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Summary. The aim of this paper is to present a method to model the dynamics
of a distance interactive learning process, so that the navigation through a course
is achieved by optimal control techniques and the learner becomes proficient in the
material in the least time possible, given his attitude, learning style, basic knowledge
and propensities for study. A nonlinear dynamical system representation of the
learning process, permits to enact optimal adaptive controls of the process at the
general level, by defining a system which is controllable, observable and reachable in
a technical sense, determined through a simultaneous estimation and optimization
algorithm, which assures a correct representation.

1 Introduction

Learning is a dynamic process dependent on the quality of the teaching ,
the method and the instruments available. In Ancient Times, teaching was

method . As writing instruments were costly and not easily accessible, learning
relied on memorization and teaching on Oratory . The same method lasted
well into the era of printing and cheap paper ( for instance, it is not known
whether Galileo Galilei used the Socratic style in his major works to make his
presentation didactic or to offend Pope Bonifacius VIII [11]). Eventually,
the process was integrated with formal lectures and a blackboard. Many
innovations have been tried, such as the Harvard case method, overhead
projectors, teaching machines and projective teaching methods. In the ensuing
discussion, none of the alternatives have been shown to be superior [1],
because essentially, the underlying dynamic learning process is unobservable,
in a technical sense, (given the history of the process, one can not determine
the initial state of the process).

The process of e-Learning, that is interactive distance learning will depend
on the quality of the teaching process, the method and the instruments used
[21]. As such it defines a dynamic process which is affected by synergy [4] .
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Evidence suggests that learning is highly nonlinear with substantial
lags and the learning dynamics form irreversible processes. Thus nonlinear
dynamical modelling seems to be an appropriate representation of e-Learning
knowledge acquisition process, since a linear dynamical system would be a too
simple process [5].

A number of difficulties preclude identification and control by traditional
methods for general nonlinear systems [12], so to avoid biases and
suboptimization a simultaneous estimation and optimization method must
be applied [9] [10].

The aim of this paper is to formulate a nonlinear dynamic system
implementation of distance interactive learning through computer techniques
(e-Learning), such that the underlying process is observable, identifiable,
controllable and reachable, in a well defined technical sense. Further the
system must satisfy the statistical properties for a maximum likelihood
estimate. Adaptive optimal control trajectories will be formulated to guide
the succession of learning frames to be studied.

The outline of the paper is the following. In the next section, the
experimental set up to define an e-Learning optimal control process is
described and the various aspects are examined. In the third section,
the mathematical dynamic learning system is formalized and relevant
mathematical properties indicated. In section four the implementation aspects
of two cybercourses are discussed present on the World-Wide Web.

2 Knowledge Acquisition by e-Learning Dynamics

Distance Education is the delivery of education courses from one location
to students at other locations [14], while Cyberschools are the institutions
that deliver these courses, Cyberlearning is the process by which content is
designed, transmitted and acquired.

The effect of Distance Education, depends on the content of what is taught
and method by which it is imparted. Students have differing learning styles
to acquire Knowledge, which depend on [1]:

• the method of exposition [13] :
– a formal axiomatic or deductive exposition of the material,
– an informal presentation, followed by its formalization,
– an intuitive and illustrative development of the material,

• the structure of the presentation [21]:
– a linear structure, as in a book,
– a guided tree structure with a limited capacity of selection,
– an adaptive feedback mechanism in a tree like decision network.

• the interaction policy envisaged [6]:
– no interaction allowed,
– periodical question periods,
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– full interaction.

can the content be varied and adapted in real time according to the needs
of the student, so here, an adaptive dynamic interactive course, based on
browser technology will be examined. This type of structure will be termed a
cybercourse and the learning process will be indicated as the Cyberlearning
process.

The learner can start in his own time at the initial page and navigate
through the course on the web, add his own notes to the material presented, do
the exercises, carry out the assignments and contact by e-mail other students,
the instructor or Intelligent Agents, which are just pieces of software to analyze
the output of the student, verify his progress while navigating, etc. Other
intelligent Agents will monitor his performance and generally supervise on
the work that is being done.

The system will monitor all his actions and advise on the next actions
to be taken. The learner is of course absolutely free to chose other actions.
The indication of the actions to take are based on the development by the
system of an optimal trajectory to the completion of the course, based on the
monitored proficiency shown. After any deviation on the part of the learner
for whatever reason, the system recalculates the new optimal control path to
completion based on the new position reached and capabilities shown by the
learner.

A cybercourse will consist of a set of units each composed of a set of
frames. Each unit is composed of multiple sets of similar frames to handle
different methods of exposition, while the structure of the presentation and
the interaction policy adopted will be handled by the underlying nonlinear
dynamical process, based on the requirements of the student.

The utilization of a client computer, or a browser, allows the system server
to record for each individual connection, the succession of frames traversed,
the actions that have been performed on the client system and the length
of time involved. Thus, at the server, all actions performed by the student
can be monitored [6]. Through the state space formulation of the dynamic
representation of the learning process, the input and output sequence will
result well defined, so that the optimal control trajectory can be formulated.

3 The Mathematical Algorithm

The representation of phenomena by dynamic systems is more general than
their representation by a static system, since the latter will always constitute
a special case of the former.

Modelling a phenomenon by a dynamic system means imposing the
structure of the phenomenon on the system variables. It also means that

Only with an adaptive feedback structure of the method of exposition
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the dated variables, which represent the phenomenon, must agree with
the dated estimated values of the system and the mathematical properties
of the system variables must apply to the variables of the phenomenon.
In dynamic modelling, this requirement is not just that the variables in
the two systems be defined compatibly (both integer variables etc.), but
their compatibility must extend to their dynamic structure . In short, both
must posses compatible properties in their controllability, observability and
stability: important properties which will be examined. If a stable phenomenon
is modelled by an unstable system, the realisation may agree over certain
limited intervals, but it is bound to diverge. Properties of the latter cannot
be used to represent the former, since they are different.

The functional form of the dynamic system must be identified and the
relevant parameters estimated. Since the system is nonlinear the value of the
parameters will depend on the point considered. This precludes the application
of standard system identification techniques for dynamic systems [22] and
requires an algorithm that will solve simultaneously the estimation and the
optimal control problem, the former in the space of parameters, the latter in
the space of the decision variables.

To this end, the aim of this section is to present such an algorithm. First the
dynamic system will be characterized, then it is examined how to ensure that
the correct statistical properties of the estimates be obtained by solving an
optimization problem which will also determine the optimal control strategy.
Finally the solution of the optimization problem is discussed.

3.1 The Dynamical System Formulation

Mathematical System Theory deals essentially with the study of the dynamical
relationships of systems under various conditions. A Dynamical System is a
precise mathematical object [15]. Not every relationship can be modelled by
mathematical system theory, since a representation which is non anticipatory
is required [15].

Dynamical Systems have been defined at a high level of generality, to refine
concepts and perceive unity in a diversity of applications and by appropriate
modelling, whole hierarchies of phenomena can be represented as systems
defined at different levels.

Definition 1. [15]: A Dynamical System is a composite mathematical object
defined by the following axioms:

1. There is a given time set T , a state set X, a set of input values U , a set
of acceptable input functions Ω = ω : Ω → U , a set of output values Y
and a set of output functions Γ = γ : Γ → Y .

2. (Direction of time). T is an ordered subset of the reals.
3. The input space Ω satisfies the following conditions.

a) (Nontriviality). Ω is nonempty.
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b) (Concatenation of inputs) An input segment ω(t1,t2], ω ∈ Ω restricted
to (t1, t2] ∩ T . If ω, ω′ ∈ Ω and t1 < t2 < t3 there is an ω′′ ∈ Ω such
that ω′′(t1,t2]

= ω(t1,t2] and ω′′(t2,t3]
= ω′(t2,t3]

.
4. There is a state transition function ϕ : T × T ×X ×Ω → X whose value

is the state x(t) = ϕ(t; τ, x, ω) ∈ X resulting at time t ∈ T from the initial
state x = x(τ) ∈ X at the initial time τ ∈ T under the action of the input
ω ∈ Ω. ϕ has the following properties:
a) (Direction of time). ϕ is defined for all t ≥ τ , but not necessarily for

all t < τ .
b) (Consistency). ϕ(t; t, x, ω) = x for all t ∈ T , all x ∈ X and all ω ∈ Ω.
c) (Composition property). For any t1 < t2 < t3 there results:

ϕ(t3; t1, x, ω) = ϕ(t3; t2, ϕ(t2; t1, x, ω), ω)

for all x ∈ X and all ω ∈ Ω.
d) (Causality). If ω, ω′ ∈ Ω and ω(τ,t] = ω′(τ,t] then ϕ(t; τ, x, ω) =

ϕ(t; τ, x, ω′).
5. There is a given readout map η : T × X → Y which defines the output

y(t) = η(t, x(t)). The map (τ, t] → Y given by σ 7→ η(σ, ϕ(σ, τ, x, ω)),
σ ∈ (τ, t], is an output segment, that is the restriction γ(τ,t] of some γ ∈ Γ
to (τ, t].

The following mathematical structures in definition 1 will be indicated by:

• the pair (t, x), t ∈ T, x ∈ X ∀t is called an event,
• the state transition function ϕ(xt, ut) is called a trajectory.

Phenomena can be modelled by a dynamical systems in the input/output
sense.

Definition 2. A Dynamical System in an input/output sense is a composite
mathematical object defined as follows:

1. There are given sets T , U , Ω, Y and Γ satisfying all the properties required
by definition 1

2. There is a set A indexing a family of functions

F = {fα : T ×Ω → Y, α ∈ A}

each member of F is written explicitly as fα(t, ω) = y(t) which is the
output resulting at time t from the input ω under the experiment α. Each
fα is called an input/output function and has the following properties:
a) (Direction of time). There is a map ι : A → T such that fα(t, ω) is

defined for all t ≥ ι(α).
b) (Casuality) Let τ, t ∈ T and τ < t If ω, ω′ ∈ Ω and ω(τ,t] = ω′(τ,t],

then fα(t, ω) = fα(t, ω′) for all α such that τ = ι(α).
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While the input/output approach may determine a family of functions,
the state space approach represents the trajectories in the way indicated,
through a unique function, so the latter approach is intuitively more
appealing, especially in applications. However, both representations show the
relationships of the time series of the single inputs on the state and the
outputs. The first representation defines a unique mapping, while the second
representation, restricted to a subspace, does not.

The representations are equivalent. It is easy to transform a given system
from a state space formulation to a input/output formulation and vice versa
[2] [15], so each may be used as convenience suggests.

A sufficiently general representation of a dynamic system may be
formulated by applying definition 1, recalling the equivalence of an input-
output system and a system in state form:

xt+1 = ϕ(xt, ut) (1)
yt = η(xt) (2)

where xt ∈ X ⊆ Rr may simply be taken as a r-dimensional vector in an
Euclidean space X, indicating the state of the system at time t, ut ∈ U ⊆ Rq

may be taken as a q-dimensional vector in an Euclidean subspace U of control
variables and yt ∈ Y ⊆ Rp is a p-dimensional vector in an Euclidean space Y
of output variables, in line with the definitions 1, 2.

The definition of a dynamical system is based on an intermediary set of
states and a transition function or a family of functions. Neither of these
constructions are unique, so if it is desired to represent a system by such
structures, equivalence of the possible structures must be shown.

Definition 3. Given two states xt0 and x̂t0 belonging to systems S and Ŝ
which may not be identical, but have a common input space Ω and output
space Y , the two states are said to be equivalent if and only if for all input
segments ω[t0,t) ∈ Ω the response segment of S starting in state xt0 is identical
with the response segment of Ŝ starting in state x̂t0 ; that is

xt0
∼= x̂t0 ⇔ η(t, ϕ(xt0 , ω[t0,t))) = η̂(t, ϕ̂(x̂t0 , ω[t0,t)))

∀t ∈ T, t0 ≤ t,∀ω[t0,t) ∈ S, Ŝ (3)

Definition 4. A system is in reduced form if there are no distinct states in
its state space which are equivalent to each other.

Definition 5. Systems S and Ŝ are equivalent S ≡ Ŝ if and only if to every
state in the state space of S there corresponds an equivalent state in the state
space of Ŝ and vice versa.

A number of important questions must be asked of the system description
of the cyberlearning representation:
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• can a certain state x∗ ∈ S be reached from the present state, or if the
dynamical system attains a given state x0 at time 0 can it also be made
to reach a certain state x∗. Evidently it is required to determine the set of
states reachable from a specific state xt.

• can a dynamical system be driven to a given state by an input u.
Thus controllability is concerned with the connectedness properties of the
system representation.

• Reachability and controllability lead naturally to the determination of
a dynamical system’s observability, which provides the conditions to
determine the given actual state uniquely.

• The stability of the system is important since it provides conditions on
the way the trajectories will evolve, given a perturbation or an admissible
control.

These conditions are very important, since they allow trajectories to be
defined, the initial point of trajectories to be determined and their stability
properties to be derived. Moreover they can be applied at any moment in time
to determine if the goals of the cyberlearning system are still attainable.

Definition 6. Given a state x∗ ∈ M ⊆ X, it is reachable from the event
(t0, x0) at time T if there exists a bounded measurable input ut ∈ Ω such that
the trajectory of the system satisfies:

xt0 = x0 (4)
xT = x∗ ∀xt0 ∈ M, 0 ≤ t ≤ T (5)

The sets of states reachable from xt0 is denoted by:

<(xt0) =
⋃

0≤T≤∞

{xT |xT reachable at time T} (6)

the system is reachable at xt0 if <(xt0) = M and reachable if <(xt0) =
M ∀x ∈ M .

Definition 7. A system is locally reachable at xt0 if for every neighbourhood
N(xt0 , h) of xt0 , <(xt0)∩Nx0 is also a neighbourhood of xt0 with the trajectory
from the event (t0, xt0) to <(xt0)∩Nx0 lying entirely within Nx0 . The system
is locally reachable if it is locally reachable for each x ∈ M .

These definitions lead to an important property for many systems, namely
that reachability may not be symmetric, that is: if xT is reachable from xt0

the converse may not hold. Thus a weaker notion of reachability is opportune.

Definition 8. Two states x∗ and x̂ are weakly reachable from each other if
and only if there exist states x0, x1, ..., xk ∈ M such that x0 = x∗, xk = x̂ and
either xi is reachable from xi−1 or xi−1 is reachable from xi (∀1 = 1, 2, ..., k).
The system is weakly reachable if it is weakly reachable from every x ∈ M .

Learning the Nonlinear Dynamics of Cyberlearning       259



Theorem 1. The following implications apply:

• If the system is locally reachable then it is reachable,
• if the system is reachable then it is weakly reachable,

Proof: Immediate from the definitions.

Definition 9. State xt0 of a system is controllable if and only if there exists
a u ∈ Ω such that:

ϕ(t; t0, xt0 , u) = ∅ (7)

The system is said to be controllable if and only if every state of the system
is controllable.

Theorem 2. A system which is controllable and in which every state is
reachable from the zero state (∅) is strongly connected

Proof: Follows from definition 9 and 6, see [15].

Definition 10. Simple and Multiple experiments:

• A simple experiment is an input/output pair (u[t0,t), y[t0,t)) that is, given
the system in an unknown state an input u[t0,t) is applied over the interval
of time (t, t0) and the output y[t0,t) is observed.

• A multiple experiment of size N consists of N input/output pairs
(ui

[t0,t), y
i
[t0,t) i = 1, 2, ..., N where on applying on the i-th realization of

the N systems the input (ui
[t0,t)) the i-th output yi

[t0,t) is observed.

Definition 11. A system is simply (multiply) observable at state xt0 if and
only if a simple experiment (a multiple experiment) permits the determination
of that state uniquely.

Definition 12. Equivalence of Systems:

• Two systems are simply equivalent if it is impossible to distinguish them
by any simple experiment,

• Two systems are multiply equivalent if it is impossible to distinguish them
by any multiple experiment.

Theorem 3. If two systems are simply equivalent and strongly connected,
then they are multiply equivalent.

Theorem 4. If two systems are multiply equivalent then they are equivalent,
(definition 5).

Definition 13. A system is initial-state determinable if the initial state x0

can be determined from an experiment on the system started at x0.
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Theorem 5. A system is in reduced form if and only if it is initial-state
determinable by an infinite multiple experiment.

The definitions 10 - 13 and the theorems 3 - 5 formally justify the
possibility of defining one or more representations of the dynamical system
considered at a chosen level of detail. Notice however the distinction between
systems that are simply equivalent and multiply equivalent. This distinction
is crucial, if dynamical systems are considered, while with comparative static
models, the distinction does not apply and the latter are consequently limited.

It is usual, since stability for nonlinear systems is an equilibrium concept,
to examine autonomous systems in continuous time.

Thus consider:

ẋ = ϕ(x, t) (8)
x(t0) = x0 (9)

an autonomous nonlinear system, while x0 is the initial state of the system.

Definition 14. The equilibrium point x = 0 is called a stable equilibrium
point of the system (8) if for all t0, ε > 0, there exists δ(t0, ε) such that:

| x0 |< δ(t0, ε) ⇒| x(t) |< ε ∀t ≥ t0 (10)

The solution of the dynamic system given in equations (1) - (2) may be
determined in a number of different ways, depending on the structure of the
functions that are given [15].

3.2 Simultaneous Estimation and Optimization

A given finite dimensional estimation and optimization problem is considered,
which is nonlinear and dynamic to determine simultaneously the maximum
likelihood parameter estimates and the optimal control trajectory to the
dynamic system.

It is important to apply a suitable data driven statistical method to
determine the most appropriate statistical form and precise values of the
parameters, which should have the following properties [16]:

1. the parameter estimates are unbiased, this means that:
• as the size of the data set grows larger, the estimated parameters tend

to their true values,
2. the parameter estimates are consistent, which require the following

conditions to be satisfied:
• the estimated parameters are asymptotically unbiased,
• the variance of the parameter estimate must tend to zero as the data

set tends to infinity.
3. the parameter estimates are asymptotically efficient,
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• the estimated parameters are consistent,
• the estimated parameters have smaller asymptotic variance as

compared to any other consistent estimator,
4. the residuals have minimum variance, which will require to ensure that

this is so::
• the variance of the residuals must be minimum,
• the residuals must be homoscedastic,
• the residuals must not be serially correlated.

5. the residuals are unbiased ( have zero mean),
6. the residuals have a noninformative distribution (usually, the Gaussian

distribution). If the distribution of the residuals is informative, the extra
information can be used to reduce the variance of the residuals to yield
better estimates.

In short, through correct implementation of statistical estimation
techniques the estimates are as close as possible to their true values, all the
information that is available is applied and the uncertainty surrounding the
estimates and the data fit is reduced to the maximum extent possible. Thus
the estimates of the parameters, which satisfy all these conditions, are the
’best’ possible in a ’technical sense’ [16].

By setting up the statistical properties, that a given estimate must
fulfil, as constraints to the maximum likelihood problem to be solved, the
parameters are defined implicitly by this optimization problem. The latter can
be inserted into the optimal control system for the policy determination, so
that statistically correct estimates will always result. The solution yielding the
best policy can be chosen, where N +1, ..., T is the forecast period, by solving
the optimization problem given below. By recursing on the specifications,
better and better fits can be derived. At each iteration, the best combination
of parameterization and policy is obtained.

The unknowns to be determined are the input and output variables
considered and the parameters of the functional form specified in the current
iteration.

The mathematical program is formulated with respect to the residual
variables, but it is immediate that for a given functional form, the unknown
parameters will be specified and thus the unknowns of the problem will also
be defined and available. Hence the mathematical program is fully specified
for each functional form to be considered.

Consider the data set of a phenomenon consisting of measurements
(yi, xi, ui) over (i = 1, 2, .., N) periods, where it is assumed, that yi ∈ Rp is a
p-dimensional vector, while xi ∈ Rr is a r-dimensional vector of explanatory or
state variables of the dynamic process of dimension. Also, ui is a q-dimensional
vectors of control variables. Let wi ∈ Rr , vi ∈ Rp be stochastic processes also
to be determined.

The optimization problem to be solved is the following:
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Min J =
T∑

i=N+1

c(xi, ui, yi) (11)

ϕ(xi, ui, yi, wi : θ1) = xi+1 (12)
η(xi, ui, vi : θ2) = yi+1 (13)

1
N

N∑
i=1

wi = 0 (14)

1
N

N∑
i=1

vi = 0 (15)

1
N

N∑
i=1

w2
i ≤ kw (16)

1
N

N∑
i=1

v2
i ≤ kv (17)

−ε0 ≤
1
N

N∑
i=1

viwi ≤ ε0 (18)

−ε1 ≤
1
N

N∑
i=1

wiwi−1 ≤ ε1 (19)

−ε2 ≤
1
N

N∑
i=1

vivi−1 ≤ ε2 (20)

−ε3 ≤
1
N

N∑
i=1

viwi−1 ≤ ε3 (21)

−ε4 ≤
1
N

N∑
i=1

wivi−1 ≤ ε4 (22)

. . . . . . . . . . . . . . . . . .

−ε2s ≤
1
N

N∑
i=1

vi−swi−s ≤ ε2s (23)

−ε2s+1 ≤
1
N

N∑
i=1

wiwi−s ≤ ε2s+1 (24)

−ε2s+2 ≤
1
N

N∑
i=1

vivi−s ≤ ε2s+2 (25)

−ε2s+3 ≤
1
N

N∑
i=1

viwi−s ≤ ε2s+3 (26)
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−ε2s+4 ≤
1
N

N∑
i=1

wivi−s ≤ ε2s+4 (27)

1
2
gT

wΨ(ΨT Ψ)−1ΨT gw −
N

2
≤ χ2

1−α:p−1 (28)

1
2
gT

v Ψ(ΨT Ψ)−1ΨT gv −
N

2
≤ χ2

1−α:p−1 (29)

−ε2r+1 ≤
1
N

N∑
i=1

w2r+1
i ≤ ε2r+1; r = 3, 4, ... (30)

1
N

N∑
i=1

w2r
i ≤ 2r!

r!2r
σ2r

w ; r = 3, 4, ... (31)

−ε2r+1 ≤
1
N

N∑
i=1

v2r+1
i ≤ ε2r+1; r = 3, 4, ... (32)

1
N

N∑
i=1

v2r
i ≤ 2r!

r!2r
σ2r

v ; r = 3, 4, ... (33)

xi ∈ X, yi ∈ Y, ui ∈ U,wi ∈ W, vi ∈ V (34)

The conditions indicated above are met for an optimal solution of the
program (11)-(34). The formal proof of these properties are presented in [10].
Here we shall show the connection between the constraints and the statistical
properties indicated above which must be satisfied.

The abstract model of the dynamical system is to be optimized with regard
to a given merit function(11) such that the sum of squares of the residuals
to be less than a critical value kw, kv which can be decreased by dichotomous
search at every iteration, until the problem does not yield a feasible solution.

The least values obtained for these parameters, while retaining a feasible
solution to the whole problem, are equivalent to a minimization of the
statistical estimation error and the maximum likelihood estimate of the
parameters, under appropriate distributional assumptions concerning the
residuals.

All the serial correlations between the residual are not significantly
different from zero, as enforced by the constraints (18) - (27).

Moreover to ensure that these conditions hold throughout the possible
variation of the independent variables, the residuals must be homoscedastic
and thus satisfy (28) - (29). The homoscedasticity condition on the residuals is
obtained by regressing the original variables of the problem, indicated by the
data matrix Ψ , on the normalised square of the residuals, which are indicated
respectively by: gw, gv. This leads to a set of nonlinear equations in the squared
residuals. The χ2 test is applied at a confidence level of (1 − α) with m − 1
degrees of freedom and a significance level of α, [3].

The conditions 4 and 5 hold at the solution of the optimization problem.
Conditions 2 and 1 also hold because of the following consideration.
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The constraints (14) - (27) as well as (30) - (33) are sample moments, so
they will converge in probability to their population values. The ones indicated
by (14) - (27) will converge to zero. For the second group, those representing
the odd moments of the distribution, indicated by (30) and (32), will converge
in probability to their population value of zero, while the even moments will
converge in probability to their population values. These constraints enforce
the residuals to have a noninformative distribution, here a Gaussian.

Thus the condition 6 is also met. Condition 3, which is also very important
will hold in all cases that the constrained minimization problem (11) - (34)
has a solution.

Finally it is easy to show that this constrained minimization problem (11)
- (34) will dominate the solutions obtainable by the traditional three phase
procedure, since whenever the latter has a statistically correct solution, the
new procedure will also have such a solution, but not conversely.

3.3 Solving the Optimization Problem

An iterative procedure is here specified to minimize a given function subject
to equality and inequality constraints, by solving a linear complementarity
problem at each iteration, subject to a suitable trust region defined by a set
of inequalities [18]. The detailed procedure and convergence results have been
presented in [10] to which the reader is referred.

Consider the following optimization problem:

Min Z = f(w) f : Rn → R (35)
g(w) ≥ 0 g : Rn → Rp (36)
h(w) = 0 h : Rn → Rq (37)

The proposed algorithm consists in defining a quadratic approximation
to the objective function, a linear approximation to the constraints and
determining a critical point of the approximation by solving a linear
complementarity problem (LCP), as given in [18].

Expanding the functions in a Taylor series, at the given iteration point
wk, the equality constraints may be eliminated simply by converting them
into p + 1 inequality constraints.

Unconstrained variables can be transformed into nonnegative variables for
the LCP algorithm, by defining a suitable offset.

A set of trust region constraints can be imposed on the problem as a
system of linear inequalities centered around the iteration point, to limit
the change in the possible solution. Thus an LCP results which, it can be
shown, has a solution either on a trust region constraint or inside. If the
solution point occurs on a trust region constraint and the solution is feasible
while a reduction in the objective function has occurred, the solution point
is taken as the new starting point and a new iteration is started. Otherwise,
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if the new point is infeasible, the trust region is reduced. Finally if there
has been an increase in the objective function, the trust region is enlarged
and the iteration is repeated, with suitable safeguards to force a reduction
in the objective function. If instead the solution point occurs inside the trust
region, it can be considered an approximate stationary point. If the objective
function is bounded from below, for all values of the variables which satisfy the
constraints, a local minimum point will be found. The minimum time free end
optimal control problem will therefore be solved, which specifies the optimal
learning trajectory. A great advantage of this algorithm is that variables
restricted to binary values can be considered and the solutions determined
will respect these conditions [7].

4 Implementation of Cybercourses

A practical application of the relevant methodology, succinct enough to fit the
limited space available, would constitute a toy application, which would not
reveal the possibility and the advantages of using Cyberlearning, as defined
here, for actual courses. Thus the aim of this section is to describe briefly two
cybercourses realized with the methodology Interactive Distance Electronic
and Adaptive Learning System (I.D.E.A.L.S.) described in the previous
sections, which the interested reader can find on the web, so that they can be
analyzed in detail and examine the scientific methodology which lies behind
the logical and numerical constructs, which ensures the correctness.

4.1 Cybercourses

The courses develop interactive adaptive tutorials, based a common set of
general structural and organizational principles.

An array containing indications of the frames successively examined, the
time spent on studying each, the collateral actions performed: e-mail sent and
received, library information systems consulted, and how the tasks assigned
were executed is generated frame by frame. Intelligent Agents can be queried
and questions addressed to the instructor levied. On the output side, the next
period’s predicted state vector is determined, which contains the next frame
to be studied, and an output array indicating the expected time taken to
study the next frame, the tasks which are expected to be tackled and the
performance which will result on the that frame. All this information as well
as the results are saved in a database for each individual, which will be then
used to update the system.

Similar proposals have been indicated [21] [6], but in these papers the
next frame is either chosen by the learner or on the basis of a weighting
function of the results. There is no adaptive optimal control exercised nor are
special techniques used to avoid excessive oscillations between learning styles,
(see section 4.2).
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An initial estimate to the individual’s learning style can be obtained from
the characteristics indicated and from his performance over the first few
exemplary frames. Here use is made of a pattern recognition technique called
T.R.A.C.E. (Total Recognition by Adaptive Classification Experiments)
[17], which has given good results. Also initial representative trajectories can
also be defined experimentally. As the individual moves through the frames,
pertinent information is obtained, which is used to improve the predictive
accuracy of the system representation. A cybercourse should be equipped
with a cultural dimension to promote conceptual knowledge and purposeful
reflection [13]. To this end full interaction between the learner, the instructor
and the Cyberlearning process is envisaged.

Thus a number of instruments are incorporated in the frames structure so
as to encourage this cultural extension of the material in many directions.

Any part of a frame may be highlighted and one of five action buttons can
be clicked, leading to different actions. Clicking on:

• The demonstration button: a new window is presented with a detailed
proof of the highlighted material,

• The reference button: a new window appears with a set of references on the
matter highlighted. To this end the S.I.B.I.L.L.A. ( Sistema Interattivo
BIb Liografico con Liste Automatiche), which is a bibliographic referential
system [19], may be used.

• The example button: a new window appears and a worked example is
shown step by step.

• The apropos button: a new window appears and a set of links appear with
indications to more general information.

• The history button: a new window appears and a short history of the
development of the concepts is given.

Each window opened also contains the five buttons and a label for that
window so that the interaction process can continue. Other command buttons
are also provided, such as repeat buttons, path visualization and e-mail
connectivity.

The Cyberlearning Course

Cyberlearning (http://banach.sta.uniroma1.it/ideals/cyberlearning.html) is
an application of the I.D.E.A.L.S. methodology which is explained in the
tutorial in the form of an interactive distance learning course. The interactive
course provides an adaptive and interactive tutorial on how it works and how
to formulate the frames at the various levels of learning style adopted. As such
it consists of three units:

1. Introduction and general principles of the I.D.E.A.L.S. methodology,
2. The framework for the dynamic adaptive control and the justification of

its correctness and adequacy.
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3. the rules and the method to construct the frames.

Because of the aim of this course, some additional instruments are
provided, which are not usually part of the I.D.E.A.L.S. methodology, which
may be characterised as follows:

• backward branching: at any frame the user may return to a previous frame
and re-execute it in a debugging mode. Thus he may alter in some way
his interaction and compare the optimal control that had been formulated
before and the new formulation of the optimal control. This will be useful
to study the consequences of different decisions on the optimal path
formulated by the system,

• The user can force a choice of a frame, so as to inspect the frames that
would have been provided with other outcomes. In short he can vary the
state of the system and examine the effects of such a modification.

• The recursive estimation of the relationships, which define the nonlinear
dynamic system can be checked at each frame, so that the precise
mechanism that governs the transitions studied.

Thus the interested reader can study the pedagogical reasons behind this
approach, experiment with the various alternatives, test himself for a better
understanding and determine the time taken to accomplish a certain task
under the different learning styles. The principles governing the nonlinear
dynamical system can be studied in the most suitable way, based on his prior
knowledge and preferred style and through the exercises he will obtain a deep
knowledge of the subject matter. Finally the principles to construct frames
are specified, again under different learning styles.

The Mathematical Programming Course

A cybercourse (http://banach.sta.uniroma1.it/proma06/initial.html) is a
mathematical programming course with applications in decision making,
imparted to senior undergraduates.

Different learning styles characterize the material presented: from an
axiomatic approach distinguished by formal analysis and results to an
approach built up by examples with development of intuitive explanations to
justify rules, principles and algorithms and of course the tasks to be carried
out in each frame will be very different.

The course itself is structured in 18 units (chapters) from traditional
mathematical programming methods to more advanced methods such as
nonlinear complementarity theory and variational inequalities, as well as
the techniques to handle dynamic optimization problems and simultaneous
estimation and optimization problem as indicated in section 3. Special
evidence is given to interior point methods and a particular emphasis is
given to modeling principles and the relevant methodology, since this aspect is
considered an important element in a course on mathematical programming,
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while less so in an optimization course where the concern is only with the
solution techniques of such problems.

4.2 Correctness and Adequacy

The justification why such a complex construction will work in reality, are
of course implicit in the results presented in section 3. If the derivations
are correct and if the concepts can be adequately interpreted by observable
measures taken from the behaviour exhibited by the learner, given an
acceptable indeterminacy level, then the results obtained by the learner will
coincide, modulo the acceptable indeterminacy level, with the results indicated
by the nonlinear dynamic system.

To see this, consider two nonlinear dynamical systems which interact as
the course proceeds:

• The individual’s learning procedure can be regarded as a nonlinear
dynamic system, which is not observable as indicated in definition 11,
since no single or set of experiments can determine uniquely what he has
learnt.

• a representation of certain aspects of his behaviour may be realized by a
specification of a nonlinear dynamical system which does not consider
the unobservable aspects of the individual’s learning process, but just
the optimal sequence of frames and learning tasks to achieve the specific
desired result.

Certainly, if there were a sufficient set of identical students learning the
same subject matter, a design of experiments could be set up to choose for
this group the optimal sequence of frames and tasks.

This would require many copies of that individual’s learning procedure to
determine the best set of tasks, since each task administered alters his learning
capabilities. This is not possible, since the individual is unique.

Alternatively, a nonlinear dynamical system in the input/output sense, as
indicated in definition 2, could be considered and a number of experiments
conducted on the individuals’ learning capabilities, so as to determine which
sets of tasks are optimal to achieve the desired result.

Rather than experimenting on the individual, as in the traditional design
of experiments, a representative nonlinear dynamical system can be used,
defined just with the required properties to determine the sequence of tasks
to administer. Multiple copies of this system can be generated, if simulations
are to be performed, or just a single copy is required, if the optimal sequence
is to be determined by an optimal adaptive control algorithm. In each period
the optimal policy is determined to completion, the selected task is fed to the
learner and the results noted, so that the nonlinear dynamical system can be
updated if warranted.

If the results of the section 3 are implemented correctly, the simultaneous
estimation and optimization algorithm will converge to a dynamical system
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representation, which cannot be distinguished by simple and multiple
experiments, modulo the acceptable level of indeterminacy, thus ensuring that
they are equivalent within the level of acceptable indeterminacy, as derived
in theorem 3 and 4.

To verify the optimality of the policy enacted it is not possible to perform
experiments, again because of the uniqueness of the individual, but optimality
must follow through the properties of the results if these has been derived
correctly [10].

The adequacy of the representation must also be evaluated. This means
that the aspects of the learning behaviour of the individual, which are
measured, satisfy a number of properties which ensures that at each period
an appropriate frame is indicated and that the trajectory to completion of the
course is well defined.

Reachability of the Cybercourse Representation

A set of states, say M , will lead to the final frame indicating satisfactory
completion of the course. This set of states must be reachable from
intermediate states as otherwise the optimal control problem will not have
a feasible solution.

Once the dynamic system has been identified, System techniques can be
applied to ensure that the system is reachable with respect <(xt0) = M ∀x ∈
M , see definition 6 [20]. Also by theorem 1, the system will be weakly
reachable. Thus the learner will not be left in the lurch, with no indication on
how to progress.

Controllability of the Cybercourse Representation

The learner starts from a given frame, so that it must be ensured that in
all circumstances a new state is formulated which leads to a new frame.
Thus every state should be reachable from the initial state. Obviously, if
the trajectory under given circumstances goes into a loop, the system is not
strongly connected and it must be altered to render it controllable. Thus
for I.D.E.A.L.S. representation, definition 9 and theorem 2 must apply and
there are Dynamic system techniques to check and ensure that this is so [20].

Observability of the Cybercourse Representation

It must be ensured that the two systems: certain aspects of the learning process
of the student and their dynamic system representation are equivalent, so that
the optimal policy determined for the latter applies to those aspects of the
learner and so ensure an optimal sequence of frames.

For this to hold, the dynamic system and the real system must be simply
observable ( definition 11) so that the two systems be simply equivalent ( see
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definition 12). If the two systems are controllable and reachable, see above,
then the systems will be, by theorem 2, strongly connected. By theorem 3 the
two systems will be multiple equivalent and therefore equivalent by theorem
4.

Stability of the Cybercourse Representation

Any path through the cybercourse must be stable, which means that the path
must not oscillate or cycle so that the sequence of frames will converge to
the final frame of the course. Opportune constraints are added to problem
specification to ensure the stability of every optimal trajectory [8].

5 Conclusion

Open loop policies can be specified for every student which desires to enroll in
the course. Special recursive estimation and optimization techniques ensure
the identification of the nonlinear dynamic system formulation of the required
aspects of the learning process and its optimal control to completion. The
properties of the results derived ensure the equivalence of the two systems, so
that the model can be used to determine the optimal control.

A close scrutiny of the structure of this paper makes it evident that the
method of exposition applied in each section reflects differences in learning
styles, so as to appeal to a wide audience. Thus from an intuitive description
in section 2, a formal and axiomatic exposition is used in section 3 and an
informal but structured presentation in section 4 to allow interested readers
to understand the material to completion.

The I.D.E.A.L.S. methodology improves the given structure by
interactively adapting presentations to the desires of the reader and ensuring
that the material is presented as efficiently as possible.

References

1. T. Anderson and F. Elloumi (eds.). Theory and Practice of Online Learning.
Athabasca University, Athabasca, Canada, 2004.

2. M. Aoki. Optimal Control and System Theory in Dynamic Economic Analysis.
North-Holland, New York, 1976.

3. T. S. Breusch and A. R. Pagan. A simple test for heteroschedasticity and random
coefficient variation. Econometrica, 47:1287 – 1294, 1979.

4. R. R. Bush and F. Mosteller. Stochastic Models of Learning. Wiley, New York,
1955.

5. J. L. Casti. Dynamical Systems and their Applications. Academic Press, New
York, 1977.

6. C.-M. Chen, H.-M. Lee, and Y.-H. Chen. Personalized e-learning system using
item response theory. Computers and Education, 44:237–253, 2005.

Learning the Nonlinear Dynamics of Cyberlearning       271



7. L. Di Giacomo, E. Argento, and G. Patrizi. Linear complementarity methods
for the solution of combinatorial problems. to appear in Journal of Computing,
copy at http://banach.sta.uniroma1.it/patrizi/, 2005.

8. L. Di Giacomo and G. Patrizi. Distributed decision making in
dynamic stabilized markets. Paper presented at European Working Group
on Distributed Decision Making, Louvain, April 16 -17, 2004, copy at
http:/banach.sta.uniroma1.it/patrizi/, pages 1 – 17, 2004.

9. L. Di Giacomo and G. Patrizi. Dynamic nonlinear modelization of operational
supply chain systems. to appear in the Journal of Global Optimization, copy at
http://banach.sta.uniroma1.it/patrizi/, 2005.

10. L. Di Giacomo and G. Patrizi. A general algorithm for simultaneous nonlinear
estimation and optimization of constrained problems. submited for publication,
copy at: http://banach.sta.uniroma1.it/patrizi/, pages 1–37, 2005.

11. A. Favaro. Le Opere di Galileo Galilei. Barbera, Padova, 1907.
12. A. R. Gallant and H. White. A Unified Theory of Estimation and Inference for

Nonlinear Statistical Models. Basil Blackwell, Oxford, 1988.
13. H. Gardner. Frames of Mind: The Theory of Multiple Intelligences. Basic Books,

New York, 1993.
14. G. R. Jones. Cyberschools and Education Renaissance. Jones Digital Century

Inc., Englewood Co., 1997.
15. R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System

Theory. McGraw-Hill, New York, 1969.
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