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Abstract. The relaxation labeling is a useful technique to deal with lo-
cal ambiguity and achieve consistency. In [1], some useful comments in-
dicate several common properties exist in the relaxation process and the
neural network technique. Neural networks can be used as an efficient
tool to optimize the average local consistency function whose optimal
solution results in a compatible label assignment. However, most of cur-
rent investigations in this field are based on the standard Hopfield neural
network (SHNN) presented in [2]. In this paper, an improved Hopfield
neural network (IHNN) presented in [3] is utilized to fulfill relaxation
labeling. Compared to the SHNN, this approach has some advantages.
1) The IHNN uses fewer neurons than that of SHNN. 2) The activation
function of IHNN is easier to be implemented than that of SHNN. 3)
The IHNN does not contain any penalty parameters. It can generate
the exact optimal solution. Some experimental results illustrate that the
IHNN approach can obtain a better labeling performance than that of
SHNN.

1 Introduction

The relaxation labeling is a useful technique to deal with local ambiguity and
achieve consistency. It has far broader applications such as scene labeling, curve
detection and enhancement, and image segmentation. There are basically three
types of relaxation processes, namely discrete relaxation, fuzzy relaxation, and
probabilistic relaxation [4]. In this paper, neural network technique is utilized
to fulfill the probabilistic relaxation whose general idea is described as follows.
This relaxation process involves a set of n objects O1, O2, · · · , On and a set of
m labels C1, C2, · · · , Cm. For each object Oi, a measurement pij is used as the
probability of the case that Oi has the label Cj . For each i ∈ {1, 2, · · · , n}, pij

has to satisfy the following condition
m∑

j=1
pij = 1,

0 ≤ pij ≤ 1, ∀j = 1, 2, · · · , m.
(1)

Suppose further that the label assignment is correlated. For example, label Cj

at object Oi can influence label Ck at object Oh. This compatibility of the pair
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of label assignments Oi ∈ Cj and Oh ∈ Ck can be quantitatively measured by
r(i, j; h, k). If object Oi having label Cj tends to support the object Oh with
label Ck, then r(i, j; h, k) is positive and larger, vice versa.

To apply relaxation labeling, each object is firstly assigned the initial prob-
ability p

(0)
ij of its possible label memberships. Then relaxation process uses the

compatibility measurement r(i, j; h, k) to find a set of n classifications of all the
objects which are as compatible as possible. Rosenfeld et al. proposed an iter-
ative updating algorithm to find this compatible classification [5]. Specifically,
for each object and each label in the rth iteration, one computes the q

(r)
ij by

following equation

q
(r)
ij =

1
n

n∑
h=1

m∑
k=1

r(i, j; h, k)p(r)
hk . (2)

q
(r)
ij denotes the contribution from the other objects to support the assignment

p
(r)
ij . Then the new assignment value is adjusted according to following equation

p
(r+1)
ij =

p
(r)
ij [1 + q

(r)
ij ]

m∑
k=1

p
(r)
ik [1 + q

(r)
ik ]

. (3)

In [7], Hummel and Zucker proposed following quantity criterion named aver-
age local consistency function to evaluate the performance of relaxation labeling.

Z(p) =
n∑

i=1

m∑
j=1

pij

(
n∑

h=1

m∑
k=1

r(i, j; h, k)phk

)
(4)

They demonstrated that above hoc updating formula (2) and (3) are just an
approximate approach to find the maximal solution to average local consistency
function. Thus the probabilistic relaxation problem can be converted to a con-
strained optimization problem. In this point of view, many traditional numerical
optimization approaches such as gradient ascent method can be used to fulfill
relaxation process [7]. However these traditional methods suffer from their enor-
mous computation cost and cannot satisfy the real-time processing requirement
when the relaxation problem is complicated. So new approaches are required to
reduce algorithm complexity and increase computational efficiency.

In recent years, neural networks as an efficient optimization tool have at-
tracted a lot of attention in scientific and engineering applications. Rather than
solving problems by numerical iteration, the fundamental idea behind the neu-
ral approach to optimization problems is: by setting up a neural circuit which is
determined by a set of differential equations, for some initial network state, the
neural networks will eventually evolve to an equilibrium state and this state will
coincide with the optimal solution to the original problem. Since Hopfield and
Tank’s classic work [2], various neural network approaches have been proposed
to resolve many kinds of optimization problems [3], [8], [9] and [10]. Some re-
searchers also utilized neural network approach to fulfill relaxation process [1],
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[11] and [12]. In [1], some useful comments indicate several common properties
exist in the relaxation process and the neural network technique. Some advan-
tages of using neural networks are that its natural character of parallel compu-
tation enables neural networks could solve complicated problems efficiently and
the structure of neural networks can be implemented by VLSI technology at a
more reasonable cost. So the relaxation process based on the neural network
technique can be accomplished in real time. But many investigations which used
neural networks to relaxation labeling are based on the standard Hopfield neural
network [1] and [11]. The SHNN contains penalty parameters, thus it only gener-
ates the approximate solution and has an implementation problem when penalty
parameters are very large. In this paper, an improved Hopfield neural network
presented in [3] has been utilized to fulfill the relaxation process. The IHNN
model uses fewer neurons than that of SHNN. The activation function of IHNN
has a “saturation” nonlinearity form which is easier to be implemented than the
sigmoid function used in SHNN. Moreover, the IHNN approach is demonstrated
by variational inequality technique to have the ability of obtaining an exact op-
timal solution [3]. According to experimental results, the IHNN approach can
obtain a better labeling performance than that of SHNN.

The remainder of this paper is organized as follows. Section 2 provides the dy-
namical differential equations and architectures of the improved Hopfield neural
network. Experimental results are shown and discussed in Section 3. Section 4
concludes this paper with final remarks.

2 Improved Hopfield Neural Network Model

First, the constrained optimization problem which maximizes the average local
consistency function (4) is stated as follows

max Z(p) =
n∑

i=1

m∑
j=1

n∑
h=1

m∑
k=1

pijr(i, j; h, k)phk, (5)

s.t.
m∑

j=1

pij = 1,

0 ≤ pij ≤ 1, i = 1, 2, · · · , n; j = 1, 2, · · · , m.

This is a quadratic optimization problem with equality and inequality con-
straints. In the neural network literature, there exist a few NN models for solv-
ing quadratic optimization problems. Some of them are based on the penalty
function method [2] and [8]. The fundamental idea behind the penalty function
method is that, when a constraint violation occurs, the magnitude and direc-
tion of the violation are fed back to adjust the states of neurons. But penalty
parameters cannot be infinite, the network only generates the approximate so-
lution. Wang et al. presented several Hopfield-type neural network approaches
(Lagrangian neural network, primal-dual neural network, primal neural network
and dual neural network) which fulfill the Karush-Kuhn-Tucker (KKT) condi-
tion to obtain an exact optimal solution [3], [9] and [10]. According to [9] and
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Fig. 1. Functional block diagram for IHNN model

[10], the primal-dual neural network and the dual neural network usually require
the objective function convexity, this requirement can not be guaranteed by the
quadratic optimization problem defined by (5). An improved continuous-time
Hopfield neural network presented in [3] is adopted in this paper. This net-
work model can deal with bound-constrained nonlinear optimization with any
continuously differentiable objective function which is not necessarily quadratic
or convex. The quadratic optimization problem considered by IHNN in [3] is
described as follows

min E(x) =
1
2
xT Qx + xT θ, (6)

s.t. a ≤ x ≤ b

where x = (x1, x2, · · · , xn)T ∈ �n is a decision vector; a = (a1, a2, · · · , an)T ∈
�n and b = (b1, b2, · · · , bn)T ∈ �n are respectively given constant lower and
upper bounds with ai ≤ bi (i = 1, 2, · · · , n); Q ∈ �n×n is a symmetric weighted
matrix; θ = (θ1, θ2, · · · , θn)T ∈ �n is a constant vector and the superscript T
denotes the transpose operator.

Note that the quadratic problem defined by (5) has equality constraints. In
order to utilize the IHNN approach, equality constraints have to be canceled by
replacing pij0 (∀j0 ∈ {1, 2, · · · , m}) in (5) with 1 −∑m

j=1,j �=j0
pij , then the ob-

jective function of the optimization problem defined by (5) can be reformulated
as follows

Z(p) =
n∑

i=1

n∑
j=1

n∑
h=1

m∑
k=1

pijr(i, j; h, k)phk

=
n∑

i=1

m∑
j=1 j �=j0

n∑
h=1

m∑
k=1,k �=j0

pijphkQij,hk+

n∑
i=1

m∑
j=1,j �=j0

pijθij +
n∑

i=1

n∑
h=1

r(i, j0; h, j0)

= pT Qp + pT θ + C.

(7)
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where p =
(
p11, · · · , p1(j0−1), p1(j0+1), · · · , p1m, · · · , pn1, · · · , pn(j0−1), pn(j0+1),

· · · , pnm)T ∈ �n(m−1) is the decision variables; Qij,hk = r(i, j; h, k)−r(i, j; h, j0)
− r(i, j0; h, k) + r(i, j0; h, j0), Q = (Qij,hk) ∈ �n(m−1)×n(m−1) is the symmetric
weighted matrix; θij =

∑n
h=1 r(i, j; h, j0) +

∑n
h=1 r(h, j0; i, j) − ∑n

h=1 r(h, j0;
i, j0)−∑n

h=1 r(i, j0; h, j0), θ=(θij) ∈ �n(m−1) and C =
∑n

i=1
∑n

h=1 r(i, j0; h, j0).
Thus the problem defined by (5) is converted to the following quadratic opti-

mization problem with only bound constraints.

min Z(p) = −(pT Qp + pT θ + C), (8)
s.t. 0 ≤ p ≤ 1,

where 0 = (0, 0, · · · , 0)T ∈ �n(m−1) and 1 = (1, 1, · · · , 1)T ∈ �n(m−1).
According to [3], an improved Hopfield neural network model can be designed

to resolve above problem. The differential equations which determine the IHNN
configuration are described as follows

Γ
dp

dt
= −p + g (p + Λ(2Qp + θ)) (9)

where Γ = diag
(
τ1, τ2, · · · , τn(m−1)

)
and Λ = diag

(
α1, α2, · · · , αn(m−1)

)
are

time constant positive defined matrix and scaling positive defined matrix, re-
spectively. These parameters can be used to control the convergence rate of the
IHNN model. The activation function g(x) =

(
g1(x), g2(x), · · · , gn(m−1)(x)

)T
and gi(x) is defined by following equation

gi(x) =

⎧⎨⎩
0, if x < 0;
1, if x > 1;
x, if 0 ≤ x ≤ 1.

g(x) can be regarded as the projection operator of �n(m−1) to the closed convex
feasible region Ω = [0, 1] × [0, 1] · · · × [0, 1].

The IHNN model has been demonstrated to have following features by vari-
ational inequality and ordinary differential equation techniques in [3]. 1) The
IHNN model is regular in the sense that any optimal solution to problem de-
fined by (8) is also an equilibrium point of IHNN. Moreover, if the objective
function is convex, the set of equilibrium point of IHNN is equal to the set of
the optimum of optimization problem defined by (8). 2) The IHNN model is
quasiconvergent in the sense that the trajectory of IHNN cannot escape from
the feasible region and will converge to the set of equilibrium point of IHNN
for any network initial state in the feasible region. This guarantees the IHNN
model is stable. 3) If the initial state of IHNN is in the feasible region, the value
of objective function will decrease along the corresponding solution trajectory.
Thus, although the objective function of the optimization problem defined by (8)
is not convex, which means that the equilibrium point of IHNN may not be the
optimum of optimization problem defined by (8), the convergence point of IHNN
can still obtain a better performance than the network initial state. Also because
of the non-convexity of the objective function, there are maybe more than one
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equilibrium point of IHNN. In order to make IHNN converge to the equilibrium
point resulted in a better labeling performance, the initial state of IHNN cannot
be selected randomly in the feasible region. The initial state which is computed
by analyzing the corresponding relaxation labeling problem can be regarded as a
prior knowledge, and the solution trajectory of IHNN is expected to converge to
the equilibrium point which is nearest to the initial state. After IHNN converges,
pij0 can be obtained by the relationship pij0 = 1−∑m

j=1,j �=j0
pij . Then select the

maximum value pijm among pi1, pi2, · · · , pim. Object i is assigned to label jm.
The dynamical equations (9) of IHNN indicate that the network is composed

by only one layer of n(m − 1) neurons which is fewer than that of SHNN which
is composed of nm neurons [1]. The IHNN has only one nonlinearity form “sat-
uration” which is easier to be implemented by an operational amplifier than the
sigmoid function used in SHNN. The IHNN approach is not based on the penalty
function method, it yields an exact optimal solution while SHNN contains finite
penalty parameters which can only generate an approximate optimal solution.

The block diagram of the IHNN controller is shown in Fig. 1. The weighted
connections of network and the initial network state have to be determined
according to the corresponding relaxation labeling problem.

3 Experimental Results

To demonstrate the efficiency of the IHNN approach, a typical image processing
problem, thresholding, is performed. In other word, to determine each pixel of a
noise corrupted image belong to either object or background. The original gray
image is a Chinese character “cheng” shown in Fig. 2. The size of this image
is 40 × 40. The most of intensity values of character is 20 while the intensity
value of background is 255. Then this image is corrupted by a zero means white
noise. The corrupted image is depicted in Fig. 3. It is clear that thresholding by
simply using a single thresholding value for the entire image does not work, so
relaxation method is used to deal with this problem.

Fig. 2. The Chinese character “cheng”
without noise corruption

Fig. 3. The Chinese character “cheng”
with white noise corruption

The object of this relaxation labeling problem is each pixel point of the cor-
rupted image and two kinds of labels, character and background, will be as-
signed to each object. For the pixel point Ax,y, px,y,1 denotes the probability
of this point having character label and px,y,0 = 1 − px,y,1 denotes the case of
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background label. Then the initial probability of each pixel and compatibility
coefficients have to be determined. For the initial probability, a scheme to de-
termine the likelihood of the pixel being the character or background is needed.
According to the analysis in Section 2, a good initial probability assignment re-
sults in a good labeling performance. So the likelihood determination scheme is
very important to the problem resolution. Here a simple method presented in [4]
is adopted. Specifically, let Vx,y be the gray level of pixel point Ax,y, Vmax and
Vmin are the maximum and minimum gray levels of the entire image, respec-
tively. Then initial probability of pixel point Ax,y can be obtained by following
equations

p0
x,y,0 =

Vx,y

Vmax − Vmin
, (10)

p0
x,y,1 = 1 − Vx,y

Vmax − Vmin
. (11)

For compatibility coefficients, suppose that each pixel point Ax,y only corre-
lates to its nearest 8-neighborhood points. So the compatibility coefficient for
any point not in the 8-neighborhood will be zero. For each point Ax+i,y+j (i, j ∈
{−1, 0, 1}), there are four compatibility coefficients, r(x, y, 1; x + i, y + j, 1),
r(x, y, 1; x+i, y+j, 0), r(x, y, 0; x+i, y+j, 1) and r(x, y, 0; x+i, y+j, 0). A general
method (12) proposed in [6], which is based on the mutual information of labels
at neighboring pixels, is utilized to compute these compatibility coefficients. The
computation result is shown in Table 1.

r(x, y, λ; x + i, y + j, λ̃) = log

n
∑

(x,y)
px,y,λpx+i,y+j,λ̃∑

(x,y)
px,y,λ

∑
(x,y)

px,y,λ̃

(12)

where λ, λ̃ ∈ {0, 1}.

Table 1. Compatibility coefficients computed by (12) where each element in row (λ, λ̃)
and column((x, y),(x + i, y + j)) means the coefficient r(x, y, λ; x + i, y + j, λ̃)

(λ, λ̃)
(x, y) (x, y) (x, y) (x, y)

(x − 1, y − 1) (x − 1, y) (x − 1, y + 1) (x, y + 1)
0; 0 0.023070 0.027393 0.025787 0.040600
0; 1 -0.029055 -0.034715 -0.032637 -0.051198
1; 0 -0.036887 -0.038016 -0.032475 -0.049311
1; 1 0.044478 0.045800 0.039289 0.058908

(x, y) (x, y) (x, y) (x, y)
(x + 1, y + 1) (x + 1, y) (x + 1, y − 1) (x, y − 1)

0; 0 0.029292 0.029778 0.024255 0.037603
0; 1 -0.037177 -0.037809 -0.030661 -0.048042
1; 0 -0.032316 -0.036012 -0.034328 -0.053104
1; 1 0.039101 0.043452 0.041473 0.063259
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Fig. 4. The thresholding image pro-
cessed by the IHNN approach

Fig. 5. The thresholding image pro-
cessed by the SHNN approach

Fig. 6. The Chinese character “cheng”
with color noise corruption

Fig. 7. The thresholding result of fig-
ure 6 by the IHNN approach

Fig. 8. The Chinese character “long”
without noise

Fig. 9. The Chinese character “long”
with white noise corruption

Fig. 10. The thresholding image processed by the IHNN approach

Now, the IHNN model is simulated on an IBM personal computer. The dif-
ferential equations (9) which determine the IHNN configuration are solved by
Matlab ode45 method and the time constants matrix Γ and scaling matrix Λ in
(9) are set to be 100 × I (I is a unity matrix) and 100 × I, respectively.

The thresholding image processed by the IHNN approach is shown in
Fig. 4, which is almost same with the original image. Then the SHNN approach
is used to process the corrupted image again in order to compare with the IHNN
method. The gain λ of SHNN is set to be 0.1 and the initial probability and com-
patibility coefficients are computed by the method used in [1]. The thresholding
image processed by the SHNN approach is shown in Fig. 5. According to the
experimental result, the IHNN method can obtain a better performance than
that of SHNN. In order to verify the robustness of IHNN algorithm, some other
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type of noise is generated to corrupt the original image. This color noise is the
output signal of the filter 1

1−z−1 whose input signal is the original white noise.
The color noise corrupted image is shown in Fig. 6, and the thresholding image
is depicted in Fig. 7. It is obvious that the IHNN algorithm can also obtain a
good thresholding result.

Another thresholding experiment is to deal with a Chinese character “long”
with a different font type. The original image is shown in Fig. 8 and the noise
corrupted image is shown in Fig. 9. The initial probability values and compati-
bility coefficients are computed by the same method used in the first experiment.
Γ and Λ of the IHNN model are set to be 100 × I and 100 × I. According to
the experimental result shown in Fig. 10, the IHNN approach can still obtain a
good labeling performance.

4 Concluding Remarks

The relaxation labeling is a useful technique to deal with local ambiguity and
achieve consistency. In [1], some useful comments indicate that several common
properties exist in the relaxation process and the neural network technique. Re-
cently, many investigations in this field are based on the standard Hopfield neural
network. In this paper, an improved Hopfield neural network model presented in
[3] is utilized to fulfill the relaxation labeling process. Compared to the SHNN,
this IHNN approach has some advantages that 1) The IHNN uses fewer neu-
rons than that of SHNN. 2) The activation function of IHNN has a “saturation”
nonlinearity form which is easier to be implemented than that of SHNN. 3) The
IHNN is not based on the penalty function method and can generate an ex-
act optimal solution while SHNN contains the finite penalty parameters which
result in an implementation problem when penalty parameters are very large.
According to the experimental results, the IHNN method can obtain a better
labeling performance than that of SHNN. Because the neural network approach
can be used as a guidance to design analog or digital circuits, thus any real-time
relaxation application can be accomplished by the IHNN method. Note that the
relaxation labeling problem is essentially a non-convex quadratic optimization
problem. The IHNN model used here is only regular but not complete (complete
means the set of equilibrium point of the neural network model is equal to the
set of the optimum of quadratic optimization problem). So some advanced com-
plete neural network model can be further investigated. Moreover, how to select
the network initial state appropriately according to the corresponding relaxation
problem is also an interesting topic for future research.
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