
D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNCIS 344, pp. 83 – 94, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Development of Secure Event Service
for Ubiquitous Computing*

Younglok Lee1, Seungyong Lee1, and Hyunghyo Lee2,**

1 Dept. of Information Security, Chonnam National University, Gwangju, 500-757, Korea
dogu@jnu.ac.kr, birch@lsrc.jnu.ac.kr

2 Div. of Information and EC, Wonkwang University, Iksan, 570-749, Korea
hlee@wonkwang.ac.kr

Abstract. In ubiquitous computing, application should adapt itself to the en-
vironment in accordance with context information. Context manager is able
to transfer context information to application by using event service. Existing
event services are mainly implemented by using RPC or CORBA. However,
since conventional distributed systems concentrate on transparency hiding
network intricacies from programmers - treating them as hidden implementa-
tion details that the programmer must implicitly be aware of and deal with, it
is not easy to develop reliable distributed services. Jini provides some novel
solutions to many of the problems that classical systems have focused on,
and makes some of the problems that those systems have addressed simply
vanish. But there is no event servicein Jini. In this paper, we design and
implement a secure event service, SeJES, based on Jini in order to provide
reliable ubiquitous environment. By using the proposed event service, event
consumers are able to retrieve events based on the content. In addition, it
enables only authorized suppliers and consumers to exchange event each
other. We use SPKI/SDSI certificates in order to provide authentication and
authorization and extend JavaSpaces package in order to provide a content-
based event retrieval service.

1 Introduction

In ubiquitous computing environment, application should be able to properly adapt
itself according to its own context information coming from ubiquitous sensors. Most
of the existing communications are based on request-reply communication model.
However, many ubiquitous computing applications require more flexible and indirect
or asynchronous communication mechanism. Event Service[1] is the one which can be
used for these asynchronous communications. By using CORBA Event Service, a
number of event suppliers and consumers can asynchronously communicate even with
no background knowledge with each other. Suppliers and consumers never directly
connect to each other and communicate with each other through the event channel.

* This research was supported by the MIC (Ministry of Information and Communication),
Korea, under the ITRC (Information Technology Research Center) support program super-
vised by the IITA (Institute of Information Technology Assessment).

** Corresponding author.

84 Y. Lee, S. Lee, and H. Lee

Generally, the Event Service of CORBA (Common Object Request Broker Archi-
tecture) can be really applied to many applications. However, in the case of using the
event service of CORBA, problems such as persistency and filtering should be solved.
Also since the existing distributed system such as CORBA can not provide a reliable
environment to develop distributed service, Jini was emerged to solve the problem. In
addition, the several features and services of Jini support the characteristics of ubiqui-
tous computing environment. Among those Jini’s services is JavaSpaces[2]. But there
is no event service in Jini.

JavaSpacesTM is a networked repository for java objects, which provides methods
of sharing and transferring objects even if Jini applications do not have any knowl-
edge with each other. Even though applications can utilize an object transferring func-
tions provided by JavaSpaces in order to asynchronously communicate, there are still
two problems in doing it. One is that the remote listener which receives the event
from JavaSpaces has to call a read() method on the JavaSpaces proxy. The other is
that the event acquired by that remote method read() is not guaranteed as the latest.
By modifying and extending JavaSpaces, we implemented JES (JavaSpaces based
Event Service)[3]. But there is no security service in JES

In this paper, we implement SeJES (Secure JavaSpaces based Event Service) by
extending JES to be more applicable to ubiquitous environment. No matter what de-
gree of computing power event consumers have, the proposed SeJES provides secure
communication and content based filtering services. Our SeJES performs basic but
essential security services such as authentication and authorization using SPKI/SDSI
certificates as well. Also, our SeJES provides an enhanced security by transmitting
renewed secure session key to event service consumers and suppliers, and some func-
tions of QoS.

This paper consists of as follows: Section 2 briefly reviews related work, and
section 3 explains a system model of the SeJES. Section 3 also briefly describes how
each component consisting of the system model can be implemented. Section 4
describes how the SeJES be implemented. In this section, we define interfaces fur-
nished to consumer and suppliers, which use Event service. We explain the imple-
mentation scenario applied on our system. Finally, conclusion and the further research
work are shown in Section 5.

2 Related Work

Many CORBA vendors have developed Event Services, compliant with the OMG
specification. Some have even added their own functionality to overcome the draw-
backs depending on the application domain in which the Event Service is to be used.
This section describes some commercial and academic event models that are CORBA
based, and looks at their advantages and drawbacks[4].

IONA Technologies provides two different types of message service products; Or-
bixEvents[5] and OrbixTalk[6]. OrbixEvents is a C++ implementation of the OMG
CORBA Event Service and the only commercial available Event Service that supports

Development of Secure Event Service for Ubiquitous Computing 85

both, untyped and typed events for the push and pull communication models. Orbix-
Talk is used for distributing IDL-based operations over UDP using either a simple or
reliable multicasting, which is ideal in systems that have many consumers and suppli-
ers, since with UDP there is no need to maintain the connection between each con-
sumer and supplier. However, since it is based on UDP it cannot interoperate with any
other ORB system.

jEVENTS[7] is a Java implementation of CORBA Event Service for untyped mes-
sages, produced by a company called Outack Resource Group Inc. jEVENT supports
both push and pull style communication between suppliers and consumers, is also
IIOP compliant and may be used with any ORB that supports IIOP.

The VisiBroker Event Service is available in both, C++ and Java versions from In-
prise Corporation. Both versions are compliant with the OMG CORBA Event Service
implementing untyped events for push and pull communication models. When used
with VisiBroker ORB and its Smart Agent architecture that is vendor specific, it be-
comes a highly available self-recovering service.

ICL have developed a multicast Event Service called DAIS[8]. A multicast service
was developed due to the requirements from a customer that needed to communicate
sixty messages per second, each being a few hundred bytes in size, to over eight hun-
dred consumers. With these requirements, a standard CORBA Event Channel would
have to produce nearly half a million individual messages per second, clearly unfeasi-
ble for a distributed system. To minimize the amount of network traffic between sup-
plier and consumer applications, messages are collected into packets and sent in a
single UDP packet.

However, existing distributed systems such as CORBA do not consider transfer-
ring delay and system performance as a part of program models. They also treat prob-
lems concerning network programming as what a programmer should deal with by
himself. Therefore, existing distributed systems have difficulty in providing reliable
distributed service. But Jini[11], ubiquitous middleware, provides some novel solu-
tions to many of the problems that classical systems have focused on, and makes
some of the problems that those systems have addressed simply vanish.

Jini supports serendipitous interactions among services and users of those services.
Jini allows services to come and go without requiring any static configuration or ad-
ministration. Also Communities of Jini services are largely self-healing[12]. But in
Jini, there is no event service.

3 System Model

The system model of the SeJES consisting of four components can be distributed
among hosts across the network as shown in figure 3.1. The main function of the
SeJES is that only the authorized event consumers and producers can exchange events
by verifying their identities and capabilities. Event service registers itself with lookup
service, which allows event producers and consumers to get the event service proxy.
We implement each component of the model described above as follows:

86 Y. Lee, S. Lee, and H. Lee

Lookup
Service

Host A

Event
Service

Host B

Supplier
Application

Host D

Consumer
Application

Host C

2. Applications lookup
the event service

Applications communicate with
events after checking securities

1. Event Service
registration

3.

Fig. 3.1. System Model of SeJES

• Discovery Service – Event producer and event supplier applications discover the ev
ent service by using Lookup Service. We use reggie, developed by Sun, which com
plies with discovery service specification of Jini.

• Secure Event Service – Our SeJES(Secure JavaSpaces based event service) consists
of four components(LRC, JES, SSCM, and ERC) as shown in figure 3.2. Major tasks
of the LRC (Listener Registration Controller) are not only to retrieve events based on
event types and contents, but also register consumers’ listener with the JES (JavaS-
paces based Event Service) in order for the only authorized consumers to listen
events. The JES plays a central role in notifying events provided by event suppliers
to its registered consumers and storing the events for content based retrieval. The
SSCM(SPKI/SDSI Certificate Manager) proves whether certificate list given from
consumer is correct or not, and then returns ACLs (Access Control Lists), related to
the events which consumers wish to get, to consumers. The ERC (Event Registration
Controller) registers the type of event and ACL, sent by event suppliers, with the
SSCM, and checks whether supplied events are authorized or not.

SSCM

registerListener()

SeJES

validateCert()

store()

validate
Cert()

write()
JES ERC

retrieval()
registerConsumer()

registerListener()

notify() registerProducer()
publish()

LRC

Fig. 3.2. Functional Components of SeJES

Development of Secure Event Service for Ubiquitous Computing 87

• Event consumer – Event consumer applications are classified as two types. One is
run in machines with powerful computing power and the other does with low cost
equipment. In the case of the former, event consumer owns certificate chain dis-
covery algorithm and directly calculates certificate paths which prove that the
consumer can get the event, and then delivers them to the SSCM. However, the
latter sends all of its name certificates and authorization certificates to the SSCM
in order to discover certificate chain lists, which authorize the consumers to get
the event. Event consumer applications are able to retrieve with the events as con-
tent based after finding event service from discovery service. Furthermore, the
consumer is able to get notified of what it wants, as registering remote listener
with event service in real time.

• Event supplier – Before sending event object instances to the SeJES, event supplier
sends a event type and the ACL corresponded with the event type. After getting
secure session ID from the SeJES, event supplier inquires SeJES if it is able to
send event by using session ID, and then if permitted, it sends the event object
instance.

4 The Design and Implementation of SeJES

4.1 Components of SeJES System

This section describes the functions of each component of our SeJES and explains
interfaces provided in each module. In addition, we define ACL which event suppliers
will provide with and SPKI/SDSI certificates [9] which event consumer will use.
Finally, we show the details of SeJES operation by providing the event service usage
scenario.

4.1.1 ACL and SPKI/SDSI Certificate
ACL(Access Control List) is a form of expressing security policy that defines which
event supplier(issuer) delegates authorization to event consumers(subjects) who will
get his events.

< issuer, subject, delegation-bit, authorization tag, validity >

Event consumer is granted the following SPKI/SDSI name and authorization cer-
tificates from event supplier.

Name certificate - <issuer, local Name, subject, validity>
Authorization certificate - <issuer, subject, delegation-bit, authorization, validity>

Figure 3.3 explains the S-expression of the authorization certificate that Bob
grants its authority “get event 2” to subject called XMan in his local name space,
from Nov., 20, 2005 to June, 18, 2006. Name and authorization certificates are
sent to event service with their event types when event consumer registers its
remote listener with the event service. That is, after finding ACL which fits a

88 Y. Lee, S. Lee, and H. Lee

(cert (display plain)
 (issuer (public-key (rsa (e #010001#)

 (n |APsREOm+tJQsyS6f7ddzrY4A ...|))))
 (subject (name XMan))
 (tag “get event 2”)
 (valid (not-before "2005-11-20_06:51:33")
 (not-after "2006-6-18_21:51:33"))
 (comment "test certificate"))
(signature (hash sha1 |aj5Le4mGJ1BltdNdhUm3BVxjgrw=|)
 (public-key (rsa (e #010001#)

 (n |APsREOm+tJQsyS6f7ddzrY4ACM9fmQC ...|)))
 (rsa-pkcs1-sha1 |mSWhfa2GBJ3YKwkEYL/7yCP3IicwYtCvC ... |))

Fig. 3.3. S-expression of authorization certificate

event type by calling SeJES.retrival() on the SeJES proxy, event consumer invoke
SeJES.registerConsumer() with the first input “eType” and the second input
“certificate-Path”.

4.1.2 LRC
The LRC (Listener Registration Controller) is responsible for registering event lis-
tener which event consumer hopes to register with the JES. Using parameter informa-
tion provided by event consumer, the LRC retrieves ACLs corresponded with the
event type and provides methods which can retrieve event based on the event content.
It requests authorization check by sending the event type and a bundle of certificates
to the SSCM and decides whether it register the event listener or not depending on its
returned value.

ListenerRegistrationController

retrieval(eType)retrieval(eType)
retrieval(eTemplate, principal, SessionID)retrieval(eTemplate, principal, SessionID)
registerConsumer(eType, certificate-Path)registerConsumer(eType, certificate-Path)
registerConsumer(eType, certificate-List)registerConsumer(eType, certificate-List)
registerListener(eTemplate, Listener, principal, sessionID)registerListener(eTemplate, Listener, principal, sessionID)

Fig. 3.4. Interfaces of the LRC

• retrieval(eType), retrieval(eTemplate, principal, sessionID)
An Event Consumer invokes the method retrieval(eType) in the LRC proxy so that
it can realize if he or she has authorization concerned the event type “eType”. After

Development of Secure Event Service for Ubiquitous Computing 89

finding ACL which represents appropriate authorization related to the event type
as a result value, this method returns the ACL to the consumer. In addition,
after checking authorization, consumer can invoke a method retrieval(eTemplate,
principal, sessionID) of event service proxy in order to retrieve the event based on
content. By using three parameters, this method proves if consumer is properly
authorized and updates session key as a new value and returns the event which coin-
cides with the eTemplate to the consumer.

LRC.retrieval(nType)

Input: eTypeInput: eType Output: eSessionKey
lease-Time

LRC.retrieval(nTemplate, principal, sessionID)

Input: eTemplate
principal
eSessionID

Input: eTemplate
principal
eSessionID

Output: Object-ListOutput: Object-List

• registerConsumer(eType, cert-Path), registerconsumer(eType, cert-List)
Event Consumer, running in the machine with computing power, calls a method reg-
isterConsumer(eType, certificate-Path) on the LRC proxy in order to send the first
parameter “eType” and he second parameter “certificate-path” that event consumer
can prove its authorization suitable for the event type “eType” to the LRC. After
proving that the certificate-path is valid, the LRC creates a session key and encodes
it. Then it stores the event type, the public key of event consumer, just created ses-
sion key, nonce, and lease-time in order to check consumers’ authorization later on.
As the values of results, this methods returns encoded session key and lease-time to
consumer.

LRC.registerConsumer(eType, certificate-Path)

Input: eType
certificate-Path

Output: eSessionKey
lease-Time

However, event consumer, running low cost equipment, calls registerCon-
sumer(eType, cert-List), to send all of the certificates which it owns.

• registerListener(nTemplate, Listener, principal, sessionID)
After checking consumer’s authorization and if the result is true, the LRC updates
nonce and registers remote listener with the JES.

LRC.registerListener(eTempl, Listener, principal, sessionID)

Input: eTempl
Listener
principal
SessionID

Input: eTempl
Listener
principal
SessionID

Output: booleanOutput: boolean

90 Y. Lee, S. Lee, and H. Lee

4.1.3 SSCM
By using certificate list sent by the event consumer of low cost equipment, the SSCM
prove that the consumer can achieve the event instance of the event type. Also it
checks the proof of certificate-Path directly sent by the event consumer in machines
with powerful computing power. As a result, the SSCM includes the algorithm of
“Certificate Chain Discovery”[10] and returns Boolean value of each case to the
LRC(Listener Registration Controller). The SSCM interfaces are as Figure 3.5.

SPKI-SDSI-ControlManager

storeACLs(eType, ACLs, leaseTime)
validateCert(eType, Certificate-Path)
validateCert(eType, certificate-List)
getACLs(eType)

SPKI-SDSI-ControlManager

storeACLs(eType, ACLs, leaseTime)storeACLs(eType, ACLs, leaseTime)
validateCert(eType, Certificate-Path)validateCert(eType, Certificate-Path)
validateCert(eType, certificate-List)validateCert(eType, certificate-List)
getACLs(eType)getACLs(eType)

Fig. 3.5. Interfaces of the SSCM

• storeACLs(eType, ACLs, leaseTime)
The ERC calls this method of the SSCM module in order to store ACL which is a
collection of authorizations for the consumer to achieve events provided by event
supplier.

• validateCert(eType, Certificate-Path), validateCert(eType, Certificate-List)
These methods are invoked by the LRC in order to request authorization proof of
event consumer. The first method owns Certificate-Path as parameter, a collection
of certificates proven by consumers and the second one owns Certificate-List, a col-
lection of all name and authorization certificates held by consumers.

• getACLs(eType)
This method finds and returns ACL which is necessary for consumers to achieve
designated types of event

4.1.4 ERC
The ERC (Event Registration Controller) is responsible for checking the proof of
event types and ACL which are provided by event suppliers. It also checks the repli-
cation of events. Furthermore, the ERC has a responsibility of transferring events

Event Registration Controller

registerProducer(eType, ACLs, certificate-Path)registerProducer(eType, ACLs, certificate-Path)
publish(notification, principal, sessionID)publish(notification, principal, sessionID)

Fig. 3.6. ERC interface

Development of Secure Event Service for Ubiquitous Computing 91

provided by event suppliers to the JES. Interfaces provided by the ERC are shown in
Figure 3. 6.

• registerProducer(eType, ACLs, certificate-Path)
By sending an event type “eType”, ACLs and authorization proof information “cer-
tificate-Path” to the SSCM, this method let the SSCM store them in its cash.
Furthermore, this method creates encoded session key by using two parameters of
producer’s principal derived from certificate-Path and session key, a random nonce.
This encoded session key is used to prove whether the event is authorized to provide
itself to the JES or not.

• publish(event, principal, sessionID)
This is the method that publishes suppliers’ event. After checking if the event sent
by suppliers is authorized and then if only if the return value is true, this method
sends the event to the JES.

4.2 Testing of SeJES Service

This section summarizes how a consumer and a supplier use our SeJES service, im-
plemented in Jini environment. In addition, it shows GUI screen that shows, in order
to get event which the consumer is interested in, whether listener’s registration in the
SeJES is successfully committed or not. It also exhibits GUI screen including proce-
dures and results necessary for suppliers to publish event.

4.2.1 Test Scenario
A scenario to test SeJES services is as follows:

Susan who possesses event supplier sensor1 sets ACL, <self, Bob, 1, “get event1”,
(05-11-20, 06-03-29)> in sensor1 in advance. When Susan turns sensor1 on,
event supplier application in sensor1 registers event type(event1) and its ACL set
by Susan with SeJES. In the meantime, Bob hopes to get the event1 published by
gadget1 of Susan.

In order to get the event1 instance, Bob asks SeJES to send ACL corresponded
with the event1. And then Bob calculates Certificate-Path establishing a chain
from name and authorization certificates in its certificate cash to ACL of event1
which she wants to get. Now Bob registers his remote listener with SeJES and
waits till the event arrives.

In the meantime, unauthorized Charlie also tries to register his remote listener
to get the event1 of sensor1. In this case, since he can’t prove his authorization,
his request is rejected. Purchasing sensor2, Eve tries to use event service in order
to publish event2, but it is rejected as well.

Figure 4.1 shows the order of methods invoked in order for event consumer to be
notified and for supplier to provide the event.

92 Y. Lee, S. Lee, and H. Lee

Gadget 1

Sensor 1

web
server

Event
Consumer

SPKI/SDSI
certificates

Remote
Event

Listener

JS-ES

SSCM

Event
Producer

ACLs

1.ACL request

5.Download nListener_stub

2.registerConsumer()

3.Reply Permit or deny

6.Notify Notification

2.1 validate
Cert()

4.1 registerListener() 4.registerListener()

iv)store()

ERC

LRC

SeJES

iii)ValidateCert()

RegisterProducer()
v)publish()

vi)write()

i,ii) ACL request &

Fig. 4.1. Procedure of Secure Event Service

Figure 4.2 exhibits a screen dump showing that consumer Bob tried to register his
listener with the SeJES in order to get an event “Alice location” and the SeJES noti-
fied those events to Bob.

Fig. 4.2. Listener Registration & Event Notification

Figure 4.3 shows that the SSCM proves whether the certificate-path provided by
the event consumer “Bob” is correct or not.

Development of Secure Event Service for Ubiquitous Computing 93

Fig. 4.3. Proving process of authorization certificate-path

Figure 4.4 shows the event producer of gadget1 Susan’s log of event publishing.

Fig. 4.4. Example the Screen of Event Publishing

5 Characteristics of Our SeJES System

SeJES is distinguished with CORBA in three aspects. Firstly, event service based on
CORBA uses event channel. Accordingly, it is not totally an isolated model because
event consumers and event suppliers communicate each other through the channel.
Secondly, event service based on CORBA transfers its filtering responsibility to con-
sumer programmers. Therefore, any events written in the channel are to be transferred
to every consumer listening to the channel, which is an inefficient process by increas-
ing excessive expenses of communication. However, our system can deliver only
necessary events to a particular consumer in need because content based filtering
using JavaSpace is available in the SeJES system. Finally, no persistency is existed in
CORBA based event service. If the channel is down, it loses all information concern-
ing consumers and suppliers connected to the channel. For that reason, there is no

94 Y. Lee, S. Lee, and H. Lee

way for consumers to take events provided while the channel is disconnected even
after they are successfully connected again. However Our SeJES system is able to do
that because of its lease () function.

6 Conclusions and Further Work

In this paper, we design and implement a secure event service, SeJES. Event consum-
ers are able to register their listeners with the SeJES and disconnect their listeners at
any time. Furthermore, the SeJES enables only authorized consumer and supplier to
securely exchange their events by using SPKI/SDSI certificate. In addition, our SeJES
guarantees that event is transferred to only all of the authorized event consumers and
enhances the security by delivering event consumer and suppliers secure session key.
The proposed event service, SeJES, is able to store event for lease-time. While being
leased, event consumer commits a filtering based on content during the lease-time.

However, our SeJES is not able to federate event servers and does not provide the
event service with priority. Also we want to implement our SeJES which has more
QoS and more Filtering functions. Most of them are our future work.

References

1. Object Management Group: CORBAServices: Common Object Services Specification.
Revised Edition. (1995)

2. Philip Bishop , Nigel Warren: JavaSpace IN PRACTICE. Addison-Wesley (2003)
3. Lee, Younglok., et al.: Development of Event Manager and its Application in Jini

Environment. EUC Workshops 2005, LNCS 3823, Springer-Verlag, Nakasaki (2005)
704 – 713

4. Paul Stephens: Implementation of the CORBA Event Service in Java. A Thesis for the
Degree of Masters of Computer Science, Trinity College, Dublin (1998)

5. IONA: OrbixEvents Programmer’s Guide. IONA Technologies PLC (December 1997)
6. 6. IONA: OrbixTalk-The White Paper. Technical Report, IONA Technologies PLC,

April (1996)
7. OUTBACK: jEVENTS-Java-based Event Service User’s Guide. OutBack Resource Group

Inc. (1997)
8. ICL Object Software Laboratories: DAIS Multicast Event Service. White Paper (1998)
9. Andrew J. Maywah: An Implementation of a Secure Web Client Using SPKI/SDSI

Certificates. Master Thesis, M.I.T, EECS (2000)
10. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos,

Ronald L. Rivest: Certificate Chain Discovery in SPKI/SDSI. Journal of Computer Secu-
rity, 9 (2000) 285-322

11. Sun Microsystems: .Jini™ Architecture Specification. Sun Microsystems� (1997-2000)
12. Keith Edwards, W., Edwards, W.: Core Jini. Pearson Education, (2000)

