
Optimize Cooperative Agents with Organization

in Distributed Scheduling System

Wei Fan and Fan Xue

Software Technology Research Center, Civil Aviation University of China,
Tianjin 300300, China P.R.

fanxinhui@eyou.com

Abstract. DSAFO (Dynamic Scheduling Agents with Federation Or-
ganization) is a novel multi-agent constraint satisfaction algorithm for
AGSS problem (a NP-hard scheduling problem). This paper improves
on DSAFO by employing a resource requisition strategy, and models this
parallel multi-agent algorithm in polyadic π-calculus. The time complex-
ity of the improved DSAFO is O(n3)+O(n2)× ttrans. Experiments show
improved DSAFO performs well in AGSS consumptions optimization of
resources and man-days. Though it is unstable, improved DSAFO makes
good probability to find better solutions than classical heuristics and
its distributed and parallel agents viewpoint is potential to deal with
distributed dynamic troubles in real applications.

1 Introduction

Airport ground service is a service process from flight landing to takeoff, includ-
ing gate assignment, baggage handling, catering, fueling, cleaning, etc. AGSS
(Airport ground service scheduling) is to schedule many kinds of dynamic ground
resources (baggage trucks, fuel trucks, etc.), to fulfill all constrained service sub-
tasks of flights timely to meet their arrival and departure deadlines [1].

AGSS problem is a NP-hard problem. Moreover, it could be viewed as either
a JSSP (Job-Shop Scheduling Problem) [2] Jm|rj , prmp|ΣwjUj [3] or a Dis-CSP
[4], because of the ways that real subtasks and resources are organized. In real
AGSS, most resources are ample except some prepared for accidents. Conse-
quently the scheduling target ΣwjUj = 0 is not difficult to achieve, however how
many resources and man-days consumed are important to airports and airlines.
The algorithm in this paper optimizes the resources and man-days consumptions.

DSAFO (Dynamic Scheduling Agents with Federation Organization) [1] is a
novel multi-agent algorithm for Dis-CSP (Distributed Constraint Satisfaction
Problem), especially for AGSS problem under high constraint. DSAFO employs
blackboard mechanism, federation organization, meta-level guided resource bor-
rowing and domain knowledge guided plan backtrack. The principle of DSAFO
is coordinating distributed resources with cooperative agents.

The remainder of the paper is structured as follows: Chap. 2 represents the
improved DSAFO in form of polyadic π-calculus to precisely describe the parallel
essence of improved DSAFO. Chap. 3 analyzes the time complexity. Experiment
results appear in Chap. 4 and a brief conclusion is given in Chap. 5.

D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNAI 4114, pp. 502–509, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimize Cooperative Agents with Organization 503

2 Improved DSAFO

2.1 Polyadic π-Calculus

The polyadic π-calculus developed by Milner [5] is a very powerful tool to
model processes in parallel systems such as multi-agent systems and mobile
systems. The most primitive entity in polyadic π-calculus is a name. Names, in-
finitely many, are x, y, . . . ∈ χ; they have no structure. The other kind of entity,
a process, is built from names by syntax

P ::= Σi∈Iπi.Pi | P |Q |!P | (ν x)P

In this paper, we model DSAFO in π-calculus and usually abbreviate name
sequences in π-calculus to vector names, e.g. a subtask tuple structure may be
abbreviated to “

−−→
task”. A name in vector name could be accessed using “�”, e.g.

the LFT (Latest Finish Time) of a task is task � LFT .

2.2 DSAFO: An Overview

DSAFO is based on several parameters such as Heartbeat. And it implements a
unique Blackboard, a unique ResAdmin, some Coordinators and more Members.

DSAFO def= (Schtasks, Agentst, Resources, T skinresr, Heartbeat, Clockzero)
(ν querya

t , informa
t , requestat , replya

t , cancelat , synbuddya
t , ackbuddya

t ,

borrowa
t , lenda

t , refusea
t , syndemanda

t , ackdemanda
t , reqres

a
t , allotat ,

releasea
t) (BLACKBOARD|RESADMIN|MEMBERa

t

|COORDINATORr) (t ∈ Schtasks, a ∈ Agentst, r ∈ Resources)

Channels among agents are organized as Fig. 1.

1

borrow

synbuddy

2

...

...1

(similar channels)

Member Member Member t3t2t1

Coordinator Coordinator21

forward channel

similar grouped channel

lend

refuse

ackdemand

syndemand

ackbuddy

Blackboard

inform
query

request
reply

cancel

release

allot

reqres

ResAdmin

Fig. 1. channel organization of DSAFO

504 W. Fan and F. Xue

2.3 Blackboard Agent

The unique agent BLACKBOARD perceives information of flights coming in
half an hour, decomposes them into subtasks and assigns subtasks with plans
from member agents.

BLACKBOARD def= (Flights, Subtaskst
f)

(BbFunc|RespQuerya
t |RespReqa

t |RespCancelat)
(t ∈ Schtasks, a ∈ Agentst, f ∈ Flights)

BLACKBOARD has four sorts of behaviors responding messages from mem-
bers. For example, RespQuerya

t receives signals from channel Querya
t and then

responses with the top of ready subtasks and the most delayed subtask.

RespQuerya
t ≡ !querya

t .(ν c)(readytaskt〈c〉|c(−→tsk).[
−→
tsk �= nil]informa

t 〈
−→
tsk〉)

.(ν uc)(delaytaskt〈uc〉|uc(
−−→
utsk).[

−−→
utsk �= nil]informa

t 〈
−−→
utsk〉)

RespReqa
t ≡ !requestat (

−−→
plan).(ν ch)(getplan〈ch, plan � fno, plan � tsk〉

|ch(
−−−−−→
myplan).[

−−−−−→
myplan = nil](assign〈−−→plan〉.replya

t 〈syn,
−−→
plan〉))

RespCancelat ≡ !cancelat (
−−→
plan).(ν ch)(getplan〈ch, plan � fno, plan � tsk〉

|ch(
−−−−−→
myplan).[

−−−−−→
myplan =

−−→
plan]free〈plan � fno, plan � tsk〉)

2.4 ResAdmin

Agent RESADMIN is a resource administrator. When received resources request,
RESADMIN would search free resources and allot one if possible. After half
a man-day (4-hour work), the resource would be free again. Additionally, one
resource serves no more than one and a half man-days.

RESADMIN def=(reslistr, historylistr)(RaFunc|Respreqa
t |Respreleasea

t)
(r ∈ Resources, t ∈ Schtasks, a ∈ Agentst)

Behaviors Respreqa
t and Respreleasea

t do resources allocation and recovery.

Respreqa
t ≡ !resreqa

t (begintm).(ν ch)(gettopfreerest〈ch, begintm〉|ch(−→res)
.[−→res �= nil]allotat 〈res � name, begintm〉)

Respreleasea
t ≡ !releasea

t (resname).(ν ch)(getresfromhash〈ch, resname〉
|ch(−→res).[−→res �= nil]loghistory〈−→res〉.releaseres〈−→res〉)

2.5 Member

A member agent MEMBERa
t is in charge of subtask t. It always has a de-

sire to handle subtasks. After MEMBERa
t received available subtask goals from

Optimize Cooperative Agents with Organization 505

BLACKBOARD, it intends to make suitable plans and request for them. Every
member agent always has an open hand when others need help.

MEMBERa
t

def= (Resourcea
t , Remoteresa

t)(MbFunc

|ActQrya
t |MkPlana

t |CallBda
t |Ackresa

t |TryLenda
t |AckLenda

t)
(t ∈ Schtasks, a ∈ Agentst)

Cyclic behavior ActQuerya
t is infinite (but finite in practical scheduling). It

sends subtask requests to drive the DSAFO and releases expired resources. The
behaviors MakeP lana

t perceives subtask information and try to make plans
for them. If the subtask cannot be locally scheduled, CallBda

t , TryLenda
t and

AckLenda
t cooperate to perform resource borrowing. After all resources borrow-

ing failed, it would send resource request to RESADMIN, and behavior Ackresa
t

would receive the coming resource.

ActQrya
t ≡ (querya

t .blocka
t 〈Heartbeat〉.(ν ch)(getexpiredresa

t 〈ch〉|ch(
−−−−→
reslist)

.[
−−−−→
reslist �= nil]releaseallat 〈

−−−−→
reslist〉).)+∞

MkPlana
t ≡ !informa

t (
−→
tsk).(ν ch)(makenullplant〈ch,

−→
tsk〉|ch(−→n))

.(ν p)(locallyplan〈p, −→n 〉|p(
−−→
plan, res).([res �= null]requestat 〈

−−→
plan〉

+ [res = null]synbuddya
t (
−−→
plan)))

CallBda
t ≡ !(ackbuddya

t (
−−−→
uplan,

−→
lst)|refusea

t (
−−−→
uplan,

−→
lst)).(ν c)(topof〈c,−→lst〉

|c(next,
−−→
nlist).([next �= null]next〈−−−→uplan,

−−→
nlist, lenda

t , refusea
t 〉

+ [next = null]reqres〈uplan � EST − 1〉))
Ackresa

t ≡ !allotat (name, begintm).(ν ch)(genrest〈ch, name, begintm, 239〉
|ch(−→res).[−→res �= nil]addres2locallist〈−→res〉)

TryLenda
t ≡ !borrowa

t (
−−−→
uplan,

−→
lst, succ, fail).(ν ch)(locallyplan〈ch,

−−−→
uplan〉

|ch(
−−→
plan, res).([res �= null]assigna

t 〈
−−→
plan〉.succ〈−−→plan〉

+ [res = null]fail〈−−−→uplan,
−→
lst〉))

AckLenda
t ≡ !lenda

t (
−−→
plan).assignremote〈−−→plan〉.requestat 〈

−−→
plan〉

2.6 Coordinator

A coordinator agent COORDINATORr coordinates all member agents having
resource r. After elimination of plan backup mechanism, it has several behaviors
on information synchronization and buddy list making up.

CORDINATORr
def=(Metainfor, Syncycle)(CooFunc|Synchr|Storea

t |RespBda
t)

(r ∈ Resources, t ∈ TskinResr, a ∈ Agentst)

506 W. Fan and F. Xue

Synchr and Storea
t cyclically collect meta-level information of member agents

which belong to it. Behavior RespBda
t tells a member buddy list sorted by meta-

level information.

Synchr ≡ (synallr.blockr〈Syncycle× Heartbeat〉.)+∞

Storea
t ≡ !ackdemanda

t (dm).(ν ch)(setval〈ch, dm〉|ch(demandsa
t)

.removelist〈demandsa
t 〉.insertsort〈demandsa

t 〉)
RespBda

t ≡ !synbuddya
t .(ν ch)(genbuddylistt〈ch〉|ch(

−−→
blst).ackbuddya

t 〈
−−→
blst〉))

3 Complexity

First of all, we abbreviate the number of flights ‖Flights‖ to “n” as well as
24 × 60 × Heartbeat to “WholeDay”.

3.1 Preparation

For any subtask t, there are n jobs to do at most. And there must be a minimal
completion time ctmin

t for t. The resource expectation res∗t
O(n) = n × ctmin

t /WholeDay ≤ res∗t ≤ n = O(n)

Hence, res∗t = O(n) (t ∈ Schtasks)
For each resource r, there is a constant set Tskinresr. By summing it up one

by one, we have expectation of each resource r ∈ Resources is res∗r = O(n).
In fact, resources to allocate usually approximates the expectations O(n), so we
assume the number of each resource r ∈ Resources is resr = O(n).

Because the agents number affects the complexity, we assume there are O(n)
agents to compute the upper bound of complexity.

3.2 Time Complexity

Time complexity of improved DSAFO is mainly from two parts: resource bor-
rowing and demand synchronization. The rest processes are less complex.

Resource Borrowing. In the worst case, there are O(n) searches and O(n)
borrowing message transmissions to fulfill every subtask. All O(n) subtasks cost
tborrow = O(n2) × tsearch + O(n2) × ttrans = O(n3) + O(n2) × ttrans.

Demand Synchronization. Demand synchronization is a cyclic action. Each
member has only one coordinator in federation organization, therefore, each syn-
chronization transmits O(n) messages and do O(n×n) sorts. The synchronization
costs

tsyn =
(
O(n) × ttrans + O(n2)

)× WholeDay
Heartbeat × Syncycle

= O(n2)+O(n)× ttrans

To sum up, the upper bound of complexity tDSAFO = O(n3) + O(n2)× ttrans.

Optimize Cooperative Agents with Organization 507

4 Experiment Result

We implemented DSAFO in JADE [6], a multi-agent development environment,
and implemented the channels on FIPA ACL [7].

In classical JSSP, EDD (Earliest Due Date first) and FCFS (First Come Fist
Serve, also well known as ERT, Earliest Ready Time) are two powerful heuristic
algorithms for minimal uncompleted jobs scheduling [3]. We tested these algo-
rithms with a 282 transfer flights problem under normal constraint.

As a multi-agent algorithm, DSAFO is an unstable algorithm. Consequently
we gave spontaneous 250 runs to get the distribution of the solutions. Figure 2
shows the baggage truck solution distribution for trucks and man-days consumed
by DSAFO with 8 baggage truck agents.

Fig. 2. Distribution of DSAFO (8 agents) solutions for baggage trucks

Furthermore, we tested DSAFO in different quantities of MEMBER agents.
The results were accumulated in Fig. 3 and 4. From the marginal distributions
in Fig. 3, we can see that 76.8% resource solutions of DSAFO with 8 agents are
not worse (59.6% better) than EDD and FCFS, the probabilities are 54% and
32% with 12 agents and 16 agents. But the best solutions of the three are nearly
the same. And so is in Fig. 4. It means when the number of agents increases,
probabilities of good solutions decrease, but the best solution seems stable.

Figure 5 shows the simultaneous serving resources of solutions done by differ-
ent optimization algorithms.

508 W. Fan and F. Xue

Fig. 3. Marginal distribution of baggage trucks consumed

Fig. 4. Marginal distribution of 4-hour baggage truck works

Fig. 5. Simultaneously serving baggage trucks by different optimization algorithms

Optimize Cooperative Agents with Organization 509

5 Conclusion

AGSS problem is a typical dynamic distributed scheduling problem. To optimize
AGSS consumptions of resources and man-days is difficult, but it is important
to economy. DSAFO is a novel multi-agent constraint satisfaction algorithm for
AGSS problems.

We improved DSAFO for optimizing consumptions of resources and man-days
by incorporating a resource allocation strategy. Experiments show that improved
DSAFO performs well in optimization. And when the number of agents increase,
probabilities of good solutions would decrease but the best solution would be
stable.

Though improved DSAFO is unstable, it makes good probability to find better
solutions than classical heuristics, and its construction of distributed and parallel
agents is potential to deal with distributed dynamic troubles in real applications.
Furthermore, DSAFO may be allied to common dynamic distributed scheduling
problems for its low complexity and sound effect.

Acknowledgements. The authors acknowledge the support by National Nat-
ural Science Foundation of China (NSFC) under Grant No. 60472123.

References

1. Xing, J., Fan, W., Ji, L.: Design of Airport Ground Service System Based on Multi-
agent. Journal of Civil Aviation University of China, 24 (2006) (in Chinese).

2. Modi, P. J.: Distributed Constraint Optimization for Multiagent Systems. Ph.D.
Dissertation. University of Southern California, USA (2003)

3. Tang, H., Zhao, L.: Introduction to Scheduling Theory. Chapter 2. Chinese Acdemic
press, Beijing (2002) (in Chinese).

4. Yokoo, M.: Distributed Constraint Satisfaction: Foundation of Cooperation of Multi-
agent System. Springer Verlag, Heidelberg, Berlin (2001)

5. Milner, R.: The Polyadic π-calculus: A Tutorial. Tech. Report ECS-LFCS-91-180.
University of Edinburgh, UK (1991)

6. Bellifemine, Poggi, F., Rimassa, A., Jade, G.: A FIPA2000 Compliant Agent De-
velopment Environment. In Proceedings of The Fifth International Conference on
Autonomous Agents (AGENT01), Montreal, Canada, ACM Press, New York (2001)
216-217.

7. FIPA: FIPA ACL Message Structure Specification. Document No. 00061, Geneva,
FIPA, http://www.fipa.org/specs/fipa00061/SC00061G.pdf (2002)

	Introduction
	Improved DSAFO
	Polyadic π-Calculus
	DSAFO: An Overview
	Blackboard Agent
	ResAdmin
	Member
	Coordinator

	Complexity
	Preparation
	Time Complexity

	Experiment Result
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

