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Abstract. An effective blind multichannel identification algorithm is proposed 
in this paper. Different from the Prediction Error Method, the new algorithm 
does not require the input signal to be independent and identical distribution, 
and even the input signal can be non-stationary. Compared with Least-Square 
Approach, the new algorithm is more robust to the overestimation of channel 
order. Finally, the experiments demonstrate the good performance of the 
proposed algorithm. 

1   Introduction 

Blind identification of Single-Input Multiple-Output (SIMO) systems has many 
applications, or potential applications in wireless communications, equalization, 
seismic data deconvolution, speech coding, image deblurring, echo cancellation[1-8],
etc. For the FIR SIMO system, as long as the FIR channels do not share the common 
zeros and all channels are fully activated, the SIMO system can be identified by just 
second-order statistics of the output [1], which further makes the blind identification 
of SIMO systems so important. So many researchers paid much attention on this 
problem. 

Because of the predominant advantage in computation cost and the weak 
requirement in data samples of the receiving signals, the second-order statistics 
(SOS)-based methods are very attractive and obtain much attention. Among them, the 
least-square approach (LSA) [1], the linear prediction methods (LP) [2] and the 
subspace methods (SS) [3]and are the three main classes. When the channel order is 
known, the channels can be very precisely estimated by SS-based approaches and 
LSA-methods, however, which are very sensitive to the estimation error of channel 
order. Contrastively, LP methods are not so accurate as the former two methods, but 
robust to the channel order overestimation. LP methods usually require the input 
signal is independent and identically distribution (i.i.d) while the other two methods is 
not limited by this requirement. Relatively, the LS approaches are a little simpler than 
SS ones. 
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Guangdong Province Science and Technology Project (Grant 2005B10101013). 
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In this paper, we present a new blind identification algorithm for SIMO FIR system 
by improving the LS approaches. The proposed algorithm is simply based on 
generalized eigenvalue decomposition. The new algorithm can be easy implemented 
and is robust to the channel order overestimation than SS and LS approaches. 

2   Problem Statement 

The single-input m -output channel can be formulated as: 
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Xu, Tong, et al point out that if the channel order is known in advance, the 
necessary and sufficient identifiability condition of SIMO system (1) is that the FIR 
channels have no common zero [1]. So we assume that the FIR channels of system (1) 
do not share the common zeros. 

3   Identification Equations 

According to reference [1], we have the following equations: 
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where  stands for convolution operation. Thus 
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where 1, ,k m= .

Denote 
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TT T
mh h h , and we construct the following matrices: 
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where 1, ,i m= .In equations (6), each block, e.g., 0  or ( ){ }, 1, ,kX L k m= , has the 

size ( ) ( )1 1T L L− + × + . In the noise free case, from SIMO system (1) we derive the 

following equations: 

( ) 0X L ⋅ =h (7)

where matrix ( )X L  is ( ) ( ){ } ( )1 1 2 1T L m m m L− + − × + , and it is given by 
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Now the blind identification problem (1) boils down to solving equations (7). 

4   Blind Identification Algorithm 

The solution of equation (7) is not unique. To find the practical solution, we usually 
add some appropriate constraints, e.g., 

2
1=h  or 1H =c h  for a constant vector c .

The LS approaches identify the channels of system (1) by solving the following 
optimization problem with constraints: 
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Xu, Tong et al [1] use the singular value decomposition (SVD) or fast subspace 
decomposition (FSD) to solve optimization problem (9). Of course, we can replace 
the constraint 

2
1=h  by constraint 1H =c h .Since the accurate channel order of 

system (1) is unknown and estimating it is a challenging work in practice. Usually 
what we can do is overestimating the order. Without the loss of generality, we 
overestimate the channels order of system (1) as ( )h hL L L≥ . As mentioned in 

section 1, LSA algorithm is not robust to overestimation of channel order. To 
overcome this drawback, we attempt to improve the LSA algorithm, which intend to 
not only keep advantage of LSA algorithm, but also be robust to overestimation of 
channels order. 

Denote the ( )1 1hm L + ×  vector ĥ  to be the estimation of h . Considering 
hL L≥ ,

if ĥ  satisfies ( ) ( )0, 1, , ; 1,k hh L L k mτ τ= = + = , the overestimation of channel 

order will have not any influence on the channel identification of system (1). Hence 
the desirable estimation ĥ  of h  should be 
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where c  is a nonzero constant. We construct the following ( )1 1hm L + ×  vector: 
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To make ĥ  be robust to overestimation of channel order and satisfy expression 
(10) as possible as it can, we solve the following optimization problem with 
constraints: 
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where l  is a positive integer. Because 0 1µ< < , it is easy to know that 

1 hLµ µ> > >  and 1 hlLlµ µ> > > . So under the constraints 
2

ˆ 1=h  and 

( ) ˆ 0hX L =h , minimizing ( )ˆ ˆlT diagh h  will force ĥ  to approximately satisfy 

expression (10) in some degree.  
The constraint 

2

ˆ 1=h  means ˆ ˆ 1T =h h . Thus the optimization problem (12) can be 

formulated into the following one without constraint: 
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From expression (13), we have 
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Equation (16) means that one can estimate ĥ  by doing the eigenvalue 

decomposition with respect to matrix ( ) ( ) ( )( )lT
h hX L X L diag+ , and the 

eigenvector corresponding smallest value is just the estimation of ĥ . So we obtain the 
proposed algorithm as follows: 

�� Input the received signals� ( ) ( ) ( )( )1 , , , 1, ,
T

mt x t x t t T= =x �� Set µ �� integer�

l �and the channel order�
hL ��

�� Construct the matrix ( )hX L �and ��

�� Compute the eigenvalues and corresponding eigenvectors of matrix��

4) The eigenvector corresponding smallest value is just the estimation� ĥ  of�h �

5   Numerical Experiments and Result Analysis 

Root-mean-square-error (RMSE) is employed as a performance measure of channel 
estimation.  Usually, when RMSE<0.8, the channels are well identified; when 
RMSE>1.0, the estimation of channels is not reliable. The input signal is supposed to 
be independent and identical distribution in the experiment. Computer simulations 
were conducted to evaluate the performance of the proposed algorithm in comparison 
with Least-Squares Approach (LSA) and Prediction Error Method (PEM). In the 
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following two experiments, the related parameters of the proposed algorithm are set 
as: 1000T = , 0.99µ =  and 2l =  experientially. All input signals are i.i.d Gaussian 

signals generated by Matlab command ( )randn . The channel coefficients are listed 

below. 
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1 2
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h z z z
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Table 1. The overestimation of channel order and corresponding RMSE for i.i.d input signal 

hL 2 3 4 5 6 7 8 9 
LSA 9.0984e-016 0.99 0.97 1.04 0.10 1.03 1.08 1.10 
PEM 0.0424 0.08 0.26 0.27 0.31 0.31 0.32 0.32 
Our 9.3014e-006 0.03 0.14 0.14 0.14 0.14 0.14 0.14 

(a) Noise free                (b) The received signals are added white Gaussian 
noise and the SNR is 40dB 

Fig. 1. Performance comparison between LSA, PEM and the proposed algorithm 

From Table 1 and Fig.1(a), when the order of channel is accurately given, LSA can 
obtain the precise estimation of channels. But for overestimation case without noise, 
we can see that both PEM algorithm and the proposed algorithm well identify the 
channels, but LSA does not do this. Additionally, Fig.1(b) shows the comparison 
result in the same simulation environment except adding white Gaussian noise to the 
receiving signals. All SNRs are 40dB. In this situation, we can see that only the 
proposed algorithm get the relatively satisfactory estimation (Fig.1(b)). 

6   Conclusion 

Based on matrix eigenvalue decompostion, an effective blind multichannel 
identification algorithm is proposed in this paper. Different from the Prediction Error 
Method, the new algorithm does not require the input signal to be independent and 
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identical distribution, and even the input signal can be non-stationary. Compared with 
Least-Square Approach, the new algorithm is more robust to the overestimation of 
channel order and much faster.  
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