A more general approach to structural reliability analysis using 
imprecise probabilities was proposed by Utkin and Kozine [ 140, 141]. This 
approach allows us to utilize a wider class of partial information about 
structural parameters, which includes possible data about probabilities of 
arbitrary events, expectations of the random stress and strength and their 
functions. At the same time, this approach allows us to avoid additional 
assumptions about probability distributions of the random parameters 
because the identification of precise probability distributions requires more 
information than what experts or limited statistical data are able to supply. 

For example, if interval-valued probabilities 
Pr{ } , Pr{ } ,i ji ji j

p X p q Y� �� � � � � � q  

of the stress X  and strength Y  are known at points i� , 1,...,i n� , and 

j� , , then the interval-valued stress-strength reliability, based 

on complete lack of information about dependence of 

1,...,j � m

X  and Y , is  

10.10 Structural Reliability 
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Utkin [ 112] investigated stress-strength reliability analysis based on 
unreliable information about statistical parameters of stress and strength in 
the form of a second-order hierarchical uncertainty model. However, there 
are cases when properties of probability distributions of the stress and 
strength are known, for example, from their physical nature, but some 
parameters of the distributions must be assigned by experts. If experts 
provide intervals of possible parameter values, and these experts are 
considered to be absolutely reliable, then the problem of structural 
reliability analysis is solved by standard interval arithmetic. Often, 
however, it will be necessary to take into account the available information 
about the quality of experts, to obtain more credible assessments of the 
stress-strength reliability. An approach for computing the stress-strength 
reliability under these conditions is considered in [ 118]. 

Software reliability has been studied extensively in the literature with the 
objective of improving software performance [ 19, 90, 151]. In the last 
decades, various software reliability growth models have been developed 
based on testing or debugging processes, but no model can be accurate for 
all situations. This fact is due to the unrealistic assumptions in each model. 
A comprehensive critical review on probabilistic software reliability 
models (PSRMs) was proposed by Cai et al [ 20]. Authors argued that 
fuzzy software reliability models (FSRMs) should be developed in place of 
PSRMs because the software reliability behavior is fuzzy in nature as a 
result of the uniqueness of software. This point is explained in three ways. 
First, any two copies of software exhibit no differences. Second, software 
never experiences performance deterioration without external intervention. 
Third, a software debugging process is never replicated. Due to the 
uniqueness of software and the environment of its use, frequentist 

10.11 Software Reliability  
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statistical methods are rarely suitable for software reliability inferences. In 
addition, a large variety of factors contribute to the lack of success of 
existing PSRMs. To predict software reliability from debugging data, it is 
necessary to simultaneously take into account the test cases, characteristics 
of software, human intervention, and debugging data. It is impossible to 
model all four aspects precisely because of the extremely high complexity 
behind them [ 20]. 

To take into account the problems described above, Cai et al [ 21] 
proposed a simple FSRM and validated it. Central in this FSRM are the 
random time intervals between software failures, which are considered to 
be fuzzy variables governed by membership functions. Extensions of Cai's 
FSRMs taking into account the programmer's behavior (possibility of error 
removal and introduction) and combined fuzzy-probabilistic models have 
been investigated by Utkin et al [ 135]. 

Available PSRMs and FSRMs can be incorporated into more general 
imprecise software reliability models (ISRMs) [ 105], by application of the 
theory of imprecise probabilities. A family of non-countably many 
probability distributions constrained by some lower and upper distributions 
is constructed and analyzed in the ISRM. Let iX  be the random time 
interval between the -th and i-th software failures. It is supposed that 

there exist lower  and upper 

( 1)i �

( | )i iP x I  probability distributions of the 

random variable iX  with parameters iI  and these distributions produce a 

set  of distributions such that iR ( | ) min ( )
ii i iP x P xI � R , 

( | ) max ( )
i

i iP x P xI � R i . Let ) *1,..., nx x  be the successive intervals 

between failures. It is assumed that ( , )i f iI I� , where f  is some 
function characterizing the software reliability growth. The main aim is to 
find the function ( )f i  and its parameters I . It is proved that the 
maximum of the likelihood function by the lack of information about 
independence of random times between software failures is determined as 
follows:  

) *
1 2

1 1,...,...
max max ( ,..., | ) max min ( | ) ( | ) .

n

i in i
i n

L x x P x P x
I I iI I I

�B B B
� �

R R R
 

If random variables are independent, then  

) *
1 2

1
...

1

max max ( ,..., | ) max ( | ) ( | ) .
n

n

i in i
i

L x x P x P x
I I iI I I
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It is also proved that in the case of right-censoring times for software 
failures the upper probabilities in the above expressions are replaced by 1 . 

ISRMs can be regarded as a generalization of the well known 
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probabilistic and possibilistic models. Moreover, they allow us to explain 
some peculiarities of known models, for example, taking into account the 
condition of independence of times to software failures, which are often 
hidden or can be explained intuitively. For example, the ISRM explains 
why FSRMs, as stated in [ 20], allow us to take into account a lot of factors 
influencing the software reliability. At the same time, PSRMs and FSRMs 
can be regarded as some boundary cases. Indeed, too rigid and often 
unrealistic assumptions are introduced in PSRMs, namely, times to 
software failure are independent and governed by a certain distribution. In 
FSRMs, it is assumed that the widest class of possible distributions of 
times to software failure is considered and there is no information about 

independence. It is obvious that the functions ( )iP x , ( )iP x  in the ISRM 
cannot be chosen arbitrarily because maximization of ( | )L I�  over 

parameters I  would give ( ) 1iP x � , ( ) 0iP x � . This implies that the 

functions ( )iP x , ( )iP x  must be constrained. For example, they may be 
connected by means of common parameters. Another possibility is to 

restrict the degree of imprecision ) *max ( ) ( )i ix P x P x <� � . It should be 

noted that such constraints can also be used to arrive again at the PSRM 

and the FSRM. The PSRM assumes ( ) ( )i iP x P x�  and 0< � . In the 
FSRM, we have identical parameters I  for lower and upper distributions. 

Although quantification of software reliability metrics can provide 
useful insights into both the likely software performance and the quality of 
its development, uptake of such mathematical models has remained 
limited. This is mostly due to the crucial practical circumstances under 
which software developers and testers operate, typically with short turn-
around times and huge time pressures. In addition, many models which 
have been suggested for supporting their activities, are based on unrealistic 
assumptions, e.g. independence assumptions underlying partition testing. 
Rees et al. [ 86] and Coolen et al. [ 36] have described such practical 
circumstances in detail, and report on a method employing Bayesian 
graphical models to support software testing of large-scale systems that 
require high reliability, with complex tasks and huge time pressures, 
technical details of the statistical aspects are described in [ 150]. This 
approach is fully subjective, with the testers' activities central to the model. 
As such, building the models requires substantial subjective inputs, which 
provides a bottle-neck to wide-scale practical application due to the 
enormous time pressures. So far, case studies have used a variety of 
methods to limit the elicitation effort, and the effect of assumptions has 
been studied by sensitivity analyses. It is recognized that imprecise 



Imprecise Reliability: An Introductory Overview      291 

probabilistic methods can offer much benefit to this approach in future, 
putting less pressure on experts to provide reasonably coherent information 
on very many variables. In addition, the effects of differing levels of 
imprecision, at different input places of the models, on the overall test 
strategies that result from such exercises, can be studied in order to decide 
where best to focus detailed elicitation effort. This is an exciting area of 
future research, requiring algorithms for manipulating Bayesian graphical 
models with imprecise probabilities. Although research on this latter issue 
has been ongoing in the statistical and computer science literatures for 
several years, it is not yet at the stage that it can be implemented to 
realistic large-scale software reliability models, due to the often complex 
dependence structures in these models. A possible way around this 
problem might be the use of Bayes linear methods [ 59], where useful in 
combination with full Bayesian models, to model complex dependence 
structures. This would have the benefit of the fact that previsions, the core 
concept in Bayes linear methods, are linear functionals, which would make 
inclusion of imprecision more straightforward, both in principle and from 
computational perspective. Coolen et al [ 35] present a first approach for 
such Bayes linear modelling for software reliability, Goldstein and Shaw 
[ 60] have shown how Bayes linear and Bayesian methods can be 
combined. Generalizing these approaches to include imprecision, hence 
further reducing elicitation effort and more clearly reporting levels of 
indeterminacy, is also an exciting topic for future research. 

Human reliability [ 66, 67] is defined as the probability for a human 
operator to perform correctly required tasks in required conditions and not 
to assume tasks which may degrade the controlled system. Human 
reliability analysis aims at assessing this probability. Fuzzy or possibilistic 
descriptions of human reliability behavior are presented in [ 83]. Human 
behaviour has been described also by means of evidence theory [ 91]. Cai 
[ 18] noted the following factors of human reliability behavior contributing 
to the fuzziness: 
1) inability to acquire and process an adequate amount of information 

about systems; 
2) vagueness of the relationship between people and working 

environments; 
3) vagueness of human thought process; 
4) human reliability behavior is unstable and vague in nature because it 

10.12 Human Reliability 
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depends on human competence, activities, and experience. 
These factors can also be addressed via imprecision, so imprecise 

probability theory might be successfully applied to human reliability 
analysis. Moreover, the behavioural interpretation of lower and upper 
previsions may well be suitable for describing human behavior. However, 
we are not aware of any research reported on imprecise human reliability, 
suggesting another stream of interesting research topics. 

Risk of an unwanted event happening is often defined as the product of the 
probability of the occurrence of this event multiplied by its consequences, 
assuming that these consequences can be combined into a simple metric. 
The consequences may include financial cost, elapsed time, etc. One of the 
main objectives of performing risk analyses is to support decision-making 
processes. Risk analysis provides a basis for comparing alternative 
concepts, actions or system configurations under uncertainty [ 5, 11]. A 
variety of methods has been developed for estimating losses and risks. 
When events occur frequently and when they are not very severe, it is 
relatively simple to estimate the risk exposure of an organization, as well 
as a reasonable premium when, for instance, an insurance transaction is 
made [ 53]. Commonly used methods rely on variations of the principle of 
maximizing expected utility, tacitly assuming that all underlying 
uncertainty can adequately be described by a precise and completely 
known probability measure. However, when the uncertainty is complex 
and the quality of the estimates is poor, the customary use of such rules 
together with over-precise data could be harmful as well as misleading. 
Therefore, it is necessary to extend the principle of maximizing expected 
utility to deal with complex uncertainty. Imprecise probability theory 
provides an efficient way for realizing such an extension. 

The imprecision of information about unwanted events leads to 
consideration of minimal and maximal values of risk, which can be 
regarded as lower and upper previsions of consequences whose 
computation by complex events is studied in [ 101]. Some methods of 
handling partial information in risk analysis have been investigated by 
several authors [ 53, 54]. Risk analysis under hierarchical imprecise 
uncertainty models has been studied by Utkin and Augustin [ 122], where 
two types of the second-order uncertainty models of states of nature are 
considered. The first type assumes that first-order uncertainty is modelled 
by lower and upper previsions of different gambles and the second-order 

10.13 Risk Analysis 
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probabilities can be regarded as confidence weights of judgements on the 
first-order level. The second type assumes that some aspects of the 
probability distribution of the states of nature is known, for example, from 
their physical nature, but (some) parameters of the probability distribution 
must be defined by experts, and there is some degree of our belief to each 
expert's judgement whose value is determined by experience and 
competence of the expert. New procedures for risk analysis under different 
conditions of partial information about states of nature in the framework of 
imprecise probabilities have been studied by Utkin and Augustin 
[ 123, 124, 125, 126]. 

In situations where risk can be assessed via experiments, with the 
emphasis on low risk situations where systems are only released for 
practical operation following a number of tests without failures, the NPI 
framework (see Sec. Imprecise probability models for inference) provides 
useful guidelines on required test effort, in particular via the use of lower 
probabilities of corresponding future successful operation, to take 
indeterminacy into account (`to err on the side of safety', so to say). Some 
initial results in this area have been presented [ 30, 33]. A further interesting 
topic, which has remained largely neglected as far as we are aware, is the 
fact that consequences, and their impact on life, are often not known in 
great detail. In particular where random features are studied with 
information occurring at different moments in time, it is natural to also 
take learning about such consequences and impacts into account. This also 
typically suggests that, at least at early stages (e.g. when designing a new 
chemical process), indeterminacy about such risks may well be modelled 
via imprecision, and it should be possible to take adaptive metrics for such 
risks into account. It is possible that the Bayesian adaptive utility 
framework [ 47], which was developed in the seventies within economics 
contexts, may provide an attractive solution to this problem. However, 
adaptive utility has not yet been generalized to allow imprecision, even 
more its uptake has been almost nonexistent, quite possibly due to both the 
computational complexities involved and the foundational aspects. Work 
in this direction has recently been initiated, and we hope to report on 
progress in the near future, where we will also particularly focus on 
applications in risk and reliability. 

Security engineering is concerned with whether a system can survive 
accidental or intentional attacks on it from outside (e.g. from users or virus 

10.14 Security Engineering 
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intruders). In particular, computer security deals with the social 
regulations, managerial procedures and technological safeguards applied to 
computer hardware, software and data, to assure against accidental or 
deliberate unauthorized access to, and dissemination of, computer system 
resources (hardware, software, data) while they are in storage, processing 
or communication [ 68]. An important problem in security engineering is 
the quantitative evaluation of security efficiency. An interesting and 
valuable approach to measuring and predicting the operational security of 
a system was proposed by Brocklehurst et al. [ 15]. According to this 
approach, the behavior of a system should be considered from owner's and 
attacker's points of view. From the attacker's point of view, it is necessary 
to consider the effort (E) expended by the attacking agent and the reward 
(R) an attacker would get from breaking into the system. Effort includes 
financial cost, elapsed time, experience, ability of attacker, and could be 
expressed in such terms as mean effort to next security breach, probability 
of successfully resisting an attack, etc. Examples of rewards are personal 
satisfaction, gain of money, etc. From the owner's point of view, it is 
necessary to consider the system owner's loss (L) which can be interpreted 
as an infimum selling price for a successful attack, and the owner's 
expenses (Z) on the security means which include, for instance, anti-virus 
programs, new passwords, encoding, etc. The expenses come out in terms 
of time used for system verification, for maintenance of anti-virus 
software, as well as in terms of money spent on the protection. The 
expenses can be interpreted as a supremum buying price for a successful 
attack. Brocklehurst et al. [ 15] proposed to consider also the viewpoint of 
an all-knowing, all-seeing oracle, as well as the owner and attacker. This 
viewpoint could be regarded as being in a sense the true security of the 
system in the testing environment. 

From the above, we can say that four variables are the base for obtaining 
security measures: effort, rewards, system owner's loss, owner's expenses. 
Moreover, their interpretation coincides with the behavioural interpretation 
of lower (expenses) and upper (system owner's loss) previsions and linear 
previsions (the all-knowing oracle). Therefore, imprecise probability 
theory provides an interesting and logical framework for quantifying such 
security measures [ 100, 142]. Because of the increasing importance of 
security engineering, this also provides exciting opportunities for (research 
into) theory and application of imprecise methods. 
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In recent years, many results have been presented which enable application 
of imprecise probability theory to reliability analyses of various systems, 
many of such results have been discussed here. Imprecise reliability theory 
is being developed step-by-step, mostly addressing problems from the 
existing reliability literature. However, the state-of-the-art is only a visible 
top of the iceberg called the imprecise reliability theory and there are many 
open theoretical and practical problems, which should be solved in future. 
Several exciting areas for future research have been indicated in the earlier 
sections, let us now say a bit more on this, and mention some further 
related topics of research. 

It is obvious that modern systems and equipment are characterized by 
complexity of structures and variety of initial information. This implies 
that, on the one hand, it is impossible to adjust all features of a real system 
to the considered framework. On the other hand, introduction of some 
additional assumptions for constructing a reasonable model of a system 
may cancel all advantages of imprecise probabilities. Where are limits for 
introducing additional assumptions (simplification) in construction of a 
model? How do possible changes of initial information and assumptions 
influence the results of system reliability calculations? It is obvious that 
such questions relate to the informational aspect of imprecise reliability. 
The same can be said about necessity of studying the effects of possible 
estimation errors of initial data on resulting reliability measures. This leads 
to introducing and determining uncertainty importance measures. 

Another important point is how to solve the optimization problems if the 
function  is not expressed analytically in explicit form and can be 
computed only numerically. For example, this function may be a system of 
integral equations (repairable system). One of the ways to solve the 
corresponding optimization problems is the well-known simulation 
technique. However, the development of effective simulation procedures 
for solving the considered optimization problems is an open problem. 

( ( ))h g X

Many results of imprecise reliability are based either on the assumption 
of independence of components, or complete lack of information about 
independence. However, the imprecise probability theory allows us to take 
into account more subtle types of dependence [ 46, 77] and, thereby, to 
make reliability analysis more flexible and adequate. Therefore, a clear 
interpretation and development of dependence concepts imprecise 
reliability theory is also an open problem, which has to be solved in future. 

In spite of the fact that many algorithms and methods for reliability 
analysis of various systems have been developed, they are rather 

10.15 Concluding Remarks and Open Problems 
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theoretical and cover some typical systems, typical initial evidence, and 
typical situations. At the same time, real systems are more complex. 
Therefore, practical approaches to analyze real systems by imprecise 
reliability methods have to be developed, which is likely to require 
development of appropriate approximate computational methods. 

In order to achieve a required level of system reliability by minimal 
costs, it is possible to include redundant components in systems. To 
optimize cost and reliability metrics, the number of redundant components 
in a system can be determined, together with optimal system structures. 
Various algorithms for determining the optimal number of redundant 
components are available in the literature. However, most results assume 
that there exists complete information about reliability. Therefore, the 
development of efficient algorithms of optimization by partial information 
is also an open problem. 

A similar problem is the product quality control which needs a trade-off 
between a better product quality and lower production costs by system 
constraints related to operating feasibility, product specifications, safety 
and environmental issues. Here results obtained by Augustin [ 2, 3], 
concerning decision making under partial information about probabilities 
of states of nature, and results by Quaeghebeur and de Cooman [ 87], 
extending some aspects of game theory, might be a basis for investigating 
this problem. Quality control, in particular the use of control charts, has 
also been considered within the nonparametric predictive inferential 
framework [ 1]. This is also an exciting research area with many open 
problems, and with imprecision appearing naturally related to limited 
information. Clearly, ensuring high quality output in production processes 
can greatly enhance reliability. Even earlier than that, reliability often 
depends on the actual design of components and systems. At such an early 
stage, modelling uncertainties via precise probabilities is often extremely 
restricted, in particular when the designs involve revolutionary products. 
This is another area where imprecise reliability theory may offer exciting 
opportunities. 

It should be noted that the list of open problems can be extended. 
However, most problems include at least some optimization problems 
(natural extension), which are often very complex. This may well be the 
reason why imprecise probability and reliability was not greatly developed 
earlier in the twentieth century. Nowadays, with the ever increasing 
computer power, complex optimization problems do not need to stop 
further development of appropriate methods for dealing with uncertainty, 
even though such problems still may need detailed consideration, and the 
need to develop approximate methods will remain. We believe that these 
are exciting times for imprecise reliability theory, as so much more can be 
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achieved now than before. Therefore, the time is also right to take on 
challenges of actual applications, with all careful modelling and complex 
computational aspects involved. We look forward to these challenges, and 
hope that many fellow researchers also take up some of these challenges. 
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The conventional reliability theory is built on the probability assumption 
and the binary-state assumption [1]. It has been successfully used for solv-
ing various reliability problems. However, it is not suitable when the fail-
ure probabilities concerned are very small (e.g., 10-7) or when there is a 
lack of sufficient data. As a result, researchers have been searching for 
new models and new reliability theories that overcome the shortcomings of 
the classical probabilistic definition of reliability. Among others, we men-
tion the works by Tanaka et al. [2], Singer [3], Onisawa [4], Cappelle and 
Kerre [5], Cremona and Gao [6], Utkin and Gurov [7], Cai et al [1, 8, 9], 
Huang [10-12], and Huang et al [13-18]. All these researchers have at-
tempted to define reliability in terms other than the probabilistic definition. 
The fuzzy set concept represents a new paradigm of accounting for uncer-
tainty. Two new assumptions in these definitions include the fuzzy-state 
assumption and the possibility assumption. The fuzzy state assumption in-
dicates that the state of a piece of equipment can be represented by a fuzzy 
variable. The possibility assumption indicates that the reliability of a piece 
of equipment needs to be measured subjectively. These two new assump-
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11.1 Introduction 



tions have been used in place of the conventional probability and the bi-
nary-state assumption. Considering these developments in the past 10 
years, we can divide the fuzzy reliability theory into the following three 
categories [19]: 

(1) The profust reliability theory: It is based on the probability assump-
tion and the fuzzy-state assumption. 

(2) The posbist reliability theory: It is based on the possibility assump-
tion and the binary-state assumption. 

(3) The posfust reliability theory: it is based on the possibility assump-
tion and the fuzzy-state assumption. 

For some systems, equipment, and components, it is very difficult to ob-
tain necessary statistical data for conventional reliability analysis [11]. In 
addition, the failure occurrence patterns do not follow the statistical behav-
ior of probability. In these situations, subjective evaluation of reliability by 
experts based on their engineering judgment is more significant than ob-
jective statistics. Cai et al. [8, 9, 19] used the mathematical notions of pos-
sibility and fuzzy variables and developed the theory of posbist reliability. 
They then provided a preliminary discussion of the posbist reliability of 
typical system structures including series, parallel, k-out-of-n, and fault-
tolerant systems. They also demonstrated the advantages of the posbist re-
liability theory over conventional reliability theory. However, these works 
[8, 9, 19] were confined to nonrepairable systems. Utkin and Gurov [7] 
proposed a general approach to formalize posbist reliability analysis based 
on a system of functional equations according to Cai’s theory. Cooman 
[20] introduced the notion of possibilistic structure function based on the 
concept of the classical, two-valued structure function and studied the pos-
sibilistic uncertainty of the states of a system and its components. Cremona 
and Gao [6] presented a new reliability theory for measuring and analyzing 
structural possibilistic reliability similar in methodology to the probabilis-
tic reliability theory. Moller et al [21] applied the possibility theory to 
safety assessment of structures considering non-stochastic uncertainties 
and subjective estimates of the objective functions by experts. Savoia [22] 
presented a method for structural reliability analysis using the possibility 
theory and the fuzzy number approach. Guo et al. [23] developed a new 
model of structural possibilistic reliability based on the possibility theory 
and fuzzy interval analysis. 

Since Zadeh [24] introduced the mathematical framework of possibility 
theory in 1978, many important theoretical and practical advances have 
been achieved in this field. The possibility theory has been applied to the 
fields of artificial intelligence, knowledge engineering, fuzzy logic, auto-
matic control, and other fields. Many researchers have reported construc-
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tive achievements in application of the possibility theory to reliability 
analysis and safety assessment [5-8, 21-23].  

Now that various frameworks of the possibilistic reliability theory have 
been constructed, how does one apply them to real-life systems or struc-
tures? Developing the possibility distributions from practical data is the 
first fundamental issue associated with applications of the possibilistic re-
liability theory. On one hand, the concept of possibility distribution plays a 
role, in the theory of possibilistic reliability, that is analogous, though not 
completely, to that of a probability distribution in the theory of probability 
reliability. Developing possibility distributions is an important step in pos-
sibilistic reliability theory. However, it might be difficult, if not impossi-
ble, to come up with a general method for developing possibility distribu-
tions which will work for all applications. We usually combine or use 
several methods for constructing possibility distributions in order to obtain 
all the possibility distribution functions of the fuzzy variables concerned.  

In this chapter, we provide a detailed analysis of the posbist reliability 
theory and illustrate its applications in system reliability analysis. The life-
time of the system is treated as a fuzzy variable defined on the possibility 
space . ossPU  , , /@  and the universe of discourse is expanded to 

. As suggested by Dubios and Prade [25], we approximate the 

possibility distribution function (i.e., the membership function) 

. 3�3�  , /
. /xXb  by 

two functions  and . /xL . /xR  with a point of intersection at , 

i.e., the 

. / 1max �xb
RL �  type possibility distribution function is adopted. The life-

time of the system is assumed to be a Gaussian fuzzy variable, which is a 
special RL �  type fuzzy variable. Under these conditions, the posbist re-
liability analysis of typical systems including series, parallel, series-
parallel, parallel-series, and cold standby systems is provided in details. 
We will see in Section 3 that the expansion of the universe of discourse 
from . /3� ,0  to  does not affect the nature of the problems to 
be solved. On the contrary, it makes the proofs originally given in [8, 9] 
much more straightforward and the complexity of calculation is greatly re-
duced. 

. 3�3�  , /

In this chapter, based on posbist reliability theory, event failure behavior 
is characterized in the context of possibility measures. A model of posbist 
fault tree analysis (posbist FTA) is proposed for predicting and diagnosing 
failures and evaluating reliability and safety of systems. The model of pos-
bist FTA in posbist reliability theory plays a role that is analogous — 
though not completely — to that of probist FTA (Conventional FTA) in 
probist reliability theory (The reliability theory based on the PRObability 
assumption and the BInary-STate assumption is probist reliability theory, 
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i.e., conventional reliability theory). As will be seen in the sequel, the 
model of posbist FTA constructed in this chapter, where the failure behav-
ior of the basic events is characterized in the context of possibility meas-
ures, is different from various reported models of fuzzy probist FTA, 
where the basic events are considered as fuzzy numbers. Furthermore, it 
will be noted that the proposed model corresponds to posbist reliability 
theory developed by Cai [8]. 

The estimation of possibility distributions is a crucial step in the appli-
cation of possibilistic reliability theory (for example, posbist reliability 
theory). Because the concept of membership function is closely related to 
the concept of possibility distributions [24], we believe that in principle, all 
methods developed for generating membership functions can be used to 
construct relevant possibility distributions. We will further discuss the 
properties of the methods for constructing possibility distributions. A 
method used to generate the RL �  type possibility distribution is applied 
to the possibilistic reliability analysis of fatigue of mechanical parts. Fi-
nally, an example is given to illustrate the application of this method to 
generating the possibility distribution of the fatigue lifetime of gears. 

The assumptions of the posbist reliability theory include (1) the system 
failure behavior is fully characterized in the context of the possibility the-
ory and (2) at any instant of time the system is in one of two crisp states: 
perfectly functioning or completely failed [8]. 

The concept of the posbist reliability theory was introduced in details in 
[8]. For ease of reference, we list several basic definitions related to this 
theory. 

Definition 1 [8]: A fuzzy variable X  is a real valued function defined 
on a possibility space . /ossPU  , , @  . /3�3��-  , : RUX . 

Its membership function Xb  is a mapping from R  to the unit interval 

[0,1] with . / . / RxxXPx ossX 	�� ,b . 

Thus, a fuzzy set X  is defined as . /) *xxX Xb ,� . 

Based on X , the distribution function of X  is given by 
. / . /xx XX b+ � . 

Definition 2 [8]: The possibility distribution function of a fuzzy vari-
able X , denoted by X+ , is a mapping from R  to the unit interval ' (
such that 

1 ,0  

. / . /xx XX b+ � . /xXPoss �� Rx	    ,  

11.2 Basic Concepts in the Possibility Context 
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Definition 3 [8]: Given a possibility space . /ossPU  , , @ , the sets 

 are said to be mutually unrelated if for any permuta-

tion of the set ) , denoted by 

@G��� nAAA  , , , 21

*n , ,2 ,1 ��� ) *. /nkiii k ����� 1  , ,  , 21 , the follow-
ing equation holds: 

. /
kiiioss AAAP d���d

21
. / . / . /. /

kiossiossioss APAPAP  , , ,min
21

���� .  

Definition 4 [8]: Given a possibility space . /ossPU  , , @ , the fuzzy vari-

ables  are said to be mutually unrelated if for any permuta-

tion of the set ) , denoted by 
nXXX  , , , 21 ���

*n , ,2 ,1 ��� ) *. /nkiii k ����� 1  , , , 21 , the sets 

) * ) * ) *kiii xXxXxX
k
������  , , , 21 21

,  

where , are mutually unrelated. . Rxxx k 	���  , , , 21 /

/

When the conventional binary-state assumption is adopted, the failure of a 
system is defined precisely. However, in practice, the instant of time when 
a system failure occurs may be uncertain and we may be unable to deter-
mine it accurately. In this case, it has to be characterized in the context of a 
possibility measure. According to the existence theorem of the possibility 
space [26], we can reasonably assume that there exists a single possibility 
space . ossPU ,,@  to characterize all the uncertainties of the times of fail-
ure of the system and its components. Accordingly, the lifetimes of the 
system and its components are treated as Nahmias’ fuzzy variables defined 
on the common possibility space. 

Definition 5 [8]: Given a possibility space . /ossPU  , , @ , the lifetime of 

a system is a non-negative real-valued fuzzy variable  

. /3��- �  ,0  : RUX  

with possibility distribution function . / . / �	�� RxxXPx ossX  ,b . 

The posbist reliability of a system is then defined as the possibility that 
the system performs its assigned functions satisfactorily during a prede-
fined exposure period under a given environment [8], that is,  

. / . /tXPtR oss ��  . /uXPoss
tu

��
�

sup  .             (1) . / �

�
	� RtuX

tu
 ,supb

11.2.1 Lifetime of the System 
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To simplify calculations when dealing with real-life problems, we may 
expand the universe of discourse of the lifetime of a system from  

to 

. /3� ,0

. /3�3�  , , i.e., . /3�3��-  ,  : RUX . 
In the following sections, we will show that this expansion makes the 

proofs originally given in [8, 9] much simplified and the complexity of 
calculation greatly reduced without affecting the nature of the problems to 
be solved.  

Formally, we assume that the state of the system is determined completely 
by the states of the components, so the structure function of a system of  
components is denoted by 

n

. /XOO �  

. nXXXX ,,, 21 ���� /                                                                            (2) 

where X  is the system state vector and  represents the state of com-

ponent i . 
iX

Assume that nXXX ,,, 21 ���  and O  are all binary fuzzy variables de-

fined on possibility space . /ossPU ,,@  

) * niUiX ,,2,1,1,0: ����-  

) *1,0: -UO . 
Then we assume 

�
�
��

failed is component   theif,0

gfunctionin is component   theif,1

i

i
iX   

and     
�
�
��

failed is system  theif,0

gfunctionin is system  theif,1
O

According to above-mentioned analysis, the system posbist reliability, 
denoted by R , is defined as 

. 1�� /OossPR                                                                                     (3) 

and the system posbist unreliability, denoted by F , is defined as 
. 0�� /OossPF .                                                                                   (4) 

Furthermore, we note that the system reliability defined in terms of sys-
tem states coincides with the system reliability defined in terms of system 

11.2.2 State of the System 
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lifetimes. Refer to [8] for more details on posbist reliability theory in terms 
of system states. 

Suppose that X  is the lifetime of the system. Assume that the lifetimes of 
the components, denoted by nXXX  , , , 21 ��� , are mutually unrelated. Fur-

thermore, we assume that  is a Guassian fuzzy variable. Its possibility 

distribution function is given by the following equation and illustrated in 
Fig. 1. 
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m
x
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Fig. 1. Possibility distribution function of  iX

Consider a series system consisting of n  components. The lifetime of the 
system depends on the lifetimes of the components as follows: 

. /nXXXX  , , ,min 21 ���� .                                                
(6) 

11.3 Posbist Reliability Analysis of Typical Systems 

11.3.1 Posbist Reliability of a Series System 
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Theorem 1 [8]: Consider a series system of two components. Let the 
system lifetime be X  with possibility distribution function Xb  and 

 be the lifetimes of the two components, which are mutually unre-
lated, Guassian fuzzy variable with continuous possibility distribution 
functions 

21 , XX

. /xX1
b  and . /xX 2

b , respectively, defined on possibility space 

. Then, there exists a unique pair 

, such that 
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As a result, the posbist reliability of the series system of two compo-
nents is 
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For a series system of n  components, if nXXX  , , , 21 ���  are mutually 

unrelated and . / . / . /xxx
nXX X bbb ��� �

1 2
, that is, nXXX  , , , 21 ���  are 

identically and independently distributed components, applying Theorem 1 
recursively, we can easily arrive at  

. / . /xx XX 1
bb � .                                                                                  (9) 

Thus, the posbist reliability of a series system of n  components can be 
expressed as: 
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Consider a parallel system consisting of n  components. The lifetime of 
the system can be expressed as a function of the lifetimes of the compo-
nents as follows: 

. /nXXXX  , , ,max 21 ���� .                                                                (11) 

Theorem 2 [8]: Consider a parallel system of two components. Let the 
system lifetime be X  with possibility distribution function Xb  and 

 be the lifetimes of the two components, which are mutually unre-
lated, Guassian fuzzy variable with continuous possibility distribution 
functions 

21  , XX

. /xX1
b  and . /xX 2

b , respectively, defined on possibility space 

. Then, there exists a unique pair 

, such that 
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As a result, the posbist reliability of the parallel system of two compo-
nents is 
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11.3.2 Posbist Reliability of a Parallel System 
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Similarly, for a parallel system of n  components, if nXXX  , , , 21 ���  are 

mutually unrelated and  

. / . / . /xxx
nXXX bbb ��� �

21
,  

that is,  are identically and independently distributed com-

ponents, then, we can easily express the posbist reliability of a parallel sys-
tem of  components as 
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Consider a series-parallel system which is a series system of m  subsys-
tems where each subsystem consists of n  parallel components. Assume 
that  are variables with the same continuous possibility 

distribution function, that is, 
mnXXX ����  , , , 21

. / . / . /xxx
mnXX �X ������ bbb

21
.  

Then, for every subsystem, which has a parallel structure, its posbist re-
liability can be obtained with Eq. (15) as: 

. / . /utR X
tu

pi 1
sup b
�

� . /��

�
�
�

�
�

�
1

1
,

,1

1
att

at

Xb  

�
�
�

��
�

�

�
��
�

�

�

��
�

�

�

��
�

�
��
�

� �
�

�

�
1

2

1

1

1

,exp

,1

mt
b

mt

mt

  ni ��1 .                                           (15) 

Further, according to Eq. (10), we can express the posbist reliability of 
the series-parallel system as 

11.3.3 Posbist Reliability of a Series-parallel Systems 
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Consider a parallel-series system which is a parallel system of m  subsys-
tems where each subsystem consists of n  components connected in series. 
Assume that m  are variables with the same continuous 

possibility distribution function, that 
nXXX ���� ,,, 21

is, . / . / . /xx
mnXX �

xX������ bbb
21

. 

Then, for every subsystem, which has a series structure, we can express 
its posbist reliability, according to Eq. (10), as: 
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Further, according to Eq. (14), we can express the posbist reliability of 
the parallel-series system as 
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In summary, we can see that the posbist reliability of a series, parallel, 
series-parallel, or parallel-series system consisting of identically and inde-
pendently distributed components has the same membership function as 
each component. 

The operating mechanism of a cold standby system with n components 
is as follows. At any instant of time, only one operative component is re-
quired and the other operative components are in standby if they are not 
failed. Suppose that the components are activated sequentially from com-

11.3.4 Posbist Reliability of a Parallel-series System 

11.3.5 Posbist Reliability of a Cold Standby System 
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ponent 1 to component n. A component in standby does not fail or deterio-
rate. A failure of the system occurs only when there is no operative com-
ponent left. We also assume that the sensing and switching mechanism is 
absolutely reliable. Such a cold standby system is depicted in Fig. 2.  

X1

X2

Xn

�
�
�

Fig. 2   A cold standby system
 

The lifetime X of such a cold standby system can be expressed as a sum 
of the lifetimes of the n individual components, i.e.,  

nXXXX ������� 21 .                                               

(19) 

Then, the posbist reliability of the system is 
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For a cold standby system with two components, since  are 21  , XX
RL �  type fuzzy numbers, according to the addition operation of RL �  

type fuzzy numbers [24], we have 
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As a result, the posbist reliability of the system can be expressed as 
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Similarly, for a cold standby system with  components, we have n
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Then, we can easily express the posbist reliability of the system as  
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Conventional fault tree analysis was first applied to the analysis of system 
reliability by Watson in 1961. A fault tree is a logic diagram consisting of 

11.4 Posbist Fault Tree Analysis of Coherent Systems
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a top event and a structure delineating the ways in which the top event may 
occur. Up to now, the scope of conventional FTA has expanded from the 
aviation/space industry and nuclear industry to electronics, electric power, 
and the chemical industry as well as mechanical engineering, traffic, archi-
tecture, etc. It is a mature tool for analyzing coherent systems. 

The pioneering work on fuzzy fault tree analysis (fuzzy FTA) belongs to 
Tanaka et al. [2]. They treated probabilities of basic events as trapezoidal 
fuzzy numbers, and applied the fuzzy extension principle to calculating the 
probability of the top event. At the same time, they defined an index func-
tion analogous to importance measures for evaluating the extent to which a 
basic event contributes to the top event. Singer [3] analyzed fuzzy reliabil-
ity by using RL �  type fuzzy numbers. He considered the relative fre-
quencies of the basic events as fuzzy numbers and used possibility instead 
of probability measures. However, these approaches cannot be applied to a 
fault tree with repeated events. In order to deal with repeated basic events, 
Soman and Misra [27] provided a simple method for fuzzy fault tree 
analysis based on the �� cut method, also known as resolution identity. 
This method was then extended to deal with multistate fault tree analysis 
[28]. Sawyer and Rao [29] used the �� cut method to calculate the failure 
probability of the top event in fuzzy fault tree analysis of mechanical sys-
tems. Huang et al [14] employed fuzzy fault tree to analyze railway traffic 
safety. Many other results on fuzzy FTA are reported in [30-34]. 

There is one common characteristic in the above-mentioned works: the 
notion of fuzziness is introduced to conventional fault tree analysis and the 
probabilities of events are fuzzified into the fuzzy numbers in the unit in-
terval [0,1]. However, we note that these works are based on probist FTA 
(i.e., conventional FTA). More precisely, we can say that these works fall 
within the scope of fuzzy probist fault tree analysis. 

Furuta and Shiraishi [35] proposed a kind of importance measure using 
fuzzy integrals assuming that the basic events in a fault tree are fuzzy. 
Feng and Wu [36] developed a model of profust fault tree analysis based 
on the theory of “probability of fuzzy events” and provided partial quanti-
tative analysis when the state space is discrete. Their model is based on 
two assumptions: (1) the failure behavior of components is defined in a 
fuzzy way and (2) the probability assumption is used.  

Based on the foregoing overview, we can itemize the main categories of 
the methods of FTA to date:  

(1) Probist FTA (conventional FTA),  
(2) Fuzzy probist FTA (or fuzzy FTA), and 
(3) Profust FTA (corresponding to profust reliability theory).  
Furthermore, we can find that the study of fuzzy probist FTA is con-

fined to the algorithm itself, the cited engineering applications are overly 
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simplified, and the obtained results lack comparability. On the other hand, 
the study of profust FTA has appeared only recently and the study of pos-
bist FTA is not reported at all. 

Here we give several basic definitions of coherent systems that are indis-
pensable to the model of posbist fault tree analysis that we will construct. 
Refer to [37] for a more detailed treatment of coherent systems.  

Definition 6: In the context of posbist reliability theory, the i-th compo-
nent is irrelevant to the structure O  if O  is constant in , that is, iz

. / . ZZ ii ,0,1 /OO �  

for all . /Zi ,� . Otherwise the i-th component is relevant to the structure. 

Here we employ notations 

. / . /niii zzzzZ ,,,1,,,,1 111 ������� ��  

. / . /niii zzzzZ ,,,0,,,,0 111 ������� ��  

. / . /niii zzzzZ ,,,,,,, 111 ��������� ��  

Definition 7: A system of components is coherent in the context of pos-
bist reliability theory if (1) every component is relevant to the system and 
(2) its structure function O  is increasing in every component. We can de-

note a coherent system by O , or more precisely by . /O,C , where the set 

 is a set of integers designating the components. C
To be brief, coherent systems are monotone systems wherein no unit ir-

relevant to the system exists since the units irrelevant to the system are re-
moved by Boolean calculation after their reliability behavior is analyzed. 
We will use possibility measures rather than probability measures to char-
acterize the failure behavior of coherent systems. We note that the defini-
tion of coherent systems here is the same as that of coherent systems in 
conventional reliability theory. This is because the binary-state assumption 
is also valid in posbist reliability theory [8]. 

11.4.1 Posbist Fault Tree Analysis of Coherent Systems 

11.4.1.1 Basic Definitions of Coherent Systems 
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Definition 8: A path set, denoted by P , of a coherent system . /O,C  in 

the context of posbist reliability theory is a subset of C  that makes O  

functioning.  is minimal if any real subset of it will not make P O  func-

tioning. A cut set, denoted by K , of a coherent system . /O,C  is a subset 

of C  that makes O  failed. K  is minimal if any real subset of it will not 

make O  failed. 

Suppose a coherent system O  in the context of posbist reliability theory 

with  minimal path sets p . /pPPP ,,, 21 ���  and  minimal cut sets k

. /kKKK ,,, 21 ��� . Define . / i
Pi

j xXP
j	

� 
 and . / i
Ki

j xXK
j	

� � . 

Then the structure function O  can be expressed as 

. / . /XPX j

p

j 1�
� �O i

Pipj
x

j	��
� minmax

1
               (25) 

or 

. / . /XKX j

k

j 1�
� 
O i

Kikj
x

j	��
� maxmin

1
.              (26) 

It is necessary for the construction of the model of posbist FTA to make 
the following assumptions: 

(1) The states of events are crisp: occurrence or nonoccurrence. How-
ever, the event state is uncertain at a given future instant. 

(2) The failure behaviors of events are characterized in the context of 
possibility measures. Furthermore, the possibility distribution functions of 
events have been obtained by adopting a certain technique (or several 
techniques) for estimating possibility distributions. 

(3) The events are mutually unrelated. 

According to the equivalent conversion of special logic gates [38], we can 
convert an arbitrary fault tree of coherent systems into a basic fault tree 
that consists only of AND gates, OR gates and basic events. 

11.4.1.2 Basic Assumptions 

11.4.2 Construction of the Model of Posbist Fault Tree Analysis 
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Consider a coherent system  of n  components. The failure of the sys-
tem is the top event and the failures of the components are basic events. 
Since the system and its components demonstrate only two crisp states, 
i.e., fully functioning or completely failed, we can use 0 and 1 to represent 
the states of the top event and basic events. Thus, we assume 

S

          
�
�
��

occurt dosen' event  basic  theif,0

occurs event  basic  theif,1

i

i
iX ni ,,2,1 ����  

. /
�
�
��

occurt dosen'event   top theif,0

occursevent   top theif,1
X,      

. /nXXXX ,,, 21 ���� . 

Then the function . /X,  is called the structure function of a posbist 

fault tree. We can call it a posbist fault tree . /X, , or more precisely, a 

posbist fault tree . /. XC /,, , where the set C  is a set of integers designat-
ing basic events. 

Analogous to the conventional fault tree, we can easily obtain the fol-
lowing results: 

For a posbist fault tree consisting of AND gates, we have 

. / �
�

�
n

i
iXX

1
, . /nXXX ,,,min 21 ���� .             (27) 

For a posbist fault tree consisting of OR gates, we have 

. / . /�
�

���
n

i
iXX

1
11, . /nXXX ,,,max 21 ���� .            (28) 

Definition 9: A path set, denoted by , of a posbist fault tree aP . /X,  is 

a subset of  that will not make the top event occur.  is minimal if any 

real subset of it will make the top event occur. A cut set, denoted by , 

of a posbist fault tree 

C aP

uK

. /X,  is a subset of C  that makes the top event oc-

cur.  is minimal if any real subset of it will not make the top event oc-

cur. 
uK

11.4.2.1 The Structure Function of Posbist Fault Tree 
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Then, suppose a fault tree . /X,  of a coherent system with  minimal 

path sets 

p

. /apaa PPP ,,, 21 ���  and  minimal cut sets k . /ukuu KKK ,,, 21 ��� . 

Define . / i
Pi

aj xXP
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� 
 and . / i
Ki

uj xXK
uj	

� � . 

Thus, the structure function . /X,  of the posbist fault tree can be ex-
pressed as 
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or 
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According to posbist reliability theory based on state variables (i.e., sys-
tem states) and the basic assumptions in section 4.1.2, we have:  

The failure possibility of the basic event  is i

. 1�� iossoss XPP
i

/

/

.                                                                          (31) 

The failure possibility of the top event is 

. 1�� ,ossoss PP
T

.                                                                             (32) 

Theorem 3: For the AND gate, the operator is 

.
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Proof  
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Since the basic events are mutually unrelated, we have 
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Q.E.D. 

11.4.2.2 Quantitative Analysis 
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Theorem 4: For the OR gate, the operator is 
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Theorem 5: For a posbist fault tree . /X,  of a coherent system with 

mutually unrelated basic events, suppose there are k  minimal cut sets 
. /ukuu KKK ,,, 21 ��� . Let P  be the failure possibility of the basic event 
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Proof  

From Eq. (30), we have . / . /XKX uj
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Since all the basic events of the posbist fault tree are mutually unrelated, 
we may arrive at 
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The above equation is due to Theorem 3. Then according to Theorem 4, 
we have 
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where we can find that the unrelatedness of . /) *kjXKuj ,,2,1, ����  is not 

required.  
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Q.E.D. 

Thus, as long as we know the failure possibility of every basic event, we 
can use the above-mentioned operators to obtain the failure possibility of 
the top event. 

In the theory of possibilistic reliability, the concept of a possibility distri-
bution plays a role that is analogous—though not completely—to that of a 
probability distribution in the theory of probabilistic reliability. Because 
the concept of membership functions bears a close relation to the concept 
of possibility distributions [39], in this section, we believe that all the 
methods for generating membership functions can be used to construct the 
relevant possibility distributions in principle. However, we should realize 
that it might be difficult, if not impossible, to come up with a general pos-
sibility distribution method which will work for all applications. Much fu-
ture work is yet to be done on this subject.  
Here, we present several techniques for estimating possibility distributions 
from probability distributions. 

Functions 

As Zadeh [24] pointed out, a possibility distribution can be viewed as a 
fuzzy set which serves as an elastic constraint on the values that may be 
assigned to a variable. Therefore, the possibility distribution numerically 
equals to the corresponding membership function, i.e., 

. / . /xx AX b+ � ,                                                                                  (36) 

where X  is a fuzzy variable and A  is the fuzzy set induced by X . 
Note that although a possibility distribution and a fuzzy set have a com-

mon mathematical expression, the underlying concepts are different. The 
fuzzy set A  is a fuzzy value that can be assigned to a certain variable. 
However, the possibility constraint A  is a fuzzy set of nonfuzzy values 
that can possibly be assigned to X . 

According to the above-mentioned viewpoint, we can use the methods 
for constructing membership functions to generate the corresponding pos-
sibility distributions. That is to say, from Eq. (36), if the membership func-
tion of a fuzzy set has been obtained, the possibility distribution of the 

11.5 The Methods for Developing Possibility Distributions 

11.5.1 Possibility Distributions Based on Membership 
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fuzzy variable of the fuzzy set is obtained too. In the following, we present 
a few commonly used methods for generating membership functions. 

Fuzzy statistics are analogous to probability statistics in form and they 
all use certainty approaches to deal with uncertainty problems in real-life 
systems or structures. When fuzzy statistics are used, a definite judgment 
must be made on whether a fixed element  in the universe of discourse 

belongs to an alterable crisp set 

0u
*A  or not. In other words, based on n ob-

servations, we have 

n

Au
Au

"" 
   

*
0

0
of  timesofnumber  the

inof membership of grade the
	

� . 

The following principles must be observed in evaluation of fuzzy statis-
tics: 

(1) The user should be familiar with concepts of fuzzy sets and capable 
of quantifying the entity being observed. In other words, the user should be 
an expert in the field of application.  

(2) A preliminary analysis of the raw data should be conducted so that 
abnormal data may be removed. 

For further details and examples of fuzzy statistics, readers are referred 
to [40]. 

Possibility Distributions 

According to Kosko’s argument that “fuzziness contains probability as a 
special case” [41], if we have obtained estimates of the probability density 
function (pdf) or other statistical properties of an entity being measured, 
we can construct its corresponding membership function following the ap-
proach outlined in [42]. Based on the technique in [42], we summarize the 
following simple method for constructing the membership function from 
the probability density function of a Gaussian random variable, i.e., 

. / . /xpx =b � ,                                                                                     (37) 

. /. /xpmax

1
�= ,                                                                                  (38) 

where  is the pdf of a Gaussian random variable and . /xp . /xb  is the cor-
responding membership function based on p(x). For example, the pdf and 

11.5.1.1 Fuzzy Statistics [40] 

11.5.1.2 Transformation of Probability Distributions to 
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the corresponding membership function of the yield strength of an 
aluminum alloy developed with this approach are shown in Fig. 3. 
 

50.0 

0.0 

1.0 

0.8 

0.4 

80.070.060.0

. /p x

. /xb  

Yield strength� x (ksi) 

. / . /,x p xb  

 
. /xp and the corresponding membership function . /xb  for the 

yield strength of an aluminum alloy. 

With heuristic methods, we first select a predefined shape of the member-
ship function to be developed. The specific parameters of the membership 
function with the selected shape are determined from the data collected. In 
most real-life problems, the universe of discourse of the membership func-
tions is the real number line R . The commonly used membership function 
shapes are the piecewise linear function and the piecewise monotonic 
function. Linear and piecewise linear membership functions have the ad-
vantages of reasonably smooth transitions and easy manipulation through 
fuzzy operations. However, the shapes of many heuristic membership 
functions are not flexible enough to model all kinds of data. Moreover, the 
parameters of the membership functions must be provided by experts. In 
many applications, the parameters need to be adjusted extensively to 
achieve a certain performance level. 

A few commonly used piecewise linear functions are given below:  

(1)  . /
a

x
x ��1b  or . /

a

x
x �b , where ' (ax  ,0� ; 

Fig. 3. The pdf 

11.5.1.3 Heuristic Methods [43] 
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Some commonly used piecewise monotonic functions are as follows: 
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In practical applications, we often combine fuzzy statistics with heuris-
tic methods. First, the shape of the membership function is suggested by 
statistical data. Then, the suggested shape is compared with the predefined 
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shape and the more appropriate ones are selected. Finally, the most suit-
able membership function is determined through practical tests. 

Sometimes, the opinions of experts are used to construct the member-
ship functions. In these situations, the universes of discourse are usually 
discrete. 

In addition to the methods reviewed above, trichotomy [40], multiphase 
fuzzy statistics [40], and neural network based methods [43, 44] have been 
used in construction of membership functions. It should be pointed out that 
developing new methods for constructing membership functions is still a 
hot research topic. The reported methods for constructing membership 
functions are not as mature as those for constructing probability distribu-
tion functions. Constructing membership functions still depends on experi-
ence and feedback from actual use and continuous revisions have to be 
made to achieve satisfactory results. This situation results in the immatur-
ity of the methods for constructing possibility distributions.  

Distributions 

The methods for transforming probability distributions to possibility dis-
tributions are based on the possibility/probability consistency principle. 
The possibility/probability consistency principle states: 

If a variable X  can take the value 1, , nu u� � �  with respective possibili-

ties  and probabilities . / . /. 1 , , nu u+ + +� ��� / . / . /. /1 , , np p u p u� ��� , 

then the degree of consistency of the probability distribution p  with 

possibility distribution  + is expressed by 

i. / . / . /
1

,
n

z i
i

C p u p u+ +
�

�� . 

For more details on this principle, readers are referred to [24]. 

Let ) *nixX i  , ,2 ,1 �����  be the universe of discourse. If the histograms 

(or the probability density function) of the variable X  has a decreasing 
trend, that is,  

11.5.1.4 Expert Opinions 

11.5.2 Transformation of Probability Distributions to Possibility 

11.5.2.1 The Bijective Transformation Method [45] 
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. / . / . /nxpxpxp ������ 21 ,                                                             (39) 

then, the corresponding possibility distribution can be constructed as 
follows: 
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.                       (40) 

Generally, the histograms can be normalized by setting the maximal 
value to 1, i.e., 
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Fig. 4 illustrates the construction of a possibility distribution by use of a 
general histogram. 
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Klir [46] presented a method for constructing possibility distributions 
based on the principle of uncertainty conservation. When uncertainty is 

Fig. 4. Construction of a possibility distribution from a histogram 

11.5.2.2 The Conservation of Uncertainty Method 
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transformed from one theory  to another , the following requirements 
must be met: 

1T 2T

(1) The amount of inherent uncertainty should be preserved and 
(2) All relevant numerical values in 1T  m st be converted to their coun-

terparts in 2T  by an appropriate scale. 

u

The probabilistic measure of uncertainty is the well known Shannon en-
tropy and is given by 

. / 2
1

log
n

i i
i

H p p p
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In the possibility theory, there are two types of uncertainties, nonspeci-
ficity . /N + , and discord . /D + , and they are given by 
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Therefore, the principle of uncertainty conservation can be expressed as 

. / . / . /H p N D+ +� � . 

Klir [32] contends that the log-interval scale transformation is the only 
one that exists for all distributions and is unique. Its form is  

. / . /
. / ' 1 ,0   ,

1
	 

!

"
#
$

%
� �+ (

�

xp

xp
x i
iX .                                                         (42) 

where � is a positive constant determined by solving Eq. (42); Klir conjec-
tures that �  lies in the interval [0,1]. 

Clearly the obtained possibilistic information is less precise than the 
original probabilistic information after the transformation of the probabil-
ity distribution to the possibility distribution, because only upper bounds 
on the probability values are derived. However, fuzzy arithmetic opera-
tions are generally much easier to handle than operations with random 
variables [47]. Thus, such a transformation method is intended for situa-
tions where the manipulation of randomness is hard. However, this trans-
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formation method has the disadvantage of requiring a large amount of data 
to estimate the probability distribution first. 

For products requiring high reliability, manufacturers often conduct 
laboratory tests to obtain a certain quantity of lifetime data. Due to budget 
limitations, it is usually difficult or impossible to obtain sufficient statisti-
cal data. Although the number of data points available may be too small 
for us to perform a statistical analysis, it may be sufficient for subjective 
estimation of the possibility distribution. If we have constructed a model of 
the possibilistic reliability of the device under study and derived the 
needed possibility distribution, we can perform a quantitative analysis of 
the possibilistic reliability of the device. 

Assume that we have obtained fatigue life data of a device, denoted by 

. / Mn iNj
j

i ���� 1 �1 , where M  is the number of stress levels,  is the 

number of data points at each stress level. Then the mean fatigue life at 
stress level I can be expressed as 

N
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j
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� 1   ,
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1
.              (43) 

The lifetime data at each stress level can be divided into two groups, 
that is,  
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The mean value  is assigned a possibility degree of 1 and the possi-

bility degree of 0.5 is assigned to the means of the lifetime data in the two 
groups  and , that is,  
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11.5.3 Subjective Manipulations of Fatigue Data 
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where . /�#  denotes the number of data points in a set.  
By use of the above-mentioned analysis, we can express the  type 

possibility distribution of fatigue lifetime as follows: 
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Considering the various types of RL �  type possibility distributions 
mentioned earlier in this chapter, we can use Eq. (48) to get specific possi-
bility distributions to represent fatigue lifetime data. For example, the fol-
lowing triangular possibility distribution may be used to represent fatigue 
lifetime data: 
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where  and .  �
�
��

�
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�
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�
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inii rnn mm2�

Similarly, we may use the following Gaussian possibility distribution to 
represent fatigue lifetime data: 
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Calculate the posbist reliability of a series system, a parallel system, and 
a cold standby system with perfect sensing and switching mechanism. It is 
assumed that each system has two components and they are mutually unre-
lated. We also assume that the lifetime of each component is a Gaussian 
fuzzy variable, i.e.,  
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11.6 Examples 

11.6.1 Example 1  
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Using Eq. (8), we can express the posbist reliability of the series system as: 
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For example, when t = 140, we have: 
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Using Eq. (13), we can express the posbist reliability of the parallel system 
as: 
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11.6.1.1 The Series System  

11.6.1.2 The Parallel System 
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For example, t = 140, we have: 
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Using Eq. (22), we can express the posbist reliability of the standby system 
as 
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When t = 140, we have . /140crR =1. 

From this example, we can see that the posbist reliability of a parallel 
system is higher than that of a series system and the posbist reliability of a 
cold standby system is higher than that of a parallel system. 

Consider the problem of a failure caused by the break of the hoisting rope 
of a crane. For a failure analysis of a broken hoisting rope, we can refer to 

11.6.1.3 The Cold Standby System 

11.6.2 Example 2 
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[48]. In [48], the authors concluded that the main reasons for the failure of 
the crane’s hoisting rope were fatigue and poor inspection. But they con-
sidered only the failures of the steel wires themselves. In fact, there are 
many factors (materials and/or human errors) that caused the break of the 
hoisting rope of the crane. It is not enough to consider the failure of the 
steel wires only. 

The fault tree of a failure of the hoisting rope of a crane has been con-
structed in Fig. 5. By means of the technique for analyzing a fault tree, we 
can derive almost all the main reasons for the failure of the crane’s hoist-
ing rope. The events of the fault tree are illustrated in Table 1. 

 

X1
E1 E2

X2 X3 E3

X4 X5 X6

X7 E4

X8 X9

T

 

For a failure such as that of the hoisting rope of crane, it is often very 
difficult to estimate precise failure rates or failure probabilities of individ-
ual components or failure events. This is because the failure events consist 
of not only the failure of components (e.g., drawback of materials) but also 
human factors (e.g., insufficient inspection). According to Zadeh’s consis-
tency principle [39], it may be feasible to use possibility measures as a 
rough estimate of probability measures. 

Using the judgments of experts or technologists, we can obtain the fail-
ure possibility of every basic event illustrated in Table 1. Thus, we can de-
duce the failure possibility of the top event by use of the technique pre-
sented in this chapter. 

Fig. 5. The fault tree of a failure of the rope on a crane 
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Table 1. The events and the failure possibility of every basic event of the fault tree 

Symbol Event Failure possibility 
T rope broken 
E1 hoisting objects aslant 
E2 inadequate strength 
E3 manufacturing defects 
E4 misuse 

 

X1 overloading 0.050 
X2 dragging 0.030 
X3 obstacles present 0.004 
X4 materials defects 0.002 
X5 machining defects 0.001 
X6 poor inspection 0.003 
X7 inappropriate diameter size 0.005 
X8 poor maintenance 0.020 
X9 arriving at limit of failure 0.500 

 
According to Eq. (34), we arrive at 

. / . / . /. /321 ,max XPXPEP ossossoss � . /004.0,03.0max� =0.03. 

. / . / . / . /. /6543 ,,max XPXPXPEP ossossossoss �            

. /003.0,001.0,002.0max� =0.003. 

. / . / . / . /. /4732 ,,max EPXPEPEP ossossossoss �  

. /02.0,005.0,003.0max� =0.02. 

Further, according to Eq. (33), we arrive at 

. / . / . /. /984 ,min XPXPEP ossossoss � . /5.0,02.0min� =0.02. 

In this way, we can arrive at the failure possibility of the top event ac-
cording to Eq. (34) 

. / . / . / . /. /211 ,,max EPEPXPTP ossossossoss �  

. /02.0,03.0,05.0max� =0.05. 

We illustrate the method presented in Section 5.3 for constructing the pos-
sibility distribution of the fatigue lifetime data given in [49]. An experi-
mental investigation was conducted in [49] on the reliability of gear-tooth 

11.6.3 Example 3 
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of hardened and tempered steel 40Cr with the failure mode of fatigue. Four 
loading stress levels were used. The collected data of bending fatigue life-
time are shown in Table 2. Only four data points at each stress level are 
given in Table 2 and they are sufficient for subjective estimation of the 
possibility distribution of fatigue lifetime.  

Table 2. The bending fatigue lifetime data of gear-teeth made of hardened and 
tempered steel 40Cr(in units of 106 loading cycles)  

Stress levels S (MPa) Data points 
S1=467.2  S2=424.3  S3=381.6  S4=339.0 

1 0.1404    0.1573    0.2919    0.3879 
2 0.1508    0.1723    0.3024    0.4890 
3 0.1572    0.1857    0.3250    0.5657 
4 0.1738    0.1872    0.3343    0.5738 

 
First, we calculate the average fatigue lifetime at each stress level . 

We will illustrate the procedure for constructing the possibility distribution 
of the lifetime using the data collected at the first stress level. The same 
procedure should be followed for analysis of data at other stress levels. Us-
ing Eq. (43) and Table 2, we have 

inm
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The data points at the first stress level is divided into two groups sepa-
rated by the calculated mean value , i.e., 

1nm

) *
111  |1508.0,1404.0 n

j mnG ?� ,  

) *
112  |1738.0,1572.0 n

j mnG �� .  

Further, from Eqs. (46) and (47), we have 
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5.01456.0
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nln m+ ; 

. / . / 1655.01738.01572.0
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21
1 1
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���� �
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j
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5.01655.0
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�
� �

nrn m+ . 

Finally, with these calculated results and Eq. (49), we can construct the 
triangular possibility distribution of the bending fatigue lifetime of gear-
teeth made of hardened and tempered steel 40Cr under the stress level of 
467.2MPa as follows: 
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The shape of this obtained possibility distribution is shown in Fig. 6. 
Note that the procedure for constructing the possibility distributions at 
other stress levels is the same. If we are interested in constructing other 

RL �  types of possibility distributions such as the Gaussian possibility 
distribution for the fatigue lifetime data of gear-teeth, a similar procedure 
can be followed.   
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After obtaining the possibility distribution of fatigue lifetime of the 
gear, we can derive the possibilistic reliability of bending fatigue strength 
of the gear at any time according to posbist reliability theory [8], e.g., un-
der the stress level of 467.2MPa, we can figure out the possibilistic reli-
ability of bending fatigue strength of the gear as follows: 
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(1) Although the conventional reliability theory has been the dominant 
tool for evaluating system safety and analyzing failure uncertainty, the un-
certainty within a system and its components cannot always be defined in 
the framework of probability. To analyze highly complex systems and deal 
with the vast variations of system characteristics, researchers have realized 
that the probability theory is not a panacea. In this chapter, based on the 
posbist reliability theory, the lifetime of a system is considered to be a 
Gaussian fuzzy variable. The posbist reliability of typical systems includ-
ing series, parallel, series-parallel, parallel-series, and cold standby sys-
tems is derived. 

Fig. 6. The possibility distribution of the fatigue lifetime at the first stress level 

11.7 Conclusions 
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(2) The universe of discourse on system lifetime defined in [8, 9] is ex-
panded from . /3� ,0  to . /3�3�  , . We have illustrated in Section 3 that 
this expansion does not affect the nature of the problems to be solved. On 
the contrary, it makes the proofs in [8, 9] much more straightforward and 
the complexity of calculation is greatly reduced. 

(3) In this chapter, we addressed the critical problem in the possibilistic 
reliability theory which is the construction of the possibility distribution 
and pointed out that all methods for generating membership functions can 
be used to construct the corresponding possibility distributions. We also 
presented a new method for constructing the possibility distribution with 
the possibilistic reliability analysis of fatigue lifetime of mechanical parts. 

(4) The methods for constructing possibility distributions are not as ma-
ture as those for constructing probability distributions. The present chapter 
has provided a concise overview of the methods for constructing the possi-
bility distributions in possibilistic reliability analysis. Further research is 
needed to develop a more general method for constructing possibility dis-
tributions. 

(5) The model of posbist FTA constructed in this chapter can be used to 
evaluate the failure possibility of systems, in which the statistical data is 
scarce or the failure probability is extremely small (e.g., 10-7). It is very 
difficult, however, to evaluate the safety and reliability of such systems us-
ing conventional fault tree analysis. 

(6) As long as the failure possibilities of basic events can be obtained, 
the failure possibility of the top event can be derived according to the 
technique outlined in this chapter. Thus, it is crucial to estimate possibility 
distributions of basic events. In this chapter, we have pointed out that all 
the methods for generating membership functions can be used to construct 
the relevant possibility distributions in principle, and we have provided 
several methods for constructing possibility distributions. Nevertheless, 
further research is needed.  

(7) We should note that the model of posbist FTA proposed in the pre-
sent chapter, where the uncertainty is characterized in the context of possi-
bility measures rather than probability measures, is different from the re-
ported models of fuzzy FTA and the model of profust FTA. 
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Analyzing Fuzzy System Reliability Based on the 
Vague Set Theory 

Shyi-Ming  Chen 

Department of Computer Science and Information Engineering, 
National Taiwan University of Science and Technology 

It is obvious that the reliability modeling is the most important discipline 
of reliable engineering (Kaufmann and Gupta, 1988). Traditionally, the re-
liability of a system’s behavior is fully characterized in the context of 
probability measures. However, because of the inaccuracy and uncertain-
ties of data, the estimation of precise values of probability becomes very 
difficult in many systems (Chen, 1996). In recent years, some researchers 
have used the fuzzy set theory (Zadeh, 1965) for fuzzy system reliability 
analysis (Cai et al., 1991a; Cai et al., 1991b; Cai et al., 1991c; Cai, 1996; 
Chen, 1994; Chen and Jong, 1996; Chen, 1996; Chen, 1997a; Cheng and 
Mon, 1993; Mon and Cheng, 1994; Singer, 1990; Wu, 2004). 

Cai et al. (1991b) presented the following two assumptions for fuzzy 
system reliability analysis: 
(1) Fuzzy-state assumption: At any time, the system may be either in the 

fuzzy success state or the fuzzy failure state. 
(2) Possibility assumption: The system behavior can be fully characterized 

by possibility measures. 
Cai (1996) presented an introduction to system failure engineering and 

its use of fuzzy methodology. Chen (1994) presented a method for fuzzy 
system reliability analysis using fuzzy number arithmetic operations. Chen 
and Jong (1996) presented a method for analyzing fuzzy system reliability 
using intervals of confidence. Chen (1996) presented a method for fuzzy 
system reliability analysis based on fuzzy time series and the –cuts op-
erations of fuzzy numbers. Cheng and Mon (1993) presented a method for 
fuzzy system reliability analysis by interval of confidence. Mon and Cheng 
(1994) presented a method for fuzzy system reliability analysis for compo-
nents with different membership functions using non-linear programming 
techniques. Singer (1990) presented a fuzzy set approach for fault tree and 
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12.1 Introduction 
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reliability analysis. Suresh et al. (1996) presented a comparative study of 
probabilistic and fuzzy methodologies for uncertainty analysis using fault 
trees. Utkin and Gurov (1996) presented a general formal approach for 
fuzzy system reliability analysis in the possibility context. Wu (2004) pre-
sented a method for fuzzy reliability estimation using the Bayesian ap-
proach. 

In this article, we present a method for analyzing fuzzy system reliabil-
ity using the vague set theory (Chen, 1995; Gau and Buehrer, 1993), where 
the reliabilities of the components of a system are represented by vague 
sets defined in the universe of discourse [0, 1]. The grade of membership 
of an element x in a vague set is represented by a vague value [tx, 1 – fx] in 
[0, 1], where tx indicates the degree of truth, fx indicates the degree of false, 
1 – tx – fx indicates the unknown part, 0 	 tx 	 1 – fx 	 1, and tx + fx 	 1. The 
notion of vague sets is similar to that of intuitionistic fuzzy sets 
(Atanassov, 1986). Both of them are generalizations of fuzzy sets (Zadeh, 
1965). The proposed method can model and analyze fuzzy system reliabil-
ity in a more flexible and convenient manner.  

The rest of this article is organized as follows. In Section 2, we briefly 
review a method for fuzzy system reliability analysis from (Chen and Jong, 
1996). In Section 3, we briefly review some definitions and arithmetic 
operations of vague sets from (Chen, 1995) and (Gau and Buehrer, 1993). 
In Section 4, we present a method for analyzing fuzzy system reliability 
based on the vague set theory. The conclusions are discussed in Section 5. 

In this section, we briefly review a method for fuzzy system reliability 
analysis from (Chen and Jong, 1996). 

In (Kaufmann and Gupta, 1988, pp. 184-208), the reliability K(t) of a 
subsystem or system is represented by an interval of confidence K(t) = 
[Ka(t), Kb(t)], where Ka(t) and Kb(t) are the lower and upper bounds of the 

survival function at time t (t = 0, 1, 2, ), respectively, and 0 	 Ka(t)	 
Kb(t) 	 1. For example, Fig. 1 shows the lower and upper bounds of the 
survival function given subjectively by an expert. 

Chen and Jong (1996) considered the situation in which there are uncer-
tainties associated with the survival interval of confidence [Ka(t), Kb(t)] at 

time t (t = 0, 1, 2, ). In such a situation, the reliability of a subsystem Pi 

can be represented by [Kia(t), Kib(t)]/Ci(t), where Ci (t) indicates the degree 

Reliability Analysis Method                       
12.2 A Review of Chen and Jong’s Fuzzy System 
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of certainty that the reliability of the subsystem Pi at time t lies in interval 

[Kia(t), Kib(t)], 0 	  Kia(t) 	 Kib(t) 	 1, 0 	  Ci(t) 	 1, and t  = 0, 1, 2, . The 

values of Kia(t), Kib(t) and Ci(t) at time t (t = 0, 1, 2, ) are given by ex-
perts, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 1. Lower and upper bounds of the survival function 
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Ka(	) 

Kb(	) 

Ka(t) 

Kb(t) 
1.0 
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Chen and Jong (1996) presented a method for fuzzy system reliability 

analysis based on the interval of confidence, which is reviewed as follows. 
Let [a1, a2]/c1 and [b1, b2]/c2 be two survival intervals of confidence, where 
0 	 a1 	 a2  	 1, 0 	  b1 	 b2 	 1, 0 	  c1 	 1, and 0 	 c2  	 1. The multiplica-
tion operation and the subtraction operation between the survival intervals 
of confidence [a1, a 2]/c1 and [b1, b 2]/c2 are defined as follows:  

[
 
a1, a 2]/c1 e  [b1, b 2]/c2 = [a1 � b1, a 2 � b2]/Min(c1, c 2),                  (1) 

[ a1, a 2]/c1 � [b1, b 2]/c2 = [a1 – b2, a 2 – b1]/Min(c1, c 2),                   (2) 

where  and � are the multiplication operator and subtraction operator 
between the survival intervals of confidence, respectively.  

e

The complement of a survival interval of confidence [b1, b2]/c2  is de-
fined by   

1 � [b1, b 2]/c2 = [1, 1]/1 � [b1, b2]/c2 

 [1 – b2, 1 - b1]/Min(1, c2) = [1 – b 2, 1 – b 1]/ c2.   (3) = 

It is obvious that if a1 = a2 = a and b1 = b2 = b, then  

[a1, a 2]/c1 e  [b1, b 2]/c2 = [a, a ]/ c1 e  [b, b ]/c2

= [a � b, a  � b]/Min(c1, c 2) = (a � b)/ Min(c1, c 2),  (4)               
[a1, a 2]/c1 � [b1, b 2]/c2 = [a, a ]/ c1 � [b, b ]/c2

= [a – b, a  – b]/Min(c1, c 2) = (a – b)/ Min(c1, c 2).   (5)  
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 Because [x, y ] can be written as [x, y ]/1, where 0 	 x 	 y 	 1, we can get 
 

[a1, a2] e  [b1, b 2] = [a1, a 2] /1 e [b1, b 2]/1   (6) 

= [a1 � b1, a2 � b2]/Min(1, 1)= [a1 � b1, a 2 � b2]/1= [a1 � b1, a 2 � b2],   
 

 
[a1, a 2] � [b1, b 2] = [a1, a 2] /1 � [b1, b 2]/1    (7) 

 = [a1 – b2, a 2 – b1]/Min(1, 1) = [a1 – b2, a 2 – b1]/1 = [a1 – b2, a 2 – b1]. 
 

Consider the series system shown in Fig. 2, where the reliability of sub-

system Pi at time t (t = 0, 1, 2, ) is represented by the survival interval 
confidence [Kia(t), Kib(t)]/Ci(t), where Kia(t) and Kib(t) are the lower and 
upper bounds of the survival function of subsystem P i at time t, respec-
tively, Ci(t) indicates the degree of certainty that the reliability of subsys-
tem Pi at time t is [Kia(t), Kib(t)], 0 	  Kia(t) 	 Kib(t) 	 1, 0 	 Ci(t) 	 1, and 1 
	 i 	  n. In this situation, the reliability of the series system shown in Fig. 2 

at time t (t = 0, 1, 2, ) can be evaluated and is equal to 
 

[K1a(t), K 1b(t)]/C1(t)e [K2a(t), K 2b(t)]/C2(t)e  e [Kna(t), K nb(t)]/Cn(t) 

= [K1a(t) � K2a(t) �  � Kna(t), K1b(t) �K2b(t) 

 �  � Knb(t)]/Min(C1(t),  C 2(t), , C n(t)).     (8) 
 

 
 

… Pn Output P1 P2 In ut p 
 
 
 

Fig. 2. A series system 
 
Consider the parallel system shown in Fig. 3, where the reliability of 

subsystem Pi at time t (t = 0, 1, 2, ) is [Kia(t), Kib(t)]/Ci(t), where 0 	 
Kia(t) 	 Kib(t) 	 1, 0 	  Ci(t) 	 1, and 1 	 i 	  n. Then, the reliability of the 
parallel system shown in Fig. 3 at time t can be evaluated and is equal to 
[Ka(t), K b(t)] /Cp(t), where  

 
(1) [Ka(t), K b(t)] = 1 � (1 � [ K1a(t), K 1b(t)])e (1 � [ K2a(t),     
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K2b(t)])e  e (1 � [ K2a(t), K 2b(t)])] = 1 � ([1 – K 1b(t), 1  

– K1a(t)]) ([1 – Ke 2b(t), 1 – K 2a(t)])e   e ([1 – K nb(t), 1 – K na(t)]). 
 

(2) The value of Cp(t) is evaluated as follows. Let X and Y be two real in-
tervals in [0, 1], where X = [x1, x2], Y = [y1, y2], 0 	  x1 	 x2 	 1, and 0 	 
y1 	 y2 	 1. Based on the similarity function S presented in (Chen and 
Wang, 1995), we can calculate the degree of similarity between the in-
tervals X and Y, where S (X, Y) = 1 – (|x1 – y1| + |x2 – y2|)/2 and 0 	 S(X, 
Y) 	 1. The larger the value of S(X, Y), the more the similarity between 
the intervals X and Y. Because the reliability of the subsystem Pi at 

time t (t = 0, 1, 2, ) is [Kia(t), Kib(t)]/Ci(t), where 0 	 Kia(t) 	 Kib(t) 	 
1, 0 	  Ci(t) 	 1, and 1 	 i 	 n. Based on the similarity function S, we 
can get 

 
     S ([K1a(t), K 1b(t)], [Ka(t), K b(t)]) = s1, 
     S ([K2a(t), K 2b(t)], [Ka(t), K b(t)]) = s2, 

… 
     S ([Kna(t), K nb(t)], [Ka(t), K b(t)]) = sn, 
 

where 0 	 si 	 1 and i = 1, 2, , n. If s j is the largest value among the val-

ues s1, s2, , and sn, then let the value of C p(t) be equal to Cj(t), where 1 	 
j 	 n.  
 
 

Pn

…
 

P2

P1 
 
 OutputInput
 
 
 
 
 
 

Fig. 3. A parallel system 
 

Consider the series-parallel system shown in Fig. 4, where the reliability 

of the subsystem Pi at time t (t = 0, 1, 2, ) is represented by [Kia(t), K ib(t)] 
/Ci(t), where 0 	  Kia(t) 	 Kib(t) 	 1, 0 	 Ci(t) 	 1, and 1 	  i 	 3. Then, the 
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reliability of the series-parallel system shown in Fig. 4 at time t (t = 0, 1, 

2, ) can be evaluated and is equal to 

  [K1a(t), K1b(t)]/C1(t) e  [1 – ( 1 – K�
�

3

2i
ia(t)), 1 – ( 1 – K�

�

3

2i
ib(t))]/Cp(t) 

= [K1a(t), K1b(t)]/C1(t)  [1 – ( 1 – Ke 2a(t)) (1 – K3a(t)), 1 – (1 – K2b(t)) 

 (1 – K3b(t))]/Cp(t)  = [K1a(t) (1 – (1 – K2a(t))(1 – K3a(t)), K1b(t) (1 – (1 

– K2b(t))(1 – K3b(t))  /Min(C1(t), Cp(t)) = [K1a(t) – K1a(t) (1 – K2a(t))(1  

– K3a(t)), K1b(t) – K1b(t) (1 – K2b(t))(1 – K3b(t))  /Min(C1(t), Cp(t)), 

 
where the value of Cp(t) is evaluated as follows: 
 

Case 1: If S([1 – (1 – K�
�

3

2i
ia(t)), 1 – (1 – K�

�

3

2i
ib(t))], [K2a(t), K2b(t)]) � 

S([1 – (1 – K�
�

3

2i
ia(t)), 1 – (1 – K�

�

3

2i
ib(t))], [K3a(t), K3b(t)]), then 

let the value of Cp(t) be equal to C2(t). 
 

Case 2: If S([1 – (1 – K�
�

3

2i
ia(t)), 1 – (1 – K�

�

3

2i
ib(t))], [K2a(t), K2b(t)]) < 

S([1 – (1 – K�
�

3

2i
ia(t)), 1 – (1 – K�

�

3

2i
ib(t))], [K3a(t), K3b(t)]), then 

let the value of Cp(t) be equal to C3(t).   
   

 
 
 
 
 
 
 
 

 

P1

P2

P3 

Output Input 

Fig. 4. A series-parallel system 
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The method presented in (Chen and Jong, 1996) is more flexible and 

more general than the one presented in (Kaufmann and Gupta, 1988, 
pp. 184-208) due to the fact that it allows the survival function of each 
subsystem at different times to be associated with different degrees of cer-
tainty between zero and one. 

In (Zadeh, 1965), Zadeh proposed the theory of fuzzy sets. Let U be the 

universe of discourse, U = {u1, u2, , un}. The grade of membership of an 
element ui in a fuzzy set is represented by a real value between zero and 
one, where u i	U. However, Gau and Buehrer (1993) pointed out that this 
single value combines the evidence for ui	U and the evidence against 
ui	U. They also pointed out that it does not indicate the evidence for 
ui	U and the evidence against ui 	U, respectively, and it does not indi-
cate how much there is of each. Furthermore, Gau and Buehrer also 
pointed out that the single value tells us nothing about its accuracy. There-
fore, Gau and Buehrer (1993) presented the concepts of vague sets. Chen 
(1995) have presented the arithmetic operations between vague sets.  

Let U be the universe of discourse, U = {u1, u2, , un}, with a generic 
element of U denoted by ui. A vague set Ã in the universe of discourse U is 
characterized by a truth-membership function t Ã, tÃ: U 
 [0, 1], and a 
false-membership function fÃ, fÃ: U 
 [0, 1], where tÃ(ui) is a lower bound 
of the grade of membership of ui derived from the evidence for ui, fÃ(ui) is 
a lower bound of the negation of ui derived from the evidence against ui, 
and tÃ(ui) + f Ã(ui) 	 1. The grade of membership of ui in the vague set Ã is 
bounded by a subinterval [tÃ(ui), 1 – f Ã (ui)] of [0, 1]. The vague value 
[tÃ(ui), 1 – f Ã(ui)] indicates that the exact grade of membership Ã(ui) of u i 
is bounded by tÃ(ui) 	 Ã(ui) 	 1 – f Ã(ui), where tÃ(ui) + f Ã(ui) 	 1. For ex-
ample, a vague set Ã in the universe of discourse U is shown in Fig. 5. 

If the universe of discourse U is a finite set, then a vague set Ã of the 
universe of discourse U can be represented as follows: 

Ã = .                                              (9) ' i
n

i
iAiA uufut /)(1),(

1

~~�
�

� (
If the universe of discourse U is an infinite set, then a vague set Ã of the 

universe of discourse can be represented as

12.3 Basic Concepts of Vague Sets 
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Ã ' ( iU iAiA uufut /)(1),( ~~K � ui	U.                               (10)

 
tÃ(U), 1- fÃ(U)  

 
 

0 
 

ui

1.0 

1 - ƒÃ(ui) 

tÃ(ui) 

1- fÃ(U) 

tÃ(U) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

U  
 
 

Fig. 5. A vague set 
 
Definition 3.1: Let Ã be a vague set of the universe of discourse U with 

the truth-membership function tÃ and the false-membership function fÃ, re-
spectively. The vague set Ã is convex if and only if for all u1, u2 in U, 

           tÃ( u1 + (1 – u2) � Min(tÃ(u1), tÃ(u2)),                                (11) 

1 – fÃ ( u1 + (1 –  u2) � Min(1 – fÃ(u1), 1 – fÃ(u2)),            (12) 
 

where 	 [0, 1]. 
 
Definition 3.2: A vague set Ã of the universe of discourse U is called a 

normal vague set if  uf i 	 U, such that 1– fÃ(ui) = 1. That is, fÃ(ui) = 0. 
 
Definition 3.3: A vague number is a vague subset in the universe of 

discourse U that is both convex and normal. 
 
 In the following, we introduce some arithmetic operations of triangular 

vague sets (Chen, 1995). Let us consider the triangular vague set Ã shown 
in Fig. 6, where the triangular vague set Ã can be parameterized by a tuple 



Analyzing Fuzzy System Reliability Based on the Vague Set Theory 355 

<[(a, b, c); μ1], [(a, b, c); μ2]>. For convenience, the tuple <[(a , b, c); μ1], 
[(a, b, c); μ2]> can also be abbreviated into <[(a, b, c); μ1; μ2]>, where 0 	 
μ1 	 μ2 	 1. 

 
Some arithmetic operations between triangular vague sets are as 

follows: 

Case 1: Consider the triangular vague sets Ã and B shown in Fig. 7, 
where 

~

Ã = <[(a1, b1, c1); μ1], [(a1, b1, c1); μ2]>= <[(a1, b1, c1); μ1; μ2]>, 

B
~

= <[(a2, b2, c2); μ1], [(a2, b2, c2); μ2]> = <[(a2, b2, c2); μ1; μ2]>, 
 

and 0 	 μ1 	 μ2 	 1. The arithmetic operations between the triangular vague 

sets Ã and are defined as follows: B
~

Ã = <[(aR B
~

1, b 1, c 1); μ1], [(a1, b1, c 1); μ 2]> R  <[(a2, b 2, c 2); μ1],  

[(a2, b 2, c 2); μ 2]>  
 

                = <[(a1 + a2, b 1 + b2, c 1 + c2); μ1], [(a1 + a2, b 1 + b2, c 1 + c2); μ2]> 
 

= <[(a1 + a2, b1 + b2, c 1 + c2); μ1; μ 2]>,                                           (13) 

B
~
� Ã = <[(a 2, b2, c 2); μ1], [(a2, b 2, c 2); μ2]> � <[(a1, b 1, c 1); μ1], 

[(a1, b 1, c 1); μ2]> 

                  = <[(a2 – c1, b 2 – b1, c 2 – a1); μ1], [(a2 – c1, b2 – b1, c 2 – a1); μ2]> 
 

= <[(a2 – c1, b 2 – b1, c 2 – a1); μ1; μ 2]>,                                       (14) 
 

Ã e  = <[(aB
~

1, b 1, c 1); μ1], [(a1, b1, c 1); μ2]> e  <[(a2, b 2, c 2); μ1],  

[(a2, b 2, c 2); μ2]> 
 

                    = <[(a1 � a2, b 1 � b2, c 1 � c2); μ1], [(a1 � a2, b 1 � b2, c 1 � c2); μ2]> 
 
                   = <[(a1 � a2, b 1 � b2, c 1 � c2); μ 1; μ 2]>,                                 (15)  

 

B
~ � Ã = <[(a2, b 2, c 2); μ1], [(a2, b 2, c 2); μ2]> � <[(a1, b 1, c 1); μ1],  

[(a1, b 1, c 1); μ2]> 
 

= <[(a2/c1, b 2/b1, c 2/a1); μ1], [(a2/c1, b 2/b1, c 2/a1); μ2]> 
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= <[(a2/c1, b2/b1, c2/a1); μ1; μ2]>.                                           (16) 

 
 
 tÃ(U), 1- fÃ(U) 
 
 
 
 
 
 
 
 

 
 

tÃ(U) 

1- fÃ(U) 
μ2

0 cba

μ1

U  
 

Fig. 6. A triangular vague set 
 
 (U)f(U), t

AA
~~ -1

(U)f(U), t
B
~

B
~-1

 
 
 
 

 
 
                                                              

                    
 
 
    
 

 
  

Fig. 7. Triangular vague sets Ã and (Case 1) B
~

(U)
B

t ~(U)
A

t ~

c2 b2 a2 c1 b1 a1 

(U)f
B
~-1(U)f

A
~-1

0 

2

1

U 
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Case 2: Consider the triangular vague sets Ã and shown in Fig. 8, 
where 

B
~

 
Ã = <[(a 1, b 1, c 1); μ1], [(a1, b1, c 1); μ2]>, 

B
~

= <[(a2, b 2, c 2); μ3], [(a2, b 2, c2); μ4]>, 
 

and 0 	 μ3  	 μ1 	 μ4 	 μ2  	 1. 
 

(U)f(U), t
AA
~~ -1  

(U)f(U), t
BB
~~ -1  

 
 

 

(U)
A

  t ~

(U)
B

   t ~

 

1- f B
~ (U) 

 
1- f Ã(U) 

  c 2   b 2 a2  c1  b1  a1 

 
 
 2

 4

 1

3 
 
 

U   
 

Fig. 8. Triangular vague sets Ã and (Case 2) B
~

 
The arithmetic operations between the triangular vague sets Ã and 

are defined as follows: B
~

 

Ã = <[(aR B
~

1, b 1, c 1); μ1], [(a1, b1, c 1); μ 2]> R  <[(a2, b 2, c 2); μ3],  

[(a2, b 2, c 2); μ4]> 

= <[(a1 + a2, b 1 + b2, c 1 + c2); Min(μ1, μ3)], [(a1 + a2, b 1 + b2, c 1 + c2);  

Min(μ2, μ 4)]>,                                                            (17)  
 

B
~
�  Ã = <[( a2, b2, c 2); μ 3], [(a2, b 2, c 2); μ4]> � <[(a1, b 1, c 1); μ1],  
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[(a1, b1, c1); μ2]> 

= <[(a2 – c1, b2 – b1, c2 – a1); Min(μ1, μ3)], [(a2 – c1, b2 – b1, c2 – a1);  

Min(μ2, μ4)]>,                                                                           (18) 

Ã = <[(ae B
~

1, b1, c1); 1], [(a1, b1, c1); μ2]> e  <[(a2, b2, c2); μ3],  

[(a2, b2, c2); μ4]> 

= <[(a1 � a2, b1 � b2, c1 � c2); Min(μ1, μ3)], [(a1 � a2, b1 � b2, c1� c2); 

   Min(μ2, μ4)]>                                                                             (19) 
 

B
~ � Ã = <[(a2, b2, c2); μ3], [(a2, b2, c2); μ4]> � <[(a1, b1, c1); μ1],  

[(a1, b1, c1); μ2]> 

= <[(a2/c1, b2/b1, c2/a1); Min(μ1, μ3)], [(a2/c1, b2/b1, c2/a1);  

Min(μ2,μ4)]>.             (20)  

Sets  

In this section, we introduce a method for analyzing fuzzy system reliabil-
ity based on vague sets (Chen, 2003), where the reliabilities of the compo-
nents of a system are represented by triangular vague sets defined in the 
universe of discourse [0, 1]. 

Consider a series system shown in Fig. 2, where the reliability 
i

R
~

 of the 

subsystem Pi  is represented by a triangular vague set <[(ai, bi, ci); μi1; μi2]>, 

where 0 	 μi1 	 μi2  	 1, and 1 	 i 	 n  Then, the reliability R
~

of the series 
system shown in Fig. 2 can be evaluated as follows:  

R
~

= R
~

1 e R
~

2 e e R
~

n= <[(a1, b1, c1); μ11; μ12]>e  

<[(a2, b2, c2); μ21; μ22]> e  e  <[(an, bn, cn); μn1; μn2]> 
 

= <[( a�
�

n

1i
i, b�

�

n

1i
i, c�

�

n

1i
i); Min(μ11, μ21, , μn1);  

Min(μ12, μ22, , μn2)]>.                (21)   
 

12.4 Analyzing Fuzzy System Reliability Based on Vague 
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Furthermore, consider the parallel system shown in Fig. 3, where the re-

liability 
i

R
~

 of the subsystem P i is represented by a triangular vague set 

<[(ai, bi, ci); i1; i2]>, where 0 	 i1 	 i2  	 1, and 1 	 i 	 n. Then, the re-

liability R
~

of the parallel system shown in Fig. 3 can be evaluated as fol-
lows: 

 

R
~

= 1 � (1��
�

n

1i
i

R
~

)= 1�(1�<[(a1, b 1, c1); μ11; μ12]>) 

e (1 � <[(a2, b 2, c 2); μ21; μ22]>)e   e  (1 � <[(an, b n, c n); μn1; μn2]>) 

= 1�<[(1 – c1, 1 – b 1, 1 – a1); μ11; μ12]>e<[(1 – c2, 1 – b2, 1 – a2);

 μ21; μ22]>e    <[(1 – ce n, 1 – b n, 1 – a n); μn1; μn2]>

=  1�<[ (1 – c�
�

n

1i
i), (1 – b�

�

n

1i
i/, (1 – a�

�

n

1i
i//; Min(μ11; μ21, , μn1); 

Min(μ12; μ22, , μn2))>

= 1 – (1 –  a�
�

n

1i
i), 1 – (1 – b�

�

n

1i
i/, 1 – (1 – c�

�

n

1i
i//;  

 Min(μ11; μ21, , μn1);Min(μ12; μ 22, , μn2))>                                     (22) 
 
In the following, we use an example to illustrate the fuzzy system reli-

ability analysis process of the proposed method. 

Consider the system shown in Fig. 9, where the reliabilities of the subsys-

tems P1, P2, P3 and P4 are represented by the triangular vague sets R
~

1, R
~

2, 

R
~

3 and R
~

4, respectively, where 
 

R
~

1  = <[(a1, b 1, c 1); μ 11; μ12]>, R
~

2  = <[(a2, b 2, c 2); μ 21; μ 22]>, 

R
~

3  = <[(a3, b 3, c 3); μ 31; μ 32]>, R
~

4 = <[(a4, b 4, c4); μ 41; μ 42]>, 
 

12.4.1 Example 
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0 	 μi1 	 μi2 	 1 and 1 	 i 	 4. Based on the previous discussion, we can see 

that the reliability R
~

of the system shown in Fig. 9 can be evaluated as fol-
lows: 
 

R
~

 =      [1� (1� R
~

1) e  (1� R
~

2)] e  [1� (1� R
~

3)e (1� R
~

4)] 
 

= [1 � (1 � <[(a1, b1, c1); μ11; μ12]>)e (1 � <[(a2, b2, c2); μ21; μ22]>)  

e  [1� (1 � <[(a3, b3, c3); μ31; μ32]>)e (1 � <[(a4, b4, c4); μ41; μ42]>)] 
 
= [1�<[(1 – c1, 1 – b1, 1 – a1); μ11; μ12]>e<[(1 – c2, 1 – b2, 1 – a2); 

 μ21; μ22]>]  [1�<[(1 – ce 3, 1 – b3, 1 – a3); μ31; μ32]> e  

<[(1 – c4, 1 – b4, 1 – a4); μ41; μ42]>] 
 
= [1�<[((1 – c1)(1 – c2), (1 – b1)(1 – b2), (1 – a1)(1 – a2));  

Min(μ11; μ21); Min(μ12, μ22)]>] e  [1�<[((1 – c3)(1 – c4), (1 – b3) 

(1 – b4), (1 – a3)(1 – a4)); Min(μ31; μ41); Min(μ32, μ42)]>] 
 
= <[(1 – (1 – a1)(1 – a2), 1 – (1 – b1)(1 – b2), 1 – (1 – c1)(1 – c2));  

Min(μ11; μ21); Min(μ12, μ22)]>] e <[(1 – (1 – a3)(1 – a4), 1 –  

(1 – b3)(1 – b4), 1 – (1 – c3)   (1 – c4)); Min(μ31; μ41); Min(μ32, μ42)]> 
 
= <[(a1 + a2 – a1a2, b1 + b2 – b1b2, c1 + c2 – c1c2); Min(μ11; μ21);  

Min(μ12, μ22)]> e <[(a3 + a4 – a3a4, b3 + b4 – b3b4,  

c3 + c4 – c3c4); Min(μ31; μ41); Min(μ32, μ42)]> 
 
= <[((a1 + a2 – a1a2)(a3 + a4 – a3a4), (b1 + b2 – b1b2)(b3 + b4 – b3b4),  

(c1 + c2 – c1c2)(c3 + c4 – c3c4)), Min(μ11, μ21, μ31, μ41);  

Min(μ12, μ22, μ32, μ42)]> 

= <[(a1a3 + a1a4 – a1a3a4 + a2a3 + a2a4 – a2a3a4 – a1a2a3 – a1a2a4  

+ a1a2a3a4, b1b3 + b1b4 – b1b3b4 + b2b3 + b2b4 – b2b3b4 – b1b2b3 – b1b2b4

+ b1b2b3b4, c1c3 + c1c4 – c1c3c4 + c2c3 + c2c4 – c2c3c4 – c1c2c3 – c1c2c4  

+ c1c2c3c4); Min(μ11, μ21, μ31, μ41); Min(μ12, μ22, μ32, μ42)]>.           (23)  
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Output 

P1

P2

P3

P4

Input 
 
 
 
 
 

 
Fig. 9. A system with four subsystems P1 , P2, P3 and P4

In this chapter, we have presented a method for analyzing fuzzy system re-
liability based on the vague set theory, where the components of a system 
are represented by triangular vague sets defined in the universe of dis-
course [0, 1]. The grade of membership of an element x in a vague set is 
represented by a vague value [tx, 1 – fx] in [0, 1], where tx indicates the de-
gree of truth, fx indicates the degree of false, 1 – tx – fx indicates the un-
known part, 0 	 tx 	 1 – fx 	 1, and tx + fx 	 1. The proposed method can 
model and analyze fuzzy system reliability in a more flexible and conven-
ient manner.  
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Theory of reliability is more than fifty years old. Its basic concepts were es-
tablished in the 1950s as useful tools for the analysis of complex technical 
systems. The rapid development of the theory of reliability was closely related 
to the importance of its main field of applications - military and space. For 
this reason the origins of the research in the area of reliability are still not well 
known. Ralph A. Evans, one of the founders of the IEEE Transactions on 
Reliability, wrote in an Editorial in this journal that all important theoretical 
results published in the 1960s and 1970s had been already obtained even in 
the 1950s, and for many years remained classified. The authors of the most 
important publications on reliability from those years belonged to the group of 
the most important scientists working in theory of probability, mathematical 
statistics, electronics and computer sciences.  

When we look at the theory of reliability as the application of a basic 
mathematical theory, we could see without any doubt that it should be 
reagarded as one of the most important applications of the theory of 
probability. All important events which are of interest for the theory and 
practice of reliability have undoubtedly stochastic character, and all processes 
that lead to failures can be described by stochastic processes. Therefore, the 
theory of probability has been for many years used as the only tool for 
description, prediction and optimization of reliability. As the consequence of 
applying that approach, mathematical statistics has been used for the analysis 
of reliability data.  

In its initial phase of development, statistical methods used in the area of 
reliability were based on a classical approach to statistics. Classical concepts 
of statistics, such as estimators, confidence intervals and tests of hypotheses, 
that have their interpretations in terms of frequencies, were widely used in the 
analysis of reliability data. However, together with a continuous improvement 
of reliability of components and systems these classical methods became not 
sufficient for practical applications. Therefore, new statistical methods that 
were based on the Bayesian paradigm found their applications both in theory 
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and practice of reliability. It is worthy noting that in that time the Bayesian 
approach to statistics was heavily attacked by the majority of the statistical 
community. However, practical successes of this approach have resulted 
nowadays with common acceptance of the Bayesian methodology in the area 
of reliability. 

During the last fifteen years we have witnessed a similar situation in the 
case of the application of the theory of fuzzy sets in the area of reliability. 
First, in the early 1980s the quality of components used mainly in the aero-
space industry became so high that the probabilities of their failures had the 
order of magnitude close to 10-7 and less. Classical statistical methods of es-
timation, based on the observation of a random sample, are not applicable in 
that case. On the other hand, the methods based on the Bayesian approach are 
usually too complicated to be used in practice. As the result of these difficul-
ties researchers and practitioners working in the area of reliability were able to 
provide only imprecisely defined values of probabilities of failures. In order to 
describe those imprecise values of probabilities they proposed to use the the-
ory of fuzzy sets introduced by Lotfi A. Zadeh in the 1960s. Moreover, this 
new methodology appeared to be very useful in all cases where the informa-
tion related to reliability were based on imprecise expert opinions, imprecisely 
reported reliability data, etc. Another impulse for the development of the 
fuzzy reliability methodology was given in the investigation of complex man-
machine systems, and complex multistate systems with imprecise definitions 
of failures. New methods for the reliability analysis that are based on the the-
ory of fuzzy sets (and the related theory of possibility) and its mixture with 
the theory of probability have been proposed during last fifteen years, and are 
now ready for practical applications. An excellent overview of the problems 
mentioned above can be found in the paper by Cai [5]. 
The number of papers devoted to the applications of fuzzy sets in the analysis 
of reliability has become quite large, and it is rather impossible to present a 
comprehensive review of all of them in one paper. The readers who are inter-
ested in a broad introduction to the problem are encouraged to read collections 
of papers on that topic edited by Onisawa and Kacprzyk [43] and Misra [33]. 
Therefore, we have decided to give a rather general overview of the main 
results in this area. In the second section of the paper we consider problems 
related to the reliability analysis of systems with the usage of imprecise prob-
abilities. In the third section of the paper we present the most important appli-
cations of the theory of possibility in the area of reliability. The fourth section 
is devoted to another very important from a practical point of view problem: 
statistical analysis of imprecise reliability data in both classical and Bayesian 
frameworks. Throughout the paper we present only main ideas and results that 
have been published in a few selected papers. The reader is encouraged, how-
ever, to find other related results that have been already published in the pa-
pers referenced by the papers that are listed in the bibliography to this paper. 
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The methodology for the evaluation of reliability of a system characterized by 
binary states of its elements and binary states of the whole system was pro-
posed in the early 1960s. Its detailed description can be found in fundamental 
books by Barlow and Proschan [1],[2]. We recall now only some basic no-
tions of this theory. 

Let  be a vector that describes the state of n elements of the 
system such that 

. nxxx ,...,, 21�x /
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and O2describes a binary state of the whole system, i.e. 
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failed is  system  theif0
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We assume that the state of the whole system is completely determined by 
the states of its elements, i.e. . /nxxx ,...,, 21OO � . Function . /nxxx ,...,, 21OO �  is 
called the structure function of the system, or, simply, the structure. It is pos-
sible to show that every structure can be expressed by the following general 
formula: 
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where the summation is taken over all n-dimensional binary vectors y (00 � 1). 
Hence, every structure can be expressed as a polynomial of binary functions xi 
that describe elements of the system. 

Now, let us introduce the following notation: 
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The i-th element of the system is irrelevant if . / . /x0x1 ,, ii OO �  for all ; 
otherwise such element is relevant. The system is called coherent if (a) its 
structure function O is increasing in every component, and (b) all its elements 
are relevant. For the coherent systems there exist many algorithms for effi-
cient calculations of their reliability defined as the probability that the system 
is functioning. 

. /x,i&

Probabilities 
13.2 Evaluation of Reliability in Case of Imprecise            



366    Olgierd Hryniewicz  

One of the fundamental concepts of reliability of systems is the notion of a 
minimal path. A minimal path is a subset of system’s elements such that if all 
these elements work, the whole system works. A dual concept to the minimal 
path is that of a minimal cut. A minimal set of system’s elements is called a 
minimal cut if the failures of all its elements cause the failure of the whole 
system. Suppose that the considered system has  minimal cuts, and  

minimal paths. Denote by , 
cn pn

sC ) *cns ,...,1	  a minimal cut of a system, and by 
, rP ) *pnr ,...,1	  its minimal path. According to the fundamental result of 

Birnbaum et al. [3] the structure of any binary system can be decomposed 
using either minimal paths or minimal cuts, and the following formula holds: 

. / i
Cins
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n xxxx
scrp 	��	��

UV�VU�
11

1,...,O  . (2) 

Therefore, the knowledge of all minimal cuts and/or minimal paths is suffi-
cient for the full reliability description of a system. 

Let us now recall basic results that are used in the calculation of reliability 
of a system. The reliability state of a system  and of each of its elements 

 is a random variable distributed according to a two-point prob-
ability distribution. Let be the reliability of the i-th element of a 
system, and the reliability of the whole system. Then, the following general 
expression holds: 

sX

. niX i ,...,1, � /
niqi ,...,1, �

sq

. / . /nss qqqhXEq ,...,, 21�� . (3) 

When the system is coherent and failures of its elements are statistically inde-
pendent, then h(q1, q2, ..., qn), technically, is constructed by replacing 

in (2) with ; next by changing nxxx ,...,, 21 nqqq ,...,, 21 V  to a product operator 
on [0, 1], and  to a probabilistic sum on [0, 1], and finally replacing the 
powers like (if exist) with respective values of . Thus, the knowl-
edge of  and the values of , in case of coherent binary struc-
tures and independent failures of elements, is fully sufficient for the calcula-
tion of the reliability of the whole system. 

U
2, �mqm

k kq

. /xO nqqq ,...,, 21

Reliability analysis of complex systems can be divided into two phases: de-
termination of the structure function and evaluation of the reliabilities of sys-
tem’s elements. The sets of minimal cuts and minimal paths can be obtained 
using different methods. However, the most efficient, and thus the most fre-
quently used, method is the fault tree analysis. This method was introduced 
more than forty years ago, and since that time has been successfully used in 
many areas, such as aerospace industry, nuclear power plants, etc. The 
method consists in defining a structure of physical events related to failures of 
system’s elements. There exist methods for the extraction of minimal paths 
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and minimal cuts from the information contained in a fault tree when its 
events are precisely defined. However, it is much more difficult to evaluate 
probabilities of specific failures, and thus the reliabilities of systems compo-
nents. In a classical approach to a fault tree analysis it is assumed that all these 
probabilities are precisely known. However, in many practical situations, es-
pecially in case of reliable components, the knowledge of probabilities of 
failures (or reliabilities) is hardly precise. Even if we use statistical data for 
the evaluation of those probabilities, we cannot be sure that these data have 
been obtained in exactly same conditions. Usually, we use data from reliabil-
ity tests of similar objects conducted in similar conditions, but very often our 
data come from tests conducted in completely different conditions, e.g. from 
accelerated life tests. In all these cases there is a need to recalculate the results 
of reliability tests to the case of the considered system. Such recalculation 
very often needs opinions of experts, and these opinions are usually expressed 
in a natural language using vague and imprecise expressions. The formal de-
scription of this lack of precision is one of the most important practical prob-
lems of reliability analysis. Some researchers claim that the language of the 
probability theory is the only one that can be used for the description of uncer-
tainty. However, there exist multitude counterexamples that indicate a neces-
sity to apply other approaches. Moreover, the application of the theory of 
probability for the description of all imprecise information in the case of the 
reliability analysis of complex systems will make this analysis impossible to 
do due to an extremely high complexity of necessary computations. There-
fore, the theory of fuzzy sets introduced by Lotfi A. Zadeh seems to be much 
better suited for this purpose. 

In this paper we assume that the theory of fuzzy sets gives us tools appro-
priate for modeling and handling vague data such as imprecisely defined 
probabilities of failures. In the theory of fuzzy sets all objects of interest 
(events, numbers, etc.) have associated values of the so called membership 
function b. The value of the membership function can be interpreted in differ-
ent ways depending on the context. In the context of the evaluation of impre-
cise probabilities the value of the membership function b(p) can be interpreted 
a possibility that the unknown probability adopts the value of p. 

Let us now recall some basic notions of the theory of fuzzy sets that will be 
used in this paper. We start with the definition of a fuzzy number. 

 
Definition 1. The fuzzy subset A of  the real line R, with the membership func-
tion , is a fuzzy number iff ' (1,0: -RAb
(a) A is normal, i.e. there exists an element ,  such that 0x . / 10 �xAb ; 
(b) A is fuzzy convex, i.e. . /. / . / . /2121 1 xxxx AAA bb==b V��� , 

' (1,0,, 21 	
	
 =Rxx �; 
(c) is upper semi-continuous; Ab
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(d) supp(A) is bounded. 
This definition is due to Dubois and Prade (see [13]). It is easily seen from 

this definition that if A is a fuzzy number then its membership function has the 
following general form: 
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(4) 

where , 43214321 ,,,, aaaaRaaaa ���	 ' ( ' (1,0,: 21 -aarl  is a non-
decreasing upper semi-continuous and ' ( ' (1,0,: 43 -aaru  is a non-increasing 
upper semi-continuous function. Functions  and  are called sometimes the 
left and the right arms (or sides) of the fuzzy number, respectively. 

lr ur

By analogy to classical arithmetic we can add, subtract, multiply and divide 
fuzzy numbers (for more details we refer the reader to [13] or [35]). In a gen-
eral case all these operations become rather complicated, especially if the 
sides of fuzzy numbers are not described by simple functions. Thus, only sim-
ple fuzzy numbers - e.g. with linear or piecewise linear sides - are preferred in 
practice. Such fuzzy numbers with simple membership functions have more 
natural interpretation. Therefore the most often used fuzzy numbers are trape-
zoidal fuzzy numbers, i.e. fuzzy numbers whose both sides are linear. Trape-
zoidal fuzzy numbers can be used for the representation of such expressions 
as, e.g., “more or less between 6 and 7”, “approximately between 12 and 14”, 
etc. Trapezoidal fuzzy numbers with a2 = a3 are called triangular fuzzy num-
bers and are often used for modeling such expressions as, e.g., “about 5”, 
“more or less 8”, etc. Triangular fuzzy numbers with only one side may be 
useful for the description of opinions like “just before 50” (a2 = a3 = a4) or 
“just after 30” (a1 = a2 = a3). If a1 = a2 and a3 = a4 then we get, so called, rec-
tangular fuzzy numbers which may represent such expressions as, e.g., “be-
tween 20 and 25”. It is easy to notice that rectangular fuzzy numbers are 
equivalent to well known interval numbers. In a special case of a1 = a2 = a3 = 
a4 = a we get a crisp (non-fuzzy) number, i.e. a number which is no longer 
vague but represents precise value and can be identified with the proper real 
number a. 

A useful tool for dealing with fuzzy numbers is the concept of ��cut or 
��level set. The ��cut of a fuzzy number A is a non-fuzzy set defined as 

. /) *�b� �	� xxA :R . (5) 

A family  is a set representation of the fuzzy number A. Basing 
on the resolution identity introduced by L. Zadeh, we get: 

' () 1,0: 	��A *
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. / . / ' () *1,0:sup 	� ��b
�

xIx AA  , (6) 

where  denotes the characteristic function of A. /xI A� �. From Definition 1 we 

can see that every ��cut of a fuzzy number is a closed interval. Hence we 
have ' (UL AAA ��� ,� , where 
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Hence, by (4) we get . / . /�� ��
11 , �� �� u

U
l

L rArA . 
In the analysis of fuzzy numbers and their functions we use the extension 

principle introduced by Zadeh [61], and described by Dubois and Prade [15] 
as follows: 

 
Definition 2.  Let X be a Cartesian product of universes, , 
and be r fuzzy sets in , respectively. Let f be a map-
ping from  to a universe Y such that 

rXXX ��� �21

rAAA ,...,, 21 rXXX ,...,, 21

rXXXX ���� �21 . /rxxxfy ,...,, 21� . 
The extension principle allows us to induce from r fuzzy sets  a fuzzy set B 
on Y through f such that 
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Using the extension principle we can calculate membership functions of 
fuzzy sets that are defined as functions of other fuzzy sets. In their pioneering 
work Tanaka et al. [51] used the concept of fuzzy numbers for the description 
of imprecise probabilities in the context of fault tree analysis. They assumed 
that probabilities of events of a fault tree are described by the mentioned 
above trapezoidal fuzzy numbers. In such a case it is easy to show that the 
fuzzy probability of the failure (or fuzzy reliability) of a whole system is also 
a fuzzy number, but its membership function does not preserve trapezoidal 
shape. However, we can use the concept of �-cuts for relatively simple com-
putations.  

Let us assume that the reliabilities of systems components are described by 
fuzzy numbers defined by their �-cuts: . / niqq UiLi ,...,1,, ,, ��� . Then, the �-cut 

. /��
UsLs qq ,, ,  for a coherent system can be calculated from (3) as follows: 

. /����
LnLLLs qqqhq ,,2,1, ,...,,� , (10) 

. /����
UnUUUs qqqhq ,,2,1, ,...,,� . (11) 
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This relatively simple way of calculations can be used only in the case of a 
known function . Formal description of the general procedure for the 
calculation of fuzzy system reliability can be also found in Wu [58]. However, 
when the calculations have to be made using directly the information from a 
fault tree, the methodology proposed in [51] has some drawbacks as it cannot 
be used for the fault trees with repeated events, and fault trees that contain 
events and their complementary events at the same tree. These drawbacks 
have been resolved by Misra and Soman who in [34] proposed a more general 
methodology for dealing with multistate systems and vectors of dependent 
fuzzy probabilities. 

. &&,...,h /

The general methodology described above is valid for any fuzzy descrip-
tion of fuzzy reliabilities nqqq ~,...,~,~

21 . However, for practical calculations it is 

recommended to select several values of �, and to calculate �-cuts of the 
fuzzy reliability of the system sq~  for these values of �. Then the membership 
function of sq~  may be approximated by a piecewise linear function which 

connects the ends of consecutive �-cuts. More precise results can be obtained 
if for the description of imprecise probabilities we use the so called L-R fuzzy 
numbers introduced by Dubois and Prade [14]. For this case Singer [49] has 
presented recursive formulae that can be used for the calculation of the fuzzy 
reliability of a system. 

Interesting application of fuzzy sets in the analysis of fault trees can be 
found in the paper by Lin and Wang [31], who considered the problem of 
estimating fuzzy probabilities of events using imprecise linguistic assessments 
for human performance and vague events. Fuzzy measures of importance of 
the elements of a fault tree described by fuzzy probabilities were considered 
in the paper by Suresh et al. [50]. Practical example of the fault tree analysis 
with fuzzy failure rates can be found in the paper by Huang et al. [24]. 

The general approach presented in this section can be used for solving any 
well defined problem of reliability analysis with imprecisely defined parame-
ters. For example, Cheng [9] used fuzzy sets to describe reliability of repair-
able systems using a fuzzy GERT methodology. In all such cases the exten-
sion principle and the concept of �-cuts is quite sufficient for making neces-
sary computations. However, if in these computations non-monotonic func-
tions are involved, then it may be necessary to solve non-linear programming 
problems in order to arrive at required solutions. 
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In the previous section we have described the results of research in the area of 
system reliability for the case of imprecise (linguistic) description of prob-
abilities of failures (or probabilities of survival, i.e. reliabilities). In all these 
papers life times were assumed to have probabilistic nature, but their distribu-
tions were imprecisely defined, resulting with imprecise probabilities of fail-
ures. Imprecise values in these models were described by fuzzy sets, and this 
description was often interpreted in terms of the theory of possibility intro-
duced by L. A. Zadeh [62]. 

Zadeh [62] introduced the notion of possibility for the description of 
vaguely defined events whose interpretation in terms of probabilities is at 
least questionable. He introduced the notion of the possibility distribution, and 
showed that it can be formally described by fuzzy sets. This theory was fur-
ther developed by many authors in the framework of the theory of fuzzy sets, 
and in the late 1980s found its applications in the area of reliability. The dis-
tinctive feature of the theory of possibility is not the way it describes vaguely 
defined concepts, but how it is used for merging uncertainties of possibilistic 
nature. In this respect it is basically different from the theory of probability, as 
it is not additive, and is governed by fuzzy logic. 

For the readers who are not familiar with fuzzy logic we recall now two its 
most important features. Suppose we have two fuzzy sets A

~
and B

~
described 

by the membership functions . /x . /xAb  and Bb , respectively. Then, the 

membership function of the logical sum (union) of A
~

B
~

 and   is given by  

. / . / . /' (xxx BABA bbb ,max�B , (12) 

and the membership function of the logical product (intersection) of A
~

 and B
~

 
is given by  

. / . / . /' (xxx BABA bbb ,min�d . (13) 

Thus, possibility measures are rather “maxitive” in contrast to the “additivity” 
of their probabilistic counterparts. 

Possibilistic approach to reliability was introduced in works of Cai and his 
collaborators (for references see [4], [6], [5]) and Onisawa( see [41], [42]). 
Cai in his papers has given practical examples which let him conclude that in 
many cases life times have no probabilistic meaning but should be described 
by possibilistic (fuzzy) variables. The rationale behind that reasoning was the 
following: in many cases failures such as, e.g. software failures, cannot hap-
pen more than once. In such cases, Cai claims, probabilistic approach with its 
interpretation in terms of frequencies is not appropriate. Thus, times to such 

13.3 Possibilistic Approach to the Evaluation of Reliability 
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singular failures should be rather described by possibility distributions than by 
probability distributions. Introduction of possibilistic models of reliability 
from a purely mathematical point of view can be found in [8] and [12]. 

The agreement to possibilistic assumptions has many far reaching conse-
quences for the analysis of system reliability. Let us define the system (or its 
component) life time X as a fuzzy variable [6]: 

. / ' /�3�	�� � ,0,:: RU uuuuX XX + , (14) 

where  is the possibility distribution of X. In such a case the possibilis-
tic reliability (“posbist ” reliability in Cai’s terminology) is defined as the 
possibility that for given conditions the system performs its assigned func-
tions, and is calculated from the following formula [6]: 

. /uX+

. / . / . /utXtR X
tu
U

�
��� supA , (15) 

where A is a possibility measure. 
Now, let us present two important theorems (formal definitions of some 

concepts used in these theorems are given in [6]). 
 

Theorem 1. (Cai et al. [6]) Suppose a series system has two components. Let 
 be the component lifetimes, respectively. Further we assume 
are both normalized unrelated fuzzy variables, defined on (
, G, �), 

with continuous possibility distribution functions, and induce strictly convex 
fuzzy sets, , 
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Theorem 2. (Cai et al. [6]) Suppose a parallel system has two components. 
Let  be the component lifetimes, respectively. Further we as-
sume  are both normalized  unrelated fuzzy variables, defined on (
, G, 
�), with continuous possibility distribution functions, and induce strictly con-
vex fuzzy sets,  

21, XX

21, XX

. /uuX X1
:1 U� , . /uuX X 2

:2 U� . Let X be the system lifetime. 

Then there exists a unique pair . /21, aa , , such that the possibility 
distribution function of X, denoted by 

�	 R21, aa

. /xXU , is given by  
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Similar results have been also given in [6] for other reliability systems like a 
k-out-of-n system, and for the most general case of a binary coherent system. 

The consequences of both theorems (and their extensions) are somewhat 
strange. Cai et al. [6] already noticed: “the reliability of a parallel system with 
an arbitrary number of unrelated components coincides with the reliability of 
a series system with another arbitrary number of unrelated components, pro-
vided that all of the components contained in the systems are identical”. This 
feature, in our opinion, indicates that the notion of the possibilistic reliability 
of systems should be used very cautiously. 

In the possibilistic model described above it has been assumed that reliabil-
ity states of the system and its components are binary. However, in many real 
cases, especially for large and complex systems, this assumption is not true. In 
the classical (probabilistic) theory of reliability the notion of “multistate sys-
tems” is used in order to cope with this problem. Unfortunately, the existing 
reliability data is usually not sufficient for the proper identification of such 
systems. Moreover, for multistate components and systems it is usually very 
difficult to define precisely the failures, especially in the case of failures made 
by human (operator) errors. Therefore, some researchers proposed to use 
fuzzy sets for the description of vaguely defined failures. 

The importance of the problem of vaguely defined failures was recognized 
for the first time in the papers by Nowakowski [39], Nishiwaki [38], Nishi-
waki and Onisawa [44], and Onisawa [40], [42] devoted to the problem of 
reliability analysis of man-machine systems. Interesting approach to that prob-
lem, both from probabilistic and fuzzy point of view, was also proposed by 
Rotshtein [48]. Similar problems have been also noticed in the analysis of 
fault trees constructed for complex systems. Fault trees, or more general event 
trees, are used for the description of the relationships between physical states 
of a system and its reliability states. In the classical case of binary systems 
this relationship is well defined, and described using logical gates AND, OR, 
and NOT. However, in many practical cases we do not have enough informa-
tion to establish sure links between particular physical states of a system and 
its particular failures. 

Different approaches have been used to model imprecise relationships be-
tween physical and reliability states of a system. Pan and Yun [45] proposed 
to use fuzzy gates with outputs described by triangular fuzzy numbers instead 
of crisp values 0 or 1. Another generalization of fault tree gates was proposed 
by Onisawa (see [42]) who considered parametric operations called Dombi t-
norm and Dombi t-conorm instead of AND and OR operators, respectively. 
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Full application of the theory of possibility in the analysis of fault trees has 
been proposed by Nahman [37] and Huang et al. [25] who used possibility 
measures for the description of transition between states of a fault tree, and 
fuzzy logic for the description of its gates. 

One of the most challenging problems of the reliability of complex systems 
is the multistate nature of their behaviour. Structure function describing the 
behaviour of systems composed of multistate elements could be extremely 
difficult to find and very often even impossible to be precisely identified. An 
attempt to describe such complex situation with the usage of fuzzy sets has 
been proposed by Montero et al. [36] and Cutello et al. [11]. 

Possibilistic approach to reliability has been also used for the analysis of 
repairable systems. Utkin and Gurov [52], [53] presented a mathematical 
model for the description of exploitation processes of systems using func-
tional equations that describe transition processes between different states of a 
system. In a probability context these equations describe a stochastic process 
of the random behaviour of the system. However, the same equations can be 
used for that description in the possibilistic context. The resulting formulae 
look very awkwardly, but rather surprisingly they are easier to solve. 

In the previous sections we have assumed that all probabilities, crisp or fuzzy, 
that are necessary for the computations of reliability are known. However, in 
practice they have to be estimated from statistical data. One of the most im-
portant problems of reliability analysis is the estimation of the mean life time 
of the item under study (system or component). In technical applications this 
parameter is also called mean time to failure (MTTF) and is often included in 
a technical specification of a product. For example, producers are interested in 
whether this time is sufficiently large, as large MTTF allows them to extend a 
warranty time. Classical estimators require precise data obtained from strictly 
controlled reliability tests (for example, those performed by a producer at his 
laboratory). In such a case a failure should be precisely defined, and all tested 
items should be continuously monitored. However, in real situation these re-
quirements might not be fulfilled. In the extreme case, the reliability data 
come from users whose reports are expressed in a vague way. The vagueness 
of the data has many different sources: it might be caused by subjective and 
imprecise perception of failures by a user, by imprecise records of reliability 
data, by imprecise records of the rate of usage, etc. The discussion concerning 

13.4 Statistical Inference with Imprecise Reliability Data 

13.4.1 Fuzzy Estimation of Reliability Characteristics 
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different sources of vagueness of reliability data can be found in Grzegor-
zewski and Hryniewicz [18]. Therefore we require different tools appropriate 
for modeling vague data and suitable statistical methodology to handle these 
data as well. 

To cope with the formal description of data that are both random and im-
precise (fuzzy) it is convenient to use the notion of a fuzzy random variable. It 
was introduced by Kwakernaak [30]. There exist also definitions of fuzzy 
random variables that have been proposed by other authors, for example by 
Kruse [27] or by Puri and Ralescu [47]. The definition, we present below, was 
proposed in [19], and is similar to those of Kwakernaak and Kruse (see [17]). 
Suppose that a random experiment is described as usual by a probability space 
(S,A,P), where S is a set of all possible outcomes of the experiment, A is a 
A�algebra of subsets of S (the set of all possible events) and P is a probability 
measure. 
Definition 3.  A mapping  is called a fuzzy random variable if it 
satisfies the following properties: 

FN-S:X

a) . / ' () 1,0: 	�H�X *   is a set representation of . /HX        for all S	H , 

b) for each ' (1,0	�  both . / . /HH ��� XXX LL inf��  and 

. / . /HH ��� XXX UU sup�� , are usual real-valued random variables on 
. . /PA ,,S

Thus a fuzzy random variable X is considered as a perception of an un-
known usual random variable R-S:V , called an original of X. Let V de-
note a set of all possible originals of X. If only vague data are available, it is 
of course impossible to show which of the possible originals is the true one. 
Therefore, we can define a fuzzy set on V, with a membership function 

' (1,0: -Vg  given as follows: 

. / . / . /. /) *S	� HHbg H :inf VV X , (18) 

which corresponds to the grade of acceptability that a fixed random variable V 
is the original of the fuzzy random variable in question (see Kruse and Meyer 
[28]). 

Similarly n�dimensional fuzzy random sample may be con-
sidered as a fuzzy perception of the usual random sample  (where 

 are independent and identically distributed crisp random vari-

ables). A set of all possible originals of that fuzzy random sample is, in 
fact, a fuzzy set with a membership function 

nXXX ,...,, 21

nVVV ,...,, 21

nVVV ,...,, 21

nV

. / . / . /. /) *S	�
�

HHbg H :infmin,...,
,...,1

1 iX
ni

n VVV
i

. (19) 
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Random variables are completely characterized by their probability distri-
butions. However, in many practical cases we are interested only in some 
parameters of a probability distribution, such as expected value or standard 
deviation. Let  be a parameter of a random variable V. This parameter 
may be viewed as an image of a mapping 

. /VII �
RP -4 : , which assigns each ran-

dom variable V having distribution  the considered parameter I, where 
 is a family of distributions. However, in case of fuzzy random 

variables we cannot observe parameter I22but only its vague image. Using this 
reasoning together with Zadeh’s extension principle Kruse and Meyer [28] 
introduced the notion of a fuzzy parameter of a fuzzy random variable which 
may be considered as a fuzzy perception of the unknown parameter I. It is 
defined as a fuzzy set with the following membership function: 

P	IP

) J	� II :PP *

. /. / . / . /) * RV 	�	�E ttVVVt ,,:sup Igb I , (20) 

where is given by (18). This notion is well defined because if our data are 

crisp, i.e. X = V , we get E(I) = 
. Similarly, for a random sample of size n we 
get 

. /Vg

. /. / . / . / . /) * RV 	�	�E ttVVVVVt n
nn ,,,...,:,...,sup 111 Igb I . (21) 

One can easily obtain ��cuts of E(I): 

. / . / . /)
. / . /. / *.,...,1for  andfor

such that,,,...,: 11

niXV

tVVVRt

ii

n
n

�S		
�	f	�E

HHH
II

�

� V
 

(22) 

For more information we refer the reader to Kruse, Meyer [28]. 
First papers devoted to the analysis of fuzzy reliability data did not use ex-

plicitly the concept of a fuzzy random variable. Pioneering works in this field 
can be attributed to Viertl [54],[55], who found appropriate formulae for im-
portant reliability characteristics by fuzzifying formulae well known from 
classical statistics of reliability data. The results of those and other works have 
been presented in the paper by Viertl and Gurker [56], who considered such 
problems as estimation of the mean life-time, estimation of the reliability 
function, and estimation in the accelerated life testing (with a fuzzy accelera-
tion factor). Original approach has been proposed in Hryniewicz [21] who did 
not model fuzzy time to failures, but fuzzy survival times. In his models only 
the right-hand side of the fuzzy numbers has been considered, but this ap-
proach let him consider in a one mathematical model such phenomena like 
censored life times and partial failures. 

One of the first attempts to propose a comprehensive mathematical model 
of fuzzy life times as fuzzy random variables was given in Grzegorzewski and 
Hryniewicz [18]. Grzegorzewski and Hryniewicz considered the case of ex-
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ponentially distributed fuzzy life time data, and proposed the methodology for 
point estimation, interval estimation, and statistical hypothesis testing for the 
fuzzy mean life time. These results have been further extended in [19] where 
they also considered the case of vague censoring times and vague failures. In 
the case of vague failures the number of failures observed during the life time 
test is also fuzzy. The methodology for the description of a fuzzy number of 
failures in the context of the life time estimation was considered in [16]. 

Let us now present a summary of the results given in [19]. To begin with, 
let us recall some basic results from a classical theory of the statistical analy-
sis of life time data. The mean lifetime may be efficiently estimated by the 
sample average from the sample of the times to failure W1, . . . , Wn of n tested 
items, i.e. 

nWWMTTF n /)( 1 ��� � . (23) 

However, in the majority of practical cases the lifetimes of all tested items are 
not known, as the test is usually terminated before the failure of all items. It 
means that exact lifetimes are known for only a portion of the items under 
study, while remaining life times are known only to exceed certain values. 
This feature of lifetime data is called censoring. More formally, a fixed cen-
soring time , i = 1, . . . , n is associated with each item. We observe 

only if . Therefore our lifetime data consist of pairs 
, where 

0�iZ

iW ii ZW �

. / . nn YTYT ,,...,, 11 /
) *iii ZWT ,min� , (24) 

�
�
�

�
�

�
ii

ii
i ZW

TW
Y

 if0

 if1
. (25) 

There are many probability distributions that are used in the lifetime data 
analysis. In [19] the exponential distribution has been used for modeling the 
lifetime T. The probability density function in this case is given by 

. /
��

�
�
�

�

��
�

0 if0

0 if
1

t

tetf
t
I

I . 
(26) 

where I2�2h2is the mean lifetime. Let 

� � �
� 	 	

���
n

i Di Ci
iii ZWTT

1

 
(27) 

be the total survival time (sometimes called a total time on test), where D and 
C denote the sets of items for whom exact life times and censoring times are 
observed, respectively. Moreover, let 
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�
�

�
n

i
iYr

1

 
(28) 

be the number of observed failures. In the considered exponential model the 
statistic (r, T) is minimally sufficient statistic for I and the maximum likeli-
hood estimator of the mean lifetime I is (assuming r > 0) 

./ˆ rT�I  (29) 

Now suppose that the life times (times to failure) and censoring times may 
be imprecisely reported. In case of precisely known failures we assume that 
the values of the indicators defined above are either equal to 0 or 
equal to 1, i.e. in every case we know if the test has been terminated by cen-
soring or as a result of failure. In order to describe the vagueness of life data 
we use the previously defined notion of a fuzzy number. 

nYYY ,...,, 21

Now we consider fuzzy life times  described by their member-
ship functions . Thus applying the extension principle to 

(27) we get a fuzzy total survival lifetime  (which is also a fuzzy number)  

nTTT
~

,...,
~

,
~

21

. / . / NFN	tt nbb ,...,1

T̂

�
�

�
n

i
iTT

1

~~  
(30) 

with the membership function 

. / . / . /) *nn
ttttt

T ttt
nn

bbb VV�
���	 �

...sup 11
:,...,

~

11 �R
 . (31) 

Using operations on ��cuts we may find a set representation of T
~

 given as 
follows 

. / . /
. /) * ].1,0[,,...,1,  where,:

~

1

1

	�	���	�

���
� ��

���

niTttttRt

TTT
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n

�

�
 

(32) 

In the special case of trapezoidal fuzzy numbers that describe both life 
times and censoring times the total time on test calculated according to (30) is 
also trapezoidal. 

If the number of observed failures r is known we can use the extension 
principle once more, and define a fuzzy estimator of the mean lifetime I

~
 in 

the presence of vague life times as 

rT /
~~

�I . (33) 

Since we can easily find the following set representation of N	r I
~

: 
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Y
Z
[

�
�
� 	�	� �

��I Tx
r

x
tRt

~
  where,:

~
. 

(34) 

For more details and the discussion on fuzzy confidence intervals we refer the 
reader to [18]. 

However, in many practical situations the number of failures r cannot be 
precisely defined. Especially in case of non-critical failures the lifetime data 
may not be reported in a precise way. In order to take into account such non-
critical failures Grzegorzewski and Hryniewicz [19] consider the state of each 
observed item at the time . Let G denote a set of all items which are func-
tioning at their censoring times . Therefore we can assign to each item 

 its degree of belongingness 

iZ

iZ

ni ,...,1� . /ig Gi b�  to G, where ' (1,0	ig . When 
the item hasn’t failed before the censoring time Zi, i.e. it works perfectly at 

, we set giZ i = 1. On the other hand, if a precisely defined failure has occurred 
before or exactly at time moment , we set giZ i = 0. If . /1,0	ig  then the item 
under study neither works perfectly nor is completely failed. This situation we 
may consider as a partial failure of the considered item. Let us notice that in 
the described above case G can be considered as a fuzzy set with a finite sup-
port. 

There are different ways to define the values of ig  depending upon consid-
ered applications. However, in the majority of practical situations we may 
describe partial failures linguistically using such notions as, e.g. “slightly 
possible”, “highly possible”, “nearly sure”, etc. In such a case we may assign 
arbitrary weights  to such imprecise expressions. Alternatively, one 
can consider a set D of faulty items and, in the simplest case, the degree of 
belongingness to D is equal

. /1,0	ig

. / iDi gid ��� 1b . Further on we’ll call gi and di as 
degrees of the up state and down state, respectively. Having observed the 
degrees of down states it is possible to count the number of failures with the 
degrees of down states exceeding certain rejection limit. Hence, we get a fol-
lowing (fuzzy) number of failures: 

f
f

opt Dr �~ , (35) 

where 
f

D denotes fuzzy cardinality of fuzzy set D. We may also start from 

up states. Therefore 

f
f

pes Gnr ��~ , (36) 

where 
f

G denotes fuzzy cardinality of fuzzy set G. However, contrary to the 

crisp counting 
ff

GnD �P . It is seen that such fuzzy number of observed 
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failures is a finite fuzzy set. Moreover, if we assume that at least one crisp 
failure is observed it is also a normal fuzzy set. 

Using the extension principle, we may define a fuzzy estimator of the mean 

life-time I
~~

 in the presence of fuzzy life times and vague number of failures. 
Namely, for crisp failure counting methods we get the following formula 

rT ~/
~~~

�I , (37) 

where T
~

 is the fuzzy total survival time and r~  denotes the number of 
vaguely defined failures. Actually (37) provides a family of estimators that 
depend on the choice of r~ . However, in the case of a fuzzy failure number 
we have 

. /rconvT ~/
~~~

�I , (38) 

where . /rconv ~  is the convex hull of the fuzzy set r~ , and is defined as follows 

. / ) *ArArconv 8	� ~:inf~ NFN . (39) 

Since now the denominator of (38) is a fuzzy number, our estimator of the 
mean life time is a fuzzy number whose membership function can be calcu-
lated using the extension principle. 

First look at the results presented above which gives impression that even 
in the simplest case of the estimation of the mean life time for the exponential 
distribution the analysis of fuzzy data is not simple. It becomes much more 
complicated in the case of other life time distributions, such as the Weibull 
distribution, and in the case of such characteristics like the reliability function. 
Further complications will be encountered if we have to evaluate the reliabil-
ity of a system using fuzzy data obtained for its components. In these and 
similar cases there is an urgent need to find approximate solutions that will be 
useful for practitioners. An example of such attempt can be found in the paper 
by Hryniewicz [23]. In this paper Hryniewicz considers the problem of the 
estimation of reliability of a coherent system . /tRs  consisted of independent 
components having exponentially distributed life times when available ob-
served life times for components are fuzzy. He assumes that observed life 
times (and censoring times) of individual components are described by trape-
zoidal fuzzy numbers. Then, he finds the membership function for the prob-
ability of failure 

. / 0,1 ���
�

tetP
t
I . (40) 

The obtained formulae are too complicated for the further usage in the calcu-
lation of the reliability of complex systems. Therefore, Hryniewicz [23] pro-
poses to approximate fuzzy total time on test by shadowed sets introduced by 



Fuzzy Sets in the Evaluation of Reliability      381 

Pedrycz [46] who proposes to approximate a fuzzy number by a set defined 
by four parameters: . The interpretation of the shadowed set is the 
following: for values of the fuzzy number that are smaller than  and greater 
than  the value of the membership function is reduced to zero, in the inter-
val  this value is elevated to 1, and in the remaining intervals, i.e. 

 and 

4321 ,,, aaaa

1a

4a

. 32 , aa /
/. 21, aa . /43, aa  the value of the membership function is not defined. It is 

easy to see that all arithmetic operations on so defined shadowed sets are sim-
ple operations on intervals, and their result is also a shadowed set. Thus, cal-
culation of imprecise reliability of a system using (3) is quite straightforward. 

In statistical analysis of reliability data the amount of information from life 
tests and field data is usually not sufficient for precise evaluation of reliabil-
ity. Therefore, there is a need to merge existing information from different 
sources in order to obtain plausible results. Bayesian methods, such as Bayes 
estimators and Bayes statistical tests, provide a mathematical framework for 
processing information of a different kind. Thus, they are frequently used in 
the reliability analysis, especially in such fields as reliability and safety analy-
sis of nuclear power plants and reliability evaluation of the products of an 
aerospace industry. There are two main sources of imprecise information in 
the Bayesian approach to reliability. First source is related to imprecise reli-
ability data, and second is connected with imprecise formulation of prior in-
formation. First papers on the application of fuzzy methodology in the Bayes-
ian analysis of reliability can be traced to the middle of 1980s. For example, 
Hryniewicz [20] used the concept of a fuzzy set to model the prior distribution 
of the failure risk in the Bayes estimation of reliability characteristics in the 
exponential model. He proposed a method for building a membership function 
using experts' opinions. However, in his model the membership function is 
interpreted as a kind of an improper prior probability distribution. Thus he 
finally arrived at non-fuzzy Bayes point estimators. At the same time Viertl 
(see [56] and [57]) used fuzzy numbers in order to model imprecise life times 
in the context of Bayes estimators. 

Despite the significant progress in the development of fuzzy Bayesian 
methodology important practical results in reliability applications have been 
published only recently. Wu [59] considered Bayes estimators of different 
reliability characteristics. For example, he found Bayes estimators of the sur-
vival probability (reliability) using the results of binomial sampling and Pas-
cal sampling experiments. In the binomial sampling experiment n items are 
tested, and the number of survivors x is recorded. Re-parameterized beta dis-
tribution is then used for the description of the prior information about the 

13.4.2 Fuzzy Bayes Estimation of Reliability Characteristics 
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estimated survival probability (reliability) q. The parameters of the prior dis-
tribution have the following interpretation: n0 is a “pseudo” sample size, and 
x0 is a “pseudo” number of survivors in an imaginary experiment whose re-
sults subsume our prior information about q. Then, the Bayes point estimator 
of q is given by 

)/()(ˆ 00 nnxxqB ��� . (41) 

Wu [59] considers now the situation when the parameter x0 is known impre-
cisely, and is described by a fuzzy number. Straightforward application of the 
extension principle leads to formulae for the limits of �-cuts of : Bq̂

)/()(ˆ 0,0, nnxxq LLB ��� ��  (42) 

and 

)/()(ˆ 0,0, nnxxq UUB ��� �� . (43) 

In the case of Pascal sampling the number of failures s is fixed, and the num-
ber of tested items N is a random variable. The parameters of the prior distri-
bution of q have the same interpretation as in the case of binomial sampling. 
Then, the Bayes point estimator of q is given by 

)/()(ˆ 00 nnsxnqB ���� , (44) 

where n is the observed value of N. When x0 is known imprecisely, and de-
scribed by a fuzzy number, the limits of �-cuts of   are given by [59]: Bq̂

)/()(ˆ 0,0, nnxsnq LLB ���� ��  (45) 

and 

)/()(ˆ 0,0, nnxsnq UUB ���� �� . (46) 

Wu [59] presents also Bayes estimators for the failure rate = and reliability 
function  in the exponential model. In his paper Wu [59] also proposes 
an algorithm for the calculation of the membership value b(q) of . 

te /=�

q̂

The Bayes estimator of = has been independently investigated by 
Hryniewicz [22] who considered the case of the crisp number of observed 
failures d, the fuzzy total time on test T

~
, and gamma prior distribution of = 

re-parameterized in such a way that one of its parameters (scale) had the in-
terpretation either of the expected value of =, denoted by E=, or its mode, de-
noted by D= . He also assumed that the shape parameter Q of the prior gamma 
distribution is known, but the values of E= (D=) are fuzzy. Now the fuzzy 
Bayes estimators of = are given by the following formulae [22]: 
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)
~

/
~

/()(ˆ =QQ= ETdE ��� , (47) 

and 
. / 1),

~
/1

~
/()(ˆ ����� QQQ= =DTdD . (48) 

The �-cuts for these estimators can be calculated straightforwardly using the 
extension principle. 

In his recent paper Wu [60] considers the case of Bayes estimators for the 
reliability of series, parallel, and k-out-of-n reliability systems in the case of 
the available results or reliability tests conducted according to the binomial 
sampling scheme. By applying the Mellin transform he finds the posterior 
distribution for the system reliability, and then fuzzifies its expected value 
arriving at the fuzzy Bayes point estimators. 

Evaluation of reliability of complex systems seems to be much more difficult 
than it appeared to be even twenty years ago. At that time probabilistic models 
developed by mathematicians and statisticians were offered with the aim to 
solve all important problems. However, reliability practitioners asked ques-
tions that could have not been successfully answered using the probabilistic 
paradigm. The usage of fuzzy sets in the description of reliability of complex 
systems opened areas of research in that field. This work has not been com-
pleted yet. In this paper we have presented only some results that seem to be 
important both from a theoretical and practical point of view. We focused our 
attention on probabilistic—possibilistic models whose aim is to combine 
probabilistic uncertainty (risk) with possibilistic lack of precision (vagueness). 
We believe that this approach is the most promising for solving complex prac-
tical problems. It has to be stressed, however, that we have not presented all 
the applications of fuzzy sets to reliability. For example, we have not pre-
sented interesting applications of fuzzy sets for the strength—stress reliability 
analysis or for a more general problem of the reliability analysis of structural 
systems. The readers are encouraged to look for the references to papers de-
voted to these problems in the papers by Jiang and Chen [26] and Liu et al. 
[32]. Another important problem that has not been considered in this paper is 
the construction of possibility measures from the information given by ex-
perts. Interesting practical example of the application of fuzzy “IF-THEN” 
rules for the solution of this problem has been presented by Cizelj et al. [10]. 
To sum up the presentation of the application of fuzzy sets in reliability we 
have to conclude that the problem of the appropriate description and analysis 
of complex reliability systems is still far from being solved. 

13.5 Conclusions 
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Theory and methodology of repairable system modeling is in nature a sto-
chastic process modeling, particularly, point process modeling. Since 
Ascher and Feingold [2] foundational work in repairable system modeling, 
many works were contributing to this research field, for example, Ander-
son et al [1], Cox [7], Dagpunar [9], Kijima [53], and Guo et al [27].  

In reliability engineering modeling, or more specifically, in repairable sys-
tem modeling, most of the reliability engineers are using the maximum 
likelihood theory for facilitating empirical analysis, which is in nature a 
large-sample based asymptotic theory for (asymptotic) confidence inter-
vals and hypothesis testing.  

 Researcher may argue that it is possible to use one data point for a point 
estimation of the single parameter under homogeneous Poisson process as-
sumptions. However, that is no longer an exercise of standard maximum 
likelihood estimation but it is merely an approximation exercise hinted by 
maximum likelihood theory. Furthermore, there is no guarantee that the 
underlying process must follow homogeneous Poisson process assump-
tions and thus one-parameter exponential distribution. Therefore, the 
thinking of collecting two or three data points and then fitting an assumed 
one-parameter exponential distribution or a two-parameter Weibull distri-
bution is questionable. As long as we follow the classical statistical-
reliability theory, the sample size issue will inevitably haunt the maximum 
likelihood based exercises. The paper “Does Size Matter? Exploring the 
Small Sample Properties of Maximum Likelihood Estimation” [51] ad-
dressed this question clearly. The authors stated that their preliminary re-
search showed that there are “the lack of Type I error problems in small 
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samples”. They also pointed out that the results for Type II errors are much 
less comforting.” They concluded that “with some reservation that is ap-
pears that scholars might need about 30 to 50 cases per independent vari-
able to avoid Type II problems we observe.” This research seems a good 
news to certain research fields, say, market research, political research and 
others. However, their research essentially claimed the death for today’s 
reliability engineering modeling because the fast changing environments 
of the industrial and business with globalization trend. In other words, for 
a reliability engineer collecting 10 to 15 items in a sample is already ex-
pensive and time-consuming. Therefore, exploring system state evaluation 
techniques under very small sample size is an urgent task in reliability en-
gineering.  

In general, the small sample asymptotic theory developments obtained 
attention since 1954. Field and Ronchetti [16] systematically summarized 
the small sample asymptotics in their monograph. This area is still very ac-
tive, for example, Field and Ronchetti [17], Beran and Ocker [3] and oth-
ers. However, the efforts are mostly concentrating on certain statistics, say, 
mean, M-estimator and L-estimator and there is no direct application of 
small sample asymptotic theory into reliability engineering yet, except 
Guo [39] and Kolassa and Tanner [54].  

Nevertheless, we should be aware that small sample asymptotics devel-
ops an approximation to the distribution of interested quantity that models 
the true state of system. This approximation is still on the route of the 
probabilistic thinking – once the distribution of the system state is avail-
able then the information about the state is fully available. The real aim of 
modeling is actually to find the dynamic law of the system state. Therefore, 
the probabilistic thinking route is one of the possible choices. There are 
other choices of thinking logics, for example, fuzzy thinking, rough sets 
thinking, grey thinking or other thinking logics rooted in modern approxi-
mation theory.  

Grey thinking is an approximation methodology aiming at directly re-
vealing a system state dynamic relation (without the priori assumptions). It 
roots from modern control theory, which classifies system dynamics into 
three categories: white, black and grey three systems based on the degree 
of information completeness. If the information of a system is available to 
modeler completely, it is a white system, for example, the Earth gravity 
system. On the other opposite, if the information of a system is totally un-
known, it is a black system, for example, the social society system out of 
the Solar System. If the information is partially known and partially un-
known, it is a grey system. A critical feature of the information incom-
pleteness of a grey system is due to the sparse data. In other words, grey 
uncertainty, which is different from other form of uncertainty, for example, 
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random uncertainty, fuzzy uncertainty, rough uncertainty, etc., is generated 
from too little information about the system under investigation. The task 
of establishing model under the guidance of grey theory is inevitably to 
seek model building based on data of small sample size. Its target is estab-
lishment of grey differential equation and emphasizes the exploration, 
utilization and processing dynamic information containing in data. How-
ever, it is necessary to point out here that grey differential equation model-
ing is not statistical modeling but it is an approximation modeling exercise, 
even though the least-square estimation engages. The usage of least-square 
approach in grey differential equation modeling is not a part of statistical 
inference or estimation. Rather, it is an optimization technique to help 
searching grey estimator of a particularly interested parameter. 

Differential equation is a powerful mathematical tool for describing 
continuous system dynamics. Conventionally, it is impossible to establish 
differential equation model based on information from a discrete data se-
quence. Nevertheless, the innovative aspect of the grey differential equa-
tion modeling is to construct a differential equation like model on the dis-
crete data sequence. Therefore, we will use the grey differential equation 
for repairable system analysis in the sparse data context. We will empha-
size the necessity and advantage of grey differential equation modeling on 
repairable system from the following three aspects: sparse data availability 
and the repairable system research progress, i.e., the research awareness on 
repair effects modeling in the literature. 

Repair (or maintenance) effect is an important aspect in repairable system 
modeling. If we could evaluate the repair effects correctly, we would be 
more actively plan the maintenance, production and thus improve man-
agement decision-making. We can trace statistical repair effect modeling 
back to early 90’s, for example, Stadje and Zuckerman [61]. Unfortu-
nately, their framework with rich and large data structural assumptions is 
difficult to implement in practices. Therefore, an important focus point 
over the last decade in repairable system modeling and maintenance opti-
mization has been the virtual age concept introduced by Kijima [53] since 
it provided an intuitive mechanism to describe imperfect repair of systems. 
The intrinsic weakness of Kijima’s virtual age models, in that the system 
repair effects cannot be estimated statistically, was raised in Guo, Love 
and Bradley [24] and later expanded in Guo, Ascher and Love [27] unless 
more assumptions were imposed and therefore a more rich structured data 
are required. 

14.1.2 Repair Effect Models and Grey Approximation 
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The reliability community has since turned to exploring other (statisti-
cally estimable) repair effect models. We may classify these efforts into 
three categories. The first category is repair-regime-based. It assumes that 
repair effect links to failure or planned maintenance (abbreviated as PM) 
regimes or relates to covariates (e.g., normalized repair costs etc). For ex-
ample, Bowles and Dobbins [4], Cheng and Chen [5], Cheng [6], Cui and 
Li [8], Doyen and Gaudoin [15], Finkelstein [19], Gasmi, Love and Kahle 
[21], Gaudoin, Yang and Xie [22], Shirmohammadi, Love and Zhang [60], 
Wang and Trivedi [64], Wang, Po, Hsu, and Liu, [65], Yang, Lin, and 
Cheng [67], Yun, Lee, Cho, and Nam [68],  etc. The second category is 
fuzzy-repair-effect-based. It is assumes that repair effect evaluations could 
be facilitated by fuzzy sets concept and then the fuzzy repair effects are 
combined into a probabilistic structure for statistical analysis. Some impor-
tant works are listed as following: Guo and Love [28], Huang and Cheng 
[52], Pillay and Wang [58], and Shen, Wang, and Huang [59], etc. Taheri 
[62] reviewed the trends in fuzzy statistics containing a few works in fuzzy 
reliability modeling. Two foundational books on fuzzy statistical infer-
ences are Kruse and Meyer [55] and Viertl [63]. By noticing the complex-
ity of fuzzy statistical analysis, Guo and Love [30] started their semi-
statistical fuzzy modeling exercises on repairable system and have ex-
plored them in various ways, see Guo and Love [31-35, 38], Guo [36-38, 
40]. The third category is (fuzzy) semi-martingale based stochastic age 
processes. For example, Guo and Love [29], Guo and Dunne [41] pro-
posed a semi-martingale age process. The stochastic age process has a rich 
coherent internal structure so that it does not only allow system age diffu-
sion during it functioning but also permits jumps via system shocks and 
maintenance impacts without any additional assumptions. Guo [44] intro-
duces a non-diffusion version in the internal structure. However, in the 
semi-martingale age developments, there is a thorny issue remaining there 
– the intrinsic structure of the stochastic process model requires the indi-
vidual repair improvement effect as data input. Therefore, an effective im-
plementation of semi-martingale age model has to combine the develop-
ments in the fuzzy repair effect evaluations or other approach.  

It is obvious that the statistical estimation of individual repair is impos-
sible. What statistical methodology can offer is the distribution of repair 
effect or a few moments of the distribution. Facing the challenge of the in-
dividual repair effect evaluation problem it is better to look at it different 
angle and thus develop a small-sample based repairable system analysis 
methodology in terms of approximation theory and methodology. Guo be-
gan his efforts in applying grey theory to repair efforts modeling since 
2004. The motivation of grey theory modeling lies on two aspects. On the 
one hands, it facilitates a structure for sparse data modeling. On the other 
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hand, grey modeling aims to provide individual estimated effect for each 
repair or PM (not in statistical sense) directly. This is different from prob-
abilistic or fuzzy modeling where the estimates are in average or cut-level 
sense. The grey estimate itself is still contains intrinsic uncertainty. Al-
though the individual estimated effect of repair is imprecise and not unique 
(as a matter of facts, it is a whitenization of the grey interval number) the 
repair effect does not describe the underlying mechanism (system changes 
under repair or PM) in statistical or probabilistic sense. However, we can 
understand the grey individual repair effect information as “input” data 
into semi-martingale age model for further standard statistical analysis. In 
practices, the grey individual repair effect estimate provides reliability en-
gineers or management the information for decision-making on production 
and maintenance planning. For more details, see Guo [36-38, 49], Guo and 
Love [40, 42, 43, 45, 46, 48], Guo and Guo [47], Guo and Dunne [50].  

We work with grey approach is just because it let us directly work with 
system state dynamic changes without involving the distributional and in-
dependent sampling assumptions. The computation of grey model is also 
very simple and can carry on Excel spreadsheet. Nevertheless, we have to 
emphasize that grey approximation is definitely not the only approach to 
address the individual repair improvement problem. Other approximation 
approach may also work, for example, small sample asymptotic techniques 
even small sample asymptotic techniques involve very complex mathe-
matical developments.  

Grey differential equation models play the core role in grey theory for ex-
tracting the evolving law underlying the sparse data. In reliability engi-
neering context, the basic one is the first-order grey differential equation 
with one-variable model (abbreviated as GM(1,1) model), which deals 
with positive discrete data sequence and possesses extreme predictive 
power. This section is drafted based on the work of Deng [10-14], Fu [20], 
Liu et al [56] and Wen [66]. 

Definition 1. Equation 

x(0)(k)+� z(1)(k)=� ,  k =2,…,n (1) 

14.2 The Foundation of GM(1,1) Model 

14.2.1 Equal-Spaced GM(1,1) Model 
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is called a one-variable first order grey differential equation (abbreviated 
as GM(1,1)) with respect to time series sequence X(0) = (x(0)(1), x(0) (2), …, 
x(0) (n)), where z(1)(k) are generated by MEAN operator, 

z(1)(k)=MEAN(x(1)(k))=0.5(x(1)(k)+x(1)(k-1))  (2) 

and x(1)(k) are generated by accumulated generating operation (abbreviated 
as AGO) operator, 

. / . / . / . / . /1 0 0

1

AGO(X ) = , 1,2, ,
�

� �� �
k

k
i

x k x i k n  (3) 

In Eq. 1, � is called the grey developing coefficient, � is the grey input, 
x(0)(k) is a grey derivative and z(1)(k) are called the background values for 
the grey differential equation. As a matter of fact,  x(0)(k) is the kth observa-
tion in the data sequence but the term derivative used comes from a treat-
ment that term (x(1)(k)-x(1)(k-1))/(k-(k-1))= x(0)(k) is an approximation to the 

true derivative of function x(1)(t), i.e., . /1dx dt  at t=k. The adjective grey 
used here indicates the grey uncertainty associated with the derivative ap-
proximation. Because the data points are collected with every unit time-
increment the model is called equal-spaced GM(1,1) model. Furthermore, 
the differential equation  

. / . /1 1� �� �dx dt x  (4) 

is called the whitenization differential equation or the shadow equation of 
the grey differential equation (Eq. 1). The relation between the grey differ-
ential equation and its corresponding whitenization differential equation 
will be explored later.  

Using least-square approach, the parameters � and � can be estimated 
and denoted by  a and  respectively. Rewriting Eq. 1. as b

x(0)(k)=�+�(- z(1)(k)) ,  k=2,…,n  (5) 

then we obtain a standard matrix form of the Eq. 1. as following 
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�
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where 
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The least-square estimate for parameter (�, �) is 

. / 1T Tb
X X X Y

a

�% "
�#  

$ !
 (8) 

The least-square estimator of the parameter pair (�,�), . /,b a , should carry 
some intrinsic information contained in the discrete data sequence X(0) = 
(x(0)(1), x(0) (2), …, x(0) (n)) sampled from the system investigated. Based 
on this believe, the true dynamic law specified by the whitenization differ-
ential equation Eq. 4. is then replaced by its estimated version  

. / . /1 1dx dt ax b� �  (9) 

which assumes to catch the true dynamics of the system interested in some 
degree. The solution to Eq. 9 is easily to obtain because it is a first-order 
non-homogeneous ordinary differential equation with constant coeffi-
cients.  

(1)

1

(1) (1) (0)

( ) ( )

(1) (1) (1)

t
t tx t e be dt c

x x x

� ���
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K  (10) 

The filtering-predictive equation takes the discrete version of solution 
(with GM(1,1) least-square estimated parameter-values). 

)(ˆ(1) kx =( x(0)(1)-b /a)exp(-a(k-1)+ b/a  (11) 

As to the filtering grey derivative sequence (the estimated original data 

sequence), , it can be obtained in terms of the 
inverse accumulative generating operation (abbreviated by IAGO), a dif-
ference operation in nature but it is called as a grey differentiation in grey 
theory context because of unit time difference in . 

}21),(ˆ{ˆ (0)(0) ,...,n,kkxX ��

t

)(ˆ(0) kx = - , k =2,…,n )(ˆ (1) kx )1(ˆ(1) �kx

 
(12) 
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It is very clear that GM(1,1) model with equal-spaced data is established 
with respect to a sampled discrete data sequence. It should be noticed that 
the solution to the grey differential equation is obtained in terms of the cor-
responding shadow (differential) equation. The elegancy in grey differen-
tial equation models lies in the approximations of the derivatives and inte-
grals of a given function. Deng [11-14] named them as inverse 
accumulated generating operation (I-AGO) and accumulated generating 
operation (AGO) respectively. 

It should be further strongly emphasized that the sampled discrete data 
sequence itself implies that the data is naturally ordered in the sequence. 
The ordering index could be time or distance from a reference point. AGO 
roots in integration and is created with a smoothing role by accumulative 
additions which will partially iron out the fluctuations in original data. 
Therefore, in order to let AGO function effectively and correctly, the ob-
servations in the original data sequence must be strictly positive.  

However, other approximations to derivatives or integrals in the nu-
merical analysis can be also considered for data generation. The basic 
principle here should be what is the best approximation to them rather than 
just blindly follow the data generating schemes in grey theory literature.  

In practical circumstances, there are chances process performance indi-
ces may be collected at unequal-spaced times (or spatial distances). There-
fore, the unequal-spaced GM(1,1) model is of practical importance.  

Deng [14] developed a GM(1,1) model for unequal-gapped data, de-

noted by GMu(1,1). Given . / . / . / . / . / . / . /. /0 0 0 0
1 2, , , NX x t x t x t� � , the origi-

nal data sequence, where 1  constant�� Pk kt t , then grey differential equa-
tion is defined in the following manner: 
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14.2.2 The Unequal-Spaced GM(1,1) Model 
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Therefore, the GMu(1,1) model can be written as 

. / . / . /1(0) ,  1, 2, ,� �� L � L � �k k k kx t z t t t k n  (15) 

Accordingly, estimators of . /,� � , . /,a b , and the intermediate parameters 
are 

. /
. / . /

. / . / . / . /

. / . / . / . / . / . /

2 2

1 0

2 2

2
1 0 1

2 2

1
,  

1 1

,   

,   

n n

k k k
k k

n n

k k k k k
k k

CD n E DF CE
a b

n F C n F C

C z t t D x t

E z t t x t F z t t

� �

� �

� � �
� �

� � � �

� L �

% "� L � L$ !

� �

� �

 
(16) 

It is worth to point out here that . / . /1
kx t  is the approximate value of “inte-

gration” on interval ' (1, kt t with the “integrand” . / . /0x t . Therefore, the 

formation of . / . /1
kx t given by Deng [14] may be oversimplified. An intui-

tive and better approximation formulation can be given by 
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then 
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denoted as . Then the unequal-spaced differential equation is . / . /0
kz t

. / . / . /1(0) ,  1, 2, ,� �� � � �k kz t z t k n  (19) 

Such that the estimators for �  and � and the intermediate parameters are 

. /
. / . /

. / . / . / . /
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� � � �
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 (20) 
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respectively.  

Fu [20] proposed a two-stage GM(1,1) model for continuous data aiming 
at to handle the non equal-spaced recorded data sequence..  Let the s -

coordinate sequence . / . / . /) *0 0 ,  ,  1, 2, ,s s i iZ Z s s i N�� 	 � �R  satisfying the 

following grey differential equation, 

. / . / . / . /0 1
1 , 2, ,s i s s i sZ s Z s i� ��� � � � N  (21) 

where 

. / . / . / . / . / . /. /1 0 0
1 1

1
, 2, ,

2s i s i s iZ s Z s Z s i� �� � � � N  (22) 

Accordingly, the first-stage least-square parameter estimators are 

. / . / 1ˆ , X X XT T Ys
s s Na�

�
�  (23) 

where sb̂  denotes the estimator for bs, 

. / . / . / . /. /

. / . / . / . /. /

. / . / . / . /. /
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#  
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$ !

� �

 (24) 

and 

. / . / . / . /
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 (25) 

Thus the first-stage response equation can be rewritten as 

14.2.3 A two-stage GM(1,1) Model for Continuous Data 
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. / . / . /0 exps s s sZ s b c a s� � �  (26) 

Then we enter the second-stage least-square estimation in which parameter 
( , )s sb c  will be re-estimated but parameter sa will be kept as same as that 

from the first-stage estimation and treated as an input variable for the sec-
ond-stage estimation. 

. / . / 1
, D D D

T T T zs
s s s s sb c

�
� N  (27) 

where 

1

2

1 exp( )

1 exp( )
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a s
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Therefore after two-stage least-square fitting, the estimated response 
function is 

. / . / . /0 exps s s sZ s b c a s� � �  (30) 

Deng [11-14] argued that . / . /) *1 , 2,3, ,� �z k k n  with 

 should be the only candidate at the inte-

grated level, , while others, for example, Fan et al [18] argued that the 

weight factor , denoted by 

. / . / . / . / . / . /.1 1 10.5 1� � � �z k x k x k /

H , between . / . /1x k  and . / .1 1/�x k should not be 

predetermined rather than determined by the optimization procedure. In 
other words, at the integral level, the candidate 

. / . / . / . / . / . / . / ' (1 1 11 1 ,  0H H H� � � � 	z k x k x k ,1  (31) 

14.2.4 The Weight Factor in GM(1,1) Model 
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should be considered and thus the least-square estimation will be: 

}{min )1(

,,,
J

H
��
 (32) 

where the objective function is defined by: 

. / . / . / . / . /. /
2

1 1 1

2�

� ��
n

i

J z i x i  (33) 

and the function . / . /1x i  is given by: 

�����
 /)1(exp()/()()1( ����� ttx  (34) 

The first order partial derivatives of x(1)(t) with respect to , ,� � 
 , and the 
derivative of z(1)(i) with respect to H  are 

. / . / . / . / . /

. / . / . /. /
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(35) 

Then, it is required to solve the following nonlinear equation system for 
the parameters , ,� � 
  and H : 

. / . / . / . / . / . /

. / . / . / . /

. / . / . / . / . /

. / . / . / . / . / . /

1 1 1

2

1 1

2

1 1 1

2

0 1 1

2

1 0

0                  

0        

0        

n
i

i

n

i

n
i

i

n

i

i e z i x i

z i x i

e z i x i

x i z i x i

�

�

� �

�

�

� �

�

�

% "� �$ !

% "� �$ !

% "� �$ !

% "� �$ !

�

�

�

�

�

 (36) 

Mathematically, it is obvious that the optimal choice of H  is not neces-
sary to choose as 0.5.  
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Let us examine an example. Given a discrete data sequence  
X(0)={2.874, 3.278, 3.337, 3.390, 3.679}. We perform the parameter 
searching for two cases: Model (1) with equal-spaced GM(1,1) and Model 
(2) based on Eq. 31 to Eq. 36.  

In Model (2) a genetic algorithm-search procedure givesH � 0.0486454 . 
This confirms our statement made early that w is not necessarily 0.5 as 
proposed by Deng [11-14] but it is a data-dependent parameter. Also the 
model (2) gives much small squared error at x(1)-level, i.e., 

. / . / . / . / . /.
2

1 1 1

2�

� ��
n

i
/J z i x i  is minimized in the Model (2).  Table 1. lists the 

estimated parameter a and by assuming the same initial parameter value 
(g=x

b
(1)(1)=x(0)(1)). Model (1) fixes the weight w at 0.5 while Model (2) 

value is an optimally searched one. Model (2) gives almost one third of 
the squared error at x
w

(1)-level of that given by Model (1). 

Table 1. The weight factor impact in GM(1,1) models 

Model � � x(0)(1) H Squared error at x(1)-level 
GM(1,1) -0.03720 3.06536 2.874 0.5 (Deng ) 0.006929752 

}{min )1(

,,,
J

H
��

 -0.04870 2.91586 2.874 0.048645 0.002342187 
 
However, if we think the computation convenience of classical GM(1,1) 

model which can carry on Excel, we would prefer to Model (1)-GM(1,1) 
modeling. 

The data set presented in Table 2 was used for various analyses because it 
contains a quite rich structure. The analysis performed in this section is an 
exploration of the possible dynamics of the cement roller functioning 
times. Although the data set will be subdivided into small groups for the 
purpose to explore whether the grey approach could well reveal the under-
lying mechanism behind the sub-data sets with small sample sizes.  

14.3 A Grey Analysis on Repairable System Data 

14.3.1 Cement Roller Data 
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Table 2.  Cement Roller data [57]. 

Functioning Failure Covariate Covariate Covariate Repair 
54 pm 12 10 800 93
133 failure 13 16 1200 142
147 pm 15 12 1000 300
72 failure 12 15 1100 237
105 failure 13 16 1200 0
115 pm 11 13 900 525
141 pm 16 13 1000 493 
59 failure 8 16 1100 427 
107 pm 9 11 800 48 
59 pm 8 10 900 1115 
36 failure 11 13 1000 356 
210 pm 8 10 800 382 
45 failure 10 19 1300 37 
69 pm 12 14 1100 128 
55 failure 13 18 1200 37 
74 pm 15 12 800 93 
124 failure 12 17 1100 735 
147 failure 13 16 1100 1983 
171 pm 11 13 900 350 
40 failure 13 16 1100 9 
77 failure 14 17 1100 1262 
98 failure 12 15 1100 142 
108 failure 12 15 1100 167 
110 pm 16 14 1100 457 
85 failure 8 19 1300 166 
100 failure 12 15 1000 144 
115 failure 13 16 1200 24 
217 pm 9 11 900 474 
25 failure 15 18 1200 0 
50 failure 11 13 1100 738 
55 pm 8 10 800 119 

We only have the system functioning and failure (or planned maintenance) 
times, which will be called as system stopping times. Denote system stop-
ping times as {T1, T2,…, TL}. It is immediately noticed that we have a 
situation that there is no direct or original sequence {x(0)(1), x(0)(2),…, 
x(0)(n)} readily available for analysis. Then we first apply 1-AGO to {T1, 
T2,…, TL} to obtain {t1, t2,…, tL} where, 

{t1, t2,…, tL}=AGO{T1, T2,…, TL} (37) 

It is obvious that 

14.3.2 An Interpolation-least-square Modeling 
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�

� �� �
1

, 1, 2, ,
i

i j
j

t T j L  (38) 

Now the “original” observation sequence will be 
. / . /0 ,   1,2, ,i ix s t i� � � L  (39) 

Furthermore, it is noticed that . / . / . / . / . / . /) *0 0 0
1 2, , , Lx s x s x s�  is not 

an equidistant spaced since 1 1 ,   ,   , 1,2, ,i i j js s s s i j i j� � L� P � 
 P � � . 

Then in terms the following steps, we will create an equal-gap (i.e., equal-
spaced) “original” sequence. 
(1) Divide ) *�1 2, , , LT T T  by  and obtain a new subscript (i.e., index) 

sequence,  
1T

) * ) *1 2 2 1 1, , , 1, , ,L Ls s s T T T T�� �  (40) 

It is obvious that the values in the sequence ) *1 2, , , Ls s s� are mostly non-

integers, thus it is required to create a mixed real-valued indexed sequence 
) *1 2 2 3, , , , , ,L Ls i s i i s�  and the corresponding data sequence 

. / . / . / . / . / . / . / . / . / . / . / . / . /) *0 0 0 0 0 0 0
1 2 2 3, , , , , ,i LX x s x i x s x i x i x s� � L

 respectively. It is 

necessary to point out that the symbol si is not necessarily representing a 

single integer and it should be these integers between 1is �  and . is

(2) Determine the integer(s) si  such that i1i ss i s� ? ?  such that the index 

sequence ) *1 2 2 3, , , , , ,L Ls i s i i s�  is available. 

(3) Determine . /0
iX  in terms of interpolation method (calculating these 

. /(0)
sx i where , 1i s iss i� ? ? si  must be all the integers between  and 

. 

1is �

is

. / . / . / . /. /(0) (0) (0) (0)1
1 1

1

s i
s i i i

i i

i s
x i x s x s x s

s s
�

� �
�

�
� � �

�
 (41) 

 (4) Apply 1 AGO�  to . /0
iX  

. /
. /

. / . / . / . / . / . /

(0)

(1)
1

1 0(0)

, if  (integer) 

if  (non-integer)

si

s
k

s i s i s i

x k r i
x r

x i s i x s x i r s

�

�
��

� �
� % "� � � �$ !�

�
 (42) 
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 (5) Define the grey derivative on . /(1)x r  as 

. /. / . / . /(1) (1)
(1) i i

i
i i

x s x i
dL X s

s i

�
�

�
 (43) 

(7) Using . / . /. /(1) (1) 2s ix i x s�  as the grey value at non-integer po t 

is . Then the grey differential equation for non-integer po t 

in

in . is

. / . / . /. /(0) (1) (1)

2i i sx s x s x i
� �� � �  (44) 

(8) Then in terms of augmented equation we obtain the estimate of pa-
rameter . /,� �  and finally obtain the filtering-prediction equation. 

What we need to emphasize here is that the difference between failure 
stopping times and planned maintenance time is no longer making too 
much sense because AGO  applications will eventually weaken and even 
eliminate the random difference between them. Furthermore, it should be 
noticed that the grey differential equation of system functioning time is in-
trinsic to the system as well as repair impact, and thus it is called the sys-
tem characteristic time. 

For the Cement Roller data in Table 2, we performed the interpolation 
calculations and enlarged the 31 data points into 84 data points. Then we 
partition the 84 data sequence into 17 sub-data sequences. GM(1,1) model-
ing is carried on for each sub-sequence and all 17 GM(1,1) groups compu-
tation results are summarized in Table 3. For each group, the starting time 
listed in Table 3 is just the value of “x(0)(1)”. The partition of 17 groups is 
an illustrative attempt with an intention that each group contains a few data 
points and includes one or two “original” data points (either failure or PM 
times). 

It is noticed that the interpolation-based GM(1,1) modeling can not be 
performed in computation toolbox offered in Liu et al [56] or Wen [66]. 
However, it can be done in Excel easily (although a bit tedious). For illus-
trative purpose, we tabularize the computations for the first two sub-
sequences (sub-data 1-6 and sub-data 7-11) in Table 4.  

We can easily catch up that in sub-data 1-6, only two original data 
points are included (listed in Column A where are recorded, which are 

non-integers except s
is

1=1) and the remaining four data points (listed in 
Column B where si are recorded, which are integers). 
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Table 3. Summary of 17 group of GM(1,1)models for Cement Roller data 

Group  Range Starting time �̂  �̂  

1 1-6  54 82.14264 -0.29351 
2 7-11 324 301.1063 -0.12667 
3 12-16  486 455.3279 -0.09761 
4 17-22  648 642.9939 -0.0613 
5 23-27 864 849.572 -0.04863 
6 28-33 1026 988.895 -0.05118 
7 34-38 1242 1219.862 -0.03575 
8 39-43 1404 1358.791 -0.03942 
9 44-47 1566 1508.428 -0.04202 
10 48-51 1728 1673.738 -0.03651 
11 52-55 1890 1864.493 -0.0234 
12 56-60 1998 1962.813 -0.0262 
13 61-64 2160 2153.215 -0.01853 
14 65-69 2322 2291.204 -0.02127 
15 70-73 2484 2453.476 -0.02093 
16 74-78  2646 2597.978 -0.02252 
17 79-84 2862 2809.663 -0.01993 

Demonstration of step-wise computation details of the interpolation ap-
proach is given by using sub-data 1 (data point 1-6) and sub-data 2 (data 
point 7-11) shown in Table 4. The “unit” of time is 54, the first failure 
time. Column C records the system chronological times when system fail-
ure or PM occurred ( ). Column A records the non-integer ratio iT

1i it T T= (where ) and Column B records the integer-valued se-
quence of the interpolation points between and . Column D records 

the 1-

1 54T =

iT 1iT +

AGO  of Column C according to the following equation: 

��

�
�

�

������
�����

������
�

integer-nonis1)A(kifC(k)2))B(k(B(k)1)D(k
integer-nonisA(k)ifC(k)1))B(k(A(k)1)D(k

integerare1)B(kB(k),ifC(k)1))B(k(B(k)1)D(k
D(k)  (45) 

Column E records the X  matrix where 

E(K)= � 0.5(D(K)+D(K-1)) (46) 

Then use the Regression (Option) in Data Analysis within Tools Menu in 
Excel for calculating a  and . For example, for Group 1 (data point 1-7), 
in the regression input menu, we fill Input 

b
Y  Range: $C$2:$C$7 and we 

fill the Input X  Range: $E$2:$E$7. After regression, a  and  are ob-
tained, then we can calculate Column F (i.e., ) according to Eq. 47  

b
( )(1)X k

ˆ(1)( 1) ( (0) / ) /kF k x b a e ba-+ = - + a  (47) 
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Table 4. Computing Demonstration for data group 1-6 and 7-11 in Excel. 

 A B C D E F G H 
1 1.000 1 54 54 54 54 54 54 
2  2 108 162 -108 177 123  
3  3 162 324 -243 333 157  
4 3.463  187 411 -367 420 187 133 
5  4 216 540 -475 533 114  
6  5 270 810 -675 790 256  
7  6 324 324 324 324 324  
8 6.185  334 386 -355 387 341 154 
9  7 378 702 -544 686 299  
10 7.519  406 913 -807 895 403 61 
11  8 432 1134 -1023 1103 208  

 
Column G ( ( )(0)X̂ k -the filtered values of system function times) is calcu-

lated by the following equation: 

�
�
�

�����
���

�� integer-nonis1)A(kifB(k))1)F(k))/(A(k1)(F(k
integerareB(k)1),B(kifF(k)1)F(k

1)G(k  (48) 

Column H, then only calculate the intrinsic functioning time for those row 
with A(k) being non-integer, the formula is H( )=G( )-G( ), where 
A(k

k i k i 1k i-

i) and A(ki-1) are non-integers. 
The results shown in Column H are the filtered (i.e., estimated) values 

corresponding to the system’s failure or PM times which are called as in-
trinsic functioning times. The impression of the interpolation approach is 
that it is intuitive and easy to be interpreted. However, because of the in-
terpolation the computation time is increased and also the statistical esti-
mation error sometimes involve cross group fittings. 

We performed more trial computations in order to explore the inside of 
GM(1,1) modeling on system function times. Our tentative results show 
that the system intrinsic functioning time (function) takes a form 

IFT(t)=g exp(-a(t-t0))+b (4 9) 

which depends upon four parameters: (initial time, observed system 

failure or PM (sojourn) time counting from last failure or PM chronologi-
cal time), a  (slope parameter from the first-stage regression), , and 

(intersection parameter and slope parameter respectively from the sec-
ond-stage regression). Different from Equation previous treatments, Eq. 49 

0t

b
g

14.3.3 A Two-stage Least-square Modeling Approach 
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includes  with the advantage for wider time coverage. It is obvious that 

the quality of estimated 
0t

( )IFT t  function depends upon the number of data 
points being included in regression and the range of the data points. How-
ever, the following partition of a failure or PM time can be abstracted from 
repeated two-stage grey fitting where the (random) error term is 

( )i i it IFT te = -  (50) 

and the system repair improvement is 

[ ]( ) ( )i ir IFT t E IFT t= - i  (51) 

Basically, the partition shown in Table 5 is intend to be used for further 
analysis. 

Table 5. Partition of a Functioning Time via 2-stage estimation. 

iW  it  ( )iIFT t [ ]( )iE IFT t
ir ie

54 54 54.413 54.012 0.401 -0.413
187 133 132.767 134.513 -1.746 0.233
334 147 147.066 148.013 -0.947 -0.066
406 72 71.922 73.086 -1.164 0.078
511 105 104.546 106.883 -2.336 0.454
626 115 114.568 116.853 -2.285 0.432
767 141 140.922 142.251 -1.329 0.078
826 59 59.256 59.359 -0.103 -0.256
933 107 106.546 108.886 -2.341 0.454
992 59 59.256 59.359 -0.103 -0.256
1028 36 37.101 34.432 2.669 -1.101
1238 210 213.004 206.587 6.417 -3.004
1283 45 45.732 44.288 1.444 -0.732
1352 69 68.990 69.940 -0.950 0.010
1407 55 55.380 55.084 0.296 -0.380
1481 74 73.880 75.176 -1.296 0.120
1605 124 123.641 125.728 -2.086 0.359
1752 147 147.066 148.013 -0.947 -0.066
1923 171 171.876 170.717 1.159 -0.876
1963 40 40.931 38.829 2.102 -0.931
2040 77 76.822 78.301 -1.479 0.178
2138 98 97.569 99.832 -2.263 0.431
2246 108 107.546 109.886 -2.340 0.454
2356 110 109.549 111.883 -2.333 0.451
2441 85 84.693 86.572 -1.879 0.307
2541 100 99.559 101.852 -2.293 0.441
2656 115 114.568 116.853 -2.285 0.432
2873 217 220.494 212.908 7.586 -3.494
2898 25 26.619 22.199 4.420 -1.619
2948 50 50.549 49.706 0.843 -0.549
3003 55 55.380 55.084 0.296 -0.380



      Renkuan Guo 406

However, we have to provide some details of the two-stage estimation 
procedure for illustration purpose. 

We select a trial computation where each group consists of 8 data 
points. Table 6 is Excel spreadsheet computing step by step for the first 
group of 8 data points (data point 1-8). 

Column B records the functioning time since last failure or PM. Column 
C is the 1-AGO of Column B and Column D records the negative back-
ground value . Column E records the value given in the following equa-
tion: 

z

E(k)=[B(k)-B(k-1)]/ [A(k)-A(k-1)] (52) 

Then use Regression option in Tools Menu (Input Y Range $E$3:$E$9) 
and (Input X Range $D$3:$D$9) to perform the first-stage fitting for ob-
taining the value of . The next step is to calculate Column 
F according to the following equation 

0.001553574a =

( ) ( )( )F exp - * B(k)-$B$2k a=  (53) 

Now use Regression menu in Tools Bar (Input Y Range $B$2:$B$9) 
and (Input X Range $F$2:$F$9) to perform the second-stage fitting for ob-
taining the value of  and . Finally, Col-
umn G is calculated as following 

743.5890381b = -690.2399076c =

( )G *F( )k c k= + b  (54) 

which gives the estimated intrinsic functioning time . ( )iIFT t

Table 6. Two-stage fitting in Excel (data point 1-8). 

 A B C D E F G 
 Wi ti 1-AGO -Z(ti) X(0) (ti) ( )0it te b- - IFT(ti) 
1 54 54 54 1.0000 53.3491 
2 187 133 187 -120.5 0.5940 0.8845 133.0716 
3 334 147 334 -260.5 0.0952 0.8655 146.2070 
4 406 72 406 -370 -1.0417 0.9724 72.3838 
5 511 105 511 -458.5 0.3143 0.9238 105.9279 
6 626 115 626 -568.5 0.0870 0.9096 115.7579 
7 767 141 767 -696.5 0.1844 0.8736 140.6125 
8 826 59 826 -796.5 -1.3898 0.9923 58.6901 
 
As to the expected intrinsic functioning time [ ( )i ]E IFT t  in Table 5, we 

can evaluate it in various approaches. It can be noticed that the Cement 
Roller data set contains 31 data points, so that we divide them into four 
groups: Group 1 consists of data point 1 to 8, Group 2: 9 to 16, Group 3: 
17 to 24 and Group 4: 25 to 31. (The division is arbitrary with the intention 
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of creating small sample analysis.) Accordingly, we obtain four groups of 
parameters shown in Table 7: 

Table 7. Estimated Parameters for the Four Groups. 

Group a  b  c  

1 (data1-8) 0.001554 743.5890 -690.2399 
2 (data9-16) -0.0007593 -1191.744 1297.0959 
3 (data17-24) -0.0006332 -1473.038 1596.6794 
4 (data25-31) 0.00450917 344.1091 -252.1844 

A shocking fact is that all the four models give similar estimates of 
. This leads us to believe that we can calculate four estimated 

 and average them for obtaining an estimate for

( )IFT t

( )IFT t [ ]( )
i

i iE IFT t

]

.  

It can be noticed that the two-stage grey modeling of repairable system 
data generated delicate results although the two-stage grey approach does 
not make itself as intuitive as the interpolation approach. We use the term 
of prediction but in nature an approximation. 

If we have n data points in a sample, for the estimated data values 

, if k	{2,3,…,n}, i.e.,2�k�n we call  as filtered values, if 

k	{n+1,n+2,…}, i.e., k , we call  as predicted values. It is 
obvious that filtering is interpolation while predicting is extrapolation.  

)(ˆ )0( kx )(ˆ )0( kx

n> )(ˆ )0( kx

However, an immediate interest is given the next PM time, say 
 can we predict the next 32 3103W = [ 32( )E IFT t  (it is obvious that 

t32=100). Table 8 details the related grey prediction of expected intrinsic 
function time [ ( )i ]E IFT t , estimated intrinsic functioning time , and 

relative errors if the sojourn PM time is 100. 

( )iIFT t

Table 8. Predictions given t32=100. 

Group 
32( )IFT t  Relative error 

1 100.955 0.009554 
2 98.477 -0.015230 
3 99.559 -0.004410 
4 108.418 0.084178 

[ 32( )]E IFT t  101.852 0.018523 

14.3.4 Prediction of Next Failure Time 
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What we can predict that for a planning maintenance time at 100, the in-
trinsic function time falls in an interval [  and its estimated 

expected intrinsic function time  with relative error 

less than 2%. The way we perform the so-call predicting next intrinsic sys-
tem functioning time is actually a cautious step of model validation be-
cause we only use n-1=30 data points for GM(1,1) modeling but keep the 
31

]

e�) ) a

98.477,108.418

[ ]( ) 101.852iE IFT t =

st data point not participating modeling but reserved for a validation. If 
we allow 5% relative error in prediction, we can fit a GM(1,1) model with 
the 31st data point in and then perform the next intrinsic system functioning 
time i.e., the 31st stopping time. 

In general, Deng [14] develop a class ratio test where the class ratio, de-

noted by  with respect to a dis-
crete data sequence X

nkkxkxk ���� 2),1(/)()( )0()0()0(A
(0)={ x(0)(1), x(0)(2),…, x(0)(n)} should fall in the range 

A (0)(k)	[exp(2/(n+1)), exp(2/(n+1))]. For example, given the sample size 
n=4, if the class ratio fall in the range [0.6703, 1.4918], i.e., 
0.6703�A(0)(k)�1.4918, for any k=2,3,4, , then the grey exponential law 
(i.e., a successful GM(1,1) model) can be guaranteed. Liu et al [56] gave 
more details Shown in Table 9 which relates the range of grey develop-

ment coefficient � (the class ratio A 0( nd predicting (i.e., extrapo-
lation) steps with associated relative error (in terms of simulation). 

�

Table 9. The relation between range of � and GM(1,1) prediction steps. 

�� 1-step error 2-step error 5-step error 10-step error 
0.1 0.129% 0.137% 0.160% 0.855% 
0.2 0.701% 0.768% 0..967% 1.301% 
0.3 1.998% 2.226% 2.912% 4.067% 
0.4 4.317% 4.865% 6.529% 9.362% 
0.5 7.988% 9.091% 12.468% 18.330% 
0.6 13.405% 15.392% 21.566% 32.599% 
0.8 31.595% 36.979% 54.491% 88.790% 
1.0 65.117% 78.113% - - 
1.5 - - - - 
1.8 - - - - 

In this chapter, based on the observations that grey methodologies are 
powerful in the circumstances of sparse data availability, we focus the dis-
cussions on the most useful grey differential equation model, GM(1,1) 

14.4 Concluding Remarks 
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model, its basic theory, its variation – the unequal-spaced GM(1,1) model 
and the continuous-time GM(1,1) model. We use Cement Roller data for 
illustrations, particularly showing the computations in MicroSoft Excel.  

It is necessary to point out that the GM(1,1) modeling is a deterministic 
approach in nature and it generates approximations to system dynamic be-
havior. Because of the sparse data availability, many traditional survival 
analysis or reliability terminologies are no longer meaningful in grey 
treatments. For example, stochastic processes and deterministic processes 
are not differentiating here and they are all called as grey processes. We 
can not judge grey modeling in terms of traditional statistical foundation 
since meaningful theoretical arguments need the support of adequate data 
information but in grey uncertainty circumstances censoring is meaning-
less.  
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