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Abstract. Underdetermined blind source separation and sparse component 
analysis aim at to recover the unknown source signals under the assumption that 
the observations are less than the source signals and the source signals can be 
sparse expressed. Many methods to deal with this problem related to clustering. 
For underdetermined blind source separation model, this paper gives a new plane 
clustering algorithm to estimate the mixture matrix based on sparse sources in-
formation. Good performance of our method is shown by simulations. 

1   Introduction 

Blind source separation (BSS) has been applied to many fields, such as, digital com-
munication, image processing, array processing and biomedicine, and so on. Also, it 
has a lot of potential applications. Therefor, it has been a hot topic in signal process-
ing and neural networks field [1-6]. 

Blind separation comes from cocktail problem [7], just to say, we only can restore 
source signals by gotten sensor signals, what’s more, mixture channel and source 
signals’ distributions are unknown. So the mathematics model of BSS is 

T ttNtAStX 1,)()()( =+= . (1)

where T
m txtxtxtX )]()(),([)( 21=  is sensor signals, nmRA ×∈  is mixture matrix, 

and T
n tstststS )]()(),([)( 21=  is source signals, and T

m tntntntN )]()(),([)( 21=  is 

noise. BSS aims at restoring source signals only by known sensor signals, generally, 
we suppose noise doesn’t exist. 

In general, if m  is more than n , that is, the number of sensor signals is more than 
that of source signals [8], it is overdetermined BSS. We consider the case that m is 
less than n  in this paper, namely, underdetermined BSS. Although it is difficult to 
restore source signals, we can use some other information, such as, sparseness of 
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source signals, to restore source signals, and if some source signals aren’t sparse in 
time-domain, we can make them sparse through some transformation, such as, Fourier 
transformation or wavelet transformation, so BSS model is also written as 

Tttsatsatsatx nn 1),()()()( 2211 =++= . (2)

Where T
m txtxtx )](),([)( 1= , T

miii aaa ],[ 1= .

2   Sparse Representation of Underdetermined Blind Separation 

For underdetermined BSS, generally, some blind extraction algorithms [9], [10] are 
taken in past, but the algorithms can’t realize to restore all source signals. In order to 
restore all source signals in underdetermined BSS, researchers make use of some 
characteristics of signals, for example, sparse analysis is adopted to make signals 
sparse representation, so some underdetermined BSS algorithms are successfully. 
Among the good algorithms there are Belouchrani’s maximum likelihood algorithm 
[11] for discrete sources, Zibulevsky’s sparse decomposition algorithm [3], Lee 
[12]�Lewicki [13] and Li’ overcomplete representation algorithms [5]  and Bofill’ 
sparse representation in frequency domain [14]. 

Generally, sparse signal is that the one whose most sample points are zero or are 
near to zero, and a little sample points are far from zero. Here, we suppose that the 
source signal )(tsi  is nonzero and the other source signals are zero or are near to zero 

at the time of t . So equation (2) can be written as 

)()( tsatx ii= .
(3)

From above equation, we can known that ia  and )(tx  are collinear�so we can es-

timate mixture matrix ],,[ 21 naaaA =  by clustering )(tx  in all time. It is a very 

important algorithm for sparse component analysis solving underdetermined BSS, 
named by k-means clustering, and the algorithm includes two steps [5],[14], first, 
clustering centers are estimated by k-means clustering; second, source signals are 
estimated by known mixture matrix through linear programming. 

Because the above algorithms require that source signals are very sparse, so there 
is a lot of restriction for application. Recently, Pando Georgiev puts forward a new 
sparse component analysis method for underdetermined BSS based the next condi-
tions [15]. 

A1) the mixture matrix nmRA ×∈  has the property that any square mm×  subma-
trix of it is nonsingular. 

A2) each column of the source matrix )(tS  has at most 1−m  nonzero elements. 

A3) the sources are sufficiently rich represented in the following sense: for any in-
dex set of 1+− mn  elements },2,1{},{ 121 niiiI mn ⊂= +−  there exist at least m

column vectors of the matrix S  such that each of them has zero elements in places 
with indexes in I  and each 1−m  of them are linearly independent. 
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For simplicity, we suppose 4,3 == nm  to explain the paper’s algorithm for the 
problem. If 4,3 == nm , the equation (2) can be written as: 

Tttsatsatsatsatx 1),()()()()( 44332211 =+++= . (4)

where Ttxtxtxtx )](),(),([)( 321= and T
iiii aaaa ],,[ 321= , according to A2), if the i th 

source signal and the j th source signal are nonzero at the time of t , then 

Tttsatsatx jjii 1),()()( =+= . (5)

From equation (5), we can know the sensor signal vector is in the same plane with 
vector ia  and vector ja . Again, according to A1, every two columns in mixture 

matrix are independent, there are defined 2
4C  different planes by every two columns 

in mixture matrix. From equation (5), the mixture matrix ],,,[ 4321 aaaaA =  can be 
estimated through plane clustering of sensor signals in no noise or little noise. Next, 
the plane clustering algorithm is given in detail and source signals are restored by it. 

3   Mixture Matrix Identification Based on Plane Clustering 

Pando Georgiev has proved that the mixture matrix is identifiable when the conditions 
A1 ,A2 ,A3 are met. Because the mixture matrix is very important, but Pando Geor-
giev doesn’t give substantial algorithm for it, so this paper gives the substantial novel 
algorithm for estimating mixture matrix. 

For simplicity, we still suppose 4,3 == nm  to explain the algorithm. To identify 
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4 =C  planes, we turn to identify their six normal lines , and if their normal lines are 

identified, then we identify their planes. 
In order to begin plane clustering, we initialize the sensor signals T   ttx 1),( = ,

which are normalized. If 3=m , a sensor signal correspond to one point in the spheri-
cal surface, and the points of the below half spherical surface need to turn them to 
above half spherical surface symmetrically. Then, the new sensor signals are  
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tx , Tt 1= . (6)

Clustering )(ˆ tx  is correspond to clustering )(tx , and the points will locate in the 

above half spherical surface which are in the same planes with the planes by every 
two columns of the mixture matrix respectively. 

Similar to k-means cluster, normal lines clustering is to get their normal lines and 
modify them in clustering algorithm. For example, there are some initialized points 

Ttytytyty )](),(),([)( 321= , 0,2,1 Nt =  in a plane.To identify its plane, we suppose 

its normal line is Tnnnn ],,[ 0302010 = , According to inner-product’ s definition,  

)(03032021010 0
cos)()()()())(,( tyntyntyntyntyntyn θ×⋅=⋅+⋅+⋅= , (7)
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where )(0 tynθ  is the angle between the normal line 0n  and the point )(ty , so 

πθ ≤≤ )(0
0 tyn , and 1cos1 )(0

≤≤− tynθ .

From equation (7), if we need to identify the plane composed of the points )(ty ,

0,2,1 Nt = , the normal line Tnnnn ],,[ 0302010 = must be found to let )(0 tynθ  tend to 

2

π
 for any },2,1{ 0Nt ∈ , because 1)(,10 == tyn , so just to say 

.1)()()(..

))(,(minarg
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nnnts
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tn (8)

Based on equation (8), the plane clustering algorithm is followed in detail. 

1) Initialize the sensor signals T ttx 1),( =  using equation (6) to get new sen-

sor signals T ttx 1),(ˆ = .

2) Bring six initialized normal lines randomly, 654321 ,,,,, nnnnnn .

3) Compute the inner-products of T ttx 1),(ˆ =  and 61, =ini  respectively, 

and take their absolute values, let },)),(ˆ()),(ˆ( |)(ˆ{ ijntxntxtxX jii ≠<= .

4) Modify the initialized normal lines, let ]cos,sinsin,cos[sin θϕθϕθ=n ,

2
0

πθ ≤≤ � πϕ ≤≤0 . For the sake of simplicity, the algorithm is shown by 

the following Matlab programme. 
for 6:1=i

ii nn =ˆ ;
              for 2/::0 1 πηθ =
                  for πηϕ ::0 2=
                       if ),(),( iii nXnX <
                         nni = ;
                       end 
                  end 
              end 
         end 

Where 21,ηη  denote step sizes respectively, ),(,),( iii nXnX  respectively 

denote the sums of inner-product’s absolute value between all the elements of 
the set iX  and normal lines n , and in .

5) If iii nn ε<−ˆ
� 61=i , the algorithm stops and iε is a given little value, 

otherwise, continue the step 3). 

Because each column vector ia  in the mixture matrix compose a plane with other 

column )( ija j ≠ , so ia  must be orthogonal with three normal lines among ,, 21 nn

6543 ,,, nnnn  and the three normal lines must be in the same plane. That is to say, if 

we find any three coplanar normal lines, the columns )4,1( =iai  will be estimated. 
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4   Restoring Source Signals 

Now, we suppose that the normal line is })6,1{( ∈knk  of the plane composed of 

)(, jiaa ji ≠ , and the set of the sensor signals is })6,1{( ∈lX l  which is coplanar 

with )(, jiaa ji ≠ . For any ,)( lXtx ∈  so  

)()()( tsatsatx jjii += , (9)

or
)()( tsAtx ijij= , (10)

where T
jiijjiij tststsaaA )](),([)(],,[ == , so 

)()( # txAts ijij = .
(11)

Where #
ijA  denotes the generalized inverse matrix of ijA . So only the i th source 

signal and the j th source signal have nonzero values gotten by equation (11) at the 

time of t , but zero for the other source signals at the time of t .

5   Simulations Results 

In the experiment, a random 43×  matrix brings for the simulation but meets the 
condition A1), and take 1000=N , four source signals are denoted in fig 1, The ini-

tialized mixture matrix is 

0.48439

0.12535-

0.86583

0.11652

0.72862-

0.67493-

0.93844-

0.28866

0.18977

0.75874

0.59016

0.27574-
, and the estimated mixture 

matrix by the above algorithm is 

0.93819

0.28914-

0.19024-

0.75867

0.59033

0.27554-

0.48551

0.12444-

0.86533

0.11622-

0.7288

0.67479
.

Fig. 1. Four source signals 

Fig. 2. Restored source signals 
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From the estimated mixture matrix and the above figures of restored source signals, 
the algorithm is successful except that the first and the fourth restored signals have 
sign difference from the third and the second source signals, which is allowed in BSS. 

6   Conclusions 

This paper gives a novel and substantial algorithm for estimating the mixture matrix 
and restoring the sparse source signals in underdetermined BSS. The algorithm is 
feasible and its good performance is shown in the simulation results, and it also easy 
to expand the algorithm to high dimension underdetermined BSS by sparse compo-
nent analysis. 
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