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Abstract. The morphological neural network models, including morphological 
associative memories (MAM), fuzzy morphological associative memories 
(FMAM), enhanced morphological associative memories (EFMAM), etc., are 
extremely new artificial neural networks. They have many attractive advantages 
such as unlimited storage capacity, one-short recall speed and good noise-
tolerance to erosive or dilative noise. Although MAM, FMAM and EFMAM 
are different and easily distinguishable from each other, they have the same 
morphological theory base. Therefore in this paper a unified theoretical 
framework of them is presented. The significance of the framework consists in: 
(1) It can help us find some new methods, definitions and theorems for 
morphological neural networks; (2) We have a deeper understanding of MAM, 
FMAM and EFMAM while having the unified theoretical framework. 

1   Introduction 

The theory of artificial neural networks has been successful applied to a wide variety 
of pattern recognition problems [3,4]. In this theory, the first step in computing the 
next state of a neuron or in performing the next layer neural-network computation 
involves the linear operation of multiplying neural values by their synaptic strengths 
and adding the results. A nonlinear activation function usually follows the linear 
operation in order to provide for non-linearity of the network and set the next state of 
the neuron. In recent years, a number of different morphological neural network 
models and applications have emerged [1,5,8,12,15,16]. First attempts in formulating 
useful morphological neural networks appeared in [10]. Since then, only a few papers 
involving morphological neural networks have appeared. Suarez-Araujo applied 
morphological neural networks to compute homothetic auditory and visual invariants 
[2]. Davidson employed morphological neural networks in order to solve template 
identification and target classification problems [9], [11]. All of these researchers 
devised multi-layer morphological neural networks for very specialized applications. 
A more comprehensive and rigorous basis for computing with morphological neural 
networks appeared in [6] where it was shown that morphological neural networks are 
capable of solving any conventional computational problem. In 1998, Ritter et al. 
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proposed the concept of morphological associative memories (MAM) and the concept 
of morphological auto-associative memories (auto-MAM) [7], which constitute a 
class of networks not previously discussed in detail.  

MAM is based on the algebraic lattice structure ( , , , )R ∧ ∨ +  or morphological 

operations. MAM behaves more like human associative memories than the traditional 
semilinear models such as the Hopfield net. Once a pattern has been memorized, 
recall is instantaneous when the MAM is presented with the pattern. In the absence of 
noise, an auto-MAM will always provide perfect recall for any number of patterns 
programmed into its memory. The auto-MAM MXX is extremely robust in recalling 
patterns that are distorted due to dilative changes, while auto-MAM WXX is extremely 
robust in recalling patterns that are distorted due to erosive changes. 

In 2003, Wang and Chen presented the model of fuzzy morphological associative 
memories (FMAM). Originated from the basic ideas of MAM, the FMAM uses two 
basic morphological operations ( , )∧ ⋅ , ( , )∨ ⋅  instead of fuzzy operation ( , )∧ ∨  in 

fuzzy associative memory [13]. FMAM solves fuzzy rules memory problem of the 
MAM. Under certain conditions, FMAM can be viewed as a new encoding way of 
fuzzy associative memory such that it can embody fuzzy operators and the concepts 
of fuzzy membership value and fuzzy rules. Both auto-FMAM and auto-MAM have 
the same attractive advantages, such as unlimited storage capacity, one-shot recall 
speed and good noise-tolerance to either erosive or dilative noise. However, they 
suffer from the extreme vulnerability to noise of mixing erosion and dilation, resulting 
in great degradation on recall performance. To overcome this shortcoming, in 2005, 
Wang and Chen further presented an enhanced FMAM (EFMAM) based on the 
empirical kernel map [14]. 

Although MAM, FMAM and EFMAM are different and easily distinguishable 
from each other, we think that they have the same theoretical base, i.e. the same 
morphological base, therefore they can be unified together. This paper tries to 
establish a unified theoretical framework of MAM, FMAM and EFMAM. The more 
the thing is abstracted, the deeper the thing is understood. Consequently it is possible 
that some new methods and theorems are obtained. This is the reason why we 
research and propose the unified theoretical framework of MAM, FMAM and 
EFMAM 

2   Unified Computational Base of MAM, FMAM and EFMAM 

Traditional artificial neural network models are specified by the network topology, 
node characteristics, and training or learning rules. The underlying algebraic system 
used in these models is the set of real numbers R together with the operations of 
addition and multiplication and the laws governing these operations. This algebraic 
system, known as a ring, is commonly denoted by ( , , )R + × . The basic computations 

occurring in the morphological network proposed by Ritter et al. are based on the 
algebraic lattice structure ( , , , )R ∧ ∨ + , where the symbols ∧  and ∨  denote the 

binary operations of minimum and maximum, respectively, while the basic 
computations used in FMAM and EFMAM are based on the algebraic lattice structure 
( , , , )R+ ∧ ∨ ⋅ ( (0, ))R+ = ∞ .
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In unified morphological associative memories (UMAM), the basic computations 
are based on the algebraic lattice structure ( , , , O )U ∧ ∨ , where U=R, or U = R+; O= 

+,�, ⋅ , or /. If U=R and O=+, then ( , , , O )U ∧ ∨ = ( , , , )R ∧ ∨ + , which is the 

computational base of MAM; If U=R+ and O= ⋅ , then ( , , , O )U ∧ ∨ = ( , , , )R + ∧ ∨ ⋅ ,

which is the computational base of FMAM and EFMAM. Of course, the symbol O 
also can be other appreciated operators, for example, � or /.  

3   Unified Morphological-Norm Operators 

3.1   Operators in MAM, FMAM and EFMAM 

As that described in the preceding section, morphological associative memories are 
based on the lattice algebra structure ( , , , )R ∧ ∨ + . Suppose we are given a vector pair 

x=(x1,…, xn)�Rn, , and y=(y1,…,ym) �Rm. An associative morphological memory 
that will recall the vector y when presented the vector x is given by  

W=y�(-x) =
1 1 1

1

n

m m n

y x y x

y x y x

− −

− −

(1) 

since W satisfies the equation W�x = y as can be verified by the simple computation  

W � x =
1 1

1

n
i i i

n
i m i i

y x x

y x x

=

=

∨ − +

∨ − +

=y
(2) 

W is called the max product of y and x. We also can denote the min product of y and x
using operator � like (1) and (2). Similarly, let (x1, y1),…,(xk, yk) be k vector pairs with 

x =(x1 ,…, xn )�Rn and y =(y1 ,…, ym )�Rm for =1,…, k. For a given set of pattern 
associations {(x , y ): =1,…, k} we define a pair of associated pattern matrices (X,Y), 
where 1( , , )k=X x x , 1( , , )k=Y y y . Thus, X is of dimension n×k with i, jth entry x

j

i

and Y is of dimension m×k with i, jth entry y
j

i . With each pair of matrices (X,Y), two 
natural morphological m×n memories WXY and MXY are defined by 

XY 1
[

k

ξ == ∧W y � ( ) ']−x and 
XY 1

[
k

ξ == ∨M y � ( ) ']−x . (3) 

Obviously, y �(-x ) = y �(-x ) . It therefore follows from this definition that  

WXY y �(-x ) =y �(-x ) MXY, ∀ =1,…, k. (4) 

In view of equations (2) and (3), this last set of inequalities implies that  

WXY� x [y �(-x ) ] �x =y = [y �(-x ) ] � x MXY� x (5) 

∀ =1,…, k or, equivalently, that  

WXY � X Y MXY � X. (6) 
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If WXY�X =Y, then WXY is called a �-perfect memory for (X, Y); if MXY�X= Y,
then MXY is called a �-perfect memory for (X, Y).

The basic computations used in FMAM and EFMAM are based on the algebraic 

lattice structure ( , , , )R+ ∧ ∨ ⋅ ( (0, ))R+ = ∞ . If the input vector , ,1 n( ) 'l l lx x=x  is 

defined in R
n
+ , and the output vector , ,1 m( ) 'l l ly y=y  is defined in R

m
+ , by using 

some transformation, for example, exp (x) and exp (y) (acting on each component of 
x, y), the input vectors and output vectors can be transformed into R

n
+ and R

m
+ ,

respectively. Set 1( , , )k=X x x , 1( , , )k=Y y y , with each pair of matrices (X, Y), 

two new morphological m n×  memories AXY and BXY are as follows: 

XY 1( (k l
l== ∧A y ��

1( ) )l −x ,
XY 1( (k l

l== ∨B y ��
1( ) )l −x (7) 

'

1

1

1 1
( ) , , 0, 1, ,l l

il l
n

x i n
x x

− = > ∀ =x (8) 

ly ��
1( )l −x = ly ��

1( )l −x =

1 1

1

1

l l

l l

n

l l

m m

l l

n

y y

x x

y y

x x

(9) 

where � and � denote fuzzy composite operation ( , )∧ ⋅  and ( , )∨ ⋅  often used in fuzzy 

set theory, respectively. In FMAM and EFMAM, the recall is given by  

AXY�xl=(� k

l=1y
l
�(xl)-1)�xl and BXY�xl=(� k

l=1y
l
�(xl)-1)�xl (10) 

With analyzing for MAM, FMAM and EFMAM, we can easily see that there exist 
reversible operators in memory and recall. For MAM, the reversible operators in 
memory and recall are – and +, respectively; for FMAM and EFMAM, they are / and 
×, respectively. We unify them with the following definitions. 

3.2   Unified Morphological-Norm Operators 

Definition 1. For an m×p matrix A and a p×n matrix B with entries from U, the 
matrix product C =A

o
� B, also called the morphological max product norm of A and 

B, is defined by  

1 1 2 21
 ( ) ( ) (  )

p

ij ik kj i j i j ip pjk
c a b a b a b a b== Ο = Ο ∨ Ο ∨ ∨ Ο∨ . (11) 

Where, 
o
�  is a unified morphological operator, which represents one of the 

+

� ,
-

� ,
�

� ,

and 
/

� . The symbol  represents a reversible operation, such as +, �, ×, or /.

Definition 2. For an m×p matrix A and a p×n matrix B with entries from U, the 
matrix product C =A

o
�B, also called the morphological min product norm of A and 

B, is defined by 
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1 1 2 21
 ( ) ( ) (  )

p

ij ik kj i j i j ip pjk
c a b a b a b a b== Ο = Ο ∧ Ο ∧ ∧ Ο∧ . (12) 

Where, 
o
�  is a unified morphological operator, which represents one of the 

+
� ,

-
� ,
�

� ,

and 
/
� . The symbol  represents a reversible operation, such as +, �, ×, or /. 

Definition 3. For an m×p matrix A and a p×n matrix B with entries from U and the 
max product C =A

+
� B, the morphological operator 

+

� is defined by: 

1 1 2 21
 ( ) ( ) (  )

p

ij ik kj i j i j ip pjk
c a b a b a b a b== + = + ∨ + ∨ ∨ +∨ . (13) 

Similarly, we can define the morphological operators 
-
� ,
�

� , and 
/
� .

Definition 4. For an m×p matrix A and a p×n matrix B with entries from U and the 
min product C =A 

+
� B, the morphological operator 

+
� is defined by: 

1 1 2 21
+ ( ) ( ) (  )

p

ij ik kj i j i j ip pjk
c a b a b a b a b== = + ∧ + ∧ ∧ +∧ . (14) 

Similarly, we can define the morphological operators 
-
� ,
�

� , or 
/
� .

Definition 5. Let (x1, y1),…,(xk, yk) be k vector pairs with x =(x1 ,…, xn )�Rn and 
y =(y1 ,…, ym )�Rm for =1,…, k. For a given set of pattern associations {(x , y ): 
=1,…, k} and a pair of associated pattern matrices (X,Y), where 1( , , )k=X x x ,

1( , , )k=Y y y , the morphological min-product memory WXY is defined by 

XY
=W Y o

� 1
' [

k

ξ == ∧X y
o
� ( ) ']x

1 1 1

1

1

o  o 

o  o 

n
k

m m n

y x y x

y x y x
ξ== ∧ (15) 

And the morphological max-product memory MXY is defined by 

XY
=M Y o

� 1
' [

k

ξ == ∨X y
o
� ( ) ']x

1 1 1

1

1

o  o 

o  o 

n
k

m m n

y x y x

y x y x
ξ==∨ (16) 

Since y
o
� ( ) 'x = y

o
� ( ) 'x , WXY and MXY follow from this definition that 

WXY y o
� ( ) 'x = y o

� ( ) 'x MXY 1, , kξ∀ = (17) 

Let � represents the reverse of o
� , and � represents the reverse of o

� , that is,  and 

 are reversible each other. If =+ or ×, then =� or ÷; on the contrary, if =� or 
÷, then =+ or ×. Then, WXY and MXY satisfy that 
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WXY � [ξ ξ≤x y � ( ) ']ξx � [ξ ξ ξ= =x y y o
� ( ) ']ξx �

ξ ≤x MXY�
ξx (18) 

1, , kξ∀ = or equivalently, that 

WXY � ≤ ≤X Y MXY �X (19) 

Definition 6. A matrix A=(aij)m×n is said to be a 
o

� -perfect memory for (X,Y) if and 

only if A
o

�X =Y. The matrix A=(aij)m×n is said to be a 
o
� -perfect memory for (X,Y) if 

and only if A
o
�X = Y.

In fact, in the existing MAM there are only two memories WXY and MXY defined 
by using operators 

-
� and 

-
� , respectively. In the existing FMAM and EFMAM, it is 

also the same, i.e. there are only two memories WXY and MXY defined by using 
operators 

/
� and 

/
� , respectively. But according to the definitions 1 to 6, there will be 

four memories in MAM, FMAM or EFMAM, respectively. The two additional 

memories defined by using operators 
+
� and 

+
�  (for MAM), and by using 

�

�  and 
�

� (for 
FMAM or EFMAM), respectively. That is to say, there are more methods in the 
unified framework than there are in MAM, FMAM and EFMAM. 

4   Unified Morphological Theorems 

Ritter gave 7 theorems with respect to MAM in [7]. Wang et al. also proved 6 
theorems with respect to FMAM in [13] and 4 theorems with respect to EFMAM in 
[14]. Our research result shows that these theorems can be unified. We give two of 
them and their proofs as two examples.  

Theorem 1: If A is o
� -perfect memory for (X, Y) and B is o

� -perfect memory for (X,
Y), then  

A WXY MXY B   and  WXY
o
� X = Y =MXY

o
� X.

Proof of Theorem 1: If A is o
� -perfect memory for (X, Y), then (A o

� x )i =yi  for all 
 = 1,…, k and all i=1,…, m. Equivalently  

1
( ) 1, , an d 1, ,

n

ij j ij
a x y k i mξ ξ ξ

=
Ο = ∀ = ∀ =∨ .

For MAM, U=R, =±, = , it follows that for an arbitrary index {1, , }j n∈ we 

have  

1, , 1, ,ij j i ij i ja x y k a y x kξ ξ ξ ξξ ξΟ ≤ ∀ = ⇔ ≤ Θ ∀ =

                                                  
1
( )

k

ij i j ija y x wξ ξ
ξ =⇔ ≤ Θ =∧

(20) 

For FMAM and EFMAM, U=R+, =× or �, =� or ×, the set of inequalities (20) 
also can be derived.  
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This shows that A WXY. In view of (19), we now have Y=A o
�X WXY

o
�X Y,

and therefore, WXY
o
�X=Y. A similar argument shows that if B is o

� -perfect memory 

for (X, Y), then MXY B and MXY
o
�X=Y. Consequently we have A WXY MXY B

and WXY
o
� X = Y =MXY

o
�X.                                                                                      �

Theorem 2: WXY is 
o
� -perfect memory for (X, Y) if and only if for each  = 1,…, k, 

each row of the matrix [y � (x ) ]- WXY contains a zero entry. Similarly, MXY is 
o
� -

perfect memory for (X, Y) if and only if for each  = 1,…, k, each row of the matrix 
MXY -[y � (x ) ] contains a zero entry. 

Proof of Theorem 2: We only prove the theorem in one domain for either the 
memory WXY or the memory MXY. The result of proof for the other memory can be 
derived in an analogous fashion. 

WXY is 
o
� -perfect memory for (X, Y)

XY(⇔ W o
� ) i iyξ ξ=x ∀ =1,…,k and i∀ =1,…,m 

XY(iy ξ⇔ − W o
� ) 0i

ξ =x ∀ =1,…,k and i∀ =1,…,m 

1
( ) 0i

n

ij jj
y w xξ ξ

=⇔ − Ο =∨ ∀ =1,…,k and i∀ =1,…,m 

1
( ( )) 0i

n

ij jj
y w xξ ξ

=⇔ Ο− =∧ ∀ =1,…,k and i∀ =1,…,m 

1
( ) 0i

n

j ijj
y wxξ ξ

=⇔ Θ − =∧ ∀ =1,…,k and i∀ =1,…,m 

1
([

n

j

ξ
=⇔ ∧ y � XY( ) '] ) 0ij

ξ − =Wx ∀ =1,…,k and i∀ =1,…,m 

This last set of equations is true if and only if for each =1,…,k and each integer i 
=1,…,m, each column entry of the ith row of [y � (x ) ]- WXY contains at least one 
zero entry.                                                                                                                    �

We need to note that the conditions the equation set given above holds are different 
for MAM and for FMAM or EFMAM. For MAM, it holds in U=R; for FMAM or 
EFMAM, it holds in U=R+.

5   Discussions

What are the advantages of the unified framework of morphological associative 
memories? We think that there are at least three benefits in it: 

Firstly, the unified theoretical framework is beneficial to understanding the MAM, 
FMAM and EFMAM. This paper analyzes the common properties of MAM, FMAM 
and EFMAM, and establishes the theoretical framework of unified morphological 
associative memory (UMAM) by extracting these common properties. The more the 
thing is abstracted, the deeper the thing is understood. Therefore the UMAM is of great 
benefit to us in research and applications with respect to MAM, FMAM and EFMAM.   

Secondly, the UMAM can help us find some new methods. In fact, the method of 
defining the morphological memory WXY or MXY in MAM, FMAM or EFMAM is 
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not unique. For example, according to (15) and (16), the WXY and MXY also can be 
defined by: 

1WXY=
1 (K ξ

ξ =∧ y
+
� ( ) ')ξx  or 2WXY=

1 (K ξ
ξ =∧ y

�

� ( ) ')ξx (21) 

And 
1MXY=

1 (K ξ
ξ =∨ y

+
� ( ) ')ξx  or 2MXY=

1 (K ξ
ξ =∨ y

�

� ( ) ')ξx (22) 

Consequently, there are more methods defining the memories WXY and MXY in the 
UMAM.

Finally, the methods in the UMAM are complementary rather than competitive. 
For this reason, it is frequently advantageous to use these methods in combination 
rather than exclusively.  

6   Experiments 

A number of experiments are conducted to demonstrate the advantages of the 
methods in UMAM. Three typical of experiments are as follows: 

Experiment 1. Let  

1 1 2 2 3 3

0 0 0 1 0 0

0 , 1 ; 2 , 1 ; 3 , 2

0 0 4 0 0 0

−

= = = − = − = − = −

−

x y x y x y

Then both 

1WXY=�
3
=1(y

-
� (x ) )=

0 0 0 -1 1 3 0  3 0 -1 0  0

1 1 1 -1 1 3 -2  1 -2 -2 1 -2

0 0 0 0  2 4 0  3  0 0  0  0

∧ ∧ =

and 

1MXY=�
3
=1(y

-

� (x ) )=
0 0 0 -1 1 3 0  3 0 0 3 3

1 1 1 -1 1 3 -2  1 -2 1 1 3

0 0 0 0  2 4 0  3  0 0 3 4

∨ ∨ =

are perfect recall memories, because they satisfy the definition 6, respectively. But 
both 

2WXY=�
3
=1(y

+
� (x ) )=

0 0 0 -1 -3 -5 0 -3  0 -1 -3 -5

1 1 1 -1 -3 -5 -2 -5 -2 -2 -5 -5

0 0 0 0  -2 -4 0 -3  0  0 -3 -4

∧ ∧ =

and 

2MXY=�
3
=1(y

+
� (x ) )=

0 0 0 -1 -3 -5 0 -3  0  0  0  0

1 1 1 -1 -3 -5 -2 -5 -2  1  1  1

0 0 0 0  -2 -4 0 -3  0  0  0  0

∨ ∨ =

are not. 
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Experiment 2. Set 

1 1 2 2 3 3

1 1 2 0 3 0

2 , 0 ; 3 , 1 ; 4 , 1

3 0 4 1 1 0

= = = = − = =

−

x y x y x y

If the Ritter’s method is used, then both 

1WXY=�
3
=1(y

-
� (x ) )=

0 -1 -2 -2 -3 -4 -3 -4 -1 -3 -4 -4

-1 -2 -3 -3 -4 -5 -2  -3  0 -3 -4 -5

-1 -2 -3 -3 -4 -5 -3 -4 -1 -3 -4 -5

∧ ∧ =

and 

1MXY=�
3
=1(y

-
� (x ) )=

0 -1 -2 -2 -3 -4 -3 -4 -1 0 -1 -1

-1 -2 -3 -3 -4 -5 -2  -3  0 -1 -2  0

-1 -2 -3 -3 -4 -5 -3 -4 -1 -1 -2 -1

∨ ∨ =

are not perfect recall memories. But if the method in UMAM is used, then both  

2WXY=�
3
=1(y

+
� (x ) )=

2 3 4 2 3 4 3 4 1 2 3 1

1 2 3 1 2 3 4 5 2 1 2 2

1 2 3 1 2 3 3 4 1 1 2 1

∧ ∧ =

and 

2MXY=�
3
=1(y

+
� (x ) )=

2 3 4 2 3 4 3 4 1 3 4 4

1 2 3 1 2 3 4 5 2 4 5 3

1 2 3 1 2 3 3 4 1 3 4 3

∨ ∨ =

are perfect recall memories. 

Experiment 3. Let 

=   =

1 2 2 1 2 1

4 2 2 , 2 2 2

4 2 4 1 1 1

.X Y

If the Ritter’s method in MAM is used, then  

1

XY
=W Y

-
� '=X

-1 -3 -3

0 -2 -2

1 3 3− − −

, 1WXY
+
�X=

1 1 1

2 2 2

1 1 1

Y;

1

XY
=M Y

-
� '=X

0 0 0

1 0 0

0 1 1− −

, 1MXY
+
�X=

1 2 2

2 2 2

1 1 1

Y.
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If the method in FMAM or EFMAM is used, then  

2

XY
=W Y

/
� '=X

0.5 0.25 0.25

1 0.5 0.5

0.5 0.25 0.25

, 2WXY
�

�X=
1 1 1

2 2 2

1 1 1

Y;

2

XY
=M Y

/
� '=X

1  1  1

2  1  1

1 0 .5 0 .5

, 2MXY
�

�X=
1 2 2

2 2 2

1 1 1

Y.

They make not perfect memory for (X, Y). But if the method in UMAM is used, then 

3

XY
=W Y

+
� '=X 2 3 4

3 4 4

2 3 3

, 3WXY
-
�X=

1 2 1

2 2 2

1 1 1

=Y;

3

XY
=M Y

+
� '=X

4 5 5

4 6 6

3 5 5

, 3MXY
-
�X=

1 2 1

2 2 2

1 1 1

=Y.

4

XY
=W Y

�

� '=X
1 2 4

2 4 4

1 2 2

, 4WXY
/
�X=

1 2 1

2 2 2

1 1 1

=Y;

4

XY
=M Y

�

� '=X
4 4 4

4 8 8

2 4 4

, 4MXY
/
�X=

1 2 1

2 2 2

1 1 1

=Y.

The three experiments given above show that the methods in UMAM are 
complementary, and therefore the UMAM can solve more associative memory 
problems, especially to hetero-MAM, hetero-FMAM and hetero-EFMAM. 

7   Conclusions 

This paper introduces a new unified theoretical framework of neural-network 
computing based on lattice algebra. The main emphasis of this paper was on the 
unification of morphological associative memories, fuzzy morphological associative 
memories, and enhanced fuzzy morphological associative memories. Our research 
and experiments showed that the MAM, FMAM and EFMAM could be unified in the 
same theoretical framework. The significance of the unified framework consisted in: 
on the one hand we got a better and deeper understanding of the MAM, FMAM and 
EFMAM from the unified framework UMAM; on the other hand we obtained some 
new methods from it. Therefore the UMAM can solve more problems of the 
associative memories than the MAM, FMAM, and EFMAM do. 

The lattice algebraic approach to neural-network theory is new and a multitude of 
open questions await exploration. For example, new methods of morphological 
associative memory need further investigation; the application base of the unified 
framework needs expanding, etc. It is our hope that these problems will be better 
solved in the future.  
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