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functions. Based on these concepts, sufficient optimality conditions for a nondiffer-
entiable multiobjective programming problem are presented. We also introduce a
general Mond-Weir type dual problem of the problem and establish weak duality
theorem under generalized convexity assumptions. Strong duality result is derived
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1 Introduction

Convexity plays an important role in the design and analysis of successful al-
gorithms for solving optimization problems. However, the convexity assump-
tion must be weakened in order to tackle different real-world optimization
problems. Therefore, several classes of generalized convex functions have been
introduced in the literature and corresponding optimality conditions and du-
ality theorems for mathematical programming problems involving these gener-
alized convexities have been derived. In 1981, Hanson introduced the concept
of invexity in [10]. Optimality conditions and duality for different mathe-
matical programming problems with invex functions have also been obtained
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by other researchers. For example, Bector and Bhatia [4] studied minimax
programming problems and relaxed the convexity assumptions in the suffi-
cient optimality in Schmitendorf [26] using invexity. Jeyakumar and Mond
[12] introduced the concept of v-invexity, which can be seen as an exten-
sion of invexity, and derived optimality conditions and duality theorems for
multiobjective programming problems involving the generalized convexity.
Some other extensions of these generalized convexities can be found in [13],
[5] and [22]. Other classes of generalized convex functions were defined in
[27, 28, 11, 24, 27, 28, 5, 9, 18, 25, 6, 1, 32].

Liang et al. [14], [15] and [16] introduced a unified formulation of general-
ized convexity so called (F, α, ρ, d)-convexity. Recently, Yuan et al. [33] de-
fined (C, α, ρ, d)-convexity, which is a generalization of (F, α, ρ, d)-convexity,
and established optimality conditions and duality results for nondifferentiable
minimax fractional programming problems involving the generalized convex-
ity. Chinchuluun et al. [7] also considered nondifferentiable multiobjective
fractional programming problems under (C, α, ρ, d)-convexity assumptions.

On the other hand, Hanson and Mond [11] defined two new classes of
functions called type I and type II functions.

Based on type I functions and (F, α, ρ, d)-convexity, Hachimi and Aghez-
zaf [9] defined (F, α, ρ, d)-type I functions for differentiable multiobjective
programming problems and derived sufficient optimality conditions and dual-
ity theorems.

In this chapter, motivated by [9], [11] and [33], we introduce (C, α, ρ, d)-
type I functions. Based on the new concept of generalized convexity, we es-
tablish optimality conditions and duality theorems for the following nondif-
ferentiable multiobjective programming problem:

(VOP) min f(x) = (f1(x), · · · , fl(x))
s.t. x ∈ S = {x ∈ Rn| g(x) = (g1(x), · · · , gq(x)) � 0},

where fi : Rn → R, i = 1, 2, . . . , l, and gj : Rn → R, j = 1, 2, . . . , q, are
Lipschitz functions on Rn.

Throughout this chapter, we use the following notations. Let L = {1, . . . , l}
and Q = {1, . . . , q} be index sets for objective and constraint functions, re-
spectively. For x0 ∈ S, the index set of the equality constraints is denoted by
I(x0) = {j|gj(x0) = 0}. If x and y ∈ Rn, then

x � y ⇔ xi ≤ yi, i = 1, . . . , n;
x � y ⇔ x � y and x �= y;
x < y ⇔ xi < yi, i = 1, . . . , n.

We denote the Clarke generalized directional derivative of f at x in the direc-
tion y and Clarke generalized gradient of f at x by f◦(x; y) = (f◦1 (x; y), . . . ,
f◦l (x; y)) and ∂◦f(x) = (∂◦f1(x), . . . , ∂◦fl(x)), respectively [8].

Definition 1. We say that x0 ∈ S is an (a weak) efficient solution for problem
(VOP) if and only if there exists no x ∈ S such that f(x) � (<)f(x0).
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This chapter is organized as follows. In the next section, we introduce a
unified formulation of generalized convexity. Sufficient optimality conditions
for the multiobjective programming problem involving the new generalized
convexity are established in Section 3. In Section 4, we extend a constraint
qualification in [23] in terms of Hadamard type derivatives, relaxing some
assumptions. In the last section, we present the general mixed Mond-Weir
dual program for (VOP) and derive weak and strong duality results.

2 Definitions

Convexity plays a central role in mathematical programming. In addition,
several problems with nonconvex functions still have properties similar to
convex problems. By defining more general classes of functions, we are able
to understand the structures of more general optimization problems.

In this section we introduce a unified formulation of generalized convex
functions, which are extensions of (F, ρ, α, d) type-I functions presented in [9]
and (C, ρ, α, d)-convex functions presented in [33].

Let C : X ×X × Rn → R be convex with respect to the third argument
such that C(x,x0)(0) = 0 for any (x, x0) ∈ S × S. Let ρ = (ρ1, ρ2), where
ρ1 = (ρ1

1, . . . , ρ
1
l ) ∈ Rl, ρ2 = (ρ2

1, . . . , ρ
2
q) ∈ Rq. Let α = (α1, α2), where α1 =

(α1
1, . . . , α

1
l ), α

2 = (α2
1, . . . , α

2
q), and αi

j(·, ·) : Rn × Rn → R+\{0}, i = 1, 2,
j ∈ L or Q. d = (d1, d2) is a vector function, where d1 = (d1

1, . . . , d
1
l ), d

2 =
(d2

1, . . . , d
2
q), and di

j(·, ·) is pseudometric on Rn, i = 1, 2, j ∈ L or Q. We
assume that, for any a, b, c ∈ Rs, the symbol ab

c denotes
(

a1b1
c1
, . . . , asbs

cs

)
, and

the symbol a+b
c denotes

(
a1+b1

c1
, . . . , as+bs

cs

)
. If ξ = (ξ1, . . . , ξl) ∈ ∂◦ϕ(x0), then

C(x,x0)(ξ) denotes the vector (C(x,x0)(ξ1), . . . , C(x,x0)(ξl)). We are now ready
to present the new classes of functions.

(ϕ,ψ) is (C,α, ρ, d)-type I at x0, if for all x ∈ S we have

ϕ(x)− ϕ(x0)
α1(x, x0)

� C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0)
α2(x, x0)

� C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is pseudoquasi (strictly pseudoquasi) (C,α, ρ, d)-type I at x0, if for
all x ∈ S we have

ϕ(x) < (�)ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

< 0,∀ξ ∈ ∂◦ϕ(x0) (1)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is weak strictly-pseudoquasi (C,α, ρ, d)-type I at x0, if for all x ∈ S
we have
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ϕ(x) � ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

< 0,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is strong pseudoquasi(weak pseudoquasi) (C,α, ρ, d)-type I at x0, if
for all x ∈ S we have

ϕ(x) � (<)ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ξ ∈ ∂◦ϕ(x0) (2)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is weak quasi-strictly-pseudo (C,α, ρ, d)-type I at x0, if for all x ∈ S
we have

ϕ(x) � ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

We note that we can derive many different classes of generalized convex
functions by changing the inequalities of these conditions.

3 Sufficient Optimality

Aghezzaf and Hachimi [1, 9] considered multiobjective programming problems
with (F,ρ)-convex functions and (F,α, ρ,d)-type I functions, and established
a number of sufficient optimality conditions. We adapt these results to the
classes of generalized (C,α, ρ,d)-type I functions.

Theorem 1. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū = (ū1, . . . , ūl) ∈ Rl and v̄ = (v̄1, . . . , v̄q) ∈ Rq such that

0 ∈ ūT∂◦f(x0) + v̄T∂◦g(x0), (3)
v̄T g(x0) = 0, (4)
ū > 0, v̄ � 0. (5)

If (f, gI) is strong pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

≥ 0, (6)

then x0 is an efficient solution of (VOP).
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Proof. Suppose to the contrary that x0 is not an efficient solution of (VOP).
Then there exists a feasible solution x such that

f(x) � f(x0) and gI(x0) = 0.

Hence,
f(x) � f(x0) and − gI(x0) � 0.

Since (f, gI) is strong pseudoquasi (C, α, ρ, d)-type I at x0, we can write

C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ ξ ∈ ∂◦f(x0),

C(x,x0)(ηI) +
ρ2

Id
2
I(x, x0)

α2
I(x, x0)

� 0,∀ ηI ∈ ∂◦gI(x0).

Let us denote τ =
l∑

i=1

ūi +
∑
j∈I

v̄j . Multiplying the above inequalities with 1
τ ū

and 1
τ v̄I , respectively, and using the convexity assumption of C, we have

C(x,x0)

(
1
τ
ūT ξ +

1
τ
v̄T

I ηI

)
+

1
τ
ūT ρ

1d1(x, x0)
α1(x, x0)

+
1
τ
v̄T

I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

< 0,

∀ξ ∈ ∂◦f(x0), ηI ∈ ∂◦gI(x0),

since ū > 0. From the last inequality, using (3) and (4), we have

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T ρ
2d2(x, x0)
α2(x, x0)

< 0,

which contradicts (6). �

The next theorems will be presented without proofs since they can be proven
using the similar argument as in the proof of Theorem (1).

We can weaken the strict inequality requirement that ū > 0 in the above
theorem but we require different convexity conditions on (f, gI). This adjust-
ment is given by the following theorem.

Theorem 2. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that

0 ∈ ūT∂◦f(x0) + v̄T∂◦g(x0), (7)
v̄T g(x0) = 0, (8)
ū � 0, v̄ � 0.

If (f, gI) is weak strictly-pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

≥ 0, (9)

then x0 is an efficient solution of (VOP).
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Since an efficient solution is also weak efficient, the above formulated theorems
are still valid for weak efficiency, however, we can weaken the convexity as-
sumptions for weak efficient solutions. Therefore, the following theorems can
be formulated.

Theorem 3. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that the triplet (x0, ū, v̄) satisfies (3), (4) and
(5). If (f, gI) is weak pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

� 0,

then x0 is a weak efficient solution of (VOP).

Theorem 4. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that the triplet (x0, ū, v̄) satisfies (7), (8) and
(9). If (f, gI) is pseudoquasi (C, α, ρ, d)-type I at x0 with

l∑
i=1

ūiρ
1
i

d1
i (x, x0)
α1

i (x, x0)
+

∑
j∈I

v̄jρ
2
j

d2
j (x, x0)
α2

j (x, x0)
� 0,

then x0 is a weak efficient solution for (VOP).

4 A Constraint Qualification

For some necessary optimality conditions of multiobjective programming
problems, constraint qualifications are used in order to avoid the situation
where some of the Lagrange multipliers vanish [17, 23]. In this section, we
weaken assumptions of constraint qualification in Preda [23] in terms of
Hadamard type derivatives, relaxing some assumptions. The Hadamard deriv-
ative of f at x0 in the direction v ∈ Rn is defined by

df(x0, v) = lim
(t,u)→(0+,v)

f(x0 + tu)− f(x0)
t

.

f is said to be Hadamard differentiable at x0 if df(x0, v) exists for all v ∈ Rn.
Obviously, df(x0, 0) = 0.

Following Preda and Chitescu [23] we use the following notations. The
tangent cone to a nonempty set W at point x ∈ clW is defined by

T (W ;x) = {v ∈ Rn | ∃{xm} ⊂W : x = lim
m→∞xm,

∃{tm}, tm > 0 : v = lim
m→∞ tm(xm − x)},

where clW is the closure of W .
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Let x0 be a feasible solution of Problem (VOP). For each i ∈ L, let
Li = L\{i}, and let the nonempty sets W i(x0) and W (x0) be defined as
follows: W (x0) = {x ∈ S|f(x) ≤ f(x0)}, W i(x0) = {x ∈ S|fk(x) ≤
fk(x0), for k ∈ Li}(l > 1), and W i(x0) = W (x0)(l = 1). Then, we give
the following definition.

Definition 2. The almost linearizing cone to W (x0) at x0 is defined by

H (W (x0);x0) = {v ∈ Rn|dfi(x0, v) ≤ 0, i ∈ L, and dgj(x0, v) ≤ 0, j ∈ I(x0)}

Proposition 1. If dfi(x0, ·) i ∈ L, and dgj(x0, ·) j ∈ I(x0) are convex func-
tions on Rn, then H (W (x0);x0) is a closed convex cone.

Proof. The proof is very similar to that of Proposition 3.1 in [23]. So we omit
this. �

The following lemma illustrates the relationship between the tangent cones
T
(
W i(x0);x0

)
and the almost linearizing cone H (W (x0);x0).

Lemma 1. Let x0 be a feasible solution of Problem (VOP). If dfi(x0, ·) i ∈ L,
and dgj(x0, ·) j ∈ I(x0)(�= ∅) are convex functions on Rn, then⋂

i∈L

clco T
(
W i(x0);x0

)
⊆ H (W (x0);x0) (10)

Proof. Here, we give a proof for only part l > 1 since the proof for part l = 1
is similar. For i ∈ L, let us define

H
(
W i(x0);x0

)
= {v ∈ Rn| dfk(x0, v) ≤ 0, k ∈ Li, and

dgj(x0, v) ≤ 0, j ∈ I(x0)}

According to Proposition 1, H
(
W i(x0);x0

)
is closed and convex for all i ∈ L.

We know that ⋂
i∈L

H
(
W i(x0);x0

)
⊆ H (W (x0);x0)

Next, we show that, for every i ∈ L,

T
(
W i(x0);x0

)
⊆ H

(
W i(x0);x0

)
. (11)

Let i ∈ L and v ∈ T
(
W i(x0);x0

)
. If v = 0, it is obvious that v = 0 ∈

H
(
W i(x0);x0

)
. Now, we assume v �= 0. Therefore, we have a sequence {xm} ⊆

W i(x0) and a sequence {tm} ⊆ R, with tm > 0, such that

lim
m→∞xm = x0, lim

m→∞ tm(xm − x0) = v.

Let us take vm = tm(xm − x0). Then, vm

tm → 0 as m→∞. Since vm → v and
v �= 0, for any positive real number ε, there exists a positive integer number
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N such that vm ∈ B(v, ε) for all m > N . Therefore ‖v‖− ε ≤ ‖vm‖ ≤ ‖v‖+ ε
for all m > N . Hence, for all m > N , we have

‖v‖ − ε
tm

≤ ‖vm‖
tm

→ 0.

Since ε is an arbitrary positive number, selecting ε as a sufficiently small
number, we can deduce that 1

tm → 0. Then for all j ∈ I(x0) and for all
sufficiently large m, we have

gj

(
x0 +

1
tm
vm

)
= gj(xm) ≤ 0 = gj(x0), j ∈ I(x0), (12)

fk

(
x0 +

1
tm
vm

)
= fk(xm) ≤ fk(x0), k ∈ Li. (13)

By definition of Hadamard derivative, we have

dgj(x0, v) ≤ 0, j ∈ I(x0), (14)
dfk(x0, v) ≤ 0, k ∈ Li. (15)

This shows v ∈ H
(
W i(x0);x0

)
or (11) is true. Hence, due to the fact that

every H
(
W i(x0);x0

)
is convex and closed, one obtains

clco T
(
W i(x0);x0

)
⊆ H

(
W i(x0);x0

)
, ∀ i ∈ L.

Thus (10) holds. �

Definition 3. We say that Problem (VOP) satisfies the generalized Guignard
constraint qualification (GGCQ) at x0 if⋂

i∈L

clco T
(
W i(x0);x0

)
⊇ H (W (x0);x0) . (16)

holds.

Theorem 5. Let x0 ∈ S be an efficient solution of Problem (VOP). Suppose
that l > 1, and
(A1) constraint qualification (GGCQ) holds at x0;
(A2) there exists i ∈ L such that dfi(x0, ·) is a concave function on Rn

(A3) dfk(x0, ·), k ∈ Li and dgj(x0, ·), j ∈ I(x0) are convex function on Rn.
Then the system

dfk(x0, v) ≤ 0, k ∈ Li (17)
dfi(x0, v) < 0 (18)
dgj(x0, v) ≤ 0, j ∈ I(x0) (19)

has no solution v ∈ Rn.
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Proof. Suppose to the contrary that there exists v ∈ Rn such that (17)–
(19) hold. Obviously, v �= 0. Thus, we have 0 �= v ∈ H (W (x0);x0). Using
Assumption (A1), we have v ∈ clco T

(
W i(x0);x0

)
. Therefore, there exists a

sequence {vs} ⊆ T
(
W i(x0);x0

)
such that

lim
s→∞ vs = v (20)

For any vs, s = 1, 2, . . . , there exist numbers ks, λsr ≥ 0, and vsr ∈
T
(
W i(x0);x0

)
, r = 1, 2, . . . , ks, such that

ks∑
r=1

λsr = 1,
ks∑

r=1

λsrvsr = vs (21)

Since vsr ∈ T
(
W i(x0);x0

)
, by definition, there exist sequences {xm

sr} ⊆
W i(x0) and {tmsr} ⊆ R, tmsr > 0 for all n, such that, for any s and r,

lim
m→∞xm

sr = x0, lim
m→∞ tmsr(x

m
sr − x0) = vsr (22)

Let us denote vm
sr = tmsr(x

m
sr − x0). Similarly to the corresponding part of the

proof in Lemma 1, we know that 1
tm
sr
→ 0 as m→∞. Then for any sufficiently

large m, we have

gj

(
x0 +

1
tmsr

vm
sr

)
= gj(xm

sr) ≤ 0 = gj(x0), j ∈ I(x0), (23)

fk

(
x0 +

1
tmsr

vm
sr

)
= fk(xm

sr) ≤ fk(x0), k ∈ Li. (24)

and

fi

(
x0 +

1
tmsr

vm
sr

)
= fi(xm

sr) ≥ fi(x0), (25)

since x0 is an efficient solution to Problem (VOP). Using (22)–(25), by defin-
ition of Hadamard derivative, we can have

dgj(x0, vsr) ≤ 0, j ∈ I(x0), (26)
dfk(x0, vsr) ≤ 0, k ∈ Li, (27)
dfi(x0, vsr) ≥ 0. (28)

From this system, (20), (21) and Assumptions (A2), (A3), it follows that

dgj(x0, v) ≤ 0, j ∈ I(x0),
dfk(x0, v) ≤ 0, k ∈ Li,

dfi(x0, v) ≥ 0.

This contradicts the system (17)–(19). �
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Theorem 6. Suppose that the assumptions of Theorem 5 hold. Then, there
exist vectors λ ∈ Rl and µ ∈ Rq such that, for any v ∈ Rn,

λT df(x0, v) + µT dg(x0, v) � 0 (29)
µT g(x0) = 0 (30)
λ = (λ1, . . . , λl)T > 0, µ = (µ1, . . . , µq)T � 0 (31)

Proof. The proof is similar to that of Theorem 3.2 in [23]. �

Remark 1. It is easy to check that if f is Hadamard differentiable then f is
also directional differentiable at x0, but, we do not need the assumption that
f and g are quasiconvex at x0 of [23].

Theorem 7. Suppose that the assumptions of Theorem 5 hold, and suppose
that dfi(x0, v) = f◦i (x0; v) and dgj(x0, v) = g◦j (x0; v) for all i ∈ L, j ∈ I(x0).
Then, there exist vectors λ ∈ Rl and µ ∈ Rq such that

0 ∈ λT∂◦f(x0) + µT∂◦g(x0)
µT g(x0) = 0,
λ = (λ1, . . . , λl)T > 0, µ = (µ1, . . . , µq)T � 0.

Proof. By Theorem 6, we have

λT f◦(x0, v) + µT g◦(x0, v) ≥ 0, (32)

for all v ∈ Rn. If fi, gj are Hadamard differentiable, then they are directional
differentiable at x0, and

f◦i (x0; v) = dfi(x0, v) = f ′i(x0, v),

g◦j (x0; v) = dgj(x0, v) = g′j(x0, v),

Thus, fi and gj are regular for all i ∈ L and j ∈ I(x0). By assumption, for
any v ∈ Rn, we have

0 ≤ λT f◦(x0, v) + µT g◦(x0, v) =
(
λT f + µT g

)◦
(x0, v),

or

0T v ≤
(
λT f + µT g

)◦
(x0, v).

So, according to the definition of Clarke’s generalized gradient, we have

0 ∈ λT∂◦f(x0) + µT∂◦g(x0).

�
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5 General Mixed Mond-Weir Type Dual

Duality theory plays a central role in mathematical programming. In this
section, we introduce a general mixed Mond-Weir dual program of Problem
(VOD) and establish the corresponding dual theorems under the generalized
convexity assumptions. However, in order to derive strong duality result, we
use the constraint qualification discussed in the previous section. Weakening
the assumptions of constraint qualification would be helpful to establish more
general strong duality result.

Let M0, M1, . . . ,Mr be a partition of Q, i.e.,
r⋃

k=0

Mk = Q, Mk1

⋂
Mk2 =

∅ for k1 �= k2. Let el be the vector of Rl whose components are all ones.
Motivated by [3, 16, 9], we define the following general mixed Mond-Weir
dual of (VOP).

(VOD) max f(y) + µM0
T gM0(y)el

s.t. 0 ∈
l∑

i=1

λi∂fi(y) +
r∑

k=0

∂
(
µT

Mk
gMk

)
(y), (33)

hk(y) �
(
µMk

T gMk

)
(y) ≥ 0, k = 1, 2, . . . , r,

l∑
i=1

λi = 1, λi > 0 (i = 1, 2, . . . , l), λ = (λ1, . . . , λl)T ,

µ = (µ1, µ2, . . . , µq)T ∈ R
q
+, y ∈ Rn, µMk

∈ R
|Mk|
+ .

Theorem 8 (Weak Duality). Let x0 be a feasible solution of (VOP), (y0, λ̄,
µ̄) be a feasible solution of (VOD) and h0(y) � µ̄T

M0
gM0(y). Let us use the fol-

lowing notations: h(y) = (h1(y), . . . , hr(y)). Suppose that any of the following
holds:
(a)

(
f + µ̄T

M0
gM0el, h

)
is (C,α, ρ, d)-type I at y0, fi (i = 1, . . . , l) and h0 are

regular at y0 and

λ̄T ρ
1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

≥ 0, (34)

(b)
(
f + µ̄T

M0
gM0el, h

)
is strong pseudoquasi (C,α, ρ, d)-type I at y0, fi (i =

1, · · · , l) and h0 are regular at y0 and (34) is true
(c) (λ̄T f + µ̄T

M0
gM0 ,

∑r
k=1 µ

T
Mk
gMk

) is pseudoquasi (C,α, ρ, d)-type I at y0, fi

(i = 1, · · · , p) and hk (k = 0, 1, . . . , r) are regular at y0 and

ρ1d1(x0, y0)
α1(x0, y0)

+
ρ2d2(x0, y0)
α2(x0, y0)

≥ 0.

Then the following cannot hold.

f(x0) � f(y0) + µ̄T
M0
gM0(y0)el. (35)
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Proof. Here we give the proofs of (a) and (b) since (c) can be proven similarly.
Suppose to the contrary that (35) holds. Since x0 is feasible for (VOP) and
µ̄ � 0, (35) implies that

f(x0) + µ̄T
M0
gM0(x0)el � f(y0) + µ̄T

M0
gM0(y0)el (36)

holds.

(a) By (35), (36) and the hypothesis (a), we can write the following state-
ment for any ξ̄i ∈ ∂fi(y0) and η̄k ∈ ∂hk(y0).

l∑
i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)

� C(x0,y0)

(
1
τ̄

(λ̄T ξ̄ + eT
r+1η̄)

)
+

1
τ̄

(
λ̄T ρ

1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

)
,

where τ̄ = r + 2. From (33), (34) and the above inequality, it follows that
l∑

i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)
≥ 0 (37)

Since (y0, λ̄, µ̄) is a feasible solution of (VOD), it follows that −h(y0) � 0.
Therefore, by (36), we have

l∑
i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)
< 0,

which is a contradiction to (37).
(b) By (36), −h(y0) � 0, the hypothesis (b) and the convexity of C, we
obtain

C(x0,y0)

(
1
τ̄

(λ̄T ξ̄ + eT
r+1η̄)

)
+

1
τ̄

(
λ̄T ρ

1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

)
< 0.

Therefore, C(x0,y0)

(
1
τ̄ (λ̄T ξ̄ + eT

r+1η̄)
)
< 0, which is a contradiction to (33).

�
Theorem 9 (Strong Duality). Let the assumptions of Theorem 7 be sat-
isfied. If x0 ∈ S is an efficient solution of (VOP), then there exist λ̄ ∈ Rl,
µ̄ ∈ Rq such that (x0, λ̄, µ̄) is a feasible solution of (VOD) and the objective
function values of (VOP) and (VOD) at the corresponding points are equal.
Furthermore if the assumptions about the generalized convexity and the in-
equality (34) in Theorem 8 are also satisfied, then (x0, λ̄, µ̄) is an efficient
solution of (VOD).

Proof. By Theorem 7, it is obvious that (x0, λ̄, µ̄) is a feasible solution of
(VOD). Moreover the objective function values of (VOP) and (VOD) at the
corresponding points are equal since the objective functions are the same.
Therefore (x0, λ̄, µ̄) is an efficient point of (VOD) due to the weak duality
result in Theorem 8. �
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6 Conclusions and Future Work

In this chapter we have defined some generalized convex functions. For math-
ematical programming problems with such functions, we have established suf-
ficient optimality conditions for nonconvex nondifferentiable multiobjective
programming problems with the generalized convex functions. We have also
introduced a general mixed Mond-Weir type dual program of a multiobjective
program and proved a weak duality theorem under the generalized convexity
assumptions. Therefore, a strong duality theorem has been proved using a
constraint qualification, which was derived after relaxing some assumptions
of the constraint qualfication in [23] in terms of the Hadamard derivative, for
nondifferentiable multiobjective programming. Weakening the assumptions of
constraint qualification would be helpful to establish more general strong du-
ality result. The chapter mainly focuses on theoretical aspects of the gener-
alized convexity. We have not discussed any applications. Future work will
include the solutions of real world engineering problems associated with the
generalized convexities.
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