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Preface

In mathematics generalization is one of the main activities of researchers. It
opens up new theoretical horizons and broadens the fields of applications.
Intensive study of generalized convex objects began about three decades ago
when the theory of convex analysis nearly reached its perfect stage of develop-
ment with the pioneering contributions of Fenchel, Moreau, Rockafellar and
others. The involvement of a number of scholars in the study of generalized
convex functions and generalized monotone operators in recent years is due
to the quest for more general techniques that are able to describe and treat
models of the real world in which convexity and monotonicity are relaxed.
Ideas and methods of generalized convexity are now within reach not only
in mathematics, but also in economics, engineering, mechanics, finance and
other applied sciences.

This volume of referred papers, carefully selected from the contributions
delivered at the 8th International Symposium on Generalized Convexity and
Monotonicity (Varese, 4-8 July, 2005), offers a global picture of current trends
of research in generalized convexity and generalized monotonicity. It begins
with three invited lectures by Konnov, Levin and Pardalos on numerical varia-
tional analysis, mathematical economics and invexity, respectively. Then come
twenty four full length papers on new achievements in both the theory of the
field and its applications. The diapason of the topics tackled in these contri-
butions is very large. It encompasses, in particular, variational inequalities,
equilibrium problems, game theory, optimization, control, numerical meth-
ods in solving multiobjective optimization problems, consumer preferences,
discrete convexity and many others.

The volume is a fruit of intensive work of more than hundred specialists
all over the world who participated at the latest symposium organized by
the Working Group on Generalized Convexity (WGGC) and hosted by the
Insubria University. This is the 6th proceedings edited by WGGC, an inter-
disciplinary research community of more than 300 members from 36 coun-
tries (http://www.gencov.org). We hope that it will be useful for students,
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researchers and practitioners working in applied mathematics and related ar-
eas.

Acknowledgement. We wish to thank all the authors for their contri-
butions, and all the referees whose hard work was indispensable for us to
maintain the scientific quality of the volume and greatly reduce the publica-
tion delay. Special thanks go to the Insubria University for the organizational
and financial support of the symposium which has contributed greatly to the
success of the meeting and its outcome in the form of the present volume.

Kazan, Avignon and Ballarat I.V. Konnov
August 2006 D.T. Luc

A.M. Rubinov
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Combined Relaxation Methods for Generalized
Monotone Variational Inequalities

Igor V. Konnov

Department of Applied Mathematics, Kazan University, Kazan, Russia
ikonnov@ksu.ru

Summary. The paper is devoted to the combined relaxation approach to construct-
ing solution methods for variational inequalities. We describe the basic idea of this
approach and implementable methods both for single-valued and for multi-valued
problems. All the combined relaxation methods are convergent under very mild as-
sumptions. This is the case if there exists a solution to the dual formulation of
the variational inequality problem. In general, these methods attain a linear rate of
convergence. Several classes of applications are also described.

Key words: Variational inequalities, generalized monotone mappings, com-
bined relaxation methods, convergence, classes of applications.

1 Introduction

Variational inequalities proved to be a very useful and powerful tool for in-
vestigation and solution of many equilibrium type problems in Economics,
Engineering, Operations Research and Mathematical Physics. The paper is
devoted to a new general approach to constructing solution methods for vari-
ational inequalities, which was proposed in [17] and called the combined re-
laxation (CR) approach since it combines and generalizes ideas contained
in various relaxation methods. Since then, it was developed in several direc-
tions and many works on CR methods were published including the book [29].
The main goal of this paper is to give a simple and clear description of the
current state of this approach, its relationships with the known relaxation
methods, and its abilities in solving variational inequalities with making an
emphasis on generalized monotone problems. Due to the space limitations, we
restrict ourselves with simplified versions of the methods, remove some proofs,
comparisons with other methods, and results of numerical experiments. Any
interested reader can find them in the references.

We first describe the main idea of relaxation and combined relaxation
methods.



4 I.V. Konnov

1.1 Relaxation Methods

Let us suppose we have to find a point of a convex set X∗ defined implicitly in
the n-dimensional Euclidean space Rn. That is, X∗ may be a solution set of
some problem. One of possible ways of approximating a point of X∗ consists
in generating an iteration sequence {xk} in conformity with the following rule:

• The next iterate xk+1 is the projection of the current iterate xk onto a
hyperplane separating strictly xk and the set X∗.

Then the process will possess the relaxation property:

• The distances from the next iterate to each point of X∗ cannot increase in
comparison with the distances from the current iterate.

This property is also called Fejer-monotonicity. It follows that the sequence
{xk} is bounded, hence, it has limit points. Moreover, due to the above relax-
ation property, if there exists a limit point of {xk} which belongs to X∗, the
whole sequence {xk} converges to this point. These convergence properties
seem very strong. We now discuss possible ways of implementation of this
idea.

��
��

xk��� �
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�
�
�
�
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�
��

xk+1�
Hk

�����

�
�
�
�
�
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Hk+1

�xk+2
X∗

Fig. 1. The relaxation process

First we note that the separating hyperplane Hk is determined completely
by its normal vector gk and a distance parameter ωk, i.e.

Hk = {x ∈ Rn | 〈gk, xk − x〉 = ωk}.

The hyperplane Hk is strictly separating if

〈gk, xk − x∗〉 ≥ ωk > 0 ∀x∗ ∈ X∗. (1)

It also means that the half-space
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{x ∈ Rn | 〈gk, xk − x〉 ≥ ωk}

contains the solution set X∗ and represents the image of this set at the current
iterate. Then the process is defined by the explicit formula:

xk+1 = xk − (ωk/‖gk‖2)gk, (2)

and the easy calculation confirms the above relaxation property:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (ωk/‖gk‖)2 ∀x∗ ∈ X∗;

see Fig. 1. However, (1) does not ensure convergence of this process in general.
We say that the rule of determining a separating hyperplane is regular, if the
correspondence xk �→ ωk possesses the property:

(ωk/‖gk‖) → 0 implies x∗ ∈ X∗

for at least one limit point x∗ of {xk}.
• The above relaxation process with a regular rule of determining a separating

hyperplane ensures convergence to a point of X∗.

There exist a great number of algorithms based on this idea. For linear equa-
tions such relaxation processes were first suggested by S. Kaczmarz [12] and
G. Cimmino [7]. Their extensions for linear inequalities were first proposed by
S. Agmon [1] and by T.S. Motzkin and I.J. Schoenberg [35]. The relaxation
method for convex inequalities is due to I.I. Eremin [8]. A modification of this
process for the problem of minimizing a convex function f : Rn → R with
the prescribed minimal value f∗ is due to B.T. Polyak [40]. Without loss of
generality we can suppose that f∗ = 0. The solution is found by the following
gradient process

xk+1 = xk − (f(xk)/‖∇f(xk)‖2)∇f(xk), (3)

which is clearly an implementation of process (2) with gk = ∇f(xk) and
ωk = f(xk), since (1) follows from the convexity of f :

〈∇f(xk), xk − x∗〉 ≥ f(xk) > 0 ∀x∗ ∈ X∗ (4)

for each non-optimal point xk. Moreover, by continuity of f , the rule of de-
termining a separating hyperplane is regular. Therefore, process (3) generates
a sequence {xk} converging to a solution. Note that process (3) can be also
viewed as an extension of the Newton method. Indeed, the next iterate xk+1

also solves the linearized problem

f(xk) + 〈∇f(xk), x− xk〉 = 0,

and, in case n = 1, we obtain the usual Newton method for the nonlinear
equation f(x∗) = 0; see Fig. 2. This process can be clearly extended for
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Fig. 2. The Newton method

the non-differentiable case. It suffices to replace ∇f(xk) with an arbitrary
subgradient gk of the function f at xk. Afterwards, it was noticed that the
process (3) (hence (2)) admits the additional relaxation parameter γ ∈ (0, 2):

xk+1 = xk − γ(ωk/‖gk‖2)gk,

which corresponds to the projection of xk onto the shifted hyperplane

Hk(γ) = {x ∈ Rn | 〈gk, xk − x〉 = γωk}. (5)

1.2 Combined Relaxation Methods

We now intend to describe the implementation of the relaxation idea in solu-
tion methods for variational inequality problems with (generalized) monotone
mappings. We begin our considerations from variational inequalities with
single-valued mappings.

Let X be a nonempty, closed and convex subset of the space Rn, G :
X → Rn a continuous mapping. The variational inequality problem (VI) is
the problem of finding a point x∗ ∈ X such that

〈G(x∗), x− x∗〉 ≥ 0 ∀x ∈ X. (6)

We denote by X∗ the solution set of problem (6). Now we recall definitions of
monotonicity type properties.

Definition 1. Let Y be a convex set in Rn. A mapping Q : Y → Rn is said
to be

(a) strongly monotone if there exists a scalar τ > 0 such that
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〈Q(x)−Q(y), x− y〉 ≥ τ‖x− y‖2 ∀x, y ∈ Y ;

(b) strictly monotone if

〈Q(x)−Q(y), x− y〉 > 0 ∀x, y ∈ Y, x �= y;

(c) monotone if

〈Q(x)−Q(y), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(d) pseudomonotone if

〈Q(y), x− y〉 ≥ 0 =⇒ 〈Q(x), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(e) quasimonotone if

〈Q(y), x− y〉 > 0 =⇒ 〈Q(x), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(f) strongly pseudomonotone if there exists a scalar τ > 0 such that

〈Q(y), x− y〉 ≥ 0 =⇒ 〈Q(x), x− y〉 ≥ τ‖x− y‖2 ∀x, y ∈ Y.

It follows from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) and (a) =⇒ (f) =⇒ (d).

All the reverse assertions are not true in general.
First of all we note that the streamlined extension of the above method

does not work even for general monotone (but non strictly monotone) map-
pings. This assertion stems from the fact that one cannot compute the normal
vector gk of a hyperplane separating strictly the current iterate xk and the
set X∗ by using only information at the point xk under these conditions, as
the following simple example illustrates.

Example 1. Set X = Rn, G(x) = Ax with A being an n × n skew-symmetric
matrix. Then G is monotone, X∗ = {0}, but for any x /∈ X∗ we have

〈G(x), x− x∗〉 = 〈Ax, x〉 = 0,

i.e., the angle between G(xk) and xk − x∗ with x∗ ∈ X∗ need not be acute
(cf.(4)).

Thus, all the previous methods, which rely on the information at the current
iterate, are single-level ones and cannot be directly applied to variational
inequalities. Nevertheless, we are able to suggest a general relaxation method
with the basic property that the distances from the next iterate to each point
of X∗ cannot increase in comparison with the distances from the current
iterate.

The new approach, which is called the combined relaxation (CR) approach,
is based on the following principles.
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• The algorithm has a two-level structure.
• The algorithm involves an auxiliary procedure for computing the hyper-

plane separating strictly the current iterate and the solution set.
• The main iteration consists in computing the projection onto this (or

shifted) hyperplane with possible additional projection type operations
in the presence of the feasible set.

• An iteration of most descent methods can serve as a basis for the auxiliary
procedure with a regular rule of determining a separating hyperplane.

• There are a number of rules for choosing the parameters of both the levels.

This approach for variational inequalities and its basic principles were first
proposed in [17], together with several implementable algorithms within the
CR framework. Of course, it is possible to replace the half-space containing the
solution set by some other “regular” sets such as an ellipsoid or a polyhedron,
but the implementation issues and preferences of these modifications need
thorough investigations.

It turned out that the CR framework is rather flexible and allows one to
construct methods both for single-valued and for multi-valued VIs, including
nonlinearly constrained problems. The other essential feature of all the CR
methods is that they are convergent under very mild assumptions, especially
in comparison with the methods whose iterations are used in the auxiliary
procedure. In fact, this is the case if there exists a solution to the dual for-
mulation of the variational inequality problem. This property enables one to
apply these methods for generalized monotone VIs and their extensions.

We recall that the solution of VI (6) is closely related with that of the
following problem of finding x∗ ∈ X such that

〈G(x), x− x∗〉 ≥ 0 ∀x ∈ X. (7)

Problem (7) may be termed as the dual formulation of VI (DVI), but is also
called the Minty variational inequality. We denote by Xd the solution set of
problem (7). The relationships between solution sets of VI and DVI are given
in the known Minty Lemma.

Proposition 1. [34, 13]
(i) Xd is convex and closed.
(ii) Xd ⊆ X∗.
(iii) If G is pseudomonotone, X∗ ⊆ Xd.

The existence of solutions of DVI plays a crucial role in constructing CR
methods for VI; see [29]. Observe that pseudomonotonicity and continuity
of G imply X∗ = Xd, hence solvability of DVI (7) follows from the usual
existence results for VI (6). This result can be somewhat strengthened for
explicit quasimonotone and properly quasimonotone mappings, but, in the
quasimonotone case, problem (7) may have no solutions even on the compact
convex feasible sets. However, we can give an example of solvable DVI (7)
with the underlying mapping G which is not quasimonotone; see [11] and [29]
for more details.
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2 Implementable CR Methods for Variational
Inequalities

We now consider implementable algorithms within the CR framework for solv-
ing VIs with continuous single-valued mappings. For the sake of clarity, we
describe simplified versions of the algorithms.

2.1 Projection-based Implementable CR Method

The blanket assumptions are the following.

• X is a nonempty, closed and convex subset of Rn;
• Y is a closed convex subset of Rn such that X ⊆ Y ;
• G : Y → Rn is a continuous mapping;
• Xd �= ∅.

The first implementable algorithms within the CR framework for VIs un-
der similar conditions were proposed in [17]. They involved auxiliary proce-
dures for finding the strictly separating hyperplanes, which were based on
an iteration of the projection method, the Frank-Wolfe type method, and
the symmetric Newton method. The simplest of them is the projection-based
procedure which leads to the following method.

Method 1.1. Step 0 (Initialization): Choose a point x0 ∈ X and numbers
α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2). Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Solve the auxiliary VI of finding zk ∈ X such that

〈G(xk) + zk − xk, y − zk〉 ≥ 0 ∀y ∈ X, (8)

and set pk := zk − xk. If pk = 0, stop.
Step 1.2: Determine m as the smallest number in Z+ such that

〈G(xk + βmpk), pk〉 ≤ α〈G(xk), pk〉, (9)

set θk := βm, yk := xk + θkp
k. If G(yk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(yk), ωk := 〈gk, xk − yk〉, xk+1 := πX [xk − γ(ωk/‖gk‖2)gk], (10)

k := k + 1 and go to Step 1.

Here and below Z+ denotes the set of non-negative integers and πX [·] denotes
the projection mapping onto X.

According to the description, the method finds a solution to VI in the case
of its finite termination. Therefore, in what follows we shall consider only the
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case of the infinite sequence {xk}. Observe that the auxiliary procedure in
fact represents a simple projection iteration, i.e.

zk = πX [xk −G(xk)],

and is used for finding a point yk ∈ X such that

ωk = 〈gk, xk − yk〉 > 0

when xk /∈ X∗. In fact, (8)–(10) imply that

ωk = 〈G(yk), xk − yk〉 = θk〈G(yk), xk − zk〉
≥ αθk〈G(xk), xk − zk〉 ≥ αθk‖xk − zk‖2.

The point yk is computed via the simple Armijo-Goldstein type linesearch pro-
cedure that does not require a priori information about the original problem
(6). In particular, it does not use the Lipschitz constant for G.

The basic property together with (7) then implies that

〈gk, xk − x∗〉 ≥ ωk > 0 if xk /∈ Xd.

In other words, we obtain (1) where the normal vector gk and the distance
parameter ωk > 0 determine the separating hyperplane. We conclude that,
under the blanket assumptions, the iteration sequence {xk} in Method 1.1
satisfies the following conditions:

xk+1 := πX(x̃k+1), x̃k+1 := xk − γ(ωk/‖gk‖2)gk, γ ∈ (0, 2),
〈gk, xk − x∗〉 ≥ ωk ≥ 0 ∀x∗ ∈ Xd; (11)

therefore x̃k+1 is the projection of xk onto the shifted hyperplane

Hk(γ) = {y ∈ Rn | 〈gk, xk − y〉 = γωk},

(see (5)) and Hk(1) separates xk and Xd. Observe that Hk(γ), generally
speaking, does not possess this property, nevertheless, the distance from x̃k+1

to each point ofXd cannot increase and the same assertion is true for xk+1 due
to the projection properties because Xd ⊆ X. We now give the key property
of the above process.

Lemma 1. If (11) is fulfilled, then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ(2− γ)(ωk/‖gk‖)2 ∀x∗ ∈ Xd. (12)

Proof. Take any x∗ ∈ Xd. By (11) and the projection properties, we have

‖xk+1 − x∗‖2 ≤ ‖x̃k+1 − x∗‖2 = ‖xk − x∗‖2

−2γ(ωk/‖gk‖2)〈gk, xk − x∗〉+ (γωk/‖gk‖)2

≤ ‖xk − x∗‖2 − 2γ(2− γ)(ωk/‖gk‖)2,

i.e. (12) is fulfilled, as desired.

The following assertions follow immediately from (12).
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Lemma 2. Let a sequence {xk} satisfy (11). Then:
(i) {xk} is bounded.

(ii)
∞∑

k=0

(ωk/‖gk‖)2 <∞.

(iii) For each limit point x∗ of {xk} such that x∗ ∈ Xd we have

lim
k→∞

xk = x∗.

Note that the sequence {xk} has limit points due to (i). Thus, it suffices to
show that the auxiliary procedure in Method 1.1 represents a regular rule of
determining a separating hyperplane. Then we obtain the convergence of the
method. The proof is omitted since the assertion follows from more general
Theorem 2.

Theorem 1. Let a sequence {xk} be generated by Method 1.1. Then:
(i) There exists a limit point x∗ of {xk} which lies in X∗.
(ii) If

X∗ = Xd, (13)

we have
lim

k→∞
xk = x∗ ∈ X∗.

2.2 General CR Methods and Their Modifications

The basic principles of the CR approach claim that an iteration of most de-
scent methods can serve as a basis for the auxiliary procedure with a regular
rule of determining a separating hyperplane and that there are a number of
rules for choosing the parameters of both the levels. Following these princi-
ples, we now indicate ways of creating various classes of CR methods for VI
(6).

First we extend the projection mapping in (10).

Definition 2. LetW be a nonempty, convex, and closed set in Rn. A mapping
P : Rn → Rn is said to be a pseudo-projection onto W , if for every x ∈ Rn, it
holds that

P (x) ∈W and ‖P (x)− w‖ ≤ ‖x− w‖ ∀w ∈W.

We denote by F(W ) the class of all pseudo-projection mappings onto W .
Clearly, we can take the projection mapping πW (·) as P ∈ F(W ). The prop-
erties indicated show that the projection mapping in (10) and (11) can be
replaced with the pseudo-projection P ∈ F(X). Then the assertion of Lemma
1 remains true and so are those of Lemma 2 and Theorem 1. If the definition
of the set X includes functional constraints, then the projection onto X can-
not be found by a finite procedure. Nevertheless, in that case there exist finite
procedures of computation of values of pseudo-projection mappings; see [29]
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for more details. It means that the use of pseudo-projections may give certain
preferences.

Next, Method 1.1 involves the simplest projection-based auxiliary pro-
cedure for determining a separating hyperplane. However, we can use more
general iterations, which can be viewed as solutions of auxiliary problems ap-
proximating the initial problem at the current point xk. In general, we can
replace (8) with the problem of finding a point zk ∈ X such that

〈G(xk) + λ−1Tk(xk, zk), y − zk〉 ≥ 0 ∀y ∈ X, (14)

where λ > 0, the family of mappings {Tk : Y × Y → Rn} such that, for each
k = 0, 1, . . .,

(A1) Tk(x, ·) is strongly monotone with constant τ ′ > 0 and Lipschitz
continuous with constant τ ′′ > 0 for every x ∈ Y , and Tk(x, x) = 0 for every
x ∈ Y .

The basic properties of problem (14) are given in the next lemma.

Lemma 3. (i) Problem (14) has a unique solution.
(ii) It holds that

〈G(xk), xk − zk〉 ≥ λ−1〈Tk(xk, zk), zk − xk〉 ≥ λ−1τ ′‖zk − xk‖2. (15)

(iii) xk = zk if and only if xk ∈ X∗.

Proof. Assertion (i) follows directly from strong monotonicity and continuity
of Tk(x, ·). Next, using (A1) in (14) with y = xk, we have

〈G(xk), xk − zk〉 ≥ λ−1〈Tk(xk, zk), zk − xk〉
= λ−1〈Tk(xk, zk)− Tk(xk, xk), zk − xk〉 ≥ λ−1τ ′‖zk − xk‖2,

hence (15) holds, too. To prove (iii), note that setting zk = xk in (14) yields
xk ∈ X∗. Suppose now that xk ∈ X∗ but zk �= xk. Then, by (15),

〈G(xk), zk − xk〉 ≤ −λ−1τ ′‖zk − xk‖2 < 0,

so that xk /∈ X∗. By contradiction, we see that assertion (iii) is also true.

There exist a great number of variants of the sequences {Tk} satisfying
(A1). Nevertheless, it is desirable that there exist an effective algorithm for
solving problem (14). For instance, we can choose

Tk(x, z) = Ak(z − x) (16)

where Ak is an n × n positive definite matrix. The simplest choice Ak ≡ I
in (16) leads to the projection method and has been presented in Method
1.1. Then problem (14) becomes much simpler than the initial VI. Indeed, it
coincides with a system of linear equations when X = Rn or with a linear
complementarity problem when X = Rn

+ and, also, reduces to LCP when X
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is a convex polyhedron. It is well-known that such problems can be solved by
finite algorithms.

On the other hand, we can choose Ak (or ∇zTk(xk, zk)) as a suitable
approximation of ∇G(xk). Obviously, if ∇G(xk) is positive definite, we can
simply chooseAk = ∇G(uk). Then problem (14), (16) yields an iteration of the
Newton method. Moreover, we can follow the Levenberg–Marquardt approach
or make use of an appropriate quasi-Newton update. These techniques are
applicable even if ∇G(xk) is not positive definite. Thus, the problem (14) in
fact represents a very general class of solution methods.

We now describe a general CR method for VI (6) converging to a solution
under the blanket assumptions; see [21]. Observe that most of the methods
whose iterations are used as a basis for the auxiliary procedure do not provide
convergence even under the monotonicity. In fact, they need either G be co-
coercive or strictly monotone or its Jacobian be symmetric, etc.

Method 1.2. Step 0 (Initialization): Choose a point x0 ∈ X, a family of
mappings {Tk} satisfying (A1) with Y = X and a sequence of mappings
{Pk}, where Pk ∈ F(X) for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1),
γ ∈ (0, 2), λ > 0. Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Solve the auxiliary VI (14) of finding zk ∈ X and set

pk := zk − xk. If pk = 0, stop.
Step 1.2: Determine m as the smallest number in Z+ such that

〈G(xk + βmpk), pk〉 ≤ α〈G(xk), pk〉, (17)

set θk := βm, yk := xk + θkp
k. If G(yk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(yk), ωk := 〈G(yk), xk − yk〉, xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

We first show that Method 1.2 is well-defined and that it follows the CR
framework.

Lemma 4. (i) The linesearch procedure in Step 1.2 is always finite.
(ii) It holds that

〈gk, xk − x∗〉 ≥ ωk > 0 if xk /∈ Xd. (18)

Proof. If we suppose that the linesearch procedure is infinite, then (17) holds
for m→∞, hence, by continuity of G,

(1− α)〈G(xk), zk − xk〉 ≤ 0.

Applying this inequality in (15) gives xk = zk, which contradicts the con-
struction of the method. Hence, (i) is true.
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Next, by using (15) and (17), we have

〈gk, xk − x∗〉 = 〈G(yk), xk − yk〉+ 〈G(yk), yk − x∗〉
≥ ωk = θk〈G(yk), xk − zk〉 ≥ αθk〈G(xk), xk − zk〉 (19)
≥ αθkλ

−1τ ′‖xk − zk‖2,

i.e. (18) is also true.

Thus the described method follows slightly modified rules in (11), where
πX(·) is replaced by Pk ∈ F(X). It has been noticed that the assertions of
Lemmas 1 and 2 then remain valid. Therefore, Method 1.2 will have the same
convergence properties.

Theorem 2. Let a sequence {xk} be generated by Method 1.2. Then:
(i) If the method terminates at Step 1.1 (Step 1.2) of the kth iteration,

xk ∈ X∗ (yk ∈ X∗).
(ii) If {xk} is infinite, there exists a limit point x∗ of {xk} which lies in

X∗.
(iii) If {xk} is infinite and (13) holds, we have

lim
k→∞

xk = x∗ ∈ X∗.

Proof. Assertion (i) is obviously true due to the stopping rule and Lemma 3
(iii). We now proceed to prove (ii). By Lemma 2 (ii), {xk} is bounded, hence
so are {zk} and {yk} because of (15). Let us consider two possible cases.
Case 1: limk→∞ θk = 0.
Set ỹk = xk + (θk/β)pk, then 〈G(ỹk), pk〉 > α〈G(xk), pk〉. Select convergent
subsequences {xkq} → x′ and {zkq} → z′, then {ỹkq} → x′ since {xk} and
{zk} are bounded. By continuity, we have

(1− α)〈G(x′), z′ − x′〉 ≥ 0,

but taking the same limit in (15) gives

〈G(x′), x′ − z′〉 ≥ λ−1τ ′‖z′ − x‖2,

i.e., x′ = z′ and (14) now yields

〈G(x′), y − x′〉 ≥ 0 ∀y ∈ X, (20)

i.e., x′ ∈ X∗.
Case 2: lim supk→∞ θk ≥ θ̃ > 0.
It means that there exists a subsequence {θkq

} such that θkq
≥ θ̃ > 0. Com-

bining this property with Lemma 2 (ii) and (19) gives

lim
q→∞ ‖x

kq − zkq‖ = 0.
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Without loss of generality we can suppose that {xkq} → x′ and {zkq} → z′,
then x′ = z′. Again, taking the corresponding limit in (14) yields (20), i.e.
x′ ∈ X∗.

Therefore, assertion (ii) is true. Assertion (iii) follows from Lemma 2 (iii).

In Step 1 of Method 1.2, we first solve the auxiliary problem (14) and
afterwards find the stepsize along the ray xk +θ(zk−xk). Replacing the order
of these steps, which corresponds to the other version of the projection method
in the simplest case, we can also determine the separating hyperplane and thus
obtain another CR method with involves a modified linesearch procedure; see
[22]. Its convergence properties are the same as those of Method 1.2.

We now describe another CR method which uses both a modified linesearch
procedure and a different rule of computing the descent direction, i.e. the rule
of determining the separating hyperplane; see [24].

Method 1.3. Step 0 (Initialization): Choose a point x0 ∈ Y , a family of
mappings {Tk} satisfying (A1), and choose a sequence of mappings {Pk},
where Pk ∈ F(Y ), for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1),
γ ∈ (0, 2), θ̃ > 0. Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Find m as the smallest number in Z+ such that

〈G(xk)−G(zk,m), xk − zk,m〉 ≤ (1− α)(θ̃βm)−1〈Tk(xk, zk,m), zk,m − xk〉,

where zk,m ∈ X is a solution of the auxiliary problem:

〈G(xk) + (θ̃βm)−1Tk(xk, zk,m), y − zk,m〉 ≥ 0 ∀y ∈ X.

Step 1.2: Set θk := βmθ̃, yk := zk,m. If xk = yk or G(yk) = 0, stop.
Step 2 (Main iteration): Set

gk := G(yk)−G(xk)− θ−1
k Tk(xk, yk),

ωk := 〈gk, xk − yk〉,
xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

In this method, gk and ωk > 0 are also the normal vector and the distance
parameter of the separating hyperplane Hk(1) (see (5)). Moreover, the rule of
determining a separating hyperplane is regular. Therefore, the process gener-
ates a sequence {xk} converging to a solution. The substantiation is similar
to that of the previous method and is a modification of that in [29, Section
1.4]. For this reason, the proof is omitted.

Theorem 3. Let a sequence {xk} be generated by Method 1.3. Then:
(i) If the method terminates at the kth iteration, yk ∈ X∗.
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(ii) If {xk} is infinite, there exists a limit point x∗ of {xk} which lies in
X∗.

(iii) If {xk} is infinite and (13) holds, we have

lim
k→∞

xk = x∗ ∈ X∗.

The essential feature of this method, unlike the previous methods, is that
it involves the pseudo-projection onto Y rather than X. Hence one can simply
set Pk to be the identity map if Y = Rn and the iteration sequence {xk} may
be infeasible.

The convergence properties of all the CR methods are almost the same.
There are slight differences in their convergence rates, which follow mainly
from (12). We illustrate them by presenting some convergence rates of Method
1.3.

Let us consider the following assumption.
(A2) There exist numbers µ > 0 and κ ∈ [0, 1] such for each point x ∈ X,

the following inequality holds:

〈G(x), x− πX∗(x)〉 ≥ µ ‖x− πX∗(x)‖1+κ. (21)

Observe that Assumption (A2) with κ = 1 holds if G is strongly (pseudo)
monotone and that (A2) with κ = 0 represents the so-called sharp solution.

Theorem 4. Let an infinite sequence {xk} be generated by Method 1.3. If G
is a locally Lipschitz continuous mapping and (A2) holds with κ = 1, then
{‖xk − πX∗(xk)‖} converges to zero in a linear rate.

We now give conditions that ensure finite termination of the method.

Theorem 5. Let a sequence {xk} be constructed by Method 1.3. Suppose that
G is a locally Lipschitz continuous mapping and that (A2) holds with κ = 0.
Then the method terminates with a solution.

The proofs of Theorems 4 and 5 are similar to those in [29, Section 1.4]
and are omitted.

Thus, the regular rule of determining a separating hyperplane may be im-
plemented via a great number of various procedures. In particular, an auxiliary
procedure may be based on an iteration of the Frank-Wolfe type method and
is viewed as a “degenerate” version of the problem (14), whereas a CR method
for nonlinearly constrained problems involves an auxiliary procedure based on
an iteration of a feasible direction method. However, the projection and the
proximal point based procedures became the most popular; their survey can
be found e.g. in [48].

3 Variational Inequalities with Multi-valued Mappings

We now consider CR methods for solving VIs which involve multi-valued
mappings (or generalized variational inequalities).
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3.1 Problem Formulation

Let X be a nonempty, closed and convex subset of the space Rn, G : X →
Π(Rn) a multi-valued mapping. The generalized variational inequality problem
(GVI for short) is the problem of finding a point x∗ ∈ X such that

∃g∗ ∈ G(x∗), 〈g∗, x− x∗〉 ≥ 0 ∀x ∈ X. (22)

Similarly to the single-valued case, together with GVI (22), we shall consider
the corresponding dual generalized variational inequality problem (DGVI for
short), which is to find a point x∗ ∈ X such that

∀ x ∈ X and ∀g ∈ G(x) : 〈g, x− x∗〉 ≥ 0 (23)

(cf. (6) and (7)). We denote by X∗ (respectively, by Xd) the solution set of
problem (22) (respectively, problem (23)).

Definition 3. (see [29, Definition 2.1.1]) Let Y be a convex set in Rn. A
multi-valued mapping Q : Y → Π(Rn) is said to be

(a) a K-mapping, if it is upper semicontinuous (u.s.c.) and has nonempty
convex and compact values;

(b) u-hemicontinuous, if for all x ∈ Y , y ∈ Y and α ∈ [0, 1], the mapping
α �→ 〈Q(x+ αz), z〉 with z = y − x is u.s.c. at 0+.

Now we give an extension of the Minty Lemma for the multi-valued case.

Proposition 2. (see e.g. [43, 49])
(i) The set Xd is convex and closed.
(ii) If G is u-hemicontinuous and has nonempty convex and compact val-

ues, then Xd ⊆ X∗.
(iii) If G is pseudomonotone, then X∗ ⊆ Xd.

The existence of solutions to DGVI will also play a crucial role for conver-
gence of CR methods for GVIs. Note that the existence of a solution to (23)
implies that (22) is also solvable under u-hemicontinuity, whereas the reverse
assertion needs generalized monotonicity assumptions. Again, the detailed de-
scription of solvability conditions for (23) under generalized monotonicity may
be found in the books [11] and [29].

3.2 CR Method for the Generalized Variational Inequality
Problem

We now consider a CR method for solving GVI (22) with explicit usage of
constraints (see [18] and [23]). The blanket assumptions of this section are the
following:
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• X is a subset of Rn, which is defined by

X = {x ∈ Rn | h(x) ≤ 0},

where h : Rn → R is a convex, but not necessarily differentiable, function;
• the Slater condition is satisfied, i.e., there exists a point x̄ such that h(x̄) <

0;
• G : X → Π(Rn) is a K-mapping;
• Xd �= ∅.

The method also involves a finite auxiliary procedure for finding the
strictly separating hyperplane with a regular rule. Its basic scheme involves
the control sequences and handles the situation of a null step, where the aux-
iliary procedure yields the zero vector, but the current iterate is not a solution
of VI (22). The null step usually occurs if the current tolerances are too large,
hence they must diminish.

Let us define the mapping Q : Rn → Π(Rn) by

Q(x) =
{
G(x) if h(x) ≤ 0,
∂h(x) if h(x) > 0.

Method 2.1. Step 0 (Initialization): Choose a point x0 ∈ X, bounded positive
sequences {εl} and {ηl}. Also, choose numbers θ ∈ (0, 1), γ ∈ (0, 2), and a
sequence of mappings {Pk}, where Pk ∈ F(X) for k = 0, 1, . . . Set k := 0,
l := 1.

Step 1 (Auxiliary procedure) :
Step 1.1 : Choose q0 from Q(xk), set i := 0, pi := qi, wk,0 := xk.
Step 1.2: If

‖pi‖ ≤ ηl,

set xk+1 := xk, k := k + 1, l := l + 1 and go to Step 1. (null step)
Step 1.3: Set wk,i+1 := wk,0 − εlp

i/‖pi‖, choose qi+1 ∈ Q(wk,i+1). If

〈qi+1, pi〉 > θ‖pi‖2,

then set yk := wk,i+1, gk := qi+1, and go to Step 2. (descent step)
Step 1.4: Set

pi+1 := Nr conv{pi, qi+1}, (24)

i := i+ 1 and go to Step 1.2.
Step 2 (Main iteration): Set ωk := 〈gk, xk − yk〉,

xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

Here NrS denotes the element of S nearest to origin. According to the
description, at each iteration, the auxiliary procedure in Step 1, which is
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a modification of an iteration of the simple relaxation subgradient method
(see [15, 16]), is applied for direction finding. In the case of a null step, the
tolerances εl and ηl decrease since the point uk approximates a solution within
εl, ηl. Hence, the variable l is a counter for null steps. In the case of a descent
step we must have ωk > 0, hence, the point x̃k+1 = xk − γ(ωk/‖gk‖2)gk

is the projection of the point xk onto the hyperplane Hk(γ), where Hk(1)
separates xk and Xd (see (5) and (11)). Thus, our method follows the general
CR framework.

We will call one increase of the index i an inner step, so that the number
of inner steps gives the number of computations of elements from Q(·) at the
corresponding points.

Theorem 6. (see e.g. [29, Theorem 2.3.2]) Let a sequence {uk} be generated
by Method 2.1 and let {εl} and {ηl} satisfy the following relations:

{εl} ↘ 0, {ηl} ↘ 0. (25)

Then:
(i) The number of inner steps at each iteration is finite.
(ii) There exists a limit point x∗ of {xk} which lies in X∗.
(iii) If

X∗ = Xd, (26)

we have
lim

k→∞
xk = x∗ ∈ X∗.

As Method 2.1 has a two-level structure, each iteration containing a finite
number of inner steps, it is more suitable to derive its complexity estimate,
which gives the total amount of work of the method, instead of convergence
rates. We use the distance to x∗ as an accuracy function for our method,
i.e., our approach is slightly different from the standard ones. More precisely,
given a starting point x0 and a number δ > 0, we define the complexity of the
method, denoted by N(δ), as the total number of inner steps t which ensures
finding a point x̄ ∈ X such that

‖x̄− x∗‖/‖x0 − x∗‖ ≤ δ.

Therefore, since the computational expense per inner step can easily be eval-
uated for each specific problem under examination, this estimate in fact gives
the total amount of work. We thus proceed to obtain an upper bound for
N(δ).

Theorem 7. [29, Theorem 2.3.3] Suppose G is monotone and there exists
x∗ ∈ X∗ such that

for every x ∈ X and for every g ∈ G(x),
〈g, x− x∗〉 ≥ µ‖x− x∗‖,
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for some µ > 0. Let a sequence {xk} be generated by Method 2.1 where

εl = νlε′, ηl = η′, l = 0, 1, . . . ; ν ∈ (0, 1).

Then, there exist some constants ε̄ > 0 and η̄ > 0 such that

N(δ) ≤ B1ν
−2(ln(B0/δ)/ ln ν−1 + 1),

where 0 < B0, B1 <∞, whenever 0 < ε′ ≤ ε̄ and 0 < η′ ≤ η̄, B0 and B1 being
independent of ν.

It should be noted that the assertion of Theorem 7 remains valid without
the additional monotonicity assumption on G if X = Rn (cf. (21)). Thus,
our method attains a logarithmic complexity estimate, which corresponds to
a linear rate of convergence with respect to inner steps. We now give a similar
upper bound for N(δ) in the single-valued case.

Theorem 8. [29, Theorem 2.3.4] Suppose that X = Rn and that G is strongly
monotone and Lipschitz continuous. Let a sequence {xk} be generated by
Method 2.1 where

εl = νlε′, ηl = νlη′, l = 0, 1, . . . ; ε′ > 0, η′ > 0; ν ∈ (0, 1).

Then,
N(δ) ≤ B1ν

−6(ln(B0/δ)/ ln ν−1 + 1),

where 0 < B0, B1 <∞, B0 and B1 being independent of ν.

3.3 CR Method for Multi-valued Inclusions

To solve GVI (22), we can also apply Method 2.1 for finding stationary points
of the mapping P being defined as follows:

P (x) =

⎧⎨⎩
G(x) if h(x) < 0,
conv{G(x)

⋃
∂h(x)} if h(x) = 0,

∂h(x) if h(x) > 0.
(27)

Such a method does not include pseudo-projections and is based on the fol-
lowing observations; see [20, 25, 29].

First we note P in (27) is a K-mapping. Next, GVI (22) is equivalent to
the multi-valued inclusion

0 ∈ P (x∗). (28)

We denote by S∗ the solution set of problem (28).

Theorem 9. [29, Theorem 2.3.1] It holds that

X∗ = S∗.
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In order to apply Method 2.1 to problem (28) we have to show that its dual
problem is solvable. Namely, let us consider the problem of finding a point x∗

of Rn such that

∀u ∈ Rn, ∀t ∈ P (u), 〈t, u− u∗〉 ≥ 0,

which can be viewed as the dual problem to (28). We denote by S∗
(d) the

solution set of this problem. Clearly, Proposition 2 admits the corresponding
simple specialization.

Lemma 5. (i) S∗
(d) is convex and closed.

(ii) S∗
(d) ⊆ S∗.

(iii) If P is pseudomonotone, then S∗
(d) = S∗.

Note that P need not be pseudomonotone in general. Nevertheless, in
addition to Theorem 9, it is useful to obtain the equivalence result for both
the dual problems.

Proposition 3. [29, Proposition 2.4.1] Xd = S∗
(d).

Combining the above results and Proposition 2 yields a somewhat strength-
ened equivalence property.

Corollary 1. If G is pseudomonotone, then

X∗ = Xd = S∗
(d) = S∗.

Therefore, we can apply Method 2.1 with replacing G, X, and Pk by P ,
Rn, and I, respectively, to the multi-valued inclusion (28) under the same
blanket assumptions. We call this modification Method 2.2.

Theorem 10. Let a sequence {xk} be generated by Method 2.2 and let {εl}
and {ηl} satisfy (25). Then:

(i) The number of inner steps at each iteration is finite.
(ii) There exists a limit point x∗ of {xk} which lies in X∗.
(iii) If (26) holds, we have

lim
k→∞

xk = x∗ ∈ S∗ = X∗.

Next, the simplest rule (24) in Method 2.1 can be replaced by one of the
following:

pi+1 = Nr conv{q0, . . . , qi+1},
or

pi+1 = Nr conv{pi, qi+1, Si},
where Si ⊆ conv{q0, . . . , qi}. These modifications may be used for attaining
more rapid convergence, and all the assertions of this section remain true.
Nevertheless, they require additional storage and computational expenses.
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4 Some Examples of Generalized Monotone Problems

Various applications of variational inequalities have been well documented in
the literature; see e.g. [36, 29, 9] and references therein. We intend now to give
some additional examples of problems which reduce to VI (6) with satisfying
the basic property Xd �= ∅. It means that they possess certain generalized
monotonicity properties. We restrict ourselves with single-valued problems by
assuming usually differentiability of functions. Nevertheless, using a suitable
concept of the subdifferential, we can obtain similar results for the case of
multi-valued GVI (22).

4.1 Scalar Optimization Problems

We start our illustrations from the simplest optimization problems.
Let us consider the problem of minimizing a function f : Rn → R over the

convex and closed set X, or briefly,

min
x∈X

→ f(x). (29)

If f is also differentiable, we can replace (29) by its optimality condition in
the form of VI: Find x∗ ∈ X such that

〈∇f(x∗), x− x∗〉 ≥ 0 ∀x ∈ X (30)

(cf. (6)). The problem is to find conditions which ensure solvability of DVI:
Find x∗ ∈ X such that

〈∇f(x), x− x∗〉 ≥ 0 ∀x ∈ X (31)

(cf. (7)). It is known that each solution of (31), unlike that of (30), also solves
(29); see [14, Theorem 2.2]. Denote by Xf the solution set of problem (29)
and suppose that Xf �= ∅. We can obtain the solvability of (31) under a
rather weak condition on the function f . Recall that f : Rn → R is said to be
quasiconvex on X, if for any points x, y ∈ X and for each λ ∈ [0, 1] it holds
that

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.
Also, f : Rn → R is said to be quasiconvex along rays with respect to X if for
any point x ∈ X we have

f(λx+ (1− λ)x∗) ≤ f(x) ∀λ ∈ [0, 1], ∀x∗ ∈ Xf ;

see [20]. Clearly, the class of quasiconvex along rays functions strictly contains
the class of usual quasiconvex functions since the level sets {x ∈ X | f(x) ≤ µ}
of a quasiconvex along rays function f may be non-convex.

Proposition 4. If f : Rn → R is quasiconvex along rays with respect to X,
then the solution set of (31) coincides with Xf .
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Proof. Due to the above observation, we have to show that any solution
x∗ ∈ Xf solves (31). Fix x ∈ X and set s = x∗ − x. Then we have

〈∇f(x), s〉 = lim
α→0

f(x+ αs)− f(x)
α

= lim
α→0

f(αx∗ + (1− α)x)− f(x)
α

≤ 0,

i.e. x∗ solves (31) and the result follows.

So, the condition Xd �= ∅ then holds.

4.2 Walrasian Price Equilibrium Models

Walrasian equilibrium models describe economies with perfect competition.
The economy deals in n commodities and, given a price vector p = (p1, . . . , pn),
the demand and supply are supposed to be determined as vectors D(p) and
S(p), respectively, and the vector

E(p) = D(p)− S(p)

represents the excess demand. Then the equilibrium price vector p∗ is defined
by the following complementarity conditions

p∗ ∈ Rn
+,−E(p∗) ∈ Rn

+, 〈p∗, E(p∗)〉 = 0;

which can be equivalently rewritten as VI: Find p∗ ∈ Rn
+ such that

〈−E(p∗), p− p∗〉 ≥ 0 ∀p ∈ Rn
+; (32)

see e.g. [2, 37]. Here Rn
+ = {p ∈ Rn | pi ≥ 0 i = 1, . . . , n} denotes the

set of vectors with non-negative components. The properties of E depend
on behaviour of consumers and producers, nevertheless, gross substitutability
and positive homogeneity are among the most popular. Recall that a mapping
F : P → Rn is said to be

(i) gross substitutable, if for each pair of points p′, p′′ ∈ P such that p′ −
p′′ ∈ Rn

+ and I(p′, p′′) = {i | p′i = p′′i } is nonempty, there exists an index
k ∈ I(p′i, p′′i ) with Fk(p′) ≥ Fk(p′′);

(ii) positive homogeneous of degree m, if for each p ∈ P and for each λ > 0
such that λp ∈ P it holds that F (λp) = λmF (p).

It was shown by K.J. Arrow and L. Hurwicz [3] that these properties
lead to a kind of the revealed preference condition. Denote by P ∗ the set of
equilibrium prices.

Proposition 5. Suppose that E : intRn
+ → Rn is gross substitutable, posi-

tively homogeneous with degree 0, and satisfies the Walras law, i.e.

〈p,E(p)〉 = 0 ∀p ∈ intRn
+;
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moreover, each function Ei : intRn
+ → R is bounded below, and for every

sequence {pk} ⊂ intRn
+ converging to p, it holds that

lim
k→∞

Ei(pk) =
{
Ei(p) if Ei(p) is finite,
+∞ otherwise.

Then problem (32) is solvable, and

〈p∗, E(p)〉 > 0 ∀p ∈ intRn
+\P ∗,∀p∗ ∈ P ∗.

Observe that P ∗ ⊆ intRn
+ due to the above conditions, i.e. E(p∗) = 0 for

each p∗ ∈ P ∗. It follows that

〈−E(p), p− p∗〉
{
> 0 ∀p ∈ intRn

+\P ∗,
≥ 0 ∀p ∈ P ∗

for each p∗ ∈ P ∗, therefore condition Xd �= ∅ holds true for VI (32). Similar
results can be obtained in the multi-valued case; see [39].

4.3 General Equilibrium Problems

Let Φ : X × X → R be an equilibrium bifunction, i.e. Φ(x, x) = 0 for each
x ∈ X, and let X be a nonempty convex and closed subset of Rn. Then we
can consider the general equilibrium problem (EP for short): Find x∗ ∈ X
such that

Φ(x∗, y) ≥ 0 ∀y ∈ X. (33)

We denote by Xe the solution set of this problem. It was first used by
H. Nikaido and K. Isoda [38] for investigation of non-cooperative games and
appeared very useful for other problems in nonlinear analysis; see [4, 11] for
more details. If Φ(x, ·) is differentiable for each x ∈ X, we can consider also
VI (6) with the cost mapping

G(x) = ∇yΦ(x, y)|y=x, (34)

suggested by J.B. Rosen [41]. Recall that a function f : X → R is said to be
(i) pseudoconvex, if for any points x, y ∈ X, it holds that

〈∇f(x), y − x〉 ≥ 0 =⇒ f(y) ≥ f(x);

(ii) explicitly quasiconvex, if it is quasiconvex and for any point x, y ∈ X,
x �= y and for all λ ∈ (0, 1) it holds that

f(λx+ (1− λ)y) < max{f(x), f(y)}.

Then we can obtain the obvious relationships between solution sets of EP
(33) and VI (6), (34).
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Proposition 6. (i) If Φ(x, ·) is differentiable for each x ∈ X, then Xe ⊆ X∗.
(ii) If Φ(x, ·) is pseudoconvex for each x ∈ X, then X∗ ⊆ Xe.

However, we are interested in revealing conditions providing the property
Xd �= ∅ for VI (6), (34). Let us consider the dual equilibrium problem: Find
y∗ ∈ X such that

Φ(x, y∗) ≤ 0 ∀x ∈ X (35)

and denote by Xe
d the solution set of this problem. Recall that Φ : X×X → R

is said to be
(i) monotone, if for each pair of points x, y ∈ X it holds that

Φ(x, y) + Φ(y, x) ≤ 0;

(ii) pseudomonotone, if for each pair of points x, y ∈ X it holds that

Φ(x, y) ≥ 0 =⇒ Φ(y, x) ≤ 0.

Proposition 7. (see [29, Proposition 2.1.17]) Let Φ(x, ·) be convex and dif-
ferentiable for each x ∈ X. If Φ is monotone (respectively, pseudomonotone),
then so is G in (34).

Being based on this property, we can derive the condition Xd �= ∅ from
(pseudo)monotonicity of Φ and Proposition 1. However, it can be deduced
from the existence of solutions of problem (35). We recall the Minty Lemma
for EPs; see e.g. [4, Section 10.1] and [6].

Proposition 8. (i) If Φ(·, y) is upper semicontinuous for each y ∈ X, Φ(x, ·)
is explicitly quasiconvex for x ∈ X, then Xe

d ⊆ Xe.
(ii) If Φ is pseudomonotone, then Xe ⊆ Xe

d .

Now we give the basic relation between the solution sets of dual problems.

Lemma 6. Suppose that Φ(x, ·) is quasiconvex and differentiable for each x ∈
X. Then Xe

d ⊆ Xd.

Proof. Take any x∗ ∈ Xe
d , then Φ(x, x∗) ≤ Φ(x, x) = 0 for each x ∈ X. Set

ψ(y) = Φ(x, y), then

〈∇ψ(x), x∗ − x〉 = lim
α→0

ψ(x+ α(x∗ − x))− ψ(x)
α

≤ 0,

i.e. x∗ ∈ Xd.

Combining these properties, we can obtain relationships among all the
problems.
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Theorem 11. Suppose that Φ : X × X → R is a continuous equilibrium
bifunction, Φ(x, ·) is quasiconvex and differentiable for each x ∈ X.

(i) If holds that Xe
d ⊆ Xd ⊆ X∗.

(ii) If Φ(x, ·) is pseudoconvex for each x ∈ X, then

Xe
d ⊆ Xd ⊆ X∗ = Xe.

(iii) If Φ(x, ·) is pseudoconvex for each x ∈ X and Φ is pseudomonotone,
then

Xe
d = Xd = X∗ = Xe.

Proof. Part (i) follows from Lemma 6 and Proposition 1 (ii). Part (ii) follows
from (i) and Proposition 6, and, taking into account Proposition 8 (ii), we
obtain assertion (iii).

Therefore, we can choose the most suitable condition for its verification.

4.4 Optimization with Intransitive Preference

Optimization problems with respect to preference relations play the central
role in decision making theory and in consumer theory. It is well-known that
the case of transitive preferences lead to the usual scalar optimization prob-
lems and such problem have been investigated rather well, but the intransitive
case seems more natural in modelling real systems; see e.g. [10, 44, 46].

Let us consider an optimization problem on the same feasible set X with
respect to a binary relation (preference) R, which is not transitive in general,
i.e. the implication

xRy and yRz =⇒ xRz

may not hold. Suppose that R is complete, i.e. for any points x, y ∈ Rn at least
one of the relations holds: xRy, yRx. Then we can define the optimization
problem with respect to R: Find x∗ ∈ X such that

x∗Ry ∀y ∈ X. (36)

Recall that the strict part P of R is defined as follows:

xPy ⇐⇒ (xRy and ¬(yRx)).

Due to the completeness of R, it follows that

¬(yRx) =⇒ xPy,

and (36) becomes equivalent to the more usual formulation: Find x∗ ∈ X such
that

∃y ∈ X, yPx∗. (37)

Following [46, 42], consider a representation of the preferenceR by a bifunction
Φ : X ×X → R:
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x′Rx′′ ⇐⇒ Φ(x′′, x′) ≤ 0,
x′Px′′ ⇐⇒ Φ(x′′, x′) < 0.

Note that the bifunction Ψ(x′, x′′) = −Φ(x′′, x′) gives a more standard repre-
sentation, but the current form is more suitable for the common equilibrium
setting. In fact, (37) becomes equivalent to EP (33), whereas (36) becomes
equivalent to the dual problem (35).

We now consider generalized monotonicity of Φ.

Proposition 9. For each pair of points x′, x′′ ∈ X it holds that

Φ(x′, x′′) > 0 ⇐⇒ Φ(x′′, x′) < 0,
Φ(x′, x′′) = 0⇐⇒ Φ(x′′, x′) = 0. (38)

Proof. Fix x′, x′′ ∈ X. If Φ(x′, x′′) > 0, then ¬(x′′Rx′) and x′Px′′, i.e.
Φ(x′′, x′) < 0, by definition. The reverse implication Φ(x′, x′′) < 0 =⇒
Φ(x′′, x′) > 0 follows from the definition of P . It means that the first equiva-
lence in (38) is true, moreover, we have

Φ(x′, x′′) ≤ 0 =⇒ Φ(x′′, x′) ≥ 0.

Hence, Φ(x′, x′′) = 0 implies Φ(x′′, x′) ≥ 0, but Φ(x′′, x′) > 0 implies
Φ(x′, x′′) < 0, a contradiction. Thus, Φ(x′, x′′) = 0 ⇐⇒ Φ(x′′, x′) = 0, and
the proof is complete.

Observe that (38) implies

Φ(x, x) = 0 ∀x ∈ X,

i.e. Φ is an equilibrium bifunction and R is reflexive. Next, on account of
Proposition 9, both Φ and −Φ are pseudomonotone, which yields the equiva-
lence of (33) and (35) because of Proposition 8 (ii). The relations in (38) hold
if Φ is skew-symmetric, i.e.

Φ(x′, x′′) + Φ(x′′, x′) = 0 ∀x′, x′′ ∈ X;

cf. Example 1.
In order to find a solution of problem (36) (or (37)), we have to impose

additional conditions on Φ; see [20] for details. Namely, suppose that Φ is con-
tinuous and that Φ(x, ·) is quasiconvex for each x ∈ X. Then R is continuous
and also convex, i.e. for any points x′, x′′, y ∈ X, we have

x′Ry and x′′Ry =⇒ [λx′ + (1− λ)x′′]Ry ∀λ ∈ [0, 1].

If Φ is skew-symmetric, it follows that Φ(·, y) is quasiconcave for each y ∈ X,
and there exists a CR method for finding a solution of such EPs; see [19].
However, this is not the case in general, but then we can solve EP via its
reducing to VI, as described in Section 4.3. In fact, if Φ(x, ·) is differentiable,
then (36) (or (37)) implies VI (6), (34) and DVI (7), (34), i.e., the basic
condition Xd �= ∅ holds true if the initial problem is solvable, as Theorem
11 states. Then the CR methods described are also applicable for finding its
solution.
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4.5 Quasi-concave-convex Zero-sum Games

Let us consider a zero-sum game with two players. The first player has the
strategy set X and the utility function Φ(x, y), whereas the second player has
the utility function −Φ(x, y) and the strategy set Y . Following [5, Section
10.4], we say that the game is equal if X = Y and Φ(x, x) = 0 for each x ∈ X.
If Φ is continuous, Φ(·, y) is quasiconcave for each y ∈ X,Φ(x, ·) is quasiconvex
for each x ∈ X, and X is a nonempty, convex and closed set, then this equal
game will have a saddle point (x∗, y∗) ∈ X ×X, i.e.

Φ(x, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, y) ∀x ∈ X,∀y ∈ X

under the boundedness of X because of the known Sion minimax theorem
[45]. Moreover, its value is zero, since

0 = Φ(y∗, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, x∗) = 0.

Thus, the set of optimal strategies of the first player coincides with the solution
set Xe of EP (33), whereas the set of optimal strategies of the second player
coincides with Xe

d , which is the solution set of the dual EP (35). Unlike the
previous sections, Φ may not possess generalized monotonicity properties. A
general CR method for such problems was proposed in [19]. Nevertheless, if
Φ(x, ·) is differentiable, then Theorem 11 (i) gives Xe

d ⊆ Xd ⊆ X∗, where
Xd (respectively, X∗) is the solution set of DVI (7), (34) (respectively, VI (6),
(34), i.e. existence of saddle points implies Xd �= ∅. However, by strengthening
slightly the quasi-concavity-convexity assumptions, we can obtain additional
properties of solutions. In fact, replace the quasiconcavity (quasiconvexity) of
Φ(x, y) in x (in y) by the explicit quasiconcavity (quasiconvexity), respectively.
Then Proposition 8 (i) yieldsXe = Xe

d , i.e., the players have the same solution
sets. Hence, Xe �= ∅ implies Xd �= ∅ and this result strengthens a similar
property in [47, Theorem 5.3.1].

Proposition 10. If the utility function Φ(x, y) in an equal game is continu-
ous, explicitly quasiconcave in x, explicitly quasiconvex and differentiable in
y, then

Xe = Xe
d ⊆ Xd ⊆ X∗.

If, additionally, Φ(x, y) is pseudoconvex in y, then

Xe = Xe
d = Xd = X∗.

Proof. The first assertion follows from Theorem 11 (i) and Proposition 8 (i).
The second assertion now follows from Theorem 11 (ii).

This general equivalence result does not use pseudomonotonicity of Φ or
G, nevertheless, it also enables us to develop efficient methods for finding
optimal strategies.

Therefore, many optimization and equilibrium type problems possess re-
quired generalized monotonicity properties.
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Further Investigations

The CR methods presented can be extended and modified in several direc-
tions. In particular, they can be applied to extended VIs involving additional
mappings (see [30, 31]) and to mixed VIs involving non-linear convex functions
(see [29, 31, 33]).

It was mentioned that the CR framework is rather flexible and admits spe-
cializations for each particular class of problems. Such versions of CR methods
were proposed for various decomposable VIs (see [27, 28, 29, 32]). In this con-
text, CR methods with auxiliary procedures based on an iteration of a suitable
splitting method seem very promising (see [26, 29, 31, 33]).
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13. Karamardian S (1976): Complementarity over cones with monotone and pseudo-
monotone maps. Journal of Optimization Theory and Applications 18: 445–454
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the Monge–Kantorovich Duality
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Summary. In the present survey, we reveal links between abstract convex analysis
and two variants of the Monge–Kantorovich problem (MKP), with given marginals
and with a given marginal difference. It includes: (1) the equivalence of the validity of
duality theorems for MKP and appropriate abstract convexity of the corresponding
cost functions; (2) a characterization of a (maximal) abstract cyclic monotone map
F : X → L ⊂ IRX in terms connected with the constraint set

Q0(ϕ) := {u ∈ IRZ : u(z1) − u(z2) ≤ ϕ(z1, z2) ∀z1, z2 ∈ Z = dom F}
of a particular dual MKP with a given marginal difference and in terms of L-
subdifferentials of L-convex functions; (3) optimality criteria for MKP (and Monge
problems) in terms of abstract cyclic monotonicity and non-emptiness of the con-
straint set Q0(ϕ), where ϕ is a special cost function on X × X determined by the
original cost function c on X × Y . The Monge–Kantorovich duality is applied then
to several problems of mathematical economics relating to utility theory, demand
analysis, generalized dynamics optimization models, and economics of corruption,
as well as to a best approximation problem.

Key words: H-convex function, infinite linear programs, duality relations,
Monge-Kantorovich problems (MKP) with given marginals, MKP with a given
marginal difference, abstract cyclic monotonicity, Monge problem, utility the-
ory, demand analysis, dynamics models, economics of corruption, approxima-
tion theory

1 Introduction

Abstract convexity or convexity without linearity may be defined as a theory
which deals with applying methods of convex analysis to non-convex objects.

∗Supported in part by the Russian Leading Scientific School Support Grant NSh-
6417.2006.6.
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Today this theory becomes an important fragment of non-linear functional
analysis, and it has numerous applications in such different fields as non-
convex global optimization, various non-traditional duality schemes for par-
ticular classes of sets and functions, non-smooth analysis, mass transportation
problems, mathematical economics, approximation theory, and measure the-
ory; for history and references, see, e.g., [15], [30], [41], [43], [53], [54] [59], [60],
[62]...2

In this survey, we’ll dwell on connections between abstract convexity and
the Monge—Kantorovich mass transportation problems; some applications to
mathematical economics and approximation theory will be considered as well.

Let us recall some basic notions relating to abstract convexity. Given a
nonempty set Ω and a class H of real-valued functions on it, the H-convex
envelope of a function f : Ω → IR ∪ {+∞} is defined to be the function
coH(f)(ω) := sup{h(ω) : h ∈ H(f)}, ω ∈ Ω, where H(f) comprises functions
in H majorized by f , H(f) := {h ∈ H : h ≤ f}. Clearly, H(f) = H(coH(f)).
A function f is called H-convex if f = coH(f).

In what follows, we take Ω = X × Y or Ω = X × X, where X and Y
are compact topological spaces, and we deal with H being a convex cone or
a linear subspace in C(Ω). The basic examples are H = {huv : huv(x, y) =
u(x)− v(y), (u, v) ∈ C(X)×C(Y )} for Ω = X ×Y and H = {hu : hu(x, y) =
u(x)−u(y), u ∈ C(X)} for Ω = X×X. These examples are closely connected
with two variants of the Monge—Kantorovich problem (MKP): with given
marginals and with a given marginal difference.

Given a cost function c : X × Y → IR ∪ {+∞} and finite positive regular
Borel measures, σ1 on X and σ2 on Y , σ1X = σ2Y , the MKP with marginals
σ1 and σ2 is to minimize the integral∫

X×Y

c(x, y)µ(d(x, y))

subject to constraints: µ ∈ C(X × Y )∗+, π1µ = σ1, π2µ = σ2, where π1µ and
π2µ stand for the marginal measures of µ.3

A different variant of MKP, the MKP with a given marginal difference,
relates to the case X = Y and consists in minimizing the integral∫

X×X

c(x, y)µ(d(x, y))

subject to constraints: µ ∈ C(X ×X)∗+, π1µ− π2µ = σ1 − σ2.
Both variants of MKP were first posed and studied by Kantorovich [17, 18]

(see also [19, 20, 21]) in the case where X = Y is a metric compact space with

2Abstract convexity is, in turn, a part of a broader field known as generalized
convexity and generalized monotonicity; see [14] and references therein.

3For any Borel sets B1 ⊆ X, B2 ⊆ Y , (π1µ)(B1) = µ(B1 × Y ), (π2µ)(B2) =
µ(X × B2).
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its metric as the cost function c. In that case, both variants of MKP are
equivalent but, in general, the equivalence fails to be true.

The MKP with given marginals is a relaxation of the Monge ‘excavation
and embankments’ problem [49], a non-linear extremal problem, which is to
minimize the integral ∫

X

c(x, f(x))σ1(dx)

over the set Φ(σ1, σ2) of measure-preserving Borel maps f : (X,σ1) → (Y, σ2).
Of course, it can occur that Φ(σ1, σ2) is empty, but in many cases it is non-
empty and the measure µf on X × Y ,

µfB = σ1{x : (x, f(x)) ∈ B}, B ⊂ X × Y,

is positive and has the marginals π1µf = σ1, π2µf = σ2. Moreover, if µf is an
optimal solution to the MKP then f proves to be an optimal solution to the
Monge problem.

Both variants of MKP may be treated as problems of infinite linear pro-
gramming. The dual MKP problem with given marginals is to maximize∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy)

over the set

Q′(c) := {(u, v) ∈ C(X)× C(Y ) : u(x)− v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y },

and the dual MKP problem with a given marginal difference is to maximize∫
X

u(x) (σ1 − σ2)(dx)

over the set

Q(c) := {u ∈ C(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}.

As is mentioned above, in the classical version of MKP studied by Kan-
torovich, X is a metric compact space and c is its metric. In that case, Q(c)
proves to be the set of Lipschitz continuous functions with the Lipschitz con-
stant 1, and the Kantorovich optimality criterion says that a feasible mea-
sure µ is optimal if and only if there exists a function u ∈ Q(c) such that
u(x) − u(y) = c(x, y) whenever the point (x, y) belongs to the support of µ.
This criterion implies the duality theorem asserting the equality of optimal
values of the original and the dual problems.

Duality for MKP with general continuous cost functions on (not necessarily
metrizable) compact spaces is studied since 1974; see papers by Levin [24,
25, 26] and references therein. A general duality theory for arbitrary compact
spaces and continuous or discontinuous cost functions was developed by Levin
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and Milyutin [47]. In that paper, the MKP with a given marginal difference is
studied, and, among other results, a complete description of all cost functions,
for which the duality relation holds true, is given. Further generalizations
(non-compact and non-topological spaces) see [29, 32, 37, 38, 42].

An important role in study and applications of the Monge—Kantorovich
duality is played by the set Q(c) and its generalizations such as

Q(c;E(X)) := {u ∈ E(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X},

where E(X) is some class of real-valued functions on X. Typical examples
are the classes: IRX of all real-valued functions on X, l∞(X) of bounded real-
valued functions on X, U(X) of bounded universally measurable real-valued
functions on X, and L∞(IRn) of bounded Lebesgue measurable real-valued
functions on IRn (Lebesgue equivalent functions are not identified).

Notice that the duality theorems and their applications can be restated
in terms of abstract convexity of the corresponding cost functions. In that
connection, mention an obvious equality Q(c;E(X)) = H(c) where H = {hu :
u ∈ E(X)}. Conditions for Q(c) or Q0(c) = Q(c; IRZ) to be nonempty are
some kinds of abstract cyclic monotonicity, and for specific cost functions c,
they prove to be crucial in various applications of the Monge—Kantorovich
duality. Also, optimality criteria for solutions to the MKP with given mar-
ginals and to the corresponding Monge problems can be given in terms of
non-emptiness of Q(ϕ) where ϕ is a particular function on X ×X connected
with the original cost function c on X × Y .

The paper is organized as follows. Section 2 is devoted to connections
between abstract convexity and infinite linear programming problems more
general than MKP. In Section 3, both variants of MKP are regarded from
the viewpoint of abstract convex analysis (duality theory; abstract cyclic
monotonicity and optimality conditions for MKP with given marginals and for
a Monge problem; further generalizations). In Section 4, applications to math-
ematical economics are presented, including utility theory, demand analysis,
dynamics optimization, and economics of corruption. Finally, in Section 5 an
application to approximation theory is given.

Our goal here is to clarify connections between the Monge - Kantorovich
duality and abstract convex analysis rather than to present the corresponding
duality results (and their applications) in maximally general form.

2 Abstract Convexity and Infinite Linear Programs

Suppose Ω is a compact Hausdorff topological space, and c : Ω → IR∪{+∞} is
a bounded from below universally measurable function on it. Given a convex
cone H ⊂ C(Ω) such that H(c) = {h ∈ H : h ≤ c} is nonempty, and a
measure µ0 ∈ C(Ω)∗+, we consider two infinite linear programs, the original
one, I, and the dual one, II, as follows.
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The original program is to maximize the linear functional 〈h, µ0〉 :=∫
Ω
h(ω)µ0(dω) subject to constraints: h ∈ H, h(ω) ≤ c(ω) for all ω ∈ Ω.

The optimal value of this program will be denoted as vI(c;µ0).
The dual program is to minimize the integral functional

c(µ) :=
∫

Ω

c(ω)µ(dω)

subject to constraints: µ ≥ 0 (i.e., µ ∈ C(Ω)∗+) and µ ∈ µ0 −H0, where H0

stands for the conjugate (polar) cone in C(Ω)∗+,

H0 := {µ ∈ C(Ω)∗ : 〈h, µ〉 ≤ 0 for all h ∈ H}.

The optimal value of this program will be denoted as vII(c;µ0).
Thus, for any µ0 ∈ C(Ω)∗+, one has

vI(c;µ0) = sup{〈h, µ0〉 : h ∈ H(c)}, (1)

vII(c;µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0}. (2)

In what follows, we endow C(Ω)∗ with the weak∗ topology and consider
vI(c; ·) and vII(c; ·) as functionals on the whole of C(Ω)∗ by letting vI(c;µ0) =
vII(c;µ0) = +∞ for µ0 ∈ C(Ω)∗ \ C(Ω)∗+.

Clearly, both functionals are sublinear that is semi-additive and positive
homogeneous. Furthermore, it is easily seen that the subdifferential of vI at 0
is exactly the closure of H(c),

∂vI(c; 0) = clH(c). (3)

Note that
vI(c;µ0) ≤ vII(c;µ0). (4)

Also, an easy calculation shows that the conjugate functional v∗II(c;u) :=
sup{〈u, µ0〉 − vII(c;µ0) : µ0 ∈ C(Ω)∗}, u ∈ C(Ω), is the indicator function of
clH(c),

v∗II(c;u) =
{

0, u ∈ clH(c);
+∞, u /∈ clH(c); (5)

therefore, the second conjugate functional v∗∗II (c;µ0) := sup{〈u, µ0〉−v∗II(c;u) :
u ∈ C(Ω)} is exactly vI(c;µ0),

v∗∗II (c;µ0) = vI(c;µ0), µ0 ∈ C(Ω)∗. (6)

As is known from convex analysis (e.g., see [47] where a more general
duality scheme was used), the next result is a direct consequence of (6).

Proposition 1. Given µ0 ∈ dom vI(c; ·) := {µ ∈ C(Ω)∗+ : vI(c;µ) < +∞},
the following assertions are equivalent:

(a) vI(c;µ0) = vII(c;µ0);
(b) the functional vII(c; ·) is weakly∗ lower semi-continuous (lsc) at µ0.
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Say c is regular if it is lsc on Ω and, for every µ0 ∈ dom vI(c; ·),

vII(c;µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0, ‖µ‖ ≤M‖µ0‖}, (7)

where M = M(c;H) > 0. Note that if µ0 /∈ dom vI(c; ·) then, by (4),
vII(c;µ0) = +∞; therefore, for such µ0, (7) is trivial. Thus, for a regular
c, (7) holds true for all µ0 ∈ C(Ω)∗.

Proposition 2. (i) If c is regular, then vII(c; ·) is weakly∗ lsc on C(Ω)∗+ hence
both statements of Proposition 1 hold true whenever µ0 ∈ C(Ω)∗+.

(ii) If, in addition, µ0 ∈ dom vI(c; ·) then there exists an optimal solution
to program II.

Proof. (i) It suffices to show that for every real number C the Lebesgue
sublevel set L(vII(c; ·);C) := {µ0 ∈ C(Ω)∗+ : vII(c;µ0) ≤ C} is weakly∗

closed. According to the Krein–Shmulian theorem (see [11, Theorem V.5.7]),
this is equivalent to that the intersections of L(vII(c; ·);C) with the balls
BC1(C(Ω)∗) := {µ0 ∈ C(Ω)∗ : ‖µ0‖ ≤ C1}, C1 > 0, are weakly∗ closed. Since
c is regular, one has

L(vII(c; ·);C) ∩BC1(C(Ω)∗) = {µ0 : (µ0, µ) ∈ L′(C,C1)}, (8)

where

L′(C,C1) := {(µ0, µ) ∈ C(Ω)∗+ × C(Ω)∗+ : ‖µ0‖ ≤ C1, ‖µ‖ ≤M‖µ0‖,
c(µ) ≤ C, µ ∈ µ0 −H0}. (9)

Note that the functional µ �→ c(µ) is weakly∗ lcs on C(Ω)∗+ because of lower
semi-continuity of c as a function on Ω, and it follows from here that L′(C,C1)
is weakly∗ closed hence weakly∗ compact in C(Ω)∗×C(Ω)∗. Being a projection
of L′(C,C1) onto the first coordinate, the set L(vII(c; ·);C) ∩BC1(C(Ω)∗) is
weakly∗ compact as well, and the result follows.

(ii) This follows from the weak∗ compactness of the constraint set of (7)
along with the weak∗ lower semi-continuity of the functional µ �→ c(µ). �

We say that the regularity assumption is satisfied if every H-convex func-
tion is regular.

The next result is a direct consequence of Proposition 2.

Corollary 1. Suppose the regularity assumption is satisfied, then the duality
relation vI(c;µ0) = vII(c;µ0) holds true whenever c is H-convex and µ0 ∈
C(Ω)∗+. If, in addition, µ0 ∈ dom vI(c; ·), then these optimal values are finite,
and there exists an optimal solution to program II.

We now give three examples of convex cones H, for which the regularity
assumption is satisfied. In all the examples, Ω = X × Y , where X, Y are
compact Hausdorff spaces.
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Example 1. Suppose H = {h = huv : huv(x, y) = u(x) − v(y), u ∈ C(X), v ∈
C(Y )}. Since H is a vector subspace and 1Ω ∈ H, one has ‖µ‖ = 〈1Ω , µ〉 =
〈1Ω , µ0〉 = ‖µ0‖ whenever µ ∈ µ0 − H0, µ ≥ 0, µ0 ≥ 0; therefore, (7) holds
with M = 1, and the regularity assumption is thus satisfied.

Remark 1. As follows from [42, Theorem 1.4, (b)⇔(c)] (see also [43, Theorem
10.3]), a function c : Ω = X × Y → IR ∪ {+∞} is H-convex relative to H
from Example 1 if and only if it is bounded below and lsc. (Note that, since
Ω is compact, every lsc function c is automatically bounded below.)

Example 2. Let X = Y and H = {h = hu : hu(x, y) = u(x) − u(y), u ∈
C(X)}, then H0 = {ν ∈ C(Ω)∗ : π1ν − π2ν = 0}, where π1ν and π2ν are
(signed) Borel measures on X as given by 〈u, π1ν〉 =

∫
X×X

u(x) ν(d(x, y)),
〈u, π2ν〉 =

∫
X×X

u(y) ν(d(x, y)) for all u ∈ C(X). Observe that any H-convex
function c : Ω = X × X → IR ∪ {+∞} is lsc (hence, bounded from below),
vanishes on the diagonal (c(x, x) = 0 ∀x ∈ X), and satisfies the triangle
inequality c(x, y)+ c(y, z) ≥ c(x, z) whenever x, y, z ∈ X. Moreover, it follows
from [47, Theorem 6.3] that every function with such properties is H-convex.
Let µ0, µ ∈ C(Ω)∗+ and µ ∈ µ0 −H0. Then ν = µ − µ0 ∈ −H0 = H0, hence
π1µ− π2µ = π1µ0 − π2µ0, and (2) is rewritten as

vII(c;µ0) = inf{c(µ) : µ ≥ 0, π1µ− π2µ = π1µ0 − π2µ0}. (10)

Furthermore, since c is lsc, vanishes on the diagonal, and satisfies the triangle
inequality, it follows from [47, Theorem 3.1] that (10) is equivalent to

vII(c;µ0) = inf{c(µ) : µ ≥ 0, π1µ = π1µ0, π2µ = π2µ0}. (11)

Therefore,

‖µ‖ = 〈1Ω , µ〉 = 〈1X , π1µ〉 = 〈1X , π1µ0〉 = 〈1Ω , µ0〉 = ‖µ0‖

whenever µ satisfies the constraints of (11); therefore, (7) holds with M = 1,
and the regularity assumption is thus satisfied.

Example 3. Let X = Y and H = {h = huα : huα(x, y) = u(x) − u(y) −
α, u ∈ C(X), α ∈ IR+}, then (−1Ω) ∈ H, and for any µ ∈ µ0 −H0 one has
‖µ‖ − ‖µ0‖ = 〈1Ω , µ − µ0〉 ≤ 0. Therefore, (7) holds with M = 1, and the
regularity assumption is satisfied.

Remark 2. Taking into account Example 2, it is easily seen that any function
c : Ω = X × X → IR ∪ {+∞} of the form c(x, y) = ϕ(x, y) − α, where
α ∈ IR+,ϕ is lsc, vanishes on the diagonal, and satisfies the triangle inequality,
is H-convex relative to H from Example 3. On the other hand, it is clear that
any H-convex function c satisfies the condition c(x, x) = const ≤ 0 ∀x ∈ X.

Now suppose that µ0 = δω is the Dirac measure (delta function) at some
point ω ∈ Ω, 〈u, δω〉 := u(ω) whenever u ∈ C(Ω). We shall show that in this
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case some duality results can be established without the regularity assump-
tion.

Observe that for all ω ∈ Ω one has vI(c; δω) = vI(coH(c); δω) = coH(c)(ω).

Proposition 3. Two statements hold as follows:
(i) If c is H-convex, then the duality relation vI(c; δω) = vII(c; δω) is valid

whenever ω ∈ Ω;
(ii) If, for a given ω ∈ Ω, vI(c; δω) = vII(c; δω), then vI(coH(c); δω) =

vII(c; δω) = vII(coH(c); δω).

Proof. (i) By using the definition of vI and taking into account that c is H-
convex, one gets vI(c; δω) = coH(c)(ω) = c(ω). Further, since µ = δω satis-
fies constraints of the dual program, it follows that vII(c; δω) ≤ c(ω); hence
vI(c; δω) ≥ vII(c; δω), and applying (4) completes the proof.

(ii) Since c ≥ coH(c), it follows that vII(c; δω) ≥ vII(coH(c); δω); therefore,
vI(coH(c); δω) = vI(c; δω) = vII(c; δω) ≥ vII(coH(c); δω), and taking into
account (4), the result follows. �

Let us define a function

c#(ω) := vII(c; δω). (12)

Clearly, c# ≤ c.

Lemma 1. H(c) = H(c#).

Proof. If h ∈ H(c), then, for every µ ≥ 0, µ ∈ δω − H0, one has c(µ) ≥
〈h, µ〉 ≥ h(ω), hence c#(ω) = inf{c(µ) : µ ≥ 0, µ ∈ δω −H0} ≥ h(ω), that is
h ∈ H(c#).

If now h ∈ H(c#), then h ∈ H(c) because c# ≤ c. �

The next result is a direct consequence of Lemma 1.

Corollary 2. For every ω ∈ Ω, c(ω) ≥ c#(ω) ≥ coH(c)(ω).

It follows from Corollary 2 that if c is H-convex, then c# = c.

Corollary 3. c# is H-convex if and only if c# = coH(c).

Proof. If c# is H-convex, then c#(ω) = sup{h(ω) : h ∈ H(c#)}, and applying
Lemma 1 yields c#(ω) = sup{h(ω) : h ∈ H(c)} = coH(c)(ω). If c# fails to
be H-convex, then there is a point ω ∈ Ω such that c#(ω) > sup{h(ω) :
h ∈ H(c#)}, and applying Lemma 1 yields c#(ω) > sup{h(ω) : h ∈ H(c)} =
coH(c)(ω). �

Proposition 4. The following statements are equivalent:
(a) c# is H-convex;
(b) the duality relation vI(c; δω) = vII(c; δω) holds true whenever ω ∈ Ω;
(c) for all ω ∈ dom coH(c) := {ω ∈ Ω : coH(c)(ω) < +∞}, the functional

vII(c; ·) is weakly∗ lsc at δω.
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Proof. Taking into account that vI(c; δω) = coH(c)(ω), the equivalence (a) ⇔
(b) is exactly the statement of Corollary 3. The equivalence (b) ⇔ (c) is a
particular case of Proposition 1. �

We now consider two more general mutually dual linear programs, as fol-
lows. Suppose that E,E′ is a pair of linear spaces in duality relative to a
bilinear form 〈e, e′〉E , e ∈ E, e′ ∈ E′. We endow them with the corresponding
weak topologies: σ(E,E′) and σ(E′, E). Given a convex cone K in E, a func-
tional e′0 ∈ E′, and a weakly continuous (i.e., continuous relative to the weak
topology in the Banach space C(Ω) and the weak topology σ(E,E′) in E)
linear map A : E → C(Ω) such that the set {e ∈ K : Ae ≤ c} is nonempty,
one has to find the optimal values

v′I(c; e
′
0) := sup{〈e, e′0〉E : e ∈ K, Ae ≤ c}, (13)

v′II(c; e
′
0) := inf{c(µ) : µ ≥ 0, A∗µ ∈ e′0 −K0}, (14)

where K0 is the convex cone in E′ conjugate to K,

K0 := {e′ ∈ E′ : 〈e, e′〉E ≤ 0 for all e ∈ K}.

Clearly, both the functionals, (13) and (14), are sublinear, and v′I(c; e
′
0) ≤

v′II(c; e
′
0). Similarly to Proposition 1, the next result is a particular case of

Lemma 5.1 (see also Remark 1 after it) in [47].

Proposition 5. Given e′0 ∈ dom v′I(c; ·) := {e′ ∈ E′ : v′I(c; e
′) < +∞}, the

following assertions are equivalent:
(a) v′I(c; e

′
0) = v′II(c; e

′
0);

(b) the functional v′II(c; ·) is weakly lower semi-continuous at e′0.

Let us define H := AK; then H0 = (A∗)−1(K0).

Remark 3. Note that if

dom v′I(c; ·) ⊆ A∗C(Ω)∗+, (15)

then, for every e′0 ∈ dom v′I(c; ·),

v′I(c; e
′
0) = vI(c;µ0) and v′II(c; e

′
0) = vII(c;µ0)

whenever µ0 ∈ (A∗)−1(e′0). Also note that, for e′0 /∈ dom v′I(c; ·), one has
v′I(c; e

′
0) = v′II(c; e

′
0) = +∞.

The next result follows then from Corollary 1.

Corollary 4. Suppose the regularity assumption is satisfied. If (15) is valid,
then the duality relation v′I(c; e

′
0) = v′II(c; e

′
0) holds true whenever c is H-

convex and e′0 ∈ E′. If, in addition, e′0 ∈ dom v′I(c; ·) then there exists an
optimal solution to program II.
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3 Abstract Convexity and the Monge - Kantorovich
Problems (MKP)

In this section, we consider two variants of the Monge—Kantorovich problem
(MKP), with given marginals and with a given marginal difference. Both the
problems are infinite linear programs, and abstract convexity plays important
role in their study. Abstract cyclic monotonicity along with optimality criteria
for MKP will be studied as well.

3.1 MKP with Given Marginals

Let X and Y be compact Hausdorff topological spaces4, σ1 and σ2 finite
positive regular Borel measures on them, σ1X = σ2Y , and c : X × Y → IR ∪
{+∞} an universally measurable function bounded from below. The natural
projecting maps of X × Y onto X and Y will be denoted as π1 and π2,
respectively.

The MKP with given marginals is to find the optimal value

C(c;σ1, σ2) := inf{c(µ) : µ ≥ 0, π1µ = σ1, π2µ = σ2} (16)

where
c(µ) :=

∫
X×Y

c(x, y)µ(d(x, y)), (17)

(π1µ)B1 = µπ−1
1 (B1) = µ(B1 × Y ) for every Borel set B1 ⊂ X,

(π2µ)B2 = µπ−1
2 (B2) = µ(X ×B2) for every Borel set B2 ⊂ Y.

The dual problem is to find the optimal value

D(c;σ1, σ2) := sup{〈u, σ1〉 − 〈v, σ2〉 : (u, v) ∈ Q′(c)}, (18)

where

Q′(c) = {(u, v) ∈ C(X)×C(Y ) : u(x)−v(y) ≤ c(x, y), (x, y) ∈ X×Y }. (19)

Clearly, always

D(c;σ1, σ2) ≤ D′(c;σ1, σ2) ≤ C(c;σ1, σ2), (20)

where D′(c;σ1, σ2) stands for supremum of
∫

X
u(x)σ1(dx) −

∫
Y
v(y)σ2(dy)

over all pairs of bounded Borel functions (u, v) satisfying u(x)−v(y) ≤ c(x, y)
whenever x ∈ X, y ∈ Y .

Let H be as in Example 1, E := C(X) × C(Y ), E′ := C(X)∗ × C(Y )∗,
〈e, e′〉E := 〈u, σ′1〉 − 〈v, σ′2〉 for all e = (u, v) ∈ E, e′ = (σ′1, σ

′
2) ∈ E′, K := E,

4For the sake of simplicity, we assume X and Y to be compact; however, the
corresponding duality theorem (Theorem 1 below) holds true for any Hausdorff
completely regular spaces; see [42, Theorem 1.4] and [43, Theorem 10.3]. See also
[29, Theorem 1].
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and A : E → C(X×Y ) is given by Ae(x, y) := u(x)−v(y), e = (u, v). Clearly,
H = AK, Q′(c) = A−1(H(c)), and

C(c;σ1, σ2) = v′II(c; e
′
0), D(c;σ1, σ2) = v′I(c; e

′
0),

where e′0 = (σ1, σ2), v′I(c; e
′
0) and v′II(c; e

′
0) are given by (13) and (14), respec-

tively. Note that (15) is satisfied.

Theorem 1. ([42, Theorem 1.4]). The following statements are equivalent:
(a) c is H-convex;
(b) c is bounded below and lsc;
(c) the duality relation C(c;σ1, σ2) = D(c;σ1, σ2) holds for all σ1 ∈ C(X)∗+,

σ2 ∈ C(Y )∗+.
Moreover, if these equivalent statements hold true then, for any positive

measures σ1, σ2 with σ1X = σ2Y , there exists an optimal solution to the MKP
with marginals σ1, σ2.

Proof. (a) ⇔ (b) See Remark 1.
(a) ⇒ (c) Taking into account Example 1, this follows from Corollary 4.
(c) ⇒ (a) Since µ = δ(x,y) is the sole positive measure with marginals

σ1 = δx, σ2 = δy, one gets C(c; δx, δy) = c(x, y). Now, taking into account
Remark 3, we see that vI(c; δ(x,y)) = D(c; δx, δy), vII(c; δ(x,y)) = C(c; δx, δy);
therefore, c = c#, and applying Proposition 4 completes the proof.

Finally, the latter statement of the theorem is a particular case of the
latter assertion of Corollary 4. �

3.2 MKP with a Given Marginal Difference

Let X be a compact Hausdorff topological space5, ρ ∈ C(X × X)∗ a signed
measure satisfying ρX := 〈1X , ρ〉 = 0, and c : X ×X → IR ∪ {+∞} an uni-
versally measurable function bounded from below. As before, π1 and π2 stand
for the projecting maps of X ×X onto the first and the second coordinates,
respectively. The corresponding marginals of a measure µ ∈ C(X ×X)∗+ are
designated as π1µ and π2µ.

The MKP with a given marginal difference is to find the optimal value

A(c; ρ) := inf{c(µ) : µ ≥ 0, π1µ− π2µ = ρ}, (21)

where
c(µ) :=

∫
X×X

c(x, y)µ(d(x, y)). (22)

The dual problem is to find the optimal value
5For the sake of simplicity, we assume X to be compact; however, the correspond-

ing duality theorems (Theorems 2 and 3 below) hold true for more general spaces
(in particular, for any Polish space); see [32, Theorems 9.2 and 9.4], [42, Theorem
1.2] and [43, Theorem 10.1 and 10.2].
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B(c; ρ) := sup{〈u, ρ〉 : u ∈ Q(c)}, (23)

where
Q(c) = {u ∈ C(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}. (24)

(Note that A(c; ρ) = B(c; ρ) = +∞ when ρX �= 0.)
Suppose H is as in Example 2, E := C(X), E′ := C(X)∗, 〈e, e′〉E := 〈u, σ〉

for all e = u ∈ E, e′ = σ ∈ E′, K := E, and A : E → C(X ×X) is given by
Ae(x, y) := u(x) − u(y), e = u. Clearly, H = AK, Q(c) = A−1(H(c)) (hence
H(c) is nonempty if and only if Q(c) is such), and

A(c; ρ) = v′II(c; e
′
0), B(c; ρ) = v′I(c; e

′
0), (25)

where e′0 = ρ, v′I(c; e
′
0) and v′II(c; e

′
0) are given by (13) and (14), respectively.

Note that

dom v′I(c; ·) = domA(c; ·) ⊆ A∗C(X ×X)∗+ = {ρ ∈ C(X)∗ : ρX = 0}.

Let U(X) stands for the class of all bounded universally measurable func-
tions on X,

Q(c;U(X)) := {v ∈ U(X) : v(x)− v(y) ≤ c(x, y) ∀(x, y) ∈ X ×X}.

Theorem 2. (cf. [47, Theorems 3.1, 3.2 and 4.4], [42, Theorem 1.2], [43, The-
orem 10.1]). Suppose that c is an universally measurable function vanishing
on the diagonal D = {(x, x) : x ∈ X} and satisfying the triangle inequality,
the following statements are then equivalent:

(a) c is H-convex relative to H from Example 2, that is Q(c) �= ∅ and

c(x, y) = sup{u(x)− u(y) : u ∈ Q(c)} for all x, y ∈ X; (26)

(b) c is bounded below and lsc;
(c)Q(c) �= ∅, and the duality relation A(c; ρ) = B(c; ρ) holds for all ρ ∈

C(X)∗;
(d)Q(c;U(X)) �= ∅, and the duality relation A(c; ρ) = B(c; ρ) holds for

all ρ ∈ C(X)∗, ρX = 0.
Moreover, if these equivalent statements hold, then, for any ρ, ρX = 0,

and for any positive measures σ1, σ2 with σ1−σ2 = ρ, there is a measure µ ∈
C(X ×X)∗+ such that π1µ = σ1, π2µ = σ2 and A(c; ρ) = C(c;σ1, σ2) = c(µ).

Proof. (a) ⇒ (b) and (c) ⇒ (d) are obvious; as for (b) ⇒ (a), see Example
2. The implication (a) ⇒ (c) and the latter statement of the theorem follow
from Corollary 4 if one takes into account Example 2 along with identities
(25). The proof will be complete if we show that (d) implies (a). Suppose (26)
fails; then

c(x0, y0) > sup{u(x0)− u(y0) : u ∈ Q(c)} = B(c; δx0 − δy0) (27)
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for some x0, y0 ∈ X with x0 �= y0; hence, B(c; δx0 − δy0) < +∞. We define the
function

c′(x, y) := min{c(x, y)− v(x) + v(y), N}+ v(x)− v(y), (28)

where v ∈ Q(c;U(X)),

N > max{0,B(c; δx0 − δy0)− v(x0) + v(y0)}. (29)

Clearly, it is bounded and universally measurable, and c′ ≤ c. Furthermore,
c′ satisfies the triangle inequality (this is easily derived from non-negativeness
of c(x, y) − v(x) + v(y)); therefore, w(x) := c′(x, y0) belongs to Q(c;U(X)).
Consider

B(c; ρ;U(X)) := sup{〈v′, ρ〉 : v′ ∈ Q(c;U(X))}

and note an obvious inequality

A(c; ρ) ≥ B(c; ρ;U(X)) ∀ρ, ρX = 0. (30)

Now, taking into account (28) - (30), one gets

A(c; δx0 − δy0) ≥ B(c; δx0 − δy0 ;U(X)) ≥ w(x0)− w(y0)
= c′(x0, y0) > B(c; δx0 − δy0),

which contradicts the duality relation. �

The next Proposition supplements Theorem 2.

Proposition 6. . Suppose c : X×X → IR is bounded universally measurable,
vanishes on the diagonal, and satisfies the triangle inequality, then Q(c;U(X))
is nonempty.

Proof. Let us fix an arbitrary point y0 ∈ X and consider the function v(x) =
c(x, y0). Clearly, it is universally measurable, real-valued and bounded, and
as c satisfies the triangle inequality, one has v ∈ Q(c;U(X)). �

Remark 4. Suppose that c : X × X → IR ∪ {+∞} satisfies the triangle in-
equality and vanishes on the diagonal. As follows from [47, Theorem 3.36],
Q(c;U(X)) is nonempty if c is Baire measurable or if its Lebesgue sublevel
sets L(c;α) = {(x, y) ∈ X × X : c(x, y) ≤ α}, α ∈ IR, are the results of
applying the A-operation to Baire subsets of X ×X. (If X is metrizable, the
latter means that all L(c;α) are analytic (Souslin).)

Now consider the case where the cost function c : X × X → IR ∪ {+∞}
vanishes on the diagonal but fails to satisfy the triangle inequality, and define
the reduced cost function c∗ associated with it as follows:

6See also [32, Theorem 9.2 (III)], where a more general result is proved.
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c∗(x, y) : = inf
n

inf
{

n+1∑
i=1

c(xi−1, xi) : xi ∈ X,x0 = x, xn+1 = y

}
= lim

n→∞ inf
{

n+1∑
i=1

c(xi−1, xi) : xi ∈ X,x0 = x, xn+1 = y

}
.

(31)

Clearly, c∗ ≤ c, c∗ satisfies the triangle inequality (we assume, by definition,
that +∞+ (−∞) = +∞), and H(c∗) = H(c); therefore, Q(c∗) = Q(c), and if
Q(c) is nonempty, then c∗ does not take the value −∞ and is bounded from
below. We get

B(c; ρ) = B(c∗; ρ) ≤ A(c∗; ρ) ≤ A(c; ρ) ∀ρ ∈ C(X)∗. (32)

Proposition 7. Suppose c∗ is universally measurable. If Q(c) is nonempty
and A(c; ρ) = B(c; ρ) for all ρ ∈ C(X)∗, then c∗ is H-convex and c∗ =
coH(c) = c# where c# is given by (12). In such a case,

c∗(x, y) = sup
u∈Q(c)

(u(x)− u(y)) for all x, y ∈ X. (33)

Proof. It follows from (32) that A(c∗; ρ) = B(c∗; ρ) for all ρ ∈ C(X)∗. Note
that c∗ vanishes on the diagonal because c vanishes on the diagonal and
Q(c∗) = Q(c) �= ∅. Now, applying Theorem 2 yields H-convexity of c∗,
and as H(c) = H(c∗), one gets c∗ = coH(c). Finally, the duality relation
A(c; δx − δy) = B(c; δx − δy) may be rewritten as vI(c; δ(x,y)) = vII(c; δ(x,y))
(see Remark 3), and applying Proposition 4 and Corollary 3 yields c# =
coH(c). �

Remark 5. As is proved in [47, Lemma 4.2], if the Lebesgue sublevel sets of c,
L(c;α) = {(x, y) ∈ X ×X : c(x, y) ≤ α}, α ∈ IR, are the results of applying
the A-operation to Baire subsets of X ×X, then Lebesgue sublevel sets of c∗,
L(c∗;α), α ∈ IR, have the same property hence c∗ proves to be universally
measurable.

The next result is a direct consequence of (32) and Theorem 2.

Proposition 8. If c∗ is H-convex and A(c; ρ) = A(c∗; ρ), then A(c; ρ) =
B(c; ρ).

Remark 6. As is established in [32, Theorem 9.6] and (for a metrizable case)
in [47, Theorem 2.1], a reduction theorem is true: if the Lebesgue sublevel sets
of c are the results of applying the A-operation to Baire subsets of X × X,
then A(c; ρ) = A(c∗; ρ) provided that the equality holds

A(c; ρ) = lim
N→∞

A(c ∧N ; ρ), (34)

where (c ∧ N)(x, y) = min{c(x, y), N}. (Note that, for a bounded c, (34) is
trivial.)
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Taking into account Remarks 5 and 6, the next result is derived from
Propositions 7, 8 and the reduction theorem.

Theorem 3. (cf. [47, Theorems 3.1 and 3.2], [32, Theorem 9.4], [43, Theorem
10.2]). Suppose that c is bounded from below and vanishes on the diagonal,
and that its sublevel sets are the results of applying the A-operation to Baire
subsets of X ×X. The following statements are then equivalent:

(a) the reduced cost function c∗ is H-convex, and condition (34) is satisfied
whenever ρX = 0;

(b)Q(c) is nonempty, and the duality relation A(c; ρ) = B(c; ρ) holds for
all ρ ∈ C(X)∗.

Proof. (a) ⇒ (b) Taking into account the reduction theorem (see Remark 6),
this follows from Proposition 8.

(b) ⇒ (a) In accordance with Remark 5, c∗ is universally measurable; then,
by Proposition 7, it isH-convex. It remains to show that (34) is satisfied. First,
note that, being a bounded function, every u ∈ Q(c) belongs to Q(c ∧ N),
where N = N(u) > 0 is large enough; therefore,

B(c; ρ) = lim
N↑∞

B(c ∧N ; ρ).

Now, by using the monotonicity of A(c; ρ) in c, one gets

A(c; ρ) ≥ lim sup
N↑∞

A(c ∧N ; ρ) ≥ lim inf
N↑∞

A(c ∧N ; ρ)

≥ lim
N↑∞

B(c ∧N ; ρ) = B(c; ρ),

which clearly implies (34). �

Corollary 5. Suppose c is Baire measurable, bounded from below, and van-
ishes on the diagonal. Then c∗ is H-convex if and only if Q(c) is nonempty
and A(c; ρ) = B(c; ρ) for all ρ ∈ C(X)∗.

3.3 A Connection Between Two Variants of MKP

Given compact Hausdorff topological spaces X and Y , we define X ⊕Y to be
the formal unionX∪Y of disjoint copies ofX and Y with the topology of direct
sum: by definition, a set G is open in X⊕Y if G∩X is open in X and G∩Y is
open in Y . Clearly, X⊕Y is compact, both X and Y are open-closed in it, and
C(X⊕Y ) = C(X)×C(Y ). Furthermore, C(X⊕Y )∗ = C(X)∗×C(Y )∗, that is
a pair (σ1, σ2) ∈ C(X)∗×C(Y )∗ is identified with a measure σ̂ ∈ C(X ⊕Y )∗,

σ̂B = σ1(B ∩X) + σ2(B ∩ Y ) for any Borel B ⊆ X ⊕ Y,

and every σ̂ ∈ C(X ⊕ Y )∗ is obtained in such a way. We shall write this as
σ̂ = (σ1, σ2).
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Given σ1 ∈ C(X)∗+ and σ2 ∈ C(Y )∗+, we associate them with the measures
σ̂1 = (σ1, 0), σ̂2 = (0, σ2) ∈ C(X ⊕ Y )∗+. Similarly, every µ ∈ C(X × Y )∗+ is
associated with the measure µ̂ ∈ C((X ⊕ Y )× (X ⊕ Y ))∗+,

µ̂B := µ(B ∩ (X × Y )) for any Borel B ⊆ (X ⊕ Y )× (X ⊕ Y ). (35)

Given a cost function c : X × Y → IR∪ {+∞}, every pair (u, v) ∈ Q′(c) is
identified with a function w ∈ C(X ⊕ Y ), w|X = u, w|Y = v, which belongs
to Q(ĉ) for

ĉ(z, z′) := sup{w(z)− w(z′) : w = (u, v) ∈ Q′(c)}, z, z′ ∈ X ⊕ Y, (36)

where Q′(c) ⊂ C(X⊕Y ) is defined as in (19). Clearly, ĉ is lsc, vanishes on the
diagonal, and satisfies the triangle inequality, c majorizes the restriction of ĉ
onto X ×Y , and Q(ĉ) = Q′(c). Note that if c coincides with the restriction of
ĉ onto X × Y then C(c;σ1, σ2) = C(ĉ; σ̂1, σ̂2).

Proposition 9. (cf. [42, Theorem 1.5] and [26, Lemma 7]). I. Given a cost
function c : X × Y → IR ∪ {+∞}, the following statements are equivalent:

(a) c is H-convex relative to H from Example 1;
(b) c is the restriction to X × Y of a function ĉ on (X ⊕ Y ) × (X ⊕ Y ),

which is H-convex relative to H ⊂ C((X ⊕ Y )× (X ⊕ Y )) from Example 2.
If these equivalent statements hold, then Q(ĉ) = Q′(c) and

A(ĉ; σ̂1 − σ̂2) = B(ĉ; σ̂1 − σ̂2) = C(c;σ1, σ2) = D(c;σ1, σ2) > −∞

whenever σ1 ∈ C(X)∗+, σ2 ∈ C(Y )∗+, σ1X = σ2Y .
II. If c ∈ C(X × Y ), then there is a continuous function ĉ satisfying (b).

Proof. I. This follows easily from Theorems 1 and 2 if one takes ĉ as given by
(36).

II. Define ĉ as follows:

ĉ(z1, z2) =

⎧⎪⎪⎨⎪⎪⎩
c(x, y), if z1 = x ∈ X, z2 = y ∈ Y ;

c1(x1, x2), if z1 = x1 ∈ X, z2 = x2 ∈ X;
c2(y1, y2), if z1 = y1 ∈ Y, z2 = y2 ∈ Y ;
c3(y, x), if z1 = y ∈ Y, z2 = x ∈ X,

(37)

where
c1(x1, x2) = max

y∈Y
(c(x1, y)− c(x2, y)) ,

c2(y1, y2) = max
x∈X

(c(x, y2)− c(x, y1)) ,
c3(y, x) = max

x1∈X,y1∈Y
(c(x1, y1)− c(x1, y)− c(x, y1)) .

Clearly, ĉ is continuous, vanishes on the diagonal, and ĉ|X×Y = c. More-
over, a direct testing shows that it satisfies the triangle inequality. Then ĉ is
H-convex with respect to H from Example 2, and the result follows. �

The next result supplements Theorem 1.
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Proposition 10. (cf. [26, Theorem 5]). Suppose c ∈ C(X×Y ), σ1 ∈ C(X)∗+,
σ2 ∈ C(Y )∗+, and σ1X = σ2Y , then there is an optimal solution (u, v) ∈
C(X)× C(Y ) to the dual MKP, that is, (u, v) ∈ Q′(c) and∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy) = D(c;σ1, σ2).

Proof. Take a function ĉ ∈ C((X ⊕ Y )× (X ⊕ Y )) from Proposition 9, II (see
(37)) and fix arbitrarily a point z0 ∈ X⊕Y . Since ĉ is continuous and vanishes
on the diagonal, the set

Q(ĉ; z0) := {w ∈ Q(ĉ) : w(z0) = 0}

is compact in C(X ⊕ Y ) and there exists a function w0 = (u, v) ∈ Q(ĉ; z0)
such that 〈w0, σ̂1 − σ̂2〉 = max{〈w, σ̂1 − σ̂2〉 : w ∈ Q(ĉ; z0)}. Now, taking into
account an obvious equality Q(ĉ) = Q(ĉ; z0) + IR and applying Proposition 9,
one gets ∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy) = 〈w0, σ̂1 − σ̂2〉

= max{〈w, σ̂1 − σ̂2〉 : w ∈ Q(ĉ)} = B(ĉ; σ̂1 − σ̂2) = D(c;σ1, σ2). �

3.4 Abstract Cyclic Monotonicity and Optimality Conditions for
MKP

Given a set X and a subset L in IRX , a multifunction F : X → L is called
L-cyclic monotone if, for every cycle x1, . . . , xm, xm+1 = x1 in domF =
{x ∈ X : F (x) �= ∅}, the inequality holds

m∑
k=1

(lk(xk)− lk(xk+1)) ≥ 0 (38)

whenever lk ∈ F (xk), k = 1, . . . ,m. By changing the sign of this inequality,
one obtains the definition of L-cyclic antimonotone multifunction. Clearly, F
is L-cyclic monotone if and only if −F is (−L)-cyclic antimonotone.

We say a function U : X → IR∪{+∞} is L-convex if it isH-convex relative
to

H := {hlα : hlα(x) = l(x)− α, (l, α) ∈ L× IR}. (39)

A function V : X → IR ∪ {−∞} is said to be L-concave if U = −V is (−L)-
convex.

Examples of L-cyclic monotone multifunctions are L-subdifferentials of L-
convex functions, ∂LU : X → L, where

∂LU(x) := {l ∈ L : l(z)− l(x) ≤ U(z)− U(x) for all z ∈ X}. (40)

Similarly, examples of L-cyclic antimonotone multifunctions are L-super-
differentials of L-concave functions, ∂LV : X → L, where
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∂LV (x) := {l ∈ L : l(z)− l(x) ≥ V (z)− V (x) for all z ∈ X}. (41)

It is obvious from the above definitions that, for every L-concave V ,

∂LV = ∂(−L)(−V ). (42)

Remark 7. The classic monotone (antimonotone) multifunctions can be con-
sidered as examples of L-cyclic monotone (resp., antimonotone) ones, an-
swering the case where X is a Hausdorff locally convex space, L = X∗

is the dual space, and l(x) = 〈x, l〉, x ∈ X, l ∈ L. Close notions of c-
monotonicity (c-antimonotonicity) and of c-subdifferentials of c-convex func-
tions (c-superdifferentials of c-concave functions) are widespread in literature;
e.g., see [12, 55, 63]. A connection between the corresponding L-concepts and
c-concepts is discussed in [40].

Given a multifunction F : X → L, we denote Z = domF := {z ∈ X :
F (z) �= ∅} and consider two functions Z × Z → IR ∪ {−∞} as follows:

ϕF (z1, z2) = ϕF,L(z1, z2) := inf{l(z1)− l(z2) : l ∈ F (z1)}, (43)

ψF (z1, z2) = ψF,L(z1, z2) := inf{l(z1)− l(z2) : l ∈ F (z2)}. (44)

Clearly, ψF,L(z1, z2) = ϕ(−F ),(−L)(z2, z1).

Remark 8. Note that if sup
l∈L

|l(z)| < ∞ for every z ∈ Z, then both the func-

tions are real-valued.

Given a function ζ : Z × Z → IR ∪ {−∞} vanishing on the diagonal
(ζ(z, z) = 0 ∀z ∈ Z), we consider the set

Q0(ζ) := {u ∈ IRZ : u(z1)− u(z2) ≤ ζ(z1, z2) ∀z1, z2 ∈ Z}. (45)

It follows from (45) that ifQ0(ζ) is nonempty, then ζ is real-valued. Clearly,
Q0(ζ) = Q0(ζ∗) where ζ∗ is the reduced cost function associated with ζ (for
the definition of the reduced cost function, see (31)). Also, observe that if Z is
a topological space and ζ is a bounded continuous function on Z×Z vanishing
on the diagonal, then Q0(ζ) = Q(ζ). (Here, Q(ζ) is defined for a compact Z
as in (26), and if Z is not compact, we define Q(ζ) to be the set of all bounded
continuous functions u satisfying (45).)

Theorem 4. ([40, Theorem 2.1]). A multifunction F : X → L is L-cyclic
monotone if and only if Q0(ϕF ) is nonempty.

Theorem 5. ([40, Theorem 2.2]). Suppose F : X → L is L-cyclic monotone.
Given a function u : Z = domF → IR ∪ {+∞}, the following statements are
equivalent:

(a)u ∈ Q0(ϕF );
(b)u is a restriction to Z of some L-convex function U : X → IR∪{+∞},

and F (z) ⊆ ∂LU(z) for all z ∈ Z.
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The next result extending a classical convex analysis theorem due to Rock-
afellar is an immediate consequence of Theorems 4 and 5.

Corollary 6. ([39], [40], [53]7). A multifunction F : X → L is L-cyclic
monotone if and only if there is a L-convex function U : X → IR ∪ {+∞}
such that F (x) ⊆ ∂LU(x) for all x ∈ X.

Suppose F : X → L is a L-cyclic monotone multifunction. We say F is
maximal L-cyclic monotone if F = T for any L-cyclic monotone multifunction
T such that F (x) ⊆ T (x) whenever x ∈ X.

Theorem 6. ([40, Theorem 2.3]). A multifunction F : X → L is maximal
L-cyclic monotone if and only if F = ∂LU for all L-convex functions U :
X → IR ∪ {+∞} satisfying U |domF ∈ Q0(ϕF ).

Remark 9. Theorem 6 is an abstract version of the corresponding classical re-
sult due to Rockafellar [58]. In classical setting,X is a Hausdorff locally convex
space, L = X∗ is the conjugate space, and l(x) = 〈x, l〉. In this case, L-convex
functions, their L-subdifferentials, and L-cyclic monotone multifunctions are,
respectively, convex lsc functions, their subdifferentials, and classical cyclic
monotone multifunction X → X∗. Rockafellar’s theorem says that maximal
cyclic monotone multifunctions are exactly the subdifferentials of lsc convex
functions, and if U1 and U2 are two such functions with ∂U1 = ∂U2, then
U1 − U2 is a constant function. However, in general case both these asser-
tions fail: there is a L-convex function, for which ∂LU is not maximal, and
there are two L-convex functions, U1 and U2, such that the multifunction
F = ∂LU1 = ∂LU2 is maximal L-cyclic monotone but the difference U1−U2 is
not constant. The corresponding counter-example can be seen in [40, Example
2.1].

Let X, Y be compact Hausdorff topological spaces. Given a cost function
c ∈ C(X × Y ), we consider the MKP with marginals σ1 and σ2, σ1X = σ2Y .
Recall (see subsection 3.1), that it is to find the optimal value

C(c;σ1, σ2) = inf{c(µ) : µ ∈ Γ (σ1, σ2)},

where c(µ) is given by (17),

Γ (σ1, σ2) = {µ ∈ C(X × Y )∗+ : π1µ = σ1, π2µ = σ2}.

We consider the set of real-valued functions on X,

L := {−c(·, y) : y ∈ sptσ2}. (46)

where the symbol spt stands for the support of the corresponding measure.
Every µ ∈ Γ (σ1, σ2) can be associated with the multifunction Fµ : X → L,

7See also [4, 12, 56, 61, 63], where close abstract results related to c-cyclic
monotonicity and c-subdifferentials of c-convex functions (c-cyclic antimonotonic-
ity and c-superdifferentials of c-concave functions) may be found.



52 V.L. Levin

Fµ(x) := {−c(·, y) : (x, y) ∈ sptµ}. (47)

(Fµ is well-defined because the projection of (a compact set) sptµ onto Y is
exactly sptσ2.)

Note that for F = Fµ function (43) takes the form

ϕFµ
(z1, z2) = inf

y:(z1,y)∈sptµ
(c(z2, y)− c(z1, y)). (48)

Furthermore, since c is continuous and sptµ is compact, infimum in (48)
is attained whenever z1 ∈ Z = domFµ = π1(sptµ) = sptσ1, and the function
ϕFµ

is continuous and vanishes on the diagonal in Z×Z; therefore, Q0(ϕFµ
) =

Q(ϕFµ
).

Theorem 7. (cf. [40, Theorem 5.1] and [44, Theorem 2.1]). Given a measure
µ ∈ Γ (σ1, σ2), the following statements are equivalent:

(a)µ is an optimal solution to the MKP, that is c(µ) = C(c;σ1, σ2);
(b) the set Q0(ϕFµ

) = Q(ϕFµ
) is nonempty;

(c)Fµ is L-cyclic monotone.

Proof. (a) ⇒ (b) By Proposition 10, there is an optimal solution (u, v) to
the dual MKP; therefore,

D(c;σ1, σ2) =
∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy), (49)

and taking into account the duality relation C(c;σ1, σ2) = D(c;σ1, σ2) (see
Theorem 1), (49) can be rewritten as

c(µ) =
∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy). (50)

Furthermore, since π1µ = σ1, π2µ = σ2, and (u, v) ∈ Q′(c), (50) implies

u(x)− v(y) = c(x, y) whenever (x, y) ∈ sptµ. (51)

Note that π1( sptµ) is closed as the projection of a compact set; therefore,
Z = domFµ = π1( sptµ) = sptσ1, and (51) means

u(z)− v(y) = c(z, y) whenever z ∈ Z, l = −c(·, y) ∈ Fµ(z). (52)

Now, given any z, z′ ∈ Z, and l ∈ Fµ(z) = {−c(·, y) : (z, y) ∈ sptµ}, we
derive from (52) u(z′)− u(z) = u(z′)− c(z, y)− v(y) ≤ c(z′, y)− c(z, y), and
taking infimum over all y with (z, y) ∈ sptµ, yields u(z′)− u(z) ≤ ϕFµ

(z, z′)
hence (−u) ∈ Q(ϕFµ

).
(b) ⇒ (a) Since every measure from Γ (σ1, σ2) vanishes outside the set

sptσ1 × sptσ2, one can consider µ as a measure on Xµ × Yµ (instead of
X × Y ), where Xµ = sptσ1, Yµ = sptσ2. It suffices to show that µ is an
optimal solution to the MKP on Xµ × Yµ.
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Note that u ∈ Q(ϕFµ
) means

u(z1)− u(z2) ≤ c(z2, y)− c(z1, y) (53)

whenever (z1, y) ∈ sptµ. Let us define

v(y) := − inf
z:(z,y)∈spt µ

(u(z) + c(z, y)), y ∈ Yµ. (54)

Since sptµ is compact and u, c are continuous, the infimum in the right-hand
side of (54) is attained and v proves to be a bounded lsc function on Yµ.
Moreover, it follows from (53) that

−u(z)− v(y) ≤ c(z, y) ∀(z, y) ∈ Xµ × Yµ (55)

and
−u(z)− v(y) = c(z, y) ∀(z, y) ∈ sptµ. (56)

Note now that (56) implies∫
Xµ

(−u)(x)σ1(dx)−
∫

Yµ

v(y)σ2(dy) = c(µ). (57)

We derive from (57) that D′(c;σ1, σ2) ≥ c(µ) ≥ C(c;σ1, σ2), and as always
D′(c;σ1, σ2) ≤ C(c;σ1, σ2) (see (20)), µ is optimal.

(b) ⇔ (c) This is a particular case of Theorem 4. �

Remark 10. A different proof of a similar theorem is given in [40, Theorem
5.1] and [44, Theorem 2.1], where non-compact spaces are considered. A close
result saying that optimality of µ and c-cyclic antimonotonicity of sptµ are
equivalent may be found in [12].

We now turn to the Monge problem. Recall (see Introduction) that it is
to minimize the functional

F(f) :=
∫

X

c(x, f(x))σ1(dx)

over the set Φ(σ1, σ2) of measure-preserving Borel maps f : (X,σ1) → (Y, σ2).
(A map f is called measure-preserving if f(σ1) = σ2, that is σ1f

−1(BY ) =
σ2BY for every Borel set BY ⊆ Y .) Any f ∈ Φ(σ1, σ2) is associated with a
measure µf = (idX × f)(σ1) ∈ C(X × Y )∗+, as given by∫

X×Y

w(x, y)µf (d(x, y)) :=
∫

X

w(x, f(x))σ1(dx) ∀w ∈ C(X × Y ),

or, equivalently,
µfB := σ1{x ∈ X : (x, f(x)) ∈ B}

whenever B ⊆ (X × Y ) is Borel. It is easily seen that µf ∈ Γ (σ1, σ2) and
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F(f) = c(µf ). (58)

The measure µf is called a (feasible) Monge solution to MKP. It follows from
(58) that if there is an optimal solution to MKP which is the Monge solution
µf , then f is an optimal solution to the Monge problem and optimal values
of both problems coincide,

C(c;σ1, σ2) = F(f) = V(c;σ1, σ2), (59)

where V(c;σ1, σ2) = inf{F(f) : f ∈ Φ(σ1, σ2)}. In general case, C(c;σ1, σ2) ≤
V(c;σ1, σ2), and Φ(σ1, σ2) can be empty; however, in some particular cases
(59) holds true.

Remark 11. When X and Y are subsets in IRn, some existence (and unique-
ness) results for optimal Monge solutions based on conditions of c-cyclic
monotonicity (antimonotonicity) may be found in [3], [5], [6], [12], [39],
[40], [55], [65]. In most of these publications, cost functions of the form
c(x, y) = ϕ(x − y) are considered. (Note that, since a pioneer paper by Su-
dakov [64],8 much attention is paid to cost functions c(x, y) = ‖x − y‖ for
various norms ‖ · ‖ in IRn; for such cost functions the optimal solution is not
unique.) Several existence and uniqueness theorems for general cost functions
are established in [39, 40].

Notice that for a continuous f ∈ Φ(σ1, σ2) and µ = µf one has sptµ =
{(z, f(z)) : z ∈ sptσ1}; therefore, Fµ as given by (47) is single-valued,
Fµ(x) = −c(·, f(x)), and

ϕFµ
(z1, z2) = ϕf (z1, z2) := c(z2, f(z1))− c(z1, f(z1)).

The next optimality criterion is then a direct consequence of Theorem 7.

Corollary 7. (cf. [44, Corollary 2.2]). Suppose f ∈ Φ(σ1, σ2) is continuous,
then µf is an optimal solution to MKP if and only if Q(ϕf ) is nonempty.

Remark 12. If f ∈ Φ(σ1, σ2) is discontinuous, then the support of µf is the
closure of the set {(z, f(z)) : z ∈ sptσ1}. In some cases, Corollary 7 and
its generalizations following from Theorem 7 enable to find exact optimal
solutions to concrete Monge problems; see [44, 45].

3.5 Some Generalizations

In this subsection we consider briefly some examples of H-convex functions
similar to Example 2 and some sets of type Q(c) and Q0(c) for cost functions
c that can fail to vanish on the diagonal.

Given an arbitrary infinite set X, l∞(X) and l∞(X × X) will denote
the linear spaces of bounded real-valued functions on X and X × X, re-
spectively. They are dual Banach spaces relative to the uniform norms

8In spite of a gap in Sudakov’s proof (see [3]), its main idea proves to be fruitful.
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‖u‖∞ = supx∈X |u(x)|, u ∈ l∞(X) and ‖w‖∞ = sup(x,y)∈X×X |w(x, y)|, w ∈
l∞(X ×X):

l∞(X) = l1(X)∗, l∞(X ×X) = l1(X ×X)∗.

Here, l1(Z) stands for the space of real-valued functions v on Z with at most
countable set spt v := {z ∈ Z : v(z) �= 0} and ‖v‖1 :=

∑
z∈spt v |v(z)| < ∞,

and the duality between l1(Z) and l∞(Z) is given by the bilinear form

〈v, u〉 :=
∑

z∈spt v

v(z)u(z), u ∈ l∞(Z), v ∈ l1(Z).

Given a cost function c : X ×X → IR ∪ {+∞}, the reduced cost function
c∗ is defined as follows:

c∗(x, y) := min

(
c(x, y), inf

n
inf

x1,...,xn

n+1∑
i=1

c(xi−1, xi)

)
, (60)

where x0 = x, xn+1 = y. Clearly, it turns into (31) when c vanishes on the
diagonal. Also, c∗ satisfies the triangle inequality c∗(x, y) + c∗(y, z) ≥ c∗(x, z)
for all x, y, z ∈ X if one takes, by definition, that (+∞) + (−∞) = (−∞) +
(+∞) = +∞.

Let us define a set

Q(c; l∞(X)) := {u ∈ l∞(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}. (61)

Note that if u ∈ Q(c; l∞(X)), then

u(xi−1)− u(xi) ≤ c(xi−1, xi), i = 1, . . . , n+ 1,

and summing up these inequalities with x0 = x, xn+1 = y yields

u(x)− u(y) ≤
n+1∑
i=1

(u(xi−1)− u(xi)) ≤
n+1∑
i=1

c(xi−1, xi).

This implies u ∈ Q(c∗; l∞(X)), and as c ≥ c∗, it follows that Q(c; l∞(X)) =
Q(c∗; l∞(X)).

Proposition 11. (cf. [33, Lemma 2] and [37, Theorem 4.1].) Suppose c∗ is
bounded from above, the following statements are then equivalent:

(a)Q(c; l∞(X)) �= ∅;
(b) c∗ ∈ l∞(X ×X);
(c) c∗(x, y) > −∞ for all x, y ∈ X;
(d) c∗(x, x) ≥ 0 for all x ∈ X;
(e) for all integers l and all cycles x0, . . . , xl−1, xl = x0 in X, the inequality

holds
∑l

i=1 c(xi−1, xi) ≥ 0;
(f) the function

c̄(x, y) =
{
c∗(x, y), if x �= y;
0, if x = y; (62)

is H-convex relative to H := {hu(x, y) = u(x)− u(y) : u ∈ l∞(X)}.
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Proof. (a) ⇒ (b) Suppose that u ∈ Q(c; l∞(X)). Since Q(c; l∞(X)) =
Q(c∗; l∞(X)), one has u(x) − u(y) ≤ c∗(x, y); therefore, c∗ is bounded from
below, and as, by hypothesis, c∗ is bounded from above, c∗ ∈ l∞(X ×X).

(b) ⇒ (a) Fix arbitrarily a point x0 ∈ X and set u(x) := c∗(x, x0). Clearly,
u ∈ l∞(X), and by the triangle inequality, u(x)−u(y) = c∗(x, x0)−c∗(y, x0) ≤
c∗(x, y) whenever x, y ∈ X, i.e., u ∈ Q(c∗; l∞(X) = Q(c; l∞(X)).

(b) ⇒ (c) Obvious.
(c) ⇒ (b) Since c∗ is bounded from above, one has c∗(x, y) < M < +∞

for all (x, y) ∈ X ×X. Suppose c∗ /∈ l∞(X), then there are points (xn, yn) ∈
X ×X such that c∗(xn, yn) < −n, and applying the triangle inequality yields
c∗(x, y) ≤ c∗(x, xn)+c∗(xn, yn)+c∗(yn, y) ≤ 2M−n; therefore c∗(x, y) = −∞.

(c) ⇒ (d) It follows from the triangle inequality that c∗(x, x) ≤ 2c∗(x, x)
whenever x ∈ X. Therefore, if c∗(x0, x0) < 0 for some x0 ∈ X, then
c∗(x0, x0) = −∞. (Moreover, in such a case, applying again the triangle in-
equality yields c∗(x, y) ≤ c∗(x, x0) + c∗(x0, x0) + c∗(x0, y) = −∞.)

(d) ⇒ (c) Suppose c∗(x, y) = −∞ for some (x, y) ∈ X ×X, then applying
the triangle inequality yields c∗(x, x) ≤ c∗(x, y) + c∗(y, x) = −∞.

(d) ⇔ (e) Obvious.
(b) ⇒ (f) Take a point x0 ∈ X and define ux0(x) := c∗(x, x0). One has

hux0
(x, y) = c∗(x, x0) − c∗(y, x0) ≤ c∗(x, y) = c̄(x, y) for any x �= y, and

hux0
(x, x) = 0 = c̄(x, x) for all x ∈ X. Thus, hux0

∈ H(c̄) whenever x0 ∈ X.
Moreover, for x0 = y one gets huy

(x, y) = c̄(x, y), and H-convexity of c̄ is thus
established.

(f) ⇒ (a) Obvious. �

Remark 13. It is easily seen that Q(c; l∞(X)) = Q(c̄; l∞(X)) and H(c̄) =
{hu : u ∈ Q(c; l∞(X))}.

Remark 14. It follows easily from the proof of Proposition 11 that if c∗ is
bounded from above then either all the statements (a) − (f) hold true or
c∗(x, y) = −∞ whenever (x, y) ∈ X ×X.

The following proposition is established by similar arguments, and so we
omit its proof.

Proposition 12. (cf. [32, 35]). Given a function c : X × X → IR ∪ {+∞}
such that c∗(x, y) < +∞ whenever x, y ∈ X, the following statements are
equivalent:

(a)Q0(c) := {u ∈ IRX : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X} �= ∅;
(b) c∗(x, y) > −∞ for all x, y ∈ X;
(c) c∗(x, x) ≥ 0 for every x ∈ X;
(d) for all integers l and all cycles x0, . . . , xl−1, xl = x0 in X, the inequal-

ity holds
∑l

i=1 c(xi−1, xi) ≥ 0.
(e) the function c̄, as given by (62), is H-convex with respect to H =

{hu(x, y) = u(x)− u(y) : u ∈ IRX}.

Remark 15. It is easily seen that H(c̄) = {hu : u ∈ Q0(c)}.
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Remark 16. If X is a domain in IRn and c is a smooth function vanishing
on the diagonal, then either Q0(c) is empty or Q0(c) = {u + const} where
∇u(x) = −∇yc(x, y)|y=x; see [33, 35, 36]. Second-order conditions (necessary
ones and sufficient ones) for Q0(c) to be nonempty are given in [33, 35, 36, 46].

Let E(X) be a closed linear subspace in l∞(X) containing constant func-
tions, separating points of X (that is, for any x, y ∈ X there is a function
u ∈ E(X), u(x) �= u(y)), and such that u, v ∈ E(X) implies uv ∈ E(X). Then
E(X) is a (commutative) Banach algebra with respect to the uniform norm
‖u‖ = sup

x∈X
|u(x)| and the natural (pointwise) multiplication. (Also, E(X) is a

Banach lattice; see [43].) As is known from theory of Banach algebras [13, 51],
the set κX of all non-zero multiplicative linear functionals on E(X) is a weak∗

compact subset in E(X)∗, X is dense in κX 9, and an isometry of Banach
algebras (Gelfand’s representation), A : E(X) → C(κX), AE(X) = C(κX),
holds as follows:

Au(δ) := 〈u, δ〉, u ∈ E(X), δ ∈ κX.

Let us give three examples of Banach algebras E(X). They are as follows:
1.Cb(X) - the Banach algebra of bounded continuous real-valued functions

on a completely regular Hausdorff topological space X. (In this case, κX =
βX is the Stone-Čech compactification of X.)

2.U(X) - the Banach algebra of bounded universally measurable real-
valued functions on a compact Hausdorff topological space X (we have yet
met it in subsection 3.2).

3.L∞(IRn) - the Banach algebra of bounded Lebesgue measurable real-
valued functions on IRn (Lebesgue equivalent functions are not identified).
This algebra will be of use in section 5.

Given a set X, a cost function c : X ×X → IR ∪ {+∞}, and an algebra
E(X), one can define the set

Q(c;E(X)) := {u ∈ E(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}

and a class of functions on X ×X,

H := {hu : hu(x, y) = u(x)− u(y), u ∈ E(X)}.

Clearly, H(c) = Q(c;E(X)) and c is H-convex if and only if

c(x, y) = sup{u(x)− u(y) : u ∈ Q(c;E(X))}

whenever x, y ∈ X.
Moreover, Q(c;E(X)) proves to be the constraint set for an abstract (non-

topological) variant of the dual MKP with a given marginal difference, andH-
convexity arguments play important role in the corresponding duality results;
see [37, 38] for details.

9A point x ∈ X is identified with the functional δx ∈ κX, 〈u, δx〉 = u(x), u ∈
E(X).
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Similarly, given a cost function c : X × Y → IR∪ {+∞}, one can take two
algebras, E1(X) and E2(Y ), and consider the set in their product,

Q′(c;E1(X), E2(Y )) := {(u, v) : u(x)− v(y) ≤ c(x, y) ∀x ∈ X, y ∈ Y },

and a class of functions on X × Y ,

H := {huv : huv(x, y) = u(x)− v(y), (u, v) ∈ E1(X)× E2(Y )}.

Clearly, H(c) = Q′(c;E1(X), E2(Y )) and c is H-convex if and only if

c(x, y) = sup{u(x)− v(y) : (u, v) ∈ Q′(c;E1(X), E2(Y ))}

whenever (x, y) ∈ X × Y .
Moreover, Q′(c;E1(X), E2(Y )) is the constraint set for an abstract vari-

ant of the dual MKP with given marginals, and H-convexity arguments play
important role in the corresponding duality results; see [38].

4 Applications to Mathematical Economics

In this section, we present briefly several applications to mathematical eco-
nomics. In all the applications, properties of the sets Q(c) and Q0(c) for var-
ious particular cost functions c are considered. The corresponding results are
based on conditions for these sets to be nonempty.

4.1 Utility Theory

A preorder on a set X is a binary relation � which is reflexive (x � x for all
x ∈ X) and transitive (for any x, y, z ∈ X, x � y, y � z imply x � z). A
preorder � is called total if any two elements of X, x and y, are compatible,
that is x � y or y � x. A preorder � on a topological space X is called closed
if its graph, gr(�) := {(x, y) : x � y}, is a closed subset in X ×X.

Any preorder � can be treated as a preference relation, and it determines
two binary relations on X: the strict preference relation ≺,

x ≺ y ⇐⇒ x � y but not y � x,

and the equivalence relation ∼,

x ∼ y ⇐⇒ x � y and y � x.

A real-valued function u onX is said to be an utility function for a preorder
� if for any x, y ∈ X two conditions are satisfied as follows:

x � y ⇒ u(x) ≤ u(y), (63)
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x ≺ y ⇒ u(x) < u(y). (64)

Clearly, it follows from (63) that x ∼ y ⇒ u(x) = u(y).
The pair of conditions (63),(64) is equivalent to the single condition

x � y ⇔ u(x) ≤ u(y)

if and only if the preorder � is total. (Moreover, if � is total, then x ≺ y ⇔
u(x) < u(y) and x ∼ y ⇔ u(x) = u(y), that is, the preference relation is
completely determined by its utility function.)

One of fundamental results in the mathematical utility theory is the fa-
mous theorem due to Debreu [9, 10], which asserts the existence of a continu-
ous utility function for every total closed preorder on a separable metrizable
space. We’ll give here (see also [27, 28, 32]) some extensions of that theorem
to the case where the preorder is not assumed to be total. The idea of our
approach is to use a specific cost function c that vanishes on the graph of
the preorder and has appropriate semicontinuity properties. With help of the
duality theorem (Theorem 2) we’ll obtain a representation

gr(�) = {(x, y) : u(x) ≤ u(y) ∀u ∈ H} (65)

with H ⊆ Q(c). Moreover, sometimes it is possible to choose a countable
H = {uk : k = 1, 2, . . . }, and in such a case

u0(x) =
∞∑

k=1

2−k uk(x)
1 + |uk(x)|

proves to be a continuous utility function for �.

Theorem 8. ([22, 27]). Let � be a closed preorder on a compact metrizable
space X. Then gr(�) has a representation (65) with a countable H; hence
there is a continuous utility function for �.

Proof.10 Consider on X ×X the cost function

c(x, y) =
{

0, if x � y;
+∞, otherwise.

It satisfies the triangle inequality and vanishes on the diagonal because � is
transitive and reflexive. Also, it is lsc because � is closed. It follows from
Theorem 2 that Q(c) is nonempty and

c(x, y) = sup
u∈Q(c)

(u(x)− u(y));

therefore,
gr(�) = {(x, y) : u(x) ≤ u(y) ∀u ∈ Q(c)}.

Since C(X) is separable, one can choose a dense countable subset H in Q(c).
Then (65) holds with that H, and the result follows. �

The next result is derived from Theorem 8.
10This proof follows [27]; a proof in [22] is different.
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Corollary 8. . ([28, 32]). Theorem 8 is extended to X being a separable metriz-
able locally compact space.

Theorem 9. ([31]). Let � be a preorder on a separable metrizable space X,
the following statements are then equivalent:

(a) a representation (65) holds with a countable family H ⊂ Cb(X);
(b)� is a restriction to X of a closed preorder �1 on X1, where X1 is a

metrizable compactification of X.
If these equivalent statements hold true, then there is a continuous utility

function for �.

We consider now the following question. Given a closed preorder �ω de-
pending on a parameter ω, when is there a continuous utility, i.e. a jointly
continuous real-valued function u(ω, x) such that, for every ω, u(ω, ·) is a
utility function for �ω? This question arises in various parts of mathematical
economics. In case of total preorders �ω, some sufficient conditions for the
existence of a continuous utility were obtained in [8, 48, 50, 52]. The cor-
responding existence results are rather special consequences of the following
general theorem.

Theorem 10. ([28, 32]). Suppose that Ω and X are metrizable topological
spaces, and X, in addition, is separable locally compact. Suppose also that for
every ω ∈ Ω a preorder �ω is given on X, and that the set {(ω, x, y) : x �ω y}
is closed in Ω×X×X. Then there exists a continuous utility u : Ω×X → [0, 1].

Proof (the case where Ω is separable locally compact).11 Let us define a pre-
order � on Ω ×X,

(ω1, x1) � (ω2, x2) ⇐⇒ ω1 = ω2, x1 �ω1 x2.

It is obviously closed, and as Ω ×X is separable locally compact, the result
follows from Corollary 8. �

Remark 17. Observe that if all �ω are total then the condition that the set
{(ω, x, y) : x �ω y} is closed in Ω ×X ×X is necessary (as well as sufficient)
for the existence of a continuous utility u : Ω ×X → [0, 1].

Let P denote the set of all closed preorders on X. By identifying a preorder
�∈ P with its graph inX×X, we consider in P the topology t which is induced
by the exponential topology on the space of closed subsets in the one-point
compactification of X×X (for the definition and properties of the exponential
topology, see [23]). Obviously, (P, t) is a metrizable space. The next result is
obtained by applying Theorem 10 to Ω = (P, t).
Corollary 9. (Universal Utility Theorem [28, 32]). There exists a continuous
function u : (P, t) × X → [0, 1] such that u(�, ·) is a utility function for �
whenever �∈ P.

11For the sake of simplicity, we restrict ourselves to the case where Ω is separable
and locally compact. In the general case, the proof makes substantial use of a version
of Michael’s continuous selection theorem in a locally convex Fréchet space.
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4.2 Demand Analysis

Given a price set P ⊆ int IRn
+, we mean by a demand function any map f :

P → int IRn
+. We will say that an utility function U : IRn

+ → IR+ rationalizes
f if, for every p ∈ P ,

q ∈ IRn
+, p · q ≤ p · f(p) =⇒ U(f(p)) ≥ U(q). (66)

Theorem 11. (cf. [46, Corollary 3]). Given a function f : P → int IRn
+, the

following statements are equivalent:
(a) there is a positive homogeneous utility function U : IRn

+ → IR+, which
is strictly positive on f(P ) and rationalizes f ;

(b) there is a positive homogeneous continuous concave utility function U :
IRn

+ → IR+, which is strictly positive on f(P ) and rationalizes f ;
(c) for a cost function ξ on P × P , as given by

ξ(p, p′) := ln(p′ · f(p))− ln(p′ · f(p′)),

the set Q0(ξ) is nonempty;
(d) for every cycle p1, . . . , pl, pl+1 = p1 in P , the inequality holds true

l∏
k=1

pk+1 · f(pk) ≥
l∏

k=1

pk · f(pk);

(e) there is a strictly positive solution to the system

u(p) ≥ p · f(p)
p · f(p′)

u(p′) for all p, p′ ∈ P. (67)

Proof. (b) ⇒ (a) Obvious.
(a) ⇒ (e) Define u(p) := U(f(p)), p ∈ P . Since for every q ∈ IRn

+,

p · p · f(p)
p · q q = p · f(p),

it follows from (66) that

p · f(p)
p · q U(q) = U

(
p · f(p)
p · q q

)
≤ U(f(p)),

which implies (67) for q = f(p′).
(e) ⇒ (c) Since a solution u(p) to (67) is strictly positive, it follows that

v(p) := lnu(p) makes sense and belongs to Q0(ξ).
(c) ⇔ (d) This is an easy consequence of Proposition 12.
(c) ⇒ (e) Suppose v ∈ Q0(ξ), then u(p) = ev(p) is strictly positive and

satisfies (67).
(e) ⇒ (b) Let us define
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U(q) := inf
p′∈P

u(p′)
p′ · f(p′)

p′ · q.

It follows easily from (67) that U(f(p)) = u(p) whenever p ∈ P , hence U is
strictly positive on f(P ). If now p · q ≤ p · f(p), then

U(q) ≤ u(p)
p · f(p)

p · q ≤ u(p) = U(f(p)),

that is U rationalizes f . Since U is clearly upper semi-continuous concave
(hence continuous; see [57, Theorem 10.2]) and positive homogeneous, the
implication is completely established. �

Remark 18. Statement (d) can be considered as a particular (strengthened)
version of the strong revealed preference axiom, and (e) generalizes the corre-
sponding variant of the Afriat—Varian theory (see [1, 2, 66, 67]) to the case of
infinite set of ‘observed data’. Further results on conditions for rationalizing
demand functions by concave utility functions with nice additional properties
in terms of non-emptiness of sets Q0(ϕ) for various price sets P and some
specific cost functions ϕ on P × P may be found in [46].

4.3 Dynamics Models

In this subsection (see also [35, 36, 37]), we consider an abstract dynamic
optimization problem resembling, in some respects, models of economic system
development.

Suppose X is an arbitrary set and a : X → X is a multifunction with
nonempty values. Its graph, gr(a) = {(x, y) : y ∈ a(x)}, may be considered
as a continual net with vertices x ∈ X and arcs (x, y) ∈ gr(a), respectively.
A finite sequence of elements of X, χ = (χ(t))T

t=0 (where T = T (χ) < +∞
depends on χ), satisfying

χ(t) ∈ a(χ(t− 1)), t = 1, . . . , T,

is called a (finite) trajectory. We assume that the connectivity hypothesis is
satisfied: for any x, y ∈ X, there is a trajectory χ that starts at x (χ(0) = x)
and finishes at y (χ(T ) = y).

Given a terminal function l : X ×X → IR ∪ {+∞} with dom l �= ∅ and a
cost function c : X ×X → IR ∪ {+∞} with dom c = gr(a), the payment for
moving along the trajectory χ equals

g(χ) := l(χ(0), χ(T )) +
T∑

t=1

c(χ(t− 1), χ(t)).

The problem is to minimize g(χ) over the set τ of all trajectories.
Observe that the connectivity hypothesis can be rewritten as
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c∗(x, y) < +∞ for all x, y ∈ X,

and the optimality of a trajectory χ̄ means exactly

g(χ̄) = min{l(x, y) + c∗(x, y) : x, y ∈ X}. (68)

Theorem 12. ([35, Theorem 7.1]). Suppose X is a compact topological space,
both functions on X × X, l and c, are lsc, and c(x, y) > 0 for all x, y ∈ X.
Then there exists an optimal trajectory.

An important particular case of the above problem is to minimize the
functional

g1(χ) :=
T (χ)∑
t=1

c(χ(t− 1), χ(t))

over the set τ(X1, X2) of trajectories that start in X1 and finish in X2 (i.e.,
χ(0) ∈ X1, χ(T ) ∈ X2), where X1 and X2 are given subsets of X. This
problem is reduced to minimizing g(χ) over τ if one takes l to be the indicator
function of X1 ×X2 (i.e., l(x, y) = 0 for (x, y) ∈ X1 ×X2 and l(x, y) = +∞
otherwise).

The next result is a direct consequence of Theorem 12.

Corollary 10. ([35, Corollary 7.1]). Let X and c be as in Theorem 12, and
suppose that X1 and X2 are closed in X. Then there exists a trajectory χ̄ ∈
τ(X1, X2) minimizing g1 over τ(X1, X2).

We now return to the general (non-topological) version of the problem.

Theorem 13. ([35, Theorem 7.2]). A trajectory χ̄ = (χ̄(t))T
t=0 is optimal in

τ if and only if: (a) the equality holds

l(χ̄(0), χ̄(T )) + c∗(χ̄(0), χ̄(T )) = min{l(x, y) + c∗(x, y) : x, y ∈ X}, (69)

and (b) there is a function u ∈ Q0(c) satisfying

u(χ̄(t− 1))− u(χ̄(t)) = c(χ̄(t− 1), χ̄(t)), t = 1, . . . , T. (70)

An infinite sequence of elements of X, χ = (χ(t))∞t=0, satisfying

χ(t) ∈ a(χ(t− 1)), t = 1, 2, . . . ,

is called an infinite trajectory. Say an infinite trajectory χ = (χ(t))∞t=0 is
efficient if there exists T1 = T1(χ) < +∞ such that, for every T ≥ T1, the
finite trajectory χT := (χ(t))T

t=0 is optimal in τ .
The next result is derived from Theorem 13 with help of the Banach limit

technique; see [35, Theorem 7.4] for details.

Theorem 14. An infinite trajectory χ = (χ(t))∞t=0 is efficient if and only if:
(a) (69) holds for all T ≥ T1 and (b) there is a function u ∈ Q0(c) satisfying
(70) for all t.
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4.4 Economics of Corruption

Following [7] (see also [36, 56]), we briefly outline here some kind of principal-
agents models relating to economics of corruption and dealing with distorting
substantial economic information. Suppose there is a population of agents,
each of them is characterized by his state (a variable of economic information),
which is an element of some set X, and there is yet one agent called the
principal (State, monopoly, social planner, insurance company and so on).
The principal pays to an agent some amount of money u(x) which depends
on information x about agent’s state. It is assumed that the actual state of
the agent, y, cannot be observed directly by the principal; therefore, agents
have a possibility to misrepresent at some cost12 the relevant information
to the principal. Thus, we assume that an agent can at the cost c(x, y) to
misrepresent his real state y into the state x without being detected. In such
a case, his income equals u(x) − c(x, y). The cost function c may take the
value +∞, which occurs when x is too far from y for falsifying y into x be
possible without being detected. Also, it is assumed that c(y, y) = 0; therefore,
if an agent gives true information to the principal, then his income equals the
payoff u(y). If now there is an x ∈ X such that u(x)−c(x, y) > u(y), then, for
an agent with the actual state y, it proves to be profitable to falsify his state
information. Say, in a model of collusion with a third party, an agent with the
actual state y and a supervisor may agree to report the state x maximizing
their total income u(x)− c(x, y) and then to share between them the surplus
u(x)− c(x, y)− u(y) > 0. Similar situations arise in other models (insurance
fraud, corruption in taxation); see [7] for details.

Thus, given a cost function c : X × X → IR+ ∪ {+∞} vanishing on the
diagonal, a question arises, whether the payoff function u : X → IR is non-
manipulable or collusion-proof in the sense that it is in the interest of each
agent to be honest. The answer is affirmative if and only if u ∈ Q0(c).

5 An Application to Approximation Theory

In this section, we deal with some best approximation problems.
Let us consider a linear subspace in l∞(X ×X),

H0 := {u(x)− u(y) : u ∈ l∞(X)}. (71)

Given a function f ∈ l∞(X ×X), the problem is to find the value

m(f ;H0) := min
h∈H0

‖f − h‖∞ = min
u∈l∞(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)|. (72)

Note that the minimum in (72) is attained at some h = hu ∈ H0,
hu(x, y) = u(x)− u(y), because closed balls in the dual Banach space l∞(X)

12For instance, by colluding with a third party (expert, supervisor, tax officer).
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are weak∗ compact and the functional on l∞(X), u �→ supx,y∈X |f(x, y) −
u(x) + u(y)| is weak∗ lsc. Moreover, (72) can be rewritten as

m(f ;H0) = min{α > 0 : Q(c+ α; l∞) �= ∅}, (73)

where
c(x, y) := min(f(x, y),−f(y, x)), x, y ∈ X, (74)

and there exists a function u in Q(c+m(f ;H0); l∞).
A topological analog of this problem is as follows. Given a completely

regular Hausdorff topological space X, a subspace H0 in Cb(X ×X),

H0 := {u(x)− u(y) : u ∈ Cb(X)}, (75)

and a function f ∈ Cb(X ×X), one has to find the value

m(f ;H0) := inf
h∈H0

‖f − h‖ = inf
u∈Cb(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)|. (76)

Recall (see subsection 3.5) that, for every topological space X, Cb(X) denotes
the space of bounded continuous real-valued functions on it with the uniform
norm ‖u‖ = supx∈X |u(x)|. Clearly, (76) is equivalent to

m(f ;H0) = inf{α > 0 : Q(c+ α;Cb(X)) �= ∅}, (77)

where c is given by (74).

Theorem 15. ([37, Theorem 5.1]). For every f ∈ l∞(X ×X),

m(f ;H0) = − inf
1
n

n∑
i=1

c(xi−1, xi), (78)

and if X is a compact space, then for every f ∈ C(X ×X),

m(f ;H0) = − inf
1
n

n∑
i=1

c(xi−1, xi). (79)

Here, both infima, in (78) and (79), are taken over all integers n and all cycles
x0, . . . , xn−1, xn = x0 in X.

Proof. As follows from (73), for every α > m(f ;H0) there is a function u ∈
Q(c+ α; l∞). Then u(xi−1)− u(xi) ≤ c(xi−1, xi), i = 1, . . . , n, and summing
up these inequalities yields

0 =
n∑

i=1

(u(xi−1)− u(xi)) ≤
n∑

i=1

(c(xi−1, xi) + α) =
n∑

i=1

c(xi−1, xi) + nα

(this follows also from implication (a) ⇒ (e) of Proposition 11); therefore,

α ≥ − inf 1
n

n∑
i=1

c(xi−1, xi), and
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m(f ;H0) = inf{α : Q(c+ α; l∞) �= ∅} ≥ − inf
1
n

n∑
i=1

c(xi−1, xi). (80)

Suppose now that α < m(f ;H0). Then Q(c + α; l∞) = ∅, and taking
into account Remark 14, one has (c + α)∗ ≡ −∞; therefore, there is a cycle
x0, . . . , xn−1, xn = x0 such that

∑n
i=1 c(xi−1, xi) + nα < 0. One obtains

α < − 1
n

n∑
i=1

c(xi−1, xi) ≤ − inf
1
n

n∑
i=1

c(xi−1, xi),

and as this holds true whenever α < m(f ;H0), one gets

m(f ;H0) ≤ − inf
1
n

n∑
i=1

c(xi−1, xi), (81)

and (78) follows from (80),(81).
The proof of (79) is similar if one replaces Q(c + α; l∞) with Q(c + α)

and takes into account that for every c ∈ C(X ×X) and every α ∈ IR either
(c+ α)∗ ∈ C(X ×X) or (c+ α)∗ ≡ −∞ (see [47, Lemma 2.4], where a more
general result is established). �

Corollary 11. If X is a compact topological space and f ∈ C(X ×X), then
m(f ;H0) = m(f ;H0).

Remark 19. If X is a non-compact completely regular Hausdorff topological
space, one can pass to its Stone-Čech compactification X ′ = βX. Taking into
account the natural linear isometry Cb(X) = C(X ′), the next result is an easy
consequence of Theorem 15.

Corollary 12. Theorem 15 is extended to X being any completely regular
Hausdorff topological space provided that f ∈ C(X ′ × X ′), C(X) in (75) is
replaced with Cb(X), and max in (76) is replaced with sup.

Note that C(βX×βX) can be considered as the closure in Cb(X×X) of the
subspace of finite sums f(x, y) =

∑n
1 ak(x)bk(y), ak, bk ∈ Cb(X), k = 1, . . . , n.

Say u ∈ Cb(X) is an exact solution to the approximation problem if the
infimum in the right-hand side of (76) is attained at it, that is m(f ;H0) =
supx,y∈X |f(x, y) − u(x) + u(y)|. It follows from (77) that u ∈ Cb(X) is an
exact solution if and only if it belongs to Q(c+m(f ;H0);Cb(X)); therefore,
exact solutions exist if and only if Q(c+m(f ;H0);Cb(X)) is nonempty.

Let Cn,∞ be the linear space of bounded infinitely differentiable real-valued
functions on IRn, H∞

0 a subspace in C2n,∞,

H∞
0 := {u(x)− u(y) : u ∈ Cn,∞}.
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Theorem 16. Suppose f(x, y) = g(x− y), where g ∈ Cb(IRn). Then

m(f ;H0) = m(f ;H∞
0 ) := inf

h∈H∞
0

‖f − h‖,

and there is a function u ∈ Cn,∞, which is an exact solution to the approxi-
mation problem:

m(f ;H0) = m(f ;H∞
0 ) = ‖f − hu‖, hu(x, y) = u(x)− u(y). (82)

To prove the theorem, some facts from the lifting theory [16]13 will be
needed. The main of them is the existence of a strong lifting of L∞(IRn). Recall
(see subsection 3.5), that L∞(IRn) is the space (Banach algebra and Banach
lattice) of bounded Lebesgue measurable real-valued functions on IRn with the
uniform norm on it, ‖u‖ = supx∈IRn |u(x)|, u ∈ L∞(IRn). A homomorphism
of Banach algebras (i.e., a multiplicative linear operator) ρ : L∞(IRn) →
L∞(IRn) is said to be a strong lifting of L∞(IRn) if four conditions are satisfied
as follows:

1. ρ is a projector, that is ρ2 = ρ;
2. for every u ∈ L∞(IRn), ρ(u) = u almost everywhere (a.e.), that is the

set {x ∈ IRn : ρ(u)(x) �= u(x)} is Lebesgue negligible;
3. for every u ∈ L∞(IRn), u = 0 a.e. implies ρ(u) ≡ 0;
4. ρ(u) ≡ u whenever u ∈ Cb(IRn).

It follows from these conditions along with linearity and multiplicativity of
ρ that ρ is also a homomorphism of Banach lattices, i.e. ρ(u∨v) = ρ(u)∨ρ(v)
and ρ(u∧ v) = ρ(u)∧ ρ(v) whenever u, v ∈ L∞(IRn). Furthermore, u ≥ v a.e.
implies ρ(u)(x) ≥ ρ(v)(x) for all x ∈ IRn.

The Lebesgue space L∞(IRn) is a Banach algebra and a Banach lat-
tice, and the operator π : L∞(IRn) → L∞(IRn) mapping every function
u ∈ L∞(IRn) into its Lebesgue equivalence class is a homomorphism both
of Banach algebras and of Banach lattices. Thus, π maps L∞(IRn) onto the
factor space L∞(IRn) = L∞(IRn)/N0 where N0 is the subspace in L∞(IRn)
consisting of Lebesgue negligible functions, and the standard norm in L∞(IRn)
is precisely the factor-norm with respect to π. Since ρ(u) = ρ(v) whenever
u− v ∈ N0, ρ generates a homomorphism of Banach algebras (and of Banach
lattices) ρ′ : L∞(IRn) → L∞(IRn) (a strong lifting of L∞(IRn)) such that
π ◦ ρ′ = idL∞(IRn) and ρ′ ◦ π = ρ.

Proof of Theorem 16. It follows from (77) that for every k there is a function
uk ∈ Q(c+m(f ;H0)+ 1

k ;Cb(IRn)). Fix an arbitrary point x0 in IRn and assume
without loss of generality that uk(x0) = 0. Then, for all x ∈ IRn, one has

−c(x0, x)−m(f ;H0)− 1 ≤ uk(x) ≤ c(x, x0) +m(f ;H0) + 1, k = 1, 2, . . . ;

13See also [30, 43], where connections between the lifting theory and abstract
convexity are given.
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therefore, the sequence (uk) is bounded in Cb(IRn). Now, taking into account
that Cb(IRn) is a closed linear subspace in L∞(IRn) and that L∞(IRn) =
L1(IRn)∗ is a dual Banach space, (uk) is bounded hence weak∗ precompact in
L∞(IRn). We shall assume by passing, if needed, to a subsequence14 that
the sequence (uk) converges weakly∗ to an element of L∞(IRn). In other
words, there exists a function v ∈ L∞(IRn) such that uk converges weakly∗ to
π(v). It follows that the sequence (uk(x) − uk(y)) ⊂ C(IR2n) ⊂ L∞(IR2n)
converges weakly∗ in L∞(IR2n) to the element of L∞(IR2n), which is the
Lebesgue equivalence class of the function v(x)−v(y). Now, as uk(x)−uk(y) ≤
c(x, y)+m(f ;H0)+ 1

k , and the positive cone L∞
+ (IR2n) is weakly∗ closed, one

gets
v(x)− v(y) ≤ c(x, y) +m(f ;H0) a.e. in IR2n. (83)

Let us define

N(y) := {x ∈ IRn : v(x)− v(y) > c(x, y) +m(f ;H0)}, y ∈ IRn.

It follows from (83) that the set

N := {y ∈ IRn : N(y) is not Lebesgue negligible}

is Lebesgue negligible. Consider y as a parameter and observe that, for every
y /∈ N , the inequality

v(x)− v(y) ≤ c(x, y) +m(f ;H0)

holds true for almost all x ∈ IRn. Applying a strong lifting ρ to both sides of
that inequality yields

ρ(v)(x)− v(y) ≤ c(x, y) +m(f ;H0) (84)

for all x ∈ IRn and all y /∈ N . Now, considering x as a parameter and applying
ρ to both sides of (84) yields

ρ(v)(x)− ρ(v)(y) ≤ c(x, y) +m(f ;H0) ∀x, y ∈ IRn, (85)

that is ρ(v) ∈ Q(c+m(f ;H0);L∞(IRn)).
We define u to be the convolution of ρ(v) and η,

u(x) = (ρ(v) ∗ η)(x) :=
∫

IRn

ρ(v)(x− z)η(z) dz, (86)

where η(z) := π−n/2e−z·z = π−n/2e−(z2
1+···+z2

n), z = (z1, . . . , zn) ∈ IRn.
Since η ∈ Cn,∞ and

∫
IRn ρ(v)(x − z)η(z) dz =

∫
IRn ρ(v)(z)η(x − z) dz, (86)

implies u ∈ Cn,∞.

14Since L1(IRn) is separable, the restriction of the weak∗ topology to any bounded
subset of L∞(IRn) is metrizable.
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Now, taking into account the form of the function f , one has c(x, y) =
min(g(x− y),−g(y − x)); hence, c(x− z, y − z) = c(x, y), and (85) implies

ρ(v)(x− z)− ρ(v)(y − z) ≤ c(x, y) +m(f ;H0) ∀x, y ∈ IRn. (87)

Multiplying (87) by η(z), integrating the obtained inequality by dz, and taking
into account that

∫
IRn η(z) dz = 1, one gets u(x)− u(y) ≤ c(x, y) +m(f ;H0)

for all x, y ∈ IRn. Thus, u ∈ Q0(c+m(f ;H0))∩Cn,∞, and the result follows.
�
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Summary. In this chapter, we present a unified formulation of generalized convex
functions. Based on these concepts, sufficient optimality conditions for a nondiffer-
entiable multiobjective programming problem are presented. We also introduce a
general Mond-Weir type dual problem of the problem and establish weak duality
theorem under generalized convexity assumptions. Strong duality result is derived
using a constraint qualification for nondifferentiable multiobjective programming
problems.
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1 Introduction

Convexity plays an important role in the design and analysis of successful al-
gorithms for solving optimization problems. However, the convexity assump-
tion must be weakened in order to tackle different real-world optimization
problems. Therefore, several classes of generalized convex functions have been
introduced in the literature and corresponding optimality conditions and du-
ality theorems for mathematical programming problems involving these gener-
alized convexities have been derived. In 1981, Hanson introduced the concept
of invexity in [10]. Optimality conditions and duality for different mathe-
matical programming problems with invex functions have also been obtained
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by other researchers. For example, Bector and Bhatia [4] studied minimax
programming problems and relaxed the convexity assumptions in the suffi-
cient optimality in Schmitendorf [26] using invexity. Jeyakumar and Mond
[12] introduced the concept of v-invexity, which can be seen as an exten-
sion of invexity, and derived optimality conditions and duality theorems for
multiobjective programming problems involving the generalized convexity.
Some other extensions of these generalized convexities can be found in [13],
[5] and [22]. Other classes of generalized convex functions were defined in
[27, 28, 11, 24, 27, 28, 5, 9, 18, 25, 6, 1, 32].

Liang et al. [14], [15] and [16] introduced a unified formulation of general-
ized convexity so called (F, α, ρ, d)-convexity. Recently, Yuan et al. [33] de-
fined (C, α, ρ, d)-convexity, which is a generalization of (F, α, ρ, d)-convexity,
and established optimality conditions and duality results for nondifferentiable
minimax fractional programming problems involving the generalized convex-
ity. Chinchuluun et al. [7] also considered nondifferentiable multiobjective
fractional programming problems under (C, α, ρ, d)-convexity assumptions.

On the other hand, Hanson and Mond [11] defined two new classes of
functions called type I and type II functions.

Based on type I functions and (F, α, ρ, d)-convexity, Hachimi and Aghez-
zaf [9] defined (F, α, ρ, d)-type I functions for differentiable multiobjective
programming problems and derived sufficient optimality conditions and dual-
ity theorems.

In this chapter, motivated by [9], [11] and [33], we introduce (C, α, ρ, d)-
type I functions. Based on the new concept of generalized convexity, we es-
tablish optimality conditions and duality theorems for the following nondif-
ferentiable multiobjective programming problem:

(VOP) min f(x) = (f1(x), · · · , fl(x))
s.t. x ∈ S = {x ∈ Rn| g(x) = (g1(x), · · · , gq(x)) � 0},

where fi : Rn → R, i = 1, 2, . . . , l, and gj : Rn → R, j = 1, 2, . . . , q, are
Lipschitz functions on Rn.

Throughout this chapter, we use the following notations. Let L = {1, . . . , l}
and Q = {1, . . . , q} be index sets for objective and constraint functions, re-
spectively. For x0 ∈ S, the index set of the equality constraints is denoted by
I(x0) = {j|gj(x0) = 0}. If x and y ∈ Rn, then

x � y ⇔ xi ≤ yi, i = 1, . . . , n;
x � y ⇔ x � y and x �= y;
x < y ⇔ xi < yi, i = 1, . . . , n.

We denote the Clarke generalized directional derivative of f at x in the direc-
tion y and Clarke generalized gradient of f at x by f◦(x; y) = (f◦1 (x; y), . . . ,
f◦l (x; y)) and ∂◦f(x) = (∂◦f1(x), . . . , ∂◦fl(x)), respectively [8].

Definition 1. We say that x0 ∈ S is an (a weak) efficient solution for problem
(VOP) if and only if there exists no x ∈ S such that f(x) � (<)f(x0).
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This chapter is organized as follows. In the next section, we introduce a
unified formulation of generalized convexity. Sufficient optimality conditions
for the multiobjective programming problem involving the new generalized
convexity are established in Section 3. In Section 4, we extend a constraint
qualification in [23] in terms of Hadamard type derivatives, relaxing some
assumptions. In the last section, we present the general mixed Mond-Weir
dual program for (VOP) and derive weak and strong duality results.

2 Definitions

Convexity plays a central role in mathematical programming. In addition,
several problems with nonconvex functions still have properties similar to
convex problems. By defining more general classes of functions, we are able
to understand the structures of more general optimization problems.

In this section we introduce a unified formulation of generalized convex
functions, which are extensions of (F, ρ, α, d) type-I functions presented in [9]
and (C, ρ, α, d)-convex functions presented in [33].

Let C : X ×X × Rn → R be convex with respect to the third argument
such that C(x,x0)(0) = 0 for any (x, x0) ∈ S × S. Let ρ = (ρ1, ρ2), where
ρ1 = (ρ1

1, . . . , ρ
1
l ) ∈ Rl, ρ2 = (ρ2

1, . . . , ρ
2
q) ∈ Rq. Let α = (α1, α2), where α1 =

(α1
1, . . . , α

1
l ), α

2 = (α2
1, . . . , α

2
q), and αi

j(·, ·) : Rn × Rn → R+\{0}, i = 1, 2,
j ∈ L or Q. d = (d1, d2) is a vector function, where d1 = (d1

1, . . . , d
1
l ), d

2 =
(d2

1, . . . , d
2
q), and di

j(·, ·) is pseudometric on Rn, i = 1, 2, j ∈ L or Q. We
assume that, for any a, b, c ∈ Rs, the symbol ab

c denotes
(

a1b1
c1
, . . . , asbs

cs

)
, and

the symbol a+b
c denotes

(
a1+b1

c1
, . . . , as+bs

cs

)
. If ξ = (ξ1, . . . , ξl) ∈ ∂◦ϕ(x0), then

C(x,x0)(ξ) denotes the vector (C(x,x0)(ξ1), . . . , C(x,x0)(ξl)). We are now ready
to present the new classes of functions.

(ϕ,ψ) is (C,α, ρ, d)-type I at x0, if for all x ∈ S we have

ϕ(x)− ϕ(x0)
α1(x, x0)

� C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0)
α2(x, x0)

� C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is pseudoquasi (strictly pseudoquasi) (C,α, ρ, d)-type I at x0, if for
all x ∈ S we have

ϕ(x) < (�)ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

< 0,∀ξ ∈ ∂◦ϕ(x0) (1)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is weak strictly-pseudoquasi (C,α, ρ, d)-type I at x0, if for all x ∈ S
we have
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ϕ(x) � ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

< 0,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is strong pseudoquasi(weak pseudoquasi) (C,α, ρ, d)-type I at x0, if
for all x ∈ S we have

ϕ(x) � (<)ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ξ ∈ ∂◦ϕ(x0) (2)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

(ϕ,ψ) is weak quasi-strictly-pseudo (C,α, ρ, d)-type I at x0, if for all x ∈ S
we have

ϕ(x) � ϕ(x0) ⇒ C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ξ ∈ ∂◦ϕ(x0)

−ψ(x0) � 0 ⇒ C(x,x0)(η) +
ρ2d2(x, x0)
α2(x, x0)

� 0,∀η ∈ ∂◦ψ(x0)

We note that we can derive many different classes of generalized convex
functions by changing the inequalities of these conditions.

3 Sufficient Optimality

Aghezzaf and Hachimi [1, 9] considered multiobjective programming problems
with (F,ρ)-convex functions and (F,α, ρ,d)-type I functions, and established
a number of sufficient optimality conditions. We adapt these results to the
classes of generalized (C,α, ρ,d)-type I functions.

Theorem 1. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū = (ū1, . . . , ūl) ∈ Rl and v̄ = (v̄1, . . . , v̄q) ∈ Rq such that

0 ∈ ūT∂◦f(x0) + v̄T∂◦g(x0), (3)
v̄T g(x0) = 0, (4)
ū > 0, v̄ � 0. (5)

If (f, gI) is strong pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

≥ 0, (6)

then x0 is an efficient solution of (VOP).
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Proof. Suppose to the contrary that x0 is not an efficient solution of (VOP).
Then there exists a feasible solution x such that

f(x) � f(x0) and gI(x0) = 0.

Hence,
f(x) � f(x0) and − gI(x0) � 0.

Since (f, gI) is strong pseudoquasi (C, α, ρ, d)-type I at x0, we can write

C(x,x0)(ξ) +
ρ1d1(x, x0)
α1(x, x0)

� 0,∀ ξ ∈ ∂◦f(x0),

C(x,x0)(ηI) +
ρ2

Id
2
I(x, x0)

α2
I(x, x0)

� 0,∀ ηI ∈ ∂◦gI(x0).

Let us denote τ =
l∑

i=1

ūi +
∑
j∈I

v̄j . Multiplying the above inequalities with 1
τ ū

and 1
τ v̄I , respectively, and using the convexity assumption of C, we have

C(x,x0)

(
1
τ
ūT ξ +

1
τ
v̄T

I ηI

)
+

1
τ
ūT ρ

1d1(x, x0)
α1(x, x0)

+
1
τ
v̄T

I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

< 0,

∀ξ ∈ ∂◦f(x0), ηI ∈ ∂◦gI(x0),

since ū > 0. From the last inequality, using (3) and (4), we have

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T ρ
2d2(x, x0)
α2(x, x0)

< 0,

which contradicts (6). �

The next theorems will be presented without proofs since they can be proven
using the similar argument as in the proof of Theorem (1).

We can weaken the strict inequality requirement that ū > 0 in the above
theorem but we require different convexity conditions on (f, gI). This adjust-
ment is given by the following theorem.

Theorem 2. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that

0 ∈ ūT∂◦f(x0) + v̄T∂◦g(x0), (7)
v̄T g(x0) = 0, (8)
ū � 0, v̄ � 0.

If (f, gI) is weak strictly-pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

≥ 0, (9)

then x0 is an efficient solution of (VOP).
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Since an efficient solution is also weak efficient, the above formulated theorems
are still valid for weak efficiency, however, we can weaken the convexity as-
sumptions for weak efficient solutions. Therefore, the following theorems can
be formulated.

Theorem 3. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that the triplet (x0, ū, v̄) satisfies (3), (4) and
(5). If (f, gI) is weak pseudoquasi (C, α, ρ, d)-type I at x0, and

ūT ρ
1d1(x, x0)
α1(x, x0)

+ v̄T
I

ρ2
Id

2
I(x, x0)

α2
I(x, x0)

� 0,

then x0 is a weak efficient solution of (VOP).

Theorem 4. Assume that there exist a feasible solution x0 for (VOP) and
vectors ū ∈ Rl and v̄ ∈ Rq such that the triplet (x0, ū, v̄) satisfies (7), (8) and
(9). If (f, gI) is pseudoquasi (C, α, ρ, d)-type I at x0 with

l∑
i=1

ūiρ
1
i

d1
i (x, x0)
α1

i (x, x0)
+

∑
j∈I

v̄jρ
2
j

d2
j (x, x0)
α2

j (x, x0)
� 0,

then x0 is a weak efficient solution for (VOP).

4 A Constraint Qualification

For some necessary optimality conditions of multiobjective programming
problems, constraint qualifications are used in order to avoid the situation
where some of the Lagrange multipliers vanish [17, 23]. In this section, we
weaken assumptions of constraint qualification in Preda [23] in terms of
Hadamard type derivatives, relaxing some assumptions. The Hadamard deriv-
ative of f at x0 in the direction v ∈ Rn is defined by

df(x0, v) = lim
(t,u)→(0+,v)

f(x0 + tu)− f(x0)
t

.

f is said to be Hadamard differentiable at x0 if df(x0, v) exists for all v ∈ Rn.
Obviously, df(x0, 0) = 0.

Following Preda and Chitescu [23] we use the following notations. The
tangent cone to a nonempty set W at point x ∈ clW is defined by

T (W ;x) = {v ∈ Rn | ∃{xm} ⊂W : x = lim
m→∞xm,

∃{tm}, tm > 0 : v = lim
m→∞ tm(xm − x)},

where clW is the closure of W .
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Let x0 be a feasible solution of Problem (VOP). For each i ∈ L, let
Li = L\{i}, and let the nonempty sets W i(x0) and W (x0) be defined as
follows: W (x0) = {x ∈ S|f(x) ≤ f(x0)}, W i(x0) = {x ∈ S|fk(x) ≤
fk(x0), for k ∈ Li}(l > 1), and W i(x0) = W (x0)(l = 1). Then, we give
the following definition.

Definition 2. The almost linearizing cone to W (x0) at x0 is defined by

H (W (x0);x0) = {v ∈ Rn|dfi(x0, v) ≤ 0, i ∈ L, and dgj(x0, v) ≤ 0, j ∈ I(x0)}

Proposition 1. If dfi(x0, ·) i ∈ L, and dgj(x0, ·) j ∈ I(x0) are convex func-
tions on Rn, then H (W (x0);x0) is a closed convex cone.

Proof. The proof is very similar to that of Proposition 3.1 in [23]. So we omit
this. �

The following lemma illustrates the relationship between the tangent cones
T
(
W i(x0);x0

)
and the almost linearizing cone H (W (x0);x0).

Lemma 1. Let x0 be a feasible solution of Problem (VOP). If dfi(x0, ·) i ∈ L,
and dgj(x0, ·) j ∈ I(x0)(�= ∅) are convex functions on Rn, then⋂

i∈L

clco T
(
W i(x0);x0

)
⊆ H (W (x0);x0) (10)

Proof. Here, we give a proof for only part l > 1 since the proof for part l = 1
is similar. For i ∈ L, let us define

H
(
W i(x0);x0

)
= {v ∈ Rn| dfk(x0, v) ≤ 0, k ∈ Li, and

dgj(x0, v) ≤ 0, j ∈ I(x0)}

According to Proposition 1, H
(
W i(x0);x0

)
is closed and convex for all i ∈ L.

We know that ⋂
i∈L

H
(
W i(x0);x0

)
⊆ H (W (x0);x0)

Next, we show that, for every i ∈ L,

T
(
W i(x0);x0

)
⊆ H

(
W i(x0);x0

)
. (11)

Let i ∈ L and v ∈ T
(
W i(x0);x0

)
. If v = 0, it is obvious that v = 0 ∈

H
(
W i(x0);x0

)
. Now, we assume v �= 0. Therefore, we have a sequence {xm} ⊆

W i(x0) and a sequence {tm} ⊆ R, with tm > 0, such that

lim
m→∞xm = x0, lim

m→∞ tm(xm − x0) = v.

Let us take vm = tm(xm − x0). Then, vm

tm → 0 as m→∞. Since vm → v and
v �= 0, for any positive real number ε, there exists a positive integer number
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N such that vm ∈ B(v, ε) for all m > N . Therefore ‖v‖− ε ≤ ‖vm‖ ≤ ‖v‖+ ε
for all m > N . Hence, for all m > N , we have

‖v‖ − ε
tm

≤ ‖vm‖
tm

→ 0.

Since ε is an arbitrary positive number, selecting ε as a sufficiently small
number, we can deduce that 1

tm → 0. Then for all j ∈ I(x0) and for all
sufficiently large m, we have

gj

(
x0 +

1
tm
vm

)
= gj(xm) ≤ 0 = gj(x0), j ∈ I(x0), (12)

fk

(
x0 +

1
tm
vm

)
= fk(xm) ≤ fk(x0), k ∈ Li. (13)

By definition of Hadamard derivative, we have

dgj(x0, v) ≤ 0, j ∈ I(x0), (14)
dfk(x0, v) ≤ 0, k ∈ Li. (15)

This shows v ∈ H
(
W i(x0);x0

)
or (11) is true. Hence, due to the fact that

every H
(
W i(x0);x0

)
is convex and closed, one obtains

clco T
(
W i(x0);x0

)
⊆ H

(
W i(x0);x0

)
, ∀ i ∈ L.

Thus (10) holds. �

Definition 3. We say that Problem (VOP) satisfies the generalized Guignard
constraint qualification (GGCQ) at x0 if⋂

i∈L

clco T
(
W i(x0);x0

)
⊇ H (W (x0);x0) . (16)

holds.

Theorem 5. Let x0 ∈ S be an efficient solution of Problem (VOP). Suppose
that l > 1, and
(A1) constraint qualification (GGCQ) holds at x0;
(A2) there exists i ∈ L such that dfi(x0, ·) is a concave function on Rn

(A3) dfk(x0, ·), k ∈ Li and dgj(x0, ·), j ∈ I(x0) are convex function on Rn.
Then the system

dfk(x0, v) ≤ 0, k ∈ Li (17)
dfi(x0, v) < 0 (18)
dgj(x0, v) ≤ 0, j ∈ I(x0) (19)

has no solution v ∈ Rn.
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Proof. Suppose to the contrary that there exists v ∈ Rn such that (17)–
(19) hold. Obviously, v �= 0. Thus, we have 0 �= v ∈ H (W (x0);x0). Using
Assumption (A1), we have v ∈ clco T

(
W i(x0);x0

)
. Therefore, there exists a

sequence {vs} ⊆ T
(
W i(x0);x0

)
such that

lim
s→∞ vs = v (20)

For any vs, s = 1, 2, . . . , there exist numbers ks, λsr ≥ 0, and vsr ∈
T
(
W i(x0);x0

)
, r = 1, 2, . . . , ks, such that

ks∑
r=1

λsr = 1,
ks∑

r=1

λsrvsr = vs (21)

Since vsr ∈ T
(
W i(x0);x0

)
, by definition, there exist sequences {xm

sr} ⊆
W i(x0) and {tmsr} ⊆ R, tmsr > 0 for all n, such that, for any s and r,

lim
m→∞xm

sr = x0, lim
m→∞ tmsr(x

m
sr − x0) = vsr (22)

Let us denote vm
sr = tmsr(x

m
sr − x0). Similarly to the corresponding part of the

proof in Lemma 1, we know that 1
tm
sr
→ 0 as m→∞. Then for any sufficiently

large m, we have

gj

(
x0 +

1
tmsr

vm
sr

)
= gj(xm

sr) ≤ 0 = gj(x0), j ∈ I(x0), (23)

fk

(
x0 +

1
tmsr

vm
sr

)
= fk(xm

sr) ≤ fk(x0), k ∈ Li. (24)

and

fi

(
x0 +

1
tmsr

vm
sr

)
= fi(xm

sr) ≥ fi(x0), (25)

since x0 is an efficient solution to Problem (VOP). Using (22)–(25), by defin-
ition of Hadamard derivative, we can have

dgj(x0, vsr) ≤ 0, j ∈ I(x0), (26)
dfk(x0, vsr) ≤ 0, k ∈ Li, (27)
dfi(x0, vsr) ≥ 0. (28)

From this system, (20), (21) and Assumptions (A2), (A3), it follows that

dgj(x0, v) ≤ 0, j ∈ I(x0),
dfk(x0, v) ≤ 0, k ∈ Li,

dfi(x0, v) ≥ 0.

This contradicts the system (17)–(19). �
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Theorem 6. Suppose that the assumptions of Theorem 5 hold. Then, there
exist vectors λ ∈ Rl and µ ∈ Rq such that, for any v ∈ Rn,

λT df(x0, v) + µT dg(x0, v) � 0 (29)
µT g(x0) = 0 (30)
λ = (λ1, . . . , λl)T > 0, µ = (µ1, . . . , µq)T � 0 (31)

Proof. The proof is similar to that of Theorem 3.2 in [23]. �

Remark 1. It is easy to check that if f is Hadamard differentiable then f is
also directional differentiable at x0, but, we do not need the assumption that
f and g are quasiconvex at x0 of [23].

Theorem 7. Suppose that the assumptions of Theorem 5 hold, and suppose
that dfi(x0, v) = f◦i (x0; v) and dgj(x0, v) = g◦j (x0; v) for all i ∈ L, j ∈ I(x0).
Then, there exist vectors λ ∈ Rl and µ ∈ Rq such that

0 ∈ λT∂◦f(x0) + µT∂◦g(x0)
µT g(x0) = 0,
λ = (λ1, . . . , λl)T > 0, µ = (µ1, . . . , µq)T � 0.

Proof. By Theorem 6, we have

λT f◦(x0, v) + µT g◦(x0, v) ≥ 0, (32)

for all v ∈ Rn. If fi, gj are Hadamard differentiable, then they are directional
differentiable at x0, and

f◦i (x0; v) = dfi(x0, v) = f ′i(x0, v),

g◦j (x0; v) = dgj(x0, v) = g′j(x0, v),

Thus, fi and gj are regular for all i ∈ L and j ∈ I(x0). By assumption, for
any v ∈ Rn, we have

0 ≤ λT f◦(x0, v) + µT g◦(x0, v) =
(
λT f + µT g

)◦
(x0, v),

or

0T v ≤
(
λT f + µT g

)◦
(x0, v).

So, according to the definition of Clarke’s generalized gradient, we have

0 ∈ λT∂◦f(x0) + µT∂◦g(x0).

�
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5 General Mixed Mond-Weir Type Dual

Duality theory plays a central role in mathematical programming. In this
section, we introduce a general mixed Mond-Weir dual program of Problem
(VOD) and establish the corresponding dual theorems under the generalized
convexity assumptions. However, in order to derive strong duality result, we
use the constraint qualification discussed in the previous section. Weakening
the assumptions of constraint qualification would be helpful to establish more
general strong duality result.

Let M0, M1, . . . ,Mr be a partition of Q, i.e.,
r⋃

k=0

Mk = Q, Mk1

⋂
Mk2 =

∅ for k1 �= k2. Let el be the vector of Rl whose components are all ones.
Motivated by [3, 16, 9], we define the following general mixed Mond-Weir
dual of (VOP).

(VOD) max f(y) + µM0
T gM0(y)el

s.t. 0 ∈
l∑

i=1

λi∂fi(y) +
r∑

k=0

∂
(
µT

Mk
gMk

)
(y), (33)

hk(y) �
(
µMk

T gMk

)
(y) ≥ 0, k = 1, 2, . . . , r,

l∑
i=1

λi = 1, λi > 0 (i = 1, 2, . . . , l), λ = (λ1, . . . , λl)T ,

µ = (µ1, µ2, . . . , µq)T ∈ R
q
+, y ∈ Rn, µMk

∈ R
|Mk|
+ .

Theorem 8 (Weak Duality). Let x0 be a feasible solution of (VOP), (y0, λ̄,
µ̄) be a feasible solution of (VOD) and h0(y) � µ̄T

M0
gM0(y). Let us use the fol-

lowing notations: h(y) = (h1(y), . . . , hr(y)). Suppose that any of the following
holds:
(a)

(
f + µ̄T

M0
gM0el, h

)
is (C,α, ρ, d)-type I at y0, fi (i = 1, . . . , l) and h0 are

regular at y0 and

λ̄T ρ
1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

≥ 0, (34)

(b)
(
f + µ̄T

M0
gM0el, h

)
is strong pseudoquasi (C,α, ρ, d)-type I at y0, fi (i =

1, · · · , l) and h0 are regular at y0 and (34) is true
(c) (λ̄T f + µ̄T

M0
gM0 ,

∑r
k=1 µ

T
Mk
gMk

) is pseudoquasi (C,α, ρ, d)-type I at y0, fi

(i = 1, · · · , p) and hk (k = 0, 1, . . . , r) are regular at y0 and

ρ1d1(x0, y0)
α1(x0, y0)

+
ρ2d2(x0, y0)
α2(x0, y0)

≥ 0.

Then the following cannot hold.

f(x0) � f(y0) + µ̄T
M0
gM0(y0)el. (35)
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Proof. Here we give the proofs of (a) and (b) since (c) can be proven similarly.
Suppose to the contrary that (35) holds. Since x0 is feasible for (VOP) and
µ̄ � 0, (35) implies that

f(x0) + µ̄T
M0
gM0(x0)el � f(y0) + µ̄T

M0
gM0(y0)el (36)

holds.

(a) By (35), (36) and the hypothesis (a), we can write the following state-
ment for any ξ̄i ∈ ∂fi(y0) and η̄k ∈ ∂hk(y0).

l∑
i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)

� C(x0,y0)

(
1
τ̄

(λ̄T ξ̄ + eT
r+1η̄)

)
+

1
τ̄

(
λ̄T ρ

1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

)
,

where τ̄ = r + 2. From (33), (34) and the above inequality, it follows that
l∑

i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)
≥ 0 (37)

Since (y0, λ̄, µ̄) is a feasible solution of (VOD), it follows that −h(y0) � 0.
Therefore, by (36), we have

l∑
i=1

λ̄i

τ̄

(fi(x0) + h0(x0))− (fi(y0) + h0(y0))
α1

i (x0, y0)
+

r∑
k=1

1
τ̄

−hk(y0)
α2

k(x0, y0)
< 0,

which is a contradiction to (37).
(b) By (36), −h(y0) � 0, the hypothesis (b) and the convexity of C, we
obtain

C(x0,y0)

(
1
τ̄

(λ̄T ξ̄ + eT
r+1η̄)

)
+

1
τ̄

(
λ̄T ρ

1d1(x0, y0)
α1(x0, y0)

+ eT
r

ρ2d2(x0, y0)
α2(x0, y0)

)
< 0.

Therefore, C(x0,y0)

(
1
τ̄ (λ̄T ξ̄ + eT

r+1η̄)
)
< 0, which is a contradiction to (33).

�
Theorem 9 (Strong Duality). Let the assumptions of Theorem 7 be sat-
isfied. If x0 ∈ S is an efficient solution of (VOP), then there exist λ̄ ∈ Rl,
µ̄ ∈ Rq such that (x0, λ̄, µ̄) is a feasible solution of (VOD) and the objective
function values of (VOP) and (VOD) at the corresponding points are equal.
Furthermore if the assumptions about the generalized convexity and the in-
equality (34) in Theorem 8 are also satisfied, then (x0, λ̄, µ̄) is an efficient
solution of (VOD).

Proof. By Theorem 7, it is obvious that (x0, λ̄, µ̄) is a feasible solution of
(VOD). Moreover the objective function values of (VOP) and (VOD) at the
corresponding points are equal since the objective functions are the same.
Therefore (x0, λ̄, µ̄) is an efficient point of (VOD) due to the weak duality
result in Theorem 8. �
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6 Conclusions and Future Work

In this chapter we have defined some generalized convex functions. For math-
ematical programming problems with such functions, we have established suf-
ficient optimality conditions for nonconvex nondifferentiable multiobjective
programming problems with the generalized convex functions. We have also
introduced a general mixed Mond-Weir type dual program of a multiobjective
program and proved a weak duality theorem under the generalized convexity
assumptions. Therefore, a strong duality theorem has been proved using a
constraint qualification, which was derived after relaxing some assumptions
of the constraint qualfication in [23] in terms of the Hadamard derivative, for
nondifferentiable multiobjective programming. Weakening the assumptions of
constraint qualification would be helpful to establish more general strong du-
ality result. The chapter mainly focuses on theoretical aspects of the gener-
alized convexity. We have not discussed any applications. Future work will
include the solutions of real world engineering problems associated with the
generalized convexities.
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Summary. We consider multi-valued variational inequalities defined on a Carte-
sian product of finite-dimensional subspaces. We introduce extensions of order
monotonicity concepts for set-valued mappings, which are adjusted to the case where
the subspaces need not be real lines. These concepts enable us to establish new
existence and uniqueness results for the corresponding partitionable multi-valued
variational inequalities. Following a parametric coercivity approach, we obtain con-
vergence of the Tikhonov regularization method without monotonicity conditions.

Key words: Partitionable variational inequalities, multi-valued mappings,
order monotonicity, existence and uniqueness results, regularization method.

1 Introduction

Many equilibrium problems arising in Mathematical Physics, Economics, Ope-
rations Research and other fields possess a partitionable structure which ena-
bles one to essentially weaken the conditions for existence and uniqueness
results of solutions and for convergence of solution methods. Usually, such
results are based on order monotonicity type assumptions, however, they are
restricted with the case where subspaces are one-dimensional; see e.g. [1, 2] and
references therein. Moreover, most papers in this field are devoted to the clas-
sical variational inequalities with single-valued mappings such as the standard
complementarity problem, whereas many problems arising in applications in-
volve either multi-valued mappings or non-smooth nonlinear functions; see
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e.g. [3, 4] and references therein. In two recent papers [5] and [6], several
existence and uniqueness results for solutions of such problems involving P
type mappings and convex and separable but not necessarily differentiable
functions were established. These properties allowed for developing effective
solution methods based on the D-gap function approach. In [7], some of these
results were extended to mixed variational inequalities defined on a Cartesian
product of arbitrary finite-dimensional subsets.

In this work, we suggest extensions of order monotonicity concepts for
multi-valued mappings to the case where subspaces also need not be real lines
and establish new existence and uniqueness results for partitionable multi-
valued variational inequalities. We also obtain convergence of the Tikhonov
regularization method under weakened order monotonicity conditions.

Let M be the index set {1, . . . ,m}. We consider a fixed partition of the
real Euclidean space Rn associated to M , i.e.

Rn =
∏

s∈M

Rns = Rn1 × · · · ×Rnm , (1)

hence for each element x ∈ Rn we can define its partition

x = x1 × · · · × xm,

where xs ∈ Rns . For brevity, we will also use the notation x = (xs | s ∈ M)
of this partition associated to M . Let Xs be a nonempty closed convex set in
Rns for every s ∈M , and let

X =
∏

s∈M

Xs,

i.e., X admits the partition associated to M . Let Q : X → Π(Rn) be an
arbitrary multi-valued mapping (Here and below Π(Rn) denotes the family
of all nonempty subsets of a set Rn). Although each its value Q(x) is not the
Cartesian product set in general, we can still define the partition associated
to M for each element q of Q(x), i.e., q = (qs | s ∈ M) with qs ∈ Rns for
s ∈ M . We consider the partitionable variational inequality problem (VI for
short) of the form: Find x∗ = (x∗s | s ∈M) ∈ X such that

∃q∗ = (q∗s | s ∈M) ∈ Q(x∗) :
∑
s∈M

〈q∗s , xs − x∗s〉 ≥ 0 (2)

∀xs ∈ Xs, ∀s ∈M.

We intend to present existence and uniqueness results of solutions and to
obtain convergence of the Tikhonov regularization method for this problem
under new order monotonicity type assumptions on the cost mapping.
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2 Theoretical Background

So, we fix the partition associated to M of the space Rn and consider VI (2)
under the following standing assumptions.

(A1) Q : X → Π(Rn) is a given mapping.
(A2) X admits the partition associated to M , i.e.,

X =
∏

s∈M

Xs,

where Xs is a nonempty, convex and closed subset of Rns for every s ∈M .
Note that X is obviously convex and closed. As usual, the partitionable

VI (2) can be replaced with a system of partial variational inequalities, which
are not however independent in general.

Proposition 1. The following assertions are equivalent:
(i) x∗ = (x∗s | s ∈M) is a solution to (2);
(ii) it holds that x∗ = (x∗s | s ∈ M) ∈ X and there exists q∗ = (q∗s | s ∈

M) ∈ Q(x∗) such that

〈q∗s , xs − x∗s〉 ≥ 0 ∀xs ∈ Xs, ∀s ∈M. (3)

Proof. It is clear that (3) implies (2). Conversely, let x∗ solve (2) and there
exist an index l and a point yl ∈ Xl such that

〈q∗l , yl − x∗l 〉 < 0.

Set x̃ = (x∗1, . . . , x
∗
l−1, yl, x

∗
l+1, . . . , x

∗
n) ∈ X, then we have∑

s∈M

〈q∗s , x̃s − x∗s〉 = 〈q∗l , yl − x∗l 〉 < 0,

which is a contradiction. Hence, (2) implies (3). !"

Definition 1. Let M be an index set such that (1) holds, and let G : X →
Π(Rn) be a mapping with the partition associated to M. Then the mapping
G is said to be

(a) a P0(M)-mapping, if for each pair of points x′, x′′ ∈ X, x′ �= x′′, and
for all g′ = (g′s | s ∈M) ∈ G(x′), g′′ = (g′′s | s ∈M) ∈ G(x′′), there exists an
index i such that x′i �= x′′i and

〈x′i − x′′i , g′i − g′′i 〉 ≥ 0;

(b) a P (M)-mapping, if for each pair of points x′, x′′ ∈ X, x′ �= x′′, and
for all g′ = (g′s | s ∈M) ∈ G(x′), g′′ = (g′′s | s ∈M) ∈ G(x′′), there exists an
index i such that

〈x′i − x′′i , g′i − g′′i 〉 > 0;
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(c) a strict P (M)-mapping, if there exists γ > 0 such that G − γIn is a
P (M)-mapping, where In is the identity map in Rn;

(d) a uniform P (M)-mapping, if for each pair of points x′, x′′ ∈ X, x′ �=
x′′ and for all g′ = (g′s | s ∈ M) ∈ G(x′), g′′ = (g′′s | s ∈ M) ∈ G(x′′), there
exists an index i such that

〈x′i − x′′i , g′i − g′′i 〉 ≥ µ‖x− y‖2

for some constant µ > 0.

It is clear that each P (M)-mapping is a P0(M)-mapping, each strict
P (M)-mapping is a P (M)-mapping, and that each uniform P (M)-mapping
is a strict P (M)-mapping. At the same time, the sum of P0(M)-mappings
is not a P0(M)-mapping in general, and this is the case for other classes of
mappings given in Definition 1. However, we can present particular classes
whose addition does not change the class of the resulting mapping.

Definition 2. Let M be an index set such that (1) holds, and let G : X →
Π(Rn) be a mapping with the partition associated to M. Then the mapping
G is said to be an (M)-diagonal mapping, if

G(x) = (Gs(xs) | s ∈M).

In case ns = 1 for s ∈M we obtain the usual diagonal mapping. Clearly, each
(M)-diagonal mapping G is (strictly, strongly) monotone if and only if so is
Gs for each s ∈ M . From the definitions we obtain the following properties
immediately.

Proposition 2. Suppose that (A2) is fulfilled, G : X → Π(Rn) is a P0(M)
(respectively, P (M), strict P (M), uniform P (M)) -mapping, and F : X →
Π(Rn) is a monotone (M)-diagonal mapping. Then G + F is a P0(M) (re-
spectively, P (M), strict P (M), uniform P (M)) -mapping.

Moreover, the resulting order monotonicity property can be strengthened.
We first give a simplified version, which is very useful for the regularization
method.

Proposition 3. Suppose that (A2) is fulfilled. If G : X → Rn is a P0(M)-
mapping, then, for any ε > 0, G+ εIn is a strict P (M)-mapping.

Proof. First we show that G(ε) = G+εIn is a P (M)-mapping for each ε > 0.
Choose x′, x′′ ∈ X, x′ �= x′′, set S = {s | x′s �= x′′s} and fix ε > 0. Since G is
P0(M), there exists an index k ∈ S such that x′k �= x′′k and

〈g′k − g′′k , x′k − x′′k〉 ≥ 0

for all g′ = (g′s | s ∈M) ∈ G(x′), g′′ = (g′′s | s ∈M) ∈ G(x′′), moreover,

ε〈x′k − x′′k , x′k − x′′k〉 > 0.
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Adding these inequalities yields

〈t′k − t′′k , x′k − x′′k〉 > 0

for all t′ = (t′s | s ∈M) ∈ G(ε)(x′), t′′ = (t′′s | s ∈M) ∈ G(ε)(x′′), hence, G(ε)

is a P (M)-mapping. Since G(ε′′) = G(ε′) − (ε′ − ε′′)In = G+ ε′′In is a P (M)-
mapping, if 0 < ε′′ < ε′, we conclude that G(ε) is also a strict P (M)-mapping.
!"

Thus, the regularized problem becomes well-defined. Of course, we can
replace the identity map with an arbitrary strongly monotone (M)-diagonal
mapping.

Corollary 1. Suppose that (A2) is fulfilled, G : X → Π(Rn) is a P0(M)-
mapping, and F : X → Π(Rn) is a strongly monotone (M)-diagonal mapping.
Then, for any ε > 0, G+ εF is a strict P (M)-mapping.

Observe that the above regularization is not sufficient for obtaining the
uniform P (M) property. Thus, the concept of the strict P (M)-mapping is
essentially weaker than the strong monotonicity.

3 General Existence and Uniqueness Results

In this section, we establish existence and uniqueness results for VI (2). First
we remind that a mapping G : X → Π(Rn), is said to be a K-mapping if it
is upper semicontinuous on X and has nonempty convex and compact values;
see e.g. [4, Definition 2.1.1].

Proposition 4. (see [8]) Suppose (A1) and (A2) are fulfilled, X is a bounded
set, and Q is a K-mapping. Then VI (2) has a solution.

Proposition 5. Suppose (A1) and (A2) are fulfilled and Q is a P (M)-
mapping. Then VI (2) has at most one solution.

Proof. Suppose for contradiction that there exist at least two different solu-
tions x′ and x′′ of VI (2). Then, by definition

∃q′ = (q′i | i ∈M) ∈ Q(x′), 〈q′i, x′′i − x′i〉 ≥ 0

and
∃q′′ = (q′′i | i ∈M) ∈ Q(x′′), 〈q′′i , x′i − x′′i 〉 ≥ 0

for all i ∈M . Adding these inequalities gives

〈q′i − q′′i , x′′i − x′i〉 ≥ 0 for all i ∈M.

Hence Q is not a P (M)-mapping, a contradiction. !"
Combining both the propositions yields the following result.
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Corollary 2. Suppose (A1) and (A2) are fulfilled, X is a bounded set, and Q
is a K- and P (M)-mapping. Then VI (2) has a unique solution.

Now we present an existence and uniqueness result for the unbounded
case.

Theorem 1. Suppose (A1) and (A2) are fulfilled, Q is a K-mapping and a
strict P (M)-mapping. Then VI (2) has a unique solution.

Proof. Due to Proposition 5, it suffices to show that VI (2) is solvable. If X
is bounded, then this is the case due to Proposition 4. Hence, we have to only
consider the unbounded case. Fix a point z = (zs | s ∈M) ∈ X. For a number
ρ > 0 we set

Bs(zs, ρ) = {xs ∈ Rn
s | ‖xs − zs‖ ≤ ρ}

for each s ∈ M . Let xρ denote a unique solution of the problem (2) over the
set

Xρ = {x ∈ Rn | xs ∈ Xs

⋂
Bs(zs, ρ), s ∈M}.

By Corollary 2, this is the case if Xρ is nonempty. Then, by Proposition 1,
there exists qρ = (qρ

s | s ∈M) ∈ Q(xρ) such that

〈qρ
s , xs − xρ

s〉 ≥ 0

for all xs ∈ Xs

⋂
Bs(zs, ρ), s ∈M .

We now proceed to show that ‖xρ
s − zs‖ < ρ, s ∈ M for ρ > 0 large

enough. Assume for contradiction that ‖xρ − z‖ → +∞ as ρ→ +∞. Choose
an arbitrary sequence {ρk} → +∞ and set yk = xρk . Choose the index set
J = {s | ‖yk

s ‖ → ∞ as k →∞}. Letting

z̃k
s =

{
yk

s , if s �∈ J,
zs, if s ∈ J,

we have

〈yk
sk
− z̃k

sk
, qk

sk
− q̃k

sk
〉 > γ‖yk

sk
− z̃k

sk
‖2 ∀qk ∈ Q(yk), ∀q̃k ∈ Q(z̃k), (4)

for some sk. Since sk is taken from the finite set M = {1, ...,m}, without loss
of generality we can suppose that sk is fixed, i.e. sk = l. Note that (4) yields
l ∈ J , hence

〈yk
l − zl, q

k
l − q̃k

l 〉 > γ‖yk
l − zl‖2 ∀qk ∈ Q(yk), ∀q̃k ∈ Q(z̃k),

or, equivalently,

〈qk
l , y

k
l − zl〉 > γ‖yk

l − zl‖2 − 〈q̃k
l , zl − yk

l 〉.

Since {z̃k} is bounded, we must have ‖q̃k
l ‖ < C for all q̃k ∈ Q(z̃k). Hence, it

holds that ‖yk
l − zl‖ → +∞ and
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γ‖yk
l − zl‖2 − 〈q̃k

l , zl − yk
l 〉 → +∞ as k →∞,

i.e.
〈qk

l , y
k
l − zl〉 > 0 ∀qk ∈ Q(yk)

for k large enough, which contradicts the definition of yk.
Thus there exists a number k′ such that ‖yk

i − zi‖ < ρk for all i ∈ M if
k ≥ k′. Take an arbitrary point x = (xs | s ∈ M) ∈ X, then there exists a
number δ > 0 such that

xρ
i + δ(xi − xρ

i ) ∈ Xi

⋂
Bi(zi, ρ) for i ∈M,

if ρ ≥ ρk′ . It follows that

∃q̃ = (q̃s | s ∈M) ∈ Q(xρ), 〈q̃i, xρ
i + δ(xi − xρ

i )− x
ρ
i 〉 ≥ 0 for i ∈M,

or, equivalently,
〈q̃i, xi − xρ

i 〉 ≥ 0 for i ∈M.
Therefore, xρ solves VI (2) and the result follows. !"

Observe that the existence and uniqueness results above extend those in
[5]–[7] from the cases of mixed box- constrained variational inequalities and
partitionable mixed variational inequalities.

4 Regularization Method

Many equilibrium type problems, which can be formulated as partitionable
mixed variational inequalities and arise in applications, do not possess streng-
thened P (M) type properties; see e.g. [6]. The regularization approach allows
us to overcome this drawback by replacing the initial problem with a sequence
of perturbed problems with strengthened order monotonicity properties. For
the usual box-constrained variational inequalities, this method was investi-
gated by many authors; see e.g. [2] and references therein. Here we follow the
approach suggested in [9, 10], which ensures convergence of the regularization
method without monotonicity conditions in the case when the feasible set is
unbounded.

We also consider VI (2) under assumptions (A1) and (A2). Given a number
ε > 0, we define the perturbed VI: Find xε = (xε

s | s ∈M) ∈ X such that

∃qε = (qε
s | s ∈M) ∈ Q(xε) :

∑
s∈M

〈qε
s + εxε

s, xs − xε
s〉 ≥ 0 (5)

∀xs ∈ Xs, ∀s ∈M.
From Proposition 1 it follows that VI (5) can be rewritten equivalently as
follows: there exists qε = (qε

s | s ∈M) ∈ Q(xε) such that

〈qε
s + εxε

s, xs − xε
s〉 ≥ 0 ∀xs ∈ Xs,

for all s ∈M .
We first consider convergence of the sequence {xε} in the bounded case.
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Theorem 2. Suppose (A1) and (A2) are fulfilled, X is a bounded set, and
Q : X → Rn is a K- and P0(M)-mapping. Then VI (5) has the unique
solution xε for each ε > 0, the sequence {xεk}, where {εk} ↘ 0, has some
limit points, and all these points are contained in the solution set of VI (2).

Proof. From Proposition 3 it follows that Q+ εIn is a strict P (M)-mapping.
By Corollary 2, for each ε > 0, VI (5) has the unique solution xε. Since the
sequence {xε} is contained in the bounded set X, it has some limit points. If
x∗ is an arbitrary limit point of {xε}, then taking the corresponding limit in
(5) gives

∃q∗ = (q∗s | s ∈M) ∈ Q(x∗) :
∑
s∈M

〈q∗s , xs − x∗s〉 ≥ 0 ∀xs ∈ Xs, ∀s ∈M.

i.e. x∗ solves VI (2). !"
In the unbounded case, we follow the approach suggested in [9], which is

based on introducing an auxiliary bounded VI and on the parametric coerciv-
ity conditions. Let us define the set

X̃ =
∏

s∈M

X̃s,

where X̃s is a nonempty compact convex set in Rns , X̃s ⊆ Xs for every s ∈M ,
i.e. it corresponds to the same fixed partition of the space Rn associated to
M . Let us consider the reduced partitionable VI: Find z∗ = (z∗s | s ∈M) ∈ X
such that

∃q̃ = (q̃s | s ∈M) ∈ Q(z∗) :
∑
s∈M

〈q̃s, xs − z∗s 〉 ≥ 0 ∀xs ∈ X̃s, ∀s ∈M. (6)

We denote by X∗ and X̃∗ the solution sets of VIs (2) and (6), respectively. Let
us also consider the corresponding regularized VI: Find zε = (zε

s | s ∈M) ∈ X̃
such that

∃q̃ε = (q̃ε
s | s ∈M) ∈ Q(zε) :

∑
s∈M

〈q̃ε
s + εzε

s , xs − zε
s〉 ≥ 0 (7)

∀xs ∈ X̃s, ∀s ∈M.
It is clear that X̃∗ �= ∅ and that (7) has a unique solution under the corre-
sponding assumptions on Q. However, the strict inclusion X∗ ⋂ X̃ ⊂ X̃∗ may
prevent to convergence of the regularization method to a solution of VI (2).
We now give sufficient conditions, which ensure the precise reduction of the
solution set X∗.

(A3) There exist sets D̃ ⊆ D ⊆ Rn such that, for each point y ∈ X\D
there exists a point x ∈ D̃

⋂
X such that

max
s∈M

〈qs, ys − xs〉 > 0 ∀q = (qi | i ∈M) ∈ Q(y).

The sets D and D̃ may be called the absorbing and blocking sets for the
solutions of VI (2), respectively.
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Proposition 6. Suppose (A1)–(A3) are fulfilled, moreover, D̃ ⊆ X̃ and
D

⋂
X̃ ⊆ X∗ ⋂ X̃. Then X̃∗ = X̃

⋂
X∗.

Proof. First we note that X∗ ⊆ X
⋂
D due to (A3). Next, clearly, X̃

⋂
X∗ ⊆

X̃∗. Suppose that there is a point y ∈ X̃∗\X∗, then y ∈ X̃ and y /∈ D.
Applying (A3), we see that there exists a point x ∈ X̃ such that

max
s∈M

〈qs, ys − xs〉 > 0 ∀q = (qi | i ∈M) ∈ Q(y),

i.e. y �∈ X̃∗, so we get a contradiction, and the result follows. !"
Observe that the solution set X∗ need not be bounded in the above propo-

sition. Thus, replacing the unbounded VI (2) with a suitable bounded VI (6),
which has the same solution set, we obtain convergence for the regularization
method to a solution of the initial problem.

Theorem 3. Suppose (A1)–(A3) are fulfilled, Q : X → Rn is a K- and
P0(M)-mapping, moreover, D̃ ⊆ X̃ and D

⋂
X̃ = X∗ ⋂ X̃. Then VI (7) has

the unique solution zε for each ε > 0, the sequence {zεk}, where {εk} ↘ 0,
has some limit points, and all these points are contained in the solution set of
VI (2).

Proof. Following the proof of Theorem 2, applied to the reduced VI (6), we
see that VI (7) has the unique solution zε for each ε > 0, and that the sequence
{zεk} has some limit points and all these points belong to X̃∗. Since all the
assumptions of Proposition 6 hold, we obtain X̃∗ = X∗ ⋂ X̃ and the result
follows. !"
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Summary. We prove that the formulae of the conjugates of the precomposition
with a linear operator, of the sum of finitely many functions and of the sum be-
tween a function and the precomposition of another one with a linear operator hold
even when the convexity assumptions are replaced by almost convexity or nearly
convexity. We also show that the duality statements due to Fenchel hold when the
functions involved are taken only almost convex, respectively nearly convex.

Key words: Fenchel duality, conjugate functions, almost convex functions,
nearly convex functions

1 Introduction

Convexity is an important tool in many fields of Mathematics having appli-
cations in different areas, including optimization. Various generalizations of
the convexity were given in the literature, so a natural consequence was to
verify their applicability in optimization. We mention here the papers [3], [4],
[6], [8], [9], [10], [12], [13] and [15], where properties of the convex functions
and statements in convex analysis and optimization were extended by using
functions and sets that are not convex but nearly convex, closely convex, con-
vexlike, evenly convex, quasiconvex or weakly convex. Comparisons between
some classes of generalized convexities were also performed, let us remind here
just [6] and [9] among many others.

Within this article we work with three types of generalized convexity. Our
main results concern almost convex functions, which are defined as they were
introduced by Frenk and Kassay in [9]. We need to mention this because there
are in the literature some other types of functions called almost convex, too.
We wrote our paper motivated by the lack of known results concerning almost
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convex functions (cf. [9]), but also in order to introduce new and to rediscover
some of our older ([3]) statements for nearly convex functions. Introduced
by Aleman ([1]) as p-convex functions, the latter ones were quite intensively
studied recently under the name of nearly convex functions in papers like [3],
[4], [6], [10], [12], [15] and [17], while for studies on nearly convex sets we
refer to [7] and [14]. Closely convexity (cf. [2], [17]) is used to illustrate some
properties of the already mentioned types of functions. We have also shown
that there are differences between the classes of almost convex functions and
nearly convex functions, both of them being moreover larger than the one of
the convex functions.

Our paper is dedicated to the extension of some results from Convex Analy-
sis in the sense that we prove that they hold not only when the functions
involved are convex, but also when they are only almost convex, respectively
nearly convex. The statements we generalize concern conjugacy and duality,
as follows. We prove that the formulae of some conjugates, namely of the
precomposition with a linear operator, of the sum of finitely many functions
and of the sum between a function and the precomposition of another one
with a linear operator hold even when the convexity assumptions are replaced
by almost or nearly convexity. After these, we show that the well-known du-
ality statements due to Fenchel hold when the functions involved are taken
only almost convex, respectively nearly convex. The paper is divided into
five sections. After the introduction and the necessary preliminaries we give
some properties of the almost convex functions, then we deal with conjugacy
and Fenchel duality for this kind of functions. Some short but comprehensive
conclusions and the list of references close the paper.

2 Preliminaries

This section is dedicated to the exposition of some notions and results used
within our paper. Not all the results we present here are so widely-known,
thus we consider necessary to recall them.

As usual, Rn denotes the n-dimensional real space, for n ∈ N, and Q is
the set of all rational real numbers. Throughout this paper all the vectors
are considered as column vectors belonging to Rn, unless otherwise specified.
An upper index T transposes a column vector to a row one and vice versa.
The inner product of two vectors x =

(
x1, ..., xn

)T and y =
(
y1, ..., yn

)T in
the n-dimensional real space is denoted by xT y =

∑n
i=1 xiyi. The closure of

a certain set is distinguished from the set itself by the preceding particle cl,
while the leading ri denotes the relative interior of the set. If A : Rn → Rm is
a linear transformation, then by A∗ : Rm → Rn we denote its adjoint defined
by (Ax)T y = xT (A∗y) ∀x ∈ Rn ∀y ∈ Rm. For some set X ⊆ Rn we have the
indicator function δX : Rn → R = R ∪ {±∞} defined by

δX(x) =
{

0, if x ∈ X,
+∞, if x /∈ X.
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Definition 1. For a function f : Rn → R = R ∪ {±∞} we consider the
following notions

(i) epigraph: epi(f) =
{
(x, r) ∈ Rn × R : f(x) ≤ r

}
,

(ii) (effective) domain: dom(f) =
{
x ∈ Rn : f(x) < +∞

}
,

(iii) f is called proper if dom(f) �= ∅ and f(x) > −∞ ∀x ∈ Rn,
(iv) f̄ is called the lower-semicontinuous hull of f if epi(f̄) = cl(epi(f)).
(v) subdifferential of f at x (where f(x) ∈ R):

∂f(x) = {p ∈ Rn : f(y)− f(x) ≥ pT (y − x) ∀y ∈ Rn}.

Remark 1. For any function f : Rn → R we have dom(f) ⊆ dom(f̄) ⊆
cl(dom(f)), which implies cl(dom(f)) = cl(dom(f̄)).

Definition 2. A set X ⊆ Rn is called nearly convex if there is a constant
α ∈]0, 1[ such that for any x and y belonging to X one has αx+(1−α)y ∈ X.

An example of a nearly convex set which is not convex is Q. Important
properties of the nearly convex sets follow.

Lemma 1. ([1]) For every nearly convex set X ⊆ Rn the following properties
are valid

(i) ri(X) is convex (may be empty),
(ii) cl(X) is convex,

(iii) for every x ∈ cl(X) and y ∈ ri(X) we have tx+ (1− t)y ∈ ri(X) for each
0 ≤ t < 1.

Definition 3. ([6], [9]) A function f : Rn → R is called

(i) almost convex if f̄ is convex and ri(epi(f̄)) ⊆ epi(f),
(ii) nearly convex if epi(f) is nearly convex,

(iii) closely convex if epi(f̄) is convex (i.e. f̄ is convex).

Connections between these kinds of functions arise from the following observa-
tions, while to show that there are differences between them we give Example
1 within the next section.

Remark 2. Any almost convex function is also closely convex.

Remark 3. Any nearly convex function has a nearly convex effective domain.
Moreover, as its epigraph is nearly convex, the function is also closely convex,
according to Lemma 1(ii).

Although cited from the literature, the following auxiliary results are not
so widely known, thus we have included them here.

Lemma 2. ([4], [9]) For a convex set C ⊆ Rn and any non-empty set X ⊆ Rn

satisfying X ⊆ C we have ri(C) ⊆ X if and only if ri(C) = ri(X).
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Lemma 3. ([4]) Let X ⊆ Rn be a non-empty nearly convex set. Then ri(X) �=
∅ if and only if ri(cl(X)) ⊆ X.

Lemma 4. ([4]) For a non-empty nearly convex set X ⊆ Rn, ri(X) �= ∅ if
and only if ri(X) = ri(cl(X)).

Using the last remark and Lemma 3 we deduce the following statement.

Proposition 1. If f : Rn → R is a nearly convex function satisfying
ri(epi(f)) �= ∅, then it is almost convex.

Remark 4. Each convex function is both nearly convex and almost convex.

The first observation is obvious, while the second can be easily proven. Let
f : Rn → R be a convex function. If f(x) = +∞ everywhere then epi(f) = ∅,
which is closed, so f̄ = f and it follows f almost convex. Otherwise, epi(f)
is non-empty and, being convex because of f ’s convexity, it has a non-empty
relative interior (cf. Theorem 6.2 in [16]) so, by Proposition 1, is almost convex.

3 Properties of the Almost Convex Functions

Within this part of our paper we present some properties of the almost convex
functions and some examples that underline the differences between this class
of functions and the nearly convex functions.

Theorem 1. ([9]) Let f : Rn → R having non-empty domain. The function f
is almost convex if and only if f̄ is convex and f̄(x) = f(x) ∀x ∈ ri(dom(f̄)).

Proof. ”⇒” When f is almost convex, f̄ is convex. As dom(f) �= ∅, we have
dom(f̄) �= ∅. It is known (cf. [16]) that

ri(epi(f̄)) =
{
(x, r) : f̄(x) < r, x ∈ ri(dom(f̄))

}
(1)

so, as the definition of the almost convexity includes ri(epi(f̄)) ⊆ epi(f),
it follows that for any x ∈ ri(domf̄)) and ε > 0 one has (x, f̄(x) + ε) ∈
epi(f). Thus f̄(x) ≥ f(x) ∀x ∈ ri(dom(f̄)) and the definition of f̄ yields the
coincidence of f and f̄ over ri(dom(f̄)).

”⇐” We have f̄ convex and f̄(x) = f(x) ∀x ∈ ri(dom(f̄)). Thus
ri(dom(f̄)) ⊆ dom(f). By Lemma 2 and Remark 1 one gets ri(dom(f̄)) ⊆
dom(f) if and only if ri(dom(f̄)) = ri(dom(f)), therefore this last equal-
ity holds. Using this and (1) it follows ri(epi(f̄)) =

{
(x, r) : f(x) < r, x ∈

ri(dom(f))
}
, so ri(epi(f̄)) ⊆ epi(f). This and the hypothesis f̄ convex yield

that f is almost convex. !"
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Remark 5. From the previous proof we obtain also that if f is almost convex
and has a non-empty domain then ri(dom(f)) = ri(dom(f̄)) �= ∅. We have
also ri(epi(f̄)) ⊆ epi(f), from which, by the definition of f̄ , follows

ri(cl(epi(f))) ⊆ epi(f) ⊆ cl(epi(f)).

Applying Lemma 2 we get ri(epi(f)) = ri(cl(epi(f))) = ri(epi(f̄)).

In order to avoid confusions between the nearly convex functions and the
almost convex functions we give below some examples showing that there is
no inclusion between these two classes of functions. Their intersection is not
empty, as Remark 4 states that the convex functions are concomitantly almost
convex and nearly convex.

Example 1. (i) Let f : R → R be any discontinuous solution of Cauchy’s
functional equation f(x + y) = f(x) + f(y) ∀x, y ∈ R. For each of these
functions, whose existence is guaranteed in [11], one has

f
(x+ y

2

)
=
f(x) + f(y)

2
∀x, y ∈ R,

i.e. these functions are nearly convex. None of these functions is convex be-
cause of the absence of continuity. We have that dom(f) = R = ri(dom(f)).
Suppose f is almost convex. Then Theorem 1 yields f̄ convex and f(x) = f̄(x)
∀x ∈ R. Thus f is convex, but this is false. Therefore f is nearly convex, but
not almost convex.

(ii) Consider the set X =
(
[0, 2]× [0, 2]

)
\
(
{0}×]0, 1[

)
and let g : R2 → R,

g = δX . We have epi(g) = X × [0,+∞), so epi(ḡ) = cl(epi(g)) = [0, 2] ×
[0, 2] × [0,+∞). As this is a convex set, ḡ is a convex function. We also
have ri(epi(ḡ)) =]0, 2[×]0, 2[×]0,+∞), which is clearly contained inside epi(g).
Thus g is almost convex. On the other hand, dom(g) = X and X is not a
nearly convex set, because for any α ∈]0, 1[ we have α(0, 1) + (1− α)(0, 0) =
(0, α) /∈ X. By Remark 3 it follows that the almost convex function g is not
nearly convex.

Using Remark 4 and the facts above we see that there are almost convex and
nearly functions which are not convex, i.e. both these classes are larger than
the one of convex functions.

The following assertion states an interesting and important property of the
almost convex functions that is not applicable for nearly convex functions.

Theorem 2. Let f : Rn → R and g : Rm → R be proper almost convex
functions. Then the function F : Rn×Rm → R defined by F (x, y) = f(x)+g(y)
is almost convex, too.

Proof. Consider the linear operator L : (Rn×R)× (Rm×R) → Rn×Rm×R

defined as L(x, r, y, s) = (x, y, r+s). Let us first show that L(epi(f)×epi(g)) =
epi(F ).
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Taking the pairs (x, r) ∈ epi(f) and (y, s) ∈ epi(g) we have f(x) ≤ r and
g(y) ≤ s, so F (x, y) = f(x) + g(y) ≤ r + s, i.e. (x, y, r + s) ∈ epi(F ). Thus
L(epi(f)× epi(g)) ⊆ epi(F ).

On the other hand, for (x, y, t) ∈ epi(F ) one has F (x, y) = f(x)+g(y) ≤ t,
so f(x) and g(y) are finite. It follows (x, f(x), y, t − f(x)) ∈ epi(f) × epi(g),
i.e. (x, y, t) ∈ L(epi(f)× epi(g)) meaning epi(F ) ⊆ L(epi(f)× epi(g)).

Therefore L(epi(f)×epi(g)) = epi(F ). We prove that cl(epi(F )) is convex,
which means F̄ convex.

Let (x, y, r) and (u, v, s) in cl(epi(F )). There are two sequences,

(xk, yk, rk)k≥1 and (uk, vk, sk)k≥1

in epi(F ), the first converging towards (x, y, r) and the second to (u, v, s).
Then we also have the sequences of reals (r1k)k≥1, (r2k)k≥1, (s1k)k≥1 and (s2k)k≥1

fulfilling for each k ≥ 1 the following r1k + r2k = rk, s1k + s2k = sk, (xk, r
1
k) ∈

epi(f), (yk, r
2
k) ∈ epi(g), (uk, s

1
k) ∈ epi(f) and (vk, s

2
k) ∈ epi(g). Let λ ∈ [0, 1].

We have, due to the convexity of the lower-semicontinuous hulls of f and
g, (λxk + (1 − λ)uk, λr

1
k + (1 − λ)s1k) ∈ cl(epi(f)) = epi(f̄) and (λyk + (1 −

λ)vk, λr
2
k+(1−λ)s2k) ∈ cl(epi(g)) = epi(ḡ). Further, (λxk+(1−λ)uk, λyk+(1−

λ)vk, λrk + (1− λ)sk) ∈ L(cl(epi(f))× cl(epi(g))) = L(cl(epi(f)× epi(g))) ⊆
cl(L(epi(f) × epi(g))) for all k ≥ 1. Letting k converge towards +∞ we get
(λx+(1−λ)u, λy+(1−λ)v, λr+(1−λ)s) ∈ cl(L(epi(f)×epi(g))) = cl(epi(F )).
As this happens for any λ ∈ [0, 1] it follows cl(epi(F )) convex, so epi(F̄ ) is
convex, i.e. F̄ is a convex function.

Therefore, in order to obtain that F is almost convex we have to prove
only that ri(cl(epi(F ))) ⊆ epi(F ). Using some basic properties of the clo-
sures and relative interiors and also that f and g are almost convex we
have ri(cl(epi(f) × epi(g))) = ri(cl(epi(f)) × cl(epi(g))) = ri(cl(epi(f))) ×
ri(cl(epi(g))) ⊆ epi(f)× epi(g). Applying the linear operator L to both sides
we get L(ri(cl(epi(f) × epi(g)))) ⊆ L(epi(f) × epi(g)) = epi(F ). One has
cl(epi(f)× epi(g)) = cl(epi(f))× cl(epi(g)) = epi(f̄)× epi(ḡ), which is a con-
vex set, so also L(cl(epi(f) × epi(g))) is convex. As for any linear operator
A : Rn → Rm and any convex set X ⊆ Rn one has A(ri(X)) = ri(A(X)) (see
for instance Theorem 6.6 in [16]), it follows

ri(L(cl(epi(f)× epi(g)))) = L(ri(cl(epi(f)× epi(g)))) ⊆ epi(F ). (2)

On the other hand, epi(F ) = L(epi(f) × epi(g)) ⊆ L(cl(epi(f) × epi(g))) ⊆
cl(L(epi(f) × epi(g))), so cl(L(epi(f) × epi(g))) = cl(L(cl(epi(f) × epi(g))))
and further

ri(cl(L(epi(f)× epi(g)))) = ri(cl(L(cl(epi(f)× epi(g))))).

As for any convex set X ⊆ Rn ri(cl(X)) = ri(X) (see Theorem 6.3 in [16]), we
have ri(cl(L(cl(epi(f)× epi(g))))) = ri(L(cl(epi (f)× epi(g)))), which implies
ri(cl(L(epi(f)×epi(g)))) = ri(L(cl(epi(f)×epi(g)))). Using (2) it follows that
ri(epi(F̄ )) = ri(cl(epi(F ))) = ri(L(cl(epi(f) × epi(g)))) ⊆ epi(F ). Because F̄
is a convex function it follows by definition that F is almost convex. !"
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Corollary 1. Using the previous statement it can be shown that if fi : Rni →
R, i = 1, ..., k, are proper almost convex functions, then F : Rn1 × ...×Rnk →
R, F (x1, ..., xk) =

∑k
i=1 fi(xi) is almost convex, too.

Next we give an example that shows that the property just proven to hold
for almost convex functions does not apply for nearly convex functions.

Example 2. Consider the sets

X1 =
⋃

n≥1

{
k
2n : 0 ≤ k ≤ 2n

}
and X2 =

⋃
n≥1

{
k
3n : 0 ≤ k ≤ 3n

}
.

They are both nearly convex, X1 for α = 1/2 and X2 for α = 1/3, for
instance. It is easy to notice that δX1 and δX2 are nearly convex functions.
Taking F : R2 → R, F (x1, x2) = δX1(x1) + δX2(x2), we have dom(F ) =
X1 ×X2, which is not nearly convex, thus F is not a nearly convex function.
To show this, we have (0, 0), (1, 1) ∈ dom(F ) and assuming dom(F ) nearly
convex with the constant ᾱ ∈]0, 1[, one gets (ᾱ, ᾱ) ∈ dom(F ). This yields
ᾱ ∈ X1 ∩ X2 and, so, ᾱ ∈ {0, 1}, which is false. Therefore F is not nearly
convex.

4 Conjugacy and Fenchel Duality for Almost Convex
Functions

This section is dedicated to the generalization of some well-known results
concerning the conjugate of convex functions. We prove that they keep their
validity when the functions involved are taken almost convex, too. Moreover,
these results are proven to stand also when the functions are nearly convex
and their epigraphs have non-empty relative interiors.

First we deal with the conjugate of the precomposition with a linear op-
erator (see, for instance, Theorem 16.3 in [16]).

Theorem 3. Let f : Rm → R be an almost convex function and A : Rn → Rm

a linear operator such that there is some x′ ∈ Rn satisfying Ax′ ∈ ri(dom(f)).
Then for any p ∈ Rm one has

(f ◦A)∗(p) = inf
{
f∗(q) : A∗q = p

}
,

and the infimum is attained.

Proof. We first prove that (f ◦ A)∗(p) = (f̄ ◦ A)∗(p) ∀p ∈ Rn. By Remark 5
we get Ax′ ∈ ri(dom(f̄)). Assume first that f̄ is not proper. Corollary 7.2.1
in [16] yields f̄(y) = −∞ ∀y ∈ dom(f̄). As ri(dom(f̄)) = ri(dom(f)) and
f̄(y) = f(y) ∀y ∈ ri(dom(f̄)), one has f̄(Ax′) = f(Ax′) = −∞. It follows
easily (f̄ ◦A)∗(p) = (f ◦A)∗(p) = +∞ ∀p ∈ Rn.

Now take f̄ proper. By definition one has (f̄ ◦A)(x) ≤ (f ◦A)(x) ∀x ∈ Rn

and, by simple calculations, one gets (f̄ ◦A)∗(p) ≥ (f ◦A)∗(p) for any p ∈ Rn.
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Take some p ∈ Rn and denote β := (f̄ ◦A)∗(p) ∈]−∞,+∞]. Assume β ∈ R.
We have β = supx∈Rn

{
pTx− f̄ ◦ A(x)

}
. Let ε > 0. Then there is an x̄ ∈ Rn

such that pT x̄− f̄ ◦A(x̄) ≥ β − ε, so Ax̄ ∈ dom(f̄). As Ax′ ∈ ri(dom(f̄)), we
get, because of the linearity of A and of the convexity of dom(f̄), by Theorem
6.1 in [16] that for any λ ∈]0, 1] it holds A((1−λ)x̄+λx′) = (1−λ)Ax̄+λAx′ ∈
ri(dom(f̄)). Applying Theorem 1 and using the convexity of f̄ we have

pT ((1− λ)x̄+ λx′)− f(A((1− λ)x̄+ λx′)) = pT ((1− λ)x̄+ λx′)

−f̄(A((1− λ)x̄+ λx′)) ≥ pT ((1− λ)x̄+ λx′)− (1− λ)f̄ ◦A(x̄)

−λf̄ ◦A(x′) = pT x̄− f̄ ◦A(x̄) + λ
[
pT (x′ − x̄)− (f̄ ◦A(x′)− f̄ ◦A(x̄))

]
.

As Ax′ and Ax̄ belong to the domain of the proper function f̄ , there is a
λ̄ ∈]0, 1] such that λ̄

[
pT (x′ − x̄)− (f̄ ◦A(x′)− f̄ ◦A(x̄))

]
> −ε.

The calculations above lead to

(f ◦A)∗(p) ≥ pT ((1− λ̄)x̄+ λ̄x′)− (f̄ ◦A)((1− λ̄)x̄+ λ̄x′) ≥ β − 2ε.

As ε is an arbitrarily chosen positive number, let it converge towards 0. We
get (f ◦ A)∗(p) ≥ β = (f̄ ◦ A)∗(p). Because the opposite inequality is always
true, we get (f ◦A)∗(p) = (f̄ ◦A)∗(p).

Consider now the last possible situation, β = +∞. Then for any k ≥ 1
there is an xk ∈ Rn such that pTxk − f̄(Axk) ≥ k + 1. Thus Axk ∈ dom(f̄)
and by Theorem 6.1 in [16] we have, for any λ ∈]0, 1],

pT ((1− λ)xk + λx′)− f ◦A((1− λ)xk + λx′) = pT ((1− λ)xk + λx′)

−f̄ ◦A((1− λ)xk + λx′) ≥ pT ((1− λ)xk + λx′)− (1− λ)f̄ ◦A(xk)

−λf̄ ◦A(x′) = pTxk − f̄ ◦A(xk) + λ
[
pT (x′ − xk)− (f̄ ◦A(x′)− f̄ ◦A(xk))

]
.

Like before, there is some λ̄ ∈]0, 1[ such that

λ̄
[
pT (x′ − xk)− (f̄ ◦A(x′)− f̄ ◦A(xk))

]
≥ −1.

Denoting zk := (1 − λ̄)xk + λ̄x′ we have zk ∈ Rn and pT zk − f ◦ A(zk) ≥
k + 1− 1 = k. As k ≥ 1 is arbitrarily chosen, one gets

(f ◦A)∗(p) = sup
x∈Rn

{
pTx− f ◦A(x)

}
= +∞,

so (f ◦ A)∗(p) = +∞ = (f̄ ◦ A)∗(p). Therefore, as p ∈ Rn has been arbitrary
chosen, we get

(f ◦A)∗(p) = (f̄ ◦A)∗(p) ∀p ∈ Rn. (3)

By Theorem 16.3 in [16] we have, as f̄ is convex and Ax′ ∈ ri(dom(f̄)) =
ri(dom(f)),

(f̄ ◦A)∗(p) = inf
{
(f̄)∗(q) : A∗q = p

}
,
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with the infimum attained at some q̄. But f∗ = (f̄)∗ (cf. [16]), so the relation
above gives

(f̄ ◦A)∗(p) = inf
{
f∗(q) : A∗q = p

}
.

Finally, by (3), this turns into

(f ◦A)∗(p) = inf
{
f∗(q) : A∗q = p

}
,

and the infimum is attained at q̄. !"

The following statement follows from Theorem 3 immediately by Proposi-
tion 1.

Corollary 2. If f : Rm → R is a nearly convex function satisfying ri(epi(f))
�= ∅ and A : Rn → Rm is a linear operator such that there is some x′ ∈ Rn

fulfilling Ax′ ∈ ri(dom(f)), then for any p ∈ Rm one has

(f ◦A)∗(p) = inf
{
f∗(q) : A∗q = p

}
,

and the infimum is attained.

Now we give a statement concerning the conjugate of the sum of finitely
many proper functions, which is actually the infimal convolution of their con-
jugates also when the functions are almost convex functions, provided that
the relative interiors of their domains have a point in common.

Theorem 4. Let fi : Rn → R, i = 1, ..., k, be proper and almost convex
functions whose domains satisfy ∩k

i=1ri(dom(fi)) �= ∅. Then for any p ∈ Rn

we have

(f1 + ...+ fk)∗(p) = inf

{
k∑

i=1

f∗i (pi) :
k∑

i=1

pi = p

}
, (4)

with the infimum attained.

Proof. Let F : Rn× ...×Rn → R, F (x1, ..., xk) =
∑k

i=1 fi(xi). By Corollary 1
we know that F is almost convex. We have dom(F ) = dom(f1)× ...×dom(fk),
so ri(dom(F )) = ri(dom(f1)) × ... × ri(dom(fk)). Consider also the linear
operator A : Rn → Rn× ...×Rn, Ax = (x, ..., x︸ ︷︷ ︸

k

). The existence of the element

x′ ∈ ∩k
i=1ri(dom(fi)) gives (x′, ..., x′) ∈ ri(dom(F )), so Ax′ ∈ ri(dom(F )). By

Theorem 3 we have for any p ∈ Rn

(F ◦A)∗(p) = inf
{
F ∗(q) : A∗q = p

}
, (5)

with the infimum attained at some q̄ ∈ Rn × ...Rn. For the conjugates above
we have for any p ∈ Rn

(F ◦A)∗(p) = sup
x∈Rn

{
pTx−

k∑
i=1

fi(x)

}
=

(
k∑

i=1

fi

)∗
(p)
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and for every q = (p1, ..., pk) ∈ Rn × ...× Rn,

F ∗(q) = sup
xi∈R

n,
i=1,...,k

{
k∑

i=1

(pi)Txi −
k∑

i=1

fi(xi)

}
=

k∑
i=1

f∗i (pi),

so, as A∗q =
∑k

i=1 p
i, (5) delivers (4). !"

In [16] the formula (4) is given assuming the functions fi, i = 1, ..., k,
proper and convex and the intersection of the relative interiors of their do-
mains non-empty. We have proven above that it holds even under the much
weaker than convexity assumption of almost convexity imposed on these
functions, when the other two conditions, i.e. their properness and the non-
emptiness of the intersection of the relative interiors of their domains, stand.
As the following assertion states, the formula is valid under the assumption
regarding the domains also when the functions are proper and nearly convex,
provided that the relative interiors of their epigraphs are non-empty.

Corollary 3. If fi : Rn → R, i = 1, ..., k, are proper nearly convex functions
whose epigraphs have non-empty relative interiors and with their domains
satisfying ∩k

i=1ri(dom(fi)) �= ∅, then for any p ∈ Rn one has

(f1 + ...+ fk)∗(p) = inf

{
k∑

i=1

f∗i (pi) :
k∑

i=1

pi = p

}
,

with the infimum attained.

Next we show that another important conjugacy formula remains true
when imposing almost convexity (or near convexity) instead of convexity for
the functions in discussion.

Theorem 5. Given two proper almost convex functions f : Rn → R and
g : Rm → R and the linear operator A : Rn → Rm for which is guaranteed the
existence of some x′ ∈ ri(dom(f)) satisfying Ax′ ∈ ri(dom(g)), one has for
all p ∈ Rn

(f + g ◦A)∗(p) = inf
{
f∗(p−A∗q) + g∗(q) : q ∈ Rm

}
, (6)

with the infimum attained.

Proof. Consider the linear operator B : Rn → Rn × Rm defined by Bz =
(z,Az) and the function F : Rn×Rm → R, F (x, y) = f(x)+g(y). By Theorem
2, F is an almost convex function and we have dom(F ) = dom(f)× dom(g).
From the hypothesis one gets

Bx′ = (x′, Ax′) ∈ ri(dom(f))× ri(dom(g))
= ri(dom(f)× dom(g)) = ri(dom(F )),
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thus Bx′ ∈ ri(dom(F )). Theorem 3 is applicable, leading to

(F ◦B)∗(p) = inf
{
F ∗(q1, q2) : B∗(q1, q2) = p, (q1, q2) ∈ Rn × Rm

}
where the infimum is attained for any p ∈ Rn. Since for each p ∈ Rn

(F ◦B)∗(p) = sup
x∈Rn

{
pTx− F (B(x))

}
= sup

x∈Rn

{
pTx− F (x,Ax)

}
= sup

x∈Rn

{
pTx− f(x)− g(Ax)

}
= (f + g ◦A)∗(p),

F ∗(q1, q2) = f∗(q1) + g∗(q2) ∀(q1, q2) ∈ Rn × Rm and

B∗(q1, q2) = q1 +A∗q2 ∀(q1, q2) ∈ Rn × Rm,

the relation above becomes

(f + g ◦A)∗(p) = inf
{
f∗(q1) + g∗(q2) : q1 +A∗q2 = p

}
= inf

{
f∗(p−A∗q2) + g∗(q2) : q2 ∈ Rm

}
,

where the infimum is attained for any p ∈ Rn, i.e. (6) stands. !"

Corollary 4. Let the proper nearly convex functions f : Rn → R and
g : Rm → R satisfying ri(epi(f)) �= ∅ and ri(epi(g)) �= ∅ and the linear
operator A : Rn → Rm such that there is some x′ ∈ ri(dom(f)) fulfilling
Ax′ ∈ ri(dom(g)). Then (6) holds for any p ∈ Rn and the infimum is at-
tained.

Remark 6. Assuming the hypotheses of Theorem 5, respectively, Corollary
4 fulfilled, one has from (6) that the following so-called subdifferential sum
formula holds (for the proof see, for example, [5] )

∂(f + g ◦A)(x) = ∂f(x) +A∗∂g(Ax) ∀x ∈ dom(f) ∩A−1(dom(g)).

After weakening the conditions under which some widely-used formulae
concerning the conjugation of functions take place, we switch to duality where
we prove important results which hold even when replacing the convexity with
almost convexity or near convexity.

The following duality statements are immediate consequences of Theorem
5, respectively Corollary 4, by taking p = 0 in (6).

Theorem 6. Given two proper almost convex functions f : Rn → R and
g : Rm → R and the linear operator A : Rn → Rm for which is guaranteed the
existence of some x′ ∈ ri(dom(f)) satisfying Ax′ ∈ ri(dom(g)), one has

inf
x∈Rn

[
f(x) + g(Ax)

]
= −(f + g ◦A)∗(0) = sup

q∈Rm

{
− f∗(A∗q)− g∗(−q)

}
, (7)

with the supremum in the right-hand side attained.
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Remark 7. This statement generalizes Corollary 31.2.1 in [16] as we take the
functions f and g almost convex instead of convex and, moreover, we remove
the closedness assumption required in the mentioned book. It is easy to notice
that when f and g are convex there is no need to consider them moreover
closed in order to obtain the formula (7).

Remark 8. Theorem 6 states actually the so-called strong duality between the
primal problem (PA) infx∈Rn

[
f(x) + g(Ax)

]
and its Fenchel dual (DA)

supq∈Rm

{
− f∗(A∗q)− g∗(−q)

}
.

Using Proposition 1 and Theorem 6 we rediscover the assertion in Theorem
4.1 in [3], which follows.

Corollary 5. Let f : Rn → R and g : Rm → R two proper nearly convex
functions whose epigraphs have non-empty relative interiors and consider the
linear operator A : Rn → Rm. If there is an x′ ∈ ri(dom(f)) such that Ax′ ∈
ri(dom(g)), then (7) holds and the dual problem (DA) has a solution.

In the end we give a generalization of the well-known Fenchel’s duality
theorem (Theorem 31.1 in [16]). It follows immediately from Theorem 6, for
A the identity mapping, thus we skip the proof.

Theorem 7. Let f and g be proper almost convex functions on Rn with values
in R. If ri(dom(f)) ∩ ri(dom(g)) �= ∅, one has

inf
x∈Rn

[
f(x) + g(x)

]
= sup

q∈Rn

{
− f∗(q)− g∗(−q)

}
,

with the supremum attained.

When f and g are nearly convex functions we have, as in Theorem 3.1 in
[3], the following statement.

Corollary 6. Let f and g be proper nearly convex functions on Rn with values
in R. If ri(epi(f)) �= ∅, ri(epi(g)) �= ∅ and ri(dom(f)) ∩ ri(dom(g)) �= ∅, one
has

inf
x∈Rn

[
f(x) + g(x)

]
= sup

q∈Rn

{
− f∗(q)− g∗(−q)

}
,

with the supremum attained.

Remark 9. The last two assertions give actually the strong duality between the
primal problem (P ) infx∈Rn

[
f(x)+g(x)

]
and its Fenchel dual (D) supq∈Rm

{
−

f∗(q) − g∗(−q)
}
. In both cases we have weakened the initial assumptions

required in [16] to guarantee strong duality between (P ) and (D) by asking
the functions f and g to be almost convex, respectively nearly convex, instead
of convex.

Remark 10. Let us notice that the relative interior of the epigraph of a proper
nearly convex function f with ri(dom(f)) �= ∅ may be empty (see for instance
the function in Example 1(i)).
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As proven in Example 1 there are almost convex functions which are not
convex, so our Theorems 3–7 extend some results in [16]. An example given
in [3] shows that also the Corollaries 2–6 generalize indeed the correspond-
ing results from Rockafellar’s book [16], as a nearly convex function whose
epigraph has a non-empty interior is not necessarily convex.

5 Conclusions

After recalling the definitions of three generalizations of the convexity, we have
shown that there are differences between the classes of almost convex functions
and nearly convex functions, both of them being indeed larger than the one of
the convex functions. Then we proved that the formulae of some conjugates,
namely of the precomposition with a linear operator, of the sum of finitely
many functions and of the sum between a function and the precomposition of
another one with a linear operator hold even when the convexity assumptions
are replaced by almost (or near) convexity. The last results we give show that
the well-known duality statements due to Fenchel hold when the functions
involved are taken only almost convex, respectively nearly convex.
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3. Boţ RI, Grad SM, Wanka G (2005) Fenchel’s duality theorem for nearly convex
functions. Preprint 13/2005, Faculty of Mathematics, Chemnitz University of
Technology

4. Boţ RI, Kassay G, Wanka G (2005) Strong duality for generalized convex opti-
mization problems. Journal of Optimization Theory and Applications 127(1):45–
70
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Summary. In this paper we will establish some necessary and/or sufficient condi-
tions for both a nonsingular and a singular matrix A (interpreted as a linear map) to
be pseudomonotone. The given results are in terms of the sign of the determinants
of the principal submatrices and of the cofactors of A in the nonsingular case and
in terms of the structure of A in the singular case. A complete characterization of
pseudomonotonicity in terms of the coefficients of a 3 × 3 matrix is given and a
method for constructing a merely pseudomonotone matrix is suggested.
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1 Introduction

Pseudomonotonicity of a linear map on the interior of the positive orthant
is of particular interest for its relationship with the pseudoconvexity of a
quadratic function over a cone and because of its relevance in complementarity
problems. Starting from the pioneer work of Karamardian [2], this subject has
been studied by several authors (see for instance [3], [5] [6], [7] and [8]) which
have established various characterizations involving the bordered Hessian or
the Moore-Penrose inverse or copositive and subdefinite matrices. The given
approaches are interesting but not very useful in constructing or in testing
pseudomonotonicity in an easily way. The aim of this paper is to move in
this direction. By means of some reformulations of a result given by Crouzeix
in [6], we will establish some necessary and/or sufficient conditions for both
a nonsingular and a singular matrix A (interpreted as a linear map) to be
pseudomonotone. The given results are in terms of the sign of the determinants
of the principal submatrices and of the cofactors of A in the nonsingular
case and in terms of the structure of A in the singular case. In particular, a
complete characterization of pseudomonotonicity in terms of the coefficients of



116 A. Cambini, L. Martein

a 3×3 matrix is given and a method for constructing a merely pseudomonotone
matrix is suggested.

2 Preliminary Results

In this section we will establish two main results which are fundamentals in
characterizing the pseudomonotonicity of a linear map in the interior of the
positive orthant.
Let B be a square matrix of order n. Following [1] we introduce a concise
notation for determinants formed from elements of B:

B

(
i1 i2 .... ip
k1 k2 .... kp

)
=

∣∣∣∣∣∣∣∣
bi1k1 bi1k2 ..... bi1kp

......................

......................
bipk1 bipk2 ..... bipkp

∣∣∣∣∣∣∣∣ (1)

The determinants (1) in which i1 = k1, i2 = k2, .... ip = kp are called principal
minors of order p. In particular we will use the following notations:

dp = B

(
1 2 .... p
1 2 .... p

)
; |Bij | is the determinant of the submatrix obtained by

deleting the i-th row and the j-th column of B; (−1)i+j |Bij | , i �= j,
i, j = 1, ..., n are the cofactors of B.
Applying the algorithm of Gauss, B is reduced, after p steps, to the following
matrix:

C(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 ..... b1p b1p+1 .... b1n

0 c22 ..... c2p c2p+1 .... c2n

..... ..... ...... ..... ..... ..... .....
0 0 ..... cpp cpp+1 .... cpn

0 0 ..... 0 cp+1p+1 .... cp+1n

..... ..... ...... ..... ..... ..... .....
0 0 ..... 0 cnp+1 ...... cnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

This reduction can be carry out if and only if in the process the pivot elements
b11, c22, ..., cpp turn out to be different from zero. Set

Cn−p =

⎡⎣ cp+1p+1 .... cp+1n

......................
cnp+1 .... cnn

⎤⎦ . (3)

It is known [1] that

ckk =
dk

dk−1
, 1 < k ≤ p+ 1; ckk =

B

(
1 2 .... p k
1 2 .... p k

)
dp

, k > p+ 1 (4)

and
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cij =
B

(
1 2 .... p i
1 2 .... p j

)
dp

, i, j ≥ p, i �= j

cij =
B

(
1 2 ....i
1 2 .... j

)
di−1

, 1 < i ≤ p, j > i

In the particular case p = n− 2, (3) reduces to

C2 =
1

dn−2

[
|Bnn| |Bnn−1|
|Bn−1n| |Bn−1n−1|

]
.

C2 =
1

dn−2

[
|Bn−1n−1| − |Bn−1n|
− |Bnn−1| |Bnn|

]−1

.

More generally, if the algorithm of Gauss involves p = n − 2 pivot elements
css with s �= i, j, i < j and B is a symmetric matrix, we obtain

C2 =
1

dn−2

[
|Bjj | (−1)i+j |Bij |

(−1)i+j |Bij | |Bii|

]
. (5)

where Bjj (Bii) is the submatrix of order n− 1 obtained by deleting the j-th
(i-th) row and the j-th (i-th) column of B.
Our first result is stated in the following theorem.

Theorem 1. Let B a symmetric matrix with |B| < 0 and assume that the
principal submatrices of order n− 1 are positive semidefinite. Then the prin-
cipal submatrices of order n− 2 are positive definite.

Proof. Let Bn−2 be a principal submatrix of order n − 2. Without loss of
generality we can assume that Bn−2 is obtained by deleting the last two
rows and the last two columns of B. If Bn−2 is not positive definite, a pivot
element cii in C(n−2) turns out to be zero so that we have cii = cii+1 = ... =
cin−2 = 0. Consider now the principal submatrix Bn−1 obtained by deleting
the last (second-last) row and the last (second-last) column of B. Since Bn−1

is positive semidefinite we obtain cin−1 = 0 (cin = 0). Consequently C(n−2)

turns out to have a null row so that |B| = 0 and this is a contradiction.

Consider now the quadratic form ψ(y) = yTBy; ψ(y) can be interpreted as a
trinomial in the variable y1 and its discriminant ∆1

4 (y2, ...., yn) turns out to
be a quadratic form in the variables y2, ...., yn. Analogously, the discriminant
∆2
4 (y3, ...., yn) of ∆1

4 (y2, ...., yn) with respect to y2 turns out to be a quadratic
form in the variables y3, ...., yn. We obtain, after p steps, a quadratic form
∆p

4 (yp+1, ...., yn) depending to n− p variables. This process can be carry out
if and only if the coefficient of the variable yh, y = 2, ..., p + 1 in ∆h−1

4 turns
out to be different from zero.
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Denotes with Dn−1, ...., Dn−p the symmetric matrices associate to the quad-
ratic forms ∆1

4 , ....,
∆p

4 , respectively. When B is a symmetric matrix we are
interested to find a relation between Cn−p and Dn−p. With this aim we will
establish a preliminary result.
Let F be a symmetric matrix of order m and assume that f11 �= 0. Setting

F =
[
f11 (f∗)T

f∗ Fm−1

]
and performing a pivot operation on the first element f11

α

of the matrix F
α , α �= 0, we obtain the matrix Γ =

[
f11
α

(f∗)T

α
0 Hm−1

]
.

Let Dm−1 be the symmetric matrix associate to the discriminant of the
quadratic form ψ(v) = vTFv with respect to the variable v1.
Set γ11 = f11

α , vT = (v1, (v∗)T ).

Lemma 1. We have Dm−1 = −α2 γ11 Hm−1.

Proof. ψ(v) = f11v
2
1 + 2((f∗)T v∗)v1 + (v∗)TFm−1v

∗, so that ∆1
4 (y2, ...., yn) =

((f∗)T v∗)2−f11(v∗)TFm−1v
∗ = (v∗)T (f∗(f∗)T −f11Fm−1)v∗ and thus Dm−1

= f∗(f∗)T −f11Fm−1. On the other hand performing a pivot operation on the
element γ11 of the matrix F

α we obtain Hm−1 = − f∗

f11
(f∗)T + Fm−1

α = −Dm−1
αf11

.
Since f11 = αγ11 the thesis is achieved.

Now we are able to state the following fundamental result (the convention
zj = 0 if j < 0 is used).

Theorem 2. Let B be a symmetric matrix of order n and assume the validity
of (2). Then

Dn−p = −bp−2
11 · dp−3

2 · ... · dp · Cn−p (6)

Proof. Firstly we prove the following relation between Dn−p and Cn−p in
terms of the pivot elements:

Dn−p = −(b11)2
p−1 · (c22)2

p−2 · ... · cpp · Cn−p. (7)

The proof is given by induction. When p = 1, applying Lemma 1 to the case
F = B, α = 1, we have Dn−1 = −b11Cn−1 so that (7) is verified. Assume
the validity of (7) for p = s. Applying Lemma 1 to the case F = Dn−s

α ,
α = (b11)2

s−1 · (c22)2
s−2 · ... · css, we have Dn−s−1 = −α2cs+1s+1Cn−s−1 that

is (7) for p = s+ 1. Substituting ckk = dk

dk−1
in (7) (see (4)) we obtain (6).

Remark 1. In Theorem 2 we have assumed, for the sake of simplicity, that the
pivot elements are associate to indices 22, ..., pp. If the algorithm of Gauss is
applied with respect to the indices i1i1, i2i2, ...., ipip, denoting with di1i2...ik

=

B

(
i1 i2 .... ik
i1 i2 .... ik

)
, (6) is substituted with

Dn−p = −bp−2
i1i1

· dp−3
i1i2

· ... · di1i2...ip
· Cn−p. (8)
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In particular, if the principal submatrices of order n−1 of B are positive semi-
definite, we have di1i2...ik

> 0, k = 2, ..., p (see Theorem 1) and furthermore
the diagonal elements of Cn−p are positive (see (4)).

Remark 2. Let B a symmetric matrix with |B| < 0 and such that the principal
submatrices of order n−1 are positive semidefinite. Taking into account The-
orem 1, we can perform n−2 steps of the algorithm of Gauss on the matrix B
with respect to n − 2 diagonal elements (pivots) choosen arbitrarily; so that
we can calculate, according to (8), n− 2 discriminants of the quadratic form
ψ(v) = vTBv with respect to the n − 2 variables associate to the choosen
pivots.

3 Equivalent Formulations of Pseudomonotonicity

Through the paper we will use the following notations:

• #n
+ = {x = (x1, ..., xn) ∈ #n : xi ≥ 0, i = 1, ..., n};

• int#n
+ = {x = (x1, ..., xn) ∈ #n : xi > 0, i = 1, ..., n}.

Let A be a square matrix of order n. We recall that the linear map A : #n →
#n is pseudomonotone on int#n

+ if the following logical implication holds:

x, y ∈ int#n
+, (y − x)TAx > 0 ⇒ (y − x)TAy > 0 (9)

The definition (9) is equivalent to the following implication ([6]):

x ∈ int#n
+, v ∈ #n, vTAx = 0⇒ vTAv ≥ 0. (10)

We will say that A is pseudomonotone on int#n
+ if it is pseudomonotone on

int#n
+, as a linear map.

In order to describe the structure of a pseudomonotone matrix, in what follows
we will utilize the following reformulation of (10):
a matrix A is pseudomonotone on int#n

+ if and only if the following implication
holds:

v ∈ #n, AT v = y, x ∈ int#n
+, yTx = 0 ⇒ yT v ≥ 0. (11)

This reformulation will be used in section 5 to find an explicit form of the
scalar product yT v with the aim to study the pseudomonotonicity of a singular
matrix.
When A is a nonsingular matrix, (11) assume one of the simple forms stated
in the following theorem.

Theorem 3. The nonsingular matrix A is pseudomonotone on int#n
+ if and

only if (12) or (13) holds:

x ∈ int#n
+, yTx = 0 ⇒ yTA−1y ≥ 0 (12)

yTA−1y < 0 ⇒ y ∈ #n
+ ∪ #n

− (13)
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Proof. The equivalence between (11) and (12) follows by noting that AT v = y
if and only if v = (AT )−1y = (A−1)T y and that yT (A−1)T y = yTA−1y.
The equivalence between (12) and (13) follows taking into account that for
any fixed y /∈ #n

+ ∪ #n
− there exists some x ∈ int#n

+ such that yTx = 0.

Remark 3. Condition (12) implies that the study of the pseudomonotonicity
of a nonsingular linear map is equivalent to the study of the sign of a quadratic
function subject to a complementarity condition; condition (13) implies that
a matrix A is pseudomonotone if and only if the quadratic form yTA−1y is
semidefinite positive or its assume negative values for vectors having non null
components of the same sign.

Let us note that any matrix A such that M = A+AT

2 is positive semidefinite
verifies (10) so that the main problem in finding pseudodomonotone matrices
is related to matrices for which M is not positive semidefinite. We will refer
to these last matrices as merely pseudomonotone matrices.
By means of (10) we will establish an important property of a pseudomonotone
matrix. Denote with Ak a principal submatrix of A of order k, that is the
submatrix obtained by removing n − k rows and n − k columns of the same
indices. In what follows we will consider proper principal matrices, that is
k �= n. The following theorem holds.

Theorem 4. If A is pseudomonotone on int#n
+ then Ak, k = 2, .., n − 1 is

pseudomonotone on int#k
+.

Proof. Obviously, it is sufficient to give the proof for k = n− 1 (by iterations,
the proof is valid also for k = n − 2, n − 3, .., 2) . Without loss of generality

set A =
[
An−1 a
cT α

]
with a, c ∈ #n−1, α ∈ # and assume that An−1 is not

pseudomonotone on int#n−1
+ . Then there exist x∗ ∈ int#n−1

+ , v∗ ∈ #n−1 such
that

(v∗)TAn−1x
∗ = 0 and (v∗)TAn−1v

∗ < 0. (14)

If (v∗)Ta = 0, setting x = ((x∗)T , 0)T ∈ int#n
+, v = ((v∗)T , 0)T ∈ #n

we have vTAx = 0, vTAv = (v∗)TAn−1v
∗ < 0 and this contradicts the

pseudomonotonicity of A.
If (v∗)Ta �= 0 we can suppose, without loss of generality, (v∗)Ta > 0 sub-
stituting in (14) v∗ with −v∗ if necessary. Setting x = (βx∗ + v∗, t)T , v =
((v∗)T , 0)T , we have vTAx = (v∗)TAn−1v

∗ + (v∗)Tat, so that vTAx = 0 for
t∗ = − (v∗)T An−1v∗

(v∗)T a
> 0. It follows that x = ((βx∗ + v∗)T , t∗)T belongs to

int#n
+ for β large enough, vTAx = 0, vTAv < 0 and this contradicts, once

again, the pseudomonotonicity of A.

Let us note that the converse of Theorem 4 does not hold as it is shown in
the following example.
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Example 1. Consider the matrix A =

⎡⎣1 0 2
0 1 4
0 0 1

⎤⎦. It is easy to verify that the

principal submatrices
[

1 0
0 1

]
,
[

1 2
0 1

]
,
[

1 4
0 1

]
are pseudomonotone on int#2

+ but

A is not pseudomonotone on int#3
+ since for xT = (10, 1, 1), vT = (1,−5, 13)

we have vTAx = 0 and vTAv < 0 contradicting (10).

4 Pseudomonotonicity of a Nonsingular Matrix

In this section we will characterize the pseudomonotonicity of a nonsingular
matrix by means of our reformulations (12) and (13).

4.1 Pseudomonotonicity of a Nonsingular 2 × 2 Matrix

This case has been studied recently in [9] and the following characterization
in terms of the elements of the matrix are obtained (further details can be
also found in [4]).

Theorem 5. Consider the nonsingular matrix A =
[
a c
b d

]
. Then i) and ii)

hold.
i) A is merely pseudomonotone on int#2

+ if and only if (15) or (16) holds.

| A |> 0, a ≥ 0, d ≥ 0, b+ c ≥ 0, ∆ = (b+ c)2 − 4ad > 0 (15)

| A |< 0, a ≤ 0, d ≤ 0, b+ c ≤ 0. (16)

ii) A is pseudomonotone (not merely) on int#2
+ if and only if (17) holds.

a ≥ 0, d ≥ 0, ∆ = (b+ c)2 − 4ad ≤ 0. (17)

4.2 Pseudomonotonicity of a Nonsingular Matrix of Order (≥ 3)

The following theorem establishes a necessary condition for a nonsingular
matrix to be pseudomonotone in terms of the symmetric matrix associate to
its inverse.

Theorem 6. Let A be a nonsingular matrix of order n ≥ 3.
If A is pseudomonotone on int#n

+ then all proper principal submatrices of

B = A−1+(A−1)T

2 are positive semidefinite.

Proof. It is sufficient to prove the theorem for a principal submatrix of order

n−1. Set A−1 =
[
Bn−1 b
cT β

]
with b, c ∈ #n−1, β ∈ #. We must prove that the

quadratic form associate to Bn−1 is non negative that is (yn−1)TBn−1y
n−1 ≥
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0, ∀ yn−1.
Consider x ∈ int#n

+ and y ∈ #n such that yn = −�n−1
i=1 xiyi

xn
, yi ∈ #. From

(12) we have

yTA−1y = (yn−1)TBn−1y
n−1 + (yn−1)T (b+ c)yn + βy2

n ≥ 0. (18)

The thesis trivially holds if b+c = 0 and β = 0. Assume the existence of (y)n−1

such that (yn−1)TBn−1y
n−1 < 0. Setting xi = 1, yi = yi, i = 1, ..., n− 1 and

taking into account that yn → 0 when xn → +∞, we can choose yn such that
(yn−1)T (b+ c)yn + βy2

n < −(yn−1)TBn−1y
n−1 and this contradicts (18).

The following example shows that the necessary pseudomonotonicity condi-
tion stated in Theorem 6 is not sufficient.

Example 2. Consider the matrix A =

⎡⎣ −3 − 3
2 1

− 3
2 −

1
2

1
2

1 1
2 0

⎤⎦. We have

B = A−1 =

⎡⎣ 1 −2 1
−2 4 0

1 0 3

⎤⎦. It is easy to verify that the principal submatrices

of B are positive semidefinite but A is not pseudomonotone on int#3
+ since

for xT = (1, 2, 4), yT = (−2,−1, 1) we have yTx = 0 and yTA−1y < 0
contradicting (12).

Now we are able to state a necessary and sufficient pseudomonotonicity con-
dition for a nonsingular matrix.

Theorem 7. Let A be a nonsingular matrix of order n ≥ 3 and let A−1 be its
inverse. Then A is pseudomonotone on int#n

+ if and only if i) or ii) holds.

i) B = A−1+(A−1)T

2 is positive semidefinite;
ii) detB < 0, the principal submatrices of B of order n− 1 are positive semi-
definite and all the cofactors (−1)i+j | Bij |, i �= j are positive.
Furthermore A is merely pseudomonotone if and only if ii) holds.

Proof. If detB ≥ 0, from Theorem 3 and Theorem 6, the pseudomonotonicity
of A is equivalent to condition i). Assume now that the principal submatrices
of B of order n− 1 are positive semidefinite and furthermore that detB < 0.
Referring to Section 2 and in particular to Remark 1 and Remark 2, set-
ting ψ(y) = yTBy, we can calculate the n − 2 discriminants ∆1

4 (y2, ..., yn),
∆2
4 (y3, ..., yn), ...., ∆n−2

4 (yi, yj).
Since B is indefinite, there exists a solution y∗ = (y∗1 , y

∗
2 , ..., y

∗
n) of the in-

equality ψ(y) < 0. It follows that y∗1 is a solution of ψ(y1, y∗2 , ..., y
∗
n) < 0

and since the coefficient of y1 is negative (see Remark 1) necessarily we have
∆1
4 (y∗2 , ..., y

∗
n) > 0. It follows that y∗2 is a solution of ψ(y2, y∗3 , ..., y

∗
n) > 0

and since the coefficient of y2 is negative (see Remark 1) necessarily we have
∆2
4 (y∗3 , ..., y

∗
n) > 0. After n− 2 times we arrive to have ∆n−2

4 (y∗i , y
∗
j ) > 0, that

is (see (5))
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− |Bjj | (y∗i )2 + 2(−1)i+j |Bij | y∗i y∗j − |Bii| (y∗j )2 > 0, i �= j, (19)

where |Bjj | ≥ 0, |Bii| ≥ 0. If A is pseudomonotone then from (13) we have
y∗ ∈ #n

+ ∪ #n
− so that necessarily we have (−1)i+j |Bij | > 0 and this im-

plies ii) taking into account Theorem 6. Viceversa, the validity of ii) implies
y∗i y

∗
j > 0, i, j = 1, ..., n, i �= j; consequently y∗ ∈ #n

+ ∪ #n
− and thus A is

pseudomonotone.
The last assertion of the theorem follows by noting that A−1+(A−1)T

2 is semi-
definite positive if and only if A+AT

2 is semidefinite positive. The proof is
complete.

Remark 4. In order to deduce y∗ ∈ #n
+ ∪ #n

− in the proof given in Theorem 7
it is sufficient to consider the couples (i, i+1), i = 1, 2, ..., n−1. Consequently,
the condition “the cofactors (−1)i+j | Bij |, i �= j are positive” in ii) can be
substituted with the less restrictive condition “the cofactors − | Bii+1 |, i =
1, ..., n− 1 are positive”.

4.3 On Constructing a Nonsingular Pseudomonotone Matrix of
Order 3

In this subsection we suggest, as an application of Theorem 7, the way of
constructing a merely pseudomonotone matrix of order 3.
First Step
Construct a symmetric matrix B such that:
B11, B22, B33 are positive semidefinite submatrices;
| B12 |< 0, | B13 |> 0, | B23 |< 0; | B |< 0.
Second Step
Any nonsingular matrix A such that A−1+(A−1)T

2 = B is merely pseudomono-
tone.

Example 3. Consider the symmetric matrix B =

⎡⎣ 1 −2 −1
−2 4 0
−1 0 3

⎤⎦.

The proper principal submatrices B11, B22, B33 are positive semidefinite and
furthermore | B12 |= −6 < 0, | B13 |= 4 > 0, | B23 |= −2 < 0.

The matrices A−1 = B, A−1 =

⎡⎣1 −6 −3
2 4 −2
1 2 3

⎤⎦ verify the condition A−1+(A−1)T

2

= B so that A = B−1 = 1
2

⎡⎣−6 −3 −2
−3 −1 −1
−2 −1 0

⎤⎦, A = 1
32

⎡⎣ 8 6 12
−4 3 −2

0 −4 8

⎤⎦ or

A = k

⎡⎣ 8 6 12
−4 3 −2

0 −4 8

⎤⎦, k > 0 are merely pseudomonotone.
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5 Pseudomonotonicity of a Singular Linear Map

In this section we will study the pseudomonotonicity of a singular matrix by
means of our reformulation (11).
First of all we will prove that if A is a singular pseudomonotone matrix with
rank(A) ≥ 2, then there exists a proper principal submatrix having the same
rank of A. More exactly we have the following theorem.

Theorem 8. Let A be a singular matrix of order n ≥ 3 with rank(A) = s ≥ 2
and let k be the maximum of the ranks of the proper principal submatrices of
order s. If A is pseudomonotone on int#n

+ then s = k.

Proof. Assume that rank(A) = s > k and consider the system AT v = y;
without loss of generality we can suppose rank(AT

k ) = k.
From Kronecker’s theorem there exists a submatrix of order s containing AT

k .
Set I = {1, .., k, i1, ..., is−k}, with k < i1 < .. < is−k, the indices of the s rows
in AT which are linearly independent and consider the matrix AT

s,n whose
rows are ai, i ∈ I. Since the proper principal submatrix whose rows and
columns are associated to the indices of I has rank k with k < s, the variables
vi1 , ..., vis−k

cannot be explicited in the system AT v = y.
For the sake of simplicity assume that I = {1, .., k, k + 1, .., s}.
Set I∗ = {1, 2, ..., n}, Ik = {1, 2, ..., k}, Is−k = {k + 1, k + 2, ..., s}, J =
{j1, j2, ..., js−k} with s < j1 and H = I∗ \ (Ik ∪ Is−k ∪ J) (H may be empty).
Partitioning the vector v according to the described indices, that is v =
(vk, vs−k, v|J|, v|H|)T with vk = (v1, ..., vk)T , vs−k = (vk+1, ..., vs)T , v|J| =
(vj1 , ..., vjs−k

)T , the solutions of the system AT v = y are of the kind

vk = B1y
k + C1v

s−k +D1v
|H| + E1y

s−k (20)

v|J| = B2y
k +D2v

|H| + E2y
s−k (21)

yn−s = Fys (22)

where yk = (y1, ..., yk)T , ys−k = (yk+1, ..., vs)T , yn−s = (ys+1, ..., yn)T and
the dimensions of the matrices Bi, Ci, Di, Ei, F, i = 1, 2, are according the
product rule between matrices (notes that v|J| does not depend from vs−k

since the variables vk+1, ..., vs cannot be explicited in the system AT v = y).
Taking into account (20) and (21), yT v is of the following kind:

yT v = ((ys−k)T + (yk)TC1)vs−k + ψ(y, v|H|). (23)

Choose y = (1, 0, .., 0, yk+1, 0, .., 0, yn−s) with yn−s verifying (22) and yk+1 <
0, such that yk+1 + c11 < 0 where c11 is the first element of C1. Then it is
possible to find x ∈ int#n

+ such that yTx = x1+yk+1xk+1+(yn−s)Txn−s = 0.
On the other hand we have yT v = (yk+1 + c11)vk+1 +ψ(y, v|H|) → −∞ when
vk+1 → +∞ and this contradicts (11). The proof is complete.
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Remark 5. The assumption rank(A) ≥ 2 in Theorem 8 cannot be relaxed.

Consider for instance the matrix A =

⎡⎣0 0 0
1 0 0
0 0 0

⎤⎦. It is easy to prove that A is

pseudomonotone on int#3
+ but rank(A) = 1 while k = 0.

Now we are able to establish a necessary and sufficient condition for a singular
matrix A to be pseudomonotone on int#n

+ in terms of its structure. With
this aim let k ≥ 2 be the rank of A. From Theorem 8 there exists a proper
principal submatrix Ak with rank(Ak) = k. Without loss of generality assume
that Ak is obtained by deleting the last n − k rows and columns of A. Set

A =
[

Ak Ak,n−k

An−k,k An−k,n−k

]
, x = (xk, xn−k)T and y = (yk, yn−k)T .

The following theorem holds.

Theorem 9. Let A be a singular matrix with rank(A) = rank(Ak) = k ≥ 2.
A is pseudomonotone on int#n

+ if and only if the following conditions hold:

An−k,n−k = An−k,kA
−1
k Ak,n−k (24)

An−k,k = AT
k,n−k(A−1

k )TAk (25)

x ∈ int#n
+, (yk)T (xk +A−1

k Ak,n−k x
n−k) = 0⇒ (yk)TA−1

k yk ≥ 0 (26)

Proof. First of all observe that (24) follows from the assumption rank(A) =
rank(Ak) = k.
From the system AT v = y, we have

vk = (A−1
k )T yk − (A−1

k )TAT
n−k,kv

n−k (27)

(yn−k)T = (yk)TA−1
k Ak,n−k (28)

so that the pseudomonotonicity of A is equivalent to the following conditions:

yTx = (yk)T [xk +A−1
k Ak,n−kx

n−k] = 0, (29)

yT v = (yk)TA−1
k yk + (yk)TΓvn−k ≥ 0, (30)

where Γ = A−1
k Ak,n−k − (A−1

k )TAT
n−k,k. We are going to prove that Γ is

the null matrix. With this aim let γj , j = 1, .., n − k be the columns of
Γ and assume that γsj �= 0 for some s ∈ {1, ..., k}. Setting in (29), (30)
yh = 0, h �= 1, s, with obvious notations we obtain

y1(x1 +
n∑

i=k+1

βixi) + ys(xs +
n∑

i=k+1

δixi) = 0 (31)

α1y
2
1 + α2y1ys + α3y

2
s +

n−k∑
i=1

(y1γi
1 + ysγ

i
s)vk+i ≥ 0 (32)



126 A. Cambini, L. Martein

From (31) we can choose x1, ..., xn > 0 such that y1γ
j
1 + ysγ

j
s �= 0 and this

is absurd since vk+j is a free variable and thus the inequality (32) cannot be
verified for all vk+j ∈ #. Then necessarily we have γj = 0, j = 1, .., n− k and
this implies Γ = 0; consequently (25) and (26) hold. Vice versa (25) and (26)
imply (29) and (30). The proof is complete.

The assumption rank(A) = k implies the existence of a k × (n − k) matrix
Ck,n−k such that Ak,n−k = AkCk,n−k. From (25), (24) we have:
An−k,k = CT

k,n−kA
T
k (A−1

k )TAk = CT
k,n−kAk, An−k,n−k = CT

k,n−kAkCk,n−k,
so that A has the following structure:

A =
[

Ak AkCk,n−k

CT
k,n−kAk C

T
k,n−kAkCk,n−k

]
(33)

A simple interpretation of (33) is the following: if the j − th column of the
matrix Ak,n−k, j = k+1, .., n is a linear combination of the columns of Ak with
multipliers α1, ..., αk, then the j− th row of the matrix An−k,k, j = k+1, .., n
is a linear combination of the rows of Ak with the same multipliers α1, ..., αk.
Theorem 9 can be specified with respect to pseudomonotone matrices which
are not merely (that is Ak+AT

k

2 is semidefinite positive) and with respect to
merely pseudomonotone matrices.

Theorem 10. Let A be a singular matrix with rank(A) = rank(Ak) = k ≥ 2.
i) A is pseudomonotone (not merely) if and only if Ak+AT

k

2 is positive semi-
definite and (33) holds.
ii) A is merely pseudomonotone if and only if (33) holds, Ak is merely
pseudomonotone and furthermore

x ∈ int#n
+, (yk)T (xk + Ck,n−k x

n−k) = 0⇒ (yk)TA−1
k yk ≥ 0 (34)

6 Special Cases

In this section, as an application of Theorem 10, we specialize condition (34)
to the case rank(A) = 2 and, in particular, we characterize a 3 × 3 merely
pseudomonotone matrix. At last, for the sake of completeness, we will consider
also the case rank(A) = 1. Set:

• A2 =
[
a c
b d

]
,

(
αi

βi

)
, the columns of C2,n−2, i = 3, .., n;

• J = {i : αi ≤ 0, βi < 0} ∪ {i : αi < 0, βi ≤ 0};
• I1 = {i : αi ≥ 0, βi ≥ 0};
• I2 = {i : αi > 0, βi < 0};
• I3 = {i : αi < 0, βi > 0};
• −βs

αs
= maxi∈I2

−βi

αi
, −βk

αk
= mini∈I3

−βi

αi
;

• ψ(m) = d
|A2|m

2 − b+c
|A2| m+ a

|A2| , ∆ = (b+ c)2 − 4ad > 0;



Pseudomonotonicity of a Linear Map 127

• 0 ≤ m1 < m2 where m1, m2 are the roots of the trinomial ψ(m) when
d �= 0.

The following theorem holds.

Theorem 11. Let A be a singular matrix with rank A = 2. Then A is merely
pseudomonotone if and only if the following conditions hold.

i) A =
[

A2 A2C2,n−2

CT
2,n−2A2 C

T
2,n−2A2C2,n−2

]
;

ii) a
|A2| ≥ 0, d

|A2| ≥ 0, b+c
|A2| ≥ 0, ∆ = (b+ c)2 − 4ad > 0;

iii) J = ∅;
iv) one of the following conditions holds:
- a · d �= 0, −βs

αs
≤ m1 < m2 ≤ −βk

αk
;

- d �= 0, a = 0, I2 = ∅, −βk

αk
≥ b+c

d ;
- d = 0, a �= 0, I3 = ∅, −βs

αs
≤ a

b+c ;
- d = 0, a = 0, I2 = I3 = ∅.

Proof. Taking into account of ii) of Theorem 10 and i) of Theorem 5, it remains
to prove that iii), iv) are equivalent to (34) which becomes

x ∈ int#n
+, y1(x1 +

∑
t∈I1

αtxt +
∑
i∈I2

αixi +
∑
j∈I3

αjxj +
∑
l∈J

αlxl) +

+y2(x2 +
∑
t∈I1

βtxt +
∑
i∈I2

βixi +
∑
j∈I3

βjxj +
∑
l∈J

βlxl) = 0⇒

⇒ ψ(y1, y2) =
d

| A2 |
y2
1 −

b+ c

| A2 |
y1y2 +

a

| A2 |
y2
2 ≥ 0 (35)

Setting m = y1
y2

, the inequality ψ(y1, y2) ≥ 0 is equivalent to the inequality
ψ(m) = 1

y2
2
ψ(y1, y2) ≥ 0 which is verified when:

- m /∈ (m1,m2) if a · d �= 0 or d �= 0, a = 0;
- m ≤ a

b+c if d = 0, a �= 0;
- m ≤ 0 if a = d = 0.
iii), iv) ⇒ (35)
From the left hand side of (35) we have

m =
−x2 −

∑
t∈I1

βtxt −
∑

i∈I2
βixi −

∑
j∈I3

βjxj

x1 +
∑

t∈I1
αtxt +

∑
i∈I2

αixi +
∑

j∈I3
αjxj

(36)

that is

mx1 +x2 +
∑
t∈I1

(mαt +βt)xt +
∑
i∈I2

(mαi +βi)xi +
∑
j∈I3

(mαj +βj)xj = 0. (37)

Consider the case d �= 0; we must prove that any m verifying (37) is such that
m /∈ (m1,m2). A positive value of m is a solution of (37) if and only if for
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some i ∈ I2 and/or for some j ∈ I3 we have mαi + βi < 0, mαj + βj < 0 that
is m ≤ −βs

αs
, m ≥ −βk

αk
, so that m /∈ (−βs

αs
, −βk

αk
); from iv) m /∈ (m1,m2).

In the case d = 0, a �= 0, I3 = ∅, any m verifying (37) is such that
m ≤ −βs

αs
≤ a

b+c , so that ψ(m) ≥ 0.
In the case a = d = 0, I2 = I3 = ∅ (37) implies m ≤ 0 so that ψ(m) ≥ 0.
(35) ⇒ iii), iv)
Consider the principal submatrix of A obtained by deleting all rows and
columns with index k �= 1, 2, i; (36) becomes

m =
−x2 − βixi

x1 + αixi
(38)

Case i ∈ J .
If βi = 0, αi < 0, setting in (38) x1 = x2 = 1 we have m = −1

1+αixi
so that

m → 0 when xi → +∞ and m → +∞ when xi → (− 1
αi

)+. It follows that
m ∈ (0,+∞) contradicting (35).
If βi < 0, αi ≤ 0, setting in (38) xi = 1, x2 = −βi

2 , we have m → 0+ when
x1 → +∞ and m → +∞ when x1 → −α+

i . It follows that m ∈ (0,+∞)
contradicting (35) once again and thus J = ∅.
Case i ∈ I2.
Since m = −x2−βixi

x1+αixi
≤ −βixi

αixi
= −βi

αi
we have ψ(m) ≥ 0 ∀m ≤ −βi

αi
and this

implies −βi

αi
≤ m1 and , in particular, −βs

αs
≤ m1. When a = 0, d �= 0 we have

m1 = 0 so that I2 = ∅ since −βs

αs
> 0.

Case i ∈ I3.
Since 1

m = −x1−αixi

x2+βixi
≤ −αi

βi
we have m ≥ −βi

αi
so that the validity of ψ(m) ≥

0 ∀ m /∈ (m1,m2) implies −βi

αi
≥ m2 and , in particular, −βk

αk
≥ m2.

If a �= 0, d = 0, m ≤ a
b+c and m ≥ −βi

αi
imply I3 = ∅.

At last if a = d = 0, ψ(m) ≥ 0 for m ≤ 0 and since −βs

αs
, −βk

αk
are positive,

necessarily we have I2 = I3 = ∅. The proof is complete

As a particular case of the above theorem, we have the following characteri-
zation of a merely pseudomonotone matrix of order 3 with rank 2.

Corollary 1. Consider the following matrix A =

⎡⎣a c eb d f
g h i

⎤⎦ where

A2 =
[
a c
b d

]
is non singular and set (α, β)T = A−1

2 (e, f)T .

Then A is merely pseudomonotone if and only if i), ii), iii) hold.
i) (g, h, i) = α (a, c, e) + β(b, d, f).
ii) a

|A2| ≥ 0, d
|A2| ≥ 0, b+c

|A2| ≥ 0, ∆ = (b+ c)2 − 4ad > 0.
iii) one of the following conditions holds:
α ≥ 0, β ≥ 0;
a · d �= 0, α > 0, β < 0, −β

α ≤ m1;
a · d �= 0, α < 0, β ≥ 0, −β

α ≥ m2;
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d �= 0, a = 0, α > 0, β < 0, −β
α ≥ b+c

d ;
d = 0, a �= 0, α < 0, β ≥ 0, −β

α ≤ a
b+c ;

d = 0, a = 0, α ≥ 0, β ≥ 0.

Example 4. Consider the matrix A =

⎡⎣0 −1 −2
3 2 1
6 5 4

⎤⎦. We have that A2 =[
0 −1
3 2

]
is a 2 × 2 merely pseudomonotone principal submatrix,

(
α
β

)
=

A−1
2

(
−2

1

)
=

(
−1

2

)
, −1(0,−1,−2) + 2(3, 2, 1) = (6, 5, 4), the trinomial

ψ(m) ≥ 0 is verified for m /∈ (0, 1), −β
α = 2 > m2 = 1 and thus A is merely

pseudomonotone.

Example 5. Consider the matrix A =

⎡⎢⎢⎣
1 −1 6 −3
6 4 26 2

−1 −9 4 −17
11 9 46 7

⎤⎥⎥⎦. We have that

A2 =
[

1 −1
6 4

]
is a 2× 2 merely pseudomonotone principal submatrix,(

α3

β3

)
= A−1

2

(
6

26

)
=

(
5

−1

)
,
(
α4

β4

)
= A−1

2

(
−3

2

)
=

(
−1

2

)
, I2 = {3},

I3 = {4}, 5(1,−1, 6,−3)−1·(6, 4, 26, 2) = (−1,−9, 4,−17), −1·(1,−1, 6,−3)+
2 · (6, 4, 26, 2) = (11, 9, 46, 7), the trinomial ψ(m) ≥ 0 is verified for m /∈
(1
4 , 1), −β3

α3
= 1

5 < m1 = 1
4 < m2 = 1 < −β4

α4
= 2 and thus A is merely

pseudomonotone.

At last, for sake of completeness, we consider the case rank(A)=1. A very
simple sufficient condition for pseudomonotonicity can be found in [7], Propo-
sition 3.3.
In what follows, the columns of A (which are all proportional), are denoted
by α1a, α2a,..., αna, a �= 0, α1, α2,..., αn not all zero.

Theorem 12. Let A be a matrix with rank(A) = 1. Then A is pseudomono-
tone if and only if i) or ii) hold.
i) αi ≥ 0, i = 1, ..., n;
ii) A+AT

2 is positive semidefinite.

Proof. . Setting x = (x1, ..., xn)T , αT = (α1, ..., αn), we have Ax = (αTx)a.
If αi ≥ 0, i = 1, ..., n (this implies that at least one of them is positive),
then αTx > 0 so that vTAx = 0 if and only if vTa = 0 and this implies
vTAv = 0 ∀v ∈ #n and thus A is pseudomonotone (see (10)). If there exist
αi, αj with αiαj < 0 then it is possible to choose x∗ = (x∗1, ..., x

∗
n) ∈ int#n

+

such that α1x
∗
1 + α2x

∗
2 + ..., αnx

∗
n = 0, so that Ax∗ = 0, vTAx∗ = 0 ∀v ∈ #n

and consequently A is pseudomonotone if and only if the quadratic form vTAv
is semidefinite positive (see (10)).
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Remark 6. Let us note that if rank(A) = 1 then A+AT

2 is semidefinite (positive
or negative) if and only if A is symmetric; in such a case A assume a particular
form: let i be the index corresponding to the first non null column of A. Then
aT = (0, .., 0, aii, ..., ain) with aii �= 0 and we have A = aiia

∗(a∗)T where
a∗ = 1

aii
a = (0, .., 0, 1, αi+1, ..., αn).

Remark 6 and Theorem 12 imply the following characterization of the pseudo-
monotonicity of a matrix with rank(A) = 1.

Theorem 13. Let A be a matrix with rank(A) = 1. Then A is merely
pseudomonotone if and only if i) or ii) hold.
i) A is not symmetric and αi ≥ 0, i = 1, ..., n;
ii) A is symmetric, aii < 0, αi+s ≥ 0, s = 1, ..., n − i where aii is the first
diagonal element different from zero.

In the following example we present some merely and not merely pseudomono-
tone matrices having rank equal to 1.

Example 6. Merely pseudomonotone matrices:

A =

⎡⎣ 1 2 4
−3 −6 −12

5 10 20

⎤⎦, A = µ

⎡⎣ 1 α β
α α2 αβ
β αβ β2

⎤⎦, µ < 0, α ≥ 0, β ≥ 0.

Some canonical form of not merely pseudomonotone matrices:

A = µ

⎡⎣ 1 α β
α α2 αβ
β αβ β2

⎤⎦, µ > 0, A = µ

⎡⎣0 0 0
0 1 α
0 α α2

⎤⎦, µ > 0,

A = µ

⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦, µ > 0.
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Summary. A notion of convexity for discrete functions is first introduced, with
the aim to guarantee both the increasing monotonicity of marginal increments and
the convexity of the sum of convex functions. Global optimality of local minima is
then studied both for single variable functions and for multi variables ones. Finally,
a concrete optimal fleet mix problem is studied, pointing out its discrete convexity
properties.

Key words: Discrete programming, discrete convexity, optimal fleet mix.

1 Introduction

Concrete problems are often discrete, in the sense that the variables are de-
fined over the set of integers. This happens, for instance, whenever the vari-
ables represent the number of units, such as workforce units, number of am-
bulances, number of vehicles, and so on.

Due to their importance in applications, discrete problems have been
widely studied in the mathematical programming literature, especially from
the algorithmic point of view. Some approaches to convexity properties of
discrete functions have been proposed too (see for example [2, 3, 5]), pointing
out the difficulty of this research field.

The aim of this paper is twofold. First, we propose an approach to the
notion of convexity for discrete functions, with the aim to guarantee both
the increasing monotonicity of marginal increments and the convexity of the
sum of convex functions. Some properties of the defined class of functions are
then studied, especially with respect to the global optimality of local minima.
Then, a concrete problem of optimal fleet mix is analyzed. In particular, we
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consider a model involving both internal workforce units and external tech-
nicians; quality of service requirements and penalties for unfulfilled services
are also considered. The model is then studied from a theoretical point of
view, pointing out that some of the variables can be parametrically fixed to
their optimal value, thus obtaining a parametrical discrete convex objective
function.

2 Discrete Convex Functions

Convexity property has been widely used in Mathematics and in Economics
due to its usefulness in optimization problems (both critical points and local
minima are global optimum points). As it is well known, such a concept re-
gards to functions defined over convex sets. Unfortunately, many applicative
problems arising in Operations Research and in Management Science deal
with integer programming. As a consequence, some efforts have been done in
the literature in order to determine a convexity concept suitable for discrete
problems.

In this section, we aim to propose a new definition of discrete convexity by
using an approach different from the ones already appeared in the literature. In
particular, our aim is to guarantee two properties which results to be useful in
Economics and in applicative problems, that are the increasing monotonicity
of marginal increments and the discrete convexity of the sum of two discrete
convex functions.

2.1 A Brief Overview

For the sake of completeness, let us now briefly recall some of the results
already appeared in the literature.

Favati and Tardella in [2] introduced the concept of integer convexity ex-
tending a function f , defined over a discrete rectangle X ⊂ Zn, to a piecewise-
linear function f defined over the convex hull of X, denoted with co(X) ⊆ #n.

Definition 1. A set X ⊂ Zn is said to be a discrete rectangle if there exist
a, b ∈ Zn such that:

X = {x ∈ Zn : ai ≤ xi ≤ bi, i = 1, . . . , n}

Given a number x ∈ # it is denoted with N(x) the so called discrete neigh-
borhood of x, defined as the set

N(x) = {z ∈ Zn : |xi − zi| < 1, i = 1, . . . , n}

Definition 2. Let f : X → #, where X ⊂ Zn is a discrete rectangle. The so
called extension of f is the function f : co(X) → # defined as follows:
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f(y) = min

{
k∑

i=1

αif(zi) : zi ∈ N(y),
k∑

i=1

αiz
i = y,

k∑
i=1

αi = 1, αi ≥ 0

}

where y ∈ co(X) and k = card(N(y)). Then, function f is said to be integrally
convex if its extension f : co(X) → # is convex.

This discrete convexity property is not easy to be verified. In any case, the
authors have been able to state some useful properties and a global optimality
results, which deserve to be recalled for the sake of completeness.

Proposition 1. Let f, g : X → #, where X is a discrete rectangle, then

f(x) + g(x) ≤ (f + g)(x), ∀x ∈ co(X) (1)

furthermore, if over any unit hypercube contained in co(X) at least one of the
functions f(x) and g(x) is linear, then

f(x) + g(x) = (f + g)(x), ∀x ∈ co(X) (2)

Proposition 2. A point x ∈ X is a local minimum point for f over co(X) if
and only if it is a local minimum point for f over X.

Proposition 3. Let f be an integrally convex function on a discrete rectangle
X. If x is a local minimum point for f over X, then x is a global minimum
point.

Unfortunately, the class of integrally convex functions is not closed under
addition (see Proposition 1). However, if f and g are integrally convex on X
and condition (2) holds, then f + g is also integrally convex. This happens,
for example, when f and g are submodular integrally convex functions.

A branch of the literature, then has concentrated its attention to this
particular class of functions. Murota in [3] defines a concept of convexity for
integer valued functions and investigates its relationship to submodularity.
Yüceer in [5] establishes the equivalence of discrete convexity (in the sense
of Yüceer) and increasing first forward differences of functions of a single
variable.

Definition 3. Let S be a subspace of a discrete n-dimensional space. A func-
tion f : S → # is discretely convex (in the sense of Yüceer) if for all x, y ∈ S
and for all α ∈ (0, 1)

αf(x) + (1− α)f(y) ≥ min
u∈N(z)

f(u)

where N(z) = {u ∈ S : ‖u− z‖ < 1}, z = αx+(1−α)y and ‖u‖ = max
1≤i≤n

{|ui|}.

Then, Yüceer proposes the concept of strong discrete convexity by impos-
ing additional conditions to discrete convexity such as submodularity.
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2.2 A New Approach

Let us now introduce a new notion of convexity for discrete functions by means
of an approach not based neither on extended functions nor on submodular
ones, hence different from the ones proposed in [2, 3, 5]. With this aim, let us
first introduce the definition of discrete reticulum.

Definition 4. Let ret(x, y) be the set

ret(x, y) = {z ∈ Zn : min {xi, yi} ≤ zi ≤ max {xi, yi} , i = 1, .., n}

A set X ⊆ Zn is said to be a discrete reticulum if ret(x, y) ⊆ X ∀x, y ∈ X.

Obviously, any discrete rectangle is also a discrete reticulum; notice also
that Zn

+ is a discrete reticulum but not a discrete rectangle.
From now on the infinite norm will be used to determine the length of

vectors, that is to say that the norm of an n-dimensional vector x will be
denoted as follows:

‖x‖ = ‖x‖∞ = max
i=1,...,n

|xi|

As usual, if ‖x‖ = 1 then x is said to be an unitary vector.
The following further notations will be used in the rest of the paper.

Definition 5. Let f : X → #, where X ⊂ Zn is a discrete reticulum. The
following first and second order differences are introduced:

∆f(x; v) = f(x+ v)− f(x) (3)
∆2f(x; v) = f(x+ 2v)− 2f(x+ v) + f(x) (4)

where x ∈ X, v ∈ Zn with ‖v‖ = 1, and x+ 2v ∈ X.

Notice that it is ∆2f(x; v) = ∆f(x+v; v)−∆f(x; v). Let us now introduce
the definition of discrete convex function.

Definition 6. Let f : X → #, where X ⊂ Zn is a discrete reticulum. Func-
tion f is said to be a discrete convex function if for all x ∈ X, for all v ∈ Zn,
‖v‖ = 1, such that x+ 2v ∈ X, it is:

∆2f(x; v) ≥ 0 (5)

Let us point out that any continuous convex function restricted over a
discrete reticulum verifies the proposed definition.

Remark 1. Let f : X → #, where X ⊂ Zn is a discrete reticulum, and let
x ∈ X and v ∈ Zn, ‖v‖ = 1, be such that x + 2v ∈ X and x − 2v ∈ X. By
simply renaming the variables (x̄ = x+ 2v), it follows that:

∆2f(x; v) ≥ 0 ⇔ ∆2f(x;−v) ≥ 0

In other words, if inequality (5) holds for a certain direction v then it is
necessarily verified also for the direction −v.
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First of all, it is worth noticing that from Definition 6 it follows straight-
forward that the sum of two discrete convex functions is discrete convex too.

Theorem 1. Let f, g : X → #, where X is a discrete reticulum, be two
discrete convex functions and let α ∈ #, α > 0. Then, (f + g)(x) and αf(x)
are discrete convex functions.

Let us now prove the following characterization of discrete convex func-
tions which points out that the proposed definition guarantees the increasing
monotonicity of marginal increments.

Theorem 2. Let f : X → #, where X ⊂ Zn is a discrete reticulum. Function
f is a discrete convex function if and only if for all x ∈ X, for all k, h ∈ Z,
with h ≥ 0 and k ≥ h, for all v ∈ Zn, ‖v‖ = 1, such that x+ (k+ 1)v ∈ X, it
is:

∆f(x+ kv; v) ≥ ∆f(x+ hv; v) (6)

Proof. The sufficiency follows just assuming h = 0 and k = 1 since (6) holds
for any k ≥ h ≥ 0.

The necessity is proved noticing that the result is trivial when k = h, while
in the case k > h from the discreteness of the function it yields:

∆f(x+ kv; v)−∆f(x+ hv; v) =
k−1∑
j=h

(∆f(x+ (j + 1)v; v)−∆f(x+ jv; v))

=
k−1∑
j=h

∆2f(x+ jv; v)

so that the result follows directly from the discrete convexity of f .

The following further result will be useful in the next section in order to
prove some global optimality conditions.

Theorem 3. Let f : X → #, where X ⊂ Zn is a discrete reticulum, be a
discrete convex function. Then, for all x ∈ X, for all k, h ∈ Z, with h ≥ 0
and k ≥ h, for all v ∈ Zn, ‖v‖ = 1, such that x+ kv ∈ X, it is:

f(x+ kv)− f(x+ hv) ≥ (k − h)∆f(x+ hv; v) (7)

Proof. If k = h the result is trivial; if k > h notice that the discreteness of
the function yields:

f(x+ kv)− f(x+ hv) =
k−1∑
j=h

(f(x+ (j + 1)v)− f(x+ jv)) =
k−1∑
j=h

∆f(x+ jv; v)

The result then follows by noticing that Theorem 2 implies for any j ≥ h that
∆f(x+ jv; v) ≥ ∆f(x+ hv; v).
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3 Local and Global Optimality

In this section we aim to study the global optimality properties of discrete
convex functions; in particular we are going to deepen on the behavior of local
minima.

3.1 Definitions and Preliminary Results

For the sake of convenience, let us first introduce the following notations and
definitions.

Definition 7. Given a point x ∈ Zn the following sets are defined:

H(x) = {y ∈ Zn : y = x+ v, v ∈ Zn, ‖v‖ = 1}
S(x) = {y ∈ Zn : y = x+ kv, k ∈ Z, v ∈ Zn, ‖v‖ = 1}

The set H(x) represents the surface of a sort of discrete unitary hypercube
around point x, so that it may be intended as a sort of neighborhood of x
itself; S(x) is a discrete star shaped set centered in x and generated by the
discrete unitary directions. Obviously, it is H(x) ⊂ S(x).

Definition 8. Let f : X → #, where X ⊂ Zn is a discrete reticulum. A point
x ∈ X is said to be a local minimum if:

f(x) ≤ f(y) ∀y ∈ X ∩H(x)

while it is said to be a global minimum if:

f(x) ≤ f(y) ∀y ∈ X

The next preliminary result follows straightforward from Theorem 3.

Corollary 1. Let f : X → #, where X ⊂ Zn is a discrete reticulum, be a
discrete convex function. If x ∈ X is a local minimum then f(x) ≤ f(y) for
all y ∈ X ∩ S(x).

Proof. The result follows from Theorem 3 assuming h = 0 and noticing that
the local optimality assumption implies that ∆f(x; v) = f(x+ v)− f(x) ≥ 0.

3.2 Convexity and Optimality in Z

It is worth focusing on the attention to single variable discrete functions, due
to their usefulness in applicative problems. First of all, it is worth noticing
that for Remark 1 the first and second order differences can be simplified as
follows:
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∆f(x) = f(x+ 1)− f(x) (8)
∆2f(x) = f(x+ 2)− 2f(x+ 1) + f(x) (9)

Let us now show that single variable discrete convex functions can be charac-
terized with properties which result to be easier to be verified with respect of
the general definition.

Theorem 4. Let f : X → #, where X ⊂ Z is a discrete reticulum. Function
f is discrete convex if and only if for all x ∈ X such that x+ 2 ∈ X, it is:

∆2f(x) ≥ 0 (10)

Proof. The result follows directly from Definition 6 and Remark 1.

Corollary 2. Let f : X → #, where X ⊂ Z is a discrete reticulum. Function
f is discrete convex if and only if for all x, y ∈ X such that y ≥ x and
y + 1 ∈ X, it is:

∆f(y) ≥ ∆f(x)

Proof. The sufficiency follows trivially assuming y = x + 1. The necessity
follows from Theorem 2 by assuming v = 1 and y = x+ k.

Let us finally point out that for single variable functions the discrete con-
vexity property guarantees the global optimality of local optima.

Corollary 3. Let f : X → #, where X ⊂ Z is a discrete reticulum, be a
discrete convex function. If x ∈ X is a local minimum then it is also a global
one.

Proof. Follows directly from Corollary 1 since in the single variable case it is
S(x) = Z.

As a conclusion, it is worth noticing that in the case of single variable
functions the proposed definition of discrete convexity verifies all the typical
properties of continuous convexity, such as the increasing monotonicity of
the marginal increments, the global optimality of local optima, the discrete
convexity of the sum of discrete convex functions.

3.3 Convexity and Optimality in Zn, n ≥ 2

Unlike the single variable case, when two or more discrete variables are in-
volved then the discrete convexity of the function is not sufficient to guarantee
the global optimality of a local optima. With this regard, it is worth noticing
that Corollary 1 is not a complete global optimality result, since it states the
global optimality of a local optimum only with respect to the set X ∩ S(x).
This behavior is pointed out in the next example.



140 R. Cambini, R. Riccardi, Ü. Yüceer

Example 1. Let us consider the following function defined over X = Z2:

f(x1, x2) = (x2 − 2x1)2 +
1
2

∣∣∣∣x2 +
1
2
x1

∣∣∣∣
This is clearly a convex function over #2 and hence it is also discrete convex
over Z2. Point x = (0, 0) is the unique global minimum, but by means of
simple calculations it can be seen that, for example, the points (1, 2), (2, 4),
(3, 6), are local optima (with respect of Definition 8) but not global ones.

As a consequence, some additional regularity assumptions are required to
extend the optimality range of a local optimum. A first tentative regularity
assumption is proposed in the next definition.

Definition 9. Let f : X → #, where X ⊂ Zn is a discrete reticulum. Let
also be W =

{
w(1), . . . , w(n)

}
⊂ Zn be a set of n linearly independent unitary

vectors. The following regularity condition (R1) is then defined:

• for all x ∈ X, for all i, j = 1, . . . , n, i �= j, such that x+ w(i) + w(j) ∈ X,
it is ∆f(x+ w(j);w(i)) ≥ ∆f(x;w(i))

In the case of discrete convex functions property (R1) can be characterized
as follows.

Theorem 5. Let f : X → #, where X ⊂ Zn is a discrete reticulum, be a
discrete convex function. Let also be W =

{
w(1), . . . , w(n)

}
⊂ Zn be a set of

n linearly independent unitary vectors. The regularity condition (R1) holds if
and only if for all x ∈ X, for all i = 1, . . . , n, for all y ∈ Zn ∩ cone{W}, such
that x+ y + w(i) ∈ X, it is:

∆f(x+ y;w(i)) ≥ ∆f(x;w(i))

Proof. The sufficiency follows immediately by setting y = w(j). For the ne-
cessity, let us first prove the result for y = kw(j), k ∈ ℵ; in other words let us
first prove that:

∆f(x+ kw(j);w(i)) ≥ ∆f(x;w(i)) (11)

In the case j = i inequality (11) follows directly from Theorem 2 by assuming
v = w(i) and h = 0. Consider now the case j �= i; for k = 0 the result is
trivial, while for k = 1 it follows directly from condition (R1). Let now be
k > 1 and assume by induction that the inequality holds for k−1. By applying
the regularity condition (R1) and the induction assumption it yields:

∆f(x + kw(j); w(i)) = ∆f(x + (k − 1)w(j) + w(j); w(i))

≥ ∆f(x + (k − 1)w(j); w(i))

≥ ∆f(x; w(i))

Let now y be any vector in cone{W}; then, it can be expressed in the form
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y =
n∑

j=1

k(j)w(j)

where k(j) ∈ ℵ, j = 1, . . . , n, so that the thesis that we are going to prove can
be rewritten as follows:

∆f(x+ y;w(i)) = ∆f(x+ k(1)w(1) + · · ·+ k(n)w(n);w(i))
≥ ∆f(x;w(i))

The result then follows directly by applying n times, one for every component
k(j)w(j) of y, the preliminary result (11).

The previous result allows us to improve the range of optimality of a local
minimum.

Theorem 6. Let f : X → #, where X ⊂ Zn is a discrete reticulum, be
a discrete convex function. Assume also that the regularity condition (R1)
holds. If x ∈ X is a local minimum, then x is a global minimum with respect
to the sets x+ cone{W} and x− cone{W}.

Proof. Assume by contradiction that x is not a global minimum with respect
to x + cone{W}, that is to say that there exists z ∈ X ∩ (x + cone{W})
such that f(z) < f(x). It is now possible to construct a finite sequence of k
elements {z(j)} ∈ (x+cone{W})∩(z−cone{W}) such that z(0) = x, z(k) = z
and z(j+1) − z(j) ∈ W for all j = 0, . . . , k − 1. Since f(z) < f(x) there exists
k̄ ∈ [0, k−1] such that f(z(k̄)) > f(z(k̄+1)). Let us define y = z(k̄)−x and let i
be such that w(i) = z(k̄+1)−z(k̄) ∈W ; then we have f(x+y) > f(x+y+w(i)),
that is ∆f(x+ y;w(i)) < 0. From Theorem 5 and from the local optimality of
x it then yields:

0 ≤ f(x+ w(i))− f(x) = ∆f(x;w(i)) ≤ ∆f(x+ y;w(i)) < 0

which is a contradiction. Analogously, it can be proved that x is a global
minimum with respect to x− cone{W}.

4 Convexity in an Optimal Fleet Mix Problem

Discrete optimization has many applications in everyday life and for this rea-
son it has been widely studied in the literature.

This kind of problems are algorithmically difficult to be solved from a com-
plexity point of view and are usually approached with integer programming
techniques, branch and bound algorithms, local search, genetic algorithms.

In this section we aim to study a concrete optimal fleet mix problem,
which is a discrete variables model related to the management of internal and
external workforce units.
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A theoretical study will point out that this problem can be solved with a
polynomial complexity by means of a sort of parametrical approach. It will
be also proved that this approach will provide a discrete convex parametrical
objective function. This property allows to solve the problem very efficiently,
that is with a very small CPU time, so that it could be used in a real time
environment, such as in connection with real time routing problems.

4.1 Optimal Fleet Mix: An Integer Programming Problem

This concrete problem is referred to routing of maintenance units (see for
example [1, 4]). The firm employes internal and external technicians for re-
pairing ATMs. Customers signal technical malfunctions to the call center.
After the signalling the company has a contractual time window to repair
the machine. If the time elapses the firm has to pay a penalty. Main targets
are: to minimize call rates, repair time, travel time, and penalty costs. Call
rates depend on product reliability, repair times on service diagnostic and ser-
vice tools, while the travel time is dependent on transportation methods and
environmental conditions. The first three aspects concern internal politics of
renovating machines and personal training. The last one is the one we treat
in this work.

We introduce a suitable objective function that takes into account both
fixed and variable costs. The aim is to minimize this objective function subject
to quality of service (QoS) constraints. Let us study the problem with respect
to a particular geographic area and within a period of one year and let us
denote by I the set of days of the year. The variables represent the number
of internal and external technicians to be employed. The input data are:

• the daily cost of the technicians
• the penalty costs
• the minimum service level the firm wants to guarantee.

First of all we examine the available historical series of calls for failures
(without distinguishing among different types of failures) and we establish two
benchmarks: the minimum and the maximum number of calls per day. From
these parameters we can extrapolate the range of workforce necessary to reply
to the failure calls. In particular, Mi and mi are, respectively, the maximum
number of calls that the firm’s call center receives the day i according to the
data of the historical series and the minimum number.

These two values determine the unique constraint of the model; in fact,
the total number of calls that an employee is able to fulfill cannot be less than
the minimum mi for each i, that is βxx ≥ mi ∀i = 1, . . . , I. Actually, in order
to guarantee a sort of quality of service, the firm may want to guarantee a
higher minimum level of calls fulfilled; this can be represented by means of a
parameter ρ ∈ [0, 1]. In order to define more in detail the model structure, let
us introduce the following definition.
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Definition 10. Let us consider the following data and parameters:
M ∈ ℵI : estimated maximum number of calls
m ∈ ℵI : estimated minimum number of calls
I ∈ ℵ : number of working days under consideration
x ∈ ℵ : the number of employees of the firm
zi ∈ ℵ, i = 1, . . . , I : number of external technicians employed

at the i-th day
βx ∈ ℵ : average number of calls fulfilled per single technician

in a working day
p ∈ #+ : daily cost of the single internal technician
cw ∈ #+ : penalty cost, proportional to the lack of technicians

to repair the faults
cz ∈ #+ : cost per call of the external technician.
ρ ∈ [0, 1] : penalty coefficient.
The optimization problem can be modeled as follows:

P :
{

min f(x, z)
(x, z) ∈ S

where the objective function represents the cost of the internal and/or ex-
ternal crews of technicians employed and is given by:

f(x, z) = Ixp+ cz

I∑
i=1

zi + cww(x, z) (12)

and the number of not fulfilled calls is:

w(x, z) =
I∑

i=1

max {0;Mi − βxx− zi}

=
1
2

I∑
i=1

(Mi − βxx− zi + |Mi − βxx− zi|)

while the feasible region is given by the following daily constraints:

S =
{
x ∈ ℵ, z ∈ ℵI |Mi − ρ(Mi −mi) ≤ βxx+ zi ∀i = 1, . . . , I

}
(13)

External technicians are employed not every day. In the days during which
the call center receives many calls, the firm can decide to employ an unlimited
number of external technicians and it pays them for the whole day. On the
other hand, if internal employees can cover all the demand peaks, zi will be
equal to zero. This kind of mixed fleet is usually employed in firms with a
high volatility of demand and a stochastic trend.
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Remark 2. Since (x, z) ∈ S, i.e. Mi − βxx − zi ≤ ρ(Mi −mi) ∀i = 1, . . . , I,
then w(x, z) ≤ ρ

∑I
i=1(Mi −mi). In this light, ρ

∑I
i=1(Mi −mi) is the max-

imum number of calls which might be left unfulfilled. Note also that, since
the objective function has to be minimized, we can restrict the study of the
problem to the following interval of variable x:

0 ≤ x ≤ M̄ = max
i=1..I

{
⌈
Mi

βx

⌉
}. (14)

4.2 Fundamental Properties of the Problem

Problem P is a discrete variable minimum problem, and can be solved with
any of the known discrete programming algorithms. Clearly, due to the great
number of variables (I + 1 with I equal to the number of working days in the
year), the complexity of such algorithms could make impossible the use of this
problem in real time environments.

Actually, deepening the study of the problem, we can state properties
which will allow to solve it with just a linear complexity and a very small
CPU time requirement. First of all, let us notice that the objective function
of problem P can be rewritten as

f(x, z) = Ipx+
I∑

i=1

ψ(x, zi)

where for all i = 1, . . . , I it is:

ψ(x, zi) = czzi + cw max {0;Mi − βxx− zi}

In other words, the zi variables are independent one each other, so that when-
ever x is considered as a parameter then problem P can be solved separately
with respect to each variable zi. This suggest us to state the following result.

Theorem 7. Let us consider problem P and assume x to be a fixed parameter.
For any i ∈ {1, ..., I} the optimal solution of the following problem:{

min
zi

g(zi) = czzi + cw max {0;Mi − βxx− zi}
zi ≥Mi − ρ(Mi −mi)− βxx

is given by:

ẑi(x) =
{

max {0,Mi − βxx} if cz < cw
max{0,Mi − βxx− %ρ(Mi −mi)&} if cz ≥ cw

(15)

Proof. (Case cz ≥ cw) We just need to prove that g(zi) is monotone increasing
for zi ≥ 0, that is to say that g(zi +1)− g(zi) ≥ 0 for all zi ≥ 0. Noticing that
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g(zi + 1)− g(zi) = cz − cw (max {0;Mi − βxx− zi}
−max {0;Mi − βxx− zi − 1})

and taking into account that Mi − βxx− zi is an integer value, it results:

g(zi + 1)− g(zi) =
{

cz if Mi − βxx− zi ≤ 0
cz − cw if Mi − βxx− zi ≥ 1

and the result is proved since cz ≥ 0 and cz ≥ cw, taking into account that
'Mi − ρ(Mi −mi)− βxx( = Mi − βxx − %ρ(Mi −mi)& since βx and x are
nonnegative integers.

(Case cz < cw) Being zi a nonnegative integer it yields:

max {0;Mi − βxx− zi} =
{

0 if zi ≥ max {0,Mi − βxx}
Mi − βxx− zi if 0 ≤ zi < max {0,Mi − βxx}

and hence:

g(zi) =
{

czzi if zi ≥ max {0,Mi − βxx}
zi(cz − cw) + cw(Mi − βxx) if 0 ≤ zi < max {0,Mi − βxx}

Taking into account that cz > 0 and cz − cw < 0, the minimum is reached in
the feasible value ẑi(x) = max {0,Mi − βxx}.

Remark 3. It is worth pointing out an economic interpretation of the previ-
ously obtained results.

In the case cz ≥ cw the cost of an additional external technician is greater
than the cost of the penalty. This means that, from the firm’s point of view, it
is better to pay the penalty than to employ an additional external technician;
as a consequence the optimal value of zi corresponds to the lower value it can
assume, that is max{0,Mi − βxx− %ρ(Mi −mi)&}.

On the other hand, in the case cz < cw it is better for the firm to avoid
penalties fulfilling all of the daily calls. In this light the firm employs all the
necessary external technicians, given by max {0,Mi − βxx}.

Theorem 7 and Remark 2 allow to rewrite problem P as follows:

P :
{

min ϕ(x) = f(x, ẑ(x))
0 ≤ x ≤ M̄ (16)

where ẑ(x) = (ẑ1(x), . . . , ẑI(x)) as given in (15). Just notice also that

ϕ(x) = Ixp+ cz

I∑
i=1

ẑi(x) + cww(x, ẑ(x)) (17)

= Ixp+
I∑

i=1

ψ(x, ẑi(x)) (18)
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and that in the case cz < cw it is w(x, ẑ(x)) = 0 for all x ∈ [0, M̄ ], while in
the case cz ≥ cw it is

w(x, ẑ(x)) =
I∑

i=1

max {0;Mi − βxx−max{0,Mi − βxx− %ρ(Mi −mi)&}}

=
I∑

i=1

max {0;min{Mi − βxx; %ρ(Mi −mi)&}}

As a conclusion, problem P has become a problem of a single variable and
can be solved by simply comparing the values of ϕ(x) for all x ∈ [0, M̄ ].

4.3 Discrete Convexity of the Objective Function ϕ(x)

In the previous subsection we have shown that problem P can be easily solved,
from a mathematical point of view, with a single variable discrete problem.

In order to improve the use of this problem as part of a real time system,
it is important to determine the optimal solution with a CPU time as small
as possible.

In this light, we now aim to study the discrete convexity of function ϕ(x),
in order to use the global optimality of local minima (see Corollary 3) as an
efficient stopping criterion.

Theorem 8. Consider problem P and function ϕ(x) as defined in (16) and
(17). Then, function ϕ(x) is discrete convex.

Proof. By means of Theorem 4 function ϕ(x) is discrete convex if and only
if ∆2ϕ(x) ≥ 0 for all x ∈ [0, M̄ ]. Two exhaustive cases are now going to be
considered.

(Case cz < cw) Since w(x, ẑ(x)) = 0 for all x ∈ [0, M̄ ] it results

∆2ϕ(x) = cz

I∑
i=1

[ẑi(x+ 2) + ẑi(x)− 2ẑi(x+ 1)]

= cz

I∑
i=1

∆2ẑi(x)

By means of simple calculation, for all i = 1, . . . , I we get:

∆2ẑi(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if Mi − βxx ≥ 2βx

2βx −Mi + βxx if βx ≤Mi − βxx < 2βx

Mi − βxx if 0 ≤Mi − βxx < βx

0 if Mi − βxx < 0

so that ∆2ẑi(x) ≥ 0 for all i = 1, . . . , I which implies ∆2ϕ(x) ≥ 0 too.
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(Case cz ≥ cw) For the sake of convenience, let us introduce the following
notation:

ĥi(x) = cz ẑi(x) + cw max {0;min{Mi − βxx; %ρ(Mi −mi)&}}

so that ϕ(x) = Ixp +
∑I

i=1 ĥi(x) and hence ∆2ϕ(x) =
∑I

i=1∆
2ĥi(x). Some

exhaustive subcases have now to be considered for any i = 1, . . . , I.
Assume Mi − βxx− %ρ(Mi −mi)& ≥ 2βx. Then, it results ∆2ĥi(x) = 0.
Assume βx ≤Mi − βxx− %ρ(Mi −mi)& < 2βx. Then, by means of simple

calculations and taking into account that cz ≥ cw, we have:

∆2ĥi(x) = cz [−Mi + βxx+ 2βx + %ρ(Mi −mi)&] +
+cw [max{0;Mi − βxx− 2βx} − %ρ(Mi −mi)&]

≥ cw [−Mi + βxx+ 2βx + max{0;Mi − βxx− 2βx}]
= cw max{0;−Mi + βxx+ 2βx} ≥ 0

Assume 0 ≤ Mi − βxx − %ρ(Mi −mi)& < βx. Then, by means of simple
calculations and taking into account that cz ≥ cw, we have:

∆2ĥi(x) = cz [Mi − βxx− %ρ(Mi −mi)&] + cw %ρ(Mi −mi)&+
+cw [max{0;Mi − βxx− 2βx} − 2max{0;Mi − βxx− βx}]

≥ cw [Mi − βxx+ max{0;Mi − βxx− 2βx}
−2max{0;Mi − βxx− βx}]

By means of the exhaustive cases Mi−βxx ≥ 2βx, βx ≤Mi−βxx < 2βx and
Mi− βxx < βx, and recalling that Mi− βxx ≥ %ρ(Mi −mi)& ≥ 0, it can then
be easily verified that ∆2ĥi(x) ≥ 0.

Assume Mi − βxx− %ρ(Mi −mi)& < 0. Then, it results

∆2ĥi(x) = cw max{0;Mi − βxx− 2βx}+ cw max{0;Mi − βxx}+
−2cw max{0;Mi − βxx− βx}

so that

∆2ĥi(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if Mi − βxx ≥ 2βx

cw(2βx −Mi + βxx) if βx ≤Mi − βxx < 2βx

cw(Mi − βxx) if 0 ≤Mi − βxx < βx

0 if Mi − βxx < 0

which implies the nonnegativity of ∆2ĥi(x).
As a conclusion, we have stated that ∆2ĥi(x) ≥ 0 for all i = 1, . . . , I, and

this implies ∆2ϕ(x) ≥ 0 too. The result is then proved.

Finally, let us conclude our study pointing out how the optimal solution
can be found by using the discrete convexity of the function as an efficient
stopping criterion.
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Algorithm Structure

1) Determine M̄ and let x∗ := 0, x′ := 0 and local := false;
2) While not local and x′ < M̄ do

2a)x′ := x′ + 1;
2b)if ϕ(x′) < ϕ(x∗) then x∗ := x′ else local := true

3) The optimal solution of problem P is (x∗, ẑ(x∗)) with optimal value ϕ(x∗).
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Summary. The aim of this paper is to show how a wide class of generalized
quadratic programs can be solved, in a unifying framework, by means of the so-called
optimal level solutions method. In other words, the problems are solved by analyz-
ing, explicitly or implicitly, the optimal solutions of particular quadratic strictly
convex parametric subproblems. In particular, it is pointed out that some of these
problems share the same set of optimal level solutions. A solution algorithm is pro-
posed and fully described. The results achieved are then deepened in the particular
case of box constrained problems.
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optimal level solutions.

1 Introduction

The aim of this paper is to study and to propose a solution method for the
following class of generalized quadratic problems:

P :
{

inf φ(x) = f
(

1
2x

TQx+ qTx+ q0
)
g1

(
dTx+ d0

)
+ g2

(
dTx+ d0

)
x ∈ X = {x ∈ #n : Ax ≥ b}

whereA ∈ #m×n, q, d ∈ #n, d �= 0, b ∈ #m, q0, d0 ∈ #,Q ∈ #n×n is symmetric
and positive definite, g1, g2 : Ωg → #, f : Ωf → #, with g1 positive over Ωg

and f strictly increasing over Ωf , where

Ωg =
{
y ∈ # : y = dTx+ d0, x ∈ X

}
,

Ωf =
{
y ∈ # : y =

1
2
xTQx+ qTx+ q0, x ∈ X

}
.

Various particular problems belonging to this class have been studied in the
literature of mathematical programming and global optimization, from both
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a theoretic and an applicative point of view ([2, 12, 13, 14, 20]). In particular,
it is worth noticing that this class covers several multiplicative, fractional,
d.c. and generalized quadratic problems (see for all [4, 6, 7, 8, 11, 16, 18])
which are very used in applications, such as location models, tax programming
models, portfolio theory, risk theory, Data Envelopment Analysis (see for all
[1, 9, 11, 15, 16, 21]).

The solution method proposed to solve this class of problems is based on
the so called “optimal level solutions” method (see [3, 4, 5, 6, 7, 8, 10, 17, 18,
19]). It is known that this is a parametric method, which finds the optimum
of the problem by determining the minima of particular subproblems. In par-
ticular, the optimal solutions of these subproblems are obtained by means of
a sensitivity analysis aimed to maintain the Karush-Kuhn-Tucker optimality
conditions.

Applying the optimal level solutions method to problem P we obtain some
strictly convex quadratic subproblems which are independent of functions f ,
g1 and g2. In other words, different problems share the same set of optimal
level solutions, and this allow us to propose an unifying method to solve all
of them.

In Section 2 we describe how the optimal level solutions method can be
applied to problem P ; in Section 3 a solution algorithm is proposed and fully
described; finally, in Section 4, the obtained results are deepened on for the
particular case of box constrained problems.

2 Optimal Level Solutions Approach

In this section we show how problem P can be solved by means of the optimal
level solutions approach [3, 5, 6, 7, 10, 17]. With this aim, let ξ ∈ # be a
real parameter. The following parametric subproblem can be obtained just by
adding to problem P the constraint dTx+ d0 = ξ:

Pξ :
{

inf f
(

1
2x

TQx+ qTx+ q0
)
g1(ξ) + g2(ξ)

x ∈ Xξ = {x ∈ #n : Ax ≥ b, dTx+ d0 = ξ}

The parameter ξ is said to be a feasible level if the set Xξ is nonempty, that
is if ξ ∈ Ωg. An optimal solution of problem Pξ is called an optimal level
solution. Since g1 is positive over Ωg and f is strictly increasing over Ωf , then
for any given ξ ∈ Ωg the optimal solution of problem Pξ coincides with the
optimal solution of the following strictly convex quadratic problem P ξ:

P ξ :
{

inf 1
2x

TQx+ qTx+ q0
x ∈ Xξ = {x ∈ #n : Ax ≥ b, dTx+ d0 = ξ}

In this light, we say that function φ is parametrically-convexifiable.
For the sake of completeness, let us now briefly recall the optimal level

solutions approach (see for example [10]). Obviously, the optimal solution of
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problem P is also an optimal level solution and, in particular, it is the optimal
level solution with the smallest value; the idea of this approach is then to scan
all the feasible levels, studying the corresponding optimal level solutions, until
the minimizer of the problem is reached or a feasible halfline carrying φ(x)
down to its infimum value is found.

Starting from an incumbent optimal level solution, this can be done by
means of a sensitivity analysis on the parameter ξ, which allows us to move
in the various steps through several optimal level solutions until the optimal
solution is found.

Remark 1. Let us point out that problems P ξ are independent of the functions
f , g1 and g2. This means that different parametrically-convexifiable problems,
either multiplicative or fractional or d.c. quadratic ones, share the same set of
optimal level solutions and can then be solved by means of the same algorithm
iterations. In this light, it can be said that the solution method we propose in
this paper represents an unifying framework for various classes of generalized
quadratic problems.

2.1 Starting Problem and Sensitivity Analysis

Let x′ be the optimal solution of problem P ξ′ , where dTx′ + d0 = ξ′, and let
us consider the following Karush-Kuhn-Tucker conditions for P ξ′ :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qx′ + q = ATµ+ dλ
dTx′ + d0 = ξ′

Ax′≥b feasibility
µ≥0 optimality

µT (Ax′ − b) = 0 complementarity
λ ∈ #, µ ∈ #m

(1)

Since P ξ′ is a strictly convex problem, the previous system has at least one
solution (µ′, λ′).

By means of a sort of sensitivity analysis, we now aim to study the optimal
level solutions of problems P ξ′+θ, θ ∈ (0, ε) with ε > 0 small enough. This can
be done by maintaining the consistence of the Karush-Kuhn-Tucker systems
corresponding to these problems.

Since the Karush-Kuhn-Tucker systems are linear whenever the comple-
mentarity conditions are implicitly handled, then the solution of the optimal-
ity conditions regarding to P ξ′+θ is of the kind:

x′(θ) = x′ + θ∆x , λ
′(θ) = λ′ + θ∆λ , µ

′(θ) = µ′ + θ∆µ (2)

so that it results:
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Q(x′ + θ∆x) + q = AT (µ′ + θ∆µ) + d(λ′ + θ∆λ)
dT (x′ + θ∆x) + d0 = ξ′ + θ,

A(x′ + θ∆x)≥b
(µ′ + θ∆µ)≥0

(µ′i + θ∆µi
) (ai(x′ + θ∆x)− bi) = 0 ∀i = 1, . . . ,m
∆λ ∈ #, ∆µ ∈ #m, ∆x ∈ #n

(3)

where ai, i = 1, . . . ,m, is the i-th row of A.
It is worth pointing out that the strict convexity of problem P ξ′+θ

guarantees for any θ ∈ (0, ε) the uniqueness of the optimal level solution
x′(θ) = x′ + θ∆x; this implies also the following important property:

vector ∆x is unique and different from 0.

Let us now provide an useful preliminary lemma which suggests how to
study system (3). With this aim, let us define, the following sets of indices
based on the binding and the nonbinding constraints:

B = {i : aix
′ = bi , i = 1, . . . ,m} , N = {i : aix

′ > bi , i = 1, . . . ,m} .

Lemma 1. Let (µ′, λ′) be a solution of (1). Then, for θ ∈ (0, ε) system (3) is
equivalent to: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q∆x = AT∆µ + d∆λ

dT∆x = 1,
Ax′ + θA∆x≥b
µ′ + θ∆µ≥0

µ′i = ∆µi
= 0 ∀i ∈ N

µ′iai∆x = 0 , ∆µi
ai∆x = 0 ∀i ∈ B

(4)

Proof. The first and the second equations follow directly from (1) taking into
account that θ �= 0. From (1) we have also that the complementarity conditions
of (3) can be rewritten as:

µ′iai∆x +∆µi
(aix

′ − bi) + θ∆µi
ai∆x = 0 ∀i = 1, . . . ,m . (5)

For any index i ∈ N and for θ > 0 small enough it is (ai(x′ + θ∆x)− bi) �= 0,
so that from (3) it results µ′i + θ∆µi

= 0. This last equation holds for any
θ > 0 small enough if and only if µ′i = ∆µi

= 0; in other words it is:

µ′i = ∆µi
= 0 ∀i ∈ N

which also yields:

∆µi
(aix

′ − bi) = 0 ∀i = 1, . . . ,m .

This equality implies that condition (5) holds for any θ ∈ (0, ε) if and only if
for all i = 1, . . . ,m it is:

µ′iai∆x = 0 , ∆µi
ai∆x = 0

and the result is proved.
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Note that from the positivity of θ, the feasibility conditions and the opti-
mality ones, we also have:

ai∆x ≥ 0 ∀i ∈ B ,

∆µi
≥ 0 ∀i ∈ B such that µ′i = 0 .

As a conclusion, we can compute the values of the multipliers λ′, µ′, ∆λ, ∆µ,
∆x by solving the following overall system (which has 2 + 2m+ n variables):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qx′ + q = ATµ′ + dλ′

Q∆x = AT∆µ + d∆λ

dT∆x = 1,
µ′i = ∆µi

= 0 ∀i ∈ N
µ′i ≥ 0 ∀i ∈ B
ai∆x ≥ 0 ∀i ∈ B
µ′iai∆x = 0 ∀i ∈ B
∆µi

ai∆x = 0 ∀i ∈ B
∆µi

≥ 0 ∀i ∈ B s.t. µ′i = 0
λ′,∆λ ∈ #, µ′,∆µ ∈ #m, ∆x ∈ #n

(6)

This system is suitable for values of θ ≥ 0 verifying the following conditions:

feasibility conditions : Ax′ + θA∆x≥b ,
optimality conditions : µ′ + θ∆µ≥0 .

Notice that system (6) is consistent if and only if the feasible regions Xξ′+θ

of problems P ξ′+θ are nonempty for θ > 0 small enough.
In the case system (6) is consistent, we are finally able to determine the

values of θ > 0 which guarantee both the optimality and the feasibility of
x′(θ). Let N− = {i ∈ N : ai∆x < 0} (1); since Ax′≥b, from the feasibility
conditions we have:

θ ≤ F̂ =

{
mini∈N−

{
bi−aix

′
ai∆x

}
if N− �= ∅

+∞ if N− = ∅

where F̂ > 0. On the other hand, let B− = {i ∈ B : ∆µi
< 0} (recall that

∆µi
= 0 ∀i ∈ N); from the optimality conditions we have:

θ ≤ Ô =

⎧⎨⎩mini∈B−

{
−µi

∆µ′
i

}
if B− �= ∅

+∞ if B− = ∅

where Ô > 0 (since θ > 0 then inequalities ∆µi
< 0 and µ′i + θ∆µi

≥ 0 imply
µ′i > 0). Hence, x′(θ) is an optimal level solution for all θ such that:

0 ≤ θ ≤ θm = min
{
F̂ , Ô

}
where θm > 0 (obviously, when system (6) is consistent).

1Since θ > 0 then inequalities ai∆x < 0 and aix
′+θai∆x≥bi imply bi−aix

′ < 0,
that is to say that i ∈ N .
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2.2 Solving the Multipliers System

The aim of this subsection is to show how system (6) can be improved in order
to determine its solutions. For the sake of convenience, from now on the rows
of A and the components of b and µ′ will be partitioned accordingly to the
set of indices B and N .

Multiplying the first and the second equations of (6) by ∆x �= 0 and taking
into account that Q is positive definite, it follows:

λ′ = (Qx′ + q)T∆x and ∆λ = ∆T
xQ∆x > 0 . (7)

Multiplying the first equation of (6) by d �= 0 and after simple calculations
we also get:

λ′ =
1
dT d

dT
(
Qx′ + q −ATµ′

)
.

Let us now define the matrix D̂ =
(
I − 1

dT d
ddT

)
; note that D̂ is symmet-

ric, singular (since D̂d = 0) and positive semidefinite (the n − 1 nonzero
eigenvalues are all equal to 1 since D̂y = y ∀y ∈ d⊥). Noticing that
dλ′ =

(
I − D̂

) (
Qx′ + q −ATµ′

)
and that µ′N = 0, we can rewrite the first

equation of (6) as follows:

D̂AT
Bµ

′
B = D̂ (Qx′ + q) .

The solution of this system is not unique in general; in particular note that:

rank(D̂AT
B) ≤ min{n− 1, rank(AB)} .

For the sake of convenience, let us now define the scalar δ = 1
dT Q−1d

> 0

and the symmetric matrix Q̂d = (Q−1 − δQ−1ddTQ−1) which results to be
singular (since Q̂dd = 0) and positive semidefinite (for Theorem 2.1 in [8] (2)).
Since Q is nonsingular then, from the second and the third equations of (6),
we get:

∆λ =
1− dTQ−1AT∆µ

dTQ−1d
= δ − δdTQ−1AT∆µ ,

∆x = Q−1AT∆µ +Q−1d∆λ = δQ−1d+ Q̂dA
T∆µ .

As a conclusion, we have the following explicit solutions of system (6), some
of them depending on ∆µB

:

2Theorem 2.1 [8] Let Q ∈ 
n×n be a symmetric positive definite matrix, let
k ∈ 
 and let h ∈ 
n. Then, the symmetric matrix A =

�
Q + khhT

�
is positive

semidefinite if and only if k ≥ − 1
hT Q−1h

.
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µ′N = 0
∆µN

= 0

∆x = δQ−1d+ Q̂dA
T
B∆µB

λ′ = (Qx′ + q)T∆x

∆λ = ∆T
xQ∆x

Note that the uniqueness of vector ∆x implies the uniqueness of λ′ and ∆λ.
We are now left to compute the values of vectors µB and ∆µB

. With this
aim, for the sake of convenience, let vB = ABQ

−1d and RB = ABQ̂dA
T
B =

(ABQ
−1AT

B−δvBv
T
B). Matrix RB is symmetric and positive semidefinite (due

to the semipositiveness of Q̂d) with:

rank(RB) ≤ min{n− 1, rank(AB)}

notice also that the i-th component of vB is vi = aiQ
−1d while the i-th row of

RB is given by ri = (aiQ
−1AT

B− δviv
T
B), so that ai∆x = ri∆µB

+ δvi. Vectors
µB and ∆µB

are then solutions of the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D̂AT
BµB = D̂ (Qx′ + q)

µB≥0
RB∆µB

+ δvB≥0
µi(ri∆µB

+ δvi) = 0 ∀i ∈ B
∆µi

(ri∆µB
+ δvi) = 0 ∀i ∈ B

∆µi
≥ 0 ∀i ∈ B s.t. µi = 0

(8)

Notice that the number of variables in system (8) is just 2card(B), where
card(B) is the number of elements in the set B.

2.3 Optimal Level Solutions Comparison

The optimal level solutions x′(θ) obtained by means of the sensitivity analysis
can be compared just by evaluating the function z(θ) = φ (x′(θ)). Defining
z′ = 1

2x
′TQx′ + qTx′ + q0 and recalling equations (7) it then results:

1
2
x′(θ)TQx′(θ) + qTx′(θ) + q0 =

1
2
∆λθ

2 + λ′θ + z′ .

Hence, since dTx′(θ) + d0 = ξ′ + θ, we get:

z(θ) = φ (x′(θ)) = f

(
1
2
∆λθ

2 + λ′θ + z′
)
g1 (ξ′ + θ) + g2 (ξ′ + θ)

dz

dθ
(θ) =

df

dθ

(
1
2
∆λθ

2 + λ′θ + z′
)

(∆λθ + λ′) g1 (ξ′ + θ) +

+f
(

1
2
∆λθ

2 + λ′θ + z′
)
dg1
dθ

(ξ′ + θ) +
dg2
dθ

(ξ′ + θ)
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so that, in particular:

dz

dθ
(0) = λ′

df

dθ
(z′) g1 (ξ′) + f (z′)

dg1
dθ

(ξ′) +
dg2
dθ

(ξ′) .

As it is very well known, the derivative dz
dθ (0) can be useful since its sign

implies the local decreasing or increasing behavior of z(θ).
Level optimality is helpful also in studying local optimality, since a local

minimum point in a segment of optimal level solutions is a local minimizer of
the problem. This fundamental property allows to prove the following global
optimality conditions in the case of a convex objective function φ(x).

Theorem 1. Consider problem P , assume φ(x) convex and let x′(θ) be the
optimal solution of problem P ξ′+θ.

i) If dz
dθ (0) > 0 then φ(x′) ≤ φ(x) for all x ∈ B such that dTx ≥ dTx′.

ii) If θm < +∞ and θ = arg minθ∈[0,θm] {z(θ)} is such that 0 < θ < θm, then
x′(θ) is the optimal solution of problem P .

Proof. Since φ(x) is convex any local optimum is also global. The results then
follow since a local minimum point in a segment of optimal level solutions is
also a local minimizer.

3 A Solution Algorithm

In order to find a global minimum (or just the infimum) it would be necessary
to solve problems P ξ for all the feasible levels. In this section we will show
that, by means of the results stated so far, this can be done algorithmically
in a finite number of iterations.

The solution algorithm starts from a certain minimal level and then scans
all the greater ones looking for the optimal solution, as it is pointed out in
the next initialization process.

Initialization Steps
Compute, by means of two linear programs, the values (3):

ξmin := inf
x∈X

dTx+ d0 , ξmax := sup
x∈X

dTx+ d0 .

One of the following cases occurs.

1) If ξmin > −∞ then solve problem P from the starting feasible level ξstart =
ξmin up to the level ξend = ξmax.

3Obviously, it may be ξmin = −∞ and/or ξmax = +∞.
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2) If ξmin = −∞ and ξmax < +∞ then let g̃1(ξ) = g1(−ξ) and g̃2(ξ) =
g2(−ξ), so that the objective function of P can be rewritten as:

φ(x) = f

(
1
2
xTQx+ qTx+ q0

)
g̃1

(
−dTx− d0

)
+ g̃2

(
−dTx− d0

)
.

We can then solve problem P using g̃1 and g̃2 and scanning the feasible
levels from the starting value ξstart = −ξmax > −∞ up to ξend = +∞.

3) If ξmin = −∞ and ξmax = +∞ then solve sequentially the next two
problems from the starting level ξstart = 0 up to the level ξend = +∞:

P+ :

⎧⎨⎩
inf f(x)
dTx+ d0 ≥ 0
x ∈ X

and P− :

⎧⎨⎩
inf f(x)
dTx+ d0 ≤ 0
x ∈ X

where P− is defined using g̃1 and g̃2.

Once the starting feasible level ξstart is found, the optimal solution can be
searched iteratively by means of the following algorithm.

Algorithm Structure

1) Let ξ′ := ξstart; x′ := arg min{P ξstart
}; UB := φ(x′); x∗ := x′; unbounded

:= false; stop:= false;
2) While not stop do

2a)With respect to ξ′ and x′ determine µ′, λ′, ∆x, ∆µ, ∆λ, F̂ , Ô; θm :=
min{F̂ , Ô};

2b)If infθ∈[0,θm] {z(θ)} = −∞ then unbounded:= true

else θ = arg minθ∈[0,θm] {z(θ)};
2c) If unbounded= true or {φ(x) is convex and dz

dθ (0) > 0}
then stop:= true
else begin
- If z

(
θ
)
< UB then x∗ := x′

(
θ
)

and UB := z
(
θ
)
;

- If ξ′ + θm ≥ ξend or {φ(x) is convex and 0 < θ < θm}
then stop:= true
else x′ := x′ + θm∆x; ξ′ := ξ′ + θm;

end;
3) If unbounded= true then infx∈X φ(x) = −∞ else x∗ is the optimal solution

for problem P .

Variable UB gives in the various iterations an upper bound for the optimal
value with respect to the levels ξ > ξ′, while x∗ is the best optimal level
solution with respect to the levels ξ ≤ ξ′. Let us also point out that:

• in Step 1) we have to determine the optimal solution of the strictly convex
quadratic problem P ξstart

; actually, this is the only quadratic problem
which needs to be solved within the solution algorithm;
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• in Step 2a) the multipliers have to be determined by solving a system
whose dimension has been reduced as much as possible (see Subsection
2.2 and system (8)); notice that these multipliers do not depend on the
chosen functions f , g1 and g2; in the next section we will show that this
step can be improved in the case of box constrained problems;

• in Step 2b) we have to determine the minimum of z(θ) for θ ∈ [0, θm];
notice that z(θ) is a single variable function and that its minimum over
the segment [0, θm] can be computed with various numerical methods;
notice also that Step 2b) is the only step which depends on the chosen
functions f , g1 and g2;

• finally, it is worth noticing that for particular classes of functions this solu-
tion algorithm can be improved and detailed; in other words, for particular
functions f , g1 and g2, the algorithm can be optimized for convex func-
tions φ, and/or the multipliers in Step 2a) and the value of θ in Step 2b)
can be determined analytically (see for all [4, 6, 7, 8, 18]).

Once Step 2b) is implemented, the correctness of the proposed algorithm
follows since all the feasible levels are scanned and the optimal solution, if it ex-
ists, is also an optimal level solution. As regards to the convergence (finiteness)
of the procedure, note that in every iteration the set of binding constraints
B changes; note also that the level is increased from ξ′ to ξ′ + θm so that it
is not possible to obtain again an already used set of binding constraints B;
the convergence then follows since we have a finite number of sets of binding
constraints.

In particular, if θm = +∞ an halfline of optimal level solutions is found
and the algorithm stops. Consider now the case θm < +∞; if θm = F̂ then at
least one non binding constraint enters the set B; if θm = Ô then at least one
of the positive multipliers corresponding to a binding constraints vanishes, so
that the related constraint will leave the set B in the following iteration.

4 Box Constrained Case

The aim of this section is to deepen the results stated so far in the particular
case of box constrained problems:

P :
{

inf φ(x) = f
(

1
2x

TQx+ qTx+ q0
)
g1

(
dTx+ d0

)
+ g2

(
dTx+ d0

)
x ∈ XB = {x ∈ #n : l≤x≤u}

where l, u, d ∈ #n, d ≥ 0 (4). Obviously, all the other hypotheses required in
Section 1 are assumed too. By means of the general approach described in
Section 2 we have:

4Notice that the d ≥ 0 assumption is not restrictive, since it can be obtained
by means of a trivial change of the variables xi corresponding to the components
di < 0.
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P ξ :
{

min 1
2x

TQx+ qTx+ q0
x ∈ XB

ξ = {x ∈ #n : l≤x≤u, dTx+ d0 = ξ}

Note that the feasible region XB
ξ is no more given by box constraints.

Clearly, this class of box constrained problems can be solved by means of
the solution algorithm described in Section 3. With this aim, notice that it
results ξstart = ξmin = dT l + d0 and ξend = ξmax = dTu + d0, and that the
only strictly convex quadratic problem which has to be explicitly solved in
Step 1) is:

P ξstart
:

⎧⎨⎩
min 1

2x
TQx+ qTx+ q0

xi = li ∀i = 1, . . . , n such that di > 0
li ≤ xi ≤ ui ∀i = 1, . . . , n such that di = 0

In the rest of this section we will point out how the solution method can be
improved in the case of box constrained problems, in particular with respect
to the calculus of the multipliers in Step 2a).

4.1 Incumbent Problem

Let x′ be the optimal solution of problem P ξ′ , with ξ′ = dTx′ + d0 ∈
[ξmin, ξmax], and let us define, for the sake of convenience, the following par-
tition L ∪ U ∪N ∪ Z of the set of indices {1, . . . , n}:

L = {i : li = x′i < ui} , N = {i : li < x′i < ui} ,
U = {i : li < x′i = ui} , E = {i : li = x′i = ui} .

Since P ξ′ is a strictly convex problem, x′ is its unique optimal solution if and
only if the following Karush-Kuhn-Tucker conditions hold (5):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qx′ + q = λd+ α− β
dTx′ + d0 = ξ′,

l≤x′≤u feasibility
α≥0, β≥0, optimality

αT (x′ − l) = 0, βT (u− x′) = 0 complementarity
λ ∈ #, α, β ∈ #n

(9)

Denoting with Qi the i-th row of Q, we can rewrite these Karush-Kuhn-Tucker
conditions as follows:

5If l �< u, that is li = ui for some indices i, the Karush-Kuhn-Tucker conditions
are sufficient but not necessary since no constraint qualification conditions are ver-
ified. These indices will be handled implicitly in the rest of the paper by properly
choosing the values of the multipliers.
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αi = 0, βi = 0, Qix
′ + qi = 0 ∀i ∈ N s.t. di = 0

αi = 0, βi = 0, λ = 1
di

(Qix
′ + qi) ∀i ∈ N s.t. di �= 0

βi = 0, αi = Qix
′ + qi − λdi ≥ 0 ∀i ∈ L

αi = 0, βi = λdi −Qix
′ − qi ≥ 0 ∀i ∈ U

αi = max{0, Qix
′ + qi − λdi} ≥ 0 ∀i ∈ E

βi = max{0, λdi −Qix
′ − qi} ≥ 0 ∀i ∈ E

dTx+ d0 = ξ′ , l≤x≤u

Let Z = {i : di �= 0}. Since d ≥ 0 it results:⎧⎨⎩
λ = 1

di
(Qix

′ + qi) ∀i ∈ N ∩ Z
λ ≤ 1

di
(Qix

′ + qi) ∀i ∈ L ∩ Z
λ ≥ 1

di
(Qix

′ + qi) ∀i ∈ U ∩ Z

Given the optimal level solution x′ for problem Pξ′ the multipliers λ′, α′, β′

can then be computed as follows. First, notice that when (L∪N ∪U)∩Z = ∅
then the linear function dTx+ d0 is constant on the box feasible region, that
is to say that the problem admits one unique feasible level and is then trivial.

Assuming (L ∪ N ∪ U) ∩ Z �= ∅, we can determine the value of λ′ as
described below:

λ′ =

⎧⎪⎪⎨⎪⎪⎩
Qix

′+qi

di
, for any i ∈ N ∩ Z if N ∩ Z �= ∅

mini∈L∩Z

{
Qix

′+qi

di

}
if N ∩ Z = ∅ and L ∩ Z �= ∅

maxi∈U∩Z

{
Qix

′+qi

di

}
if N ∩ Z = ∅ and L ∩ Z = ∅

(10)

Then, the components of α′ and β′ can be obtained as follows:

α′
i =

⎧⎨⎩
0 ∀i ∈ N ∪ U

Qix
′ + qi − λ′di ∀i ∈ L

max{0, Qix
′ + qi − λ′di} ∀i ∈ E

(11)

β′
i =

⎧⎨⎩
0 ∀i ∈ L ∪N

λ′di −Qix
′ − qi ∀i ∈ U

max{0, λ′di −Qix
′ − qi} ∀i ∈ E

(12)

Let us remark that, unlike the general case of Subsection 2.1, we have been
able to determine explicitly the values of all the multipliers of the Karush-
Kuhn-Tucker conditions regarding to P ξ.

4.2 Sensitivity Analysis

In the light of the optimal level solution parametrical approach we now have
to study the optimal solution of problem P ξ′+θ, with θ > 0. In order to avoid
trivialities, we can assume ξ′ < ξmax. Since the Karush-Kuhn-Tucker system
is linear whenever the complementarity conditions are implicitly handled, then
the solution of the optimality conditions regarding to P ξ′+θ results:
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x′(θ) = x′ + θ∆x , λ
′(θ) = λ′ + θ∆λ ,

α′(θ) = α′ + θ∆α , β
′(θ) = β′ + θ∆β ,

so that it follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q(x′ + θ∆x) + q = (α′ + θ∆α)− (β′ + θ∆β) + d(λ′ + θ∆λ)

dT (x′ + θ∆x) + d0 = ξ′ + θ
l≤x′ + θ∆x≤u

α′ + θ∆α≥0, β′ + θ∆β≥0
(α′ + θ∆α)T (x′ + θ∆x − l) = 0, (β′ + θ∆β)T (u− x′ − θ∆x) = 0

(13)

Since x′, λ′, α′ and β′ are known, we are left to compute ∆x,∆λ,∆α,∆β .
With this aim, let us provide the following lemma.

Lemma 2. Let (λ′, α′, β′) be a solution of (9). Then, for θ ∈ (0, ε) system
(13) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∆x = ∆α −∆β + d∆λ

dT∆x = 1
l≤x′ + θ∆x≤u

α′ + θ∆α≥0, β′ + θ∆β≥0
∆xi

= 0 ∀i ∈ E
∆αi

= 0 ∀i ∈ N ∪ U
∆βi

= 0 ∀i ∈ L ∪N
α′

i∆xi
= 0 , ∆αi

∆xi
= 0 ∀i ∈ L

β′
i∆xi

= 0 , ∆βi
∆xi

= 0 ∀i ∈ U

(14)

Proof. The first and the second equations follow directly from (9) taking into
account that θ �= 0, while ∆xi

= 0 ∀i ∈ E follows directly from the definition
of E. From (9) we have also that the complementarity conditions of (13) can
be rewritten as:

∆αi
(x′i − li) + α′

i∆xi
+ θ∆αi

∆xi
= 0 ∀i = 1, . . . , n ,

∆βi
(ui − x′i)− β′

i∆xi
− θ∆βi

∆xi
= 0 ∀i = 1, . . . , n .

Since θ ∈ (0, ε) these conditions hold if and only if for all i = 1, . . . , n:

∆αi
∆xi

= 0 , ∆βi
∆xi

= 0 , (15)
∆αi

(x′i − li) + α′
i∆xi

= 0 , ∆βi
(ui − x′i)− β′

i∆xi
= 0 . (16)

Noticing that x′i + θ∆xi
< ui for all i ∈ L ∪ N and for θ > 0 small enough,

from the complementarity conditions (β′
i +θ∆βi

)(ui−x′i−θ∆xi
) = 0 it yields

β′
i + θ∆βi

= 0; analogously, we also have α′
i + θ∆αi

= 0 for all i ∈ U ∪ N .
Since θ > 0, for (11) and (12) these conditions imply:

∆αi
= 0 ∀i ∈ N ∪ U , ∆βi

= 0 ∀i ∈ L ∪N ,

so that:
∆αi

(x′i − li) = ∆βi
(ui − x′i) = 0 ∀i = 1, . . . , n

and the result is proved.
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Note that from the first and the second equations of (14) and from the
positive definiteness of Q we obtain again ∆x �= 0 and:

∆λ = ∆T
xQ∆x > 0 ,

while from (11), (12) and (14) we have:

∆αi
≥ 0 ∀i ∈ L ∪ E such that α′

i = 0 ,
∆βi

≥ 0 ∀i ∈ U ∪ E such that β′
i = 0 .

From the two last conditions of (14) it yields:

∆xi
= 0 ∀i ∈ L s.t. α′

i > 0 , ∀i ∈ U s.t. β′
i > 0 .

As a conclusion, we have the following explicit solution, depending on ∆x, of
the multipliers in (14):

∆λ = ∆T
xQ∆x

∆αi
=

⎧⎨⎩
0 ∀i ∈ N ∪ U

Qi∆x − di∆λ ∀i ∈ L
max{0, Qi∆x − di∆λ} ∀i ∈ E

∆βi
=

⎧⎨⎩
0 ∀i ∈ L ∪N

di∆λ −Qi∆x ∀i ∈ U
max{0, di∆λ −Qi∆x} ∀i ∈ E

In order to determine vector ∆x it is worth using the partitions L = Lp ∪ L0

and U = Up ∪ U0 defined as follows:

Lp = {i ∈ L : α′
i > 0} , L0 = {i ∈ L : α′

i = 0} ,
Up = {i ∈ U : β′

i > 0} , U0 = {i ∈ U : β′
i = 0} .

Vector ∆x is then the unique solution (recall that P ξ′+θ is a strictly convex
problem) of the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qi∆x = di∆
T
xQ∆x ∀i ∈ N

dT∆x = 1
∆xi

= 0 ∀i ∈ Lp , ∀i ∈ Up , ∀i ∈ E
(Qi∆x − di∆

T
xQ∆x)∆xi

= 0 ∀i ∈ L0 ∪ U0

Qi∆x ≥ di∆
T
xQ∆x , ∆xi

≥ 0 ∀i ∈ L0

di∆
T
xQ∆x ≥ Qi∆x , ∆xi

≤ 0 ∀i ∈ U0

(17)

which is suitable for values of θ ≥ 0 which verify the following conditions:

feasibility conditions : l≤(x′ + θ∆x)≤u ,
optimality conditions : α′

i + θ∆αi
≥ 0 ∀i ∈ L, β′

i + θ∆βi
≥ 0 ∀i ∈ U .

Notice that only the components ∆xi
such that i ∈ L0 ∪ N ∪ U0 are left

to be determined in (17). Notice also that the assumption ξ′ < ξmax implies
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L∪N �= ∅. We are finally able to determine the values of θ > 0 which guarantee
both the optimality and the feasibility of x′(θ). From the feasibility conditions
we have:

θ ≤ F̂ = min
{

min
i∈L0∪N : ∆xi

>0

{
ui − x′i
∆xi

}
, min
i∈N∪U0: ∆xi

<0

{
li − x′i
∆xi

}}
.

Let us recall that whenever ξ′ < ξmax then ∆x �= 0, L ∪ N �= ∅ and hence
F̂ > 0. On the other hand, denoting L−

p = {i ∈ Lp : ∆αi
< 0} and U−

p =
{i ∈ Up : ∆βi

< 0}, from the optimality conditions we have:

θ ≤ Ô =

{
min

{
mini∈L−

p

{
α′

i

−∆αi

}
,mini∈U−

p

{
β′

i

−∆βi

}}
if L−

p ∪ U−
p �= ∅

+∞ if L−
p ∪ U−

p = ∅

so that Ô > 0.
As a consequence, x′(θ) is an optimal level solution for all θ such that:

0 ≤ θ ≤ θm = min
{
F̂ , Ô

}
where θm > 0 whenever ξ′ < ξmax.

4.3 Box Constraints and Diagonal Matrix Q

In the case matrix Q is diagonal several further improvements can be done to
the solution method. In particular, it is possible to explicitly determine all of
the multipliers in the Karush-Kuhn-Tucker system. Notice that the particular
case of f(y) = y, g1(y) = 1 and g2(y) = 1

2ky
2 has been already studied in [8].

The following results can be proved analogously to the ones in [8]. First of all,
notice that the parametric subproblem P ξ becomes:

P ξ :
{

min 1
2x

TDx+ qTx+ q0
x ∈ XB

ξ = {x ∈ #n : l≤x≤u, dTx+ d0 = ξ}

where D = diag(δ1, . . . , δn) ∈ #n×n, δi > 0 ∀i = 1, . . . , n. As a preliminary
result, it is worth pointing out that it is possible to determine explicitly the
optimal value for all the variables xi such that di = 0.

Theorem 2. Consider the subproblems P ξ, with ξ ∈ [ξmin, ξmax]. Then, for
all indices i = 1, . . . , n such that di = 0 the optimal level solution is reached
at

x∗i =

⎧⎨⎩
li if − ci

δi
≤ li

ui if − ci

δi
≥ ui

− ci

δi
if li < − ci

δi
< ui

As a consequence, the feasible region can be reduced a priori, without
loosing the optimal solution, by means of the following commands:
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• if − ci

δi
≤ li then set ui := li ,

• if − ci

δi
≥ ui then set li := ui ,

• if li < − ci

δi
< ui then set li := − ci

δi
and ui := − ci

δi
.

From now on we can then assume that:

i ∈ E for all i = 1, . . . , n such that di = 0. (18)

where L ∪ U ∪N ∪ E = {1, . . . , n} with:

L = {i : li = x′i < ui} , N = {i : li < x′i < ui} ,
U = {i : li < x′i = ui} , E = {i : li = x′i = ui} .

Notice that assumption (18) implies also XB
ξmin

= {l} and XB
ξmax

= {u}, so
that there is no need to solve the starting quadratic problem P ξstart

in Step
1) since we can simply choose x′ := l.

By means of assumption (18) and the results stated in the previous sub-
sections, the following explicit solutions of the Karush-Kuhn-Tucker systems
can be determined:

λ′ =

⎧⎪⎪⎨⎪⎪⎩
δix

′
i+qi

di
, for any i ∈ N if N �= ∅

mini∈L

{
δili+qi

di

}
if N = ∅ and L �= ∅

maxi∈U

{
δiui+qi

di

}
if N = ∅ and L = ∅

α′
i =

⎧⎨⎩
0 ∀i ∈ N ∪ U

δili + qi − λ′di ∀i ∈ L
max{0, δili + qi − λ′di} ∀i ∈ E

β′
i =

⎧⎨⎩
0 ∀i ∈ L ∪N

λ′di − δiui − qi ∀i ∈ U
max{0, λ′di − δiui − qi} ∀i ∈ E

By defining the following further partition of indices L = L+ ∪ L0:

L+ = {i ∈ L : α′
i > 0} , L0 = {i ∈ L : α′

i = 0} ,

we also have that:

∆λ =
1∑

i∈L0∪N
1
δi
d2

i

> 0

∆xi
=

{
0 if i ∈ L+ ∪ U ∪ E

∆λ
di

δi
> 0 if i ∈ L0 ∪N

∆αi
=

{
0 if i /∈ L+

−∆λdi < 0 if i ∈ L+

∆βi
=

{
0 if i ∈ L ∪N

∆λdi ≥ 0 if i ∈ U ∪ E
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Finally, notice that it is:

F̂ =

{
mini∈L0∪N

{
ui−x′

i

∆xi

}
if L0 ∪N �= ∅

0 if L0 ∪N = ∅

Ô =

{
mini∈L+

{−α′
i

∆αi

}
if L+ �= ∅

+∞ if L+ = ∅

where θm > 0 if and only if x′ �= u.
As a conclusion, let us point out that:

• in Step 2a) all of the parameters of the solution algorithm can be computed
explicitly without the need of solving any further system;

• since x′(θ) and α′(θ) are, respectively, increasing and decreasing with re-
spect to θ (this follows from the nonnegativity of ∆x and the nonpositivity
of ∆α) then, it can be proved that the algorithm stops after no more than
2n− 1 iterations.
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Summary. We introduce new invexity-type properties for differentiable functions,
generalizing (F, ρ)− convexity. Optimality conditions for nonlinear programming
problems are established under such assumptions, extending previously known re-
sults. Wolfe and Mond-Weir duals are also considered, and we obtain direct and
converse duality theorems.

Key words: Nonlinear programming, generalized invexity, duality.

1 Introduction

The theory of mathematical programming has grown remarkably after gen-
eralized convexity has been used in the settings of optimality conditions and
duality theory. In 1981, Hanson [3] showed that both weak duality and Kuhn-
Tucker sufficiency for optimum hold when convexity was replaced by a weaker
condition. This condition, called invexity by Craven [1], was further studied
for more general problems and was a source of a vast literature.

After the works of Hanson and Craven, other types of differentiable func-
tions have been introduced with the intent of generalizing invex functions
from different points of view. Hanson and Mond [4] introduced the concept of
F−convexity and Jeyakumar [2] generalized Vial’s ρ−convexity ([7]) introduc-
ing the concept of ρ−invexity. The concept of generalized (F, ρ)−convexity,
introduced by Preda [6] is in turn an extension of the above properties and
was used by several authors to obtain relevant results.

The (F, ρ)−convexity is now generalized to (Φ, ρ)−invexity, and we will
show that the main theoretical results of mathematical programming hold
under this new condition.
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2 (Φ, ρ)−invexity

We begin by introducing a consistent notation for vector inequalities and for
derivative operators.

In the following, Rn denotes the n− dimensional Euclidean space. If x, y ∈
Rn, then x ≥ y means xi ≥ yi for all i = 1, 2, ..., n, while x > y means xi > yi

for all i = 1, 2, ..., n. An element of Rn+1 may be regarded as (t, r) with t ∈ Rn

and r ∈ R.
Let ϕ : D ⊆ Rn �→ R be a differentiable (twice differentiable) function of

the independent variable x, and a ∈ D.
We will denote by ∇xϕ|x=a the gradient of ϕ at the point a, and ∇2

xxϕ|x=a

stands for the matrix formed by the second order derivatives of ϕ. When
any confusion is avoided, we will omit the subscript, writing simply ∇ϕ(a),
respectively, ∇2ϕ(a).

In the next definitions, ρ is a real number and Φ is a real-valued func-
tion defined on D × D × Rn+1, such that Φ(x, a, .) is convex on Rn+1 and
Φ(x, a, (0, r)) ≥ 0 for every (x, a) ∈ D ×D and r ∈ R+.

Definition 1. We say that ϕ is (Φ, ρ)− invex at a with respect to X ⊆ D, if

ϕ(x)− ϕ(a) ≥ Φ(x, a, (∇ϕ(a), ρ)),∀x ∈ X (1)

ϕ is (Φ, ρ)− invex on D if it is (Φ, ρ)− invex at a, for every a ∈ D.

Remark 1. If ϕ1 is (Φ, ρ1)−invex and ϕ2 is (Φ, ρ2)−invex,then λϕ1+(1−λ)ϕ2

is (Φ, λρ1 +(1−λ)ρ2)− invex, whenever λ ∈ [0, 1]. In particular, if ϕ1 and ϕ2

are (Φ, ρ)−invex with respect to the same Φ and ρ, then so is λϕ1+(1−λ)ϕ2.

The following two definitions generalizes (Φ, ρ)−invexity.

Definition 2. We say that ϕ is pseudo (Φ, ρ)− invex at a with respect to X,
if whenever Φ(x, a, (∇ϕ(a), ρ)) ≥ 0 for some x ∈ X,then ϕ(x)− ϕ(a) ≥ 0.

Definition 3. We say that ϕ is quasi (Φ, ρ) − invex at a with respect to X,
if whenever ϕ(x)− ϕ(a) ≤ 0 for some x ∈ X, then Φ(x, a, (∇ϕ(a), ρ)) ≤ 0,

Remark 2. For Φ(x, a, (y, r)) = F (x, a, y) + rd2(x, a), where F (x, a, .) is sub-
linear on Rn, the definition of (Φ, ρ)−invexity reduces to the definition of
(F, ρ)−convexity introduced by Preda [6], which in turn generalizes the con-
cepts of F−convexity ([2]) and ρ−invexity ([7]).

More comments on the relationships between (Φ, ρ)−invexity and invexity
and their earlier extensions are in the next two sections
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3 Optimality Conditions

The typical mathematical programming problem to be considered here is:

(P ) : inf{f(x) | x ∈ X0, gj(x) ≤ 0, j = 1, 2, ...,m}
where X0 is a nonvoid open subset of Rn, f : X0 �→ R, gj : X0 �→ R,

j = 1, 2, ...,m.
Let X be the set of all feasible solutions of (P );

X = {x ∈ X0, gj(x) ≤ 0, j = 1, 2, ...,m}
Everywhere in this paper f and gj , j = 1, 2, ...,m are assumed to be

differentiable onX0, and we will refer to a Kuhn-Tucker point of (P ) according
to the usual definition.

Definition 4. (a, v) ∈ X × Rm
+ is said to be a Kuhn-Tucker point of the

problem (P ) if:

∇f(a) +
m∑

j=1

vj∇gj(a) = 0 (2)

m∑
j=1

vjgj(a) = 0 (3)

Denoting by J(a) = {j ∈ {1, 2, ...,m} | gj(a) = 0}, then summation in (2)
and (3) is over J(a).

First, we use (Φ, ρ)−invexity to prove the sufficiency of Kuhn-Tucker con-
ditions for the optimality in (P ).

Everywhere in the following, we will assume invexity with respect to the
set X of the feasible solutions of (P ), but for the sake of simplicity we will
omit to mention X.

Theorem 1. Let (a, v) be a Kuhn-Tucker point of (P ). If f is pseudo (Φ, ρ0)−
invex at a, and for each j ∈ J(a), gj is quasi (Φ, ρj)−invex at a, for some ρ0,
ρj , j ∈ J(a) such that ρ0 +

∑
j∈J(a) vjρj ≥ 0, then a is an optimum solution

of (P ).

Proof. Set λ0 = 1/(1 +
∑m

j=1 vj), λj = λ0vj , j = 1, 2, ...,m. Obviously,

m∑
j=0

λjρj = λ0ρ0 +
∑

j∈J(a)

λjρj ≥ 0

and .

λ0∇f(a) +
∑

j∈J(a)

λj∇gj(a) = 0
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Then, it follows from the definition of Φ that

0 ≤ Φ(x, a, (λ0∇f(a) +
∑

j∈J(a)

λj∇gj(a), λ0ρ0 +
∑

j∈J(a)

λjρj)) ≤

λ0Φ(x, a, (∇f(a), ρ0)) +
∑

j∈J(a)

λjΦ(x, a, (∇gj(a), ρj))

for every x ∈ Rn.
Now, let x ∈ X be a feasible solution. Since gj(x) − gj(a) ≤ 0 and gj is

quasi (Φ, ρj)−invex , it results that Φ(x, a, (∇gj(a), ρj)) ≤ 0, for each j ∈ J(a).
Hence, the above inequalities imply Φ(x, a, (∇f(a), ρ0)) ≥ 0, and the pseudo
(Φ, ρ0)−invexity of f implies f(x)− f(a) ≥ 0.

With this theorem we have established that a sufficient condition for any
Kuhn-Tucker point to be a minimum solution of (P ) is that there exists a
function Φ with the properties specified in Section 2, and a set of positive real
numbers ρ0, ρ1, ..., ρm such that for every x, a ∈ X,

Φ(x, a, (∇gj(a), ρj)) ≤ 0,∀j ∈ J(a) (A1)

Φ(x, a, (∇f(a), ρ0)) ≥ 0 ⇒ f(x)− f(a) ≥ 0 (A2)

Martin [5] obtained first a necessary and sufficient condition for the suf-
ficiency of Kuhn-Tucker conditions in terms of modified invexity. He have
established that any Kuhn-Tucker point is a minimum solution of (P ) if and
only if there exists a function η : X0 ×X0 �→ R such that for every x, a ∈ X,

〈η(x, a),∇gj(a)〉 ≤ 0,∀j ∈ J(a) (B1)

f(x)− f(a) ≥ 〈η(x, a),∇f(a)〉 (B2)

Obviously, our conditions (A1), (A2) are weaker than those of Martin, and
are satisfied whenever Martin’s condition are satisfied, if Φ is defined by:

Φ(x, a, (y, r)) = 〈η(x, a), y〉 ,∀(x, a) ∈ X0 ×X0, y ∈ Rn, r ∈ R

On the other hand, if a is a Kuhn-Tucker point of (P ) and (A1), (A2) hold
for all x ∈ X, then a is a minimum point of f on X and (B1), (B2) are also
trivially satisfied for η = 0.

Likewise all earlier generalizations of the invexity, (Φ, ρ)-invexity reduces
to invexity when it is used to establish optimality conditions. However, (Φ, ρ)-
invexity enlarges the set of scale functions which can be used for proving the
sufficiency of Kuhn-Tucker conditions. Moreover, as the example of the next
section shows, the (Φ, ρ)-invexity could be strictly weaker that the invexity
when duality conditions are checked.
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Remark 3. Unlike Martin’s conditions, where the properties of all functions
involved in the problem, ( f and gj), are defined in respect to the same
scale function η, our conditions are allowed to be satisfied for different scale
functions. In fact, considering different values of ρ, f and each gj should satisfy
different invexity conditions. Thus in the definitions of Section 2, ρ should be
interpreted as a parameter, and Φ generates a family of functions, one for
each value of ρ. Similar situation appears in the case of (F, ρ)−convexity (or,
ρ−invexity), but in that case the sign of ρ determines explicitly the properties
of the function subjected to such condition. As we can observe in the proof of
Theorem 1 (and in all results bellow), all that we need is that Φ(., ., (0, r)) is
non-negative for some values of r. We have asked this condition to be satisfied
whenever r ≥ 0, but this is a convention which can be replaced by any other
one.

Now, we will establish the necessity of Kuhn-Tucker conditions, under
(Φ, ρ)−invexity.

Theorem 2. Let a be an optimum solution of (P ). Suppose that Slater’s con-
straint qualification holds for restrictions in J(a) (i.e. there exists x∗ ∈ X0

such that gj(x∗) < 0, for all j ∈ J(a) ). If, for each j ∈ J(a), gj is
(Φ, ρj)−invex at a for some ρj ≥ 0, then there exists v ∈ Rm

+ such that (a, v)
is a Kuhn-Tucker point of (P ).

Proof. Since f and gj are differentiable, then there exist Fritz-John multipliers
µ ∈ R+ and λ ∈ Rm

+ such that:

µ∇f(a) +
m∑

j=1

λj∇gj(a) = 0 (4)

m∑
j=1

λjgj(a) = 0 (5)

µ+
m∑

j=1

λj > 0 (6)

All that we need is to prove that µ > 0.
Suppose, by way of contradiction, that µ = 0. Then,

∑
j∈J(a) λj > 0 from

(6), and we can define µj = λj/
∑

j∈J(a) λj . Obviously,
∑

j∈J(a) µjgj(a) = 0
and

∑
j∈J(a) µjρj ≥ 0.

Hence, since each gj is (Φ, ρj)−invex,

0 ≤ Φ(x∗, a, (
∑

j∈J(a)

µj∇gj(a),
∑

j∈J(a)

µjρj)) ≤

∑
j∈J(a)

µjΦ(x∗, a, (∇gj(a), ρj)) ≤
∑

j∈J(a)

µj(gj(x∗)− gj(a))
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But
∑

j∈J(a) µjgj(a) = 0 by (5), so that
∑

j∈J(a) µj(gj(x∗) − gj(a)) < 0,
contradicting the above inequalities.

4 Wolfe Type Duality

Let us consider the Wolfe dual of (P ) :

(WD) : sup{f(y) +
m∑

j=1

vjgj(y) | y ∈ X0, v ∈ Rm
+ ,∇f(y) +

m∑
j=1

vj∇gj(y) = 0}

The main duality results also hold under our invexity type conditions.
We establish first, the general duality property.

Theorem 3. Let (y, v) be a feasible solution of (WD). If f is (Φ, ρ0)− invex
at y, each gj is (Φ, ρj) -invex at y, and ρ0 +

∑m
j=1 vjρj ≥ 0, then

f(x) ≥ f(y) +
m∑

j=1

vjgj(y) (7)

for every feasible solution x ∈ X of (P ).

Proof. Likewise in the proof of Theorem 1, setting λ0 = 1/(1 +
∑m

j=1 vj),
λj = λ0vj , j = 1, 2, ...,m, it follows that

0 ≤ λ0Φ(x, y, (∇f(y), ρ0)) +
m∑

j=1

λjΦ(x, y, (∇gj(y), ρj)) (8)

Further, since f is (Φ, ρ0)− invex and gj is (Φ, ρj) -invex, it results:

0 ≤ λ0(f(x)− f(y)) +
m∑

j=1

λj(gj(x)− gj(y))

Hence,

f(x) +
m∑

j=1

vjgj(x) ≥ f(y)) +
m∑

j=1

vjgj(y)

and, since x ∈ X, the inequality (7) holds.

Corollary 1. If the equality holds in (7), then x is optimal for (P ). Moreover,
if f is (Φ, ρ0)− invex on X0, each gj is (Φ, ρj) -invex on X0, and the equality
holds in (7), then (y, v) is also optimal for (WD).
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The example below shows that the weak duality holds when assumptions
of the previous theorem are verified, even if the usual invexity conditions fail.
Thus, (Φ, ρj) -invexity is actually strictly weaker than the invexity. For the
sake of simplicity, we have considered a pathological optimization problem
where X is a singleton.

Example 1. Let us consider the problem (P ) defined in R2 by the objective
function

f(x) = −(x1 + 4× 10−3)(x2 + 4× 10−3)

and the three restriction functions:

g1(x) = (x1 + 4.5× 10−3)(x2 + 5.5× 10−3)− 35.75× 10−6

g2(x) = (x1 + 5.5× 10−3)(x2 + 4.5× 10−3)− 35.75× 10−6

g3(x) = (x1 − 5× 10−3)2 + (x2 − 5× 10−3)2 − 32× 10−6

It is easy to check that X = {x0}, where x0 = (10−3, 10−3), and (a, ν) is a
feasible solution of the dual, where a = (2×10−3, 2×10−3), and ν = ( 9

14 ,
9
14 ,

1
2 ).

Let Φ be defined on R2 × R2 × R3 by

Φ(x, a, (t, r)) = r + 1 + (t21 + t22)−
√

(t1 + t2)2 + 1

Φ has all properties required in Definition 1, f is (Φ, ρ0)−invex and each
gj is (Φ, ρj)−invex at a, with respect to X, for ρ0 = 10.9 × 10−6, ρ1 = ρ2 =
−13.6×10−6 and ρ3 = 13.9×10−6. Since ρ0 +

∑3
j=1 νjρj ≥ 0, all assumptions

of the theorem are satisfied.
Hence, inequality (7) holds at (a, ν).
To illustrate the elementary but not easy calculation needed for the above

assertion, consider the case of f. By definition, f is (Φ, ρ0)−invex at a iff

ρ0 + 1 + 72× 10−6 −
√

144× 10−6 + 1 ≤ 11× 10−6

Since
√

144× 10−6 + 1 ≥ 71.9× 10−6 + 1, it follows that ρ0 = 10.9× 10−6

satisfies this inequality.
On the other hand, the functions involved in this problem are not invex

at a, for any scale function η. For, if such a function exists then the following
inequalities should be simultaneously satisfied:〈

η(x0, a),∇f(a)
〉
≤ f(x0)− f(a)〈

η(x0, a),∇g1(a)
〉
≤ g1(x0)− g1(a)〈

η(x0, a),∇g2(a)
〉
≤ g2(x0)− g2(a)

Since −∇f(a) = 6
14 (∇g1(a)+∇g2(a)), f(x0)− f(a) = 11×10−6, g1(x0)−

g1(a) = g2(x0) − g2(a) = −13 × 10−6, we arrive to the impossible inequality
−11 ≤ 6

14 (−26).
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Remark 4. Following the same line as in the above, it is easy to verify that
the functions f, g1 and g2 are not (F, ρ)− convex at a, for positive values of
ρ. Obviously, so are f, g1, g2 and g3, but our example is not conclusive for the
(F, ρ)− convexity when the values of ρ are restricted only to the inequality
ρ0 +

∑3
j=1 νjρj ≥ 0.

Now, let us establish a direct duality result.

Theorem 4. Let a be an optimum solution of (P ). Assume that Slater’s con-
straint qualification holds. If f is (Φ, ρ0)− invex and each gj is (Φ, ρj) -invex
on X0, for some ρ0, ρ1, ..., ρm ≥ 0, then there exists v ∈ Rm

+ , such that (a, v)
is an optimum solution of (WD).

Proof. According with Theorem 2, there exists v ∈ Rm
+ such that (a, v) is a

Kuhn-Tucker point of (P ). Therefore, (a, v) is a feasible solution of (WD)
and

∑m
j=1 vjgj(a) = 0. Then, as it was stated in Corollary 1, (a, v) is optimal

for (WD).

The converse duality theorem can be also proved under (Φ, ρ)− invexity.
Let us denote, as usual, by L the Lagrangian of (P ), L(y, v) = f(y) +∑m

j=1 gj(y).

Theorem 5. Let (y∗, v∗) be an optimum solution of (WD). Suppose that f
and gj are twice differentiable and det(∇2

yyL(y, v∗)|y=y∗) �= 0. If f is (Φ, ρ0)−
invex on X0, each gj is (Φ, ρj) -invex on X0, and ρ0 +

∑m
j=1 v

∗
j ρj ≥ 0, then

y∗ is an optimum solution of (P ).

Proof. Since (y∗, v∗) is a feasible solution of (WD), it is a solution of the
system:

∇yL(y, v) = 0, (y, v) ∈ X0 × Rm
+

Since det(∇2
yyL(y, v∗)|y=y∗) �= 0, this system can be explicitly solved with

respect to y, in some neighborhood of v∗. Therefore, there exists the open
neighborhood Vv∗ ⊆ Rm

+of v∗ and the continuous function y : Vv∗ → X0 such
that y(v∗) = y∗ and

∇yL(y(v), v) = 0,∀v ∈ Vv∗ (9)

Particularly, this means that (y(v), v) is a feasible solution of (WD), for
every v ∈ Vv∗ . Now, since (y∗, v∗) is optimal for (WD), it follows that v∗

maximizes L(y(v), v) on Vv∗ . Then,

∇vL(y(v), v)|v=v∗ ≤ 0 (10)

and

〈v∗,∇vL(y(v), v)|v=v∗〉 = 0 (11)
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But,

∇vL(y(v), v) =
〈
∇yL(y, v)|y=y(v),∇vy(v)

〉
+∇vL(y, v)|y=y(v)

and then, it follows from (9) that

∇vL(y(v), v)|v=v∗ = ∇vL(y∗, v∗)

Thus, by (10), y∗ should satisfy the inequalities gj(y∗) ≤ 0, j = 1, 2, ...,m,
and by (11) it should satisfy the equality

∑m
j=1 v

∗
j gj(y∗) = 0. Subsequently,

y∗ is a feasible solution of (P ), and f(y∗) = L(y∗, v∗). Then, Theorem 3,
(Corollary 1), shows that y∗ is optimal for (P ).

5 Mond - Weir Duality

Consider now the Mond-Weir dual of (P ).
(MWD) : sup{f(y)|y ∈ X0, v ∈ Rm

+ , ∇f(y) +
∑m

j=1 vj∇gj(y) = 0,∑m
j=1 vjgj(y) = 0}

Theorem 6. Let (y, v) be a feasible solution of (MWD). If f is pseudo
(Φ, ρ0)− invex at y, each gj is (Φ, ρj) -invex at y, and ρ0 +

∑m
j=1 vjρj ≥ 0,

then

f(x) ≥ f(y) (12)

for all x ∈ X.
Proof. As in the above, inequality (8) follows from the properties of Φ. Since
gj is (Φ, ρj) -invex at y, and x and (y, v) are feasible it results:

m∑
j=1

λjΦ(x, y, (∇gj(y), ρj)) ≤
m∑

j=1

λj(gj(x)− gj(y) =
m∑

j=1

λjgj(x) ≤ 0

Thus, Φ(x, y, (∇f(y), ρ0)) ≥ 0, and then the pseudo ( Φ, ρ0)−invexity of
f, give us f(x)− f(y) ≥ 0.

Corollary 2. If the equality holds in (12), then x is optimal for (P ). More-
over, if f is pseudo (Φ, ρ0)− invex on X0, each gj is (Φ, ρj) -invex on X0, and
the equality holds in (12), then (y, v) is also optimal for (MWD).

With a slight modification of the proof of Theorem 4, we state the following
result.

Theorem 7. Let a be an optimum solution of (P ). Assume that Slater’s con-
straint qualification holds. If f is (Φ, ρ0)− invex and each gj is (Φ, ρj) -invex
on X0, for some ρ0, ρ1, ..., ρm ≥ 0, then there exists v ∈ Rm

+ , such that (a, v)
is an optimum solution of (WD).
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Summary. Using a very recent approach based on the Charnes-Cooper trasforma-
tion we characterize the pseudoconvexity of the sum between a quadratic fractional
function and a linear one. Furthemore we prove that the ratio between a quadratic
fractional function and the cube of an affine one is pseudoconvex if and only if the
product between a quadratic fractional function and an affine one is pseudoconvex
and we provide a sort of canonical form for this latter class of functions. Benefit-
ing by the new results we are able to characterize the pseudoconvexity of the ratio
between a quadratic fractional function and the cube of an affine one.

Key words: Pseudoconvexity, fractional programming, quadratic program-
ming.

1 Introduction

Since the early sixties, the strict relationship between generalized convexity
and fractional programming has been highlighted and from the beginning,
fractional programming has benefited from advances in generalized convexity,
and vice versa (see for instance [14, 16] ). Generalized fractional program-
ming and in particular quadratic and multiplicative fractional programming
are extremely important even for their numerous applications such as Data
Envelopment Analysis, tax programming, risk and portfolio theory, logistics
and location theory (see for instance [2, 3, 11, 12, 15] ). Among the differ-
ent classes of generalized convex functions, the pseudoconvex one occupies a
leading position in optimization for its good properties. Nevertheless pseudo-
convex functions have no algebraic structure and this lack of structure causes
many difficulties to establish whether a function is pseudoconvex or not.

There are several characterizations for continuously differentiable function
and for twice differentiable functions [1, 13]. Since these conditions are not
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very easy to be checked, some more operative characterizations, dealing with
quadratic fractional functions, have been recently proposed [4, 8]. According
with a very recent approach the pseudoconvexity of fractional functions is
studied by means of the generalized Charnes-Cooper transformation. It is
shown [6, 7] that this transformation maintains the pseudoconvexity so that
the fundamental idea behind this study is the following: if an unknown class
of functions can be transformed in a class of pseudoconvex functions, it is
possible to determine necessary and sufficient conditions guaranteeing the
pseudoconvexity of the unknown class of functions.

Following this idea, we prove that the sum between a quadratic fractional
function and a linear one is pseudoconvex if and only if a suitable quadratic
fractional function is pseudoconvex. Therefore, using the known results for
this latter class of functions we establish a new characterization and we give
a simple algorithm in order to test the pseudoconvexity for the sum between
a quadratic fractional function and a linear one.

Furthermore we address our attention to the pseudoconvexity of the ratio
between a quadratic function and the power p of an affine one. Since the cases
p = 1 and p = 2 have been handled in [8, 9] we deal with the case p = 3.
Performing the Charnes-Cooper transformation, we prove that this class of
functions is pseudoconvex if and only if the product between the quadratic
function and a suitable affine one is pseudoconvex. As far as we know, even
for this latter class of functions there are no easy to be checked conditions for
testing the pseudoconvexity. Consequently, we first characterize the pseudo-
convexity for the product between a quadratic function and an affine one:
more precisely we prove that a function belonging to this class is pseudocon-
vex if and only if it has a suitable canonical form. The obtained result allows
to provide a new characterization for the ratio between a quadratic function
and the cube of an affine one.

2 Preliminary Results and Notations

Throughout the paper we will use the following notations and properties.

• A is a n × n symmetric matrix such that A �= [0] where [0] is the null
matrix;

• ν−(A) (ν+(A)) denotes the number of negative (positive) eigenvalues of a
matrix A;

• kerA denotes the kernel of A i.e., kerA = {v : Av = 0};
• dimW denotes the dimension of the vector space W ;
• ImA denotes the set ImA = {z = Av, v ∈ #s};
• v⊥ denotes the orthogonal space to a vector v i.e., v⊥ = {w : vTw = 0}.

For the sake of completeness we recall the definition of pseudoconvex func-
tions and the related properties we are going to use in the next section (for
further details see for instance [1]).
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Definition 1. Let f be a differentiable function on the open and convex set
C ⊆ #n. f is pseudoconvex if for x, y ∈ C

f(y) < f(x) implies that ∇f(x)T (y − x) < 0.

• f is pseudoconvex if and only if for every x0, v ∈ #n the restriction of f
on the line x = x0 + tv, t ∈ #, is pseudoconvex.

• Let C ⊆ #n an open and convex set f is pseudoconvex if and only if
∀x ∈ C, ∀v ∈ #n\{0}, such that∇f(x)T v = 0 the function ϕ(t) = f(x+tv)
attains a local minimum at t = 0.

• Let C ⊆ #n an open and convex set and let f be a twice continuously
differentiable. f is pseudoconvex if and only if ∀x0 ∈ C, ∀v ∈ #n \ {0},
such that ∇f(x0)T v = 0 either vTH(x0)v > 0 or vTH(x0)v = 0 and the
function ϕ(t) = f(x0 + tv) attains a local minimum at t = 0.

Consider the Charnes-Cooper transformation [10]

y(x) =
x

bTx+ b0
(1)

defined on the set S = {x ∈ #n : bTx + b0 > 0} where b ∈ #n and b0 ∈ #,
b0 �= 0. It is well known that this map is a diffeomorphism and its inverse is

x(y) =
b0y

1− bT y (2)

defined on the set S∗ = {y ∈ #n : b0
1−bT y

> 0}. As it is shown in [6, 7]
the Charnes-Cooper transformation preserves the pseudoconvexity of f . More
precisely the following theorem holds.

Theorem 1. Let f be a differentiable function defined on #n and let ψ(y) be
the function obtained by applying the inverse of the Charnes-Cooper transfor-
mation (2) to f(x).
Function f(x) is pseudoconvex on S if and only if function ψ(y) is pseudo-
convex on S∗.

In some cases, the study of the pseudoconvexity of the transformed func-
tion ψ(y) may be easier than the study of the pseudoconvexity of f . Therefore,
thanks to the previous theorem, by means of the results on ψ(y) we can char-
acterize the pseudoconvexity of f in terms of its initial data. Following this
approach in the next section we aim to study the pseudoconvexity of some
classes of generalized quadratic fractional functions.

The following Lemma will be also useful.

Lemma 1. Consider a non-null symmetric matrix A of order n and a non-
null vector a ∈ #n. Then there exists d ∈ #n such that dTAd �= 0 and aT d �= 0.
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Proof. Suppose on the contrary for every d ∈ #n aT d �= 0 implies dTAd = 0.
Since a �= 0, setting d = a we get ‖a‖2 �= 0 and hence aTAa = 0. Take
x = ta+ w, w ∈ a⊥,t ∈ #; we have

1
2
xTAx =

1
2

(ta+ w)T
A (ta+ w) = taTAw +

1
2
wTAw.

Since aTx = t ‖a‖2 �= 0 for every t �= 0 it results taTAw+ 1
2w

TAw = 0 for every
t �= 0. Then necessarily we have aTAw = 0 and wTAw = 0 for every w ∈ a⊥.
From the second equality it follows Aw = ka and since aTAw = k ‖a‖2 = 0
we obtain k = 0, so that Aw = 0 for every w ∈ a⊥. Taking into account
that A �= [0], we get A = λaaT and then aTAa = λ ‖a‖2 �= 0 which is a
contradiction.

3 New Classes of Pseudoconvex Fractional Functions

3.1 Pseudoconvexity of the Sum Between a Quadratic Fractional
Function and a Linear One

Consider the following function

f(x) =
1
2x

TAx

bTx+ b0
+ pTx (3)

on the halfspace S = {x ∈ #n : bTx + b0 > 0}, b0 �= 0. Performing the
Charnes-Cooper transformation (2) we obtain the following function defined
on the halfspace S∗ = {y ∈ #n : b0

1−bT y
> 0}

g(y) =
b20

2(1−bT y)2
yTAy

b0
1−bT y

+
b0

1− bT y p
T y =

b0
1− bT y

(
1
2
yTAy + pT y

)

that is, setting c = − b
b0

, c0 = 1
b0

g(y) =
1
2y

TAy + pT y

cT y + c0
, y ∈ S∗. (4)

From Theorem 1, the pseudoconvexity of f on S is equivalent to the pseudo-
convexity of g on S∗. A characterization of the pseudoconvexity for such a
class of functions is given in [4]. More precisely the following theorem holds.

Theorem 2. Consider function g(y) =
1
2 yT Ay+pT y

cT y+c0
on the halfspace S∗ =

{y ∈ #n : cT y + c0 > 0}, c0 �= 0. g is pseudoconvex if and only if one of the
following conditions holds:

a) ν−(A) = 0,
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b) ν−(A) = 1, ∃x, y ∈ #n such that Ax = p and Ay = c, cT y = 0, cTx = c0
and pTx ≤ 0;

c) ν−(A) = 1, ∃x, y ∈ #n such that Ax = p and Ay = c, cT y < 0 and
∆
4 = (c0 − cTx)2 − cT y(pTx) ≤ 0.

Thanks to the Charnes-Cooper transformation, Theorem 2 allows us to
characterize the pseudoconvexity of f in term of its initial data.

Theorem 3. Consider function f(x) =
1
2 xT Ax

bT x+b0
+ pTx on the set S = {x ∈

#n : bTx + b0 > 0}, b0 �= 0. f is pseudoconvex if and only if one of the
following conditions holds:

a) ν−(A) = 0,
b) ν−(A) = 1, ∃x, z ∈ #n such that Ax = p and Az = b, bT z = 0, bTx = −1

and pTx ≤ 0;
c) ν−(A) = 1, ∃x, z ∈ #n such that Ax = p and Az = b, bT z < 0 and

∆
4 = (1 + bTx)2 − bT z(pTx) ≤ 0.

Proof. From Theorem 1 f is pseudoconvex on S if and only if g is pseudo-
convex on S∗ and so if and only if one of conditions a), b), c) in Theorem 2
holds. Recalling that b = − c

c0
, b0 = 1

c0
, by means of simple calculations it can

be proved that conditions a), b), c) are equivalent to the corresponding ones
given in Theorem 2.

The following example shows that function f(x) in (3) can be pseudocon-
vex even if the fractional quadratic function is not pseudoconvex.

Example 1. Consider function f(x, y) = x2−y2

−x+y+2 +x+ y, that is A =
[

2 0
0 −2

]
,

p =
(

1
1

)
, b =

(
−1
1

)
. It is easy to verify that x2−y2

−x+y+2 is not pseudoconvex

on S. On the other hand v−(A) = v+(A) = 1, z̄ =
(
− 1

2−,
1
2

)T , x̄ =
(

1
2 ,−

1
2

)T

and so bT z̄ = 0, bT x̄ = −1 and pT x̄ = 0. Hence condition b) in Theorem 3
holds and f is pseudoconvex on S.

According with the previous result, we suggest the following algorithm
for testing the pseudoconvexity of the sum between a quadratic fractional
function and an affine one.
ALGORITHM
STEP 1
Calculate the eigenvalues of A. If ν−(A) > 1, STOP : f is not pseudoconvex.
If ν−(A) = 0, STOP : f is pseudoconvex; otherwise go to STEP 2.
STEP 2
Solve the linear systems Ax = p and Az = b. If one of these systems has no
solutions STOP: f is not pseudoconvex; otherwise go to STEP 3.
STEP 3
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Let z̄ such that Az̄ = b. Calculate bT z̄. If bT z̄ > 0 STOP : f is not pseudo-
convex. If bT z̄ = 0 go to STEP 4, otherwise go to STEP 5.
STEP 4
Let x̄ such that Ax̄ = p. Calculate bT x̄. If bT x̄ �= −1 STOP: f is not pseudo-
convex, otherwise calculate pT x̄. If pT x̄ > 0 STOP: f is not pseudoconvex
otherwise STOP: f is pseudoconvex.
STEP 5
Let x̄ such that Ax̄ = p. Calculate ∆

4 = (1 + bT x̄)2 − bT z̄(pT x̄). If ∆ > 0
STOP : f is not pseudoconvex otherwise f is pseudoconvex.

3.2 Pseudoconvexity of the Ratio Between a Quadratic Function
and the Cube of an Affine One

Consider now the following function

h(x) =
1
2

xTAx

(bTx+ b0)
p x ∈ S

where p ∈ N\{0}, b0 �= 0.
Performing the transformation (2) we get

g (y) =
1
2

b20

(1− bT y)2
yTAy

1(
b0

1−bT y
bT y + b0

)p =
1
2
yTAy

(
1− bT y

)p−2

bp−2
0

. (5)

When p = 1 and p = 2, the pseudoconvexity of the function h(x) has been
completely characterized in [7, 9]. In this section we aim to study the case
p = 3, that is

h(x) =
1
2

xTAx

(bTx+ b0)
3 . (6)

Setting p = 3, a = − b
b0

and a0 = − 1
b0

in (5) we obtain

g (y) =
1
2
yTAy

(
aT y − a0

)
. (7)

In order to study the pseudoconvexity of h, we first deal with the pseudocon-
vexity of its transformed function g. In this light, the next subsection is de-
voted to the study of the pseudoconvexity of the product between a quadratic
function and a linear one. The obtained results will allow us to characterize
the pseudoconvexity of function (6).

Pseudoconvexity of the Product Between a Quadratic Function
and a Linear One

Let us consider the following function
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f(x) =
1
2
xTAx

(
aTx− a0

)
. (8)

Taking into account Lemma 1, we can easily prove that f in (8) is not pseudo-
convex on #n. More precisely take a vector d ∈ #n such that dTAd �= 0
and aT d �= 0; the restriction of f along the line x = td is ϕ(t) = f(td) =
1
2

(
t2dTAd

) (
taT d− a0

)
and ϕ′ (t) = 1

23t2
(
aT d

) (
dTAd

)
− 2a0d

TAdt. ϕ(t)
has two distinct critical points so that it is not pseudoconvex and hence f is
not pseudoconvex on #n. Due to this, we study the pseudoconvexity of f on
the halfspace S∗ = {x ∈ #n : aTx− a0 > 0}.

Preliminary and useful computations are the following

∇f(x) = Ax
(
aTx− a0

)
+

1
2
xTAxa (9)

H(x) = A
(
aTx− a0

)
+ 2AxaT

ϕ (t) = f (x0 + td) =
1
2
(
x0

TAx0 + 2xT
0 Adt+ t2dTAd

) (
α+ taT d

)
(10)

ϕ′′ (t) = 3t
(
aT d

) (
dTAd

)
+ 2

(
αdTAd+ 2

(
aT d

) (
dTAx0

))
. (11)

Moreover for every d ∈ (∇f(x))⊥ we get

ϕ′ (t) =
3
2
t2

(
aT d

) (
dTAd

)
+

(
αdTAd+ 2

(
dTAx0

) (
aT d

))
t (12)

where α = aTx0 − a0. Before presenting a complete characterization of the
pseudoconvexity of f , we state the following necessary conditions.

Theorem 4. Consider function f in (8). If f is pseudoconvex on S∗ = {x ∈
#n : aTx− a0 > 0} then
i) a0 ≥ 0.
ii) A is not indefinite.

Proof. i) Suppose a0 < 0. From Lemma 1 there exists u ∈ #n such
that uTAu �= 0 and aTu �= 0. Consider the line x = tu, t ∈ #. It re-
sults ϕ (t) = f(tu) = 1

2 t
2uTAu

(
taTu− a0

)
, ϕ′ (t) = 1

2u
TAu

(
3taTu− 2a0

)
,

ϕ′′ (t) = uTAu
(
3taTu− a0

)
. ϕ (t) has two distinct critical points t1 = 0 and

t2 = 2
3

a0
aT u

with ϕ′′ (t1) = −uTAua0, ϕ′′ (t2) = uTAua0. Since t1 and t2 are
both feasible, ϕ (t) has a feasible maximum point and so it is not pseudocon-
vex. Consequently f is not pseudoconvex and this is a contradiction.
ii) By contradiction suppose that A is indefinite and take a unit norm eigen-
vector u associated with a negative eigenvalue λ. We first show that aTu �= 0;
suppose on the contrary that aTu = 0 and take x = ka + tu, k, t ∈ #. Since(
aTx− a0

)
=

(
k ‖a‖2 − a0

)
, for a sufficiently big k we get x ∈ S∗ for every

t ∈ #. The restriction of f along the line x = ka+ tu, t ∈ # is the following

ϕ (t) =
(

1
2
λt2 +

1
2
k2aTAa

)(
k ‖a‖2 − a0

)
.
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Since λ < 0, ϕ (t) has a feasible maximum point and so it is not pseudoconvex.
Therefore f is not pseudoconvex and this is a contradiction.
Without any loss of generality we can assume aTu > 0. Let v be an eigenvector
associated with a positive eigenvalue µ, such that ‖v‖ = 1, uT v = 0. We are
going to prove that aT v = 0. Suppose on the contrary that aT v �= 0; take
k ∈ # such that x0 = kv ∈ S∗, that is α = kaT v − a0 > 0 and consider
x = x0 + tu = kv + tu. Observe that x ∈ S∗ for every t > − α

aT u
and that the

restriction of f along the line x = kv + tu, t ∈ # is the following

ϕ (t) =
(

1
2
λt2 +

1
2
µk2

)(
taTu+ α

)
so that

ϕ′ (t) =
3
2
λaTut2 + λαt+

1
2
µk2aTu .

Since ∆ = α2λ2−3λ
(
aTu

)2
µk2 > 0 and 3

2λa
Tu < 0, then ϕ (t) has a feasible

maximum point at t1 = − α
3aT u

−
√

∆
3λaT u

and so ϕ and f are not pseudoconvex,
which is a contradiction. Consequently aT v = 0.

At last consider x = t

(
u−

√
|λ|
µ v

)
+kv, k, t ∈ #. It results x ∈ S∗ for t > a0

aT u

and for every k ∈ #; the restriction of f along the line x = t

(
u−

√
|λ|
µ v

)
+kv

is the following

ϕ (t) = −kaTuµ

√
|λ|
µ
t2 +

(
1
2
k2µaTu+ a0k

√
|λ|
µ
µ

)
t− 1

2
k2µa0

and hence

ϕ′ (t) = kaTuµ

(
−2

√
|λ|
µ
t+

1
2
k +

a0

aTu

√
|λ|
µ

)
.

Consequently ϕ (t) as a critical point at t1 = k

4
�

|λ|
µ

+ a0
2aT u

. For k > 2a0
aT u

√
|λ|
µ ,

t1 ∈ S∗ and it is a feasible maximum point for ϕ (t). This implies ϕ and f are
not pseudoconvex, which is a contradiction.

Theorem 5. Consider function f in (8). If f is pseudoconvex on S∗ then
i) xTAx ≥ 0 for every x ∈ a⊥.
ii) v− (A) ≤ 1.

Proof. i) Suppose there exists d ∈ a⊥ such that dTAd < 0. Take x0 ∈ S∗ and
the line x = x0 + td, t ∈ #. Observe that x ∈ S∗ for every t ∈ # and since
dTAd < 0 the restriction

ϕ (t) = f(x0 + td) =
1
2
(
t2dTAd+ 2dTAx0t+ xT

0 Ax0

) (
aTx0 − a0

)
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has a feasible maximum point. Therefore ϕ (t) is not pseudoconvex and this
is a contradiction.
ii) Suppose by contradiction that v− (A) > 1 and let u, v be two orthogonal
eigenvectors of A associated with two distinct negative eigenvalues λ1, λ2.
Since dim{u, v} = 2 and dim a⊥ = n− 1, there exists d = αu+ βv such that
d ∈ a⊥. Consider x = x0 + td t ∈ # and the corresponding restriction ϕ(t) of
f . By means of simple calculations we get

ϕ(t) =
1
2
(λ1t

2α2 ‖u‖2 +λ2t
2β2 ‖u‖2 +2(αu+βv)TAx0t+xT

0 Ax0)(aTx0−a0).

Since λ1, λ2 < 0, ϕ(t) is not pseudoconvex and this is a contradiction.

The following theorem presents a complete characterization of the pseudo-
convexity of f .

Theorem 6. Consider function f in (8). f is pseudoconvex on S∗ if and only
if f is of the following form

f(x) =
1
2
λ
(
aTx

)2 (
aTx− a0

)
where a0 ≥ 0, λ ∈ #. (13)

Proof. =⇒From Theorem 4, a0 ≥ 0 and A can not be indefinite. We are left
to deal with the case A is semidefinite. We first assume that A is negative
semidefinite. From ii) of Theorem 5, if follows that A has exactly one negative
eigenvalues and so A can be rewritten as A = µuuT with µ < 0. From i)
of Theorem 5 dTAd = 0 for every d ∈ a⊥ and so we necessarily have that
u = ka, i.e., a is an eigenvector of A associated with the negative eigenvalue
µ. Therefore f(x) = 1

2λ
(
aTx

)2 (
aTx− a0

)
where λ = k2µ < 0.

Finally consider the case A positive semidefinite. Let be x0 ∈ S∗ such that
∇f(x0) �= 0. Since A is semidefinite positive, Ax0 = 0 if and only if xT

0 Ax0 = 0
and so from (9) it follows that xT

0 Ax0 �= 0. We are going to prove that aT d = 0
for every d ∈ (∇f(x0))

⊥
. Suppose on the contrary there exists d ∈ (∇f(x0))

⊥

such that aT d �= 0. Without any loss of generality we can assume aT d > 0.
It results dT∇f(x0) = 0 if and only if dTAx0α + 1

2x
T
0 Ax0d

Ta = 0 where
α = aTx0 − a0. Consider x = x0 + td where t > − α

aT d
, i.e., x ∈ S∗; the

corresponding restriction of f is

ϕ(t) = f(x0 + td) =
1
2
(
t2dTAd+ 2dTAx0t+ xT

0 Ax0

) (
taT d+ α

)
and from (12)

ϕ′(t) =
3
2
t2

(
aT d

) (
dTAd

)
+

(
αdTAd+ 2

(
dTAx0

) (
aT d

))
t .

Observe that dTAd �= 0; in fact if dTAd = 0 then Ad = 0 and hence dTAx0 =
0. This can not be true since dT∇f(x0) = 0 and xT

0 Ax0 �= 0.
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Since dTAd > 0, ϕ′(t) = 0 for t1 = 0 and t2 = −αdT Ad+2(dT Ax0)(aT d)
3
2 dT Ad(aT d)

.
Obviously t1 ∈ S∗ and t2 is feasible if and only if

−
αdTAd+ 2

(
dTAx0

) (
aT d

)
3
2d

TAd (aT d)
> − α

aT d

that is
1
2
αdTAd− 2

(
dTAx0

) (
aT d

)
> 0. (14)

Since dT∇f(x0) = 0 we have dTAx0 = − 1
2αx

T
0 Ax0d

Ta and so condition (14)
becomes

1
2
αdTAd+

xT
0 Ax0

α

(
aT d

)2
> 0

which is always verified because A is positive semidefinite. Therefore ϕ(t) has
a feasible maximum point and this contradicts the pseudoconvexity of f.
Since aT d = 0 for every d ∈ (∇f(x0))

⊥
, ∇f(x0) is proportional to a; from

(9) it results that for every x ∈ S∗ with ∇f(x0) �= 0 we have Ax0 = ha, for
some h ∈ #. We are going to prove that a is an eigenvector of A associated
with a positive eigenvalue λ and that λ is the unique positive eigenvalue of
A. Consider x0 = k1a and observe that x0 ∈ S∗ if and only if k1 >

a0
‖a‖2 . It

follows that Ax0 = k1ha and hence Aa = Ax0
k1

= h
k1
a = λa. Let µ > 0 be a

positive eigenvalue of A, with µ �= λ and let u be a corresponding eigenvector
such that u ∈ a⊥. Take x0 = k1a + u with k1 >

a0
‖a‖2 , i.e. x0 ∈ S∗. It is

easy to verify that ∇f(x0) �= 0, so that there exists h̄ such that Ax0 = h̄a.
On the other hand, Ax0 = λk1a + µu and therefore h̄a = λk1a + µu that is(
h̄− λk1

)
a = µu which contradicts u ∈ a⊥. Consequently a is an eigenvector

associated with the unique positive eigenvalue λ and hence f is of the form
in (13).
⇐= It results ∇f(x) = λ(3

2 (aTx)2 − (aTx)a0)a, H(x) = λ(3aTx − a0)aaT .
Since a0 ≥ 0, then the critical points of f do not belong to S∗ and so it
remains to prove that for every d ∈ (∇f(x))⊥ we get dTH(x)d ≥ 0. Since d ∈
(∇f(x))⊥ if and only if d ∈ a⊥ we get dTH(x)d = λ

(
3aTx− a0

)
dTaaT d = 0

and the proof is complete.

Remark 1. It is worth noticing that f in (13) is also pseudoconcave on S∗;
in fact the critical points do not belong to S∗ and for every d ∈ (∇f(x))⊥

we get dTH(x)d = 0. Therefore, the second order characterization for the
pseudoconcave function is verified and so f is pseudolinear.

Recalling that function f is the Charnes-Cooper transformed function of
h, by means of the previous result we can characterize the pseudoconvexity
of function h.
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Theorem 7. Consider function h(x) = 1
2

xT Ax
(bT x+b0)

3 . h is pseudoconvex on S =

{x ∈ #n : bTx+ b0 > 0} if and only if h is of the following form

h(x) =
1
2
µ
(
bTx

)2

(bTx+ b0)
3 where b0 < 0, µ ∈ #.

Theorem 8. Consider the function h(x) = 1
2

µ(bT x)2

(bT x+b0)
3 where b0 < 0, x ∈ S =

{x ∈ #n : bTx + b0 > 0}. Then h(x) is convex if µ > 0 and it is concave if
µ < 0.

Proof. Consider the function ρ(z) = z
z+b0

= 1+
(

−b0
z+b0

)
defined on z+ b0 > 0.

Since b0 < 0, ρ is convex and hence the function ρ(bTx) is convex on S.
Moreover it results 1

µh(x) = (ρ(bT x))2

bT x+b0
which is the ratio of a squared convex

function and an affine positive one; such a kind of function is convex (see for
instance [1]), so that the function h is convex if µ > 0 and concave if µ < 0.

4 Concluding Remarks

In this paper we have characterized the pseudoconvexity of two new classes
of generalized fractional functions using the Charnes-Cooper transformation.
The problem of characterizing pseudoconvex functions is not yet sufficently
studied in the literature because of its difficulty. We hope that the given ap-
proach, applied also in [6, 7, 9], provides further developments in this direction.
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Summary. Inspired by some results from nonsmooth critical point theory, we pro-
pose in this paper to study equilibrium problems by means of a general Palais-Smale
condition adapted to bifunctions. We introduce the notion of critical points for equi-
librium problems and we give some existence results for (EP) with lack of compacity.
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1 Introduction and Motivation

Let X be a real normed space, K ⊂ X be a nonempty convex set, D ⊂ X is
an open set containing K and Φ : K×D −→ IR be a given function satisfying
Φ(x, x) = 0 for all x ∈ K. We consider the following Equilibrium Problem

(EP) Find x ∈ K such that Φ(x, y) ≥ 0 ∀y ∈ K

From its formulation, equilibrium problems theory has emerged as an in-
teresting branch of applicable mathematics. This theory provides a general
and convenient format to write and investigate many problems and becomes
a rich source of inspiration and motivation for the study of a large number of
problems arising in economics, optimization, and operation research in a gen-
eral and unified way , see [1, 2]. There are a substantial number of papers on
existence results for solving equilibrium problems based on different relaxed
monotonicity notions and various coercivity assumptions, see [3, 4, 5, 6]. In
a noncoercive framework, equilibrium problems have been studied by using
arguments from the recession analysis, see [7, 8, 9, 10].

In this paper, we study the existence of solutions for equilibrium problems
by using an approach inspired from the nonsmooth critical point theory and
an adapted Palais-Smale condition for bifunctions. Our approach is of two
types, the first one is by using some kind of monotonicity assumption and a
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recent result by Bianchi-Kassay-Pini [11] on an Ekeland variational principle
for equilibrium problems. The second approach is without any monotonicity
assumption and which will be developed in the last section of this paper.
First of all, we need to introduce the concept of critical points for equilibrium
problems and its connection with the solutions of equilibrium problems. In
the following, we give a motivation for introducing this notion for (EP).

Motivation

If we assume that the function y �→ Φ(x, y) is convex for all x ∈ K and x is a
solution of (EP), then

Φ(x, x+ t(y − x))− Φ(x, x)
t

≥ 0 ∀t ∈ (0, 1], y ∈ K

Taking the limit when t→ 0+, we get

Φ0(x, x)(h) ≥ 0 ∀h ∈ K − x,

where Φ0 denotes the directional derivative of Φ with respect to the second
variable.
On the other hand, suppose x, y ∈ K are such that Φ(x, y) ≥ 0, Φ is quasi-
convex with respect to the second argument and

Φ0(x, y)(h) > 0 ∀h ∈ K − y with h �= 0. (1)

Consider t ∈ (0, 1] and y ∈ K with y �= y. Since Φ(x, ·) is quasiconvex, then

Φ(x, y + t(y − y)) ≤ max{Φ(x, y), Φ(x, y)}

Therefore
Φ(x, y + t(y − y))− Φ(x, y)

t
≤ 1
t

max{Φ(x, y)− Φ(x, y), 0}.

Since lim
t−→0+

Φ(x, y + t(y − y))− Φ(x, y)
t

= Φ0(x, y)(y−y), then for each ε > 0,

with 2ε < Φ0(x, y)(y − y), there exists η > 0 such that for 0 < t < η

Φ(x, y + t(y − y))− Φ(x, y)
t

> Φ0(x, y)(y − y)− ε.

It follows that
1
t

max{Φ(x, y)− Φ(x, y), 0} > ε for 0 < t < η. Hence

max{Φ(x, y)− Φ(x, y), 0} > t[Φ0(x, y)(y − y)− ε] > 0

Therefore Φ(x, y)−Φ(x, y) > t[Φ0(x, y)(y−y)−ε] > 0. We conclude Φ(x, y) >
Φ(x, y) ≥ 0 ∀y ∈ K with y �= y. Since Φ(x, x) = 0, it follows that y = x and
Φ(x, y) ≥ 0 for all y ∈ K. Hence x is a solution of (EP).
Note that if we assume Φ is convex with respect to the second argument, then
the strict inequality in relation (1) can be replaced by a large one.

Motivated by the arguments above, we shall introduce in the next section
the notions of critical points and strict critical points for equilibrium problems.
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2 Notion of Critical Points for Equilibrium Problems

Definition 1. The bifunction Φ is said to be locally Lipschitz with respect to
the second variable if ∀y ∈ K there exists Ly > 0 and a neighborhood Uy ⊂ D
of y such that

|Φ(x, y′)− Φ(x, y′′)| ≤ Ly‖y′ − y′′‖

for all y′, y′′ ∈ Uy and x ∈ K ∩ Uy.

The family of all bifunctions Φ : K × D −→ IR with the above property
will be denoted by Liploc(K).

Remark 1. Let Φ a bifunction defined by Φ(x, y) = 〈T (x), y−x〉, where T is a
nonlinear operator. Then Definition 1 is satisfied when T is locally bounded.

Definition 2. Let Φ ∈ Liploc(K). For x ∈ K and h ∈ X, the generalized
Clarke-type derivative of Φ at the point (x, x) with respect to the second vari-
able in the direction h is defined by

Φ0(x, x)(h) = lim sup
t −→ 0+

(u, v) −→ (x, x)
v ∈ K

Φ(u, v + th)− Φ(u, v)
t

In the next lemma, some properties of Φ0 that we will need in the sequel
are presented.

Lemma 1. Let Φ ∈ Liploc(K). Then

(i) For each x ∈ K, the function h �→ Φ0(x, x)(h)is sublinear Lipschitz con-
tinuous on X;

(ii) The function (x, x, h) �→ Φ0(x, x)(h) is upper semicontinuous on K×K×
X.

Proof. Let x ∈ K fixed. One can verify easily that the function h �→
Φ0(x, x)(h) is positively homogeneous. We need only to show the subaddi-
tivity of the function h �→ Φ0(x, x)(h). To this aim, let h,w ∈ X then
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Φ0(x, x)(h+ w) = lim sup
t −→ 0+

(u, v) −→ (x, x)
v ∈ K

Φ(u, v + th+ tw)− Φ(u, v)
t

≤ lim sup
t −→ 0+

(u, v) −→ (x, x)
v ∈ K

Φ(u, v + th+ tw)− Φ(u, v + tw)
t

+ lim sup
t −→ 0+

(u, v) −→ (x, x)
v ∈ K

Φ(u, v + tw)− Φ(u, v)
t

= Φ0(x, x)(h) + Φ0(x, x)(w)

.

On the other hand, from the local Lipshitz property of Φ, one has

Φ0(x, x)(h) ≤ Ly‖h‖ ∀h ∈ X.

Taking account of the subadditivity property, one has

|Φ0(x, x)(h)− Φ0(x, x)(w)| ≤ Ly‖h− w‖ ∀h,w ∈ X.

Which completes the proof of (i).
Now to prove (ii), let x ∈ K, h ∈ X and consider {xn}, {hn} sequences in K,
respectively in X, such that xn → x and hn → h. From the definition of Φ0,
there exist sequences tn > 0, x̃n ∈ K, ỹn ∈ K such that

tn <
1
n
, ‖x̃n − xn‖ <

1
n
, ‖ỹn − xn‖ <

1
n

and Φ0(xn, xn)(hn)− 1
n ≤

Φ(x̃n, ỹn + tnhn)− Φ(x̃n, ỹn)
tn

.

For n ∈ IN sufficiently large, one has ỹn + tnhn ∈ Uy. Hence

|Φ(x̃n, ỹn + tnhn)− Φ(x̃n, ỹn + tnh)| ≤ Ly‖hn − h‖.

It follows

Φ0(xn, yn)(hn)− 1
n
− Ly‖hn − h‖ ≤

Φ(x̃n, ỹn + tnh)− Φ(x̃n, ỹn)
tn

.

By passing to the limsup when n→ +∞ in the above inequality, one obtain

lim sup
n→+∞

Φ0(xn, xn)(hn) ≤ lim sup
n→+∞

Φ(x̃n, ỹn + tnh)− Φ(x̃n, ỹn)
tn

≤ Φ0(x, x)(h).

Which completes the proof of (ii). !"

Now we introduce the notion of critical points for equilibrium problems.
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Definition 3. x ∈ K is said to be a critical point (resp. strict critical point)
of Φ, if

Φ0(x, x)(h) ≥ 0 ∀h ∈ K − x
( resp. Φ0(x, x)(h) > 0 ∀h ∈ K − x with h �= 0).

Proposition 1. Let Φ ∈ Liploc(K) and x a strict critical point of Φ. Assume
that

(i) ∀x ∈ K fixed, y �→ Φ(x, y) is quasiconvex in K;
(ii) ∀y ∈ K fixed, x �→ Φ(x, y) is continuous on K.

Then x is a solution of (EP).

Proof. Since x is a strict critical point of Φ, then

Φ0(x, x)(h) > 0 ∀h ∈ K − x with h �= 0.

Let {tn}, {xn} and {yn} be sequences such that tn ↘ 0+, xn → x, yn → x
and

Φ0(x, x)(h) = lim
n−→+∞

Φ(xn, yn + tnh)− Φ(xn, yn)
tn

> 0

Since y �→ Φ(x, y) is quasiconvex, then

Φ(xn, yn + tnh) ≤ max{Φ(xn, yn + h), Φ(xn, yn)}

Hence

Φ(xn, yn + tnh)− Φ(xn, yn)
tn

≤ 1
tn

max{Φ(xn, yn + h)− Φ(xn, yn), 0}. (2)

On the other hand, let ε > 0 with ε < Φ0(x, x)(h), then there exists
N ∈ IN such that ∀n > N one has

Φ(xn, yn + tnh)− Φ(xn, yn)
tn

> Φ0(x, x)(h)− ε

Therefore by taking account of (2), one deduces

max{Φ(xn, yn + h)− Φ(xn, yn), 0} > tn(Φ0(x, x)(h)− ε) > 0

Hence Φ(xn, yn + h)− Φ(xn, yn) > 0 for all n > N . Therefore

lim sup
n−→+∞

Φ(xn, yn + h) ≥ lim sup
n−→+∞

Φ(xn, yn).

Taking account of (ii), one deduces

Φ(x, x+ h) ≥ Φ(x, x) = 0.

Hence, x is a solution of (EP). !"
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Proposition 2. Let Φ ∈ Liploc(K) and x a critical point of Φ. Assume that

(i) ∀x ∈ K fixed, y �→ Φ(x, y) is convex in K;
(ii) ∀y ∈ K fixed, x �→ Φ(x, y) is continuous on K.

Then x is a solution of (EP).

Proof. Since x is a critical point of Φ, then Φ0(x, x)(h) ≥ 0 ∀h ∈ K − x. On
the other hand since y �→ Φ(x, y) is convex, then

Φ(u, v + th) ≤ tΦ(u, v + h) + (1− t)Φ(u, v).

Hence
Φ(u, v + th)− Φ(u, v)

t
≤ Φ(u, v + h)− Φ(u, v).

Consequently

lim sup
(u,v)−→(x,y)

[Φ(u, v + h)− Φ(u, v)] ≥ Φ0(x, x)(h) ≥ 0.

Taking account of (ii), one deduces

Φ(x, x+ h) ≥ Φ(x, x) = 0 ∀h ∈ K − x. !"

Definition 4. [13] Let f : K −→ IR be a locally Lipschitz function. Then f
is called pseudoconvex, if for every x, y ∈ K the following implication holds

f0(x)(y − x) ≥ 0 =⇒ ∀z ∈ [x, y] f(z) ≤ f(y).

Inspired by the definition above, we shall introduce in the next definition
the notion of pseudoconvexity to the class of bifunctions Φ ∈ Liploc(K).

Definition 5. Let Φ ∈ Liploc(K), Φ is said to be pseudoconvex if ∀x, y ∈ K
the following implication holds

Φ0(x, x)(y − x) ≥ 0 =⇒ ∀t ∈ [0, 1] Φ(x, tx+ (1− t)y) ≤ Φ(x, y).

Remark 2. If Φ(x, y) = f(y) − f(x) where f : K −→ IR is a locally Lipschitz
function, then one can easily verify that f is pseudoconvex is equivalent to Φ
is pseudoconvex.

Proposition 3. Let Φ ∈ Liploc(K) and x a critical point of Φ. Assume that
Φ is pseudonconvex, then x is a solution of (EP).

Proof. Since x a critical point of Φ, then Φ0(x, x)(y − x) ≥ 0 for all y ∈ K.
On the other hand, the bifunction Φ is pseudonconvex, then for y ∈ K one
has for all t ∈ [0, 1],

Φ(x, ty + (1− t)x) ≤ Φ(x, y). (3)

Set t = 0 in relation (3), one obtain

0 = Φ(x, x) ≤ Φ(x, y).

Hence x is a solution of (EP). !"
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Definition 6. [14] Let f : X −→ IR be a locally Lipschitz functional. We say
that f satisfies the Palais-Smale condition if for every sequence {un} ⊂ X
such that {f(un)} is bounded and

f0(un)(v − un) ≥ −εn‖v − un‖, for all v ∈ X,

for a sequence {εn} ⊂ IR+ with lim
n−→+∞ εn = 0, {un} contains a convergent

subsequence, where f0 is the Clarke derivative.

An extension of the Palais-Smale condition to the case of bifunctions can
be given by the following definition

Definition 7. Let Φ ∈ Liploc(K), we say that Φ satisfies the Palais-Smale
condition if for every sequence {un} ⊂ K such that the sequence { inf

v∈K
Φ(un, v)}

is bounded from below and

Φ0(un, un)(h) ≥ −εn‖h‖, for all h ∈ K − un,

for a sequence {εn} ⊂ IR+ with lim
n−→+∞ εn = 0, {un} contains a convergent

subsequence.

Recall the following coercivity definition

Definition 8. [1] A bifunction Φ : K×K −→ IR is said to be coercive if there
exists a ∈ K such that Φ(u, a) −→ −∞ when ‖u− a‖ −→ +∞.

One has the following property

Proposition 4. Let Φ ∈ Liploc(K), if Φ is coercive then it satisfies the
Palais-Smale condition.

Proof. Suppose the contrary, then there exists a sequence {un} ⊂ K such that
{ inf

v∈K
Φ(un, v)} is bounded from below and

Φ0(un, un)(h) ≥ −εn‖h‖, for all h ∈ K − un,

for {εn} ⊂ IR+ with lim
n−→+∞ εn = 0, and {un} has no convergent subsequence.

Since Φ is coercive, then Φ(un, a) −→ −∞ when n −→ +∞. On the other
hand, since

inf
v∈K

Φ(un, v) ≤ Φ(un, a)

then inf
v∈K

Φ(un, v) −→ −∞ when n −→ +∞. Which contradicts the fact that

{ inf
v∈K

Φ(un, v)} is bounded from below. !"
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3 Existence Results for (EP) - The Monotone Case

In this section we shall study the existence of critical points and solution points
for equilibrium problems. Our approach will be based on a recent result by
Bianchi-Kassay-Pini [11] on an extension of Ekeland’s variational principle to
the setting of equilibrium problems.

Lemma 2 (Ekeland). Assume that f is a proper lower semicontinous func-
tion on a Banach space X. Suppose that ε > 0 and that f(x0) < inf

x∈X
f(x)+ε.

Then for any λ with 0 < λ < 1 there exists z ∈ dom(f) such that

(i) λ‖z − x0‖ ≤ f(x0)− f(z);
(ii) ‖z − x0‖ < ε/λ;
(iii) f(z) < f(x) + λ‖x− z‖ whenever x �= z.

Lemma 3. [11] Assume that K ⊂ X be a closed set, where X is a normed
space and Φ : K×K → IR. Suppose that Φ satisfies the following assumptions

(i) for x ∈ K fixed, the function Φ(x, ·) is lower bounded and lower semicon-
tinuous;

(ii) for every x ∈ K, Φ(x, x) = 0;
(iii) for every x, y, z ∈ K, Φ(x, y) ≤ Φ(x, z) + Φ(z, y).

Then, for every ε > 0 and for every x0 ∈ K, there exists x ∈ K such that

(a) Φ(x0, x) + ε‖x0 − x‖ ≤ 0,
(b) Φ(x, x) + ε‖x− x‖ > 0, ∀x ∈ K, x �= x.

The main result of this section is the following

Theorem 1. Let Φ ∈ Liploc(K), where K is a closed convex subset of a
normed space X. Suppose that Φ satisfies the following assumptions

(i) for x ∈ K fixed, the function Φ(x, ·) is lower bounded;
(ii) for all x ∈ K, Φ(x, x) = 0;
(iii) there exists x0 ∈ K such that Φ(x0, ·) is bounded above;
(iv) for every x, y, z ∈ K, Φ(x, y) ≤ Φ(x, z) + Φ(z, y);
(v) Φ satisfies the Palais-Smale condition.

Then, Φ has a critical point x. Furthermore, if Φ is assumed to be pseudoconvex
then x is a solution of (EP).

Proof. Let {εn} be a sequence of positive numbers such that εn → 0+. From
Lemma 3, one has for εn > 0 there exists xεn

∈ K such that

Φ(xεn
, x) + εn‖xεn

− x‖ > 0, ∀x ∈ K, x �= xεn
.

Hence for x = xεn
+ th with h ∈ K − xεn

and t > 0, one has

Φ(xεn
, xεn

+ th)− Φ(xεn
, xεn

) > −εnt‖h‖
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Therefore
Φ(xεn

, xεn
+ th)− Φ(xεn

, xεn
)

t
> −εn‖h‖.

By passing to the limit in the above relation when t goes to 0+, one obtain

Φ0(xεn
, xεn

)(h) ≥ −εn‖h‖ ∀h ∈ K − xεn
. (4)

On the other hand, from assumptions (iii) there exists α ∈ IR such that

Φ(x0, xεn
) ≤ α ∀n ∈ IN.

Let x ∈ K, then from (iv) one has

Φ(x0, x) ≤ Φ(x0, xεn
) + Φ(xεn

, x)
≤ α+ Φ(xεn

, x)

Hence, Φ(xεn
, x) ≥ Φ(x0, x) − α for all x ∈ K. Taking account of (i), one

deduces that { inf
x∈K

Φ(xεn
, x)} is bounded from below.

Then from the Palais-Smale condition, one deduces that xεn
→ x ∈ K. By

passing to the limit in relation (4) and from Lemma 1, one deduces

Φ0(x, x)(h) ≥ 0 ∀h ∈ K − x

and since Φ(x, x) = 0, one conclude that x is a critical point of Φ. !"
Remark 3.

1- Condition (iii) in Lemma 3, as mentioned in [11], implies the cyclic mono-

tonicity of −Φ, i.e. for every x1, · · · , xn ∈ K we have
n∑

i=1

Φ(xi, xi+1) ≥ 0.

Therefore, Theorem 1 can be seen as an existence result for critical points
for equilibrium problems in a monotone framework.

2- Condition (iii) in Lemma 3 and Theorem 1 has been initially introduced by
Blum-Oettli [1, Theorem 3] for studying equilibrium problems in complete
metric spaces.

3- If the bifunction Φ is of the form Φ(x, y) = ϕ(y)−ϕ(x) then condition (iii)
in Lemma 3 and Theorem 1 is easily satisfied. We point out that there is
other types of bifunctions which are not of the previous form and satisfy
condition (iii). For example (see [11]), take Φ defined as the following

Φ(x, y) =
{
e−‖x−y‖ + ϕ(y)− ϕ(x) if x �= y
0 if x = y

then Φ is lower bounded and lower semicontinuous.
4- Let Φ defined by Φ(x, y) = 〈T (x), y−x〉 where T : K → X∗ is an operator,

X∗ is the topological dual of X. Then condition (iv) can be written

∀x, y, z ∈ K, 〈T (z)− T (x), z − y〉 ≤ 0.

Note that if Φ(x, y) = 〈T (x), y−x〉 satisfies condition (iv), then it satisfies
condition (∗) in Brézis-Haraux [12] with A = −T .
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4 Existence Results for (EP) - The Nonmonotone Case

In this section we shall investigate under which conditions we can have the ex-
istence of a solution point for equilibrium problems when K is not necessarily
compact and without a monotonicity assumption. In our approach, we follow
the method used in [15] which was devoted to establish some local minimax
theorems without compactness for functionals which are of class C1.

In the following, we shall suppose that the bifunction Φ is locally Lipshitz
with respect to the second argument. For x, y ∈ K, the Generalized Clark-
type derivative of Φ at the point (x, y) with respect to the second argument
in the direction h is defined by

Φ0(x, y)(h) = lim sup
t −→ 0+

(u, v) −→ (x, y)
v ∈ K

Φ(u, v + th)− Φ(u, v)
t

In this context, the definition of the Palais-Smale condition will be as the
following

Definition 9. We say that Φ satisfies the Generalized Palais-Smale condition
if for every sequence {(un, vn)} ⊂ K ×K such that Φ(un, vn) = sup

u∈K
Φ(u, vn),

the sequence {Φ(un, vn)} is bounded and

Φ0(un, vn)(h) ≥ −εn‖h‖, for all h ∈ K − vn,

for a sequence {εn} ⊂ IR+ with lim
n−→+∞ εn = 0, then {(un, vn)} contains a

convergent subsequence.

We will need some preliminary results which are listed below.

Lemma 4. [1] Let E be a convex, compact set, and F be a convex set. Let
p : E × F −→ IR be quasiconcave and upper semicontinuous in the first
argument, and convex in the second argument. Assume that

max
ξ∈E

p(ξ, y) ≥ 0 ∀y ∈ F.

Then there exists ξ ∈ E such that p(ξ, y) ≥ 0 for all y ∈ F .

We shall need the following two lemmas

Lemma 5. Let K be a closed convex set of a Banach space X and let f :
K −→ IR be a locally Lipschitz function bounded from below and satisfies the
Palais-Smale condition. Then the set

S = {x ∈ K : f(x) = min
x∈K

f(x)}
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is nonempty and compact. Moreover, if f is quasiconvex then S is convex.
If N is an open set containing S and ∂N its boundary, then

inf
x∈K∩∂N

f(x) > inf
x∈K

f(x).

Proof. From the Ekeland variational principle, one has for λn > 0 with λn −→
0+, there exists xn ∈ K such that

λn‖x− xn‖+ f(x) > f(xn) ∀x �= xn. (5)

For h ∈ X and t > 0, set x = xn + th. Then from (5), we have

f(xn + th)− f(xn)
t

> −λn‖h‖.

Hence

f0(xn)(h) ≥ lim sup
t−→0+

f(xn + th)− f(xn)
t

> −λn‖h‖.

Taking account of the Palais-Smale condition, one deduces that {xn} has a
convergent subsequence xnk

−→ x. From (5), we have x ∈ S.
Now let {xn} be a sequence in S. For δn ↘ 0+ and x �= xn, one has

f(xn) < f(x) + δn‖x− xn‖ ∀x �= xn

It follows

f0(xn)(h) ≥ lim sup
t−→0+

f(xn + th)− f(xn)
t

> −λn‖h‖.

Hence from the Palais-Smale condition, {xn} has a convergent subsequence
xnk

−→ x and one can easily see that x ∈ S.
To see that S is convex, consider x, y ∈ S, λ ∈ [0, 1] and let us show that
λx+(1−λ)y ∈ S. Since x, y ∈ S, then f(x) = f(y) = min

x∈K
f(x). On the other

hand from the quasiconvexity of f , one has

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} = min
x∈K

f(x) ≤ f(λx+ (1− λ)y).

Hence λx+ (1− λ)y ∈ S.
Now, letN be an open set such that S ⊂ N . Let us denote by α = dist(S, ∂N ),
exists since S is compact. By contradiction suppose

inf
x∈K∩∂N

f(x) = inf
x∈K

f(x).

Let {xn} ⊂ K ∩ ∂N be a sequence such that lim
n−→+∞ f(xn) = inf

x∈K
f(x) and

let εn > 0 such that
f(xn) < inf

x∈K
f(x) + εn.
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Then by the Ekeland variational principle with λn = 2
αεn, there exists wn ∈ K

such that Φ(wn) ≤ Φ(xn), ‖wn − xn‖ ≤ α
2 and

f(wn)− 2
α
εn‖x− wn‖ < f(x) ∀x �= wn.

Therefore, f0(wn)(h) ≥ − 2
αεn‖h‖. Hence from the Palais-Smale condition,

one deduces wnk
−→ w for a subsequence. Since f(wnk

) ≤ f(xnk
), then

f(w) = lim f(wnk
) ≤ lim f(xnk

) = inf
x∈K

f(x).

Hence w ∈ S. On the other hand

dist(w, ∂N ) ≤ ‖w − xn‖ ≤ ‖w − wn‖+ ‖wn − xn‖ ≤ ‖w − wn‖+
α

2
.

Therefore dist(w, ∂N ) ≤ α
2 and hence dist(S, ∂N ) ≤ α

2 . Which is absurd. !"
Lemma 6. Suppose that for all y ∈ K, the function x �→ −Φ(x, y) is bounded
below, locally Lipschitz, quasiconvex and satisfies the Palais-Smale condition.
Then the set-valued mapping S : K −→ 2K defined by

S(y) = {x ∈ K : Φ(x, y) = sup
x∈K

Φ(x, y)}

is upper semicontinuous with nonempty compact convex values.

Proof. From Lemma 5, S(y) is nonempty, compact and convex set for each y ∈
K. It remains to show that the set-valued mapping S is upper semicontinuous.
We need to show that for y0 ∈ K and N an open set containing S(y0), there
is an open neighborhood U(y0) of y0 such that ∀y ∈ U(y0) one has S(y) ⊂ N .
By contradiction, suppose there exists y0 ∈ K and an open set N such that
∀n ∈ IN∗, ∃yn ∈ B(y0, 1

n ), ∃xn ∈ S(yn) with xn /∈ N . Let x0 ∈ S(y0) ⊂ N .
Since xn /∈ N , then there exists αn ∈ (0, 1) such that wn = (1−αn)x0+αnxn ∈
∂N the boundary of N . One has

sup
n∈IN

Φ(wn, y0) ≤ sup
x∈∂N∩K

Φ(x, y0) < sup
x∈K

Φ(x, y0) = Φ(x0, y0). (6)

On the other hand from the local Lipschitz property of Φ, there exists Ly > 0
such that

Φ(wn, yn)− Φ(wn, y0) ≤ Ly‖yn − y0‖.
From the quasiconcavity of x �→ −Φ(x, y), one has

Φ(wn, yn) = Φ((1−αn)x0+αnxn, yn) ≥ min{Φ(x0, yn), Φ(xn, yn)} ≥ Φ(x0, yn).

Therefore
Φ(x0, yn) ≤ Φ(wn, y0) + Ly‖yn − y0‖.

Hence

Φ(x0, y0) ≤ lim inf Φ(x0, yn) ≤ lim inf Φ(wn, y0) ≤ sup
n∈IN

Φ(wn, y0) < Φ(x0, y0),

which is absurd, hence S is upper semicontinuous. !"
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Remark 4. Note that if Φ satisfies the assumptions in Lemma 6. Then the
set-valued mapping S is closed graph, i.e. if {xn} and {yn} are sequences such
that xn ∈ S(yn) with xn −→ x and yn −→ y, then x ∈ S(y).

Lemma 7. Let X and Y be two metric spaces and S : X → 2Y be a mul-
tivalued mapping upper semicontinuous with nonempty compact values. Let
{xn} ⊂ X be a sequence such that xn → x. For n ∈ IN , consider yn ∈ S(xn).
Then the sequence {yn} has a convergent subsequence to a point y ∈ S(x).

Proof. For p ∈ IN∗, consider the open set Np defined by Np = {y ∈ Y :
dist(y,S(x)) < 1

p}. Since S(x) ⊂ Np, S is upper semicontinuous and xn → x,
then there exists N(p) ∈ IN such that for all n ≥ N(p) one has S(xn) ⊂ Np.
Hence there exists zp ∈ S(x) such that dist(yN(p), zp) < 1

p . Since S(x) is
compact, then the sequence {zp} has a convergent subsequence to y ∈ S(x).
From the triangular inequality

dist(yN(p), y) ≤ dist(yN(p), zp) + dist(zp, y),

one deduces yN(p) → y. Which completes the proof. !"

Definition 10. [16] The bifunction Φ is said to be regular at (x, y) if

Φ0(x, y)(h) = lim sup
t −→ 0+

(u, v) −→ (x, y)
v ∈ K

Φ(u, v + th)− Φ(u, v)
t

= lim sup
t−→0+

Φ(x, y + th)− Φ(x, y)
t

.

Now we can state our main result on existence of solution points for equi-
librium problems in the noncompact case.

Theorem 2. Suppose that Φ is regular and the following assumptions hold

(i) there exists x0 ∈ K such that the function y �→ Φ(x0, y)is bounded below;
(ii) for y ∈ K fixed, the function x �→ −Φ(x, y) is bounded from below, locally

Lipschitz, quasiconvex and satisfies the Palais-Smale condition;
(iii) Φ satisfies the Generalized Palais-Smale condition.

Then there exists x, y ∈ K such that Φ0(x, y)(h) ≥ 0 ∀h ∈ K − y. Moreover,
if ∀x ∈ K the function y �→ Φ(x, y) is pseudoconvex then x is a solution to
(EP).

Proof. Consider the function V : K −→ K defined by V (y) = sup
x∈K

Φ(x, y).

One can easily see that V is lower semicontinuous and bounded from below.
From the Ekeland variational principle, one has ∀ε > 0 there exists yε ∈ K
such that

V (yε) ≤ inf
y∈K

V (y) + ε, (7)
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V (yε) < V (y) + ε‖y − yε‖ ∀y �= yε. (8)

Consider h ∈ K − yε and let y = yε + th, with t > 0. Then from relation (8),
one has

V (yε + th)− V (yε)
t

> −ε‖h‖.

Hence

lim inf
t−→0+

V (yε + th)− V (yε)
t

> −ε‖h‖.

Let {tn} be a sequence of positive numbers such that tn ↘ 0, then

lim
n−→+∞

V (yε + tnh)− V (yε)
tn

≥ lim inf
t−→0+

V (yε + th)− V (yε)
t

> −ε‖h‖. (9)

On the other hand, by Lemma 5, S(yε + tnh) �= ∅ and hence there exists
xn ∈ K such that V (yε + tnh) = Φ(xn, yε + tnh). Since V (yε) ≥ Φ(xn, yε),
then from relation (9) one deduces

lim inf
n−→+∞

Φ(xn, yε + tnh)− Φ(xn, yε)
tn

> −ε‖h‖

For {εn} ⊂ IR+ such that εn ↘ 0+, one has

Φ(xn, yε + tnh)− Φ(xn, yε)
tn

< Φ0(xn, yε)(h) + εn

Hence
lim inf
n−→+∞[Φ0(xn, yε)(h) + εn] ≥ −ε‖h‖. (10)

On the other hand, xn ∈ S(yε + tnh) and since S is upper semicontinuous
with nonempty compact values then from Lemma 7 one deduces that {xn}
has a convergent subsequence xnk

−→ x ∈ S(yε). Therefore, from relation
(10) and Lemma 1, one deduces

Φ0(x, yε)(h) ≥ −ε‖h‖.

We have then established the following

∀h ∈ X, ∃x ∈ K such that Φ0(x, yε)(h) ≥ −ε‖h‖.

Now consider the following bifunction ϕε : S(yε)× (K−yε) −→ IR defined by

ϕε(x, h) = Φ0(x, yε)(h) + ε‖h‖

The set S(yε) is compact and (K−yε) is convex. It is easy to see that ϕε(x, ·)
is convex, let us show that ϕε(·, h) is quasiconcave. To this aim, let α ∈ [0, 1]
and x, y ∈ S(yε). We need only to show that

Φ0(αx+ (1− α)y, yε)(h) ≥ min{Φ0(x, yε)(h), Φ0(y, yε)(h)}.
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Since Φ is regular, then

Φ0(αx+ (1− α)y, yε)(h)

= lim sup
t→0+

Φ(αx+ (1− α)y, yε + th)− Φ(αx+ (1− α)y, yε)
t

.

Since Φ(·, yε + th) is quasiconcave, then

Φ(αx+ (1− α)y, yε + th) ≥ min{Φ(x, yε + th), Φ(y, yε + th)}.

On the other hand, since S(yε) is convex then αx+ (1− α)y ∈ S(yε) and

Φ(αx+ (1− α)y, yε) = Φ(x, yε) = Φ(y, yε).

Therefore

Φ(αx+ (1− α)y, yε + th)− Φ(αx+ (1− α)y, yε)
t

≥

min{Φ(x, yε + th)− Φ(x, yε)
t

,
Φ(y, yε + th)− Φ(y, yε)

t
}.

Hence by passing to the limit when t→ 0+, one deduces that

Φ0(αx+ (1− α)y, yε)(h) ≥ min{Φ0(x, yε)(h), Φ0(y, yε)(h)}.

Consequently, ϕε satisfies assumptions of Lemma 4. Then

∃xε ∈ S(yε) such that Φ0(xε, yε)(h) + ε‖h‖ ≥ 0 ∀h ∈ K − yε.

For εn → 0+, one has

Φ0(xεn
, yεn

)(h) ≥ −εn‖h‖ (11)

with xεn
∈ S(yεn

) and h ∈ K−yεn
. Hence, from the generalized Palais-Smale

condition, xεn
−→ x and yεn

−→ y for subsequences. Moreover x ∈ S(y).
Passing to the limit in (11), one deduces

Φ0(x, y)(h) ≥ 0 ∀h ∈ K − y.

On the other hand x ∈ S(y), then Φ(x, y) = sup
x∈K

Φ(x, y) ≥ Φ(y, y) ≥ 0. Since

the function y �→ Φ(x, y) is pseudoconvex, then one can easily verify that
Φ(x, y) ≥ 0 for all y ∈ K. !"

Remark 5. Under the assumptions of Theorem 2, it has been established the
following

∃x, y ∈ K such that Φ(x, y) ≥ 0 and Φ0(x, y)(h) ≥ 0 ∀h ∈ K − y. (12)

Note that if y = x, then x is a critical point of the bifunction Φ according
to Definition 3. Hence, relation (12) could be a more general formulation of a
critical point for a bifunction.
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Example

For an illustration of our approach, we give the following example. Let A be
a bounded closed convex set of IRm containing the origin and let Ω ⊂ IRm be
a bounded open set. We consider the subset K of W 1,0(Ω, IRm) defined by

K = {x ∈W 1,0(Ω, IRm) : x(ξ) ∈ A a.e. on Ω}.

Consider ϕ ∈ C1(K ×K, IR) and the bifunction Φ defined on K ×K as the
following

Φ(x, y) =
∫

Ω

[
1
2
|∇y|2 − 1

2
|∇x|2 + ϕ(x, y)]dξ.

We shall verify that for y ∈ K fixed, the function x �→ −Φ(x, y) satisfies the
Palais-Smale condition and the bifunction Φ satisfies the generalized Palais-
Smale condition.
To this aim, let y0 ∈ K fixed and {xn} be a sequence in K such that
{−Φ(xn, y0)} is bounded and

(−Φ)0(xn, y0)(h) ≥ −εn‖h‖ for all h ∈ K − xn.

Hence, the sequence∫
Ω

1
2
|∇xn|2 − ϕ(xn, y0) dξ is bounded (13)

∫
Ω

∇xn · ∇h− ϕ′
x(xn, y0)(h) dξ ≥ −εn‖h‖ for all h ∈ K − xn. (14)

From relation (13), one deduces that {xn} is bounded inW 1,0(Ω, IRm). Hence,
for a subsequence one has xnk

⇀ x for the weak topology on W 1,0(Ω, IRm)
and xnk

→ x a.e. on Ω and thus x ∈ K. Let h0 ∈ K − x, we shall prove that∫
Ω

∇x · ∇h0 − ϕ′
x(x, y0)(h0) dξ ≥ 0.

To this aim, set znk
= x+ h0 − xnk

. Then∫
Ω

∇x · ∇h0 dξ =
∫

Ω

∇(x− xnk
) · ∇h0 dξ +

∫
Ω

∇xnk
· ∇h0 dξ

=
∫

Ω

∇(x− xnk
) · ∇h0 dξ +

∫
Ω

∇xnk
· ∇znk

dξ +
∫

Ω

∇xnk
· ∇(xnk

− x) dξ

≥
∫

Ω

∇xnk
· ∇znk

dξ + θ(xnk
− x)

where θ(x− xnk
) → 0 since xnk

⇀ x for the weak topology on W 1,0(Ω, IRm).
On the other hand∫

Ω

ϕ′
x(x, y0)(h0) dξ =

∫
Ω

ϕ′
x(xnk

, y0)(h0) dξ + θ(xnk
− x).
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Hence∫
Ω

∇x · ∇h0 − ϕ′
x(x, y0)(h0) dξ

≥
∫

Ω

∇xnk
· ∇znk

dξ −
∫

Ω

ϕ′
x(xnk

, y0)(h0) dξ + θ(xnk
− x)

≥
∫

Ω

∇xnk
· ∇znk

dξ −
∫

Ω

ϕ′
x(xnk

, y0)(znk
+ (x− xnk

)) dξ + θ(xnk
− x)

≥
∫

Ω

∇xnk
· ∇znk

dξ −
∫

Ω

ϕ′
x(xnk

, y0)(znk
) dξ + θ(xnk

− x)

≥ −εnk
‖znk

‖+ θ(xnk
− x)

It follows that ∫
Ω

∇x · ∇h0 − ϕ′
x(x, y0)(h0) dξ ≥ 0. (15)

Set h = x− xnk
in relation (14) and h0 = xnk

− x in relation (15). Then∫
Ω

∇xn · ∇(x− xnk
)− ϕ′

x(xn, y0)(x− xnk
) dξ ≥ −εnk

‖x− xnk
‖∫

Ω

∇x · ∇(xnk
− x)− ϕ′

x(x, y0)(xnk
− x) dξ ≥ 0.

By adding the above two relations, one obtain

−
∫

Ω

|∇(x− xnk
)|2 −

∫
Ω

[ϕ′
x(x, y0)(x− xnk

) + ϕ′
x(xn, y0)(x− xnk

)] dξ

≥ −εnk
‖x− xnk

‖.

Therefore ∫
Ω

|∇(x− xnk
)|2 dξ ≤ εnk

‖x− xnk
‖+ θ(xnk

− x).

It follows that xnk
→ x in W 1,0(Ω, IRm).

Now, let {(xn, yn)} be a sequence inK×K such that Φ(xn, yn) = sup
x∈K

Φ(x, yn),

{Φ(xn, yn)} is bounded and Φ0(xn, yn)(h) ≥ −εn‖h‖ for all h ∈ K − yn. It
follows that the sequence∫

Ω

[
1
2
|∇yn|2 −

1
2
|∇xn|2 + ϕ(xn, yn)]dξ is bounded (16)

∫
Ω

∇yn · ∇h+ ϕ′
y(xn, yn)(h) dξ ≥ −εn‖h‖ for all h ∈ K − yn. (17)

On the other hand, since Φ(xn, yn) ≥ Φ(x, yn) for all x ∈ K, then

ϕ′
x(xn, yn)(h) ≤ 0 for all h ∈ K − xn.
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Hence

−
∫

Ω

∇xn · ∇h+ ϕ′
x(xn, yn)(h) dξ ≤ 0 for all h ∈ K − xn. (18)

For x0 ∈ K fixed, set h = x0 − xn, then

−
∫

Ω

∇xn · ∇(x0 − xn) + ϕ′
x(xn, yn)(x0 − xn) dξ ≤ 0.

It follows∫
Ω

−|∇xn|2 + ϕ′
x(xn, yn)(x0 − xn) dξ −

∫
Ω

∇xn · ∇x0 dξ ≤ 0.

Thus ∫
Ω

−|∇xn|2 dξ ≤ ‖xn‖ ‖x0‖+ c(‖xn‖+ ‖x0‖)

where c is a positive constant. It follows that {xn} is bounded inW 1,0(Ω, IRm).
From relation (16), one deduces that {yn} is bounded inW 1,0(Ω, IRm). Hence,
for a subsequence one has xnk

⇀ x and ynk
⇀ y for the weak topology on

W 1,0(Ω, IRm). Thus xnk
→ x and ynk

→ y a.e. on Ω.
Similarly as before, we can show that x, y ∈ K and∫

Ω

∇y · ∇h+ ϕ′
y(x, y)(h) dξ ≥ 0 for all h ∈ K − y. (19)

From relations (17) and (19), one can verify

‖ynk
− y‖2 ≤ −εnk

‖ynk
− y‖+ θ(ynk

− y).

Hence ynk
→ y inW 1,0(Ω, IRm). Similarly, we have relation (15) and therefore

one can deduce xnk
→ x in W 1,0(Ω, IRm).
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Summary. Minty variational inequalities are studied as a tool for vector optimiza-
tion. Instead of focusing on vector inequalities, we propose an approach through
scalarization which allows to construct a proper variational inequality type problem
to study any concept of efficiency in vector optimization.
This general scheme gives an easy and consistent extension of scalar results, provid-
ing also a notion of increasing along rays vector function. This class of generalized
convex functions seems to be intimately related to the existence of solutions to a
Minty variational inequality in the scalar case, we now extend this fact to vector
case.
Finally, to prove a reversal of the main theorem, generalized quasiconvexity is con-
sidered and the notion of ∗-quasiconvexity plays a crucial role to extend scalar
evidences. This class of functions, indeed, guarantees a Minty-type variational in-
equality is a necessary and sufficient optimality condition for several kind of efficient
solution.

Key words: Minty variational inequalities, vector optimization, generalized
quasiconvexity, scalarization.

1 Introduction

Variational inequalities (for short, VI) provide suitable mathematical models
for a range of practical problems, see e.g. [3] or [29]. Vector VI were introduced
first in [20] and thereafter studied intensively. For a survey and some recent
results we refer to [2, 8, 17, 21, 47, 30]. Stampacchia [41] and Minty [37] type
VI are the main versions which are studied. One of the most challenging field
of research studies relations among solutions of a “differential” VI and those of
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a primitive optimization problem. This task has been the core of investigation
for vector extension of the variational inequalities since the beginning [5, 6, 9,
31, 32, 46, 47]. Nowadays, when the problem focuses on Minty VI (both scalar
and vector) and optimization, the guideline for the research is the well known
“Minty Variational Principle” (see e.g. [21]). The principle provides a test of
goodness for any formulation of a vector Minty VI. Namely an inequality is a
differentiable Minty VI if and only if its solution is an optimal solution (of a
certain type) to the primitive multiobjective optimization problem. This must
hold without any assumption on the objective function, but differentiability.
In [10, 12] and [16], two different approaches have been proposed. First in
[10] and [16] a vector inequality has been related to efficiency and proper
efficiency (for differentiable vector optimization problems), filling a gap left
by the formulation given by Giannessi. Then in [12] the same gap has been
filled by means of generalized scalar Minty VI, that is without using vector
inequality but a scalar VI involving set-valued maps. Meanwhile, also the
Minty variational principle in the scalar case has been deeply investigated. By
means of lower Dini derivatives we enlarged the class of optimization problems
to be studied through the inequalities and we pointed out a more detailed
form of the principle itself (see e.g. [13, 11]), which involves also the notion of
Increasing-Along-Rays (IAR) functions as generalized convex. The next step
has been to go back to vector optimization to try to prove a vector version of
this principle. However, as several notions of vector-optima can be given, also
different results on the Minty VI can be proved. Some attempts can be found
in [14] and [15]. Basically one could think to develop a theorem for each kind
of efficient solution known in the literature based on a suitable inequality for
the vector-valued formulation. Here we wish to prove that results known and
new ones can be basically related to a common scheme, based on scalarization.
To see this, in Section 2 we define vector solution through general scalarization,
as a mean to construct the general approach to the problem. Once this result
is achieved, next sections are devoted to show how very special results can
be obtained within this scheme and one shall recognize how classical vector
concepts lay behind those in Section 2. Clearly when the problem is scalar,
the classical results come as a special case. To clarify the idea, we stress that
notions as ideal, efficient, weak efficient and the wide variety of proper efficient
solutions are well established in the literature. Several of them are also studied
by means of a proper scalarization technique. On the contrary, in the field of
(Minty) variational inequalities, we think the theory is not yet established and
what are the notions of solution is still to be clarified. For some of the results
we also discuss relation (if any) with concept of solution to a vector Minty
VI introduced by other authors. Finally the concept of vector IAR function is
far to be a classic in optimization and generalized convexity community. Only
few results can be guessed by analogy with classical monotonicity for vector
valued functions. Here we propose a more rigorous approach to the definition
of this property. To complete the exploration we also extend the properties
of quasiconvex functions as related to Minty VI. We show that some widely
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accepted concepts of vector quasiconvex functions can be fitted within the
scalarization scheme we develop in Section 2.

2 A General Scheme

In the sequel X denotes a real linear space and K is a convex subset of X.
Further Y is a real topological vector space and C ⊂ Y is a closed convex
cone.

In [11] we consider the scalar case Y = R and investigate the scalar (gen-
eralized) Minty VI of differential type

f ′(x, x0 − x) ≤ 0, x ∈ K , (1)

were f ′(x, x0−x) is the Dini directional derivative of f at x in direction x0−x.
For x in K and u ∈ X we define the Dini derivative

f ′(x, u) = lim inf
t→0+

1
t

(f(x+ tu)− f(x)) (2)

as an element of the extended real line R = R ∪ {−∞} ∪ {+∞}.
The following result is established in [11].

Theorem 1. Let K be a set in a real linear space and let the function f :
X → R be radially lsc on the rays starting at x0 ∈ kerK. Then x0 is a
solution of the Minty VI (1) if and only if f increases along rays starting at
x0. In consequence, each such solution x0 is a global minimizer of f .

Recall that f : K → R is said radially lower semicontinuous on the rays
starting at x0 if for all u ∈ X the composition function t→ f(x0+tu) is lsc on
the set {t ≥ 0 | x0 + tu ∈ K}. We write then f ∈ RLSC(K,x0). In a similar
way we can introduce other “radial notions”. We write also f ∈ IAR(K,x0)
if f increases along rays starting at x0, the latter means that for all u ∈ X
the function t → f(x + tu) is increasing on the set {t ≥ 0 | x0 + tu ∈ K}.
We call this property the IAR property. The kernel kerK of K is defined
as the set of all x0 ∈ K, for which x ∈ K implies that [x0, x] ⊂ K, where
[x0, x] = {(1 − t)x0 + tx | 0 ≤ t ≤ 1} is the segment determined by x0 and
x. Obviously, for a convex set kerK = K. Sets with nonempty kernel are
star-shaped and play an important role in the abstract convexity [39].

In [14] we generalize some results of [11] to a vector VI of the form

f ′(x, x0 − x) ∩ (−C) �= ∅ , x ∈ K , (3)

where the Dini derivative f ′(x, u) is defined as

f ′(x, u) = Limsupt→0+
1
t
(f(x+ tu)− f(x)) (4)
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and the Limsup is intended in the sense of Painlevé-Kuratowski.
Let us underline some of the difficulties, which arise in the previous formu-

lation. First, due to the use of infinite elements, the vector Dini derivative (4)
is not exactly a generalization of the scalar Dini derivative (2). This motivated
us to study in [14] infinite elements in the topological vector space Y and sub-
sequently to introduce slightly different notions of the vector Dini derivative
and the vector VI. Second, IAR property for vector-valued functions can be
introduced in various ways. In [14] we propose two such generalizations, called
respectively IAR− and IAR+ properties, based on alternative understandings
of vector inequalities. Third, since a global minimizer (point of efficiency) for
a vector function can be defined in different ways, Theorem 1 can be extended
to copy with any of these.

We recall here some of the most standard points of efficiency. The point
x0 ∈ K is said to be an ideal (or absolute) efficient point for f : K → Y
if f(K) ⊂ f(x0) + C. We call the ideal efficient points a-minimizers. The
point x0 ∈ K is said to be an efficient point (e-minimizer) for f : K → Y if
f(K)∩(f(x0)−C \{0}) = ∅. The point x0 ∈ K is said to be a weakly efficient
point (w-minimizer) for f : K → Y if f(K) ∩ (f(x0)− intC) = ∅.

In [14] we studied the vector VI (3) and the extension of Theorem 1 requires
the notion of a-minimizers. Despite they might be unlike to happen, if the
vector optimization problem

minCf(x) , x ∈ K , (5)

possesses a-minimizers, we certainly wish to distinguish them, since they rep-
resent a rather nice property.

Since problem (5) possesses rather e-minimizers (or w-minimizers) than
a-minimizers, the natural question is whether f can define a type of VI and a
type of IAR property, so that the equivalence of the properties x0 is a solution
of the VI and f is increasing-along-rays starting at x0 remains true, and x0

is either e-minimizers or w-minimizers. A step further appears in [15], where
the notion of w-minimizer is characterized by a Minty VI. However [14] and
[15] reveal a common approach in the proofs, which motivates our interest
to develop a general scheme which may define the suitable Minty VI for any
point of efficiency.
Since in both [14] and [15] proofs are based on scalarization, we need first to
set a general notation for this technique.

Let the function f : K → Y be given and Ξ be a set of functions ξ : Y →
R. For x0 ∈ kerK put Φ(Ξ, x0) is the set of all functions φ : K → R such
that φ(x) = ξ(f(x)−f(x0)) for some ξ ∈ Ξ. Instead of a single VI we consider
the system of scalar VI

φ′(x, x0 − x) ≤ 0 , x ∈ K , for all φ ∈ Φ(Ξ, x0) . (6)

A solution of (6) is any point x0, which solves all the scalar VI of the
system.
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Now we say that f is increasing-along-rays with respect to Ξ (Ξ-IAR) at
x0 along the rays starting at x0 ∈ kerK, and write f ∈ Ξ-IAR(K,x0), if
φ ∈ IAR(K,x0) for all φ ∈ Φ(Ξ, x0). We say that x0 ∈ K is a Ξ-minimizer
of f on K if x0 is a minimizer on K of each of the scalar functions φ ∈
Φ(Ξ, x0). We say that the function f is radially Ξ-lsc at the rays starting at
x0, and write f ∈ Ξ-RLSC(K,x0), if all the functions φ ∈ Φ(Ξ, x0) satisfy
φ ∈ RLSC(K,x0).

Under this formulation we extend every concept involved in Theorem 1 to
the vector case by using a family of scalar VI, which depends upon Ξ. The
main idea is similar to the approach we proposed in [12], that is, to avoid
troubles with vector inequalities, we look for scalar counterparts. The price
we pay is that the scalar problem may not be easy to solve.

Remark 1. The variational inequality (1), where Y = R, can be treated within
this scheme if we put Ξ = {ξ} to be the set consisting of the identical function
ξ : R → R, ξ(y) = y. Now the system (6) consists of just one VI, in which
φ(x) = f(x) − f(x0), x ∈ K. Obviously φ′(x, u) = f ′(x, u) for all x ∈ K and
u ∈ X.

Let us underline that there is certain advantage in defining (6) through
compositions ξ(f(x) − f(x0)), in which the inner function f(x) is translated
by f(x0), as we can deal with some applications.

The main advantage to deal with families of scalarized inequalities is that
we can easily apply scalar results as Theorem 1. Although trivial to prove,
the following theorem is the general scheme we are looking for.

Theorem 2. Let K be a set in a real linear space and Ξ be a set of functions
ξ : Y → R on the topological vector space Y . Let the function f : K → Y
satisfy f ∈ Ξ-RLSC(K,x0) at the point x0 ∈ kerK. Then x0 is a solution of
the system of VI (6) if and only if f ∈ Ξ-IAR(K,x0). In consequence, any
solution x0 ∈ kerK of (6) is a Ξ-minimizer of f .

Proof. The system (6) consists in fact of independent VI

φ′(x, x0 − x) ≤ 0 , x ∈ K , (7)

where φ ∈ Φ(Ξ, x0). The assumption that f is radially Ξ-lsc along the rays
starting at x0 means that the function φ in each of scalar VI (7) is radially lsc
along the rays starting at x0. According to Theorem 1 the point x0 ∈ kerK is
a solution of (7) if and only if φ ∈ IAR(K,x0). In consequence x0 is a global
minimizer of φ. Since this is true for each of the inequalities of the system (6),
we get immediately the theses.

The generality of Ξ find a reason in the following sections, where it is clear
that, given a choice of which points of efficiency we are willing to study, we
can find a class Ξ to construct a Minty VI and a concept of IAR function.
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Remark 2. Despite when dealing with VI in the vector case an ordering cone
should be given in advance (see e.g. [20, 16], C does not appear explicitly
neither in the system of VI (6) nor in the statement of the theorem. Therefore,
the result of Theorem 2 depends on the set Ξ, but not on C. Actually, since
the VI is related to a vector optimization problem, the cone C is given in
advance because of the nature of the problem itself. The adequate system of
VI claims then for a reasonable choice of Ξ depending in some way on C. In
such a case the result in Theorem 2 depends implicitly on C through Ξ.

Remark 3. When Ξ = {ξ0} is a singleton, then Theorem 2 easily reduces to
Theorem 1, where f should be substituted by φ : K → R, φ(x) = ξ0(f(x) −
f(x0)), and the VI (1) by a single scalar VI of the form (7). Obviously, now f
radially Ξ-lsc means φ radially lsc, f ∈ Ξ-IAR(K,x0) means φ ∈ IAR(K,x0),
x0 a Ξ-minimizer of f means x0 a minimizer of φ.

Another problem faced in [11] is the reversal of Theorem 1. namely we
cannot ensure that when a minimizer exists, it is the solution of Minty VI 1.
A counter example can be stated even in a differentiable case.

Example 1. Consider the scalar VI (1) with f : R2 → R given by

f(x1, x2) =
{
x2

1x
2
2 , x1 ≥ 0 or x2 ≥ 0 ,

0 , x1 < 0 and x2 < 0 .

The function f is C1. The scalar VI (1) has a solution x0 = 0, hence the set of
solutions is non-empty (we have f ′(x, x0 − x) = −4x2

1x
2
2 if x1 ≥ 0 or x2 ≥ 0,

and f ′(x, x0 − x) = 0 if x1 < 0 and x2 < 0). The set of the global minimizers
of f is {x ∈ R2 | x1 ≤ 0, x2 ≤ 0}. At the same time a point x with x1 < 0
and x2 < 0 is not a solution of the VI, since for such a point the IAR property
does not hold. (There is a ray starting at x, which intersects the coordinate
axes in the different points x1 and x2. The function f takes value 0 at both
x1 and x2, and f is strictly positive at the relative interior of the segment
determined by x1 and x2.)

Reversal of Theorem 1 hold only with further assumptions on f , namely
quasiconvexity. We say that f : K → R is radially quasiconvex along rays
starting at x0 ∈ kerK if the restriction of f to any such ray is quasiconvex.
If this property is satisfied we write f ∈ RQC(K,x0).

The following assertion is a straightforward consequence of the definitions
of quasiconvexity.

Theorem 3. The function f : K → R defined on a set K in a real linear
space is quasiconvex if and only if K is convex and f ∈ RQC(K,x0) for all
points x0 ∈ K.

The following theorem together with Theorem 1 establishes the equivalence
among solutions of the scalar VI (1) and minimizers of f .
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Theorem 4. Let K be a set in a real linear space and let the function f : X →
R have the property f ∈ RQC(K,x0) at x0 ∈ kerK. If x0 is a minimizer of
f , then x0 is a solution of the scalar VI (1). In particular, if f is quasiconvex,
then any minimizer of f is a solution of VI (1).

Proof. The properties that x0 is a minimizer of f and f ∈ RQC(K,x0) imply
that f ∈ IAR(K,x0). In consequence, according to Theorem 1 the point x0

is a solution of the VI. Let us remark that in Theorem 1 for this implication
the assumption for radial lower semicontinuity is superfluous.

To generalize Theorem 4 from the scalar VI (1) to the system of VI (6) we
introduce Ξ-quasiconvexity.

Let Ξ be a set of functions ξ : Y → R. For x0 ∈ kerK define the func-
tions φ ∈ Φ(Ξ, x0) as in (6). For any such x0 we say that f is radially Ξ-
quasiconvex along the rays starting at x0, and write f ∈ Ξ-RQC(K,x0), if
φ ∈ RQC(K,x0) for all φ ∈ Φ(Ξ, x0). We say that f is Ξ-quasiconvex if K is
convex and f ∈ Ξ-RQC(K,x0) for all x0 ∈ K. Clearly, for scalar f , the choice
of Ξ as in Remark 1 guaranties Ξ-RQC(K,x0) reduces to RQC(K,x0).

The following theorem generalizes Theorem 4. The proof follows straight-
forward from Theorem 4 and is omitted.

Theorem 5. Let K be a set in a real linear space and Ξ be a set of functions
ξ : Y → R on the topological vector space Y . Let the function f : K → Y
have the property f ∈ Ξ-RQC(K,x0) at the point x0 ∈ kerK. If x0 is a
Ξ-minimizer of f , then x0 is a solution of the system of VI (6). In particular,
if f is Ξ-quasiconvex, then any Ξ-minimizer of f is a solution of (6).

3 a-Minimizers

We assume that the topological vector space Y is locally convex and denote
by Y ′ its dual space. The positive polar cone of C is defined by

C ′ = {ξ ∈ Y ′ | 〈ξ, y〉 ≥ 0 for all y ∈ C} .

Due to the Separation Theorem for topological vector spaces, see Theorem
9.1 in [40], for the closed and convex cone C we have C = {y ∈ Y | 〈ξ, y〉 ≥
0 for all ξ ∈ C ′}.

Consider the system of VI (6) with Ξ = C ′. Now Φ(Ξ, x0) is the set of
functions φ : K → R such that φ(x) = 〈ξ, f(x) − f(x0)〉, x ∈ K, for some
ξ ∈ C ′.

Under this setting, Theorem 2 allows to characterize a-minimizers by
means of Minty VI. We first recall in [14] it was named IAR+ the property
of a function f : K → Y to increase along rays starting at x0 ∈ K, when for
every 0 ≤ t1 < t2

f(x0 + t2u) ∈ f(x0 + t1u) + C.

This fact has been denoted as f ∈ IAR+(K,x0).
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Theorem 6. Let K be a set in a real linear space and C be a closed convex
cone in the locally convex space Y . Let the function f : K → Y be such that
all the functions x ∈ K → 〈ξ, f(x)〉 ∈ R, ξ ∈ C ′, are radially lsc along the
rays starting at the point x0 ∈ kerK. Then x0 is a solution of the system
of VI (6) with Ξ = C ′ if and only if f ∈ IAR+(K,x0). In consequence, any
solution x0 ∈ kerK of (6) is an a-minimizer of f .

Proof. Now f ∈ Ξ-IAR(K,x0) means that for arbitrary u ∈ X and 0 ≤ t1 <
t2 in the set {t ≥ 0 | x0 + tu ∈ K}, it holds

〈ξ, f(x0 + t1u)− f(x0 + t2u)〉 ≤ 0

for all ξ ∈ C ′. The latter gives that f(x0 + t1u) − f(x0 + t2u) ∈ −C, or
equivalently f(x0 + t2u) ∈ f(x0 + t1u) + C, i.e. f ∈ IAR+(K,x0). Similarly
we get that x0 is a Ξ-minimizer of f if 〈ξ, f(x0) − f(x)〉 ≤ 0 for all x ∈ K
and ξ ∈ C ′, which is equivalent to f(x) ∈ f(x0) + C for all x ∈ K, i.e. x0 is
an a-minimizer of f on K.

The next example shows an application of this result.

Example 2. Let X = R, Y = R2, C = R2
+ and K = R+. The function

f(x) =
(
x, 2

√
x
)

defines, for x0 = 0 the VI system(
ξ1 +

ξ2√
x

)
(−x) = − (ξ1x+ ξ2

√
x) ≤ 0 ∀x ∈ K

Since this inequality holds true for any choice of ξ ∈ C ′, we conclude x0 = 0
is an a-minimizer, as can be easily checked directly.

Remark 4. The Minty VI we are using is not a vector inequality. However
it can be related to some vector inequality similar to VI 3. More problems
arise than just those involved by the order. Indeed to copy with the infinite
values allowed by scalar VI 2, it is necessary to explore the concept of infinite
elements for vectors. In [14] this effort has been done and the relations with
scalarized inequalities are studied. Leaving details to [14], here we stress that
Theorem 6 provides a more straightforward result to handle similar cases
which are presented in [14].

The approach we just have used bases on linear scalarization. One may
complain that in real world applications the feasible values of ξ may be given
in advance, following some constraints. In Remark 2 we have stressed it is not
necessary to know C in advance to have optimality. We can start from Ξ.

Let Ξ be an arbitrary set in the dual space Y ′. Now Φ(Ξ, x0) is the set
of functions φ : K → R such that φ(x) = 〈ξ, f(x) − f(x0)〉, x ∈ K, with
some ξ ∈ Ξ. Define the cone CΞ = {y ∈ Y | 〈ξ, y〉 ≥ 0 for all ξ ∈ Ξ}. Its
positive polar cone is C ′

Ξ = cl cone conv Ξ. We note that, despite Ξ ⊂ C ′
Ξ , the

solutions of system of VI (6) coincide with those of the system of VI obtained
from (6) by replacing Ξ with C ′

Ξ . However the new system allows to recover
the case already described, with the cone CΞ replacing C
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Corollary 1. Let K be a set in a real linear space, Y be a locally convex space,
and Ξ be an arbitrary set in the dual space Y ′. Let the function f : K → Y
be such that all the functions x ∈ K → 〈ξ, f(x)〉 ∈ R, ξ ∈ Ξ, are radially lsc
along the rays starting at the point x0 ∈ kerK. Then x0 is a solution of the
system of VI (6) with the chosen Ξ if and only if with respect to the cone CΞ

it holds f ∈ IAR+(K,x0). In consequence, any solution x0 ∈ kerK of (6) is
an a-minimizer of f with respect to the cone CΞ .

We shall now exploit some possibilities, for given closed convex cone C
and linear scalarization.
If Ξ ⊂ C ′, then C ⊂ CΞ and C ′

Ξ ⊂ C ′. The system of VI is a subset of that
defined at the beginning of the section.
Often in optimization happens to deal with the set Ξ = {ξ ∈ C ′ | 〈ξ, y0〉 = 0},
where y0 ∈ C. Then CΞ is the contingent cone (see e.g. [1]) of C at y0, at
least when Y is a normed space.
It is worth to mention the case Ξ = {ξ0}, ξ0 ∈ C, a singleton. Then (6) reduces
to the single equation (7) with φ(x) = 〈ξ0, f(x)− f(x0)〉 to which Theorem 1
directly can be applied. If φ is radially lsc along the rays starting at x0, then
x0 ∈ kerK is a solution of (7) if and only if φ ∈ IAR(K,x0). Consequently,
x0 is a minimizer of φ, and therefore 〈ξ0, f(x0)〉 = min{〈ξ0, f(x)〉 | x ∈ K}.
In the literature sometimes the points x0 satisfying this condition are called
linearized (through ξ0 ∈ C ′) efficient points.

We can also study the reversal of Theorem 6, through the scheme of The-
orem 5. Now the core question is which kind of vector quasi-convexity lay
behind Ξ-RQC. We see that now f ∈ Ξ-RQC(K,x0) at x0 ∈ kerK if all the
functions

x ∈ K → 〈ξ, f(x)− f(x0)〉 , ξ ∈ C ′ , (8)

are radially quasiconvex along the rays starting at x0. The function f is Ξ-
quasiconvex if K is convex and the functions (8) are quasiconvex for each
x0 ∈ K. Clearly, the latter is equivalent to require that functions

x ∈ K → 〈ξ, f(x)〉 , ξ ∈ C ′ , (9)

are (radially) quasiconvex. This generalized quasiconvexity was introduced in
[28] as ∗-quasiconvexity. Further studies on the subject and detailed references
can be found in [18, 42].

It becomes straightforward that the following version of Theorem 5.

Theorem 7. Let K be a set in a real linear space and C be a closed convex
cone in the locally convex space Y . Let the function f : K → Y be radially
∗-quasiconvex along the rays starting at x0 ∈ kerK. If x0 is an a-minimizer
of f , then x0 is a solution of the system of VI (6). In particular, if f is
∗-quasiconvex, then any a-minimizer of f is a solution of (6).

We omit the easy proof, to focus on the study of the weaker assumption
of C-quasiconvexity. Recall that a function f : K → Y is said to be C-
quasiconvex on the convex setK ⊂ X if for each y ∈ Y , the set {x ∈ K| f(x) ∈
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y−C} is convex. Similarly, we call f radially C-quasiconvex along rays starting
at x0 ∈ kerK, if the restriction of f on each such ray is C-quasiconvex. It is
well known (see e.g. [28]), that the class of (radially) C-quasiconvex functions
is broader than that of (radially) ∗-quasiconvex functions.

The following proposition, which is in fact Theorem 3.1 in [4], shows that,
eventually diminishing the set Ξ, we still get equivalence of Ξ-quasiconvexity
and C-quasiconvexity. We make use the following standard notions. The pair
(Y,C) is directed if, for arbitrary y1, y2 ∈ Y , there exists y ∈ Y , such that
y − y1 ∈ C and y − y2 ∈ C. If Y is a Banach space, and the closed convex
cone C has a nonempty interior, then the pair (Y,C) is directed. There are
however important examples [4], of directed pairs in which intC = ∅. Given
a set P ⊂ Y , a point x ∈ P is said to be an extreme point of P , when there
exist no couple of points x1 �= x2 ∈ P , such that x can be expressed as a
convex combination of x1 and x2 with positive coefficients. Recall also that a
vector ξ ∈ C ′ is said to be an extreme direction of C ′ when ξ ∈ C ′\{0} and
for all ξ1, ξ2 ∈ C ′ such that ξ = ξ1 + ξ2, there exist positive reals λ1, λ2 for
which ξ1 = λ1ξ, ξ2 = λ2ξ. We denote by extP the set of extreme points of P
and by extdC ′ the set of extreme directions for C ′.

Proposition 1 ([4]). Let Y be a Banach space, and C be a closed convex
cone in Y , such that the pair (Y,C) is directed. Suppose that C ′ is the weak-∗
closed convex hull of extdC ′. Then, f is C-quasiconvex if and only if f is
Ξ-quasiconvex with Ξ = extdC ′.

Remark 5. A “radial variant” of this statement can be formulated straightfor-
ward.

Now, as an application of Theorem 5 and Proposition 1, we get the fol-
lowing result.

Corollary 2. Let K be a set in a real linear space and Y be a Banach space.
Let C be a closed convex cone in Y , such that (Y,C) is directed and C ′ has a
weak-∗ compact convex base Γ (in particular these assumptions hold when C
is a closed convex cone with nonempty interior). Let the function f : K → Y
be radially C-quasiconvex along the rays starting at x0 ∈ kerK. If x0 is an
a-minimizer of f , then x0 is a solution of the system of VI (6). Moreover, if
f is C-quasiconvex, then each a-minimizer of f is a solution of (6).

Proof. Together with (6), with Ξ = C ′, we consider the system of VI

φ′(x, x0 − x) ≤ 0 , x ∈ K , for all φ ∈ Φ(Γ ∩ extdC ′, x0) . (10)

The two systems are equivalent, in the sense that x0 is a solution of (6) if and
only if x0 is a solution of (10). Indeed, since Γ ∩ extdC ′ ⊂ C ′, we see that if
x0 is a solution of (10), then x0 is a solution of (6). The reverse inclusion in
true, since according to Krein-Milman Theorem, C ′ = cl cone co (Γ ∩extdC ′),
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hence each inequality in the system (6) is a consequence of the inequalities
in (10). Suppose that f is radially C-quasiconvex along the rays starting at
x0 ∈ kerK. This assumption according to Proposition 1 is equivalent to the
condition f ∈ Ξ − RQC(K,x0), with Ξ = Γ ∩ extdC ′ (replacing extdC ′

with Γ ∩ extdC ′ does give any change). Therefore, the condition that x0 is
an a-minimizer of f is equivalent to the condition that x0 is a Ξ-minimizer
(with Ξ = Γ ∩ extdC ′). The Ξ-quasiconvexity of f and Theorem 5 give that
x0 is a solution of the system of VI (10). Finally, the equivalence of (10) and
(6) gives that x0 is a solution of the system of VI (6), with Ξ = C ′.

4 w-Minimizers

Let Y be a normed space and C be a closed convex cone in Y . The dual space
is also a normed space endowed with the norm ‖ξ‖ = sup (〈ξ, y〉/‖y‖), ξ ∈ Y ′.
We choose now Ξ = {ξ0} to be a singleton with ξ0 : Y → R given by

ξ0(y) = sup{〈ξ, y〉 | ξ ∈ C ′, ‖ξ‖ = 1} . (11)

In fact ξ0(y) = D(y,−C) is the so called oriented distance from the point
y to the cone −C. The oriented distance D(y,A) from a point y ∈ Y to a
set A ⊂ Y is defined by D(y,A) = d(y,A) − d(y, Y \ A). Here d(y,A) =
inf{‖y − a‖ | a ∈ A}. The function D, introduced in [25, 26], has found
various applications to optimization. It is shown in [23] that for a convex
set A it holds D(y,A) = sup‖ξ‖=1 (〈ξ, y〉 − supa∈A〈ξ, a〉), which when C is a
convex cone gives (11).

According to Remark 2 the system (6) is the single VI (7) with φ : K → R
given by

φ(x) = ξ0(f(x)− f(x0)) = D(f(x)− f(x0),−C) . (12)

Obviously, we have φ ∈ RLSC(K,x0) provided that each of the functions

x ∈ K → 〈ξ, f(x)− f(x0)〉 , ξ ∈ C ′ , (13)

has the same property. The property φ ∈ IAR(K,x0) means geometrically
that the oriented distance D(f(x) − f(x0),−C) is increasing along the rays
starting at x0. Further, x0 is a minimizer of φ if and only if x0 is a w-minimizer
of f (see e.g. [22, 48]. Theorem 2 gives now the following result, related to VI
considered in [12] and [15].

Theorem 8. Let K be a set in a real linear space X, Y be a normed space,
and Ξ = {ξ0} be a singleton with ξ0 : Y → R given by (11). Let the function
f : K → Y be such that the functions (13) are radially lsc along the rays
starting at x0 ∈ kerK. Then x0 is a solution of VI (7) with φ given by (12) if
and only if φ ∈ IAR(K,x0), which means that the oriented distance D(f(x)−
f(x0),−C) is increasing along the rays starting at x0. In consequence, any
solution x0 ∈ kerK of (7) is a w-minimizer of f .
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Example 3. Let X = R, Y = R2 and K = R+. The function f(x) =
(
1, x3

)
is differentiable. fix x0 = 0, then

φ(x) = ξ0
((

1, x3
)
−

(
1, 0

))
= D

((
0, x3

)
,−C

)
which is IAR(K, 0). Therefore, from Theorem 8, we gain x0 = 0 is solution of
VI system 1 and w-minimizer for f over K. This can be easily seen by direct
calculations.

In [15] we refer to the Ξ − IAR(K,x0) property with Ξ =
{
ξ0

}
, where

ξ0 is given by (11), as V IAR(K,x0) property. It is clear from (11) that ξ0

depends on the norm chosen on Y , as shown by the next example, which we
quote from [15] for the sake of completeness.

Example 4. i) Consider the function f : R → R2, defined as f(x) = (x, g(x)),
where g(x) = 2x if x ∈ [0, 1] and g(x) = − 1

4x + 9
4 if x ∈ (1,+∞) and let

C = R2
+, K = R+ and x0 = 0. Then it is easy to show that function

f ∈ V IAR(K,x0) if R2 is endowed with the Euclidean norm l2, but f �∈
V IAR(K,x0) if R2 is endowed with the norm l∞.

ii) Consider the function f : R2 → R3, defined as f (x1, x2) = (x1, g (x1) , 0),
where g(x) is defined in the previous point i). Let C ⊂ R3 be the
polyhedral cone generated by the linearly independent vectors ξ1 =
(−1/30, 1, 0), ξ2 = (1, 1/30, 0) and ξ3 = (0, 0, 1) (hence it is easily
seen that C ′ = C). Let K = R2

+ and x0 = 0. Then f ∈ V IAR
(
K,x0

)
if

R3 is endowed with the Euclidean norm l2, while f �∈ V IAR
(
K,x0

)
if R3

is endowed by the l∞C norm.

We now move to explore the reversal of Theorem 8. Again it turns out
that we can make a fruitful use ∗-quasiconvexity.

Corollary 3. Let K be a set in a real linear space, Y be a normed space, C
be a closed convex cone in the normed space Y , and Ξ = {ξ0} with ξ0 given
by (11). Let the function f : K → Y be radially ∗-quasiconvex along the rays
starting at x0 ∈ kerK. If x0 is a w-minimizer of f , then x0 is a solution of the
system of VI (6). In particular, if f is ∗-quasiconvex, then any w-minimizer
of f is a solution of (6).

Proof. The proof is an immediate consequence of Theorem 5. It is enough
to observe that if f is ∗-quasiconvex, then f ∈ Ξ − RQC(K,x0) with Ξ =
{ξ0}. This comes immediately, since φ(x) = ξ0(f(x) − f(x0)) = D(f(x) −
f(x0),−C) is the supremum of radially quasiconvex functions and hence is
radially quasiconvex.

Since the class of (radially) C-quasiconvex functions is broader than that of
(radially) ∗-quasiconvex functions, it arises naturally the question whether a
result similar to Corollary 7 holds under radial C-quasiconvexity assumptions.
We are going to show that in this case a result analogous to Corollary 7 holds
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when Y is a Banach space and its dual Y ∗ is endowed by a suitable norm,
equivalent to the original one. From now on we assume that C is a closed
convex cone in the normed space Y with both intC �= 0 and intC ′ �= 0. Fix
c ∈ intC. The set G = {ξ ∈ C ′|〈ξ, c〉 = 1} is a weak-∗ compact convex base
for C ′ [27]. Let B̃ = {G ∪ (−G)}. Since B̃ is a balanced, convex, absorbing
and bounded set, with 0 ∈ int B̃ (here we apply intC ′ �= ∅), the Minkowsky
functional γB̃(y) = {λ ∈ R|λ > 0 , y ∈ λB̃} is a norm on Y ∗, see e.g. [43, 27].
We denote this norm by ‖ · ‖1. Since int B̃ �= ∅ and B̃ is bounded, it is easily
seen that the norm ‖ · ‖1 is equivalent to the original norm ‖ · ‖ in Y ∗.

Theorem 9. Let K be a set in a linear space and Y be a normed space. Let
the function f : K → Y be radially C-quasiconvex along the rays starting
at x0 ∈ kerK and assume Y ∗ is endowed with the norm ‖ · ‖1. If x0 is a w-
minimizer of f , then φ(x) = D(f(x)−f(x0),−C) is radially quasiconvex along
the rays starting at x0 (i.e. f ∈ Ξ −RQC(K,x0)) and hence x0 is a solution
of the VI (7), with φ given by (12). In particular, if f is C-quasiconvex, then
any w-minimizer of f is a solution of such VI.

Proof. To prove the theorem it is enough to show that if f is radially C-
quasiconvex and Y ∗ is endowed by the norm ‖ · ‖1, then φ(x) = D(f(x) −
f(x0),−C) is radially C-quasiconvex along the rays starting at x0. Indeed, we
recall that

φ(x) = sup{〈ξ, f(x)− f(x0)〉| ξ ∈ C ′, ‖ξ‖1 = 1} , (14)

and we observe that {ξ ∈ C ′| ‖ξ‖1 = 1} = G. Hence the supremum in (14)
is attained, since G is weak-∗ compact, and, in particular, this happens at
extreme points of G, which in turns are extreme vectors of C ′. We have

φ(x) = max{〈ξ, f(x)− f(x0)〉 | ξ ∈ extG} . (15)

Due to Proposition 1, we get that φ0 is the maximum of radially quasiconvex
functions and hence is radially quasiconvex.

Next example shows that the previous theorem does not hold if Y ∗ is not
endowed with the norm ‖ · ‖1.

Example 5. Let K ⊂ R = [1/2,+∞) and consider the function f : K → R2,
f = (f1, f2), defined as f1(x) = − 1

2x, if x ∈ [1/2, 1], f1(x) = − 1
2x

3, if x ∈
(1,+∞) and f2(x) = x. Further, let C = R2

+. Clearly, here Y = Y ∗ = R2

and if we fix (1, 1) ∈ intC, we obtain that the norm ‖ · ‖1 coincides with the
l1 norm on R2, so that φ0(x) = max{f1(x), f2(x)} (see e.g. [15, 23]). Clearly,
x0 is a w minimizer and by Theorem 9, if R2 is endowed with the l1 norm,
x0 is a solution of the VI (7), with φ given by (12), which it is also easily seen
directly.
Assume now that R2 is endowed with a different norm, constructed as follows.
Consider the set A = {(x1, x2) ∈ R2|x2 = −x1 + 3, x1 ∈ [1, 2]} and let
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Ã = conv (A ∪ (−A)). The Minkowsky functional of the set Ã defines a norm
on R2 and direct calculations show that when this norm is considered, φ0 �∈
IAR(K,x0), so that x0 does not solve the VI (7), with φ given by (12).

Let us underline, that in the previous theorem we proved in fact, that when
Y ∗ is endowed with the norm ‖ · ‖1, if x0 is a w-minimizer of f , and f is
C-quasiconvex along the rays starting at x0, then f ∈ Ξ-RQC(K,x0). Easy
examples show however, that the converse is not true.

We close this section with a remark on the choice of Ξ =
{
ξ0

}
. Indeed, as

a tool for w-minimizer, it is more common the Gerstewitz’s function (see e.g.
[7, 19, 24, 33, 34, 49], defined as

ξ̃ (y) = inf {t ∈ R | y ∈ tc− C} ,

where c ∈ intC is fixed. However the scalarizing function ξ̃ is just a special
case of ξ0.

Proposition 2. If Y ∗ is endowed with the norm ‖ · ‖1, then ξ0 (y) = ξ̃(y), for
all y ∈ Y .

Proof. We have

ξ̃ (y) = inf {t ∈ R | y − tc ∈ −C} =
= inf {t ∈ R | 〈ξ, y − tc〉 ≤ 0, ∀ξ ∈ C ′} =
= inf {t ∈ R | 〈ξ, y〉 − t ≤ 0, ∀ξ ∈ C ′ ∩ S} =
= inf {t ∈ R | t ≥ 〈ξ, y − tc〉, ∀ξ ∈ C ′} =
= sup {〈ξ, y〉, ξ ∈ C ′ ∩ S} .

5 p-Minimizers

In this section for the sake of simplicity we assume Y is a finite dimensional
normed space and C is a closed convex pointed cone with nonempty interior.
However, the results can be easily extended to the infinite dimensional case.
We recall that, besides the notions of efficiency presented in the Section 2, in
problem (5) it is widely studied also that of proper efficiency. A point x0 ∈ K
is a proper efficient point (p-minimizer) for f : K → Y when there exists a
closed convex and pointed cone C̃ with C \ {0} ⊂ int C̃ such that x0 is a w-
minimizer with respect to C̃. Let ā = sup{a > 0 | ∃y ∈ C ′∩S ,D(y, C ′) ≤ −a}
and for a given a ∈ (0, ā) consider the set

A(a) = {ξ ∈ C ′ |D(ξ, C ′) ≤ −a‖ξ‖} .

We easily have that A(a) is a nonempty closed pointed cone with A(a) ⊆ intC ′

(observe A(a) is not necessarily convex). We choose Ξ = {ξ1} to be a singleton
with
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ξ1(y) = max{〈ξ, y〉|ξ ∈ A(a) ∩ S}.

Taking into account that ξ1(y) = max{〈ξ, y〉|ξ ∈ conv (A(a) ∩ S)} =
max{〈ξ, y〉|ξ ∈ convA(a) ∩ S} we obtain

ξ1(y) = D(y,−C̃(a)) , (16)

where C̃(a) = [cone conv (A(a) ∩ S)]′ and C\{0} ⊆ int C̃(a). Hence the point
x0 is a p-minimizer of f if and only if there exists a positive number a such
that x0 is a minimizer of

φ(x) = ξ1(f(x)− f(x0)) (17)

Therefore, next result follows as a rephrasing of Theorem 8 with respect to
the cone C̃(a).

Theorem 10. Let K be a set in a real linear space X, Y be a finite dimen-
sional normed space, and Ξ = {ξ1} be a singleton with ξ1 : Y → R given
by (16) for some positive number a. Let the function f : K → Y be such
that the functions (13) are radially lsc along the rays starting at x0 ∈ kerK.
Then if x0 is a solution of VI (7) with φ given by (17), the oriented dis-
tance D(f(x) − f(x0),−C̃(a)) is increasing along the rays starting at x0. In
consequence, any solution x0 ∈ kerK of (7) is a p-minimizer of f .

The following result gives a reversal of Theorem 10 under ∗-quasiconvexity
assumptions. We omit the easy proof.

Theorem 11. Let K be a set in a real linear space, Y be a finite dimensional
normed space, and Ξ = {ξ1} with ξ1 given by (16). Let the function f : K →
Y be radially ∗-quasiconvex along the rays starting at x0 ∈ kerK. If x0 is
a p-minimizer of f , then there exists a positive number a such that x0 is a
solution of the system of VI (6).

6 Conclusions

In this paper we present a general scheme to define Minty variational in-
equalities to study vector optimization. The guideline is the Minty variational
principle for the scalar case, as deepened in [13]. Other researches have in-
troduced Minty vector variational inequalities. Here we follow the suggestion
in [12] to associate to a primitive vector optimization problem suitable scalar
inequalities. The key of such an approach is scalarization. Despite the Minty
inequality which comes from our Theorem 2 may look too abstract, we show
it can be related even to vector Minty inequalities. However we have the ad-
vantage that some gap which was in [21] is filled by this formulation.

We trust this result may be a reference for new researches in the field of
differentiable variational inequalities.
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Summary. We consider the constrained vector optimization problem minC f(x),
g(x) ∈ −K, where f : Rn → Rm and g : Rn → Rp are given functions and C ⊆ Rm

and K ⊆ Rp are closed convex cones. Two type of solutions are important for
our considerations, namely i-minimizers (isolated minimizers) of order k and p-
minimizers (properly efficient points) of order k (see e.g. [11]). Every i-minimizer
of order k ≥ 1 is a p-minimizer of order k. For k = 1, conditions under which the
reversal of this statement holds have been given in [11]. In this paper we investigate
the possible reversal of the implication i-minimizer =⇒ p-minimizer in the case
k = 2. To carry on this study, we develop second-order optimality conditions for
p-minimizers, expressed by means of Dini derivatives. Together with the optimality
conditions obtained in [13] and [12] in the case of i-minimizers, they play a crucial
role in the investigation. Further, to get a satisfactory answer to the posed reversal
problem, we deal with sense I and sense II solution concepts, as defined in [11] and
[5].

Key words: Vector optimization, locally Lipschitz data, properly efficient
points, isolated minimizers, optimality conditions.

1 Introduction

In this paper we consider the vector optimization problem

minC f(x) , g(x) ∈ −K, (1)

where f : Rn → Rm, g : Rn → Rp. Here n, m and p are positive integers and
C ⊆ Rm and K ⊆ Rp are closed convex cones.

Usually the solutions of problem (1) are called points of efficiency. We
prefer, as in scalar optimization, to call them minimizers. In particular we
call w-minimizers the weakly efficient points of problem (1).
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We focus on two kinds of solutions of problem (1), introduced in [8] and
[11], namely those of isolated minimizer (i-minimizer) and properly efficient
point (p-minimizer) of a given order k ≥ 1. In particular, the concept of i-
minimizer extends to the vector case a notion known in scalar optimization
[3], [25], [28], while p-minimizers of order k generalize the classical notion of
properly efficient point [19]. Further generalizations of these concepts to set-
valued optimization are given in [6]. As it will be clear from the definitions,
p-minimizers give informations on the behavior of the image of the objective
function f , while i-minimizers involve an interplay between the domain and
the image of f and hence give a more complete picture for the problem data
near the solution. These features are strengthened by the study of the stabil-
ity properties of p-minimizers and i-minimizers of a given order (see [5], [9]).
Indeed, while p-minimizers of a given order are stable under perturbations of
the ordering cone, i-minimizers show stability with respect both to the order-
ing cone and the objective function f . Further, the i-minimizers are the most
appropriate notion of a solution when one has to deal with optimality condi-
tions. Indeed, for such solutions, the necessary conditions appear (changing
the weak inequalities to strict ones) to be also sufficient [10], [13], [12].
At this point it is not surprising that, when f is of class C0,1, every i-minimizer
of a given order is also a p-minimizer of the same order [11]. Recall that a
function is said to be of class Ck,1 when it is k times Fréchet differentiable,
with locally Lipschitz k-th derivative. The C0,1 functions are the locally Lip-
schitz functions.
Further, from the considerations above, arises naturally the question under
what conditions the implication i-minimizer =⇒ p-minimizer admits a rever-
sal, that is under what conditions a p-minimizer is also an i-minimizer.
A satisfactory answer to the problem of comparison of p-minimizers and i-
minimizers of first order is given in [11]. A key role in this comparison is
played by the first order optimality conditions given in [10] for C0,1 functions.

In this paper, we concentrate on the comparison between the second order
notions. Similarly to the first order case some optimality conditions are cru-
cial in this investigation. For this reason we establish second order optimality
conditions for p-minimizers of order 2, which, together with those given in [13]
and [12] for the case of i-minimizers, constitute the main tool for the compari-
son. In order to achieve a unified treatment of necessary optimality conditions
for p-minimizers, we prove also some first order optimality conditions.
Finally, we show that as in [11], our investigation leads us to relate to the
original constrained problem an unconstrained one and to speak about sense
I and sense II optimality concepts (i.e. respectively those of the original con-
strained problem and those of the associated unconstrained one). Relations
between sense I and sense II concepts are obtained.

The outline of the paper is the following. Section 2 is devoted to notions
of optimality for problem (1) and their scalarization. In Section 3 we prove
necessary optimality conditions for p-minimizers of first and second order,
respectively in the case of C0,1 and C1,1 data. The given first order necessary
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conditions extend the classical Kuhn-Tucker optimality conditions for properly
efficient points (see e.g. [24]). In section 4 we show that the first order necessary
conditions for a p-minimizer become sufficient under convexity assumptions
on the functions f and g. In Section 5, as a consequence of the obtained
optimality conditions we discuss the reversal of the implication i-minimizer
=⇒ p-minimizer, in the case k = 2. In section 6 we show that a satisfactory
solution to the reversal problem leads to consider sense I and sense II concepts.

2 Vector Optimality Concepts and Scalar
Characterizations

We denote by ‖ · ‖ and 〈·, ·〉 the Euclidean norm and the scalar product in
the considered finite-dimensional spaces. The open unit ball is denoted by
B, while S stands for the unit sphere. From the context it should be clear
to which spaces these notations are applied. The results of the paper can be
immediately extended to finite dimensional real Banach spaces.

There are different concepts of solution for problem (1). In the following
definitions we assume that the considered point x0 is feasible, i.e. g(x0) ∈ −K
(equivalently x0 ∈ g−1(−K)). The definitions below are given in a local sense.
We omit this specification in the text.

The feasible point x0 is said to be weakly efficient (efficient), if there is a
neighborhood U of x0, such that if x ∈ U ∩ g−1(−K) then f(x) − f(x0) /∈
−intC (respectively f(x)− f(x0) /∈ −(C\{0}) ).

In this paper the weakly efficient and the efficient points of problem (1)
are called respectively w-minimizers and e-minimizers.

We say that the feasible point x0 is a strong e-minimizer if there exists
a neighborhood U of x0, such that f(x) − f(x0) �∈ −C, for x ∈ U\{x0} ∩
g−1(−K).

The unconstrained problem

minC f(x) , x ∈ Rn, (2)

is a particular case of problem (1) and the defined notions of optimality con-
cern also this problem.

For the cone M ⊆ Rk its positive polar cone M ′ is defined by M ′ = {ζ ∈
Rk| 〈ζ, φ〉 ≥ 0 for all φ ∈ M}. The cone M ′ is closed and convex and it is
well known that M ′′ := (M ′)′ = cl conv coneM , see e. g. [23, Chapter III, §
15]. Here coneA stands for the cone generated by the set A. In particular, for
a closed convex cone M we have M = M ′′ = {φ ∈ Rk| 〈ζ, φ〉 ≥ 0 for all ζ ∈
M ′}.

If φ ∈ cl coneM , then 〈ζ, φ〉 ≥ 0 for all ζ ∈ M ′. We set M ′[φ] = {ζ ∈
M ′| 〈ζ, φ〉 = 0}. Then M ′[φ] is a closed convex cone and M ′[φ] ⊆ M ′. Con-
sequently its positive polar cone M [φ] : = (M ′[φ])′ is a closed convex cone,
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M ⊆M [φ] and its positive polar cone satisfies (M [φ])′ = M ′[φ]. In fact it can
be shown that M [φ] is the contingent cone [2] of M at φ. In this paper we
apply the notation M [φ] for M = K and φ = −g(x0). In other words we will
denote by K[−g(x0)] the contingent cone of K at −g(x0).

The solutions of problem (1) can be characterized in terms of a suitable
scalarization. Given a set A ⊆ Rk, then the distance from y ∈ Rk to A is given
by d(y,A) = inf{‖a − y‖ | a ∈ A}. This definition can be applied also to the
set A = ∅ with the agreement d(y, ∅) = inf ∅ = +∞. The oriented distance
from y to A is defined by D(y,A) = d(y,A) − d(y,Rk \ A). This definition
gives D(y,A) = +∞ when A = ∅ and D(y,A) = −∞ when A = Rk.

The function D is introduced in Hiriart-Urruty [17], [18] and is used later
in Amahroq, Taa [1], Ciligot-Travain [4], Miglierina, Molho [21], Miglierina,
Molho, Rocca [22]. Zaffaroni [29] gives different notions of efficiency and uses
the function D for their scalarization and comparison. Ginchev, Hoffmann [15]
use the oriented distance to study approximation of set-valued functions by
single-valued ones and in the case of a convex cone C prove the representation
D(y,−C) = sup‖ξ‖=1, ξ∈C′ 〈ξ, y〉 . Turn attention that this formula works also
in the case of the improper cones C = {0} (then D(y,−C) = sup‖ξ‖=1〈ξ, y〉 =
‖y‖) and C = Rm (then D(y,−C) = supξ∈∅〈ξ, y〉 = −∞)).

Proposition 1 ([10]). The feasible point x0 ∈ Rn is a w-minimizer for
problem (1), if and only if there exists a neighborhood U of x0, such that
D(f(x)− f(x0),−C) ≥ 0, ∀x ∈ U ∩ g−1(−K).

Proposition 2 ([10]). The feasible point x0 is a strong e-minimizer of
problem (1) if and only if there exists a neighborhood U of x0, such that
D(f(x)− f(x0),−C) > 0, ∀x ∈ U ∩ g−1(−K), x �= x0.

The concept of an isolated minimizer for scalar problems has been popular-
ized by Auslender [3]. It is natural to introduce a similar concept of optimality
for the vector problem (1) (see e.g. [13], [11], [12]).

Definition 1. We say that the feasible point x0 is an isolated minimizer (i-
minimizer) of order k for the vector problem (1) if and only if there ex-
ists a neighborhood U of x0 and a positive number A, such that D(f(x) −
f(x0),−C) ≥ A‖x− x0‖k, ∀x ∈ U ∩ g−1(−K).

Whenm = 1 the notion of the isolated minimizer of order k from Definition
1 coincides with the known in the scalar case notion of an isolated minimizer of
order k (see [3]). This remark justifies the importance of the oriented distance
D for vector optimization problems.

Applying the oriented distance function we can generalize also the concept
of proper efficiency. We recall that when C is a closed convex pointed cone,
the feasible point x0 is said to be properly efficient (in the sense of Henig) for
problem (1), when there exists a closed convex pointed cone C̃, with C \{0} ⊂
int C̃, such that x0 is w-minimizer with respect to C̃ [16].
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For given k ≥ 1 and a > 0, we define the set

Ck(a) = {y ∈ Rm | D(y, C) ≤ a ‖y‖k} .

It is easily seen that when k = 1 the set C1(a) is a closed cone (not
necessarily convex, see e.g. [6]).

Definition 2. We say that the feasible point x0 is a properly efficient point
(p-minimizer) of order k ≥ 1 for problem (1) if there exist a neighborhood U
of x0 and a constant a > 0 such that if x ∈ U ∩ g−1(−K) then f(x)− f(x0) /∈
−intCk(a).

In [14] it has been proved that when C is a closed convex pointed cone,
then p-minimizers of first order are just properly efficient points in the sense
of Henig. In the same paper, the Geoffrion characterization [7] of properly
efficient points has been generalized to p-minimizers of higher order.

Although the notions of i-minimizer and p-minimizer are defined through
the norms, it can be shown [12] that in fact they are norm independent, as a
consequence of the equivalence of any two norms in a finite dimensional space
over the reals. As a consequence of this, when C = Rm

+ , we can replace the
function D(y,−C) with the function φ(y) = max{y1, · · · , ym}.

When f is a C0,1 function, the following relation holds between i-minimi-
zers of order k and p-minimizers of order k.

Theorem 1 ([11]). Let f be of class C0,1. If a point x0 is an i-minimizer of
order k ≥ 1 for problem (1) then x0 is a p-minimizer of order k.

3 First and Second Order Optimality Conditions for
p-Minimizers

In [10], [13], [12], we obtained first and second order optimality conditions for
w-minimizers and i-minimizers of order 1 and 2, given in terms of suitable
Dini directional derivatives for C0,1 or C1,1 functions. In this section we give
similar necessary optimality conditions for p-minimizers of first and second
order.

Given a C0,1 function Φ : Rn → Rk we define the Dini directional deriva-
tive (we use to say just Dini derivative) Φ′

u(x0) of Φ at x0 in direction u ∈ Rn,
as the set of the cluster points of (1/t)(Φ(x0 + tu)−Φ(x0)) as t→ 0+, that is
as the Kuratowski limit

Φ′
u(x0) = Limsup

t → 0+

1
t

(
Φ(x0 + tu)− Φ(x0)

)
.

It can be shown (see e.g. [10]) that if Φ is of class C0,1, then Φ′
u(x0) is a

nonempty compact subset of Rk for all u ∈ Rn.
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In connection with problem (1) we deal with the Dini directional derivative
of the function Φ : Rn → Rm+p, Φ(x) = (f(x), g(x)) and then we use to write
Φ′

u(x0) = (f, g)′u(x0). If at least one of the derivatives f ′u(x0) and g′u(x0) is
a singleton, then (f, g)′u(x0) = f ′u(x0) × g′u(x0). Let us turn attention that
always (f, g)′u(x0) ⊆ f ′u(x0) × g′u(x0), but in general these two sets do not
coincide.

Given a C1,1 function Φ : Rn → Rk, we define the second-order Dini
directional derivative Φ′′

u(x0) of Φ at x0 in direction u ∈ Rn as the set of the
cluster points of (2/t2)(Φ(x0 + tu) − Φ(x0) − Φ′(x0)u) as t → 0+, that is as
the upper limit

Φ′′
u(x0) = Limsup

t → 0+

2
t2

(
Φ(x0 + tu)− Φ(x0)− Φ′(x0)u

)
.

If Φ is twice Fréchet differentiable at x0 then the Dini derivative is a
singleton and can be expressed in terms of the Hessian Φ′′

u(x0) = Φ′′(x0)(u, u).
In connection with problem (1) we deal with the Dini derivative of the function
Φ : Rn → Rm+p, Φ(x) = (f(x), g(x)). Then we use the notation Φ′′

u(x0) =
(f, g)′′u(x0). Let us turn attention that always (f, g)′′u(x0) ⊂ f ′′u (x0)× g′′u(x0),
but in general these two sets do not coincide. In the sequel we need the next
result [10], [12].

Proposition 3. i) Let Φ : Rn → Rk be Lipschitz with constant L in x0+r clB,
where x0 ∈ Rn and r > 0. Then for u, v ∈ Rn and 0 < t < r/max(‖u‖, ‖v‖)
it holds∥∥∥∥ 1

t

(
Φ(x0 + tv)− Φ(x0)

)
− 1
t

(
Φ(x0 + tu)− Φ(x0)

)∥∥∥∥ ≤ L ‖v − u‖ , (3)

In particular for v = 0 and 0 < t < r/‖u‖ we get∥∥∥∥ 1
t

(
Φ(x0 + tu)− Φ(x0)

)∥∥∥∥ ≤ L ‖u‖ . (4)

ii) Let Φ : Rn → Rk be a C1,1 function and Φ′ be Lipschitz with constant L
on the ball {x | ‖x−x0‖ ≤ r}, where x0 ∈ Rn and r > 0. Then, for u, v ∈ Rm

and 0 < t < r/max(‖u‖, ‖v‖) we have∥∥∥∥ 2
t2

(
Φ(x0 + tv)− Φ(x0)− tΦ′(x0)v

)
− 2
t2

(
Φ(x0 + tu)− Φ(x0)− tΦ′(x0)u

) ∥∥∥∥
≤ L (‖u‖+ ‖v‖) ‖v − u‖ .

In particular, for v = 0 we get∥∥∥∥ 2
t2

(
Φ(x0 + tu)− Φ(x0)− tΦ′(x0)u

) ∥∥∥∥ ≤ L ‖u‖2 .
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In the formulation of Theorem 2 below we use the following constraint
qualification, which is a generalization for C0,1 constraints of the well known
Kuhn-Tucker constraint qualification (compare with Mangasarian [20, page
102]).

Q0,1(x0) :
If g(x0) ∈ −K and 1

tk

(
g(x0 + tku

0)− g(x0)
)
→ z0 ∈ −K[−g(x0)]

then ∃uk → u0 : ∃ k0 ∈ N : ∀k > k0 : g(x0 + tku
k) ∈ −K .

Theorem 2. Assume that in the constrained problem (1) f and g are C0,1

functions. If x0 is a p-minimizer of first order and the constraint qualification
Q0,1(x0) holds, then for each u ∈ Rn\{0} and for every (y0, z0) ∈ (f, g)′u(x0),
we have

NP ′
0,1 : (y0, z0) �∈ −

(
C\{0} ×K[−g(x0)]

)
.

Proof. Let (y0, z0) ∈ (f, g)′u(x0), that is

(y0, z0) = lim
1
tν

(
f(x0 + tνu)− f(x0), g(x0 + tνu)− g(x0)

)
for some sequence tν → 0+. If z0 �∈ −K[−g(x0)], then clearly (y0, z0) �∈
−

(
C\{0} ×K[−g(x0)]

)
. Assume now that z0 ∈ −K[−g(x0)]. Since the con-

straint qualification Q0,1(x0) holds, there exist a sequence uν → u, such that
g(x0 + tνu

ν) ∈ −K. Since f is of class C0,1, using Proposition 3, we can
assume

1
tν

(f(x0 + tνu
ν)− f(x0)) → y0 ∈ f ′u(x0) ,

and since x0 is p-minimizer, for ν large enough we have

D(f(x0 + tνu
ν)− f(x0),−C) ≥ a‖f(x0 + tνu

ν)− f(x0)‖ ,

for some positive number a. Dividing by tν and passing to the limit we get
D(y0,−C) ≥ a‖y0‖, whence y0 �∈ (−C\{0}).

The conclusion of Theorem 2 holds also obviously for u = 0, then y0 =
0 /∈ −(C \ {0}) and z0 = 0. This trivial case is however not interesting for the
next Theorem 3 stating necessary optimality conditions in dual form.

Theorem 3. Let in problem (1) f and g be C0,1 functions and assume that
the constraint qualification Q0,1(x0) holds. If x0 is a p-minimizer of first
order for problem (1), then for every u ∈ Rn \ {0} and for every couple
(y0, z0) ∈ (f, g)′u(x0), such that y0 �= 0 whenever z0 ∈ −K[−g(x0)], one can
find (ξ0, η0) ∈ C ′ ×K ′[−g(x0)], (ξ0, η0) �= (0, 0), such that

ND′
0,1 : 〈ξ0, y0〉+ 〈η0, z0〉 > 0.

Proof. From Theorem 2 we know that (y0, z0) �∈ −
(
C\{0} ×K[−g(x0)]

)
. If

z0 �∈ −K[−g(x0)], then one can find an element η0 ∈ K ′[−g(x0)], η0 �= 0,
such that 〈η0, z0〉 > 0. Choosing ξ0 = 0 ∈ C ′ we get the desired inequality.
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Assume now z0 ∈ −K[−g(x0)]. Then we must have y0 �∈ −C\{0}. If y0 �= 0,
there exists a vector ξ0 ∈ C ′\{0}, such that 〈ξ0, y0〉 > 0 and for η0 = 0 ∈
K ′[−g(x0)] the conclusion is obtained.

Remark 1. When C is a closed convex pointed cone with nonempty interior,
then in Theorem 2, we can assume ξ0 ∈ intC ′.

Constraint qualification Q0,1(x0) is essential in order that Theorems 2 and
3 hold, as shown by the next example.

Example 1. Let f : R2 → R2, g : R2 → R2 be defined as f(x1, x2) = (x1,−x2
1),

if x1 ≤ 0, f(x1, x2) = (x2
1,−x2

1), if x1 > 0 and g(x1, x2) = (−x3
1+x2,−x2). Let

C = K = R2
+. The point x0 = (0, 0) is a p-minimizer of first order for problem

(1), but constraint qualification Q0,1(x0) is not satisfied and the necessary
optimality conditions of Theorem 2 and 3 do not hold at x0.

Indeed, consider the vector u = (−1, 0). We have g′u(x0) = 0 ∈ −K[−g(x0)],
but it is easily seen that constraint qualification Q0,1(x0) does not hold. The
optimality conditions of Theorems 2 and 3 are not satisfied since we have
f ′u(x0) = (−1, 0).

Let us underline that in ND′
0,1 the multipliers (ξ0, η0) depend on the

direction u and differently from some known results the inequality is strict.
The strict inequality applied to p-minimizers gives similarly looking neces-
sary conditions and sufficient conditions, compare Theorems 3 and 5. The
eventual independence of the multipliers on the direction when f and g are
differentiable is discussed in [10]. Then the optimality conditions of Theorems
2 and 3 show similarity with the classical Kuhn-Tucker conditions for properly
efficient points (see e.g. [24]).

Now we establish second order necessary optimality conditions when f and
g are C1,1 functions. We give directly the dual formulation of the proposed
conditions. In the next theorem we use the following second order constraint
qualification.

Q1,1(x0) : The following is satisfied, in the sense that provided x0, u0, tk
and z0 are such that 10, 20, 30 and the first line of 40 are satisfied, then the
last line of 40 must hold

10 : g(x0) ∈ −K ,

20 : g′(x0)u0 ∈ −(K[−g(x0)] \ intK[−g(x0)]) ,

30 :
2
t2k

(
g(x0 + tku

0)− g(x0)− tkg′(x0)u0
)
→ z0 ,

40 :

(
∀ η ∈ K ′[−g(x0)], (∀z ∈ img′(x0) : 〈η, z〉 = 0) : 〈η, z0〉 ≤ 0) ⇒

∀w ∈ Rn ∃wk → w : ∃k0 ∈ N : ∀k > k0 : g(x0 + tku
0 + t2k

2 w
k) ∈ −K.
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Roughly speaking the geometrical meaning of the constraint qualification
Q0,1(x0) is the following. If the differential quotient of g determines a tangent
direction z0 in the the contingent cone −K[−g(x0)], then the same tangent
direction can be determined by the differential quotient constituted by feasible
points. Though the definition of the constraint qualification Q1,1(x0) is more
complicated, the geometrical meaning is similar. Namely, if the second-order
tangent direction z0 belongs to the second-order contingent cone, then this
direction can be determined by a second-order quotient of feasible points.

For x0 ∈ Rn we put
∆(x0) ={

(ξ, η) ∈ C ′ ×K ′ | (ξ, η) �= 0, 〈η, g(x0)〉 = 0, ξ f ′(x0) + η g′(x0) = 0
}
.

Theorem 4. Let in problem (1) f and g be C1,1 functions and assume C and
K are closed convex cones with nonempty interior. If x0 is a p-minimizer of
second order for problem (1) and the constraint qualification Q1,1(x0) holds,
then for every u ∈ Rn\{0} one of the following conditions is satisfied

NP ′
1,1 : (f ′(x0)u, g′(x0)u) /∈ −(C\{0} ×K[−g(x0)]) ,

ND′′
1,1 :

(f ′(x0)u, g′(x0)u) ∈ −
(
(C\{0} ×K[g(x0)])\(intC × intK[−g(x0)])

)
and ∀ (y0, z0) ∈ (f, g)′′u(x0) : ∃ (ξ0, η0) ∈ ∆(x0) :

〈ξ0, y0〉+ 〈η0, z0〉 > 0.

Proof. Let x0 be a p-minimizer of order two for problem (1), which means
that g(x0) ∈ −K and there exists r > 0 and A > 0 such that g(x) ∈ −K and
‖x− x0‖ ≤ r implies

D(f(x)− f(x0),−C) ≥ A ‖f(x)− f(x0)‖2 . (5)

Therefore it satisfies the condition

N ′
1,1 : (f ′(x0)u, g′(x0)u) /∈ −(intC × intK[−g(x0)]) ,

(see [10], [12]). Now it becomes obvious, that for each u = u0 one and only one
of the first-order conditions in NP ′

1,1 and the first part of ND′′
1,1 is satisfied.

Suppose that NP ′
1,1 is not satisfied. Then the first part of condition ND′′

1,1

holds, that is

(f ′(x0)u0, g′(x0)u0) ∈ −
(
(C\{0} ×K[−g(x0)]) \ (intC × intK[−g(x0)])

)
.

We prove, that also the second part of condition ND′′
1,1 holds. Let tν → 0+

be a sequence such that

2
t2ν

(
f(x0 + tνu

0)− f(x0)− tνf ′(x0)u0
)
→ y0

and
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2
t2ν

(
g(x0 + tνu

0)− g(x0)− tνg′(x0)u0
)
→ z0 .

One of the following two cases may arise:
10. There exists η0 ∈ K[−g(x0)]′ such that 〈η0, z〉 = 0 for all z ∈ im g′(x0)

and 〈η0, z0〉 > 0.
We put now ξ0 = 0. Then we have obviously (ξ0, η0) ∈ C ′×K ′[−g(x0)] and

〈ξ0, f ′(x0)〉+〈η0, g′(x0)〉 = 0. Thus (ξ0, η0) ∈ ∆(x0) and 〈ξ0, y0〉+〈η0, z0〉 >
0. Therefore condition ND′′

1,1 is satisfied.
20. For all η ∈ K ′[−g(x0)], such that 〈η, z〉 = 0 for all z ∈ im g′(x0), it

holds 〈η, z0〉 ≤ 0.
This condition coincides with condition 40 in the constraint qualification

Q1,1(x0). Now we see that all points 10–40 in the constraint qualification
Q1,1(x0) are satisfied. Therefore, for every w ∈ Rn, there exists wν → w and
a positive integer ν0 such that for all ν > ν0 it holds g(x0+tνu0+ t2ν

2 w
ν) ∈ −K.

Passing to a subsequence, we may assume that this inclusion holds for all ν.
We have

D

(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0),−C

)

≥ A
∥∥∥∥f (

x0 + tνu
0 +

t2ν
2
wν

)
− f(x0)

∥∥∥∥2

and hence, since f ′(x0)u0 ∈ −C

D

(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0)− tνf ′(x0)u0,−C

)

≥ D
(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0),−C

)

≥ A
∥∥∥∥f (

x0 + tνu
0 +

t2ν
2
wν

)
− f(x0)

∥∥∥∥2

.

We get further

2
t2ν

(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0)− tνf ′(x0)u0

)
=

2
t2ν

(
f

(
x0 + tν(u0 +

tν
2
wν)

)
− f(x0)− tνf ′(x0)(u0 +

tν
2
wν)

+
t2ν
2
f ′(x0)wν

)
and since f is of class C1,1, the second term in this equality converges to
y0 + f ′(x0)w, while
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1
tν

(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0)

)
→ f ′(x0)u

(this is an easy consequence of Proposition 3). From

2
t2ν
D

(
f

(
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0)− tνf ′(x0)u0,−C

)

≥ 2A
t2ν

∥∥∥∥f (
x0 + tνu

0 +
t2ν
2
wν

)
− f(x0)

∥∥∥∥2

we obtain
D(y0 + f ′(x0)w,−C) ≥ 2A‖f ′(x0)u‖2 > 0

since f ′(x0)u �= 0. Because w is arbitrary, we obtain

inf{D(y0+f ′(x0)w,−C) |w ∈ Rn} := D(y0+im f ′(x0),−C) ≥ 2A‖f ′(x0)u‖2 ,

which implies 0 �∈ cl (y0 + im f ′(x0) + C). Hence, according to Theorem 11.4
in [23], the convex sets −C and y0 + im f ′(x0) are are strongly separated, i.e.
there exists a vector ξ ∈ Rm, such that

inf{〈ξ, y〉 | y ∈ y0 + im f ′(x0)} > sup{〈ξ, y〉 | y ∈ −C} .

Let β = sup{〈ξ, y〉 | y ∈ −C}. Since −C is a cone, we have

〈ξ, λy〉 ≤ β , ∀y ∈ −C , ∀λ > 0.

This implies β ≥ 0 and 〈ξ, y〉 ≤ 0 for every y ∈ −C. Hence β = 0 and ξ ∈ C ′.
Further, from inf{〈ξ, y〉|y ∈ y0 + im f ′(x0)} > 0, we get easily ξ0f ′(x0) = 0.
Indeed, otherwise we would find a vector w ∈ Rn such that 〈ξ0, f ′(x0)w〉 < 0
and hence we would have

〈ξ0, y0 + λf ′(x0)w〉 > 0 , ∀λ > 0 ,

but this is impossible, since the left side tends to −∞ as λ→ +∞, while the
right side does not depend on λ. This completes the proof.

Theorems 2, 3 and 4 are valid and simplify in an obvious way when we
consider the unconstrained problem (2). Let us underline that in this case we
do not need the constraint qualifications Q0,1(x0) and Q1,1(x0).

4 Optimality Under Convexity Conditions

In this section we revert the necessary conditions of Theorem 2, under con-
vexity assumptions on the functions f and g. We recall that given a con-
vex cone D ⊆ Rk, a function Φ : Rn → Rk is said to be D-convex when
Φ((1 − t)x1 + tx2) ∈ (1 − t)Φ(x1) + tΦ(x2) − D, for every t ∈ [0, 1] and
x1, x2 ∈ Rn. We recall also that a set A ⊆ Rk is D-convex when A + D is
convex.

We need the following lemma.
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Lemma 1. Let C be a closed convex pointed cone with nonempty interior and
let f : Rn → Rm be a C-convex function. Then

i) f is of class C0,1 ,
ii) for every u ∈ Rn and every x0 ∈ Rn, f ′u(x0) is a singleton, i.e.

f ′u(x0) = lim
t→0+

1
t

(
f(x0 + tu)− f(x0)

)
.

Proof. i) The proof is analogous to that of Lemma 2.1 in [27] and hence is
omitted.

ii) It is well known that f is C-convex if and only if for every λ ∈ C ′, the
scalar function fλ(x) = 〈λ, f(x)〉 is convex and hence directionally differen-
tiable. That is the limit limt→0+

1
t

(
fλ(x0 + tu)− fλ(x0)

)
= (fλ)′u(x) exists

and is finite for all x ∈ Rn and u ∈ Rn. It follows that for every y ∈ f ′u(x)
and λ ∈ C ′ it holds (fλ)′u(x) = 〈λ, y〉. Since C is a pointed cone, then C ′

has nonempty interior and hence it is possible to find m linearly independent
vector λ1, . . . , λm ∈ C ′. Thus the system⎧⎨⎩

〈λ1, y〉 = (fλ1)′u(x)
· · ·

〈λm, y〉 = (fλm)′u(x)
(6)

admits a unique solution. This proves that there exists a unique y ∈ f ′u(x0),
whence

f ′u(x0) = lim
t→0+

1
t

(
f(x0 + tu)− f(x0)

)
.

Remark 2. Results similar to that of Lemma 1 ii) can be found in [26].

Theorem 5. Let in problem (1) C and K be closed convex pointed cones with
nonempty interior. Assume f is C-convex and g is K-convex. If the first order
necessary optimality conditions of Theorem 2 hold at the feasible point x0, then
x0 is a p-minimizer of first order.

Proof. From the previous lemma we know that both f ′u(x0) and g′u(x0) are
singletons. Since g is K-convex, the sets A = {x : g(x) ∈ −K} and T (x0, A) =
cl co (A − x0) are convex. We observe that if u ∈ T (x0, A), then g′u(x0) ∈
−K[−g(x0)]. Indeed, if u ∈ co (A−x0), we have u = α(x−x0) for some α > 0
and x ∈ A. If tν → 0+ we have, since g is K-convex

g(x0 + tνu)− g(x0) = g(x0 + tνα(x− x0))− g(x0) ∈ tναg(x)− tναg(x0)−K .

Let ξ ∈ K ′[−g(x0)] be arbitrarily chosen. Hence from the previous inclusion
we obtain 〈ξ, g(x0+tνu)−g(x0)〉 ≤ 0, that is g(x0+tνu)−g(x0) ∈ −K[−g(x0)].
Dividing by tν , passing to the limit and taking into account that K[−g(x0)]
is a closed cone, we get g′u(x0) ∈ −K[−g(x0)]. Let now u ∈ T (x0, A), i.e.
u = limuν , with uν ∈ co (A−x0). Since g′u(x0) is single valued, Proposition 3
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gives ‖g′u(x0)−g′uν (x0)‖ ≤ L‖u−uν‖, whence g′uν (x0) → g′u(x0), as ν → +∞.
From g′uν (x0) ∈ −K[−g(x0)], we get g′u(x0) ∈ −K[−g(x0)]. Consider the set

P = {y ∈ Rm : y = f ′u(x0) , u ∈ T (x0, A)} .

Clearly P is a cone. We show that it is closed and C-convex. The set P1 =
{y ∈ Rm : y = f ′u(x0), u ∈ T (x0, A) ∩ S} is closed. Indeed, let yν ∈ P1,
yν → y. We have yν = f ′uν (x0), uν ∈ T (x0, A) ∩ S and since T (x0, A) ∩ S is
compact, we can assume uν → u ∈ T (x0, A)∩S. Using Proposition 3, we have
yν → f ′u(x0), whence y ∈ P1. From Proposition 3 it follows that P1 is also
bounded and hence compact. The closedness of the cone P now follows since it
is generated by the compact base P1 and easily we obtain that P +C is closed
too. Now, trivial calculations show that f ′u(x0) is C-convex as a function of
the direction u ∈ T (x0, A) and this gives that P + C is convex.
The first order condition of Theorem 2 implies (P +C)∩ (−C) = {0}. Hence
(see e.g. [24]), there exists a vector ξ ∈ intC ′, such that 〈ξ, w〉 ≥ 0, ∀w ∈ P +
C. From the C-convexity of f we get 〈ξ, f(x)−f(x0)〉 ≥ 〈ξ, f ′(x0, x−x0)〉 ≥ 0 .
The existence of such vector ξ proves that x0 is a p-minimizer (see e.g. [19],
[24]).

Remark 3. The previous theorem holds under the weaker requirement that g
is K[−g(x0)]-convex (see e.g. [5]).

5 p-Minimizers and i-Minimizers of Second Order

In [11] we investigated the problem under which conditions Theorem 1 admits
a reversal in the case k = 1, that is under which conditions a p-minimizer of
first order is also an i-minimizer of first order. In particular, we obtained the
following result, in whose proof play a crucial role the first order optimality
conditions in terms of Dini derivatives.

Theorem 6. Let f and g be C0,1 functions and let x0 be a p-minimizer of
first order for the constrained problem (1), which has the property

(y0, z0) ∈ (f, g)′u(x0) and z0 ∈ −K(x0) implies y0 �= 0 . (7)

Then x0 is an i-minimizer of first order for (1). If in particular we consider
the unconstrained problem (2), then every p-minimizer of first order is an
i-minimizer of first order under the condition 0 �∈ f ′u(x0).

In this section and in the next one, we apply the second order optimality
conditions of Section 3 in order to solve a similar problem for p-minimizers
and i-minimizers of second order. We leave as an open problem the reversal
of Theorem 1 for arbitrary real k ≥ 1.

We begin observing that a reversal of Theorem 1 is not possible in general,
as shown by the following example.
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Example 2. Consider the unconstrained problem (2) and let f : R → R2,
f(x) = (f1(x), f2(x)), with f1(x) = −x2 sin 1

x − x2 and f2(x) = [f1(x)]2, if
x �= 0, and f1(0) = f2(0) = 0. The point x0 = 0 is a p-minimizer of any order
k ≥ 2, but there exists no positive number k, such that x0 is an i-minimizer
of order k.

Together with the optimality conditions of Section 3, we need the following
result.

Theorem 7 ([12]). Consider problem (1) with f and g being C1,1 functions
and C and K closed convex cones with nonempty interior. Let x0 be a feasible
point for problem (1). Suppose that for each u ∈ Rn \ {0} one of the following
two conditions is satisfied:

S ′
1,1 : (f ′(x0)u, g′(x0)u) /∈ −(C ×K[−g(x0)]) ,

S ′′
1,1 : (f ′(x0)u, g′(x0)u) ∈ −

(
(C ×K[−g(x0)]) \ (intC × intK[−g(x0)])

)
and ∀ (y0, z0) ∈ (f, g)′′u(x0)∃ (ξ0, η0) ∈ ∆(x0) : 〈ξ0, y0〉+ 〈η0, z0〉 > 0 .

Then x0 is an i-minimizer of order two for problem (1). Conversely, if x0 is
an i-minimizer of second-order for problem (1) and the constraint qualification
Q1,1(x0) holds, then one of the conditions S ′

1,1 and S ′′
1,1 is satisfied.

Theorem 7 is valid and simplifies in an obvious way when instead of prob-
lem (1), we consider the unconstrained problem (2). Let us underline that in
this case the reversal of the sufficient conditions does not require the use of
the constraint qualifications.

Theorem 8. Consider problem (2) with f being a C1,1 function and C a
closed convex cone with nonempty interior. Let x0 be a feasible point for prob-
lem (2). Suppose that for each u ∈ Rn\{0} one of the following two conditions
is satisfied

10 : f ′(x0)u /∈ −C ,

20 :
f ′(x0)u ∈ −C \ intC and

∀ y0 ∈ f ′′u (x0) : ∃ ξ0 ∈ C ′\{0} : ξ0f ′(x0) = 0 and 〈ξ0, y0〉 > 0 .

Then x0 is an i-minimizer of order two for problem (2).
Conversely, if x0 is an i-minimizer of second-order for problem (2) then one
of the conditions above is satisfied.

Theorem 9. Let f and g be C1,1 functions, C and K be closed convex cones
with nonempty interior and let x0 be a p-minimizer of second order for the
constrained problem (1), which has the property ∀u ∈ Rn\{0}

g′(x0)u ∈ −K[−g(x0)] and f ′(x0)u = 0
implies ∀(y0, z0) ∈ (f, g)′′u(x0) ∃(ξ0, η0) ∈ ∆(x0),

with 〈ξ0, y0〉+ 〈η0, z0〉 > 0.
(8)

If constraint qualification Q1,1(x0) holds, then x0 is an i-minimizer of second
order for (1).
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Proof. Since x0 is a p-minimizer of second order and the constraint qualifi-
cation Q1,1(x0) holds, then the necessary optimality conditions of Theorem
4 are satisfied. Under the made assumptions these conditions coincide with
the sufficient conditions of Theorem 7, whence x0 is an i-minimizer of second
order.

As an immediate consequence of the previous result we get the following

Corollary 1. Let f and g be C1,1 functions, C and K be closed convex cones
with nonempty interior and let x0 be a p-minimizer of second order for the
constrained problem (1), which has the property

g′(x0)u ∈ −K[−g(x0)] implies f ′(x0)u �= 0 ∀u ∈ Rn\{0} (9)

and assume that the constraint qualification Q1,1(x0) holds. Then x0 is an
i-minimizer of second order for (1).

Remark 4. If we formulate the previous theorem with regard to the uncon-
strained problem (2), then we get that a p-minimizer of second order is an
i-minimizer under the condition

f ′(x0)u = 0 implies ∀y0 ∈ f ′′u (x0) ∃ξ0 ∈ C ′\{0},
with ξ0f ′(x0) = 0 and 〈ξ0, y0〉 > 0 . (10)

6 Two Approaches Towards Proper Efficiency

In the unconstrained case, as observed in [11], condition 0 �∈ f ′u(x0) is both
necessary and sufficient in order that a p-minimizer of first order is also an
i-minimizer of first order and analogously condition (10) is also necessary in
order that a p-minimizer of second order is an i-minimizer of second order (this
is shown by Theorem 8). Easy examples show, instead, that when dealing with
the constrained problem (1), both conditions (7) and (8) are not necessary
in order the previous implication holds. This problem has been investigated
in [11] for p-minimizers of first order. In this section we deal with a similar
problem for p-minimizers of second order.
In the constrained case one observes that the sufficient optimality conditions
of Theorem 7 involve the condition

(f ′(x0)u, g′(x0)u) = 0
implies ∀(y0, z0) ∈ (f, g)′′u(x0) ∃(ξ0, η0) ∈ ∆(x0),
with 〈ξ0, y0〉+ 〈η0, z0〉 > 0, ∀u ∈ Rn\{0}.

(11)

(which is weaker than (8)). Therefore one is led to wonder whether this con-
dition is necessary and sufficient in order that a p-minimizer of second order
x0 is also an i-minimizer of second order. The next examples show however
that this is not the case.
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Example 3. Consider the constrained problem (1), with f : R → R, f(x) =
−x2, C = R+, g : R → R, g(x) = x4, K = R+. The point x0 = 0 is the
only feasible point and hence it is both a p-minimizer and an i-minimizer of
second order. Anyway, for every u ∈ Rn we have (f ′(x0)u, g′(x0)u) = 0 and
(f, g)′′u(x0) = (−2u, 0), and hence condition (11) is not satisfied.

Example 4. Consider problem (1), with f : R2 → R2, f(x) = (x4
1 + x2

2,−x4
1 −

x2
2), C = R2

+, g : R2 → R2, g(x) = (−x4
1,−x4

1), K = R2
+ and let x0 =

(0, 0). For u = (0, 1), we have (f ′(x0)u, g′(x0)u) = (0, 0) and (f, g)′′u(x0) =
((2,−2), (0, 0)), whence condition (11) is satisfied. Further, constraint quali-
fication Q1,1(x0) holds and x0 is a p-minimizer of second order, but not an
i-minimizer of second order.

In virtue of Example 4, to obtain a result similar to Theorem 9 under
condition (11), we need a new approach toward the concepts of i-minimizer
and p-minimizer. In [11], while investigating the links between i-minimizers
and p-minimizers of first order, we have related to the constrained problem
(1) and the feasible point x0, the unconstrained problem

minC×K[−g(x0)] (f(x) , g(x)) , x ∈ Rn . (12)

Definition 3. We say that x0 is a p-minimizer of order k in sense II for the
constrained problem (1) if x0 is a p-minimizer of order k for the unconstrained
problem (12).

Similarly, we say that x0 is an isolated minimizer of order k in sense II
for the constrained problem (1) if x0 is an isolated minimizer of order k for
the unconstrained problem (12).

We will preserve the names for the concepts used so far, but sometimes
we will refer to them as sense I concepts, saying e. g. p-minimizer in sense I,
instead of just p-minimizer.

As an immediate application of Corollary 1 we get the following result.

Theorem 10. Let f and g be C1,1 functions, C and K be closed convex cones
with nonempty interior and let x0 be a p-minimizer of second order in sense
II for the constrained problem (1), which has property (11). Then x0 is an
i-minimizer of second order in sense II for (1).

Next, under the hypotheses of Theorem 10, we show that x0 is an i-
minimizer in sense I. We state also relations between sense I and sense II,
i-minimizers and p-minimizers.

Theorem 11. Let f and g be C1,1 functions, C and K be closed convex cones
with nonempty interior and let x0 be a p-minimizer of second order in sense
II for the constrained problem (1), which has property (11). Then x0 is an i-
minimizer of second order in sense I for (1) and hence x0 is also a p-minimizer
of second order in sense I.
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Proof. According to Theorem 10, x0 is an i-minimizer of second order. The
reversal of the sufficient conditions of Theorem 8 applied to problem (12) gives
a condition which coincides with the sufficient condition S ′′

1,1 of Theorem 7,
whence x0 is an i-minimizer of second order in sense I for the constrained
problem (1). Theorem 1 gives now that x0 is also a p-minimizer of second
order in sense I for (1).

Thus, within the set of points satisfying (11) the set of the p-minimizers
of second order in sense II is a subset of the p-minimizers of second order in
sense I. The reversal does not hold. In fact, the following reasoning shows,
that in Example 4 the point x0 is a p-minimizer of second order in sense I
(indeed is a p-minimizer of first order), but it is not a p-minimizer of second
order in sense II. Now, for the corresponding problem (12) we have

(f, g) : R2 → R4 , (f(x), g(x)) = (x4
1 + x2

2,−x4
1 − x2

2,−x4
1,−x4

1)

and C ×K[−g(x0)] = R2
+ × R2

+ = R4
+ . Each point x ∈ R2 is feasible and we

have max{x4
1+x2

2,−x4
1−x2

2,−x4
1,−x4

1} = x4
1+x2

2, whence x0 is an i-minimizer
of order 4 in sense II, but it is not an i-minimizer of second order in sense
II. Therefore, according to Theorem 10, in spite that x0 is a p-minimizer of
second order in sense I, it is not a p-minimizer of second order in sense II (the
assumption that x0 is a p-minimizer of second order in sense II would imply
that x0 is an i-minimizer of second order in sense II).

Let us now make some comparison between Theorems 9 and 10. In spite that
condition (11) is more general than condition (8), Theorem 10 does not imply
Theorem 9. Indeed, the assumption in Theorem 10 is that x0 is a p-minimizer
in sense II, which does not imply the more general assumption in Theorem 9
that x0 is a p-minimizer in sense I.

Next we compare the i-minimizers in sense I and II.

Theorem 12. Let f and g be C1,1 functions, C and K be closed convex cones
with nonempty interior. If x0 is an i-minimizer of second order in sense II
for the constrained problem (1), then x0 is an i-minimizer of second order in
sense I for (1). If the constraint qualification Q1,1(x0) holds, then also the
converse is true.

Proof. Let x0 be an i-minimizer of second order in sense II. The reversal of
the sufficient conditions of Theorem 8 gives the sufficient condition S ′′

1,1 of
Theorem 7, whence x0 is an i-minimizer of second order in sense I.

Conversely, let x0 be an i-minimizer of second order in sense I. Under the
constraint qualification Q1,1(x0), we can apply the reversal of the sufficient
conditions of Theorem 7, getting condition S ′′

1,1, which is identical with the
sufficient conditions of Theorem 8 applied to the unconstrained problem (12),
whence x0 is an i-minimizer of second order in sense II.
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We conclude the paper with the following comments. The comparison of
the p-minimizers and the i-minimizers has led us to ”duplicate” the notions
of optimality, introducing sense II concepts.

Indeed, we have to underline that the points we call sense II minimizers
are not minimizers of the considered constrained problem but of a related un-
constrained vector problem and one prefers probably to deal with this simpler
unconstrained problem instead of the constrained one. The name is justified
since we find a connection between the properties of a point to be sense I or
sense II minimizer. This connection has been obtained in [11] for p-minimizers
and i-minimizers of first order and has been investigated in this section in
the second-order case. A crucial role in this study plays the observation that
the optimality conditions for the related unconstrained problem (12) coincide
with the optimality conditions of the constrained problem (1). A motivation
to introduce sense II concepts give also the stability properties obeyed by the
p-minimizers and the isolated minimizers. In [5] and [9] we have shown that
sense I concepts are stable under perturbations of the objective data, while
sense II concepts are stable under perturbations of both the objective and
constraint data. From this point of view sense II concepts are advantageous,
since it is preferable to deal with a problem, which is stable with respect to
all data, than with one which is stable with only part of the data.
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Summary. In terms of n-th order Dini directional derivative with n positive integer
we define n-pseudoconvex functions being a generalization of the usual pseudoconvex
functions. Again with the n-th order Dini derivative we define n-stationary points,
and prove that a point x0 is a global minimizer of a n-pseudoconvex function f if and
only if x0 is a n-stationary point of f . Our main result is the following. A radially
continuous function f defined on a radially open convex set in a real linear space is
n-pseudoconvex if and only if f is quasiconvex function and any n-stationary point
is a global minimizer. This statement generalizes the results of Crouzeix, Ferland,
Math. Program. 23 (1982), 193–205, and Komlósi, Math. Program. 26 (1983), 232–
237. We study also other aspects of the n-pseudoconvex functions, for instance their
relations to variational inequalities.

Key words: Pseudoconvex functions, n-pseudoconvex functions, stationary
points, n-stationary points, quasiconvex functions.

1 Introduction

Within nonsmooth setting in terms of n-th order Dini directional deriva-
tive with n positive integer we define n-th order pseudoconvex (for short,
n-pseudoconvex) functions generalizing in such a way the usual pseudo-
convex functions. In fact, the class of 1-pseudoconvex functions coincides
with the class of the nonsmooth pseudoconvex functions, and the class
of n-pseudoconvex functions is strictly contained in the class of (n + 1)-
pseudoconvex functions. Again with the n-th order Dini derivative we define
the notion of n-th order stationary (for short, n-stationary) point, and prove
that a point x0 is a global minimizer of a n-pseudoconvex function f if and
only if x0 is a n-stationary point of f . For a radially continuous function f
defined on a radially open convex set in a real linear space we prove, that f is
n-pseudoconvex if and only if f is quasiconvex function and any n-stationary
point is a global minimizer. For smooth functions with open domain the char-
acterization that a function is pseudoconvex if and only if it is quasiconvex and
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each stationary point is a global minimizer is obtained in Crouzeix, Ferland
[5]. This statement has been extended to nonsmooth functions in Komlósi
[12], where pseudoconvexity and stationary points of a nonsmooth function
are defined through the first-order Dini derivative. Hence, we propose a gener-
alization of the above results. We study also other aspects of n-pseudoconvex
functions, for instance their relations to variational inequalities and the par-
ticular class of the twice continuously differentiable 2-pseudoconvex functions.

2 Dini Derivatives and n-Pseudoconvex Functions

In this paper E denotes a real linear space and f : X → R a finite-valued
real function defined on the set X ⊂ E. Here R is the set of the reals and
R = R ∪ {−∞} ∪ {+∞}. Let f : E → R ∪ {+∞} be the extension of f such
that f(x) = +∞ for x ∈ E \X.

The lower Dini directional derivative f (1)
− (x, u) of f at x ∈ X in direction

u ∈ E is defined as an element of R by

f
(1)
− (x, u) = lim inf

t→+0

1
t
(f(x+ tu)− f(x)) .

The difference in the right-hand side has sense in R, since eventually only
f(x + tu) is infinite. Applying f instead of f we get some convenience in
handling the case x+ tu /∈ X. Still, we may use f(x+ tu) instead of f(x+ tu)
in the case when 0 is an accumulating point of the set {t > 0 | x + tu ∈ X}.
If this condition has place, we say that u is a feasible direction of X at x. As
a consequence of the definition, if u is not a feasible direction of X at x we
have f (1)

− (x, u) = +∞.
For a given positive integer n > 1 we accept that the n-th order lower

Dini directional derivative f (n)
− (x, u) exists as an element of R only if for

i = 1, . . . , n − 1 all the lower Dini directional derivatives f (i)
− (x, u) exist as

elements of R, and then we put

f
(n)
− (x, u) = lim inf

t→+0

n!
tn

( f(x+ tu)−
n−1∑
i=0

ti

i!
f

(i)
− (x, u)) .

In the sum we accept f (0)
− (x, u) = f(x). From this definition we see, that if

the higher-order derivative f (n)
− (x, u) exists, then u is a feasible direction of

X at x. Indeed, if u is not a feasible direction of X at x, then as it was said
f

(1)
− (x, u) = +∞ /∈ R, whence from the definition the higher-order derivative
f

(n)
− (x, u) does not exist. For short we will say Dini derivatives instead of

lower Dini directional derivatives. The above definition follows Ginchev [7],
where in terms of the Dini derivatives higher-order optimality conditions for
nonsmooth problems are derived.
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The function f : X → R is said to be pseudoconvex if x0, x1 ∈ X and
f(x0) < f(x1) implies f (1)

− (x1, x0 − x1) < 0. We accept this definition after
Diewert [6] as a convenient modification for nonsmooth functions of the clas-
sical definition [14] of a pseudoconvex function. Let us specially underline,
that in opposite to the commonly accepted restriction, we do not assume in
advance that the domain X of f is convex. Still, the given here definition
of a pseudoconvex function gives some implicit restriction on X. Namely, if
x1 ∈ X and there exists x0 ∈ X such that f(x0) < f(x1), then x0 − x1 is a
feasible direction of X at x1. Indeed, now f

(1)
− (x1, x0 − x1) < 0 and not +∞.

We generalize the notion of a pseudoconvex functions as follows.

Definition 1. For a positive integer n we call the function f : X → R

pseudoconvex of order n (for short, n-pseudoconvex) if for any x0, x1 ∈ X
such that f(x0) < f(x1) there exists a positive integer m ≤ n such that
f

(i)
− (x1, x0−x1) = 0 for all positive integers i < m and f (m)

− (x1, x0−x1) < 0.

In this definition the derivative f (m)
− (x1, x0− x1) exists. When m > 1 this

follows from the existence with values 0 of all the derivatives of lower order.
The existence of n-th order Dini derivatives of f is not required.

We do not assume in advance that the domain X of f is convex. Still, as
in the case of a pseudoconvex function we have the implicit restriction on X,
that if x1 ∈ X and there exists x0 ∈ X such that f(x0) < f(x1), then x0−x1

is a feasible direction of X at x1. Now f
(1)
− (x1, x0−x1) ≤ 0 and not +∞, as it

would be if u were not feasible. With regard to this remark one can define the
following class of sets, call them convex-like, as the natural sets to serve for
domains of n-pseudoconvex functions. We call the set X in E convex-like, if
for all x0, x1 ∈ X the direction x0 − x1 is feasible of X at x1. Obviously each
convex set is convex-like. A convex-like set is also each radially open set, see
the definition of a radially open set in Section 4. Some of the following results
as Theorems 1 and 8 do not use convexity assumptions for X. However, the
convexity of X plays a role in the most of the forthcoming considerations.
Whenever this is the case, we say explicitly that X is convex. We think, that
these results admit generalizations to convex-like sets. For simplicity, we do
not discuss these possibilities.

In the above definition when n = 1 the only possible choice of the positive
integer m ≤ n is m = 1. Since then the set of the positive integers i <
m is empty, the equalities claiming the vanishing of the i-th derivatives do
not occur. Therefore the definition of 1-pseudoconvex function reduces to the
definition of a pseudoconvex function, hence the classes of 1-pseudoconvex
functions and pseudoconvex functions are identical.

It is obvious from the definition, that for a positive integer n each n-
pseudoconvex function is (n+1)-pseudoconvex. The following example shows
that this inclusion is strict.

Example 1. The function fn : R → R, n positive integer, defined by
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fn(x) =
{

xn , x ≥ 0 ,
(−1)n−1xn , x < 0 .

is n-pseudoconvex, and when n ≥ 2 it is not (n− 1)-pseudoconvex.

For n odd the function fn in Example 1 is the power function fn(x) = xn,
x ∈ R. For n even the function fn is of class Cn−1 but not of class Cn.

3 Stationary Points and n-Pseudoconvex Functions

We introduce the notion of a n-stationary point as follows.

Definition 2. For a positive integer n we call x ∈ X a stationary point of
order n (for short, n-stationary point) of the function f : X → R, if for each
direction u ∈ E and arbitrary positive integer m ≤ n the equalities

f
(i)
− (x, u) = 0 for all positive integers i < m imply f (m)

− (x, u) ≥ 0.

Let us turn attention, that in particular for m = 1 it holds f (1)
− (x, u) ≥ 0 for

all u ∈ E which is a consequence of the nonexistence of positive integers i < 1.

The notion of 1-stationary point coincides with the usual notion of a sta-
tionary point applied in minimization of nonsmooth functions, e. g. in [9] and
[12]. Stationary points of order two, usually in a smooth aspect, are used in
the literature. The definition of n-stationary points for nonsmooth functions
given here seems to be a new one.

It is obvious, that for n ≥ 2 each n-stationary point is (n − 1)-stationary
point. Example 1 shows that the converse is not true, there the point x = 0
is (n− 1)-stationary but not n-stationary.

The following theorem characterizes the global minimizers of n-pseudo-
convex functions in terms of n-stationary points.

Theorem 1. Let f : X → R be a n-pseudoconvex function with n positive
integer. Then x0 ∈ X is a global minimizer of f if and only if x0 is a n-
stationary point of f .

Proof. Suppose that x0 ∈ X is a global minimizer of f . Take arbitrary direc-
tion u and let m ≤ n be a positive integer. Assume that f (i)

− (x0, u) = 0 for all
positive integers i < m. Then

f
(m)
− (x0, u) = lim inf

t→+0

m!
tm

(
f(x0 + tu)− f(x0)

)
≥ 0 .

Therefore x0 is a n-stationary point. Moreover, replacing in the inequality
m ≤ n the number n with arbitrary positive integer n0 and repeating the
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above reasonings, we see that x0 is a n0-stationary point for arbitrary positive
integer n0.

Conversely, assume that x0 is a n-stationary point of f . Suppose in the
contrary, that x0 is not a global minimizer of x0, hence there exists x1 ∈ X
such that f(x1) < f(x0). Since f is n-pseudoconvex, therefore there exists a
positive integer m ≤ n such that f (i)

− (x0, x1 − x0) = 0 for all positive integers
i < m and f (m)

− (x0, x1 − x0) < 0. Therefore, the condition in the definition of
a n-stationary point fails with x = x0 and u = x1 − x0, a contradiction. �

4 Characterization of n-Pseudoconvex Functions

We deal with functions f : X → R, where X is a subset of the real linear space
E. No topological structure on E is assumed. At the same time topological
notions can be involved, when we consider restrictions on straight lines in E.
For such notions we apply the adjective radial.

For any x0, x1 ∈ E we put X(x0, x1) = {t ∈ R | (1− t)x0 + tx1 ∈ X}. We
say, that the set X is radially open (radially closed) if for any x0, x1 ∈ E the
set X(x0, x1) is open (closed) in R.

Further we use the abbreviations lsc and usc respectively for lower semi-
continuous and upper semi-continuous. We say that the function f : X → R

is radially lsc (radially usc) if the function

ϕ : X(x0, x1) → R , ϕ(t) = f((1− t)x0 + tx1)

is lsc (usc) for all x0, x1 ∈ X. If f is both radially lsc and radially usc,
we say that f is radially continuous. Let us underline, that the definition
given requires that ϕ is lsc (usc) with respect to the relative topology on
X(x0, x1) ⊂ R. This remark is to avoid confusions of the following type. Let
E = R and X ⊂ R be an open proper set in R (X proper in R means X �= ∅
and X �= R). Consider the function f : X → R, f(x) = 0. Then f is (radially)
lsc. At the same time the function f̄ being the indicator function of the open
set X is not (radially) lsc as a function from R into R.

A mean value theorem for lsc functions appears in Diewert [6]. In the
following precise formulation it is proved in Crespi, Ginchev, Rocca [3] and is
used there to study nonsmooth variational inequalities.

Theorem 2 (Mean Value Theorem). Let ϕ : [t0, t1] → R∪{+∞} be a lsc
function of a real variable, such that ϕ(t0) �= +∞. Then there exists a real ξ,
t0 < ξ ≤ t1, such that ϕ(1)

− (ξ, t0−t1) ≥ ϕ(t0)−ϕ(t1). Moreover, this inequality
holds at the point ξ, t0 < ξ ≤ t1, which supplies the minimum of the function
ψ : [t0, t1] → R ∪ {+∞} defined by

ψ(t) = ϕ(t)− t1 − t
t1 − t0

ϕ(t0)−
t− t0
t1 − t0

ϕ(t1) . (1)
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The following theorem applies the mean value theorem to establish monoto-
nicity properties of the lsc n-pseudoconvex functions.

Theorem 3. Let n be a positive integer and let ϕ : I → R be a lsc n-
pseudoconvex function defined on the interval I ⊂ R. Denote by Î the set
of the global minimizers of ϕ on I. Then either Î = ∅, in which case ϕ is
strictly monotone on I, or Î is a nonempty interval, in which case ϕ is a
constant on Î, strictly increasing on I+ = {t ∈ I | t ≥ t̂ for all t̂ ∈ Î} and
strictly decreasing on I− = {t ∈ I | t ≤ t̂ for all t̂ ∈ Î}.

Proof. We prove, that if t− < t+ with t−, t+ ∈ I, and ϕ(t−) < ϕ(t+), then
ϕ is strictly increasing on the interval I ∩ [t+, +∞). Assume in the contrary,
that this is not true. Then there exists t̄ ∈ I ∩ (t+,+∞) such that ϕ is not
strictly increasing on the interval [t+, t̄]. Denote by t0 the supremum of the
set M of all t ∈ [t+, t̄] such that ϕ is strictly increasing on the interval [t+, t].
We will show some properties of t0. Since t+ ∈ M , obviously M �= ∅ and
t0 ≥ t+. Also t0 ∈ I, since t0 ∈ [t+, t̄] ⊂ I. From the definition of t0, ϕ is
strictly increasing on the interval [t+, t0). We will show more, that ϕ is strictly
increasing on the closed interval [t+, t0]. To show this, it is enough to prove
that ϕ(t) ≤ ϕ(t0) for all t ∈ [t+, t0). Indeed, if this is true, and t+ ≤ t < t0,
then for t′ ∈ (t, t0) we would have ϕ(t) < ϕ(t′) ≤ ϕ(t0), which shows that ϕ
is strictly increasing on the interval [t+, t0]. Now we show that ϕ(t) ≤ ϕ(t0)
for all t ∈ [t+, t0]. Assume that this is not true. Then t+ < t0 (if t+ = t0
then the interval [t+, t0) is empty, hence we would have the truthfulness of
the claimed property), and ϕ(t̄+) > ϕ(t0) for some t+ ≤ t̄+ < t0. Since ϕ is
n-pseudoconvex, there exists m ≤ n, such that ϕ(i)

− (t̄+, t0 − t̄+) = 0 for all
positive integer i < m and ϕ(m)

− (t̄+, t0 − t̄+) < 0. On the other hand, since ϕ
is increasing on [t̄+, t0), we have

ϕ
(m)
− (t̄+, t0 − t̄+) = lim inf

τ→0+

m!
τm

(ϕ(t̄+ + τ(t0 − t+))− ϕ(t̄+)) ≥ 0 ,

a contradiction. Thus, ϕ is strictly increasing on the interval [t+, t0], whence
with respect to the assumptions for t̄, we have t0 < t̄. Hence, the interval
I ∩ [t0, +∞) contains the non-degenerate interval [t0, t̄].

Resuming, from the assumption that ϕ is not strictly increasing on the
interval I ∩ [t+, +∞), it follows that there exists t0 ≥ t+ with the properties:
t0 ∈ I and I∩ [t0, +∞) contains a non-degenerate interval [t0, t̄]; the function
ϕ is strictly increasing on the interval [t+, t0]; on any larger interval [t+, t],
t > t0, the function ϕ is not strictly increasing.

We will show that the above properties lead to a contradiction. Since ϕ
is lsc, we can choose t1 > t0, such that ϕ(t0) ≥ ϕ(t1) and still ϕ(t−) < ϕ(t)
for any t ∈ [t0, t1]. Moreover, we can choose t1 with these properties in a way
that the following alternative holds: either ϕ(t0) > ϕ(t1) or ϕ(t0) = ϕ(t1) =
min{ϕ(t) | t0 ≤ t ≤ t1}. Take now ξ, t0 < ξ ≤ t1, such that ξ supplies the
minimum of the function ψ : [t0, t1] → R in (1), whence in particular
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ϕ(ξ) ≤ t1 − ξ
t1 − t0

ϕ(t0) +
ξ − t0
t1 − t0

ϕ(t1) ≤ ϕ(t0) .

The Mean Value Theorem gives ϕ(1)
− (ξ, t0 − t1) ≥ ϕ(t0)−ϕ(t1). On the other

hand ϕ(t−) < ϕ(ξ), whence from the n-pseudoconvexity of ϕ, there exists
m ≤ n, such that ϕ(i)

− (ξ, t− − ξ) = 0 for all positive integers i < m and
ϕ

(m)
− (ξ, t− − ξ) < 0. By the choice of t1 the following cases may occur:

10. ϕ(t0) > ϕ(t1).
This leads immediately to a contradiction, since the positive homogeneity

of the Dini derivative gives

0 ≥ ϕ(1)
− (ξ, t− − ξ) =

ξ − t−
t1 − t0

ϕ
(1)
− (ξ, t0 − t1) ≥

ξ − t−
t1 − t0

(ϕ(t0)− ϕ(t1) ) > 0 .

20. ϕ(t0) = ϕ(t1) = min{ϕ(t) | t0 ≤ t ≤ t1}.
Now ψ(t) = ϕ(t) − ϕ(t0), and the point ξ, t0 < ξ ≤ t1, supplies the

minimum of ϕ on the interval [t0, t1]. We obtain easily the contradiction

0 > ϕ
(m)
− (ξ, t− − ξ) = lim inf

s→+0

m!
sm

(ϕ(ξ + s(t− − ξ))− ϕ(ξ)) ≥ 0 .

Similarly, if t− < t+ with t−, t+ ∈ I, and ϕ(t−) > ϕ(t+), then ϕ is strictly
decreasing on the interval I ∩ (−∞, t−]. This case is reduced to the already
proved by changing the variable t to −t.

The set Î is an interval, possibly empty. We can show this by proving, that
for any t− < t+ with t−, t+ ∈ Î it holds [t−, t+] ⊂ Î. If this is not the case,
then there exists a point t0, t− < t0 < t+, such that ϕ(t−) < ϕ(t0). Since
ϕ is strictly increasing on I ∩ [t0, +∞), we see that ϕ(t−) < ϕ(t0) < ϕ(t+).
On the other hand, since both t− and t+ are global minimizers, of ϕ, we have
ϕ(t−) = ϕ(t+), a contradiction.

If Î �= ∅, then ϕ is strictly increasing on I+ and strictly decreasing on I−.
We prove the first assertion, the proof of the second is similar. The case when
I+ = ∅ or I+ is a singleton is obvious. Suppose now that I+ is neither empty
nor a singleton. Let t− ∈ Î and t+ ∈ I+ be such that t+ > inf I+. We have
t+ /∈ Î, otherwise the whole interval [t−, t+] would be contained in Î and the
strict inequality t+ > inf I+ would not be satisfied. Therefore ϕ(t−) < ϕ(t+),
whence ϕ is strictly increasing on the interval I ∩ [t+, +∞). Since the strict
monotonicity holds for any t+ > inf I+ and ϕ is lsc, we see that ϕ is strictly
increasing on I+.

If Î = ∅, then ϕ is strictly increasing or strictly decreasing. Choose in
I a sequence {tn}∞n=0 such that ϕ(t0) > ϕ(t1) > · · · > ϕ(tn) > . . . , and
limn ϕ(tn) = inf{ϕ(t) | t ∈ I}.

Suppose that t0 > t1 (the case t0 < t1 is considered similarly). We prove
that then {tn} is a strictly decreasing sequence and the function ϕ is strictly
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increasing on I (when t0 < t1 the sequence {tn} is strictly increasing and the
function ϕ is strictly decreasing on I). To see that {tn} is strictly decreasing, it
is enough to show that t2 < t1 (similarly t2 < t1 implies t3 < t2 etc.). Indeed,
it holds t2 /∈ [t0,+∞), since for t ∈ I ∩ [t0,+∞), we have ϕ(t0) ≤ ϕ(t) (the
inequality ϕ(t1) < ϕ(t0) implies that ϕ is strictly increasing on I ∩ [t0,+∞)),
while by choice ϕ(t2) < ϕ(t0). Also t2 /∈ [t1, t0]. Otherwise, if t1 < t2 < t0,
from ϕ(t1) > ϕ(t2) < ϕ(t0), it would follow that ϕ is strictly decreasing on
I ∩ (−∞, t1] and it is strictly increasing on I ∩ [t0,+∞). Therefore, since
Î is the set of global minimizers of ϕ, we have Î = {ξ ∈ [t1, t0] | ϕ(ξ) =
mint1≤t≤t0 ϕ(t)}. The contradiction is that once Î = ∅ by assumption, and
otherwise the set in the right hand side is not empty, since any lsc functions
achieves its minimum on a compact interval.

Now ϕ(tn+1) < ϕ(tn) implies that ϕ is strictly increasing on the interval
I∩[tn,+∞), hence also on the set J =

⋃∞
n=1 (I ∩ [tn,+∞)). It remains to show

that J = I. If this is not the case, then there exists a point t− ∈ I \J , whence
t− < tn for n = 0, 1, . . . . We have ϕ(t−) ≤ ϕ(tn) for all n. Otherwise for
some n we would have ϕ(t−) > ϕ(tn+1) < ϕ(tn), which as we have observed
leads to a contradiction with Î = ∅. Now ϕ(t−) ≤ ϕ(tn) for all n implies that
ϕ(t−) ≤ inf{ϕ(t) | t ∈ I}, whence t− ∈ Î, which contradicts again to Î = ∅. �

The assumption that ϕ is lsc is essential for the validity of Theorem 3.
This is seen in the following example borrowed from Crespi, Ginchev, Rocca
[3].

Example 2. Define the function ϕ : R → R by ϕ(x) = 0 for x = 0 or x
irrational, and ϕ(x) = −q for x �= 0 rational with x = p/q, q > 0 and p and
q relatively prime. The function ϕ is not lsc. The first-order Dini derivative
is ϕ(1)

− (x, u) = −∞ for each x ∈ R and u ∈ R \ {0}. Therefore ϕ is 1-
pseudoconvex. For the set Î of the global minimizers of ϕ we have Î = ∅. At
the same time ϕ is neither increasing nor decreasing.

Recall that a function f : X → R is said to be quasiconvex if its domain
X is convex and for all x0, x1 ∈ X and t ∈ [0, 1] it holds

f((1− t)x0 + tx1) ≤ max
(
f(x0), f(x1)

)
.

The function f : X → R is called semistrictly quasiconvex if its domain X
is convex and for all x0, x1 ∈ X such that f(x0) �= f(x1) and t ∈ (0, 1) the
strict inequality f((1− t)x0 + tx1) < max

(
f(x0), f(x1)

)
is satisfied.

In general a semistrictly quasiconvex function is not quasiconvex, but each
semistrictly quasiconvex radially lsc function is quasiconvex [11].

The following theorem generalizes a well-known relation between pseudo-
convex and quasiconvex functions, see Diewert [6].

Theorem 4. Let f : X → R be radially lsc and n-pseudoconvex function
with n positive integer on the convex set X in a real linear space. Then f is
quasiconvex, and moreover, f is semistrictly quasiconvex.
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Proof. We prove that f is quasiconvex. Let x0, x1 ∈ X be such that f(x0) ≤
f(x1). Put x(t) = (1− t)x0 + tx1. Define the function ϕ : [0, 1] → R, ϕ(t) =
f(x(t)). We must show that for each t̄ ∈ (0, 1) it holds ϕ(t̄) ≤ ϕ(1). The
function ϕ is lsc and n-pseudoconvex on I = [0, 1]. Therefore ϕ satisfies the
hypotheses of Theorem 3. Since I is a compact interval, the set Î ⊂ I of the
global minimizers of ϕ is a nonempty compact interval [t−, t+]. The function
ϕ strictly decreases on the interval I− = [0, t−] and strictly increases on the
interval I+ = [t+, 1]. Now our claim follows observing that for t̄ we have the
possibilities:

10. t̄ ∈ Î, then (from Î the set of global minimizers) ϕ(t̄) ≤ ϕ(1);
20. t̄ ∈ I−\{0}, then (from ϕ strictly decreasing on I−) ϕ(t̄) < ϕ(0) ≤ ϕ(1);
30. t̄ ∈ I+ \ {1}, then (from ϕ strictly increasing on I+) ϕ(t̄) < ϕ(1).
To show the semistrict quasiconvexity of f , we must show in the above no-

tations that ϕ(0) < ϕ(1) implies ϕ(t̄) < ϕ(1). This can be shown by repeating
up to obvious small changes the same reasonings. For instance, in the case 10

we have ϕ(t̄) ≤ ϕ(0) < ϕ(1). �

The following example shows that Theorem 4 cannot be reverted.

Example 3. The function f : R → R defined by

f(x) =

⎧⎨⎩
exp(− 1

x ), x > 0,
0, x = 0,

− exp( 1
x ), x < 0,

is semistrictly quasiconvex, but for any positive integer n it is not n-pseudo-
convex.

Our main result is the following characterization of the radially continuous
n-pseudoconvex functions with radially open convex domains.

Theorem 5. Let f : X → R be a radially continuous function on the radially
open convex set X in a real linear space. Then f is n-pseudoconvex with n
positive integer if and only if f is quasiconvex and each n-stationary point of
f is a global minimizer.

Proof. The necessity holds under the weaker assumption that f is radially lsc
function on the convex setX. Let f be n-pseudoconvex. Then f is quasiconvex
according to Theorem 4. Further, each n-stationary point of f is a global
minimizer according to Theorem 1.

The sufficiency holds under the weaker assumption that f is radially usc on
the radially open convex setX. Let f be quasiconvex and let each n-stationary
point of f be a global minimizer. We prove that f is n-pseudoconvex. Take
x0, x1 ∈ X with f(x0) < f(x1). Hence x1 is not a global minimizer. By the
hypotheses x1 is not a n-stationary point. Therefore there exists a positive
integer m ≤ n and a direction v such that f (i)

− (x1, v) = 0 for all positive
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integers i < m and f (m)
− (x1, v) < 0. We may assume that m is the minimal

with the above property, that is for each k < m and arbitrary direction u the
inequalities f (i)

− (x1, u) = 0 for all positive integers i < k imply f (k)
− (x1, u) ≥ 0.

Now we show that f (i)
− (x1, x0 − x1) = 0 for i < m and f (m)

− (x1, x0 − x1) < 0.
Indeed, by the quasiconvexity of f we have

f
(1)
− (x1, x0 − x1) = lim inf

t→+0
t−1(f(x1 + t(x0 − x1))− f(x1)) ≤ 0.

Using the minimality ofm and induction we conclude that f (i)
− (x1, x0−x1) = 0

for all i < m. Since f is radially upper semicontinuous and X is radially
open, there exists τ > 0 such that f(p) < f(x1) where p = x0 − τv. Put
z(t) = x1 + t(x0 − x1) with t ∈ (0, 1). Let w(t) = x1 + α(t) v be the point
of intersection of the ray {x1 + tv | t ≥ 0} and the straight line passing
through p and z(t). An easy calculation gives that α(t) = tτ/(1− t). Since f
is quasiconvex, we have

f(z(t)) ≤ max (f(p), f(w(t))) for 0 < t < 1 .

Therefore

t−m(f(z(t))− f(x1)) ≤ max (t−m(f(p)− f(x1)), t−m(f(w(t))− f(x1))).

Since f(p) < f(x1) , if t tends to 0 with positive values, then the first term of
the above maximum tends to −∞ . Let the sequence αn be such that

f
(m)
− (x, v) = lim inf

n→∞ m!α−m
n (f(x1 + αnv)− f(x1))

and tn = αn/(αn + τ). Therefore

f
(m)
− (x1, x0 − x1) = lim inf

t→+0
m! t−m(f(z(t))− f(x1))

≤ lim inf
n→0

m! t−m
n (f(w(tn))− f(x1)). (2)

Using the equality

f(w(t))− f(x1)
tm

=
f(x1 + α(t)v)− f(x1)

αm(t)
· α

m(t)
tm

,

where α(t) = tτ/(1− t) we get that

lim inf
n→∞ m! t−m

n (f(w(tn))− f(x1)))

= lim inf
n→∞ m!α−m

n (f(x1 + αnv)− f(x1))αm
n t

−m
n = τm f

(m)
− (x1, v) < 0.

The above inequality along with (2) yields that f is n-pseudoconvex. �
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The close relation between pseudoconvex and quasiconvex functions is un-
derlined in Crouzeix [4]. In Crouzeix, Ferland [5] it is shown that a smooth
function on an open convex set is pseudoconvex if and only if it is quasicon-
vex and attains a minimum at each stationary point. This characterization
is extended to nonsmooth functions by Komlósi [12] and Giorgi, Komlósi [9].
The Dini derivatives are the main tool in this extension and the coincidence
of the stationary points and the global minimizers is shown. Later this char-
acterization is analysed in Giorgi [8], Tanaka [15], Aussel [1] and Ivanov [10].
Theorem 5 above is a generalization of the results mentioned.

The proof of the Sufficiency in Theorem 5 is made under the assumption
that f is radially usc and X is radially open and convex, while the Necessity
is done for radially lsc functions and does not apply the radially openness of
X. The following two examples show that the Sufficiency fails to be true for
radially lsc functions, or if the radially openness of X is not assumed.

Example 4. Consider the function f : R2 → R defined by

f(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
arctan(x2/x1) , x1 > 0 ,

π/2 , x1 = 0, x2 > 0 ,
−π/2 , x1 = 0, x2 ≤ 0 ,

π/2− x1 , x1 < 0 .

Then f is lsc and quasiconvex on R2, that is on an open set, and each 1-
stationary point is a global minimizer, but f is not 1-pseudoconvex.

It is easy to check that each level set L(f, r) = {(x1, x2) ∈ R2 | f(x1, x2) ≤
r} is closed and convex, whence f is lsc and quasiconvex. Take the points
x0 = (0, 0) and x1 = (0, 1). We have f(x0) = −π/2 < π/2 = f(x1) and
f

(1)
− (x1, x0 − x1) = 0, hence f is not 1-pseudoconvex. The set of the global

minimizers is {x = (0, x2) | x2 ≤ 0} and coincides with the set of 1-stationary
points. To check this we put x = (x1, x2), u = (u1, u2), and observe that
f

(1)
− (x, u) = −1 in each of the cases: if x1 = 0, x2 > 0, u1 = x2, u2 = 0; if
x1 > 0, u1 = 0, u2 = −(x2

1 + x2
2)/x1; and if x1 < 0, u1 = 1, u2 = 0.

Example 5. Consider the function f : X → R, where

X = {x = (x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1}

and

f(x1, x2) = 1− x2 −
1
2
x2

1 − x1

√
x2 +

1
4
x2

1 .

Then f is continuous and quasiconvex on X, which is a not radially open set,
and each 1-stationary point is a global minimizer, but f is not 1-pseudoconvex.

In this example the level sets L(f, r) = {(x1, x2) ∈ R2 | f(x1, x2) ≤ r} are
the convex sets L(f, r) = ∅ for r < 0, L(f, r) = X for r > 1 and



258 I. Ginchev, V.I. Ivanov

L(f, r) = {(x1, x2) ∈ X | x1

√
1− r + x2 ≥ 1− r} for 0 ≤ r ≤ 1 ,

whence f is quasiconvex. Obviously f is also continuous. The function f is
not 1-pseudoconvex, since for x1 = (0, 0) and x0 = (1, 0) we have f(x1) =
1 > 0 = f(x0) and at the same time f (1)

− (x1, x0 − x1) = 0. The point x1

is not 1-stationary point, since f (1)
− (x1, (0, 1)) = −1. The set of the global

minimizers is {(x1, x2) ∈ X | x1 + x2 = 1}, where f attends value zero, and
this set coincides with the 1-stationary points. To show this it remains to
observe that for (x1, x2) ∈ X with x1 + x2 /∈ {0, 1} we have

f
(1)
− ((x1, x2), (0, 1)) = −1− x1

2
√
x2 + 1

4 x
2
1

< 0 .

Though we consider functions f defined on an arbitrary real linear space,
the n-pseudoconvexity is in fact one dimensional notion in the sense, that it is
determined by a property, which is supposed to hold on one-dimensional affine
manifolds. That is why the most phenomena occurring for n-pseudoconvex
functions we observe on one-dimensional examples. Theorem 5 is however of
another nature due to the involvement of the concept of n-stationary point,
which is not one-dimensional. This difference causes that the assumptions of
Theorems 4 cannot be kept in Theorem 5, as it has been shown in the Exam-
ples 4 and 5. In the next Theorem 6 applying one-dimensional n-stationarity,
we are still able to prove the sufficiency within the hypotheses of Theorem 4,
without the additional assumptions f to be radially usc and X to be radially
open.

Theorem 6. Let f : X → R be quasiconvex function defined on the convex
set X in a real linear space and let f obey the following property: For arbitrary
x0, x1 ∈ X such that f(x0) < f(x1) the point t1 = 1 is not n-stationary point
with n positive integer for the function of one variable ϕ : X(x0, x1) → R,
ϕ(t) = f(x(t)), where x(t) = (1− t)x0 + tx1 and X(x0, x1) = {t ∈ R | x(t) ∈
X}. Then f is n-pseudoconvex.

Proof. Let x0, x1 ∈ X be arbitrary such that f(x0) < f(x1). Since X is
convex, then the closed interval [0, 1] belongs to the domain of ϕ. If t = 1 is
boundary of the domain of ϕ, then ϕ(1)

− (1, 1) = +∞. By the hypothesis of the
theorem there exists integer m ≤ n such that f (i)

− (x1, x0 − x1) = 0 for i < m

and f (m)
− (x1, x0 − x1) < 0. Consider the case when t = 1 is an interior point

of the domain of ϕ. For all sufficiently small values t > 0, by quasiconvexity,
ϕ(1) ≤ max(ϕ(0), ϕ(1 + t)). Using that ϕ(0) < ϕ(1) we get the inequality
ϕ(1+ t) ≥ ϕ(1). Therefore for every integer i equality ϕ(i−1)

− (1, 1) = 0 implies
ϕ

(i)
− (1, 1) ≥ 0. Since t = 1 is not a n-stationary point, then there exists integer
m ≤ n such that f (i)

− (x1, x0 − x1) = 0 for i < m and f (m)
− (x1, x0 − x1) < 0.

Therefore f is n-pseudoconvex. �
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In Example 1 the n-pseudoconvexity of fn can be established from the
definition of this notion, but also directly from Theorem 5 (or Theorem 6).
Indeed, fn is continuous and quasiconvex and the set of its n-stationary points
is empty (hence we can endorse the elements of this empty set with the prop-
erty that they are global minimizers). From the Sufficiency of Theorem 5 we
establish that fn is n-pseudoconvex.

5 Twice Continuously Differentiable Functions

For n > 1 odd the function fn(x) = xn, x ∈ R, is of class Cn, and as it
was noticed in Example 1 it is n-pseudoconvex and not (n−1)-pseudoconvex.
For an even n the function fn is not of class Cn. Therefore, one can pose
the question, whether if n is even there exists a n-pseudoconvex function de-
fined on an open set in a finite-dimensional Euclidean space, which is Cn and
not (n− 1)-pseudoconvex. In this section we show that the answer is negative
when n = 2. We show in fact, that the set of the 2-pseudoconvex twice contin-
uously differentiable functions defined on an open set in the finite-dimensional
Euclidean space Rn coincides with the set of the pseudoconvex twice contin-
uously differentiable functions. For such a function the Dini derivatives of
order one and two coincide with the usual directional derivatives of first and
second order and are expressed through the Jacobian f (1)

− (x, u) = f ′(x)u and
the Hessian f (2)

− (x, u) = f ′′(x)(u, u). With this remark, the following lemma
becomes obvious.

Lemma 1. Let X ⊂ Rn be an open set and f ∈ C2(X). Then x ∈ X is a
2-stationary point of f if and only if the following conditions hold:

f ′(x) = 0 , (3)

f ′′(x)(u, u) ≥ 0 for all u ∈ Rn. (4)

The following claim gives characterizations of 2-stationary points of a qua-
siconvex function.

Lemma 2. Let f ∈ C2(X) be a quasiconvex finite-valued function defined on
the open set X ⊂ Rn. Then x ∈ X is a 2-stationary point of f if and only if
it is a stationary point.

Proof. It is obviously that each 2-stationary point is a stationary point.
Conversely, suppose that x ∈ X is a stationary point, which means that x
satisfies assumption (3). Thanks to quasiconvexity x fulfills condition (4),
since for twice continuously differentiable quasiconvex function as it is proved
in Avriel [2] it holds

f ′(x)u = 0 implies f ′′(x)(u, u) ≥ 0. (5)
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This completes the proof. �

The following theorem characterizes the 2-pseudoconvex twice continu-
ously differentiable functions.

Theorem 7. Let X ⊂ Rn be an open convex set and f ∈ C2(X). Then f is
2-pseudoconvex on X if and only if it is pseudoconvex on X.

Proof. It is obvious that each twice continuously differentiable pseudoconvex
function is 2-pseudoconvex.

Conversely, assume that f is 2-pseudoconvex. We show that it is pseudo-
convex. According to Theorem 4 f is quasiconvex. It follows from Theorem 1
that the set of global minimizers of f coincides with the set of 2-stationary
points. Taking into account that X is open, by Lemma 2, we conclude that
the set of the stationary points coincides with the set of 2-stationary points.
Therefore the set of the global minimizers coincides with the set of stationary
points. Hence from the Theorem of Crouzeix, Ferland [5], which is particular
case of our Theorem 5, we obtain that f is pseudoconvex. �

Let us underline, that the conclusion of Theorem 7 fails to be true in the
class of C1 functions, where the class of 2-pseudoconvex functions is larger
than the class of pseudoconvex functions. For instance the function f2 in
Example 1 is C1 and 2-pseudoconvex, but it is not pseudoconvex.

6 Pseudoconvex of Infinite Order Functions

The classical pseudoconvex functions are defined as C1 functions, for which
the directional derivative f ′(x1)(x0 − x1) is negative each time when f(x0) <
f(x1). Remaining in the classical setting, we would have to call 2-pseudoconvex
functions each C2 function, for which each time when f(x0) < f(x1) we would
have either f ′(x1)(x0−x1) < 0 or f ′(x1)(x0−x1) = 0 and f ′′(x1)(x0−x1, x0−
x1) < 0. Then, as it is seen from the results of the previous section, we would
have that the class of the “classical” 2-pseudoconvex functions is essentially
smaller than the class of the pseudoconvex functions. The reason is that the
latter contains C1 functions, which are not C2 functions. This is seen on the
following example.

Example 6. The function f : R → R defined by

f(x) =
{
x2 , x > 0 ,
0 , x ≤ 0 ,

is C1 and pseudoconvex, but not C2 function.

In opposite to the “classical approach”, in the framework of the “non-
smooth approach” accepted in this paper, we get strictly increasing classes



Higher-order Pseudoconvex Functions 261

of functions Fn ⊂ Fn+1 , n = 1, 2, . . . . Here Fn denotes the class of n-
pseudoconvex functions as defined in Definition 1.

Wishing to extend the class of functions being in some sense similar to n-
pseudoconvex functions defined in the paper, we come easily to the definition
of pseudoconvex of infinite order functions.

Definition 3. We call the function f : X → R pseudoconvex of infinite order
(for short, +∞-pseudoconvex) if for each x0, x1 ∈ X such that f(x0) < f(x1)
there exists a positive integer m such that f (i)

− (x1, x0−x1) = 0 for all positive
integers i < m and f (m)

− (x1, x0 − x1) < 0.

Obviously, each n-pseudoconvex function is +∞-pseudoconvex. A natural
question is, whether the class of +∞-pseudoconvex functions coincides with
the union of the classes of n-pseudoconvex functions with n positive integer.
The next example gives a negative answer to this question.

Example 7. Consider the function f : (0, +∞) → R defined by

f(x) = n+ 1 + fn+1(x− n− 1) , n < x ≤ n+ 1 , n = 0, 1, . . . ,

where fn are the functions from Example 1. Then the function f is +∞-
pseudoconvex but it is not n-pseudoconvex for arbitrary positive integer n.
The latter follows from Theorem 1, since the point xn = n+ 1 is n-stationary
but not a global minimizer of f .

A central place in our investigation play the relations between n-pseudo-
convex functions and n-stationary points obtained in Theorems 1 and 5. To
discuss the possible extension of these relations to +∞-pseudoconvex func-
tions we introduce the notion of +∞-stationary point.

Definition 4. We call x ∈ X a stationary point of infinite order (for short,
+∞-stationary point) of the function f : X → R, if for each direction u ∈ E
and arbitrary positive integer m the equalities

f
(i)
− (x, u) = 0 for all positive integers i < m imply f (m)

− (x, u) ≥ 0.

Theorem 1 remains true if n is replaced by +∞, which follows by repeating
nearly the same proof.

Theorem 8. Let f : X → R be a +∞-pseudoconvex function. Then x0 ∈ X
is a global minimizer of f if and only if x0 is a +∞-stationary point of f .

In Example 3 function f possesses a +∞-stationary point x0 = 0. Since
this point is not a global minimizer, in view of Theorem 8 this function is not
+∞-pseudoconvex.

Theorem 5 also remains true if n is replaced by +∞, which follows by
repeating nearly the same proof.
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Theorem 9. Let f : X → R be a radially continuous function on the radially
open convex set X in a real linear space. Then f is +∞-pseudoconvex if
and only if f is quasiconvex and each +∞-stationary point of f is a global
minimizer.

In Example 7 the function f is continuous and quasiconvex, and while
it possesses n-stationary points for arbitrary positive integer n, it does not
posses +∞-stationary points. Therefore it satisfies the hypotheses of Theorem
8 and on this base we can conclude that f is +∞-pseudoconvex. In fact, the
lack of +∞-stationary points implies that f is +∞-pseudoconvex. The next
example is of a function which possesses +∞-stationary points.

Example 8. The function f : Rn → R defined by

f(x) =
{

exp(− 1
‖x‖ ), x �= 0,

0, x = 0,

is +∞-pseudoconvex, since it is continuous and quasiconvex and the unique
+∞-stationary point x0 = 0 is a global minimizer.

7 The Related Variational Inequality

To a function f : X → R we can relate the variational inequality of differential
type in Dini derivatives

f
(1)
− (x1, x0 − x1) ≤ 0 , x1 ∈ X . (6)

When the set X is convex and f is radially lsc it is shown in Crespi,
Ginchev, Rocca [3] that x0 is a solution of (6) if and only if f increases along
rays starting at x0. Consequently, if x0 is a solution of (6) then x0 is a global
minimizer of f . In general the set of the global minimizers of f is larger than
the set of the solutions of (6). However, when f is quasiconvex, these two
sets coincide. Since according to Theorem 4 under the assumptions made,
a n-pseudoconvex function is quasiconvex, we get immediately the following
result.

Theorem 10. Let f : X → R be radially lsc and n-pseudoconvex function
with n positive integer on the convex set X in a real linear space. Then x0 ∈ X
is a global minimizer of f if and only if x0 is a solution of the variational
inequality (6).

Theorem 10 is true with both n positive integer and n = +∞. Denote
by S(f,X) the set of the solutions of (6). Let us underline, that if f is n-
pseudoconvex, then any point x0 ∈ S(f,X) satisfies the following property:

∀x1 ∈ X \ S(f,X) : ∃m ≤ n :
f

(i)
− (x1, x0 − x1) = 0 for i < m and f (m)

− (x1, x0 − x1) < 0 .
(7)
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Now problem (6)–(7) is the problem to find the solutions of (6), which
satisfy also (7). This problem can be considered as some refinement of the
variational inequality. When X ⊂ R is convex and f is lsc, then problem
(6)–(7) has a solution if and only if f is n-pseudoconvex with nonempty set
of its global minimizers. When X is a convex subset of a real linear space
and f is radially lsc, then problem (6)–(7) has a solution if and only if f
has a nonempty set of its global minimizers and f is radially n-pseudoconvex
along rays starting at x0. Obviously, one can look for other relations between
problem (6)–(7) in the case when it possesses solutions and the notion of
n-pseudoconvexity.

8 Final Remarks

The pseudoconvex functions were introduced in Tuy [16] and Mangasarian
[13] in an attempt to find out a larger class of functions preserving the good
properties of the convex functions. For instance each local minimizer of a con-
vex function is a global minimizer. The same property obey the pseudoconvex
functions and n-pseudoconvex functions introduced here. Also programming
problems with pseudoconvex data preserve some of the good properties of the
convex programming problems, see e. g. [14]. Among these properties is the
relation between local solutions and Kuhn-Tucker points. The Kuhn-Tucker
points appear in programming in connection with necessary optimality con-
ditions. In convex programming these conditions turn to be also sufficient,
that is each Kuhn-Tucker point is a minimizer, moreover, it is a global min-
imizer. Similar properties obey programming problems with pseudoconvex
objective functions and quasiconvex inequality constraints. The possibility of
further extensions of these results motivates us to introduce the notion of
n-pseudoconvex function. Naturally, then we need to introduce higher order
Kuhn-Tucker points instead of the usual ones. In a future work we intend to
discuss programming problems with n-pseudoconvex functions.

Acknowledgement: The authors thank the anonymous referees for the
appreciation and the valuable remarks.
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Summary. We consider a multiobjective optimization problem in Rn with a fea-
sible set defined by inequality and equality constraints and a set constraint. All
the involved functions are, at least, directionally differentiable. We provide suffi-
cient optimality conditions for global and local Pareto minimum under several kinds
of generalized convexity. Also Wolfe-type and Mond-Weir-type dual problems are
considered, and weak and strong duality theorems are proved.

Key words: Multiobjective optimization problems, sufficient conditions for
a Pareto minimum, Lagrange multipliers, tangent cone, quasiconvexity, Dini
differentiable functions, Hadamard differentiable functions, duality theorems.

1 Introduction

In this paper, the next multiobjective optimization problem is considered:

(MP) Min f(x) subject to g(x) ≤ 0, h(x) = 0, x ∈ Q,

where f, g, h are functions from Rn to Rp, Rm and Rr, respectively, and Q
is a subset of Rn.

∗This research for the second and third authors was partially supported by Min-
isterio de Ciencia y Tecnoloǵıa (Spain), project BMF2003-02194. The authors are
grateful to the referee for his comments.
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There are many papers dealing with optimality criteria of Fritz John type
or Kuhn-Tucker type (K-T). Singh [16] obtained a necessary K-T type op-
timality condition for the problem (MP), with Q = Rn and f, g and h dif-
ferentiable, under the Abadie constraint qualification (CQ), which establishes
that the contingent cone (from now on tangent) to the feasible set equals the
linearized cone:

T (S, x0) = C(S), (1)

where C(S) = {v ∈ Rn : ∇gj(x0)v = 0 ∀j ∈ J0, ∇hk(x0)v = 0 k = 1, . . . , r},
J0 = {j : gj(x0) = 0}.

Di and Poliquin [2] supposed that g and h are differentiable at x0 and
continuous on a neighborhood and obtained equality (1) under the linear
independence CQ, that is, the linear independence of the gradients for the
active constraints and equality constraints.

None of these works incorporated a set constraint. Giorgi and Guerraggio
[4] considered different kinds of scalar problems with C1 functions and incor-
porated a set constraint, but in the most general case they considered (with
the three constraint types) they did not give K-T type conditions.

Di [1] with the same kind of functions as that of [2] proved condition
(1) using a Mangasarian-Fromovitz CQ (Theorem 3.3). In the same work,
this author also considered a closed convex set constraint Q and obtained the
following expression for the tangent cone to the feasible set of (MP) (Theorem
4.1):

T (S ∩Q, x0) = C(S) ∩ T (Q, x0), (2)

using a CQ, that is a generalization of the Mangasarian-Fromovitz one.
In [9] (see also [6]), Jiménez and Novo generalized the result of Singh

obtaining a very general necessary K-T type condition, because they incor-
porated a set constraint and considered directionally differentiable functions
(in the sense of Hadamard for the objective functions) with convex derivative
(linear derivative for the equality constraints). Such a necessary condition is
satisfied under the so called extended Abadie CQ (with “⊃” in (2) instead
of “=” and changing the gradients by the Dini derivatives in the definition
of C(S)). In [5], the authors obtained different necessary optimality condi-
tions for the problem (MP) considering a (convex or arbitrary) set constraint
Q. These necessary optimality conditions generalize the ones obtained by the
previously aforementioned authors.

In this work, we are going along this way and, after introducing in Section
2 the notations and some previous results, in Section 3 several sufficient opti-
mality conditions are provided. Most of them require some kind of generalized
convexity (quasiconvexity or Dini-pseudoconvexity) for the functions or lin-
ear combinations of its components. On the other hand, the requirements on
the derivatives are, generally, less restrictive than those which are needed in
the necessary conditions. These sufficient conditions generalize some results
considered by Singh [16], Islam [8], Di [1] and Majumdar [12]. In Section 4,
we suppose that Q is an open set and study Wolfe-type and Mond-Weir-type
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dual problems. For these problems we obtain both weak and strong duality
theorems.

2 Notations and Preliminaries

Let x and y be in Rn and A ⊂ Rn. Let us denote x ≤ y if xi ≤ yi, i = 1, . . . , n
and x < y if xi < yi, i = 1, . . . , n. We use clA, coA and coneA to denote the
closure, convex hull and generated cone by A, respectively. We denote by vT

the transpose vector of a column vector v.
Given a point x0 ∈ A and a function f : Rn → Rp, we consider the

multiobjective optimization problem

Min{f(x) : x ∈ A}.

A point x0 ∈ A is said to be a local Pareto minimum, denoted by x0 ∈
LMin(f,A), if there exists a neighborhood U of x0 such that

Af ∩A ∩ U = ∅, (3)

where Af = {x ∈ Rn : f(x) ≤ f(x0), f(x) �= f(x0)}. The definition of
(global) Pareto minimum is obvious (take U = Rn). A point x0 ∈ A is said to
be a weak Pareto minimum if there exists no x ∈ A such that f(x) < f(x0).
We denote by Min(f,A) and WMin(f,A) the sets of Pareto minimum points
and weak Pareto minimum points, respectively.

Given the considerable difficulty to verify condition (3), different approx-
imations to A and Af at x0 are usual. These (first order) approximations are
the so-called “tangent cones”. In Definition 1 we recall the notion of contingent
cone. If the sets, we want to approximate (locally) by means of some cone,
are defined through functional constraints, the related approximate cone will
be also defined via some directional derivative of the functions (see Definition
2 and the definition of the cone C(S)).

Definition 1. Let A ⊂ Rn, x0 ∈ clA. The tangent cone to A at x0 is defined
as follows:

T (A, x0) = {v ∈ Rn : ∃tk > 0, ∃xk ∈ A, xk → x0 such that tk(xk−x0) → v}.

If D ⊂ Rn, the polar cone to D is D∗ = {v ∈ Rn : vT d ≤ 0 ∀d ∈ D}.
The normal cone to A at x0 is the polar to the tangent cone, that is,

N(A, x0) = T (A, x0)∗.

Definition 2. Let f : Rn → Rp, x0, v ∈ Rn.
(a) The Dini derivative (or directional derivative) of f at x0 in the direction
v is

Df(x0, v) = lim
t→0+

f(x0 + tv)− f(x0)
t

.

(b) The Hadamard derivative of f at x0 in the direction v is
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df(x0, v) = lim
(t,u)→(0+,v)

f(x0 + tu)− f(x0)
t

.

(c) f is Dini differentiable or directionally differentiable (resp. Hadamard dif-
ferentiable) at x0 if its Dini derivative (resp. Hadamard derivative) exists
finite in all directions.

Definition 3. The Dini subdifferential of f : Rn → R at x0 is

∂Df(x0) = {ξ ∈ Rn : ξT v ≤ Df(x0, v) ∀v ∈ Rn}.

If Df(x0, ·) is a convex function, then there exists the subdifferential (∂) of
the Convex Analysis of that function at v = 0. This set is nonempty, compact
and convex in Rn and it satisfies

(i) ∂Df(x0) = ∂Df(x0, ·)(0),
(ii) Df(x0, v) = Max{ξT v : ξ ∈ ∂Df(x0)}.
If Df(x0, v) is not convex, then ∂Df(x0) can be empty.
In this work the following generalized convexity notions will be used.

Definition 4. Let Γ ⊂ Rn be a convex set, f : Γ → R, and x0 ∈ Γ .
(a) f is quasiconvex at x0 if
∀x ∈ Γ , f(x) ≤ f(x0) ⇒ f(λx+ (1− λ)x0) ≤ f(x0) ∀λ ∈ (0, 1).

(b) f is Dini-pseudoconvex at x0 if
∀x ∈ Γ , f(x) < f(x0) ⇒ Df(x0, x− x0) < 0.

(c) f is strictly Dini-pseudoconvex at x0

if ∀x ∈ Γ \ {x0}, f(x) ≤ f(x0) ⇒ Df(x0, x− x0) < 0.
(d) f is Dini-quasiconvex at x0 if
∀x ∈ Γ , f(x) ≤ f(x0) ⇒ Df(x0, x− x0) ≤ 0.

(e) f is quasilinear, Dini-pseudolinear or Dini-quasilinear at x0, if f and −f
are quasiconvex, Dini-pseudoconvex or Dini-quasiconvex at x0, respectively.
(f) f is quasiconvex on Γ if f is quasiconvex at each point of Γ . Analogously
for the other concepts.
(g) f = (f1, f2, . . . , fp) : Γ → Rp is quasiconvex at x0 if fi is quasiconvex at
x0 for each i = 1, 2, . . . , p. Similarly for the other concepts.

The most relevant properties for our purposes, related to these notions,
are collected in the following proposition.

Proposition 1.
(a) If f is Dini differentiable at x0 and quasiconvex at x0, then f is Dini-
quasiconvex at x0.
(b) ([7, Theorem 3.5]) If f is Dini-pseudoconvex at x0 and continuous on Γ ,
then f is quasiconvex at x0.
(c) ([7, Theorem 3.2]) If f is Dini-quasiconvex at each point of Γ and contin-
uous on Γ , then f is quasiconvex on Γ .

In [9] the following generalized Motzkin Theorem is shown, that will be
used later.
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Theorem 1. ([9, Theorem 3.12]). Let Q ⊂ Rn be a convex set with 0 ∈ Q,
h : Rn → Rr be a linear function of components hk, k ∈ K = {1, . . . , r} given
by hk(u) = cTk u with ck ∈ Rn, f1, . . . , fp and g1, . . . , gm be sublinear functions
from Rn to R and f = (f1, . . . , fp), g = (g1, . . . , gm). Consider the following
propositions:
(a) 0 ∈

∑p
i=1 λi∂fi(0) +

∑m
j=1 µj∂gj(0) +

∑r
k=1 νkck +N(Q, 0), (λ, µ) ≥ 0 ⇒

λ = 0.
(b)

∑p
i=1 λifi(u) +

∑m
j=1 µjgj(u) +

∑r
k=1 νkhk(u) ≥ 0 ∀u ∈ Q, (λ, µ) ≥ 0 ⇒

λ = 0.
(c) There exists v ∈ Rn such that f(v) < 0, g(v) ≤ 0, h(v) = 0, v ∈ Q.
Then:
(i) (a) and (b) are equivalent.
(ii) (c) ⇒ (a).

Consider the problem (MP) of Section 1, with Q an arbitrary nonempty
set. We will use the following notations. Let

S = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} (4)

the set defined by the constraint functions.
The feasible set of (MP) is S ∩Q. Let fi, i ∈ I = {1, . . . , p}, gj , j ∈ J =

{1, . . . ,m}, hk, k ∈ K = {1, . . . , r} be the component functions of f, g and
h, respectively. Given x0 ∈ S, the active index set at x0 is J0 = {j ∈ J :
gj(x0) = 0}.

Assuming that the functions are Dini differentiable at x0, another cone
that will be used to approximate S at x0 is the linearizing cone, defined as
follows:

C(S) = {v ∈ Rn : Dgj(x0, v) ≤ 0 ∀j ∈ J0, Dhk(x0, v) = 0 ∀k ∈ K}.

3 Sufficient Optimality Conditions

If the functions involved in the problem have certain kinds of generalized
convexity, some of the necessary conditions studied in [6] are also sufficient.
Furthermore, we state other sufficient conditions that extend previous results
from differentiable problems to directionally differentiable problems. Also a
sufficient condition of local minimum without convexity requirements (Theo-
rem 6) is given.

Theorem 2. Let Q ⊂ Rn be a convex set and x0 ∈ S ∩ Q, where S is given
by (4). Let us suppose the following conditions are verified:
(a) f , gj , j ∈ J0, h are Dini differentiable at x0 with convex derivatives.
(b) f is Dini-pseudoconvex at x0 and gj , j ∈ J0 and h are Dini-quasiconvex
at x0.
(c) There exist multipliers (λ, µ, ν) ∈ Rp×R|J0|×Rr such that (c1) (λ, µ, ν) ≥
0, (c2) λ �= 0 and
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(c3) 0 ∈
∑p

i=1 λi∂Dfi(x0) +
∑

j∈J0
µj∂Dgj(x0) +

∑r
k=1 νk∂Dhk(x0) +

N(Q, x0).
Then x0 ∈WMin(f, S ∩Q).

Proof. Let us suppose that x0 is not a weak minimum of f on S∩Q. Then there
exists x ∈ S∩Q such that f(x) < f(x0). Because of the Dini-pseudoconvexity
of f , Dfi(x0, x − x0) < 0 ∀i ∈ I; by the Dini-quasiconvexity Dgj(x0, x −
x0) ≤ 0 ∀j ∈ J0 since gj(x) ≤ gj(x0) = 0 and also by Dini-quasiconvexity
Dhk(x0, x−x0) ≤ 0 ∀k ∈ K since hk(x) = 0 ≤ hk(x0) = 0. Consequently, the
system ⎧⎪⎪⎨⎪⎪⎩

Dfi(x0, v) < 0 ∀i ∈ I
Dgj(x0, v) ≤ 0 ∀j ∈ J0

Dhk(x0, v) ≤ 0 ∀k ∈ K
v ∈ Q− x0

is compatible (it has at least the solution v = x − x0). By the generalized
Motzkin theorem (Theorem 1(ii)), there exist no multipliers (λ, µ, ν) satisfying
conditions (c1), (c2) and (c3), obtaining a contradiction. !"

Remark 1. This theorem is stated in a more general setting than Theorems 3.1
and 3.3 of Majumdar [12] and it corrects Theorems 3.1 and 3.3 of Majumdar
[12], because Majumdar supposes that all the functions are differentiable at
x0, does not consider the set constraint Q and concludes that x0 is a Pareto
minimum (instead of weak Pareto minimum). But this is a mistake, as it is
shown in the following example. For other remarks on the results of Majumdar
see [10].

Example 1. Let us consider the functions f : R2 → R2 given by f(x, y) = (x, y)
and g : R2 → R given by g(x, y) = −x. The point x0 = (0, 1) is a weak Pareto
minimum but it is not a Pareto minimum as it can easily be checked.

Remark 2. In Theorem 2, Dini-pseudoconvexity of each fi can be substituted
by Dini-pseudoconvexity of fλ =

∑p
i=1 λifi. If in this theorem we want to

obtain a Pareto minimum, either we have to consider λ > 0 instead of λ �= 0
requiring f to be Dini-quasiconvex, or to postulate f to be strictly Dini-
pseudoconvex, in this case it is enough to have a nonzero multiplier.

Theorem 3. Under the hypotheses of Theorem 2 it follows that x0 ∈ Min(f,
S ∩Q), with each one of the following (independent) modifications:
(i) Supposing, in addition, that f is Dini-quasiconvex at x0 and changing in
(c2) λ �= 0 by λ > 0.
(ii) f is strictly Dini-pseudoconvex at x0 (instead of Dini-pseudoconvex at
x0).
(iii) Changing (b) by

(b′) f , gJ0 , h are strictly Dini-pseudoconvex at x0,
and requiring that the multipliers fulfil (λ, µ, ν) �= 0 instead of λ �= 0.
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Proof. (i) It is similar to the previous one making a refinement for the index
of I that correspond to components of f(x) strictly less than f(x0). In fact,
let us suppose that x0 /∈ Min(f, S ∩ Q). Then there exists x ∈ S ∩ Q such
that f(x) ≤ f(x0) and f(x) �= f(x0). Let I1 = {i ∈ I : fi(x) < fi(x0)} and
I0 = {i ∈ I : fi(x) = fi(x0)}. Obviously I = I1 ∪ I0 with I1 �= ∅.
By Dini-pseudoconvexity, (Definition 4(b)), Dfi(x0, x − x0) < 0 ∀i ∈ I1 and
by Dini-quasiconvexity, Dfi(x0, x− x0) ≤ 0 ∀i ∈ I0.
As in the previous proof Dgj(x0, x− x0) ≤ 0 ∀j ∈ J0 and Dhk(x0, x− x0) ≤
0 ∀k ∈ K. Therefore, the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dfi(x0, v) < 0 ∀i ∈ I1
Dfi(x0, v) ≤ 0 ∀i ∈ I0
Dgj(x0, v) ≤ 0 ∀j ∈ J0

Dhk(x0, v) ≤ 0 ∀k ∈ K
v ∈ Q− x0

is compatible (it has at least the solution v = x− x0).
By the generalized Motzkin theorem, there exist no multipliers (λI1 , λI0 , µ, ν)
∈ R|I1| × R|I0| × R|J0| × Rr such that (λI1 , λI0 , µ, ν) ≥ 0, λI1 �= 0 and (c3) is
satisfied. This is a contradiction with hypothesis (c), because I1 ⊂ I and the
fact that there are not multipliers with λI1 �= 0, contradicting the existence
of λ ∈ Rp with λi > 0 ∀i ∈ I = I1 ∪ I0.
(ii) It can be proved analogously, taking into account that fi(x) ≤ fi(x0)
implies Dfi(x0, x− x0) < 0 ∀i ∈ I.
(iii) It is similar, since under these conditions it follows that

Df(x0, x−x0) < 0, DgJ0(x0, x−x0) < 0, Dh(x0, x−x0) < 0, x−x0 ∈ Q−x0

and by the generalized Motzkin theorem we obtain a contradiction. !"

Remark 3. Part (i) of this theorem generalizes Theorem 4.1 of Islam [8] who
supposes that all the functions are convex, and does not consider equality con-
straints. In fact, since the functions are convex, they are Dini-pseudoconvex,
quasiconvex and Dini differentiable at each point with convex derivative.

This result also extends Theorem 3.2 of Singh [16], who considers convex
differentiable functions and does not use a set constraint.

In the same way, it is possible to extend Theorems 3.3 and 3.4 of Singh
into this context. Next we give the generalization of the first result of Singh.

Theorem 4. Let Q ⊂ Rn, x0 ∈ S ∩Q, and let us suppose the following:
(a) f , gj , j ∈ J0, h are Dini differentiable at x0.
(b) There exist multipliers (λ, µ, ν) ∈ Rp ×R|J0| ×Rr, λ > 0, µ ≥ 0 such that
DL(x0, x− x0) ≥ 0 for each x ∈ S ∩Q, L being the Lagrangian function:

L =
p∑

i=1

λifi +
∑
j∈J0

µjgj +
r∑

k=1

νkhk. (5)
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(c) L is Dini-pseudoconvex at x0.
Then x0 ∈ Min(f, S ∩Q).

Proof. Let us suppose that x0 /∈ Min(f, S ∩Q). Then there exists x ∈ S ∩Q
such that f(x) ≤ f(x0) and f(x) �= f(x0). Since x ∈ S, we have gj(x) ≤
gj(x0) ∀j ∈ J0, h(x) = h(x0), and consequently

p∑
i=1

λifi(x) +
∑
j∈J0

µjgj(x) +
r∑

k=1

νkhk(x)

<

p∑
i=1

λifi(x0) +
∑
j∈J0

µjgj(x0) +
r∑

k=1

νkhk(x0),

that means, L(x) < L(x0). Since L is Dini-pseudoconvex at x0, it follows that
DL(x0, x− x0) < 0, contradicting hypothesis (b). !"

In the following result we extend Theorem 3.4 of Singh [16]. Its proof is
similar and so is omitted.

Theorem 5. Let Q ⊂ Rn, x0 ∈ S ∩Q, and let us suppose the following:
(a) f , gj , j ∈ J0, h are Dini differentiable at x0.
(b) There exist multipliers (λ, µ, ν) ∈ Rp ×R|J0| ×Rr, λ > 0, µ ≥ 0 such that

(b1) fλ =
∑p

i=1 λifi is Dini-pseudoconvex at x0.
(b2) gµ =

∑
j∈J0

µjgj and hν =
∑r

k=1 νkhk are Dini-quasiconvex at x0.
(c) DL(x0, x−x0) ≥ 0 for each x ∈ S∩Q, where L is the Lagrangian function
given by (5).
Then x0 ∈ Min(f, S ∩Q).

If all the functions involved in Problem (MP) are Hadamard differentiable,
the convexity requirements can be suppressed and we get a local minimum.
The following result generalizes Theorem 5.2.II(i) of Di [1].

Theorem 6. Let Q ⊂ Rn, x0 ∈ S ∩Q and let us suppose the following condi-
tions are verified:
(a) For each j ∈ J0, gj is either Hadamard differentiable at x0 or Dini-
quasiconvex at x0 with Dini derivative Dgj(x0, ·) continuous.
(b) For each k ∈ K, hk is either Hadamard differentiable at x0 or Dini-
quasilinear at x0 with Dini derivative Dhk(x0, ·) continuous.
(c) There exist multipliers (λ, µ, ν) ∈ Rp × R|J0| × Rr, (λ, µ) ≥ 0, λ �= 0 such
that

(c1) fλ =
∑p

i=1 λifi is Hadamard differentiable at x0.
(c2) dfλ(x0, v) +Dgµ(x0, v) +Dhν(x0, v) > 0 ∀v ∈ T (S ∩Q, x0) \ {0},

being gµ =
∑

j∈J0
µjgj and hν =

∑r
k=1 νkhk.

Then x0 ∈ LMin(f, S ∩Q).
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Proof. We have T (S ∩ Q, x0) ⊂ T (S, x0) ∩ T (Q, x0) ⊂ C(S) ∩ T (Q, x0),
where the last inclusion is true by [6, Proposition 3.2]. Then, for each
v ∈ T (S ∩ Q, x0), we have that v ∈ C(S), so that, Dgj(x0, v) ≤ 0 ∀j ∈ J0

and Dhk(x0, v) = 0 ∀k ∈ K. Therefore, Dgµ(x0, v) ≤ 0 and Dhν(x0, v) = 0.
From here, by (c2) it follows that dfλ(x0, v) > 0 ∀v ∈ T (S ∩Q, x0). Using [17,
Corollary 2.1], x0 is a strict local minimum of order 1 of fλ on S ∩Q.

Suppose that x0 /∈ LMin(f, S∩Q), then there exists a sequence xn ∈ S∩Q,
xn → x0 such that f(xn) ≤ f(x0), f(xn) �= f(x0). Therefore,

∑p
i=1 λifi(xn) ≤∑p

i=1 λifi(x0), that means, fλ(xn) ≤ fλ(x0), contradicting the fact that x0 is
a strict local minimum of fλ. !"

Remark 4. Obviously, if f is R-valued (p = 1), the conclusion means that x0

is a strict local minimum of f on S ∩ Q. Note that this theorem is almost
a converse of Theorem 4.1 in [6], since condition (ii) of this theorem, by
Theorem 1(i), is equivalent to:

dfλ(x0, v) +Dgµ(x0, v) +Dhν(x0, v) ≥ 0 ∀v ∈ Q− x0,

and thus, the inequality is true ∀v ∈ T (Q, x0).

Note the difficulty in Theorem 5 of proving (c) (since S must be deter-
mined). It can be given alternatives using T (S∩Q, x0), instead of S∩Q, since, if
a constraint qualification holds, this cone is easily obtained as C(S)∩T (Q, x0).
These alternatives require stronger hypotheses. Thus, we can finally give the
following intermediate sufficient conditions between Theorems 2, 5 and 6.

Theorem 7. Let Q ⊂ Rn be a convex set, x0 ∈ S ∩Q, and let us suppose the
following:
(a) gj , j ∈ J0 are quasiconvex at x0 and Dini differentiable at x0.
(b) h is quasilinear at x0 and Dini differentiable at x0.
(c) There exist multipliers (λ, µ, ν) ∈ Rp × R|J0| × Rr, (λ, µ) ≥ 0, λ > 0 such
that

(c1) fλ =
∑p

i=1 λifi is Dini-pseudoconvex at x0.
(c2) Dfλ(x0, v) +Dgµ(x0, v) +Dhν(x0, v) ≥ 0 ∀v ∈ T (S ∩Q, x0).

Then x0 ∈ Min(f, S ∩Q).

Proof. Let us suppose that there exists x ∈ S∩Q such that f(x) ≤ f(x0) and
f(x) �= f(x0). Then fλ(x) < fλ(x0). Since x ∈ S, gj(x) ≤ 0 = gj(x0) ∀j ∈ J0,
and since gj is Dini-quasiconvex at x0 because is quasiconvex at x0, it follows
that Dgj(x0, x − x0) ≤ 0. Analogously for h, we have Dhk(x0, x − x0) = 0.
Consequently, multiplying each one of these inequalities by the corresponding
multiplier and adding, it follows that Dfλ(x0, x − x0) + Dgµ(x0, x − x0) +
Dhν(x0, x − x0) < 0. Let us see that x − x0 ∈ T (S ∩ Q, x0), obtaining a
contradiction, by condition (c2).
By [9, Lemma 2.6], there exists a ball B0 centered at x0 such that

T (S ∩Q, x0) = cl cone (S ∩Q∩B0 − x0) and gj(x) < 0 ∀x ∈ B0, ∀j ∈ J \ J0.
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Let xα = αx + (1 − α)x0 with α ∈ [0, 1]. Since Q is convex, xα ∈ Q. As
gj , j ∈ J0, is quasiconvex at x0, gj(xα) ≤ 0. By continuity, there exists
α1 ∈ (0, 1] such that xα ∈ B0 ∀α ∈ [0, α1] and by election of B0, gj(xα) <
0 ∀α ∈ [0, α1], ∀j ∈ J \ J0. Since h is quasilinear, h(xα) = 0 ∀α ∈ [0, 1]. Then
xα ∈ S ∩ Q ∩ B0 ∀α ∈ [0, α1], in particular x1 = xα1 = α1x + (1 − α1)x0 ∈
S ∩Q ∩B0, following

x− x0 = α−1
1 (x1 − x0) ∈ cone (S ∩Q ∩B0 − x0) ⊂ T (S ∩Q, x0).

!"

Theorem 8. Under the hypotheses of Theorem 7, if fλ is Dini-quasiconvex at
x0, then, substituting the weak inequality in (c2) with a strict one for v �= 0,
we obtain the same conclusion, i.e., x0 ∈ Min(f, S ∩Q).

Proof. If conclusion were not be true (see proof of Theorem 7), would exists
x0 ∈ S∩Q such that fλ(x) < fλ(x0), Dgµ(x0, x−x0) ≤ 0, Dhν(x0, x−x0) = 0
and x−x0 ∈ T (S∩Q, x0). By Dini-quasiconvexity of fλ, Dfλ(x0, x−x0) ≤ 0.
Then Dfλ(x0, x− x0) +Dgµ(x0, x− x0) +Dhν(x0, x− x0) ≤ 0, contradicting
(c2). !"

Remark 5. As a final remark to the present section, clearly we can give
other combinations of the hypotheses used in the last theorems in order
to obtain other sufficient conditions. For example, if there exist (λ, µ, ν) ∈
Rp × R|J0| × Rr, (λ, µ) ≥ 0, such that fλ, gµ and hν are Dini-quasiconvex at
x0 and DL(x0, x− x0) > 0 ∀x ∈ S ∩Q, x �= x0, then x0 ∈ Min(f, S ∩Q).

4 Duality

In this section we consider two types of dual problems for (MP): a Wolfe-
type dual problem and a Mond-Weir-type dual problem (see [19] and [14] for
the original formulations). Duality is a very common topic in multiobjective
optimization under generalized convexity (see for example [3, 11, 13, 15, 18]).

For simplicity, in (MP) Q ⊂ Rn is considered an open set, so T (Q, x) = Rn

and N(Q, x) = {0} for all x ∈ Q. In this section, we assume that f and g
are Dini differentiable with convex derivative and h is Dini differentiable with
linear derivative.

We begin with a Wolfe-type dual problem for (MP).

(WD) Max
(
f1(y) + µT g(y) + νTh(y), . . . , fp(y) + µT g(y) + νTh(y)

)
subject to:

0 ∈
p∑

i=1

λi∂Dfi(y) +
m∑

j=1

µj∂Dgj(y) +
r∑

k=1

νk∂Dhk(y), (6)

y ∈ Rn, λ ∈ Rp, λ ≥ 0, λT e = 1, µ ∈ Rm, µ ≥ 0, ν ∈ Rr
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(here e = (1, . . . , 1)T ∈ Rp). We now obtain weak and strong duality results
for (MP) and (WD).

Theorem 9. (Weak duality) For all feasible points x for (MP) and all feasible
(y, λ, µ, ν) for (WD), if λT f + µT g + νTh is Dini-pseudoconvex, then

f(x) �< f(y) + µT g(y)e+ νTh(y)e.

(Here x �< y is the negation of x < y).

Proof. Suppose that f(x) < f(y)+µT g(y)e+νTh(y)e. As x is a feasible point
of (MP) we have

f(x) + µT g(x)e+ νTh(x)e ≤ f(x) < f(y) + µT g(y)e+ νTh(y)e.

Multiplying by λ ≥ 0, (λ �= 0 and λT e = 1 by assumption) we deduce that
λT f(x)+µT g(x)+νTh(x) < λT f(y)+µT g(y)+νTh(y). As λT f +µT g+νTh
is Dini-pseudoconvex we obtain that

D(λT f + µT g + νTh)(y, x− y) < 0. (7)

On the other hand, from equation (6) it follows that there exist

ai ∈ ∂Dfi(y), i = 1, . . . , p, bj ∈ ∂Dgj(y), j = 1, . . . ,m,
ck ∈ ∂Dhk(y), k = 1, . . . , r (8)

such that
0 =

p∑
i=1

λiai +
m∑

j=1

µjbj +
r∑

k=1

νkck. (9)

By the definition of Dini subdifferential, from (8) we derive

aT
i u ≤ Dfi(y, u) ∀u ∈ Rn, i = 1, . . . , p,

bTj u ≤ Dgj(y, u) ∀u ∈ Rn, j = 1, . . . ,m,

cTk u = Dhk(y, u) ∀u ∈ Rn, k = 1, . . . , r.

Multiplying these inequalities by λi, µj and νk, respectively, adding up, and
taking into account (9) we obtain

0 =
(

p∑
i=1

λiai +
m∑

j=1

µjbj +
r∑

k=1

νkck

)T

u ≤ D(λT f + µT g + νTh)(y, u),

which, considering u = x− y, contradicts (7). !"

Remark 6. We can obtain the same thesis under other assumptions. For ex-
ample, we can assume that the function f(·) + µT g(·)e + νTh(·)e is Dini-
pseudoconvex.
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Remark 7. If we replace the Dini-pseudoconvexity hypothesis by strict Dini-
pseudoconvexity (or, e.g., assuming that f(·) + µT g(·)e + νTh(·)e is strictly
Dini-pseudoconvex), or assuming that λ > 0, we can assert that the following
cannot hold:

fi(x) ≤ fi(y) + µT g(y) + νTh(y), ∀i ∈ I = {1, 2, . . . , p}, i �= s,

fs(x) < fs(y) + µT g(y) + νTh(y), for some s ∈ I.

In [6], necessary optimality conditions are given that ensure λ > 0.

Corollary 1. Asume that (x0, λ, µ, ν) is feasible for (WD) with µT g(x0) =
0 and x0 is feasible for (MP). If λT f + µT g + νTh is Dini-pseudoconvex,
or f(·) + µT g(·)e + νTh(·)e is Dini-pseudoconvex, then x0 is a weak Pareto
minimum of (MP) and (x0, λ, µ, ν) is a weak Pareto solution of (WD).

Proof. Suppose that x0 is not a weak Pareto minimum of (MP), then there
exists a feasible point x such that

f(x) < f(x0). (10)

As µT g(x0) = 0 (by assumption) and νTh(x0) = 0 (since x0 is feasible), it
follows that f(x) < f(x0) + µT g(x0)e+ νTh(x0)e. This contradicts Theorem
9 because (x0, λ, µ, ν) is feasible for (WD).

Now suppose that (x0, λ, µ, ν) is not a weak Pareto solution of (WD). Then
there exists a feasible point (y, λ̄, µ̄, ν̄) such that

f(x0) + µT g(x0)e+ νTh(x0)e < f(y) + µ̄T g(y)e+ ν̄Th(y)e.

As µT g(x0) = 0 and νTh(x0) = 0, we deduce that f(x0) < f(y) + µ̄T g(y)e+
ν̄Th(y)e, but this contradicts Theorem 9. !"

Theorem 10. (Strong duality) Let x0 be a weak Pareto minimum for (MP)
at which a constraint qualification holds [9]. Then there exist λ ∈ R

p
+, µ ∈

Rm
+ and ν ∈ Rr such that (x0, λ, µ, ν) is feasible for (WD). If, in addition,

λT f + µT g + νTh is Dini-pseudoconvex, or f(·) + µT g(·)e+ νTh(·)e is Dini-
pseudoconvex, then (x0, λ, µ, ν) is a weak Pareto solution of (WD) and the
optimal values of (MP) and (WD) are equal.

Proof. From Theorem 4.1 (or Theorem 4.5) in [9] we see that there exist
(λ, µ, ν) such that λ ≥ 0, λ �= 0, µ ≥ 0, µT g(x0) = 0 and (6) holds. Without
loss of generality we can assume that λT e = 1. Thus, (x0, λ, µ, ν) is feasible
for (WD). Now we get the conclusion by Corollary 1 (the optimal values are
equal because f(x0) = f(x0) + µT g(x0)e+ νTh(x0)e). !"

We now prove weak and strong duality results between (MP) and the
following Mond-Weir-type dual problem:
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(MWD) Max
(
f1(y), . . . , fp(y)

)
subject to:

0 ∈
p∑

i=1

λi∂Dfi(y) +
m∑

j=1

µj∂Dgj(y) +
r∑

k=1

νk∂Dhk(y),

µT g(y) + νTh(y) ≥ 0,

y ∈ Rn, λ ∈ Rp, λ ≥ 0, λT e = 1, µ ∈ Rm, µ ≥ 0, ν ∈ Rr.

Theorem 11. (Weak duality) Let x be feasible for (MP) and (y, λ, µ, ν) be
feasible for (MWD). If f is Dini-pseudoconvex and µT g + νTh is Dini-
quasiconvex, then it cannot be

f(x) < f(y).

Proof. Since x is feasible for (MP) and (y, λ, µ, ν) is feasible for (MWD) we
have

µT g(x) + νTh(x) ≤ µT g(y) + νTh(y).

As µT g + νTh is Dini-quasiconvex we derive that
m∑

j=1

µjDgj(y, x− y) +
r∑

k=1

νkDhk(y, x− y) ≤ 0. (11)

Suppose that f(x) < f(y). As f is Dini-pseudoconvex it follows thatDf(y, y−
x) < 0, and so

p∑
i=1

λiDfi(y, x− y) < 0. Adding this to (11) it results that

p∑
i=1

λiDfi(y, x− y) +
m∑

j=1

µjDgj(y, x− y) +
r∑

k=1

νkDhk(y, x− y) < 0.

Now we continue as in the proof of Theorem 9. !"

For this theorem we can make the same remarks made for Theorem 9.
The proofs of Corollary 2 and Theorem 12 are similar to that Corollary 1

and Theorem 10, respectively, and are omitted.

Corollary 2. Under the hypothesis of Theorem 11, assume that x0 is feasible
for (MP) and (x0, λ, µ, ν) is feasible for (MWD). Then x0 is a weak Pareto
minimum of (MP) and (x0, λ, µ, ν) is a weak Pareto solution of (MWD).

Theorem 12. (Strong duality) Let x0 be a weak Pareto minimum point of
(MP) at which a constraint qualification holds [9]. Then there exist λ ∈ R

p
+,

µ ∈ Rm
+ and ν ∈ Rr such that (x0, λ, µ, ν) is feasible for (MWD). If, in

addition, f is Dini-pseudoconvex and µT g + νTh is Dini-quasiconvex, then
(x0, λ, µ, ν) is a weak Pareto solution of (MWD) and the optimal values of
(MP) and (MWD) are equal.

About another necessary conditions and constraint qualifications, the
reader is referred to [5, 6].
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7. Giorgi G, Komlósi S (1992) Dini derivatives in optimization. Part II Riv. Mat.
Sci. Econom. Social., Anno 15(2):3–24

8. Islam M (1994) Sufficiency and duality in nondifferentiable multiobjective pro-
gramming Pure Appl. Math. Sci. 39:31–39
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Summary. In this work, approximate solutions of vector optimization problems
in the sense of Tanaka [18] are characterized via scalarization. Necessary and suf-
ficient conditions are obtained using a new order representing property and a new
monotonicity concept, respectively. A family of gauge functions defined by gen-
eralized Chebyshev norms and verifying both properties is introduced in order to
characterize approximate solutions of vector optimization problems via approximate
solutions of several scalarizations.

Key words: Vector optimization, ε-efficient solutions, scalarization, gauge
function, generalized Chebyshev norms.

1 Introduction and Preliminaries

Approximate solutions of vector optimization problems, known as ε-efficient
solutions, are important from both the practical and theoretical points of view
because they exist under very mild hypotheses and a lot of solution methods
(for example, iterative and heuristic methods) obtain this kind of solutions.

The first and more widely used ε-efficiency concept was introduced by
Kutateladze [11]. This notion is useful to approximate the weak efficiency
set (see Definition 1), but not for the efficiency set (see, for example, [9,
Section 3.1]). In [19] Vályi defined an ε-efficiency concept based on a previously
fixed scalar function that allows us to approximate the efficiency set (see, for

∗This research was partially supported by the Ministerio de Ciencia y Tecnoloǵıa
(Spain), project BFM2003-02194.
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example, [9, Section 3.2]). However, there are a lot of problems in which it
is difficult to choose such a scalar function. In [18] Tanaka introduced an ε-
efficiency concept that approximates the efficiency set and is independent of
any scalar function. In Pareto optimization problems, this notion is equivalent
to a previous concept defined by White [20] (see [22, Proposition 3.2]). In
[20, 9, 22, 23, 5, 8] the reader can find more relations concerning these ε-
efficiency concepts.

When a vector optimization problem is solved using an associated scalar
optimization problem (i.e., via a scalarization process), it is important to
know if improved ε-efficient solutions are obtained when the scalar objective
decreases and viceversa (see [20, Section 1] for a complete discussion of this
motivation). In [5, Theorems 3.1.3 and 3.1.4] Göpfert et al. prove relations
between ε-efficient solutions following a similar definition as that introduced
by Kutateladze and approximate solutions obtained in a scalarization process
given by a gauge functional.

In this work, Tanaka’s concept is analyzed from this point of view. Specif-
ically, two conditions (see Definitions 4 and 6) are introduced that allow us to
obtain relations between the sets of approximate solutions of both problems.

The work is structured as follows. In Section 2, the vector optimization
problem is fixed. Moreover, several notations and some preliminary results are
given. In Section 3, necessary and sufficient conditions for Tanaka’s approx-
imate solutions are established via scalarization. A new monotonicity notion
is introduced in obtaining sufficient conditions, while necessary conditions are
attained by using a generalized order representing property in nonconvex vec-
tor optimization problems and by separation theorems in cone-subconvexlike
vector optimization problems. In Section 4, from the previous necessary and
sufficient conditions and by using gauge functions and generalized Chebyshev
norms, a characterization for ε-efficient solutions is obtained, which attains
the same precision in the vector problem as in the scalar problem.

2 Approximate Solutions of Vector Optimization
Problems

In the sequel, we denote the interior, the closure and the complement of a
set A of Rp by int(A), cl(A) and Ac, respectively. We say that A is solid if
int(A) �= ∅. We write the nonnegative orthant of Rp by R

p
+.

In this paper, the following vector optimization problem is considered:

Min{f(x) : x ∈ S}, (1)

where f : Rn → Rp and S ⊂ Rn, S �= ∅. As it is usual in solving (1), a
partial order is introduced in the final space as follows, which models the
preferences of the decision-maker. Consider a convex cone D ⊂ Rp, which is
pointed (D ∩ (−D) = {0}) and solid. Then,
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y, z ∈ Rp, y ≤ z ⇐⇒ y − z ∈ −D. (2)

If D = R
p
+ then problem (1) is called Pareto problem.

Let us recall the notions of efficient and weak efficient solution of (1).

Definition 1. A point x ∈ S is an efficient (resp. weak efficient) solution of
(1) if (f(x)−D\{0}) ∩ f(S) = ∅ (resp. (f(x)− int(D)) ∩ f(S) = ∅).

We denote the set of efficient (resp. weak efficient) solutions of (1) by E(f, S)
(resp. WE(f, S)).

The following ε-efficient concept was introduced by Tanaka [18]. We denote
the closed unit ball of Rp by B and we consider ε ≥ 0.

Definition 2. A point x ∈ S is an ε-efficient (resp. weak ε-efficient) solution
of (1) if (f(x) − D) ∩ f(S) ⊂ f(x) + εB (resp. (f(x) − int(D)) ∩ f(S) ⊂
f(x) + εB).

The set of ε-efficient (resp. weak ε-efficient) solutions of (1) is denoted by
AE(f, S, ε) (resp. WAE(f, S, ε)). Let us observe that Definition 2 depends on
the norm considered in Rp by means of the closed unit ball B. Moreover it is
clear that if 0 ≤ ε1 < ε2 then

AE(f, S, ε1) ⊂ AE(f, S, ε2) , (3)

and for ε = 0 we recover the sets of efficient and weak efficient solutions:
AE(f, S, 0) = E(f, S) and WAE(f, S, 0) = WE(f, S).

Next, Tanaka’s ε-efficient solutions are considered as approximations to
the efficient and weak efficient sets.

Theorem 1. Let f : Rn → Rp be a continuous function at x0 ∈ S and let
(εn) ⊂ R+, (xn) ⊂ S be such that εn ↓ 0 and xn → x0.

(i) If xn ∈WAE(f, S, εn) for each n, then x0 ∈ WE(f, S).
(ii) If (f(xn)) is a nonincreasing sequence (i.e., f(xm) ∈ f(xn)−D, ∀m > n),

xn ∈ AE(f, S, εn) for each n and D is closed, then x0 ∈ E(f, S).
(iii) Suppose that f(S) is externally stable with respect to the efficient set (i.e.

f(S) ⊂ f(E(f, S)) + D). If xn ∈ AE(f, S, εn) for each n, then f(x0) ∈
cl(f(E(f, S))).

Proof. (i) Suppose that x0 /∈ WE(f, S). Then, there exists x ∈ S such that
f(x0)− f(x) ∈ int(D). As f is continuous at x0 and xn → x0, it follows that
f(xn)−f(x0) → 0 and so, there existsm ∈ N such that f(xn)−f(x) ∈ int(D),
∀n ≥ m. Then, using that xn is a weak εn-efficient solution we deduce that
‖f(xn)− f(x)‖ ≤ εn, ∀n ≥ m. Thus, f(xn) → f(x), which is a contradiction
since f(x) �= f(x0).

(ii) Consider x ∈ S such that

f(x) ∈ f(x0)−D. (4)
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As f(xn) → f(x0), (f(xn)) is a nonincreasing sequence and D is closed we
deduce that f(x0) ∈ f(xn)−D, ∀n. From (4) we see that

f(x)− f(xn) = (f(x)− f(x0)) + (f(x0)− f(xn)) ∈ −D −D = −D, ∀n

and using that xn is an εn-efficient solution we have that ‖f(xn)−f(x)‖ ≤ εn,
∀n. Therefore, f(xn) → f(x) and so f(x) = f(x0). It follows that (f(x0) −
D) ∩ f(S) = {f(x0)} and we conclude that x0 ∈ E(f, S).

(iii) As f(S) is externally stable with respect to E(f, S) we deduce that
there exists a sequence (zn) ⊂ E(f, S) such that f(zn) − f(xn) ∈ −D, ∀n,
and using that xn is an εn-efficient solution we see that ‖f(xn)−f(zn)‖ ≤ εn.
Therefore,

‖f(x0)− f(zn)‖ ≤ ‖f(x0)− f(xn)‖+ ‖f(xn)− f(zn)‖
≤ ‖f(x0)− f(xn)‖+ εn

and it follows that f(x0) ∈ cl(f(E(f, S))), since f(xn) → f(x0) and εn ↓ 0.
!"

Let us observe that Kutateladze’s ε-efficiency concept gives approximate solu-
tions which are not metrically consistent, i.e., it is possible to obtain feasible
sequences (xn) such that xn → x0, xn is an εn-efficient solution in the sense
of Kutateladze, εn → 0 and the image f(x0) is far from the set of efficient
objectives f(E(f, S)) (see [9, Example 3.2]). Theorem 1 shows under very mild
hypotheses that Tanaka’s ε-efficiency solutions are metrically consistent.

3 Conditions for ε-Efficient Solutions via Scalarization

Let ϕ : Rp → R be a scalar function. The scalar optimization problem

Min{(ϕ ◦ f)(x) : x ∈ S} (5)

is called a scalarization for (1) if solutions of problem (5) are also efficient solu-
tions of problem (1). Following this idea, in this section approximate solutions
of (1) and (5) are related.

Definition 3. A point x0 ∈ S is an approximate solution of (5) (with preci-
sion ε ≥ 0) if

(ϕ ◦ f)(x0)− ε ≤ (ϕ ◦ f)(x), ∀x ∈ S.

The set of approximate solutions of (5) is denoted by AMin(ϕ ◦ f, S, ε). Then,
our goal in the sequel is to relate the sets AMin(ϕ ◦ f, S, ε), AE(f, S, ε) and
WAE(f, S, ε).
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3.1 Necessary Optimality Conditions

In obtaining necessary conditions for weak ε-efficient solutions, the following
approximate order representing property is considered.

Definition 4. A function ϕ : Rp → R satisfies the approximate order repre-
senting property (AORP) at y0 ∈ Rp if

{y ∈ Rp : ϕ(y) < 0} = y0 − (int(D) ∩ (εB)c).

In Section 4, a wide class of functions satisfying this property is considered.
Let us note that the usual order representing property (see, for example, [21,
Section 5]) is obtained from property (AORP) taking ε = 0. In the literature,
the order representing property has been used to prove necessary conditions
for weak efficient solutions via scalarization (see, for example, [21, Theorem
10]). Next, these necessary conditions are extended to weak ε-efficient solu-
tions via property (AORP).

Theorem 2. Let x0 ∈ S and let ϕ : Rp → R be a function verifying property
(AORP) at f(x0). If x0 ∈ WAE(f, S, ε) then x0 ∈ AMin(ϕ ◦ f, S, ϕ(f(x0))).

Proof. Consider x0 ∈WAE(f, S, ε). From Definition 2 it follows that

[f(x0)− (int(D) ∩ (εB)c)] ∩ f(S) = ∅,

and by property (AORP) at f(x0) we have that ϕ(f(x)) ≥ 0, ∀x ∈ S. In
particular, ϕ(f(x0)) ≥ 0,

ϕ(f(x0))− ϕ(f(x0)) = 0 ≤ ϕ(f(x)), ∀x ∈ S

and we conclude that x0 ∈ AMin(ϕ ◦ f, S, ϕ(f(x0))). !"

Let us observe that when ε = 0 and ϕ is a continuous function at f(x0)
verifying property (AORP) at f(x0) it follows that ϕ(f(x0)) = 0 and so,
if x0 ∈ E(f, S) then x0 is an exact solution of problem (5). This necessary
condition is well-known (see, for instance, [21, Theorem 10] and [14, Corollary
1.7]).

Under subconvexlikeness hypotheses and by using separation theorems,
a necessary condition for weak ε-efficient solutions can be obtained. Similar
results on Kutateladze’s ε-efficiency concept are [15, Theorem 3], [1, Theorem
2.1] and [2, Theorem 2.1]. The (positive) polar and strict polar cone of D are

D+ = {l ∈ Rp : 〈l, d〉 ≥ 0, ∀ d ∈ D}

and
D+s = {l ∈ Rp : 〈l, d〉 > 0, ∀ d ∈ D\{0}},

respectively. We denote the dual norm of ‖ ‖ by ‖ ‖∗, i.e., ‖l‖∗ = sup
‖y‖≤1

{|〈l, y〉|}.
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Definition 5. [3, Definition 2.4] It is said that a function f : Rn −→ Rp is
D-subconvexlike on a nonempty set S ⊂ Rn if f(S) + int(D) is a convex set.

Theorem 3. If problem (1) is externally stable with respect to the weak ef-
ficiency set (i.e., f(S) ⊂ f(WE(f, S)) + (int(D) ∪ {0})) and the objective
function f is D-subconvexlike on the feasible set S then

WAE(f, S, ε) ⊂
⋃

l∈D+,‖l‖∗=1

AMin(〈l, f(·)〉, S, ε) , ∀ ε ≥ 0.

Proof. Consider x0 ∈ WAE(f, S, ε). As (1) is externally stable with respect
to the weak efficiency set, we deduce that there exist x ∈ WE(f, S) and
d ∈ int(D) ∪ {0} such that

f(x0) = f(x) + d. (6)

By Definition 2 we deduce that ‖d‖ ≤ ε. From Definition 1 and by using that
int(D) is a convex cone it follows that

(f(x)− int(D)) ∩ (f(S) + int(D)) = ∅.

As f is a D-subconvexlike function on the feasible set S then f(S)+ int(D) is
a convex set and by applying the Separation Theorem (see, for example, [10,
Theorem 3.14]) it follows that there exists l ∈ D\{0} such that

〈l, f(x)− d1〉 ≤ 〈l, f(z) + d2〉, ∀ z ∈ S,∀ d1, d2 ∈ int(D) . (7)

We can suppose that ‖l‖∗ = 1 since l �= 0 and by continuity we can extend
(7) to vectors d1, d2 ∈ D. Taking z = x and d1 = 0 we deduce that l ∈ D+.
Moreover, from (6) and taking d1 = d2 = 0 it follows that

〈l, f(x0)− d〉 ≤ 〈l, f(z)〉, ∀ z ∈ S.

As |〈l, d〉| ≤ ‖l‖∗‖d‖ ≤ ε we see that

〈l, f(x0)〉 − ε ≤ 〈l, f(x0)− d〉 ≤ 〈l, f(z)〉, ∀ z ∈ S,

and the proof is completed. !"

3.2 Sufficient Optimality Conditions

It is well-known for practitioners and researchers in vector optimization that
one can obtain sufficient conditions on efficient solutions of problem (1) via
solutions of problem (5) when the scalar function ϕ : Rp → R is monotone with
respect to the order considered in the final space (see relation (2)). Following
this idea, we obtain sufficient conditions for ε-efficient solutions of (1) through
approximate solutions of scalarizations whose scalar functions satisfy a new
monotonicity concept introduced in Definition 6(ii).
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Definition 6.

(i) A function ϕ : Rp → R is D-monotone on a set F ⊂ Rp if ϕ(y) ≤ ϕ(z),
∀ y, z ∈ F, y − z ∈ −D.

(ii) A function ϕ : Rp → R is strictly local D-monotone (SLM) at y0 ∈ Rp

(respect to the norm ‖ ‖) with constants α > 0 and ρ > 0 if it is D-
monotone on Rp and

ϕ(y0) ≥ ϕ(y) + α‖y − y0‖, ∀ y ∈ y0 − (D ∩ int(ρB)). (8)

Let us observe that a D-monotone function ϕ : Rp → R verifies property
(SLM) at y0 if and only if y0 is a strict local solution of first order of the scalar
problem

Max{ϕ(y) : y ∈ y0 −D}.

Example 1. Let us suppose that the cone D is closed. For each y0 ∈ Rp and
ρ > 0 it is easy to prove that any l ∈ D+s is strictly local D-monotone at y0
with constants ρ and

α = min
d∈D,‖d‖=1

{〈l, d〉}.

By the Weierstrass theorem, it is clear that α > 0. In Section 4, another wide
class of strictly local D-monotone functions is considered.

Theorem 4. Let x0 ∈ S and let ϕ : Rp → R be a strictly local D-
monotone function at f(x0) with constants α and ρ. If 0 ≤ δ < αρ and
x0 ∈ AMin(ϕ ◦ f, S, δ) then x0 ∈ AE(f, S, δ/α).

Proof. Let us suppose that x0 /∈ AE(f, S, δ/α). Consequently, there exists
x ∈ S such that

f(x) ∈ f(x0)−D (9)

and ‖f(x)− f(x0)‖ > δ/α. As δ < αρ we can select ν > 0 verifying

δ + ν

α‖f(x)− f(x0)‖
< 1, δ + ν < αρ. (10)

Let us consider the point

y := f(x) +
(

1− δ + ν

α‖f(x)− f(x0)‖

)
(f(x0)− f(x)) (11)

= f(x0) +
δ + ν

α‖f(x)− f(x0)‖
(f(x)− f(x0)). (12)

From (9)-(11) we see that y ∈ f(x) +D, and as x0 ∈ AMin(ϕ ◦ f, S, δ) and ϕ
is D-monotone on Rp it follows that



286 C. Gutiérrez, B. Jiménez, V. Novo

ϕ(f(x0))− δ ≤ ϕ(f(x)) ≤ ϕ(y). (13)

By (10) and (12) we deduce that

‖y − f(x0)‖ =
δ + ν

α
< ρ, (14)

and from (9) and (12) we have that y ∈ f(x0) − D. Therefore, y ∈ f(x0) −
(D ∩ int(ρB)), and so

ϕ(f(x0)) ≥ ϕ(y) + α‖y − f(x0)‖, (15)

since ϕ is strictly local D-monotone at f(x0) with constants α and ρ. From
(14) and (15) it follows that ϕ(f(x0)) > ϕ(y) + δ, contrary to (13). !"

4 Characterization of ε-Efficient Solutions

In this section, a class of functions verifying properties (AORP) and (SLM) is
obtained. Next, by means of these functions and the results attained in Section
3 we characterize the ε-efficiency set of (1) through approximate solutions of
scalar problems as (5).

The following result due to Gerth and Weidner and Lemma 2 are used to
obtain functions with the property (AORP).

Lemma 1. [4, Theorem 2.1] Let C ⊂ Rp be a solid set such that C �= Rp

and cl(C) + int(D) ⊂ int(C). For a fixed vector q ∈ int(D), the function
ϕ : Rp → R defined by

ϕ(y) = inf{s ∈ R : y ∈ sq − cl(C)} (16)

is continuous, D-monotone on Rp and

{y ∈ Rp : ϕ(y) < 0} = −int(C) . (17)

The function ϕ was introduced by Rubinov [16] and is called “the smallest
strictly monotonic function” by Luc [14] due to property (17).

Lemma 2.

(i) cl(D ∩ (εB)c) = cl(D) ∩ (int(εB))c, ∀ ε > 0.
(ii) If the norm ‖ ‖ is D-monotone on D then

cl(D ∩ (εB)c) + int(D) ⊂ int(D ∩ (εB)c) , ∀ ε ≥ 0. (18)

Proof. (i) For each ε > 0 it is clear that cl(D ∩ (εB)c) ⊂ cl(D)∩(int(εB))c. In
proving the reciprocal inclusion, let us take a point y ∈ cl(D)∩ (int(εB))c. As
y �= 0 we deduce that there exists a sequence (dn) ⊂ D\{0} such that dn → y.
Therefore,
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‖y‖
‖dn‖

+
1
n

)
dn ∈ D ∩ (εB)c,

(
‖y‖
‖dn‖

+
1
n

)
dn → y

and so y ∈ cl(D ∩ (εB)c).
(ii) As D is a solid convex cone it follows that

cl(D) + int(D) = int(D)

(see, for example, [14, Chapter 1, Proposition 1.4]), and so (18) holds for
ε = 0.

Let ε > 0 and M := D ∩ (εB)c. It is easy to see that

M + int(D) ⊂M, (19)

because if y ∈ M and d ∈ int(D) then ‖y + d‖ ≥ ‖y‖ > ε since the norm ‖ ‖
is D-monotone on D, and so y + d ∈M . Also we have that

cl(M) + int(D) ⊂ cl(M) . (20)

Indeed, let y ∈ cl(M) and d ∈ int(D). Then there exists a sequence (yn) ⊂M
such that yn → y, and therefore yn + d→ y+ d. But yn + d ∈M by (19), and
consequently y + d ∈ cl(M).

Now, as the set cl(M) + int(D) =
⋃

y∈cl(M)

(y+ int(D)) is open, from (20) it

follows that
cl(M) + int(D) ⊂ int(cl(M)) ,

and we obtain the conclusion if we see that

int(cl(M)) = int(M) .

As a matter of fact, cl(M) = cl(D) ∩ (int(εB))c by part (i), and int(cl(D)) =
int(D) since D is a solid convex set. Hence

int(cl(M)) = int(cl(D)) ∩ (εB)c = int(D) ∩ (εB)c = int(M) .

!"

Proposition 1. Let y0 ∈ Rp, q ∈ int(D), ε ≥ 0, M = D ∩ (εB)c and the
function

ϕε,0(y) = inf{s ∈ R : y ∈ sq − cl(M)}. (21)

Then the function

ϕε,y0(y) := ϕε,0(y − y0) (22)

is continuous, D-monotone on Rp and verifies property (AORP) at y0.



288 C. Gutiérrez, B. Jiménez, V. Novo

Proof. It is clear that ϕε,0 is the function defined in (16) with C := M .
Moreover, M is a solid set, M �= Rp and from Lemma 2(ii) we see that
cl(M)+ int(D) ⊂ int(M). Then, by Lemma 1 it follows that the function ϕε,0

is continuous, D-monotone on Rp and

{y ∈ Rp : ϕε,0(y) < 0} = −int(M) = −int(D) ∩ (εB)c. (23)

From here it is clear that the function ϕε,y0 is continuous, D-monotone on Rp

and by (23) we conclude that

{y ∈ Rp : ϕε,y0(y) < 0} = {y ∈ Rp : ϕε,0(y − y0) < 0}
= y0 − (int(D) ∩ (εB)c).

!"

Let us observe that function ϕε,0 is different from the gauge functional
considered in [5, Section 3.1] (for example, 0 /∈ cl(M) when ε > 0).

In the sequel, we assume that the cone D is closed and q ∈ int(D). In
order to obtain functions satisfying property (SLM), the following generalized
Chebyshev norm is considered (see [10, Lemma 1.45] for more details on these
norms):

‖y‖q = inf{s > 0 : y ∈ (−sq +D) ∩ (sq −D)}.

We denote
Rq(y) = {s > 0 : y ∈ (−sq +D) ∩ (sq −D)}

and we write Bq to denote the closed unit ball defined by the norm ‖ ‖q. The
function ϕε,y0 is denoted by ϕq,ε,y0 when the closed unit ball considered in
(21) via the set M is Bq.

Next, we prove that the function ϕq,ε,y0 verifies property (SLM). The fol-
lowing lemma is necessary.

Lemma 3.

(i) If d ∈ D then Rq(d) = {s > 0 : d ∈ sq −D}.
(ii) ‖ ‖q is a D-monotone function on D.
(iii) ‖q‖q = 1.
(iv) If d ∈ D, t ∈ R and d+ tq ∈ D then ‖d+ tq‖q = ‖d‖q + t.

Proof. (i) As D is a convex cone it is clear that

d = −sq + (d+ sq) ∈ −sq +D, ∀ d ∈ D,∀ s > 0

and the result follows.
(ii) The result is easily deduced from the inclusion

Rq(d1 + d2) ⊂ Rq(d1), ∀ d1, d2 ∈ D. (24)
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To prove (24), let us take any d1, d2 ∈ D and any s ∈ Rq(d1 + d2). Then
d1 + d2 ∈ sq − D and so d1 ∈ sq − (d2 + D) ⊂ sq − D, since D is a convex
cone. Hence, by part (i) it follows that s ∈ Rq(d1) and relation (24) holds.

(iii) For each s ≥ 1 it is clear that

q = sq − (s− 1)q ∈ sq −D.

Then, by part (i) it follows that [1,∞) ⊂ Rq(q). Conversely, if s ∈ (0, 1) and
q ∈ sq − D then q ∈ D ∩ (−D), which is a contradiction since D is pointed
and q �= 0. Therefore Rq(q) = [1,∞) and so ‖q‖q = 1.

(iv) Let d ∈ D, t ∈ R and d+ tq ∈ D. If d = 0 then tq ∈ D and so t ≥ 0,
since D is pointed. Thus, by part (iii) we see that ‖tq‖q = t‖q‖q = t and the
result follows for d = 0.

Suppose that d �= 0. In this case we have that

Rq(d+ tq) = Rq(d) + t. (25)

Indeed, if s ∈ Rq(d + tq) then s > 0 and d ∈ (s − t)q −D. As D is pointed
and d �= 0 it is clear that s − t > 0 and so s − t ∈ Rq(d). Therefore we have
that

Rq(d+ tq) ⊂ Rq(d) + t. (26)

From (26) we see also that Rq((d + tq) − tq) ⊂ Rq(d + tq) − t. Then (25)
follows and so

‖d+ tq‖q = inf{Rq(d+ tq)} = inf{Rq(d) + t} = inf{Rq(d)}+ t = ‖d‖q + t.

!"

Proposition 2. Consider ε > 0.

(i) ϕq,ε,y0(y0) = ϕq,ε,y0(y0 − d) + ‖d‖q, ∀ d ∈ D ∩ int(εBq).
(ii) The function ϕq,ε,y0 verifies property (SLM) at y0 with constants α = 1

and ρ = ε.

Proof. (i) Let d ∈ D ∩ int(εBq). From (21) and (22) we have that

ϕq,ε,y0(y0 − d) = ϕq,ε,0(−d) = inf{s ∈ R : d+ sq ∈ D ∩ (int(εBq))c}. (27)

It follows that

{s ∈ R : d+ sq ∈ D ∩ (int(εBq))c} = [ε− ‖d‖q,∞). (28)

Indeed, let s ∈ R such that d + sq ∈ D ∩ (int(εBq))c. By Lemma 3(iv) we
see that ‖d + sq‖q = ‖d‖q + s and s ≥ ε − ‖d‖q, since d + sq ∈ (int(εBq))c.
Conversely, if s ≥ ε− ‖d‖q then s > 0 since d ∈ int(εBq), and so d+ sq ∈ D.
Moreover, by Lemma 3(iv) we deduce that ‖d + sq‖q = ‖d‖q + s and as
s ≥ ε− ‖d‖q we deduce that d+ sq ∈ (int(εBq))c.
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In particular, taking d = 0 in (28) we see that

ϕq,ε,y0(y0) = ε. (29)

By (27) and (28) we conclude that

ϕq,ε,y0(y0 − d) + ‖d‖q = ε− ‖d‖q + ‖d‖q = ε = ϕq,ε,y0(y0).

(ii) From Proposition 1 we have that ϕq,ε,y0 is a D-monotone function on
Rp and by part (i) we deduce that condition (8) holds for α = 1 and ρ = ε.
Then, it follows that the function ϕq,ε,y0 is strictly local D-monotone at y0
respect to the norm ‖ ‖q with constants α = 1 and ρ = ε. !"

Next, a characterization for Tanaka’s ε-efficient solutions is obtained. Let
us observe that in both conditions, the precision attained is equal to the
precision assumed as hypothesis. Similar results for various Kutateladze type
weak ε-efficient solutions have been proved in convex (resp. nonconvex) Pareto
problems [1, Theorem 2.1], [2, Theorem 2.1] (resp. [12, Theorem 1]) and in
convex (resp. nonconvex) vector optimization problems [15, Theorem 3] (resp.
[17, Corollary 1]).

Theorem 5. Consider ε ≥ 0, q ∈ int(D) and assume that Rp is normed by
the generalized Chebyshev norm ‖ ‖q.

(i) If x0 ∈ AE(f, S, ε) then x0 ∈ AMin
(
ϕq,ε,f(x0) ◦ f, S, ε

)
.

(ii) If ε > 0, x0 ∈ AMin
(
ϕq,ε,f(x0) ◦ f, S, δ

)
and 0 ≤ δ < ε then x0 ∈

AE(f, S, δ).

Proof. (i) Consider x0 ∈ AE(f, S, ε). By Proposition 1 we have that the
function ϕq,ε,f(x0) verifies the property (AORP) at f(x0). Hence, from The-
orem 2 we deduce that x0 ∈ AMin

(
ϕq,ε,f(x0) ◦ f, S, ϕq,ε,f(x0)(f(x0))

)
, since

AE(f, S, ε) ⊂WAE(f, S, ε). Then, the result follows if we show that

ϕq,ε,f(x0)(f(x0)) = ε.

Indeed,

ϕq,ε,f(x0)(f(x0)) = ϕq,ε,0(0) = inf{s ∈ R : sq ∈ cl(M)},

where M = D ∩ (εBq)c. If ε = 0 then cl(M) = D and

ϕq,0,f(x0)(f(x0)) = inf{s ∈ R : sq ∈ D} = 0.

If ε > 0 then by (29) we have that ϕq,ε,f(x0)(f(x0)) = ε and the result holds.
(ii) Suppose that x0 ∈ AMin

(
ϕq,ε,f(x0) ◦ f, S, δ

)
and 0 ≤ δ < ε. By Propo-

sition 2(ii) we see that the function ϕq,ε,f(x0) satisfies property (SLM) at
f(x0) with constants α = 1 and ρ = ε. Then, from Theorem 4 it follows that
x0 ∈ AE(f, S, δ). !"
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Remark 1. Let us consider ε > 0. From (3) and under the hypotheses of The-
orem 5 it follows that⋃

0≤δ<ε

{x ∈ Rn : x ∈ AMin
(
ϕq,ε,f(x) ◦ f, S, δ

)
} ⊂ AE(f, S, ε) .

This inclusion is in general strict (see Example 3).

Example 2. Let us obtain the expression of the function ϕq,ε,y0 in Pareto prob-
lems. Consider D = R

p
+, q = (q1, q2, . . . , qp) ∈ int

(
R

p
+

)
, y0 = (y0

1 , y
0
2 , . . . , y

0
p),

ε ≥ 0 and M = R
p
+ ∩ (εBq)c. Firstly, let us calculate the expression of the

generalized Chebyshev norm ‖ ‖q. For each s > 0 and y = (y1, y2, . . . , yp) ∈ Rp

it is clear that

y ∈ (−sq + R
p
+) ∩ (sq − R

p
+) ⇐⇒ s ≥ ± yi/qi, i = 1, 2, . . . , p

and so

‖y‖q = max
1≤i≤p

{|yi|/qi}.

Let us observe that ‖ ‖q is the l∞ norm when q = (1, 1, . . . , 1).
Moreover, if ε = 0 then y − y0 ∈ sq − cl(M) = sq − R

p
+ if and only if

s ≥ max
1≤i≤p

{
yi − y0

i

qi

}
, (30)

and if ε > 0 then y− y0 ∈ sq− cl(M) = sq− (Rp
+ ∩ (int(εBq))c) if and only if

(30) holds and

‖y − y0 − sq‖q = max
1≤i≤p

{
|yi − y0

i − sqi|
qi

}
≥ ε.

Therefore, for each y ∈ Rp and ε > 0 it follows that

y − y0 ∈ sq − cl(M) ⇐⇒

s ≥ max
{

max
1≤i≤p

{
yi − y0

i

qi

}
, ε+ min

1≤i≤p

{
yi − y0

i

qi

}}
. (31)

Hence, by (30) and (31) we conclude that

ϕq,ε,y0(y) = max
{

max
1≤i≤p

{
yi − y0

i

qi

}
, ε+ min

1≤i≤p

{
yi − y0

i

qi

}}
, ∀ ε ≥ 0. (32)

Example 3. Let us characterize the ε-efficiency set of the problem (1) given
by the following data: n = p = 2, D = R2

+, q = (1, 1), 0 < ε < 1, f(x1, x2) =
(x1, x2) and

S = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, max{x1, x2} ≥ 1}.
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By applying Theorem 5(i) and (32) it follows that if x0 = (x0
1, x

0
2) ∈ S is an

ε-efficient solution of this Pareto problem then x0 is an approximate solution
with precision ε of the scalarization (5) given by the same feasible set S and
the following objective function:

(ϕq,ε,f(x0) ◦ f)(x)

= max
{

max
i=1, 2

{
xi − x0

i

}
, ε+ min

i=1, 2

{
xi − x0

i

}}
, ∀x = (x1, x2) ∈ R2.

As (ϕq,ε,f(x0) ◦ f)(x0) = ε then x0 ∈ AMin
(
ϕq,ε,f(x0) ◦ f, S, ε

)
if and only if

max
{

max
i=1, 2

{
xi − x0

i

}
, ε+ min

i=1, 2

{
xi − x0

i

}}
≥ 0, ∀x = (x1, x2) ∈ S. (33)

It is clear that

max
i=1, 2

{
xi − x0

i

}
< 0 ⇐⇒ (x1, x2) ∈ x0 − int

(
R2

+

)
and so (33) holds if and only if x0 ∈WE(f, S) or x0 /∈WE(f, S) and

ε+ min
i=1, 2

{
xi − x0

i

}
≥ 0, (x1, x2) ∈ (x0 − int

(
R2

+

)
) ∩ S.

Let us denote gx0(x1, x2) = ε + min
i=1, 2

{
xi − x0

i

}
and consider that x0 /∈

WE(f, S). Easy calculations give that

inf
(x1,x2)∈(x0−int(R

2
+))∩S

{gx0(x1, x2)}

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε+ 1− x0
2 if 0 < x0

1 ≤ 1 and x0
2 ≥ x0

1 + 1
ε− x0

1 if 0 < x0
1 ≤ 1 and 1 < x0

2 < x0
1 + 1

ε− x0
2 if 1 < x0

1 and x0
2 ≥ x0

1

ε− x0
1 if 1 < x0

2 and x0
2 < x0

1

ε− x0
2 if 0 < x0

2 ≤ 1 and 1 < x0
1 < x0

2 + 1
ε+ 1− x0

1 if 0 < x0
2 ≤ 1 and x0

1 ≥ x0
2 + 1

Then, as ε < 1 it follows that (33) holds if and only if (x0
1, x

0
2) ∈ WE(f, S), or

(x0
1, x

0
2) ∈ {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ ε, x1 + 1 ≤ x2 ≤ 1 + ε}

∪{(x1, x2) ∈ R2 : 0 ≤ x1 ≤ ε, 1 ≤ x2 < x1 + 1}
∪{(x1, x2) ∈ R2 : 0 ≤ x2 ≤ ε, 1 ≤ x1 < x2 + 1}

∪{(x1, x2) ∈ R2 : 0 ≤ x2 ≤ ε, x2 + 1 ≤ x1 ≤ 1 + ε}
= [((0, 1) + εBq) ∪ ((1, 0) + εBq)] ∩ S,

where Bq is the closed unit ball with the l∞ norm. Therefore, the feasible
points satisfying the necessary condition proved in Theorem 5(i) are
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WE(f, S) ∪ (({(1, 0), (0, 1)}+ εBq) ∩ S). (34)

To obtain ε-efficient solutions through the sufficient condition proved in
Theorem 5(ii) (see Remark 1), we look for feasible points x0 ∈ S such that

max
{

max
i=1, 2

{
xi − x0

i

}
, ε+ min

i=1, 2

{
xi − x0

i

}}
> 0, ∀x = (x1, x2) ∈ S. (35)

Following a reasoning as the previous one used in applying the necessary
condition it is easy to prove that the feasible points satisfying (35) are
(x0

1, x
0
2) ∈ E(f, S), or

(x0
1, x

0
2) ∈ {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ ε, x1 + 1 ≤ x2 < 1 + ε}

∪{(x1, x2) ∈ R2 : 0 ≤ x1 < ε, 1 ≤ x2 < x1 + 1}
∪{(x1, x2) ∈ R2 : 0 ≤ x2 < ε, 1 ≤ x1 < x2 + 1}

∪{(x1, x2) ∈ R2 : 0 ≤ x2 ≤ ε, x2 + 1 ≤ x1 < 1 + ε}.

This set of ε-efficient solutions can be written as

({(1, 0), (0, 1)}+ int(εBq)) ∩ S. (36)

From (34), (36) and Definition 2 is easy to check that

AE(f, S, ε) = ({(1, 0), (0, 1)}+ εBq) ∩ S.

Under subconvexlikeness hypotheses, the ε-efficient solutions of a vector
optimization problem can be characterized via linear functions. This fact is
shown in the following theorem, whose proof is direct from Theorem 3, Ex-
ample 1 and Theorem 4.

Theorem 6. Let us consider that problem (1) is externally stable with respect
to the weak efficiency set and the objective function f is D-subconvexlike on
the feasible set S. Then,

(i) If x0 ∈ AE(f, S, ε) then there exists l ∈ D+, ‖l‖∗ = 1 such that x0 ∈
AMin(〈l, f(·)〉, S, ε).

(ii) Let l ∈ D+s. If x0 ∈ AMin(〈l, f(·)〉, S, ε) then x0 ∈ AE(f, S, ε/α), where

α = min
d∈D,‖d‖=1

{〈l, d〉}.

5 Conclusions

In this paper, approximate solutions of vector optimization problems are an-
alyzed via an ε-efficiency concept introduced by Tanaka [18]. This kind of
solutions is important from both the practical and theoretical points of view
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since they exist under very mild hypotheses and they are obtained by a lot of
solution methods (for example, by iterative and heuristic methods).

An interesting problem concerning ε-efficient solutions is to relate the ap-
proximate solutions of a vector optimization problem with approximate so-
lutions obtained by solution methods based on scalarization processes. This
question has been widely studied in the literature [2, 5, 6, 7, 12, 13], but using
ε-efficiency concepts based on a previously fixed scalar function or via not
metrically consistent ε-efficiency notions.

In this work, Tanaka’s concept is analyzed from this point of view. Specif-
ically, necessary and sufficient conditions for these approximate solutions are
established via properties (AORP) and (SLM). Property (AORP) extends
the classical order representing property and (SLM) is a new generalized
monotonicity notion.

As Tanaka’s ε-efficiency concept is metrically consistent, properties (AORP)
and (SLM) ensure that improved ε-efficient solutions are obtained when the
scalar objective decreases and reciprocally. Moreover, from these properties
it is possible to estimate the precision ε of an approximate efficient solution
obtained by scalarization, through the precision of this solution in the scalar
problem.

By using gauge functions and generalized Chebyshev norms, we get a
family of functions satisfying properties (AORP) and (SLM), and from the
previous results we obtain a characterization for ε-efficient solutions which
attains the same precision in the vector problem as in the scalarization.
Also, ε-efficient solutions are characterized by separation theorems in cone-
subconvexlike vector optimization problems.
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More than five years ago, Professor Oettli died prematurely at the age of 62.
He was a highly productive scholar. He authored about one hundred pub-
lications in nonlinear analysis and optimization, devoted to topics such as
convex and variational analysis, duality and minimax theory, quadratic pro-
gramming, optimization methods, nonconvex and global optimization, vector
and set optimization, mathematical economics, networks, variational inequali-
ties and equilibria, generalized convexity and generalized monotonicity. As an
active researcher in generalized convexity, he participated in several of the In-
ternational Conferences on Generalized Convexity/Generalized Monotonicity,
including the first one in Vancouver in 1980.
It is the purpose of this paper to give a review of the work of the late W.
Oettli in generalized convexity and nonconvex optimization. So only a small
part of the whole ouvre will be covered. In particular we do not enter his work
in generalized monotonicity. On the other side, we also discuss some possible
extensions and sketch out various relations to the more recent literature in
generalized convexity. Thus we intend to give some perspectives of his work.

We shall subdivide this paper in 4 sections. In section 1 we begin with papers
of W. Oettli together with co-authors that combine optimization theory and
optimization methods for the solution of some difficult nonconvex optimiza-
tion problems. In section 2 we turn to his work on numerical methods for
various nonconvex optimization problems, in particular to the versatile joint
work with Le Dung Muu on branch and bound algorithms in global optimiza-
tion. Then we switch to the achievements of W. Oettli in nonconvex and global
optimization theory. In section 3 we focus on the seminal work of W. Oettli
and co-authors, in particular with V. Jeyakumar on solvability theorems for
nonconvex functions and their applications in quasiconvex and dc (difference
convex) programming. Section 4 concludes with conjugate duality and opti-
mality conditions in nonconvex optimization, including his profound work on
abstract quasiconvex programming via a perturbation approach and the im-
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portant joint work with Flores-Bazán that presents an axiomatic approach to
nonconvex vector optimization.

1 Solution of Some Nonconvex Optimization Problems

1.1 A Quasiconvex Problem from Information Theory

In their joint paper [21] B. Meister and W. Oettli treat an optimization prob-
lem from information theory that originated from their then work at IBM
Zürich Research Laboratory. They are concerned with the relative capacity of
a discrete constant channel which is given as the maximal transmission rate
over all admissible input distributions. To attack this problem by methods
of mathematical programming, they rewrite this problem as the optimization
problem

max T (z) :=
〈a, x〉 − 〈y, log y〉

〈t, x〉 ≡ f(z)
g(z)

with given vectors a and t > 0 (i.e. all components ti > 0) on the compact
convex polyhedron

Z :=
{
z = (x, y)|x ≥ 0,

∑
j

xj = 1, y = Px
}
.

Here (log y)i = log yi, 〈·, ·〉 denotes the scalar product, and P is a transition
matrix with conditional probabilities as entries where P can be assumed to
contain no zero now. The functions f and g are positive in Z, further the
target function T is continuous in Z and continuously differentiable in the
nonempty set

Z0 :=
{
z ∈ Z|y > 0

}
.

The numerator function f is known to be concave. However due to the linear
denominator g, T is only a quasiconcave function in Z.
In order to build an iterative solver for quasiconcave maximization, suitable for

target functions of the form T =
f

g
with differentiable f and g (not necessarily

linear), they linearize numerator and denominator, separately, and introduce
the function

τz1(z) =
f(z1) + 〈f ′(z1), z − z1〉
g(z1) + 〈g′(z1), z − z1〉 .

Thus they are able to characterize (Theorem 1) an optimal solution ẑ of the
problem by

ẑ ∈ Z0 and max
z∈Z

τẑ(z) = τẑ(ẑ) .

Then they propose the following iterative solver (that modifies the well-known
Frank-Wolfe algorithm for quadratic programming):
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1. Start with z1 ∈ Z0 arbitrarily
2. Given zk ∈ Z0, determine z̃k ∈ Z such that

τzk(z̃k) = max
z∈Z

τzk(z)

3. Determine zk+1 in the line segment [z̃k, zk] such that

T (zk+1) = max
z∈[z̃k,zk]

T (z).

Note that the auxiliary problem in step 2 is a fractional linear programming
problem which is directly solved in [21]. Theorem 2 of this paper and its longer
proof tell us that the proposed method converges to an optimal solution of the
problem, with the extra benefit of converging lower and upper bounds for the
sought capacity. Moreover, it is remarked that the characterization result, the
iterative solver, and its convergence proof extend to a larger class of nonlinear
denominators.

1.2 A Reverse Convex Optimization Problem

In their joint work [35] W. Oettli together with P.T. Thach and R.E. Burkard
consider the optimization problem

(P ) min f(x) such that x ∈ G and Tx �∈ int D,

where
G �= ∅ compact (and convex) ⊂ Rn

f : G→ R lower semicontinuous (and convex)
T : Rn → Rd continuous (but not necessarily linear)
D �= ∅ closed convex ⊂ Rd with int D �= ∅ .

The difficulty of (P ) comes from the last constraint Tx �∈ int D, “a reverse
convex constraint”. Therefore (P ) is a hard optimization problem; e.g. with
G a polytype, D the unit ball in Rn (T = 1, d = n), (P ) becomes a set
containment problem, known to be NP-complete.
The size of reverse convex programs that are solvable to optimality is very
limited. Let us take from [35] the subsequent example.
Let G be a convex subset of Rn

+; T = (T1, T2) with T1(x) = cTx, T2(x) =

dTx; c, d ∈ Rn
+, D = epi ϕ for ϕ(v1) =

1
v1
, v1 > 0. Then Tx �∈ int D is equiva-

lent to (cTx) · (dTx) ≤ 1. Such constraints involving the product of two linear
functions occur in various applications. Nonconvex optimization problems of
this kind have been considered by several authors (see the references in [35]
and the more recent papers [13, 31, 20, 17, 14, 32]).

The key for the effective solution of (P ) is a reduction to a quasiconcave pro-
gram as follows. Assume that the feasible set {x ∈ G : T (x) �∈ int D} �= ∅.



300 J. Gwinner

Let w ∈ argmin {f(x) : x ∈ G} (Note that the latter is a convex program and
there exists a minimizer w). If T (w) �∈ int D, then w solves (P ), stop.
Therefore consider in the following the case T (w) ∈ int D. Let V := D−T (w).
Then V is convex with 0 ∈ int D and the polar E := V 0 is �= ∅, convex and
compact.
Now rewrite the reverse convex constraint by the separation theorem: T (x) �∈
int D ⇔ ∃ u ∈ E : 〈u, T (x)− T (w)〉 ≥ 1. Thus

inf(P ) = inf
{
f(x) : x ∈ G; ∃ u ∈ E : 〈u, T (x)− T (w)〉 ≥ 1

}
= inf

u∈E
inf
x

{
f(x) : x ∈ G, 〈u, T (x)− T (w)〉 ≥ 1

}
= inf

{
h(u) : u ∈ E

}
,

where for u ∈ Rd

h(u) := inf
{
f(x) : x ∈ G, 〈u, T (x)− T (w)〉 ≥ 1

}
=: inf(Qu) .

Note that (Qu) has an optimal solution because of continuity and compact-
ness; moreover (Qu) is a convex program, provided T is linear. Then with
inf ∅ = +∞, h : Rd → R ∪ {+∞} and is seen to be quasiconcave. In addition,
h is lower semicontinuous. Hence

(P̃ ) minh(u) such that u ∈ E

has an optimal solution. Altogether [35] concludes that inf(P ) = inf(P̃ ); if u∗

is an optimal solution of (P̃ ) and x∗ solves (Qu∗), then x∗ solves (P ).
The solution method in [35] uses the concept of approximate solutions. Let
{Dε : ε ≥ 0} be a family of subsets ⊂ Rd such that D0 = int D; for ε > 0, Dε

is closed ⊂ int D. Then the constraint T (x) �∈ Dε is a relaxation of T (x) �∈
int D. In this sense x ∈ Rn is called (η, ε)–optimal (with η > 0, ε > 0), if
x ∈ G,T (x) �∈ Dε and f(x) < inf(P ) + η.
The algorithm in [35] is essentially an outer approximation method based on
cutting planes specialized to (P̃ ) and is proved to terminate for any given
η > 0, ε > 0 after finitely many iterations with an (η, ε)-optimal solution.

Possible Extensions and Some Relations to More Recent Work
There is a duality theory due to Thach [34] between

quasiconvex minimization with a reverse convex constraint
and quasiconvex maximization over a convex set.

In this vein, (P ) can be considered as a primal program, (P̃ ) as its dual.

More recently, in [15] Lemaire develops a duality theory for the general problem
of minimizing an extended real-valued convex function on a locally convex
linear space under a reverse convex constraint. More precisely, he considers

(PL) min gL(x) such that hL(x) > 0,
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where gL and hL are extended real-valued and convex. The original program
(P ) can be rewritten as a program of the form (PL) under extra conditions
as follows. Assume that the implicit constraint x ∈ G is subsumed in the
objective function f and that inf(P ) is finite; however, we have to suppose
that f is upper semicontinuous. Moreover, suppose that T is linear.
Then using the above construction involving the minimizer w and the polar
E = V ◦, we obtain that

(P ) min f(x) such that x ∈ Rn and Tx �∈ int D

is equivalent to

(P≥) min f(x) such that hL(x) ≥ 0,

where hL(x) = max{〈u, Tx−Tw〉 : u ∈ E}−1 is convex. Now hL(w) = −1 < 0
and by continuity and convexity arguments, inf (P≥) = inf (P>) follows with

(P>)min f(x) such that hL(x) > 0.

Indeed, inf (P>) ≥ inf (P≥) = inf (P ) ∈ R. Assume δ = inf (P>)− inf
(P≥) > 0. We find some x1 with hL(x1) ≥ 0 and f(x1) <inf (P≥) + δ

2 .
If hL(x1) > 0, then inf (P>) ≤ f(x1) < inf (P≥) + δ = inf (P>) and a
contradiction is reached. If otherwise hL(x1) = 0, consider xλ = λw+(1−λ)x1

for λ < 0. Then by convexity of hL, hL(xλ) > 0 for λ < 0. Finally, since f is
usc, f(xλ) < inf (P≥) + δ for xλ = x1 + λ(w − x1) and |λ| > 0 small enough
leading to a contradiction.
On the other hand, when one changes the original constraint T (x) �∈ int D
in (P ) to Tx �∈ D (with T linear), then the duality theory of [15] directly
applies. Then one chooses

gL(x) =
{
f(x) ∈ G;
+∞ else

hL(x) = max
{
〈T ∗u, x− w〉 : u ∈ E

}
− 1

and thus obtains

(PL) min f(x) subject to x ∈ G, Tx− Tw �∈ V.

Then by the classical minimax theorem, one computes

h∗L(y) =
{
〈y, w〉+ 1 if y ∈ T ∗E;
+∞ else

Y =
{
y ∈ Rn : 〈y, x〉 > h∗L(y) for some x ∈ G

}
=

{
T ∗u : 〈T ∗u, x− w〉 > 1 for some x ∈ G

}
and
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sup
λ≥0

{
λh∗L(y)− g∗L(λy)

}
= inf

{
f(x) : x ∈ G, 〈y, x− w〉 ≥ 1

}
and by Theorem 4.1 in [15] one arrives at the duality relation inf(PL) =
inf(DL) for the dual problem

(DL) min inf
{
f(x) : x ∈ G, 〈y, x− w〉 ≥ 1

}
subject to y ∈ Y.

Note that (DL) is equivalent to

minh(u) = inf
{
f(x) : x ∈ G, 〈T ∗u, x− w〉 ≥ 1

}
subject to T ∗u ∈ Y

which coincides with (P̃ ) apart from the strict inequality in the definition of
the set Y .

Concerning the numerical solution note that the dual (P̃ ) can be solved much
easier than the primal (P ), if d << n. There are algorithms for linearly
constrained quasiconvave minimization subproblems in d dimensions at each
iteration (see the monograph [7] of Horst and Tuy). As an alternative to the
outer approximation method employed in [35] for the solution of (P̃ ) one can
think of branch and bound methods which was also a field of research of W.
Oettli together with Le Dung Muu as we shall see in the next section.

2 Some Numerical Methods for Various Nonconvex
Optimization Problems

2.1 Decomposition Methods for Saddle Points of
Quasi-convex-concave Functions

In [27] Oettli presents decomposition methods for finding saddle points of
a quasi-convex-concave function ϕ : X × Y → R (i.e. ϕ(·, y) : X → R is
quasiconvex for all y ∈ Y and ϕ(x, ·) : Y → R is quasiconcave for all x ∈ X),
where X,Y are nonvoid closed convex sets in some linear normed spaces.
Here decomposition methods consist in an alternating succession of master
programs and subprograms.
In the master programs, the proper iteration points are determined as approx-
imate saddle points over a subset Xn×Y n of the given domain X×Y . In the
subprograms auxiliary points are calculated that serve to update the subset
under consideration. For certain structured problems the subprograms may
decompose; this fact accounts for the name and enhances its practical usage of
decomposition methods, but this is not the impetus of the convergence theory
as presented in [27].
By this paper Oettli succeeds in unifying and extending prior decomposition
methods that are in particular due to Auslender, Cohen, Dantzig, Huard and
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Zangwill. Here starting from Sion’s celebrated minimax theorem, the compact-
ness assumption for the underlying domain is relaxed and also regularizations
in solving the subproblems are admitted. The decomposition principle is de-
scribed in terms of a variational inequality problem and thus the extension to
Nash equilibrium points in n-person games becomes straightforward.
Moreover under the extra hypothesis that ϕ(x, ·) is unimodal on Y for all x ∈
X, versions of the original method are obtained that do not need the storage
of the auxiliary points and instead allow for the deletion of auxiliary points.
By this hypothesis, the master program can be drastically simplified towards
a method of feasible directions. Under additional compactness assumptions
(but not requiring X × Y to be compact) every cluster point of the sequence
generated by the algorithm is proved to be a saddle point of ϕ on X × Y .
Even, in a more specialized version, estimates of the rate of convergence can
be established.

2.2 Some Branch and Bound Methods in Global Optimization

In this subsection we summarize joint work of W. Oettli with Le Dung Muu in
[22, 23, 24, 25] on branch and bound algorithms [7] for solving various classes
of global optimization problems.
In [22] the authors present a new branch and bound method for minimizing
an indefinite quadratic function

f(x, y) = pTx+ xTMy + qT y

on a given closed convex non-empty set S ⊂ Rn × Rm, where p ∈ Rn and
q ∈ Rm are given vectors and M is a given n×m matrix. The branching here
is a simplex bisection and the bounding is obtained by the solution of (m+1)
convex subprograms and in the case if S is a polyhedron these subprograms
are even linear.
In [23] the authors propose a branch and bound method for minimizing a
convex-concave function over a convex set. The bounding operation is essen-
tially the same as in the previous paper. The difference here is the branching
operation that is based on bisection of rectangles, taking into account the cur-
rent iteration point obtained by the bounding operation. An important special
case is the minimization of a dc-function (i.e. a function representable as the
difference of two convex functions). In this case, the subproblems occurring
in the bounding operation can be solved effectively as shown by a numerical
example.
In [24] the authors exhibit unified branch and bound and cutting plane algo-
rithms for global minimization of a function f(x, y) over a certain closed set.
By formulating the problem in terms of two groups of variables and two groups
of constraints they arrive at new relaxation bounding and adaptive branch-
ing operations. The branching operation takes place in y-space only and uses
the iteration points obtained through the bounding operation. The cutting
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is performed in parallel with the branch and bound procedure. The method
can be applied implementably for a certain class of nonconvex programming
problems.
Finally in this subsection we review more detailed the paper [25] that gives
an interesting link between global optimization and vector optimization. First
generalizing the well-known notion of Pareto efficient points the authors call
a point x in some given set X an equilibrium point iff, for some λ ∈ Λ (a
nondegenerate p–simplex in Rp)

c(λ, x) ≥ c(λ, y), ∀ y ∈ X,

where c : Λ × X → R is given. Note that even if X is convex and c(λ, ·) is
linear the set of equilibrium points of X is generally not convex. Therefore the
problem of maximizing a function f over the set of equilibrium points leads
to a difficult problem of global optimization.
Prior work on maximization over the Pareto efficient points was done under
the assumption that essentially f is quasiconvex, thus obtaining the maximum
at an extreme point. Here the authors drop this assumption and present a
branch and bound method in the criteria space for approximately solving the
problem

P ≡ P (Λ) max
{
f(λ, x)|λ ∈ Λ, x ∈ X, c(λ, x) ≥ c(λ, y) ∀ y ∈ X

}
.

To describe the method, let ν(Λ) denote the optimal value of problem P (Λ),
likewise ν(S) the optimal value of problem P (S), where Λ is replaced by a
p–simplex S ⊆ Λ. In iteration k, we have a family Γk of subsimplices S ⊂ Λ
and some (ωk, zk) feasible for P such that (ωk, zk) ∪

⋃
{S : S ∈ Γk} contains

a solution of P . The value βk := f(ωk, zk) ≤ ν(Λ) is the best lower bound for
ν(Λ) available in the current step. For all S ∈ Γk let there be given an upper
bound α(S) ≥ ν(S). Set αk := sup

{
α(S) : S ∈ Γk

}
. Then max{βk, αk} ≥

ν(λ). If αk ≤ βk, then βk = ν(λ), hence (ωk, zk) solves (P ), and the method
terminates. Otherwise, if αk > βk, then delete from Γk all S ∈ Γk with
α(S) ≤ βk. This gives a reduced family Rk ⊆ Γk, Rk �= ∅, of subsimplices
S ⊆ Λ. Select those Sk ∈ Rk such that α(Sk) = αk ≥ ν(Λ). Then bisect those
Sk into two subsimplices Sk,1 and Sk,2. Determine upper bounds α(Sk,i) ≥
ν(Sk,i) (i = 1, 2) such that α(Sk,i) ≤ αk and determine (ωk+1, zk+1) feasible
for P such that βk+1 := f(ωk+1, zk+1) ≥ βk. Finally delete Sk from Rk and
add Sk,1 and Sk,2, thus obtaining the family Γk+1 for the next iteration, with
αk+1 ≤ αk.
For bisection the authors employ a simplex bisection devised by Horst and
later refined by Tuy. For bounding the authors suggest the solution of two sim-
pler structured optimization problems, a “feasibility problem” (to construct
(ωk+1, zk+1) above) and a “relaxed subproblem” for each bisected Sk,i.
In this general setting the authors prove that for any ε > 0 the method
terminates after a finite number of steps either with an exact solution or with
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an ε–solution (that is ε–feasible and ε–optimal), if ε = 0 and there is no
termination, then a suitable subsequence of the generated sequence converges
to a solution.
The paper concludes with the discussion of an implementable version under
additional assumptions: X is convex, f(λ, x) = f(x) is concave, c(λ, x) is
affine in λ and concave in x. Then the feasibility problem becomes a standard
concave maximization problem and the relaxed subproblem reduces to p + 1
standard concave maximization problems.
Still the global optimization problem over efficient sets is in the fore of re-
search. Let us only mention the recent paper of Le Thi Hoai An, Le Dung
Muu, and Pham Dinh Tao [16] who formulate optimization problems over
efficient and weakly efficient sets as dc problems over a simplex and develop
a decomposition algorithm using an adaptive simplex subdivision.

3 Nonconvex Solvability Theorems with Applications in
Quasiconvex and DC Programming

Solvability theorems (also called transposition theorems or theorems of the
alternative) have been established by the use of the Hahn-Banach theorem
(or its equivalents) or of an appropriate minimax theorem. These theorems
have become an important tool to derive various results in optimization the-
ory, e.g. the existence of Lagrange multipliers and first order F. John or Kuhn
Tucker optimality conditions, duality results, scalarization of vector-valued
objectives. Here we focus on the work of W. Oettli and co-authors on solv-
ability theorems for nonconvex functions and their applications to some classes
of nonconvex optimization problems and review the papers [4, 5, 12].

3.1 Towards Optimality Conditions in Quasiconvex Optimization

Here we summarize the joint work of W. Oettli with V. Jeyakumar and M.
Natividad in [12]. In the adopted setting of topological vector spacesX,Y with
C ⊆ X convex and P ⊆ Y closed convex cone, the notion of a quasiconvex
(real-valued) function on C extends readily to a quasiconvex map f : C → Y
by imposing ∀ x1, x2 ∈ C, y ∈ Y

f(x1) ∈ y − P ∧ f(x2) ∈ y − P ⇒ f(ξ) ∈ y − P, ∀ ξ ∈ [x1, x2] .

However, as the authors show by a counterexample, already in finite dimen-
sions with a polyhdreal cone, quasiconvex maps do not satisfy a solvability
theorem that typically states that either the system

i) x ∈ C, ∀λ ∈ P ∗\{0} 〈λ, f(x)〉 < 0

has a solution, or
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ii) ∃ y∗ ∈ P ∗\{0}, ∀ x ∈ C 〈y∗, f(x)〉 ≥ 0 .

Therefore the authors have to identify a suitable subclass of quasiconvex
maps. They introduce socalled “∗-quasiconvex” (∗-qv) maps f by imposing
the function 〈y∗, f(·)〉 to be quasiconvex for all y∗ ∈ P ∗. Moreover, they as-
sume that the map f : C → Y is “∗-lsc”, i.e. ∀ y∗ ∈ P ∗, the function
〈y∗, f(·)〉 is lsc (lower semicontinuous). For this subclass, under the assump-
tion that the nonnegative polar P+ admits a σ(Y ∗, Y )-compact base B (i.e.
0 �∈ B,P ∗ = R+B), the solvability theorem is shown to be true. Its proof is
based on the application of the celebrated minimax theorem of Sion to the
function ϕ(x, y∗) = 〈y∗, f(x)〉 on C ×B.
The solvability theorem obtained is used in two ways. First in the global
theory considering the constrained problem

(CP) min f0(x) subject to x ∈ C, g(x) ∈ −P

assume that (f0, g) : C → R× Y be ∗-qv with respect to R+ × P ∗, moreover
let f0 lsc and g ∗-lsc. Suppose, inf (CP) is finite. Then under a Slater type
constraint condition it is shown that there exists a Lagrange multiplier λ∗ ∈
P ∗ that satisfies

inf (CP) ≤ f0(x) + 〈λ∗, g(x)〉, ∀ x ∈ C .

Secondly, necessary optimality conditions for a local minimum of (CP) can be
presented. To this end, consider h : C → Y ; a ∈ C; then a map ϕ : C → Y
is called a “∗–upper approximation” to h at a, if ϕ(a) = h(a) and ∀ x ∈
C ∃ o(·) : [0, 1] → R:

〈y∗, h(τx+(1−τ)a)〉 ≤ τ〈y∗, ϕ(x)〉+(1−τ)〈y∗, ϕ(a)〉+o(τ),∀τ ∈ [0, 1], y∗ ∈ B .

By this generalized differentiability approach the authors arrive at the fol-
lowing F. John type result: Assume (CP) attains a local minimum at a ∈ C.
Suppose, ϕ0 : C → R is lsc and an upper approximation to f0 at a. Suppose,
ϕ : C → Y is ∗-lsc and a ∗-upper approximation to g at a. If (ϕ0, ϕ) is ∗-qv,
then ∃ (λ0, λ) ∈ R× P ∗, (λ0, λ) �= 0 such that

λ0f0(a) = λ0ϕ0(a) ≤ λ0ϕ0(x) + 〈λ∗, ϕ(x)〉, ∀ x ∈ C.

Clearly, the multiplier λ0 can be shown to be nonzero under an appropriate
Slater type constraint qualification.

Some Comments on Quasiconvexity for Vector-Valued Functions
and Related Recent Work

Note that there are quasiconvex maps that are not ∗-qv , but satisfy the
solvability theorem. This comes out from the following simple
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Example. Let Y = R2, C = R+, P = P ∗ = R2
+. Consider f = (f1, f2), f1(x) =

x, f2(x) = −x2. Then f1 and f2 are qv and so f is qv. But f is not ∗-qv
(consider y∗ = (2, 1)) On the other hand, i) is not true and ii) holds with
y∗ = (1, 0).
Thus it may be worthwhile to revisit optimality in quasiconvex optimiza-
tion. Another generalization of the classical notion of quasiconvex real-valued
functions to the vector-valued case is the geometrically appealing concept of
cone-quasiconvexity, introduced by Dinh The Luc, which states that for all
y ∈ Y the level set {x ∈ C|f(x) ∈ −P} is convex. The difficulty in scalarizing
such vector-valued functions lies in the fact that this concept is not stable
under composition with linear forms from the nonnegative polar of P (what
per definitionem holds true for ∗-quasiconvex functions). Nevertheless, in the
particular case where P is generated by an algebraic base in Rn, Dinh The
Luc [18] could characterize cone-quasiconvexity by the stability property that
the scalar function l ◦ f is quasiconvex for every extreme direction l of P+.
This characterization has been recently extended to closed convex cones in a
Banach space by Benoist, Borwein, and Popovici [1] assuming that (Y,≤P ) is
directed (i.e. (y1 + P ) ∩ (y2 + P ) �= ∅ for all y1, y2 ∈ Y ) and that the polar
P+ coincides with the weak-star closed convex hull of the set of its extreme
directions.

3.2 Towards Optimality Conditions in DC Optimization

In [4] the authors lift the class of almost dc (difference convex) functions due
to Gorokhovik [6] and Margolis [19] connected with the order structure of a
normed Riesz space to a higher level of abstraction and introduce the class
of almost S-DC functions with respect to a order cone S in a general locally
convex topological vector space. These almost S-DC functions encompass dif-
ferences f = p − q, where p is S-convex and q is regularly S-sublinear,but
nonconvex functions that are the difference of S-convex functions may not be
almost S-DC. Solvability theorems for this new class of nonconvex functions
are formulated in terms of subdifferentials and established both without as-
suming any regularity condition and under a Slater-type regularity condition,
using the Ky Fan minimax theorem.
In [5] the authors present new versions of theorems of the alternative, includ-
ing a generalized Farkas lemma, for systems of functions bounded above by
sublinear mappings and in particular for (possibly infinite) systems of differ-
ence sublinear functions. Here (possibly infinite dimensional) vector functions
g : X → Y are considered such that λg : X → R is bounded above by some
sublinear mapping pλ, respectively is a difference sublinear function for any λ
in the dual cone of the ordering cone in Y . This scalarization permits to ex-
press their theorems of the alternative in terms of the subdifferential ∂pλ(0),
respectively in terms of the subdifferential ∂(λg)(0) and the superdifferential
∂(λg)(0).
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In the second part of [5] the authors apply their new theorems of the alter-
native and derive first order optimality conditions of Karush-Kuhn-Tucker
type for weak minima of general quasidifferentiable vector optimization prob-
lems with vector-valued quasidifferentiable objective and constraint functions.
They illustrate their theory by some short examples discussing some special
problems of dc programming, (finite dimensional) quasidifferentiable program-
ming, infinite dimensional concave minimization,and nonsmooth semi-infinite
programming. In addition they study their presupposed constraint qualifica-
tion of local solvability in the setting of finite-dimensional locally Lipschitz and
directionally differentiable functions and are able to extend the well-known
Robinson stability condition to this nonsmooth setting.

Some Relations to More Recent Work
As the authors already remark, the stability investigations in [5] are essen-
tially finite-dimensional, since they rely critically on the Clarke generalized
derivative. The extension to some infinite dimensional (Banach) space setting
seems to be still open. In this context we refer to the recent deep study of
Jeyakumar and Yen [11] on stability theory of nonsmooth continuous systems
in finite dimensions where the recent theory of approximate Jacobians is em-
ployed and a new extension of the Robinson regularity condition is used.

On the other hand, the approach to optimality conditions in global optimiza-
tion via generalized theorems of the alternative, due to W. Oettli, B.M. Glover
and V. Jeyakumar, has been extended to general dc minimization in various
ways by V. Jeyakumar, A.M. Rubinov, B.M. Glover, Y. Ishizuka [10], respec-
tively by V. Jeyakumar and B.M. Glover [8, 9].

4 Conjugate Duality and Optimality in Nonconvex
Optimization

Here we report on the work of W. Oettli in [26], moreover on his more recent
work together with Schläger in [28] and with Flores-Bazán in [3].

4.1 Optimization with Quasiconvex Maps via a Perturbation
Approach

In [26] the abstract program

(P ) min f(x) subject to 0Y ∈ Γ (x), x ∈ X

is investigated, where X,Y are real topological vector spaces, f : X → R ∪
{+∞}, Γ : X ⇒ Y is a multimap. With Γ (x) := {G(x)} − C, x ∈ X for a
map G : X → Y and a convex cone C in Y , one obtains ordinary programs
with operator constraints.
Here, a perturbation approach to optimality conditions and conjugate duality
is given using the perturbation function
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σ(y) := inf
{
f(x) : x ∈ X, y ∈ Γ (x)

}
, y ∈ Y .

Recall that f is qv (quasiconvex), iff the strict level sets
{
x : f(x) < α

}
are

convex for all α ∈ R. Here a multimap Γ : X ⇒ Y is called qv (quasiconvex),
iff

λΓ (x1) + (1− λ)Γ (x2) ⊂
⋃{

Γ (ξ) : ξ ∈ [x1, x2]
}

for all x1, x2 ∈ X;λ ∈ [0, 1]. This definition not only includes convex mul-
timaps (i.e. multimaps with a convex graph), but is also the “right” extension,
since the perturbation function σ is shown to be qv for f qv and Γ qv.
Then under convexity and interior point conditions with respect to the convex
core topology, the separation theorem is applied to achieve the extension of the
classical optimality condition of Luenberger in finite dimensional quasiconvex
programming to general programs of the form (P): There exists a multiplier
l ∈ Y ∗ such that

(OC) σ(0) ≤ σ(y) for all y ∈ Y satisfying l(y) ≤ 0 .

The required assumptions are in particular satisfied for qv f with f |dom f

upper semicontinuous along lines and qv Γ with int Γ (x) �= ∅ under a Slater
type condition (∃x0 ∈ X such that 0 ∈ int Γ (x0)). Note that (OC) relaxes
the Kuhn-Tucker condition for (P )

σ(0) ≤ σ(y) + l(y), ∀ x ∈ dom f ∩ dom Γ, y ∈ Γ (x) .

The optimality condition (OC) motivates to introduce the dual functional
σ∗ : Y ∗ → R̄ by

σ∗(y∗) := inf
{
σ(y) : y ∈ Y, 〈y∗, y〉 ≤ 0

}
= inf

{
f(x) : x ∈ X, y ∈ Γ (x), 〈y∗, y〉 ≤ 0

}
.

Indeed, [26] proves the duality result that (OC) holds, iff σ(0) = σ∗(l) =
max

{
σ∗(y∗) : y∗ ∈ Y ∗

}
.

Clearly, σ∗ is positively homogeneous (of degree 0), and moreover shown to
be quasiconcave.
In a further step towards biduality, Y ∗ is endowed with some vector space
topology that is finer than σ(Y ∗, Y ) and the bidual function σ∗∗ : Y ∗∗ =
L(Y ∗,R) → R̄ is defined by

σ∗∗(y∗∗) := sup
{
σ∗(y∗) : y∗ ∈ Y ∗, 〈y∗∗, y∗〉 ≤ 0

}
.

From above, σ∗∗ is qv and positively homogeneous of degree 0.
With Y ⊂ Y ∗∗, one is led to compare σ and σ∗∗ on Y and [26] proves the
biduality result that σ∗∗(y) ≤ σ(y), ∀ y ∈ Y ; moreover, if (OC) holds, then
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σ∗∗(0) = σ(0). This situation can be interpreted as follows: σ∗∗|Y is a qv and
positively homogeneous (of zero degree) support functional to σ at 0. Thus,
σ∗∗|Y can be considered as a qv “subgradient” of σ.
Finally again employing the separation theorem, now assuming that the qv
function σ : Y → R̄ is lower semicontinuous at y = 0 in the locally convex
space Y , [26] establishes that σ∗∗(0) = σ(0).

Possible Extensions and Some Relations to More Recent Work
At the first sight, some concepts and results above (in particular definition
and quasiconcavity of σ∗) extend to more general coupling functions ϕ on
Y ∗× Y instead of the natural coupling 〈y∗, y〉. This gives a connection to the
modern theory of Abstract Convexity in the treatises of Rubinov [30] and of
Singer [33].
However, as already the definition of a qv multimap indicates, [26] works with
the inner definition of convexity based on the notion of convex combination.
On the contrary, the outer definition of convexity based on the separation
property leads to the modern abstract convexity theory of Rubinov ([30]).
This might be the key for the extension of some of the hard results (proved in
[26] by the separation theorem) to the more general general setting of abstract
convexity with the potential of further applications to global optimization.
Another direction of extension is to consider perturbations in the constraints
by subsets of a given set Y instead by elements of Y . Thus instead of (P ) one
can study perturbed programs and associated perturbation functions

σ∩(B) := inf
{
f(x) : x ∈ X,B ∩ Γ (x) �= ∅

}
, B ∈ B ;

σ⊂(B) := inf
{
f(x) : x ∈ X,B ⊂ Γ (x)

}
, B ∈ B

with B a given system of subsets of Y . Clearly, the constraint B ∩ Γ (x) �= ∅
rewrites 0Y ∈ Γ̃ (x), the constraint of (P ), with the modified multimap Γ̃ (x) =
Γ (x)−B. This reformulation, however, hides the dependence of the perturbed
program and its value on the perturbation B.
Instead of B = {{y}, y ∈ Y } one can consider B = 2Y , the set of subsets
of Y , or more generally a complete lattice B ⊂ 2Y ordered by containment.
The introduction of a complete lattice B gives a connection to the concepts
of abstract (quasi)convexity in [33].

More recently Penot and Volle [29] studied the more conventional quasiconvex
program of minimizing a quasiconvex function on a convex subset in a Banach
space under convex operator constraints. They were able to relax the Slater
condition to the now standard constraint qualification of convex optimization
and obtain a “surrogate” multiplier, i.e. a multiplier that satisfies (OC).
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4.2 Axiomatic Approach to Optimality and Conjugate Duality in
Global Optimization

In [28] the authors study conjugate duality with arbitrary coupling functions.
Their only tool is a certain support property, which is automatically fulfilled in
the two most widely used special cases, namely the case where the underlying
space is a topological vector space and the coupling functions are the contin-
uous linear ones, and the case where the underlying space is a metric space
and the coupling functions are the continuous ones. They obtain thereby a
simultaneous axiomatic extension of these two classical models. Also included
is a condition for global optimality, which requires only the mentioned support
property.

The axiomatic approach to optimality conditions in global optimization in
[28] is extended and deepened in [3]. There nonconvex vector minimization
problems min

{
g(x)− h(x) : x ∈ X

}
are considered, where g and h are func-

tions defined on an arbitrary set X and taking values in an topological space
Z, ordered by some convex cone P with nonempty interior. To mimic the
standard case Z = R, P = R+, (Z,≥P ) is assumed to be order-complete (i.e.
every nonempty subset of Z that has an upper bound, also has a supremum)
and two artificial elements +∞ and −∞ are adjoined to Z.
Further g and h are allowed to be proper extended-valued, i.e. g, h : X →
Z ∪ {+∞} with dom g =

{
x ∈ X : g(x) ∈ Z

}
�= ∅, dom h �= ∅. To extend the

classical subdifferential in convex analysis, a nonempty family Φ of functions
from X to Z are fixed. Then following earlier work by Flores-Bazán and
Martinez-Legaz, for any x̄ ∈ dom g and ε ∈ Z with ε ≥ 0,

∂εg(x̄) =
{
ϕ ∈ Φ : g(x)− g(x̄) ≥ ϕ(x)− ϕ(x̄)− ε, ∀ x ∈ X

}
.

Since this definition makes sense only when x̄ ∈ dom g, minorants besides
subgradients are introduced by

µαf(x̄) =
{
ϕ ∈ Φ : g(x) ≥ α+ ϕ(x)− ϕ(x̄), ∀ x ∈ X

}
for any x̄ ∈ X and α ∈ Z with α ≤ g(x̄).
In this order-theoretic setting, the authors put the following assumptions into
play:

(H1) ∀ x̄ ∈ X, α ∈ Z ∧ h(x̄)− α ∈ int P ⇒ µαh(x̄) �= ∅ ,
(H2) ∀ x̄ ∈ X, α ∈ Z ∧ h(x̄)− α ∈ P ⇒ µαh(x̄) �= ∅ .

These hypotheses are verified in various examples. Namely, with Z = R, con-
vex analysis guarantees (H1), respectively (H2) for convex proper functions
h with Φ = X∗, provided h is lower semicontinuous, respectively continu-
ous. Classic analysis provides the stronger condition (H2) for proper lower
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semicontinuous functions on a metric space with Φ given as the family of all
continuous functions on X. These instances are extended to general ordered
spaces in further examples.
Thus unifying previous work and proceeding to a new level of abstraction the
authors arrive at the following global optimality condition:
Assume (H1), let x◦ ∈ dom g ∩ dom h. Then x◦ solves the above minimization
problem in the sense that

g(x)− g(x◦) ≥p h(x)− h(x◦), ∀ x ∈ X,

if and only if
(∗) ∂εh(x◦) ⊂ ∂εg(x◦), ∀ ε ≥P 0 .

If (H1) is replaced by (H2) and Φ satisfies an extra condition, then the opti-
mality condition (∗) can be simplified to

(∗∗) ∂0h(x◦) ⊂ ∂0g(x◦).

Furthermore the authors are able to reformulate the optimality conditions
(∗) and (∗∗) as duality results of Singer-Toland type involving Φ-conjugate
functions (compare also with [33], especially chapters 8, 10).
The paper under review gives an essential contribution to the axiomatic opti-
mality and duality theory in nonconvex vector optimization. It clearly demon-
strates the role that lattice theory and sandwich theorems for vector functions
[2] play in this field.
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Local and Global Consumer Preferences
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Summary. Several kinds of continuous (generalized) monotone maps are character-
ized by partial gradient maps of skew-symmetric real-valued bifunctions displaying
corresponding (generalized) concavity-convexity properties. As an economic appli-
cation, it is shown that two basic approaches explaining consumer choice are behav-
iorally equivalent.

Key words: Consumer preference, equilibrium problem, generalized concave-
convex bifunction, generalized monotonicity, variational inequality.

1 Introduction

In order to explain consumer behavior, two basic models coexist in the eco-
nomic literature: the local and the global theory [10].
The global theory, described in more detail in Section 2, is the standard ap-
proach which assumes that a consumer is able to rank any two alternative
commodity bundles in a convex consumption set X ⊆ Rn. By contrast with
the usual textbook version, we do not suppose this ranking to be transitive.
According to Shafer[9], it is formalized by a continuous and complete binary
relationR onX that can be numerically represented by a continuous and skew-
symmetric real-valued bifunction r on X, i.e. xRy if and only if r(x, y) ≥ 0
where this is interpreted as ”x is at least as good as y”. We call R a global
preference on X.
Assume now that the consumer faces a nonempty set of feasible alternatives
Y ⊆ X from which he is allowed to choose. Then, the interpretation of R
implies a choice of an x ∈ Y such that x is as least as good as any other

∗I would like to thank Nicolas Hadjisavvas and Juan Enrique Mart́ınez-Legaz
for helpful discussions. In particular, I am grateful to N. Hadjisavvas for a valuable
suggestion leading to an improvement over an earlier version.
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alternative y ∈ Y . In terms of the numerical representation r of R, the choice
set assigned to Y in the global theory is given by

Cr(Y ) = {x ∈ Y | ∀y ∈ Y : r(x, y) ≥ 0},

i.e. Cr(Y ) is the solution set of the equilibrium problem EP(r, Y ) defined by
r on Y .
The local theory has been introduced by Allen[1] and further developed by
Georgescu-Roegen[4],[5] and Katzner[6]. By contrast with the global approach,
a local preference only requires that the consumer is able to rank alternatives
in a small neighborhood of a given bundle relative to that bundle. As will be
explained in Section 3, this idea can be represented by a continuous function
g : X → Rn such that y in a neighborhood of x is interpreted to be better
than x if and only if g(x)T (y − x) > 0. For Y ⊆ X the choice set assigned to
Y in the local theory is then characterized by

Cg(Y ) = {x ∈ Y | ∀y ∈ Y : g(x)T (y − x) ≤ 0},

i.e. Cg(Y ) is the solution set of the Stampacchia variational inequality problem
VI(g, Y ) defined by g on Y .2 Furthermore, as argued by Allen and Georgescu-
Roegen, stable choices require g to be at least pseudomonotone.
Conceptually, the local approach seems to be weaker than the global one.
However, as shown in Section 5 (Theorem 2), both are behaviorally equivalent
if the global preferences are represented by a class of bifunctions which are
defined as diagonally pseudo-concave-convex in Section 4. It means that any
such global preference representation r yields a local preference representation
gr such that Cgr (Y ) = Cr(Y ) for every convex Y ⊆ X and that, conversely, for
any given local preference defined by g there is a diagonally pseudo-concave-
convex global preference representation rg such that grg = g. Put differently,
for every convex Y ⊆ X the solutions to EP(r, Y ) and VI(gr, Y ) coincide as
well as those to VI(g, Y ) and EP(rg, Y ). Since gr is obtained as the partial
gradient map given by gr(x) = ∇1 r(x, x), this result confirms that ”VI can
be viewed as the differential form of EP” (I. Konnov in [7], p. 560).
Taking this view for granted, it is natural to extend the well known rela-
tionship between (generalized) convexity properties of real-valued functions
and cyclic (generalized) monotonicity properties of their gradients to the case
of non-gradient maps. In Section 4 several kinds of diagonally (generalized)-
concave-convex skew-symmetric bifunctions are introduced (Definition 1). It
is shown that their partial gradient mappings characterize continuous maps
with corresponding (generalized) monotonicity properties (Theorem 1). From
a purely mathematical viewpoint, this section contains the main results. They
provide the essential steps for the intended application to consumer theory in
Section 5.

2Notice the reverse inequality compared to the usual definition. This convention
is employed throughout the paper.
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2 Global Preferences

Consider an economy with a finite number n of commodities. A vector
x = (xi)n

i=1 ∈ Rn is called a consumption bundle and interpreted as the
consumption of xi units of commodity i for i = 1, ..., n where positive com-
ponents represent inputs (e.g.consumption goods) and negative components
represent outputs (e.g.labor services). In general, not all consumption bun-
dles are physically possible. We assume that the feasible ones are given by an
open convex subset X of Rn, the consumer’s consumption set. For example,
X = Rn

++ in case that only consumption goods are considered.
A consumer’s taste is described by a binary relation R on X where xRy is
interpreted as ”x is at least as good as y” or as ”x is (weakly) preferred
to y”. x is called strictly preferred (resp. indifferent) to y if xRy but not
yRx (resp. xRy and yRx). A basic assumption in the global theory is the
completeness of R, i.e.

xRy ∨ yRx for all x, y ∈ X.

Equivalently, any two consumption bundles x and y can be ranked in the sense
that either x is strictly preferred to y or y is strictly preferred to x or x and
y are indifferent.
In contrast to the standard textbook model (see e.g. [8]) we do not assume
that R is transitive, i.e. that R is a total preorder. However, as usual in that
model, we always require R to be continuous, i.e. R is a closed subset ofX×X,
and call a complete and continuous relation R a global preference on X.
In case that R is transitive, it is well known (see e.g. [3]), that R can be
represented by a continuous utility function u : X → R in the sense that for
all x, y ∈ X

xRy ⇔ u(x) ≥ u(y).
In the general case, Shafer[9] has shown that R has a continuous numerical
representation, i.e. a real-valued function r defined on X×X such that for all
x, y ∈ X

xRy ⇔ r(x, y) ≥ 0
r(x, y) = −r(y, x) .

Observe that a utility function yields such a representation by defining
r(x, y) = u(x)− u(y).
Conversely, it is obvious that any continuous skew-symmetric real-valued bi-
function r on X defines a global preference that is represented by r and,
therefore, is called a global preference representation.
Let us now describe a consumer’s behavior. If the consumer is allowed to make
a choice between the alternatives in a nonempty subset Y of X, it is natural
to assume that he will choose a bundle x ∈ Y such that xRy for all y ∈ Y . If
R is represented by r this is obviously equivalent to r(x, y) ≥ 0 for all y ∈ Y .
Put differently, the choice set
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Cr(Y ) = {x ∈ Y | ∀y ∈ Y : r(x, y) ≥ 0}
consists of all solutions to the equilibrium problem EP(r, Y ) defined by the
representing bifunction r on Y .
It is clear that, in general, the existence of such a bundle is not guaranteed.
In order that the concept of a preference can be considered as an operational
definition of a consumer, it should meet at least the requirement that the
choice set is nonempty for all nonempty, compact, and convex subsets Y of
X, in particular, for all compact budget sets.
In the transitive case, this property is implied by continuity. In general, an
additional assumption is needed. As it is well known, a sufficient condition
is that the representation r is quasiconvex in the second variable or, equiv-
alently, quasiconcave in the first variable (see e.g. [7], Theorem 13.1). At the
same time, this condition also ensures the convexity of Cr(Y ) which is an-
other indispensable property for developing a meaningful equilibrium theory.
For that reason, the utility function u in the standard model is usually also
assumed to be quasiconcave.
Most textbook presentations actually suppose that u is differentiable and
pseudoconcave in order to derive the well known first order characterization

x ∈ Cr(Y ) ⇔ ∀y ∈ Y : ∇u(x)T (y − x) ≤ 0.

In the general case with a differentiable and pseudoconcave-pseudoconvex
representation r one obtains the analogous characterization (see [7], Theorem
13.10)

x ∈ Cr(Y ) ⇔ ∀y ∈ Y : ∇1 r(x, x)T (y − x) ≤ 0
⇔ ∀y ∈ Y : ∇2 r(x, x)T (y − x) ≥ 0.

These results replace the global viewpoint embodied in the definition of Cr(Y )
by a local one in the sense that knowledge of R is only required near x.
As will be shown in Section 5, they even hold under weaker conditions on
r. Furthermore, they suggest to base a theory of choice directly on a local
preference concept to which we turn in the following section.

3 Local Preferences

Consider a consumer with a consumption set X as in the previous section
who faces alternative consumption bundles in a neighborhood of some given
bundle x ∈ X. Assume that the consumer is able to distinguish three kinds
of possible directions in which he can move away from x according to his
taste: Preference, nonpreference, and indifference. Allen[1] has formalized this
idea by postulating the existence of a vector g(x) ∈ Rn such that a direction
v ∈ Rn is a preference (resp. nonpreference, resp. indifference) direction if and
only if
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g(x)T v > 0 (resp. < 0, resp. = 0).

Observe that multiplying g(x) by some positive number does not change the
local preference, i.e. provided that g(x) �= 0 for all x ∈ X we could normalize
g by requiring ||g(x)|| = 1 for all x ∈ X. However, in order to be as general as
possible, we do not exclude the case g(x) = 0 which is interpreted as a local
satiation point.
According to Allen[1] and Georgescu-Roegen[4],[5], a consumer’s choice is de-
scribed as follows. Assume that x is contained in some given set Y ⊆ X that
represents the consumer’s feasible bundles. They have called x an ”equilibrium
position” relative to Y if no direction away from x to any other alternative y
in Y is one of preference, i.e. if

g(x)T (y − x) ≤ 0 for all y ∈ Y.

Thus, x is an equilibrium consumption bundle iff x is a solution to the Stam-
pacchia variational inequality problem VI(g, Y ) defined by g on Y .
Allen also required the equilibrium to be stable. He added an assumption on g
that was made more precise by Georgescu-Roegen who called it the ”principle
of persisting nonpreference”:
If the consumer moves away from an arbitrary bundle x to a bundle x+∆x
such that∆x is not a preference direction, then∆x is a nonpreference direction
at x+∆x. Formally stated, this principle says

g(x)T∆x ≤ 0 implies g(x+∆x)T∆x < 0,

or, by denoting x+∆x = y,

g(x)T (y − x) ≤ 0 implies g(y)T (y − x) < 0.

Clearly, this property is now called strict pseudomonotonicity of g, where, in
contrast to most of the literature, we use this notion in the sense of generalizing
a decreasing real valued function of one real variable.
Later, Georgescu-Roegen[5] generalized his principle of persisting nonprefer-
ence by only requiring g to be pseudomonotone, i.e.

g(x)T (y − x) ≤ 0 implies g(y)T (y − x) ≤ 0.

Not surprisingly, he also assumed continuity of g. Thus, we call a continuous
and pseudomonotone mapping g : X → Rn a local preference representation
on X.
It is important to notice that the local approach yields a satisfactory choice
behavior. Indeed, continuity and pseudomonotonicity of g imply that for any
nonempty, convex, and compact subset Y of X the choice set in the local
theory

Cg(Y ) = {x ∈ Y | ∀y ∈ Y : g(x)T (y − x) ≤ 0}
is nonempty, convex, and compact (see e.g. [7], Theorem 13.6).
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4 Main Results

In the sequel, X denotes a nonempty, open, and convex subset of Rn.
Let r : X ×X → R be a bifunction on X and define for arbitrary x ∈ X and
h ∈ Rn the single variable real valued functions r1(x, h) and r2(x, h) on the
set Ix,h = {t ∈ R|x+ th ∈ X} by

r1(x, h)(t) = r(x+ th, x) and r2(x, h)(t) = r(x, x+ th).

We call r diagonally differentiable if for all x, h and t the derivatives r1(x, h)′(t)
and r2(x, h)′(t) exist and are continuous in x, h, t and if the partial gradients
∇1 r(x, x) and ∇2 r(x, x) exist for all x ∈ X, i.e. for all x, h

r1(x, h)′(0) = ∇1 r(x, x)Th and r2(x, h)′(0) = ∇2 r(x, x)Th.

A basic derivation of such a bifunction from a continuous mapping g : X → Rn

is given in

Proposition 1. Let g : X → Rn be continuous. Then the bifunction rg :
X ×X → R defined by

rg(y, x) =
∫ 1

0

g (x+ s(y − x))T (y − x) ds

is skew-symmetric, continuous, and diagonally differentiable.3 More precisely,
for every x ∈ X and every h

rg
1(x, h)′(t) = g(x+ th)Th = −rg

2(x, h)′(t)

and, in particular,

∇1 r
g(x, x) = g(x) = −∇2 r

g(x, x).

Proof. It is easy to see that rg is skew-symmetric and continuous. Moreover,
for x, h and t such that x+ th ∈ X we obtain

rg
1(x, h)(t) = rg(x+ th, x) =∫ 1

0

g(x+ sth)T th ds =
∫ t

0

g(x+ sh)Th ds.

Since the derivative of the definite integral with respect to the upper limit of
integration is equal to the value of the integrand at that limit, g(x+ th)Th =
rg
1(x, h)′(t) = −rg

2(x, h)′(t) which is continuous in x, h, t. By definition of the
partial gradients, ∇1 r

g(x, x) = g(x) = −∇2 r
g(x, x). !"

3This function was suggested by Nicolas Hadjisavvas.
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The next proposition shows that (generalized) monotonicity properties of g
imply (generalized) concavity-convexity properties of the bifunction rg which
are introduced in the following definition. We emphasize that all notions of
(generalized) monotonicity are defined in the sense of generalizing a nonin-
creasing real valued function of one real variable.

Definition 1. A skew-symmetric and diagonally differentiable bifunction r on
X is called

(a) diagonally quasi-concave-convex, if for every x ∈ X and h �= 0 the function
r1(x, h) is quasiconcave,

(b) diagonally (strictly) pseudo-concave-convex, if for every x ∈ X and h �= 0
the function r1(x, h) is (strictly) pseudoconcave,

(c) diagonally (strictly) concave-convex, if for every x ∈ X and h �= 0 the
function r1(x, h) is (strictly) concave.

Proposition 2. Let g : X → Rn be a continuous function.

(a) If g is quasimonotone, then rg is diagonally quasi-concave-convex.
(b) If g is (strictly) pseudomonotone, then rg is diagonally (strictly) pseudo-

concave-convex.
(c) If g is (strictly) monotone, then rg is diagonally (strictly) concave-convex.

Proof. It is well known (see e.g. [2]) that all mentioned (generalized) monoto-
nicity properties of g are characterized by the corresponding property of the
single variable functions gx,h : Ix,h → R, defined by gx,h(t) = g(x+ th)Th. By
Proposition 1, gx,h is the derivative of rg

1(x, h) which implies the corresponding
(generalized) concavity property of rg

1(x, h) (see e.g. Proposition 2.5 in [2]). !"

Conversely, we shall show the (generalized) monotonicity of the partial gra-
dient map x �→ ∇1 r(x, x) for a skew-symmetric and diagonally (generalized)
concave-convex bifunction r. It turns out that this is already implied by weaker
(generalized) concavity-convexity conditions on r. These are, in a sense, local
versions of the well known characterizations for differentiable functions and
introduced in

Definition 2. Let r be a skew-symmetric bifunction on X. If the partial func-
tion r(·, x) is differentiable at x ∈ X then r is called

(i) quasi-concave-convex at x, if for all y ∈ X

∇1 r(x, x)T (y − x) < 0 ⇒ r(y, x) < 0, (1)

(ii) pseudo-concave-convex at x, if, in addition to (1), for all y ∈ X

∇1 r(x, x)T (y − x) ≤ 0 ⇒ r(y, x) ≤ 0, (2)

(iii) strictly pseudo-concave-convex at x, if for all y ∈ X, y �= x

∇1 r(x, x)T (y − x) ≤ 0 ⇒ r(y, x) < 0, (3)
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(iv) (strictly) concave-convex at x, if for all y ∈ X, y �= x

r(y, x) ≤ (<)∇1 r(x, x)T (y − x). (4)

Observe that (ii) in Definition 2 also requires (1) to be satisfied. Actually, it
is not difficult to show that in general (1) does not follow from (2). On the
other hand, (2) trivially implies

∇1 r(x, x)T (y − x) < 0 ⇒ r(y, x) ≤ 0 (5)

which means that in general (5) is weaker than (1).
However, in the special case where r(y, x) = f(y)−f(x) such that (2) describes
pseudoconcavity of f , (1) and (5) are equivalent and characterize quasicon-
cavity of f (see e.g. Proposition 2.1 in [2]). For our purpose, the stronger
condition (1) is the appropriate one as shown by the next two results. On the
one hand, (1) turns out to be necessary for a diagonally quasi-concave-convex
r, on the other hand, it is needed in the proof of quasimonotonicity of the
partial gradient mapping in Proposition 4.

Proposition 3. Let r be a skew-symmetric and diagonally differentiable bi-
function on X. Then the partial gradients ∇1 r(x, x) are continuous in x and

(a) If r is diagonally quasi-concave-convex, then r is quasi-concave-convex at
every x ∈ X.

(b) If r is diagonally (strictly) pseudo-concave-convex, then r is (strictly)
pseudo-concave-convex at every x ∈ X.

(c) If r is diagonally (strictly) concave-convex, then r is (strictly) concave-
convex at every x ∈ X.

Proof. The partial gradients are continuous by the definition of diagonal dif-
ferentiability. We only prove (a) and (c). The statement (b) is shown analo-
gously.
(a): By Definition 1, r is diagonally quasi-concave-convex if for every x ∈ X
and every h �= 0 the function r1(x, h) is quasiconcave, i.e. for all t1, t2 ∈ Ix,h

the inequality r1(x, h)′(t1)(t2−t1) < 0 implies that r1(x, h)(t2) < r1(x, h)(t1).
By setting h = y − x for y ∈ X, y �= x and t1 = 0, t2 = 1 we ob-
tain r1(x, h)′(t1)(t2 − t1) = ∇1 r(x, x)T (y − x), r1(x, h)(t2) = r(y, x) and
r1(x, h)(t1) = r(x, x) = 0 which yields (1).
(c): r is diagonally (strictly) concave-convex if for every x ∈ X and every
h �= 0 the function r1(x, h) is (strictly) concave, i.e. for all t1, t2 ∈ Ix,h such
that t1 �= t2 the inequality r1(x, h)(t2)−r1(x, h)(t1) ≤ (<) r1(x, h)′(t1)(t2−t1)
holds. Setting h, t1, t2 as before yields (4). !"
Proposition 4. If the bifunction r on X is quasi-concave-convex (resp. (stric-
tly) pseudo-concave-convex, resp. (strictly) concave-convex) at every x ∈ X
then the gradient mapping gr defined by

gr(x) = ∇1 r(x, x)

is quasimonotone (resp. (strictly) pseudomonotone, resp. (strictly) monotone).
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Proof. If r is quasi-concave-convex at every x, ∇1 r(x, x)T (y− x) < 0 implies
r(y, x) ≤ 0 by (1). From skew-symmetry of r it follows that r(x, y) ≥ 0 and,
again by (1), that ∇1 r(y, y)T (x−y) ≥ 0 or, equivalently, ∇1 r(y, y)T (y−x) ≤
0. Hence, gr is quasimonotone.
Assume now that r is pseudo-concave-convex at every x. If ∇1 r(x, x)T (y −
x) ≤ 0 then, by (2), r(y, x) ≤ 0 or, equivalently, r(x, y) ≥ 0. Hence, (1) implies
∇1 r(y, y)T (x− y) ≥ 0, i.e. ∇1 r(y, y)T (y−x) ≤ 0. Thus, we have proved that
gr is pseudomonotone.
In the strict case, by (3),∇1 r(x, x)T (y−x) ≤ 0 and x �= y imply r(y, x) < 0 or,
equivalently, r(x, y) > 0. It follows again from (3) that ∇1 r(y, y)T (x− y) > 0
or ∇1 r(y, y)T (y − x) < 0. Hence, gr is strictly pseudomonotone.
Finally, assume that r is (strictly) concave-convex at every x. (4) implies the
inequalities

r(y, x) ≤ (<) ∇1 r(x, x)T (y − x)
r(x, y) ≤ (<) ∇1 r(y, y)T (x− y).

Adding these inequalities and using skew-symmetry yields

0 ≤ (<) [∇1 r(x, x)−∇1 r(y, y)]T (y − x)

or, equivalently,

[∇1 r(x, x)−∇1 r(y, y)]T (x− y) ≤ (<) 0.

Thus, gr is (strictly) monotone. !"

The previous results can be summarized by the following

Theorem 1. Let g : X → Rn be defined on an open and convex subset X of
Rn. Then the following statements are equivalent:

(i) g is continuous and quasimonotone (resp. (strictly) pseudomonotone, resp.
(strictly) monotone).

(ii) There is a skew-symmetric, continuous, and diagonally quasi-concave-
convex (resp. diagonally (strictly) pseudo-concave-convex, resp. diagonally
(strictly) concave-convex) bifunction r : X ×X → R such that for every
x ∈ X

∇1 r(x, x) = g(x).

(iii) There is a skew-symmetric and continuous bifunction r : X × X →
R which is quasi-concave-convex (resp. (strictly) pseudo-concave-convex,
resp. (strictly) concave-convex) at every x ∈ X such that ∇1 r(x, x) = g(x)
is continuous in x.

Proof. By Propositions 1 and 2, (i) implies (ii) by choosing r = rg. (iii) follows
from (ii) by Proposition 3. Finally, by Proposition 4, (iii) implies (i). !"
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Remark: In an earlier version of this paper the implication (i) ⇒ (iii) was
obtained more easily by assigning to g the bifunction rg defined by

rg(y, x) =
1
2
(g(y) + g(x))T (y − x).

The use of rg enables the proof of the stronger implication (i) ⇒ (ii). The
question remains whether (ii) can be further sharpened.

5 Behavioral Equivalence of the Local and the Global
Approach

In order to prove the behavioral equivalence of the local and the global theory
we need a further step that is provided by the following

Proposition 5. Let r be a skew-symmetric and continuous bifunction on X
that is pseudo-concave-convex at every x ∈ X and let Y be a convex subset of
X with x̄ ∈ Y . Then the following statements are equivalent:

(i) r(x̄, y) ≥ 0 for all y ∈ Y .
(ii) ∇1 r(x̄, x̄)T (y − x̄) ≤ 0 for all y ∈ Y .
(iii) ∇2 r(x̄, x̄)T (y − x̄) ≥ 0 for all y ∈ Y .

Proof. By (2) and skew-symmetry of r, (i) is immediately implied by (ii).
Assume now that (i) holds. Convexity of Y implies that x̄+ t(y − x̄) ∈ Y for
t ∈ [0, 1]. Thus, it follows from (i) that r(x̄, x̄+ t(y − x̄)) ≥ 0 for all t ∈ [0, 1].
Hence, for all t > 0

1
t
[r(x̄, x̄+ t(y − x̄))− r(x̄, x̄)] ≥ 0

and, consequently,

∇2 r(x̄, x̄)T (y − x̄) = lim
t→0+

1
t
[r(x̄, x̄+ t(y − x̄))− r(x̄, x̄)] ≥ 0,

i.e., we have shown that (i) implies (iii).
Finally, ∇2 r(x̄, x̄) = −∇1 r(x̄, x̄) by skew-symmetry of r, i.e. (iii) and (ii) are
equivalent. !"

Assume that the behavior of a consumer with the consumption set X is de-
scribed by a choice correspondence C on X which assigns to each nonempty
and convex subset Y of X a (possibly empty) choice set C(Y ) ⊆ Y . Then the
local and the global approach are behaviorally equivalent in the sense of the
following

Theorem 2. If C is a choice correspondence on X, the following conditions
are equivalent:
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(i) C = Cg for some local preference representation g on X.
(ii) C = Cr for some diagonally pseudo-concave-convex global preference rep-

resentation r on X.

Moreover, the equivalence also holds for strictly pseudomonotone local rep-
resentations and diagonally strictly pseudo-concave-convex global representa-
tions.

Proof. If (i) holds, then, by Theorem 1, (i) ⇒ (ii), there is some diago-
nally pseudo-concave-convex global preference representation rg such that
∇1 r

g(x, x) = g(x) for every x ∈ X. This implies for every Y that x̄ ∈ Cg(Y )
iff g(x̄)T (y− x̄) ≤ 0 for all y ∈ Y , i.e. ∇1 r

g(x̄, x̄)T (y− x̄) ≤ 0 for all y ∈ Y . By
Proposition 5, the latter statement is equivalent to rg(x̄, y) ≥ 0 for all y ∈ Y ,
i.e. to x̄ ∈ Crg

(Y ).
Conversely, if (ii) is satisfied then we obtain for every Y that x̄ ∈ Cr(Y ) iff
r(x̄, y) ≥ 0 for all y ∈ Y . By Proposition 5, this is equivalent to the inequality
∇1 r(x̄, x̄)T (y− x̄) ≤ 0 for all y ∈ Y , i.e. to x̄ ∈ Cgr (Y ) for gr(x) = ∇1 r(x, x).
By Theorem 1,(ii) ⇒ (i), gr is continuous and pseudomonotone, i.e. a local
preference representation.
The strict case is proved analogously. !"
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Optimality Conditions for Convex Vector
Functions by Mollified Derivatives
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Summary. Necessary and sufficient optimality conditions for nonsmooth multiob-
jective optimization problems and some characterizations of convex vector functions
are proved by means of mollified derivatives.

Key words: Mollified derivatives, convexity, nonsmooth optimization

1 Introduction

In this paper we study optimality conditions for vector functions by means of
mollified derivatives. This type of generalized derivative was introduced first
by Ermoliev, Norkin and Wets (see [8]) in the area of stochastic optimization
and then studied in recent papers by Burke, Lewis and Overton [2] and by
Crespi, La Torre and Rocca in [6, 7]. The earliest use of these tools in the con-
text of nonsmooth optimization is probably due to the work of Craven [4, 5].
The main idea behind this technique consists of building smooth approxi-
mations of nonsmooth data and using these to obtain first and second order
generalized derivatives. The smoothness techniques based on mollifiers seems
to be a good tools for this purpose; they allow to have sequences of smooth
functions with the same regularity of the mollifier. So if it is at least twice
differentiable one can consider sets of cluster points of classical derivatives as
use these to obtain generalized optimality conditions. Necessary conditions
for nonsmooth multiobjective problems have been proved by Crespi, La Torre
and Rocca in [7]; here we conclude the analysis of the vector case studying
sufficient conditions and some characterizations of convex vector functions.
These results follow a componentwise approach; the analysis of the vector
case is reduced to the study of the properties of each component. In partic-
ular, section 2 recalls the notion of mollifier, and the definitions of first and
second order mollified derivatives. Section 3 deals with optimality conditions
for nonsmooth vector functions with and without convexity.
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2 Preliminaries

We now recall some important definitions and results which will be useful in
the following. From now on all the functions considered will be assumed to be
locally integrable. The following two definitions recall the notion of mollifier
and mollified functions. These are built taking the convolution between the
nonsmooth data and the mollifier.

Definition 1. [1] A sequence of mollifiers is any sequence of functions ψε :
IRm → IR+, ε ↓ 0, such that:

i) supp ψε := {x ∈ IRm | ψε(x) > 0} ⊆ ρεclB, ρε ↓ 0,

ii)
∫

IRm

ψε(x)dx = 1,

where B is the unit ball in IRn, clX means the closure of the set X and dx
denotes Lebesgue measure.

Definition 2. [1] Given a locally integrable function f : IRm → IR and a
sequence of bounded mollifiers, define the functions fε(x) through the convo-
lution

fε(x) :=
∫

IRm

f(x− z)ψε(z)dz.

The sequence fε(x) is said a sequence of mollified functions.

A crucial point in this technique is the convergence of sequence of mollified
functions fε to f . This is stated in the following results.

Theorem 1. [1] Let f ∈ C (IRm). Then fε converges continuosly to f , i.e.
fε(xε) → f(x) for all xε → x. In fact fε converges uniformly to f on every
compact subset of IRm as ε ↓ 0.

Definition 3. [10] A sequence of functions fn : IRm → IR epi–converges to
f : IRm → IR at x, if:

i) lim infn→+∞ fn(xn) ≥ f(x) for all xn → x;
ii) limn→+∞ fn(xn) = f(x) for some sequence xn → x.

The sequence fn epi–converges to f if this holds for all x ∈ IRm, in which case
we write f = e− lim fn.

Definition 4. [8] A function f : IRm → IR is said strongly lower semicon-
tinuous (s.l.s.c.) at x if it is lower semicontinuous at x and there exists a
sequence xn → x with f continuous at xn (for all n) such that f(xn) → f(x).
The function f is strongly lower semicontinuous if this holds at all x.
The function f is said strongly upper semicontinuous (s.u.s.c.) at x if it is
upper semicontinuous at x and there exists a sequence xn → x with f con-
tinuous at xn (for all n) such that f(xn) → f(x). The function f is strongly
lower semicontinuous if this holds at all x.
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Theorem 2. [8] Let εn ↓ 0. For any s.u.s.c. function f : IRm → IR and any
associated sequence fεn

of mollified functions, we have for any x ∈ IRm:

i) lim supn→+∞ fεn
(xn) ≤ f(x) for any sequence xn → x;

ii) limn→+∞ fεn
(xn) = f(x) for some sequence xn → x.

Proposition 1. [11, 12] Whenever the mollifiers ψε are of class Ck, so are
the associated mollified functions fε.

The following definitions recall the notion of first order mollified derivatives
(upper and lower).

Definition 5. [8] Let f : IRm → IR, εn ↓ 0 as n → +∞ and consider the
sequence fεn

of mollified functions with associated mollifiers ψεn
∈ C1. The

upper mollified derivative of f at x0 in the direction d ∈ IRm, with respect to
(w.r.t.) the mollifiers sequence ψεn

is defined as:

D ψf(x0, d) := sup
xn→x0

lim sup
n→+∞

∇fεn
(xn)�d.

Definition 6. Let f : IRm → IR, εn ↓ 0 as n→ +∞ and consider the sequence
fεn

of mollified functions with associated mollifiers ψεn
∈ C1. The lower molli-

fied derivative of f at x0 in the direction d ∈ IRm, w.r.t. the mollifiers sequence
ψεn

is defined as:

D ψf(x0, d) := inf
xn→x0

lim inf
n→+∞∇fεn

(xn)�d.

In [8] it has been defined also the following generalized gradient

∂ψf(x0) :=
{
L := lim sup

n→+∞
∇fεn

(xn), xn → x0

}
.

The following proposition states a relationship between this and the Clarke’s
generalized gradient.

Proposition 2. [8] Let f : IRm → IR be locally Lipschitz at x; then ∂ψf(x)
coincides with Clarke’s generalized gradient and Dψf(x0, d) coincides with
Clarke’s generalized derivative ([3]).

The following two propositions recall the properties of the first order deriva-
tives.

Proposition 3. [7] Let f : IRm → IR and x ∈ IRm. Then:

i) D ψf(·; d) is upper semicontinuous (u.s.c.) at x for all d ∈ IRm;
ii) D ψf(·; d) is lower semicontinuous (l.s.c.) at x for all d ∈ IRm.

Proposition 4. [7] D ψf(x; ·) and D ψf(x; ·) are positively homogeneous func-
tions. Furthermore, if D ψf(x; ·) (D ψf(x; ·) respectively) is finite then it is
subadditive (resp. superadditive) and hence convex (resp. concave) as a func-
tion of the direction d.
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We now recall the notion of second order mollified derivative. As in the first or-
der, we use the regularity of the mollifier to build these generalized derivatives
(upper and lower).

Definition 7. [7] Let f : IRm → IR, εn ↓ 0 and consider the sequence of
mollified functions fεn

, obtained from a family of mollifiers ψεn
∈ C2. We

define the second–order upper mollified derivative of f at x0 in the directions
d and v, w.r.t. to the mollifiers sequence ψεn

, as:

D 2
ψf(x; d, v) := sup

xn→x
lim sup
n→+∞

d�Hfεn
(xn)v,

where Hfεn
(x) is the Hessian matrix of the function fεn

∈ C2 at the point x.

Definition 8. [7] Let f : IRm → IR, εn ↓ 0 and consider the sequence of
mollified functions fεn

, obtained from a family of mollifiers ψεn
∈ C2. We

define the second–order lower mollified derivative of f at x0 in the directions
d and v, w.r.t. the mollifiers sequence ψεn

, as:

D 2
ψf(x; d, v) := inf

xn→x
lim inf
n→+∞ d�Hfεn

(xn)v.

Proposition 5. [7] Let f : IRm → IR and x ∈ IRm.

i) If λ > 0, then:

D 2
ψλf(x; d, d) = λD 2

ψf(x; d, d);
D 2

ψλf(x; d, d) = λD 2
ψf(x; d, d).

Moreover, if λ < 0 we get:

D 2
ψλf(x; d, d) = λD 2

ψf(x; d, d).

ii) The maps (d, v) → D 2
ψf(x; d, v) and (d, v) → D 2

ψf(x; d, v) are symmetric
(that is D 2

ψf(x; d, v) = D 2
ψf(x; v, d) and D 2

ψf(x; d, v) = D 2
ψf(x; v, d)).

iii) The functions D 2
ψf(x; d, ·) and D 2

ψf(x; d, ·) are positively homogeneous,
whenever d ∈ IRm.

iv) If D 2
ψf(x; ·, ·) (D 2

ψf(x; ·, ·) resp.) is finite, then it is sublinear (superlin-
ear).

v) D 2
ψf(x; d,−v) = −D 2

ψf(x; d, v).
vi) D 2

ψf(·; d, v) is upper semicontinuous (u.s.c.) at x for every d, v ∈ IRm.
vii)D 2

ψf(·; d, v) is lower semicontinuous (l.s.c.) at x for every d, v ∈ IRm.

Using these notions of derivatives it is possible the following generalized Tay-
lor’s formula which will be useful for proving optimality conditions.

Theorem 3. [7] Let f : IRm → IR be a s.l.s.c. (resp. s.u.s.c.) function and
let εn ↓ 0, t > 0 and d ∈ IRm.



Optimization by Mollified Derivatives 331

i) If ψεn
∈ C1 is a sequence of mollifiers, there exists a point ξ ∈

[
x0, x0 + td

]
such that:

f(x0 + td)− f(x0) ≤ tD ψf(ξ; d).(
f(x0 + td)− f(x0) ≥ tD ψf(ξ; d)

)
ii) If ψεn

∈ C2 is a sequence of mollifiers, there exists ξ ∈ [x0, x0 + td] such
that:

f(x0 + td)− f(x0) ≤ tD ψf(x0; d) + t2

2 D 2
ψf(ξ; d)(

f(x0 + td)− f(x0) ≥ tD ψf(x0; d) + t2

2 D 2
ψf(ξ; d)

)
assuming that the righthand sides are well defined, i.e. it does not happen
the situation +∞−∞ (in which the first term is +∞ and the second in
−∞).

3 Convex Vector Functions and Optimization

In this section we recall a characterization of convex vector functions and nec-
essary conditions proved in [7] by means of second–order mollified derivatives.
Then we study sufficient conditions with and without convexity. The following
definition recalls the notion of convexity for vector functions.

Definition 9. A vector function f : IRm → IRl is said to be IRl
+-convex if

each component fi, i = 1 . . . l, is convex.

Lemma 1. [9] Let f : IRm → IR be a continuous function. Then f is convex
if and only if the mollified functions fε, obtained from a sequence of mollifiers
ψε, are convex for every ε > 0.

Lemma 2. [13] Let f : IRm → IR be a continuous function. Then f is convex
if and only if:

f(x+ td)− 2f(x) + f(x− td)
t2

≥ 0,

∀x, d ∈ IRm, ∀t ∈ IR.

Theorem 4. [7] Let f : IRm → IR be a continuous function and let εn ↓ 0
and ψεn

∈ C2. A necessary and sufficient condition for f to be convex is that:

D 2
ψf(x; d) ≥ 0, ∀x ∈ IRm, ∀d ∈ IRm.

Corollary 1. [7] Let f : IRm → IRl be a continuous function and let εn ↓ 0
and ψεn

∈ C2. A necessary and sufficient condition for f to be IRl
+-convex is

that:
D 2

ψfi(x; d) ≥ 0, ∀x ∈ IRm,∀d ∈ IRm,∀i = 1 . . . l.
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Given f : IRm → IRl and a subset X ⊂ IRm we now consider the following
vector optimization problem:

V P ) min
x∈X

f(x).

We recall that a ≤IRl b if and only if b−a ∈ IRl
+. For this type of problem the

notion of of (weak) solution is recalled in the following definition.

Definition 10. x0 ∈ X is a local (weak) solution of VP) if there exists a
neighborhood U of x0 such that [f(U ∩X)−f(x0)]∩ (−IRl

+\{0}) = ∅. ([f(U ∩
X)− f(x0)] ∩ (−int IRl

+) = ∅).

In the sequel, the following definitions of first order set approximations will
be useful.

Definition 11. Let x0 ∈ cl X, where cl X is the closure of the set X. We
define the following sets

• WF (X,x0) = {d ∈ IRm|∃tn ↓ 0, x0 + tnd ∈ X}
• T (X,x0) = {d ∈ IRm|∃tn ↓ 0, dn → d, x0 + tndn ∈ X}

which are called, respectively, the cone of weak feasible directions and the
contingent cone.

Theorem 5 (First order necessary condition). [7] Assume that fi, i =
1, . . . , l, are s.l.s.c. functions. Let εn ↓ 0, ψεn

∈ C1, and x0 ∈ X be a weak
local solution of VP). Then the following system has no solution on the set
WF (X,x0):

D ψfi(x0; d) < 0, i = 1, . . . , l,

that is:
max

i=1,...,l
D ψfi(x0; d) ≥ 0, ∀d ∈WF (X,x0).

Theorem 6 (First order sufficient condition). Assume that fi, i =
1, . . . , l, are s.u.s.c. functions and the function (x, u) → D ψfi(x, u) is lower
semicontinuous, ∀i = 1 . . . l. Let εn ↓ 0, ψεn

∈ C1. If for all d ∈ T (X,x0) we
have:

max
i=1,...,l

D ψfi(x0; d) > 0

then x0 is a local minimum point.

Proof. Suppose that x0 is not a local minimum point; then there exists xn →
x0 such that f(xn) ∈ f(x0) − (IRm

+\{0}). Then xn = x0 + tndn with tn ↓ 0,
dn → d and d ∈ T (X,x0). So, for all i = 1 . . . l, we have

0 ≥ fi(xn)− fi(x0) ≥ D ψfi(ξn; dn)
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where ξn ∈ [x0, x0 + tndn]. Taking the limit when n → +∞ and using the
lower semicontinuity property, we obtain

0 ≥ D ψfi(x0; d)

which is absurdo.

Lemma 3. Let X be a convex subset of IRm and f : IRm → IRl be a IRl
+

convex function. Then

f(x)− f(y)−D ψf(y;x− y) ∈ IRl
+

for all x, y ∈ IRm.

Proof. By using the previous lemma 1, we obtain

fi,ε(x)− fi,ε(y) ≥ ∇fi,ε(y)(x− y).

If yn → y and εn ↓ 0, then

fi,εn
(x)− fi,εn

(yn) ≥ ∇fi,εn
(yn)(x− yn)

= ∇fi,εn
(yn)(x− y)−∇fi,εn

(yn)(yn − y).

Since fi is convex then it is locally Lipschitz at the point y with a Lipschitz
constant Ky. This implies that ∇fi,εn

(yn) is bounded by Ky when n is suffi-
ciently large. So

lim
n→+∞∇fi,εn

(yn)(yn − y) = 0

and then we prove that

f(x)− f(y)−D ψf(y;x− y) ∈ IRl
+.

Theorem 7. Let X be convex subset of IRm and x0 ∈ IRm. If f : IRm → IRl

is IRl
+-convex and

max
i=1,...,l

D ψfi(x0; d) ≥ 0, ∀d ∈WF (X,x0).

then x0 is a weak minimum point.

Proof. The hypothesis implies that

D ψf(x0; d) ⊂ (−int IRl
+)c

∀d ∈WF (X,x0) and so using the previous lemma

f(x) ∈ f(x0) +D ψf(x0;x− x0) + IRl
+

⊂ f(x0) + IRl
+ + (−int IRl

+)c

⊂ f(x0) + (−int IRl
+)c.
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Definition 12. The sets of the descent directions D≤ and D≤ for f at x0

are:

D≤(f, x0) = {d ∈ IRm : D ψf(x0; d) ∈ −IRl
+},

D≤(f, x0) = {d ∈ IRm : D ψf(x0; d) ∈ −IRl
+},

where D ψf(x0; d) := {D ψf1(x0; d), . . . ,D ψfl(x0; d)} and D ψf(x0; d) :=
{D ψf1(x0; d), . . . ,D ψfl(x0; d)}.

Theorem 8. [7] Assume that fi, i = 1, . . . , l, are s.l.s.c. functions, εn ↓ 0,
ψεn

∈ C2. If x0 ∈ X is a local weak minimum point then

max
i∈I(x0;d)

D 2
ψfi(x0; d) ≥ 0

for all d ∈WF (X,x0) ∩D≤(f, x0), where

I(x0; d) =
{
i : D ψfi(x0; d) = 0, i = 1 . . . l

}
.

Theorem 9. Assume that fi, i = 1, . . . , l, are s.u.s.c. functions and εn ↓
0, ψεn

∈ C2. Suppose that the functions (x, u) → D ψfi(x, u) and (x, u) →
D 2

ψfi(x, u) are lower semicontinuous, ∀i = 1, . . . , l. If for all d ∈ T (X,x0) ∩
D≤(f, x0) we have:

max
i∈I(x0,d)

D 2
ψfi(x0; d) > 0,

where
I(x0; d) =

{
i : D ψfi(x0; d) = 0, i = 1 . . . l

}
.

then x0 is a local minimum point.

Proof. Suppose that x0 is not a local minimum point; then there exists a
sequence xn → x0 such that f(xn) ∈ f(x0) − (IRl

+\{0}). If we build dn =
(xn−x0)/‖xn−x0‖ then dn ∈ S1 = {d ∈ IRm : ‖d‖ = 1} and so dn → d ∈ S1.
In other words xn = x0 + tndn and d ∈ T (X,x0). So

f(xn)− f(x0) ≥ tnD ψf(ξn; dn)

and using the lower semicontinuity we have d ∈ D≤(f, x0). For all i ∈ I(x0, d),
we have

0 ≥ fi(xn)− fi(x0)− tnD ψfi(x0; d) ≥
t2n
2
D 2

ψfi(ξn; dn)

where ξn ∈ [x0, x0 + tndn]. Taking the limit when n → +∞ and using the
lower semicontinuity property, we obtain

0 ≥ D 2
ψfi(x0; d).
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On Arcwise Connected Convex Multifunctions
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Summary. In this paper arcwise connected convex multifunctions are introduced
and studied. Optimality conditions involving this type of data are analyzed.
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1 Introduction

The notions of convexity and generalized convexity have been studied by many
authors in literature for the crucial role they play in analysis and optimization.
The present paper generalizes to multifunctions the work by Fu and Wang [3]
for vector functions. A multifunction F : Rn ⇒ Rm is a function from Rn to
the power set 2R

m

. We introduce a generalized definition of arcwise connected
multifunction and we study nonsmooth optimization problems involving this
type of data. In the following definitions the notions of local and global (weak)
minimum point are recalled. Let C ⊂ Rm be a closed convex pointed cone.

Definition 1. A point (x0, y0) with y0 ∈ F (x0) is said to be a local weak
minimum point if there exists a neighbourhood U of x0 such that F (x) ⊆
y0 + (−intC)c for all x ∈ U ∩K. A point (x0, y0) with y0 ∈ F (x0) is said to
be a global weak minimum point if F (x) ⊆ y0 + (−intC)c for all x ∈ K.

Definition 2. A point (x0, y0) with y0 ∈ F (x0) is said to be a local minimum
point if there exists a neighbourhood U of x0 such that F (x) ⊆ y0+(−C\{0})c

for all x ∈ U ∩ K. A point (x0, y0) with y0 ∈ F (x0) is said to be a global
minimum point if F (x) ⊆ y0 + (−C\{0})c for all x ∈ K.

Given a subsetK of Rn we will focus the attention on constrained optimization
problems as

min
x∈K

F (x).

We recall that the graph of F (see [1]) is the following subset of Rn × Rm
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graphF = {(x, y) ∈ Rn × Rm : y ∈ F (x)}

If F (x) is a closed, compact or convex we say that F is closed, compact or
convex value, respectively. A function f : Rn → Rm is a local selection of
F at x0 if there exists a neighbourhood U(f, x0) such that f(x) ∈ F (x),
∀x ∈ U(x0). We denote by Fx0 the set of all local selections of F at x0. If
F : Rn ⇒ Rm and c ∈ Rm then the level set levcF is defined as

levcF = {x ∈ Rn : c ∈ F (x) + C}.

Several definitions of generalized convexity for multifunctions has been pro-
posed in literature. Here we listed some of these and we show some relations
among them.

Definition 3. Let F : Rn ⇒ Rm be multifunction. F is said to be

• (i) weak C-convex if

[tF (x1) + (1− t)F (x2)] ∩ [F (tx1 + (1− t)x2) + C] �= ∅

whenever x1, x2 ∈ Rn and t ∈ (0, 1);
• (ii) almost C-convex if

tF (x1) + (1− t)F (x2) ⊆ cl [F (tx1 + (1− t)x2) + C]

whenever x1, x2 ∈ Rn and t ∈ (0, 1);
• (iii) C-convex if

tF (x1) + (1− t)F (x2) ⊆ F (tx1 + (1− t)x2) + C

whenever x1, x2 ∈ Rn and t ∈ (0, 1);
• (iv) convex if

tF (x1) + (1− t)F (x2) ⊆ F (tx1 + (1− t)x2)

whenever x1, x2 ∈ Rn and t ∈ (0, 1).
• (v) quasi convex if the levcF is convex for all c ∈ Rm.

Notions (i) and (iii) have been firstly introduced in [4, 9] and the notion (ii)
have been studied in [6]. Other works concerning the classical notion of convex
multifunctions are [5, 7]. Other definitions of convexity for multifunctions that
have been omitted here can be found in [4]. For notion (v) one can see [2]. It
is trivial to prove the following relationships among the above definitions

convexity ⇒ C − convexity ⇒
{

almost C−convexity
weak C−convexity.

Furthermore if F is C-convex then it is quasi convex.
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2 Arcwise Connected Cone Convex Multifunctions

The aim of this section is to extend the definition of arcwise connected cone
convex function (AC functions), introduced by Fu and Wang [3] for vector
functions, to multifunctions. The following definition recalls the notion of
arcwise connected set (AC set).

Definition 4. [3] The subset K ⊆ Rn is to be arcwise connected set (AC
set) if for any x, y ∈ K there exists a continuous function, called arc, Hx,y :
[0, 1] → K such that Hx,y(0) = x and Hx,y(1) = y.

It is trivial to show that a convex set is an AC set and a convex multifunction
is an AC multifunction. We now recall the definition of AC function.

Definition 5. [3] Let K ⊂ Rn be an AC set and f : K → Rm. f is called
an arcwise connected cone convex function (shortly, AC function) if for any
x, y ∈ K there is and arc Hx,y ⊂ K such that

tf(x) + (1− t)f(y) ⊆ f(Hx,y(t)) + C

for all t ∈ [0, 1].

Definition 6. [3] Let K ⊂ Rn be an AC set and f : K → Rm. f is called
an arcwise connected cone convex function (shortly, AC function) if for any
x, y ∈ K there is and arc Hx,y ⊂ K such that

tf(x) + (1− t)f(y) ⊆ f(Hx,y(t)) + C

for all t ∈ [0, 1].

The following definitions recall two notions of generalized derivatives for vector
functions. We introduce the notion of Dini AC directional derivative for the
first order and Peano AC directional derivative for the second order. These
types of derivatives are built taking the set of cluster points of sequences of
particular incremential ratios.

Definition 7. Let K ⊂ Rn be an AC set, f : K → Rm and x0 ∈ K. Given
x ∈ K the Dini AC directional derivative of f with respect to Hx0,x is defined
as

f ′(x0;Hx0,x) =
{
l = lim

n→+∞
f(Hx0,x(tn))− f(x0)

tn
: tn ↓ 0

}
.

We say that f is AC directional differentiable (see [3]) if

lim
t↓0

f(Hx0,x(t))− f(x0)
t

exists.
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The following definition of second order derivative follows the initial idea
due to Peano; generalized derivatives can be built by considering generalized
Taylor expansions without introducing the second order incremential ratio
(that is the incremential ratio of the first order derivative). This idea has been
studied by many authors for vector functions, usually under hypotheses of
differentiability of the involve data. Here this definition is introduced without
any request on the data; we only need that the Dini AC derivative is nonempty.

Definition 8. Let K be an AC set, x0, x ∈ K and z0 ∈ f ′(x0;Hx0,x). The
Peano AC directional derivative of f at (x0, z0) with respect to Hx0,x is defined
as

f ′′(x0, z0;Hx0,x) =
{
l = lim

n→+∞ 2
f(Hx0,x(tn))− f(x0)− tnz0

t2n
: tn ↓ 0

}
.

The following result characterizes an AC function by directional derivative.

Theorem 1. [3] Let K ⊂ Rn be an AC set and f : K → Rm be an AC
function. If f is AC directionally differentiable then

f(x)− f(x0) ∈ f ′(x0;Hx0,x) + C.

2.1 Extensions to Multifunctions

We now introduce the notion of arcwise connected cone convex multifunctions
(AC multifunctions).

Definition 9. Let K be an AC set. A multifunctions F : Rn ⇒ Rm is called
an arcwise connected cone convex multifunctions (shortly, AC multifunction)
if for any x, y ∈ K there is arc Hx,y such that

tF (x) + (1− t)F (y) ⊆ F (Hx,y(t)) + C

for all t ∈ [0, 1].

It is easy to see when F is single valued this notion reduces to the definition
of AC function.

Definition 10. A set valued map F : Rn ⇒ Rm is said to be arcwise connected
quasi convex multifunction (ACQC multifunction) if the levcF is arcwise con-
nected for all c ∈ Rm.

Definition 11. A given multifunction F : K ⇒ Rm is said to be convexlike
(briefly, CL multifunction) if for all x, y ∈ K and for all ∈ [0, 1] there exists
a zt ∈ K such that

tF (x) + (1− t)F (y) ⊆ F (zt) + C.
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It is clear that an AC multifunction is also a CL multifunction. As for single-
valued functions, for multifunctions it is possible to define several kind of
derivatives. Here we extend the previous definitions of AC Dini derivative and
AC Peano derivative to multifunctions.

Definition 12. Let K be an AC set, x0 ∈ K and y0 ∈ F (x0). Given x ∈ K
the Dini AC directional derivative of F with respect to Hx0,x is defined as

F ′(x0, y0;Hx0,x) =
{
l = lim

n→+∞
f(Hx0,x(tn))− y0

tn
: tn ↓ 0, f ∈ Fx0

}
.

Definition 13. Let K be an AC set, x0, x ∈ K, y0 ∈ F (x0) and z0 ∈
F ′(x0, y0;Hx0,x). The Peano AC directional derivative of F with respect to
Hx0,x is defined as

F ′′(x0, y0, z0;Hx0,x)
=

{
l = limn→+∞ 2 f(Hx0,x(tn))−y0−tnz0

t2n
: tn ↓ 0, f ∈ Fx0

}
.

3 Preliminary Properties

Theorem 2. Let K ⊆ Rn be an AC set and F : K ⇒ Rm. If F is AC
multifunction then it is ACQC multifunction.

Proof. Let c ∈ Rm and x1, x2 ∈ levcF . Since F is AC then there exists an arc
Hx1,x2 such that

tF (x1) + (1− t)F (x2) ⊆ F (Hx1,x2(t)) + C.

Then

c = tc+ (1− t)c ∈ t(F (x1) + C) + (1− t)(F (x2) + C)
= tF (x1) + (1− t)F (x2) + C ⊆ F (Hx1,x2(t)) + C

that is Hx1,x2(t) ∈ levcF for all t ∈ [0, 1].

Theorem 3. Let K be an AC set and F : Rn ⇒ Rm be an AC multifunction.
If (x0, y0) is a local weak minimum then it is a global weak minimum.

Proof. If (x0, y0) is a local weak minimum then there exists a neighbourhood
U of x0 such that

F (x) ⊆ y0 + (−intC)c

for all x ∈ K ∩ U . Given x ∈ K, there exists an arc Hx0,x such that

tF (x) + (1− t)F (x0) ⊆ F (Hx0,x(t)) + C
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for all t ∈ [0, 1]. For t sufficiently small we have

F (Hx0,x(t)) + C ⊆ y0 + (−intC)c.

Then
tF (x) + (1− t)y0 ⊆ y0 + (−intC)c

and this implies
F (x) ⊆ y0 + (−intC)c

that is the thesis.

Theorem 4. Let K be an AC set and suppose that F (x) ⊆ f(x) + C for all
x ∈ K. If f is a selection of F and f is an AC function then F is an AC
multifunction.

Proof. In fact for all x ∈ K there exists an arc Hx0,x such that

tf(x) + (1− t)f(y)− f(Hx0,x(t)) ∈ C

for all t ∈ [0, 1]. So we have

tF (x) + (1− t)F (y) ⊆ t(f(x) + C) + (1− t)(f(y) + C)
⊆ tf(x) + (1− t)f(y) + C
⊆ f(Hx0,x(t)) + C
⊆ F (Hx0,x(t)) + C

for all t ∈ [0, 1].

Theorem 5. Let K be an AC set and suppose that F (x) ⊆ f(x) + C for all
x ∈ K. If f is a selection of F and F is an AC multifunction then f is an
AC function.

Proof. In fact we have

tf(x0) + (1− t)f(x) ⊆ tF (x0) + (1− t)F (x)
⊆ F (Hx0,x(t)) + C
⊆ f(Hx0,x(t)) + C.

4 Necessary Optimality Conditions

We now prove necessary optimality conditions involving this type of general-
ized convex multifunctions. These conditions involve the first order and second
order generalized directional derivatives we have introduced in section 2.
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Theorem 6. Let K be an AC set, x0 ∈ K. Suppose that (x0, y0) be a weak
local minimum point. Then

F ′(x0, y0,Hx0,x) ∩ −intC = ∅

for all x ∈ K and for all arcs Hx0,x : [0, 1] → K, Hx0,x(0) = x0 and
Hx0,x(1) = x.

Proof. Suppose that there exists a x ∈ K and an arc Hx0,x such that

F ′(x0, y0,Hx0,x) ∩ −intC �= ∅.

So there exist a selection f ∈ Fx0 , tn ↓ 0 and l ∈ F ′(x0, y0,Hx0,x) ∩ −intC
such that

l = lim
n→+∞

f(Hx0,x(tn))− y0
tn

.

Since (x0, y0) is a local weak minimum point we have for n large enough

f(Hx0,x(tn))− y0
tn

⊆ (−intC)c

and this implies l ∈ (−intC)c.

Theorem 7. Let K be an AC set, x0 ∈ K. Suppose that (x0, y0) be a weak
local minimum point. If there exists x ∈ K and an arc Hx0,x : [0, 1] → K,
Hx0,x(0) = x0 and Hx0,x(1) = x and F ′(x0, y0,Hx0,x) ⊆ −C\ − intC then

F ′′(x0, y0, z0;Hx0,x) ∩ −intC = ∅

for all z0 ∈ F ′(x0, y0,Hx0,x).

Proof. If ∃z0 ∈ F ′(x0, y0,Hx0,x) such that F ′′(x0, y0, z0;Hx0,x) ∩ −intC �= ∅
then there exists a selection f ∈ Fx0 , tn ↓ 0 and l ∈ F ′′(x0, x, z0;Hx0,x) ∩
−intC such that

l = lim
n→+∞ 2

f(Hx0,x(tn))− y0 − tnz0
t2n

∈ (−intC)c + C\intC = (−intC)c.

5 Sufficient Optimality Conditions

In this section we prove sufficient conditions for the existence of minimum
points for an AC multifunction.

Theorem 8. Let K be an AC set, x0 ∈ K and suppose that F is an AC
multifunction at x0. Furthermore suppose that f is a selection of F and
F (x) ⊆ f(x) + C for all x ∈ K. If f is AC directionally differentiable at
x0 for all arcs Hx0,x then

F (x)− y0 ⊆ F ′(x0, f(x0);Hx0,x) + C.
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Proof. From previous theorems we have that f is an AC function, that is for
all x ∈ K there exists an arc Hx0,x (see [3]) such that

f(x)− f(x0)− f ′(x0;Hx0,x) ∈ C.

So

F (x)− f(x0) ⊆ f(x)− f(x0) + C ⊆ f ′(x0;Hx0,x) + C
⊆ F ′(x0, f(x0);Hx0,x) + C.

In the following we will denote by B(x, δ) the ball of radius δ centered at x.

Theorem 9. Let K be an AC set, x0 ∈ K, y0 ∈ F (x0). Suppose that

• for all x, y ∈ K and for all arcs Hx,y we have Hx,y([0, 1]) ⊂ B(x, ‖x −
y‖) ∪B(y, ‖x− y‖);

• there exist constants Kx0 > 0 and δ > 0 such that F (x) ⊆ y0 +Kx0‖x −
x0‖B(0, 1) for all x ∈ B(x0, δ);

• for all x ∈ B(x0, δ) and for all arcs Hx0,x we have F ′(x0, y0;Hx0,x)∩−C =
∅.

Then (x0, y0) is a local minimum point.

Proof. Ab absurdo, suppose that there exists xn → x0 and yn ∈ F (xn),
xn ∈ K, such that yn ∈ y0 −C\{0}. Eventually by extracting a subsequence,
we suppose that ‖xn − x0‖ ≤ δ

n . Since K is an AC set between two points xn

and xn+1 there is an arc Hxn,xn+1 . A function H∗ from x1 to x0 can be built
by

H∗
x1,x0

(t) = Hxn,xn+1 (−n (n+ 1) (t− 1/n))

with t ∈ [1/n, 1/(n + 1)], n ∈ N. So H∗
x1,x0

(
1
n

)
= xn and H∗

x1,x0

(
1

(n+1)

)
=

xn+1. From the first hypothesis easily follows that Hx1,x0 is an arc (that is
continuous) starting from x1 ∈ B(x0, δ) ∩K. So we have

yn − y0
1/n

= nKx0‖xn − x0‖bn

and bn → b0, b0 ∈ B(0, 1). Then

yn − y0
1/n

∈
F (H∗

x1,x0
(1/n))− y0
1/n

and, eventually by extracting subsequences, yn−y0
1/n → l ∈ −C.

Theorem 10. Let K be an AC set, x0 ∈ K and y0 ∈ F (x0). Suppose that
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• for all x ∈ K there exists an arc Hx0,x such that

F (x) ⊆ y0 + F ′(x0, y0;Hx0,x) + C;

• F ′(x0, y0;Hx0,x) ∩ −intC = ∅ for all x ∈ K and for all arcs Hx0,x.

Then (x0, y0) is a weak minimum point.

Proof. Given x ∈ K, there exists an arc Hx0,x such that

F (x) ⊆ y0 + F ′(x0, y0;Hx0,x) + C
⊆ y0 + C + (−intC)c ⊆ y0 + (−intC)c

that is (x0, y0) is a weak minimum point.
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Summary. The aim of the paper is to suggest a sequential method for generating
the set E of all efficient points of a bicriteria problem PB where the feasible region
is a polytope and whose criteria are a linear function and a concave function which
is the sum of a linear and the reciprocal of an affine function. The connectedness of
E and some theoretical properties of PB allow to give a finite simplex-like algorithm
based on a suitable post-optimality analysis carried on a scalar parametric problem
where the linear criteria plays the role of a parametric constraint.

Key words: Fractional programming, pseudoconcavity, bicriteria problems,
parametric optimization.

1 Introduction

The bicriteria problem, that is the constrained problem of maximizing two ob-
jective functions, is widely studied and several algorithms have been suggested
for several classes of functions [8]. A particular attention has been devoted to
a bicriteria linear fractional problem, that is the problem where one criteria f1
is a linear fractional function and the second one f2 is linear since this occurs
frequently in optimization problems involving criteria that are rates or ratios,
such as return on investments, dividend coverage, margin on sales, produc-
tivity measures [4, 8, 9, 10, 12, 16]. For such a kind of bicriteria problem a
sequential method has been suggested by one of the authors [4].
The aim of the paper is to extend this sequential method when f1 is the sum
of a linear and a linear fractional function (such kind of functions occurs in
many applications and it has been studied by several authors [1, 9, 12, 15, 16]).
Unfortunately, for this class of problems the set E of all efficient points is in
general disconnected since f1 can have several local maximum points not
global. For such a reason we limit ourselves to consider the case where f1 is
also concave.
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The concavity of the two criteria ensures the connectedness of E which can be
characterized as the union of optimal solutions of a scalar parametric problem
P (α) having the concave fractional function f1 as the objective function while
the second linear criteria f2 plays the role of a parametric constraint.
A sequential method for generating E is obtained performing a suitable post-
optimality analysis on P (α) which is based on some theoretical properties of
the bicriteria problem. The post-optimality analysis utilizes a finite algorithm
(suggested in Section 3) for solving the scalar problem of maximizing f1 on a
polytope.

2 Statement of the Problem and Preliminary Results

In this paper we consider the bicriteria problem where the first objective
function is the sum between a linear and a linear fractional function, the
second one is linear and the feasible set is a polytope.
It is known [14] that in order to guarantee the connectedness of the set E of
all efficient points we must require the strictly quasiconcavity of the nonlinear
function.
Recently it has been shown [2] that f1(x) = hTx+ cT x+c0

dT x+d0
is pseudoconcave (in

particular strict quasiconcave) on the halfspace H = {x ∈ #n : dTx+ d0 > 0}
if and only if f1(x) = hTx − γ

dT x+d0
with γ > 0, or f1(x) = kdTx + cT x+c0

dT x+d0
with k < 0. In particular the first function is concave and the second one is
pseudoconcave.
From now on we consider the following concave bicriteria problem

PB :

⎧⎨⎩
max(f1(x) = hTx− γ

dT x+d0
, f2(x) = qTx)

x ∈ S

where h, d ∈ #n, d0 ∈ #\{0}, γ > 0, S = {x ∈ #n : Ax = b, x ≥ 0} is a
compact set, A is m×n matrix with rank(A) = m < n, b ∈ #m, dTx+d0 > 0,
∀ x ∈ S and x ≥ 0 means x ∈ #n

+.
The sequential method that we will suggest in Section 4 can be easily adapted
to the case where the nonlinear criteria in PB is substituted with f1(x) =
kdTx+ cT x+c0

dT x+d0
.

In order to state some fundamental properties of PB , consider the parametric
problem

P (α) :

⎧⎨⎩
max f1(x)
x ∈ S
qTx = α

with α ∈ [αmin, αmax] where

αmax = {max qTx : x ∈ S}
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αmin = {max qTx : x ∈ S, f1(x) = M}
M = {max f1(x) : x ∈ S}.

Let S(α) be the set of all optimal solutions of the problem P (α).
The following theorem holds.

Theorem 1. Consider problem PB . Then:
i) E is not empty and connected;
ii) x0 ∈ E ∩ intS if and only if there exists β < 0 such that

h+
γd

(dTx+ d0)2
= βq (1)

iii) problem P (α) is equivalent to the problem⎧⎨⎩
max f1(x)
x ∈ S

f2(x) ≥ α
(2)

iv)
E =

⋃
α∈[αmin,αmax]

S(α)

Proof. i) It follows from the compactness of the feasible set and from the
concavity of the objective functions.
ii) It follows applying the Kuhn-Tucker conditions to problem PB which are
necessary and sufficient since the two criteria are concave.
The proof of iii) and iv) can be found in [13].

Remark 1. Condition iii) points out that any optimal solution of problem (2)
is binding to the parametric constraint; condition iv) holds in general when
one of the objective functions of a bicriteria problem does not have a local
maximum point different from the global one.

The algorithm that we will describe in Section 4 requires the knowledge of
a sequential method for solving problem P (α); this will be done in the next
section.

3 A Sequential Method for Calculating M

In order to suggest a sequential method for generating the set of all efficient
points of problem PB we need of an algorithm for solving the following concave
maximization problem:

P :

⎧⎨⎩
max f1(x) = hTx− γ

dT x+d0

x ∈ S
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Set:

ξmin = {min dTx+ d0 : x ∈ S}, ξmax = {max dTx+ d0 : x ∈ S}.

Some fundamental properties of problem P are stated in the following theo-
rem.

Theorem 2. Consider problem P . Then:
i) f1 is concave on S;
ii) a local maximum point is also global;
iii) x0 ∈ intS is an optimal solution if and only if h = βd, β < 0, − γ

β ∈
(ξmin, ξmax);
iv) there exists an optimal solution x0 of P belonging to an edge of S (in
particular x0 can be a vertex of S).

Proof. i) The Hessian matrix of f1 is H(x) = − 2γ
(dT x+d0)3

ddT so that H(x) is
negative semidefinite on the halfspace H = {x ∈ #n : dTx+ d0 > 0}.
ii) It follows from the concavity of f1.
iii) The concavity of f1 implies that x0 ∈ intS is a global maximum point if
and only if ∇f1(x0) = h− γd

(dT x+d0)2
= 0. Setting β = − γ

(dT x+d0)2
and taking

into account the feasibility of x0 the thesis is achieved.
iv) Let x∗ be an optimal solution for problem P ; then the linear program⎧⎨⎩

− γ
dT x∗+d0

+ maxhTx

x ∈ S ∩ {x ∈ #n : dTx = dTx∗} = S∗

has an optimal solution on a vertex x0 of S∗ which belongs to an edge of S
and such that f1(x0) = f1(x∗).

Following [7], we solve problem P by means of a suitable post-optimality
analysis performed on the parametric problem

P (ξ) :

⎧⎨⎩
max(hTx− γ

ξ )
x ∈ S

dTx+ d0 = ξ

where ξ ∈ [ξmin, ξmax].
We will refer to every ξ ∈ [ξmin, ξmax] as a feasible level and to any optimal
solution of problem P (ξ) as an optimal level solution.
The following theorem holds.

Theorem 3. i) An optimal solution x∗ of P is also an optimal level solution
corresponding to the level ξ∗ = dTx∗ + d0;
ii) if an optimal level solution x∗ is a local maximum point with respect to an
edge of S, then x∗ is a global maximum point of P.
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Proof. See [7].

The previous theorem suggests a procedure which generates a path of optimal
level solutions the last of which is a global maximum point for P.
The basic ideas of the procedure are the following: we start from a vertex x0

which is an optimal level solution (the first one will be an optimal solution of
P (ξmin)). If the directional derivatives of f1 with respect to the edges starting
from x0 are not positive then x0 is the global maximum point for P , otherwise
we choose an edge sk such that any of its points is an optimal level solution. We
consider the restriction of f1 on the edge sk; if there exists a feasible maximum
point for such a restriction then it is a global maximum point for P , otherwise
we move on a suitable adjacent vertex and we repeat the analysis.
In order to describe analitically the procedure we introduce the following
notations and we state some theoretical results.
Let x0 be a vertex of the feasible region S with corresponding basis matrix
AB . We partition the matrix A as A = [AB , AN ] and the vectors x, h, d as
xT = (xB , xN ), hT = (hB , hN ), dT = (dB , dN ). Set:

• h
T

N = hT
N − hT

BA
−1
B AN , d

T

N = dT
N − dT

BA
−1
B AN ;

• h0 = hT
BA

−1
B b, d0 = dT

BA
−1
B b+ d0;

• α1 = xBs

ask
= min{xBi

aik
: aik > 0} where aik is the i−th element of the

column A−1
B A

(k)
N ;

• Γ = d
2

0hN + γdN ;
• J = {j : Γj > 0}.
It is easy to verify that Γ

d
2
0

is the vector of the directional derivatives of f1
with respect to the directions associated to the feasible edges starting from
x0.
Let z(xNk

) be the restriction of the function f1 on the feasible edge sk starting
from x0. We have:

z(xNk
) = hNk

xNk
+ h0 −

γ

dNk
xNk

+ d0

z′(xNk
) = hNk

+
γdNk

(dNk
xNk

+ d0)2

The following theorem holds.

Theorem 4. Let x0 be a vertex of S which is an optimal level solution. Then
i) x0 is an optimal solution of P if and only if J = ∅;
ii) let k be the index such that

hNk

dNk

= max
j∈J

hNj

dNj

Then any point of the feasible edge sk starting from x0 associated to xNk
is

an optimal level solution;
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iii) If hNk
≥ 0 then z(xNk

) is increasing in [0, α2) with α2 = +∞;

iv) If hNk
< 0, then z(xNk

) has a maximum point at α2 = −d0hNk
+
�

−γhNk
dNk

hNk
dNk

.

Now we are able to summarize the algorithm given in [7] with respect to our
class of functions.

ALGORITHM 1

STEP 1 Let x0 ∈ S be a vertex which is an optimal solution of the problem
{min dTx+ d0, x ∈ S}. Go to step 2.

STEP 2 Calculate Γ = d
2

0hN + γdN . If J = ∅ then x0 is an optimal solution
of P : Stop. Otherwise go to step 3.

STEP 3 Calculate k, α1, α2 and set α = min(α1, α2). If α = α1 go to step
4. If α = α2 then x = (xB(α2), α2, 0) is an optimal solution of P : Stop.

STEP 4 The non-basic variable xNk
enters the basis by means of a pivot

operation on the element ask. Let x0 be the new vertex. Go to step 2.

Remark 2. The set of optimal solutions of problem P is a convex set contained
in the hyperplane dTx + d0 = dTx0 + d0 where x0 is the optimal solution
generated by the algorithm.

Example 1. Consider the following problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max(2x1 − 5x2 − 195
3x1+4x2+2 )

2x1 − 2x2 ≤ 1
3x1 − x2 ≤ 3
x2 ≤ 3

x1, x2 ≥ 0

Step 1 The denominator dTx + d0 = 3x1 + 4x2 + 2 reaches its minimum at
(0, 0) which is a vertex and an optimal level solution. The associated simplex-
tableau is the following:

0 2 −5 0 0 0
−2 3 4 0 0 0

x3 1 2 −2 1 0 0
x4 3 3 −1 0 1 0
x5 3 0 1 0 0 1

Go to Step 2.
Step 2 It results

Γ = 22

(
2
−5

)
+ 195

(
3
4

)
=

(
593
760

)
.

Since J �= ∅ go to Step 3.
Step 3 Since max{2

3 ,−
5
4} = 2

3 , we have k = 1, α1 = min{ 1
2 , 1} = 1

2 , α2 =
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+∞, so that α = α1 = 1
2 . Go to Step 4.

Step 4 The nonbasic variable x1 enters the basis and x3 leaves the basis.

−1 0 −3 −1 0 0
− 7

2 0 7 − 3
2 0 0

x1
1
2 1 −1 1

2 0 0
x4

3
2 0 2 − 3

2 1 0
x5 3 0 1 0 0 1

Go to Step 2.
Step 2 It results

Γ = (
7
2
)2

(
−3
−1

)
+ 195

(
7

− 3
2

)
=

(
5313

4
− 1219

4

)
Since J �= ∅ go to Step 3.

Step 3 We have k = 1, α1 = min{ 3
4 , 3} = 3

4 , α2 = − ( 7
2 )(−3)+

√
−195(−3)7

(−3)7 =

− 1
2 + 1

7

√
455 so that α = α1 = 3

4 . Go to Step 4.
Step 4 The nonbasic variable x2 enters the basis and x4 leaves the basis.

5
4 0 0 − 13

4
3
2 0

− 35
4 0 0 15

4 −
7
2 0

x1
5
4 1 0 − 1

4
1
2 0

x2
3
4 0 1 − 3

4
1
2 0

x5
9
4 0 0 3

4 −
1
2 1

Go to Step 2.
Step 2 It results

Γ = (
35
4

)2
(
− 13

4
3
2

)
+ 195

(
3
2

− 7
2

)
=

(
30875

64
− 18165

32

)

We have k = 1; α1 = 3, α2 = − ( 35
4 )(− 13

4 )+
√

−195(− 13
4 ) 15

4
(− 13

4 ) 15
4

= 5
3 , so that α =

α2 = 5
3 . We have (x1, x2, x5) = (5

4 ,
3
4 ,

9
4 ) + 5

3 ( 1
4 ,

3
4 ,−

3
4 ) = (5

3 , 2, 1), so that the
point (5

3 , 2) is the optimal solution of the problem.

4 A Sequential Method for a Generalized Fractional
Bicriteria Problem

The procedure illustrated in the previous section allows us to propose a se-
quential method for solving the bicriteria problem PB .
The theoretical properties established in Section 2 allow us to suggest a simple
simplex-like procedure for generating the set E of all efficient points by means
of a suitable post-optimality analysis performed on the parametric problem
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P (α) starting from P (αmin).
In order to calculate M and to determine αmin, it is necessary, firstly, to solve
problem P and it can be done by means of Algorithm 1.
If there exists a unique optimal solution x0 for P, then αmin = qTx0, otherwise
we must solve the following problem

{max qTx : x ∈ S, hTx− γ

dTx+ d0
= hTx0 − γ

dTx0 + d0
} (3)

which presents a nonlinear constraint.
The following theorem shows that problem (3) is equivalent to a suitable linear
problem; more exactly we have the following theorem.

Theorem 5. Let x0 be an optimal solution of P. Then problem (3) is equiv-
alent to the following problem⎧⎪⎪⎨⎪⎪⎩

max qTx
hTx = hTx0

dTx+ d0 = dTx0 + d0

x ∈ S

Proof. It is sufficient to note that the constraint f1(x) = M is verified for
every x ∈ S such that dTx+ d0 = dTx0 + d0 (see Remark (2)).

Taking into account Theorem 1, we have

E =
⋃

t∈[0,αmax−αmin]

S(t)

where S(t) is the set of optimal solutions of the parametric problem

P (t) :

⎧⎪⎪⎨⎪⎪⎩
maxhTx− γ

dT x+d0

Ax = b
qTx = αmin + t

x ≥ 0

In order to solve problem P (t) for every fixed t we apply the Algorithm 1 where

now A is substituted with
(
A
qT

)
and b is substituted with

(
b

αmin + t

)
.

The post-optimality analysis is performed by studying the optimality condi-
tion Γ (t) ≤ 0 and the feasibility condition xB(t) ≥ 0.
Set O = {t : Γ (t) ≤ 0} and F = {t : xB(t) ≥ 0}.
For any t which belongs to the intersection of O and F, (xB(t), 0) is the opti-
mal solution of P (t) and consequently it is an efficient point of PB .
When t does not belong to O we can restore the optimality applying Theorem
4. When t does not belong to F we can restore the feasibility by means of a
suitable pivot operation.
Now we are able to describe a sequential method for generating E.
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Let us note that the slack variable associated to the parametric constraint
must be a non basic variable in any step of the algorithm so that the column
of the simplex tableau associated to such a variable is not involved in the
process (it will be deleted in the next examples).

ALGORITHM 2

STEP 0 Determine M and αmin and consider problem P (t); set t̂ = 0 and
go to Step 1.

STEP 1 Determine the sets O and F ; if O ∩ F = ∅ go to step 4, otherwise
set t = max{t : t ∈ O∩F}; (xB(t), 0) is an efficient point of PB ∀ t ∈ [t̂, t],
set t̂ = t and go to Step 2.

STEP 2 If t̂ is an endpoint of F go to step 3; otherwise go to Step 4.
STEP 3 Let i be such that xBi

(t̂) = 0; if aij ≥ 0, ∀ j : Stop. Otherwise
perform a pivot operation on the element aik such that

Γk(t)
aik

= min
{
Γj(t)
aij

, aij < 0
}

and go to Step 1.

STEP 4 Let k be such that hNk

dNk

= maxj∈J
hNj

dNj

; calculate:

α2(t) = −
d0(t)hNk

+
√
−γhNk

dNk

hNk
dNk

t∗ = max{t : x̄B(t) = xB(t)− α2(t)A−1
B A

(k)
N ≥ 0}.

Then (x̄B(t), α2(t), 0) is an efficient point for PB , ∀ t ∈ [t̂, t∗]. Let s be
such that x̄Bs

(t∗) = 0. Set t̂ = t∗, perform a pivot operation on ask and
go to Step 1.

Example 2. Consider the following bicriteria problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max(2x1 − 5x2 − 195
3x1+4x2+2 , x2)

2x1 − 2x2 ≤ 1
3x1 − x2 ≤ 3
x2 ≤ 3

x1, x2 ≥ 0

Step 0 Referring to Example 1 we have M = f1( 5
3 , 2), so that αmin = 2. The

introduction of the parametric constraint gives the following parametric
problem:
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P (t) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(2x1 − 5x2 − 195
3x1+4x2+2 )

2x1 − 2x2 ≤ 1
3x1 − x2 ≤ 3
x2 ≤ 3

x2 = 2 + t
x1, x2 ≥ 0

We insert the parametric constraint in the tableau corresponding to the
vertex ( 5

4 ,
3
4 ) and after a suitable update we obtain:

20
3 + 13

3 t 0 0 0 − 2
3 0

−15− 5t 0 0 0 −1 0
x1

5
3 + 1

3 t 1 0 0 1
3 0

x2 2 + t 0 1 0 0 0
x5 1− t 0 0 0 0 1
x3

5
3 + 4

3 t 0 0 1 − 2
3 0

Go to Step 1.
Step 1 Taking into account that t ≥ 0, we have F = [0, 1],

Γ (t) = (15+5t)2(− 2
3 )+195(−1), O = [0,+∞), so that O∩F = [0, 1] and

t = max{t : t ∈ O∩F} = 1. Every point of the segment having S = (5
3 , 2),

T = (2, 3) as its endpoints is an efficient point. Set t̂ = 1 and go to Step
2.

Step 2 t̂ = 1 is an endpoint of F so that we go to Step 3.
Step 3 Any coefficient of the row corresponding to the variable x5 is non-

negative so that the algorithm terminates. It results E = TS.

Example 3. Consider the following bicriteria problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max(2x1 − 5x2 − 195
3x1+4x2+2 , −3x1 + x2)

2x1 − 2x2 ≤ 1
3x1 − x2 ≤ 3
x2 ≤ 3

x1, x2 ≥ 0

Step 0 Referring to Example 1 we have M = f1( 5
3 , 2), so that αmin = −3.

The introduction of the parametric constraint gives the following para-
metric problem:

P (t) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(2x1 − 5x2 − 195
3x1+4x2+2 )

2x1 − 2x2 ≤ 1
3x1 − x2 ≤ 3
x2 ≤ 3

−3x1 + x2 = −3 + t
x1, x2 ≥ 0



A Method for Bicriteria Problems 357

We insert the parametric constraint in the tableau corresponding to the
vertex ( 5

4 ,
3
4 ) and after a suitable update we obtain

− 3
2 t+

5
4 0 0 − 13

4 0 0
7
2 t−

35
4 0 0 15

4 0 0
x1 − 1

2 t+
5
4 1 0 − 1

4 0 0
x2 − 1

2 t+
3
4 0 1 − 3

4 0 0
x5

1
2 t+

9
4 0 0 3

4 0 1
x4 t 0 0 0 1 0

and go to Step 1.
Step 1 We have F = [0, 3

2 ], Γ (t) = (− 7
2 t+

35
4 )2(− 13

4 ) + 195(15
4 ),

O = [9514 ,+∞), so that O ∩ F = ∅ and we go to Step 4.
Step 4 We have k = 1,

α2(t) = −
(− 7

2 t+
35
4 )(− 13

4 ) +
√
−195(− 13

4 )(15
4 )

(− 13
4 )(15

4 )
=

14
15
t− 5

3

xB(t) =

⎛⎜⎜⎝
− 1

2 t+
5
4

− 1
2 t+

3
4

1
2 t+

9
4

t

⎞⎟⎟⎠ + (
14
15
t− 5

3
)

⎛⎜⎜⎝
1
4
3
4
− 3

4
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
− 4

15 t+
5
3

1
5 t+ 2
− 1

5 t+ 1
t

⎞⎟⎟⎠
and t∗ = max{t : x̄B(t) ≥ 0} = 5 with x̄B5(t

∗) = 0. For t ∈ [0, 5] the point
(− 4

15 t + 5
3 ,

1
5 t + 2) is an efficient interior point belonging to the segment

of endpoints S1 = (5
3 , 2), T1 = (1

3 , 3). We have x5 = 0 when t = 5, so
that x5 leaves the basis and x3 enters the basis. We obtain the following
simplex tableau:

2
3 t+ 11 0 0 0 0 13

3
t− 20 0 0 0 0 −5

x1 − 1
3 t+ 2 1 0 0 0 1

3
x2 3 0 1 0 0 1
x3

2
3 t+ 3 0 0 1 0 4

3
x4 t 0 0 0 1 0

Set t̂ = 5 and go to Step 1.
Step 1 We have F = [5, 6], Γ (t) = (1

3 t− 2)2( 13
3 ) + 195(−5), O = [5, 35], so

that O ∩ F = [5, 6] and t = max{t : t ∈ O ∩ F} = 6. Every point of the
segment having S2 = (1

3 , 3), T2 = (0, 3) as endpoints is an efficient point.
Set t̂ = 6 and go to Step 2.

Step 2 t̂ = 6 is an end point of F so that we go to Step 3.
Step 3 Any coefficient of the row corresponding to the variable x1 is non-

negative so that the algorithm terminates. It results E = S1T1 ∪ S2T2.
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Decomposition of the Measure in the Integral
Representation of Piecewise Convex Curves

Mariana Nedelcheva

Technical University Varna, Department of Mathematics
9010 Varna, Bulgaria, mariana@mnet.bg

Summary. The notions of a convex arc and piecewise convex curve in the plane
generalize the notion of a convex curve, the latter is usually defined as the boundary
of a planar compact convex set with nonempty interior. The integral representation
of a piecewise convex curve through a Riemann-Stieltjes integral with a correspond-
ing one-dimensional measure is studied. It is shown that the Minkowski operations
known from the convex sets can be generalized to piecewise convex curves. It is
shown that the decomposition of the measure in the integral representation of the
piecewise convex curve leads to a decomposition of the piecewise convex curve into
a sum of corresponding piecewise convex curves. On this base, applying the natural
decomposition of the one-dimensional measure into an absolutely continuous func-
tion, a jump function, and a singular function, the structure of a piecewise convex
curve is investigated. As some curious consequences, the existence of polygons with
infinitely many sides and no vertices, and polygons with infinitely many vertices and
no sides is shown.

Key words: Convex arcs, convex curves, piecewise convex curves.

1 Introduction

The convex sets and convex curves in two dimensions are important topics
in convex set theory. The convex curves usually are defined as boundaries of
planar compact convex sets with nonempty interiors (we call such sets convex
figures). By mean of this definition a convex curve is a simple closed curve in
the plane. However the closedness of the curve gives restrictions in applica-
tions of the tool of integral representation introduced initially in Vitale [11].
Vitale [11] associates to a compact convex set a measure with the purpose to
characterize its support function. Even though Vitale’s paper appeared only
as a preprint, it gained some popularity and its results have been used by other
authors, say in [7], [9], [6] and [5]. The tool of the integral representations is
developed and clarified later in [10]. For this purpose the notion of a convex
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curve is generalized in [10], where convex arcs and piecewise convex curves are
defined. We recall these definitions in Section 2. The present paper continues
the study of the integral representation of piecewise convex curves. In Sec-
tion 3 it is shown that Minkowski operations known from the convex sets can
be generalized to piecewise convex curves. In Section 4 it is shown that the
decomposition of the measure in the integral representation of the piecewise
convex curve leads to a decomposition of the piecewise convex curve into a
sum of corresponding piecewise convex curves. On this base, applying in par-
ticular the natural decomposition of the one-dimensional measure into a jump
function, an absolutely continuous function and a singular function, in Section
5 the structure of piecewise convex curves and convex curves in particular is
investigated. Some curious consequences are the existence of convex curves
being either polygonal curves with infinitely many sides and no vertices, or
polygonal curves with infinitely many vertices and no sides.
In the present paper the author continues after [10] to develop the tool of
the integral representation of piecewise convex curves, with the intention to
apply it later to explain phenomena, which occur in the approximation of
convex curves by polygonal curves, like the ones described in [2], [3] and [9].
Other applications are also in sight. For instance the developed tool could
give another point of view to some of the problems concerning convex curves,
say the ones exposed in [12]. As possible interdisciplinary application, let us
mention that in economics the indifference curves and the level lines of the
utility functions possess convexity properties, hence their analysis could be
based on the developed here tool.

2 Convex Arcs and Piecewise Convex Curves

All considerations in this paper concern the Euclidean plane R2. The points
in R2 and their radius-vectors are identified with pairs of reals. We make use
of the transformations T+ : R2 → R2, a = (a1, a2) �→ T+a = (−a2, a1) and
T− : R2 → R2, a = (a1, a2) �→ T−a = (a2,−a1) being in fact rotations on a
right angle respectively in counter-clockwise and clockwise directions. For any
two points c1, c2 ∈ R2 we denote by c1c2 the segment with an initial point
c1 and a final point c2. We denote also by eθ = (cos θ, sin θ) the unit vector
constituting with the x-axis an angle with measure θ.
We call an arc each set Γ ⊂ R2 homeomorphic to a compact interval
[α, β] ⊂ R. In this convention the points in R2 are also arcs, since each point is
homeomorphic to a degenerate interval. The homeomorphism h : [α, β] → Γ
introduces an ordering ≤ on Γ with the agreement h(t1) ≤ h(t2) if t1 ≤ t2.
We write also h(t1) < h(t2) if t1 < t2. The arc with the introduced ordering
is called an oriented arc. The points h(α) and h(β) are called initial and final
points of the oriented arc Γ .

We call the oriented arc Γ a convex arc if for any three points ci = (ci1, c
i
2) ∈ Γ ,

i = 1, 2, 3, such that c1 < c2 < c3, it holds
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(c1, c2, c3) :=

∣∣∣∣∣∣
1 c11 c

1
2

1 c21 c
2
2

1 c31 c
3
2

∣∣∣∣∣∣ ≥ 0 . (1)

The above determinant gives the doubled value of the oriented area of the
oriented triangle c1c2c3, hence it is nonnegative if this triangle is counter-
clockwise oriented. Roughly speaking, we call the oriented arc convex if it is
counter-clockwise curved.
Here there are some examples of convex arcs. Each point in R2 is a convex arc.
The segment ab is a convex arc with an initial point a and a final point b. The
graph of a continuous convex function of one variable defined on a compact
interval is a convex arc.
Denote by Γ a convex arc, and by a and b its initial and final points. Given
any two points c1 < c2 in Γ , then we put Γc1c2 = {c ∈ Γ | c1 ≤ c ≤ c2}. Since
Γc1c2 is the image of the restriction of the homeomorphism determining Γ on
a compact interval, we see that Γc1c2 is a convex arc.
Following [12] we call a convex figure any convex compact set in the plane
with nonempty interior. The next theorem determines the structure of the
convex arcs.

Theorem 1 ([10]). Let Γ be a convex arc with a and b being its initial and
final points. Then the following cases may occur:
a) If a = b, then Γ degenerates to a point.
b) If a �= b and (c1, c2, c3) = 0 for any three points c1 < c2 < c3 of Γ , then Γ
is the segment ab.
c) If a �= b and (c1, c2, c3) > 0 for at least one triple of points c1 < c2 < c3 of
Γ , then Γ ∪ ba is the boundary of a convex figure.

For a convex arc Γ we introduced the set ΦΓ = coΓ . After Theorem 1 we
see that ΦΓ is a point in case a), a segment in case b), and a convex figure in
case c). In each case ΦΓ is a compact convex set in the plane. Recall that the
boundary of a convex figure is usually called a convex curve [12]. Therefore,
each convex arc is either a point, or a segment, or a connected and closed
proper subset of a convex curve. In the last case the convex curve can be
taken as the boundary of coΓ .
It is shown in [1] that each convex figure possesses a perimeter, that is each
convex curve is rectifyable. Consequently, each convex arc Γ is rectifyable and
therefore it admits an equation in natural parameter

Γ : r = f(s) , 0 ≤ s ≤ L , (2)

where the natural parameter s is the length of the arc from the initial point
a to the current point. Here L is the length of Γ . The function f is contin-
uous. In fact, as in differential geometry, it can be shown easily, that f is
Lipschitz with constant 1. Since Γ has no multiple points, the function f is
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injective. It is well known that each continuous and injective mapping with
domain a compact set is a homeomorphism. Therefore (2) is a homeomorphic
representation of the arc Γ . Further, it can be shown that the passing from
a parameter t determining the convex arc Γ to the natural parameter s is
realized by a monotonely increasing function s = s(t). This shows that the
natural parameter s determines the same ordering on Γ as the parameter t,
that is property (1) holds with respect to the ordering determined by the pa-
rameter s. Therefore (2) is a representation of Γ as a convex arc, which can
be referred to as representation in natural parameter.
In Theorem 2 below we describe the function f in (2) in terms of a parameter θ
being connected with the support function of ΦΓ in direction eθ. The support
functions are an important tool when treating problems concerning convex
figures. The representation obtained in Theorem 2 could play similar role
when studying convex arcs. Further we will introduce the notion of a piecewise
convex curve as a generalization of both the notion of a convex arc and a
convex curve, and will extend the representation from Theorem 2 to piecewise
convex curves. We need first the following notations.
Let K be a convex set in R2. We call a support function of K the function

Λ : R → R , Λ(θ) = sup{r · eθ | r ∈ K} .

Here r ·eθ denotes the scalar product of the radius-vector r and the vector eθ.
The straight line pθ : r ·eθ = Λ(θ) is said to be a support line of K in direction
eθ. We will consider pθ as an axis with orientation determined by the vector
T+eθ being colinear to pθ.
Suppose that Γ is a convex arc with initial point a, final point b and parametric
representation in natural parameter given by (2). When a �= b we denote by
γ a real number, for which eγ = T−(a − b)/‖a − b‖. Here ‖ · ‖ denotes the
Euclidean norm. When a = b, which according to Theorem 1 has place only
if Γ degenerates to a point, we denote by γ any real number.
Let θ ∈ [γ, γ+2π] and pθ is the support line of ΦΓ in direction eθ. Let ΦΓ ∩pθ

be the segment with end points r−(θ) and r+(θ) where the direction from
r−(θ) to r+(θ) coincides with the orientation on pθ.
We put

c−(θ) =
{

a , θ = γ,
r−(θ) , γ < θ ≤ γ + 2π, c+(θ) =

{
r+(θ) , γ ≤ θ < γ + 2π,

b , θ = γ + 2π.

We determine the functions s−, s+ : [γ, γ + 2π] −→ R by

f(s−(θ)) = c−(θ), f(s+(θ)) = c+(θ),

where f is the function from the representation (2) of Γ in natural parameter.
In fact s−(θ) gives the length of Γac−(θ) and s+(θ) gives the length of Γac+(θ).
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Theorem 2 ([10]). Let Γ be a convex arc with initial point a and final point
b. We put θa = γ and θb = γ + 2π. Now a = c−(θa) and s−(θa) = 0.
a) The following integral representation has place:

c+(θ) = c−(θ0) + T+eθ0 (s+(θ0)− s−(θ0)) +
∫ θ

θ0

T+eλ ds
+(λ) ,

c−(θ) = c−(θ0) +
∫ θ

θ0

T+eλ ds
−(λ) ,

(3)

for all θ0 ∈ [θa, θb) and θ ∈ [θ0, θb] (the integrals are in the sense of Riemann-
Stieltjes).
b) The function f from the representation (2) in natural parameter is given
by

f(s) =

⎧⎪⎪⎨⎪⎪⎩
c−(θ) , s = s−(θ),
c+(θ) , s = s+(θ),

c−(θ)
s+(θ)− s

s+(θ)− s−(θ)
+ c+(θ)

s− s−(θ)
s+(θ)− s−(θ)

, s−(θ) < s < s+(θ).

(4)
c) The support function Λ of ΦΓ satisfies

Λ(θ) = eθ · c−(θ) = eθ · c+(θ) , θa ≤ θ ≤ θb .

The obtained result is illustrated by the following example.

Example 1. Let K be the triangle K = {(x, y) | −1 ≤ x ≤ 0, −1 − x ≤ y ≤
1 + x}. Define the convex arc Γ to be the counter-clockwise oriented part
of the boundary of K from the point (0, 1) to the point (0, −1). We have
a = (0, 1), γ = 0, and s−, s+ : [0, 2π] → R are given by

s−(θ) =

⎧⎨⎩
0 , 0 ≤ θ ≤ 3π/4 ,√
2 , 3π/4 < θ ≤ 5π/4 ,

2
√

2 , 5π/4 < θ ≤ 2π .
s+(θ) =

⎧⎨⎩
0 , 0 ≤ θ < 3π/4 ,√
2 , 3π/4 ≤ θ < 5π/4 ,

2
√

2 , 5π/4 ≤ θ ≤ 2π .

Formula (3) gives

c−(θ) =

⎧⎨⎩
(0, 1), 0 ≤ θ ≤ 3π/4 ,

(−1, 0), 3π/4 < θ ≤ 5π/4 ,
(0, −1), 5π/4 < θ ≤ 2π ,

c+(θ) =

⎧⎨⎩
(0, 1), 0 ≤ θ < 3π/4 ,

(−1, 0), 3π/4 ≤ θ < 5π/4 ,
(0, −1), 5π/4 ≤ θ ≤ 2π .

For the function f we get

f(s) =
{

(−s/
√

2, 1− s/
√

2) , 0 ≤ s ≤
√

2 ,
(−2 + s/

√
2, 1− s/

√
2) ,

√
2 ≤ s ≤ 2

√
2 .
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Concerning Example 1 we can make the following remark. The function s−

and s+ are defined on the interval [0, 2π]. The function s− starts as a constant
on the interval [0, 3π/4]. Similarly s+ finishes as a constant on the interval
[5π/4, 2π]. In such a situation the function f can be obtained if the calcula-
tions in Theorem 2 are done with any θa ∈ [0, 3π/4] and any θb ∈ [5π/4, 2π],
in particular with θa = 3π/4 and θb = 5π/4. While Theorem 2 was formu-
lated with interval [θa, θb] with length 2π, Example 1 shows that sometimes
the same calculations can be done applying a smaller interval.

Formula (3) with θ0 = θa transforms into

c+(θ) = a+ T+eθa
s+(θa) +

∫ θ

θa

T+eλ ds
+(λ) ,

c−(θ) = a+
∫ θ

θa

T+eλ ds
−(λ) ,

(5)

true for all θ ∈ [θa, θb]. This can be considered as an integral representation
of the convex arc Γ , since in virtue of (4), once we have got the functions
c− and c+, we can restore Γ . Let us underline, that the essential information
in (5) is the knowledge of the initial point a, the interval [θa, θb] and the
function s+ : [θa, θb] → R, which is monotonely increasing, nonnegative, and
continuous from the right. The latter is seen from the next Theorem 3, where
it is shown that the function s− can be expressed by s+. Turn attention there,
that the knowledge of only s− is not enough to restore s+, for the value s+(θb)
cannot be obtained by s−.
Let us underline that the Riemann-Stieltjes integral from a continuous func-
tion with respect to an increasing function exists always [4]. The function
λ→ T+eλ = (− sinλ, cosλ) is continuous. Therefore, the integrals in (5) exist
always.

Theorem 3 ([10]). Let s+ : [θa, θb] → R be monotonely increasing, nonneg-
ative, and continuous from the right function and a ∈ R2.
Determine the function s− : [θa, θb] → R from the condition

s−(θ) =
{

0 , θ = θa ,
limθ1→θ−0 s

+(θ1) = s+(θ − 0) , θa < θ ≤ θb .
(6)

Determine c+(θ) and c−(θ) from (5) for all θ ∈ [θa, θb].
Under these conditions it holds:
The limit in (6) exists. The function s− is monotonely increasing, nonnega-
tive, and continuous from the left, moreover

s+(θ) = s−(θ + 0) , θa ≤ θ < θb ,
s−(θ) ≤ s+(θ) , θa ≤ θ ≤ θb .

(7)

The function c+ is continuous from the right, and c− is continuous from the
left, moreover
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c+(θ) = c−(θ + 0) , θa ≤ θ < θb ,
c−(θ) = c+(θ − 0) , θa < θ ≤ θb .

(8)

In Example 1 we determined initially the convex curve Γ and on this base we
obtained the point a, the interval [θa, θb] and the function s+. Now we pose
the reverse question:
Given the point a, the interval [θa, θb] and the function s+ : [θa, θb] → R being
monotonely increasing, nonnegative, and continuous from the right. Define
the function s− : [θa, θb] → R as s−(θa) = 0 and s−(θ) = s+(θ − 0) for
θa < θ ≤ θb. The question is: What can be said for the curve Γ having
equation (2) with function f determined by the integral representation (5)
and formula (4)? In particular:
A. Is Γ a convex arc, at least when θb − θa ≤ 2π?
B. Is s a natural parameter for the obtained curve, i. e. is s the length of the
arc from the initial point a to the current point?
In connection with Question A, let us say that in Theorem 2 it was θb− θa =
2π, but the possibility to take θb − θa < 2π was noticed as a remark after
Example 1. Still, let us say that the answer of Question A is negative as the
following example shows.

Example 2. Let θa be any real and let a = (0, 0). Put θb = θa + π and define

s+ : [θa, θb] → R , s+(θ) =
{

1 , θa ≤ θ < θb ,
2 , θ = θb .

Then (5) does not represent a convex arc, since we get multiple points. In
fact, the curve Γ corresponding to the representation (5) is the segment ab
walked twice, once from a to b, and once from b to a. Here b is the point
b = (− sin θa, cos θa) = T+eθa

.

Example 2 shows that the answer of Question A is negative when θb − θa ≥
π. The next theorem shows however, that the answer is still positive when
θb − θa < π.

Theorem 4 ([10]). Suppose that a ∈ R2 is a given point, [θa, θb] is a given
interval with length θb − θa < π, and s+ : [θa, θb] → R is a given monotonely
increasing function, which is nonnegative and continuous from the right. De-
fine the function s− : [θa, θb] → R as s−(θa) = 0 and s−(θ) = s+(θ − 0) for
θa < θ ≤ θb. Then the curve Γ given by equation (2) with function f deter-
mined by the integral representation (5) and formula (4) is a convex arc and
the parameter s in equation (2) is the natural parameter of Γ .

Theorem 4 clarifies the answer of the posed problem. The curve Γ determined
by a ∈ R2 and s+ : [θa, θb] → R is for sure a convex arc only if θb − θa < π.
In the case, when this inequality is not satisfied, we can take a partition
θa = θ0 < θ1 < . . . < θn = θb, of the interval [θa, θb] with θi − θi−1 <
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π, i = 1, . . . , n. These inequalities show that the restriction of the integral
representation (5) to the interval [θi−1, θi] gives a convex arc. More precisely,
the convex arc that we have in mind when speaking for a restriction of (5)
to the interval [θi−1, θi] is obtained from (5) by obvious change of the initial
point and diminishing s+ by a constant, the latter in order for s+ to play the
role of a natural parameter. In fact this representation is the one given by (3),
where θ0 must be replaced by θi−1 and the measures in the integrals must
be diminished by s−(θi−1), see further (9). The variable θ then ranges in the
interval [θi−1, θi].
The made observation makes natural the following definition.

We call a piecewise convex curve any curve, which admits a representation
given by (5) in the explained above sense, with some point a ∈ R2, interval
[θa, θb], and a monotonely increasing, nonnegative and continuous from the
right function s+ : [θa, θb] → R.

3 Operations with Piecewise Convex Curves

According to the definition given in the previous section a piecewise convex
curve Γ can be identified with a triple Γ = (a, I, s+), where a ∈ R2 is a
given point, I = [θa, θb] is a given interval, and s+ : I → R is a nonnegative,
continuous from the right, and monotonely increasing function. Since all the
components of Γ appear in formulae (5), where θ ∈ [θa, θb], we may consider
(5) as an integral representation of Γ . We say then that the corresponding
parametric curve (2) is generated by the piecewise convex curve Γ . The rea-
soning made at the end of the previous section and based on Theorem 4 form
the following result.

Theorem 5. Suppose that Γ = (a, [θa, θb], s+) is a piecewise convex curve,
which generates the parametric curve (2). Then the parameter s in (2) is the
natural parameter.

To interpret geometrically a piecewise convex curve Γ = (a, I, s+), where
I = [θa, θb], we take a partition θa = θ0 < θ1 < · · · < θn = θb of the interval
I, for which θi − θi−1 < π, i = 1, . . . , n. For i = 1, . . . , n, we consider the
piecewise convex curves Γ i = (c−(θi−1), [θi−1, θi], s+i ), where

s+i : [θi−1, θi] → R , s+i =

⎧⎨⎩
s+(θ)− s−(θi−1) , θi−1 ≤ θ < θi ,
s−(θi)− s−(θi−1) , θ = θi, i = 1, . . . , n− 1,
s+(θi)− s−(θi−1) , θ = θi, i = n.

(9)
Let γi : r = f i(s), 0 ≤ s ≤ Li, be the parametric curve generated by Γ i. Then
Γ generates the parametric curve γ being the sum of γ1 + . . . +γn, the latter
means that the initial point of each succeeding curve γi is the final point of
the preceding curve γi−1. More precisely, γ is the parametric curve given by
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γ : r = f(s), 0 ≤ s ≤ L, where L = L1 + · · ·+Ln, and f(s) = f i(s−
∑i−1

k=1 Li)
for Li−1 ≤ s ≤ Li, i = 1, . . . , n (here we accept L0 = 0 and

∑0
i=1 Li = 0).

Since further we define a sum of curves in other sense, the described here
sum will be denoted γ = γ1 ⊕ · · · ⊕ γn and we will call γ an oriented sum of
γ1, . . . , γn (since the sign ⊕ is used here only in this meaning, there will be no
confusion with other accepted practices of usage of this sign). Similarly, we
write Γ = Γ 1 ⊕ · · · ⊕ Γn (and call it oriented sum) for the piecewise convex
curves (even when not necessarily θi − θi−1 < π, i = 1, . . . , n). This notation
is justified, since as we show below, when θi − θi−1 < π, the piecewise convex
curve Γ i can be identified with γi.

Theorem 6. Let the piecewise convex curve Γ = (a, I, s+), with interval I =
[θa, θb] having length θb − θa < π generate the parametric curve γ : r = f(s),
0 ≤ s ≤ L. Then, having fixed in advance the interval I, we can identify Γ
with γ, in other words γ determines uniquely a and s+.

Proof. The equality a = f(0) shows that γ determines uniquely the initial
point a. Now we show that also s+ is determined uniquely. According to
Theorem 4 γ is a convex arc. According to Theorem 1 the following cases may
occur:
a) γ = {a}, that is γ is a point. Then necessarily s+(θ) = 0, θ ∈ I.
b) γ = ab, b �= a, that is γ is a nondegenerate segment.
Let θ∗ be any real, such that eθ∗ = T−(b − a)/‖b − a‖. We claim that then
there exists a uniquely determined θ0 ∈ I, such that

s+(θ) =
{

0 , θ ∈ [θa, θ0) ,
‖b− a‖ , θ ∈ [θ0, θb] .

It holds θ0 = θ∗ + 2k0π with some k0 ∈ Z (with Z we denote the set of the
integer reals).
To show this we observe that s+ is a constant on each interval [θ′, θ′′] ⊂ I,
such that [θ′, θ′′] ∩ {θ∗ +mπ | m ∈ Z} = ∅. Assume in the contrary, that this
is not true. Since γ is the segment ab, we would have

0 = eθ∗ · (c+(θ′′)− c+(θ′)) =
∫ θ′′

θ′
eθ∗ · T+eλ ds

+(λ)

=
∫ θ′′

θ′
sin(λ− θ∗) ds+(λ) �= 0 ,

(10)

a contradiction (the integral has the sign of sin(λ−θ∗), which does not change
for λ ∈ [θ′, θ′′]). Therefore s+ is a jump function, whose jumps are only on
the set I ∩ {θ∗ + mπ | m ∈ Z}. This set is a unique point θ0 = θ∗ + m0π,
because the length of I is less than π. Now a direct calculation shows that Γ
generates the segment ab only if m0 = 2k0 for some k0 ∈ Z and the jump of
s+ at θ0 is ‖b− a‖.
c) γ ∪ ba is the boundary of a convex figure Φγ , where b �= a is the final point
of γ.
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Let [θ̄a, θ̄b] be an interval with less possible length, such that eθ̄a
and eθ̄b

are support directions for Φγ at the points a and b respectively. For any
θ ∈ [θ̄a, θ̄b] we denote by pθ the support line of Φγ in direction eθ. Let Φγ ∩
pθ = r−(θ) r+(θ), where the direction from r−(θ) to r+(θ) coincides with the
orientation on pθ. Denote by σ(θ) the length of the arc γa r+(θ). We claim that
then there exists a uniquely determined k0 ∈ Z, such that [θ̄a + 2k0π, θ̄b +
2k0π] ⊂ I and

s+(θ) =

⎧⎨⎩
0 , θ ∈ [θa, θ̄a + 2k0π) ,

σ(θ − 2k0π) , θ ∈ [θ̄a + 2k0π, θ̄b + 2k0π] ,
σ(θ̄b) , θ ∈ (θ̄b + 2k0π, θb] .

(11)

To prove the claim we denote by k0 the smallest k ∈ Z, such that θa ≤
θ̄a + 2kπ < θ̄b + 2kπ (the strict inequality θ̄a < θ̄b holds, since γ is not a
segment). We prove that θ̄b +2k0π ≤ θb. If this is not the case, we would have
θb−2k0π < θ̄b. Since b is the final point of γ, it holds σ(θb−2k0π) = σ(θ̄b). This
equality shows, that the interval [θ̄a, θ̄b] can be diminished to [θ̄a, θb − 2k0π],
and still eθb−2k0π is the support direction of Φγ at b, which contradicts the
minimality of [θ̄a, θ̄b].
Thus [θ̄a + 2k0π, θ̄b + 2k0π] ⊂ [θa, θb], whence in particular 0 < θ̄b − θ̄a ≤
θb − θa < π. Like in case b) we show that s+ is a constant on any interval
[θ′, θ′′] contained in [θa, θ̄a + 2k0π) or (θ̄b + 2k0π, θb] (the left-hand side in
(10) is 0, since c+(θ′) = c+(θ′′) and θ∗ is replaced by θ0 = (θa + θb)/2). Since
s+ is continuous from the right, it is also a constant on the closed interval
[θ̄b + 2k0π, θb]. Let θ ∈ [θ̄a + 2k0π, θ̄b + 2k0π]. Now θ − 2k0π ∈ [θ̄a, θ̄b] and
eθ = eθ−2k0π. From the definitions of c+ (in 5) and r+ we have c+(θ) =
r+(θ − 2k0π). According to Theorem 4 the length of γa c+(θ) = γa r+(θ−2k0π)

is given by s+(θ) = σ(θ − 2k0π), which proves the claim. �

We consider two piecewise convex curves Γ i = (ai, Ii, s
+
i ) as different, if

they differ in at least one component. The following example shows that the
conclusion of Theorem 6 does not hold in general for larger intervals. Namely,
we show that two different piecewise convex curve can generate the same
parametric curve.

Example 3. Consider the piecewise convex curves Γ i = (ai, Ii, s
+
i ), i = 1, 2,

determined by the point a1 = a2 = (1, 0), the interval I1 = I2 = [0, 4π] and
the functions s+i : Ii → R, i = 1, 2, given by

s+1 (θ) =
{

θ , 0 ≤ θ ≤ 2π ,
2π , 2π ≤ θ ≤ 4π , s+2 (θ) =

{
0 , 0 ≤ θ ≤ 2π ,

θ − 2π , 2π ≤ θ ≤ 4π .

Then these piecewise convex curves are different, but they generate the same
parametric curve, namely the circle r = (cos s, sin s), 0 ≤ s ≤ 2π.

Still, the result of Theorem 6 admits some improvement.
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Theorem 7. Let the piecewise convex curve Γ = (a, I, s+) with interval I =
[θa, θb] having length θb− θa ≤ 2π generate the parametric curve γ : r = f(s),
0 ≤ s ≤ L. If θb−θa = 2π suppose also that s+(θb−0) = s+(θb). Then, having
fixed in advance the interval I, we can identify Γ with γ, in other words γ
determines uniquely a and s+.

Proof. We suppose first θb − θa < 2π. Put θ0 = (θa + θb)/2. Consider the
oriented sum Γ = Γ 1 ⊕ Γ 2 corresponding to the partition θa < θ0 < θb. For
the respective generated parametric curves we have γ = γ1⊕γ2, where γ1 and
γ2 are convex arcs because of the intervals [θa, θ0] and [θ0, θb] have lengths
smaller than π. We denote by [θ̄a, θ̄b] an interval with less possible length,
such that eθ̄a

and eθ̄b
are support directions for Φγ1 and Φγ2 at the points a

and b respectively. Obviously eθ0 is a support direction for Φγ1 and Φγ2 at
the point c = c−(θ0), which is the final point for γ1 and the initial point for
γ2. Let pθ be the support line of Φγ1 for θ ∈ [θ̄a, θ0) or the support line of
Φγ2 for θ ∈ [θ0, θ̄b]. Denote Φγi ∩ pθ = r−(θ)r+(θ) with an orientation of pθ

coinciding with the orientation from r−(θ) to r+(θ). Let σ(θ) is the length of
the curve γar+(θ). In a similar way like in the proof of Theorem 6 case c) we
show that there exists a unique k0 ∈ Z, for which [θ̄a + 2k0π, θ̄b + 2k0π] ⊂ I
and (11) holds. The uniqueness of s+(θ) is proved.
Let now θb − θa = 2π and s+(θb − 0) = s+(θb). For a sequence θn → θb

with θn < θb, n = 1, 2, . . . , we consider the piecewise convex curves Γn =
(a, I, s+n ), n = 1, 2, . . . , where

s+n (θ) =
{

s+(θ) , θa ≤ θ < θn ,
s+(θn) , θn ≤ θ ≤ θb .

Let γn be the generated by Γn parametric curve. The relation θn − θa <
2π implies that s+n is uniquely determined by γn. Obviously s+n (θ) → s+(θ)
according to the continuity from the left of s+ at the point θb, whence s+ is
uniquely determined. �

The proved theorem shows that a piecewise convex curve Γ = (a, I, s+), for
which the length of the interval I is not greater than 2π (and in the case of 2π
length the function s+ is continuous at the right end of I) can be identified
with the generated by Γ parametric curve. The following simple example
shows that in the case of a length 2π the assumption that s+ is continuous at
the right end point of I is essential.

Example 4. Consider the piecewise convex curves Γ i = (ai, Ii, s
+
i ), i = 1, 2,

determined by the point a1 = a2 = (0, 0), the interval I1 = I2 = [0, 2π], and
the functions s+i : Ii → R, i = 1, 2, given by s+1 (θ) = 1 for 0 ≤ θ ≤ 2π, and
s+2 (θ) = 0 for 0 ≤ θ < 2π and s+2 (2π) = 1. Then both Γ 1 and Γ 2 generate the
same parametric curve γ : r = (0, s), 0 ≤ s ≤ 1.

In geometry by curve we mean usually the image of an interval by a contin-
uous mapping. Different mapping can define the same curve. Each particular
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of these mappings is called a parametric curve, or a parameterization of the
given curve. Since often the properties of a curve are derived by its parame-
terization, the notion of a parametric curve plays an important role to the
extent that we identify curves and parametric curves. This comment under-
lines the importance of Theorems 6 and 7, which describe when a piecewise
convex curve could be identified with a parametric curve. Example 4 shows
however, that in general such an identification does not hold. A piecewise con-
vex curve Γ is a more complicated object than a parametric curve. Namely,
it is a parametric curve γ and a given normal vector θ → eθ, θ ∈ [θa, θb] at
the points on c−(θ) c+(θ) ⊂ γ. The normal vector at the initial point a is eθa

and the normal vector at the final point b is eθb
. The existence of a normal

vector to a piecewise convex curve Γ = (a, I, s+) allows to introduce a support
function Λ : I → R putting Λ(θ) = eθ · c+(θ). We write also ΛΓ instead of Λ
to underline the dependence on Γ . Now the tool of the support functions can
be applied to piecewise convex curves in the way, in which support functions
are applied to investigate convex sets and convex curves.
Now we define the following operations with piecewise convex curves.
Multiplication of a piecewise convex curve with a nonnegative scalar. Given
the piecewise convex curve Γ = (a, I, s+) and a nonnegative real λ, we put
λΓ = (λa, I, λs+).
Sum of piecewise convex curves. Given the piecewise convex curves Γ i =
(ai, I, s+i ), i = 1, 2, defined on the same interval I, we put Γ 1 + Γ 2 = (a1 +
a2, I, s+1 + s+2 ).
In the above definitions both λΓ and Γ 1 +Γ 2 are piecewise convex curves. In
fact, if s+ is a nonnegative, continuous from the right, monotonely increasing
function on I, the same property obeys λ s+. Similarly, if both s+1 and s+2 are
nonnegative, continuous from the right, monotonely increasing functions on
I, the same is true for s+1 + s+2 .
More generally, we define a linear combination of piecewise convex curves
with nonnegative coefficients as follows. Given the piecewise convex curves
Γ i = (ai, I, s+i ), i = 1, . . . , n, defined on the same interval I, and the non-
negative reals λi, we put

∑n
i=1 λi Γ

i = (
∑n

i=1 λi a
i, I,

∑n
i=1 λis

+
i ) . Accord-

ing to Theorem 5 in the above linear combination the sum
∑n

i=1 λis
+
i is in

an obvious manner related to the natural parameter of the generated curve.
In particular, if L(Γ ) denotes the length of a piecewise convex curve, then
L(

∑n
i=1 λi Γ

i) =
∑n

i=1 λi L(Γ i).
According to Theorem 7, in the case when the interval I has a length not
greater than 2π (and in the case of 2π length the function s+ is continuous
at the right end of I), the introduced operations between piecewise convex
curves can be considered also as operations between the generated by them
parametric curves and vice versa. Assuming that the operations are defined
in some direct manner on the parametric curves, we carry them immediately
over the piecewise convex curves.
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Let us underline, that in the case of an interval I with a length greater than
2π, the operations on the piecewise convex curves cannot be determined by
suitable operations on the generated parametric curves. To demonstrate this,
observe that both the two piecewise convex curves Γ i, i = 1, 2, in Example 3
generate the same parametric curve, namely the unit circle r = (cos s, sin s),
0 ≤ s ≤ 2π. The piecewise convex curve Γ 1 + Γ 2 generates the parametric
curve r = (cos s, sin s), 0 ≤ s ≤ 4π, that is the unit circle circumscribed
twice. At the same time the piecewise convex curves Γ 1 + Γ 1 = 2Γ 1 and
Γ 2 + Γ 2 = 2Γ 2 generate the parametric curve r = 2 (cos(s/2), sin(s/2)),
0 ≤ s ≤ 4π, that is a circle with radius 2 circumscribed once.
Now we discuss closed piecewise convex curves. Such a curve Γ = (a, I, s+),
where I = [θa, θb], is called closed if its initial and final points coincide, that
is if a = c+(θb). According to (5) this condition can be written as

T+eθa
s+(θa) +

∫ θb

θa

T+eλ ds
+(λ) = 0 . (12)

In general a closed piecewise convex curve Γ can have multiple points, that is
it can generate a self-intersecting parametric curve. The next theorem shows,
that this is not the case if the curve is determined by an interval, whose length
is not greater than 2π, and it does not degenerate to a segment passed twice.

Theorem 8. Let Γ = (a, I, s+) be a closed piecewise convex curve with in-
terval I = [θa, θb] having length θb − θa ≤ 2π. Then Γ generates and can
be identified to a parametric curve being either a point, or a segment passed
twice, or a convex curve.

Proof. Using the notation from Theorem 7, we take the decomposition Γ =
Γ 1⊕Γ 2, where θ0 = 1

2 (θa + θb). Then for the respective parametric curves we
have γ = γ1 ⊕ γ2. Then Γ 1 can be identified with γ1, whose initial and final
points are a and c−(θ0). Similarly Γ 2 can be identified with γ2, whose initial
and final points are c−(θ0) and c+(θb) = a. In the case when θb − θa < 2π
according to Theorem 7 also Γ can be identified with γ. Then θb − θ0 = θ0 −
θa = 1

2 (θb − θa) < π, and according to Theorem 4 γ1 and γ2 are convex arcs.
If at least one of them is a point, the other is a point too, and γ degenerates to
a point. If both γa(θ0) and γb(θ0) are segments, then obviously γ is a segment
passed twice. Assume that at least one of γ1 or γ2 does not degenerate to a
point and is not a segment. Then we can show that the set Φ = Φγ1 ∪ Φγ2 is
a convex figure. This can be demonstrated (similarly to the proof of Theorem
1 case c) given in [10]) by showing that γ is a simple closed curve, Φ contains
interior points, and each straight line passing through an interior point of Φ
intersects γ in exactly two points. This property implies that Φ is a convex
figure (see Problem 5, page 17 in [12]).
The obtained result can be extended to the case θb − θa = 2π in a routine
way (though not ad hoc), so the proof is omitted. Let us underline, that
according to Theorem 7, when θb − θa = 2π and Γ = (a, I, s+) is such that
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s+(θb−0) = s+(θb), then Γ can be identified with γ. To show that also without
this assumption Γ can be identified with γ, we make the following reasoning.
Suppose that γ is a simple closed curve (the cases of γ being a point, or a
segment passed twice are considered similarly). Consider the piecewise convex
curves Γ = (a, I, s+) and Γ̄ = (c−(θb), I, s̄+), where s̄+ : I → R is defined by

s̄+(θ) =
{
s+(θ) + s+(θb)− s+(θb − 0) , θa ≤ θ < θb ,

s+(θb) , θ = θb .

Since s̄+(θb− 0) = s̄+(θb), according to Theorem 7 the curve Γ̄ can be identi-
fied with the generated by it parametric curve γ̄. The curve γ̄ coincides with
γ as a set of points in the plane. The only difference is that Γ and Γ̄ deter-
mine two different initial points a and c−(θb). Since we usually identify the
coinciding as point sets simple closed curves regardless of the chosen initial
points, we may identify γ and γ̄. We will identify on this base also the curves
Γ and Γ̄ , and any two curves to which corresponds the same parametric curve.
With this agreement, giving in fact a relation of equivalence on the piecewise
convex curves defined on I, we get, that each closed piecewise convex curve
defined on an interval with length 2π can be identified with the generated by
it parametric curve. �

Let Γ = (a, I, s+) be a closed piecewise convex curve with interval I = [θa, θb]
having length θb−θa ≤ 2π. Denote by γ the parametric curve generated by Γ .
We will put ΦΓ = co γ (in this formula we consider γ as a set of points). Then
ΦΓ is a compact convex set, which is either a convex figure having γ as its
boundary, or a segment (then γ is the segment passed twice), or a point. Now Γ
can be identified with γ, which in turn is into one-to-one correspondence with
ΦΓ . Therefore, in this case the introduced operations between piecewise convex
curves can be interpreted in terms of operations between convex sets. For this
purpose it is useful to establish what is the relation between the support
functions of the given piecewise convex curves and the support function of
their linear combination with nonnegative coefficients.

Theorem 9. Let Γ i = (ai, I, s+i ), i = 1, . . . , n, be closed piecewise convex
curves with the same interval I = [θa, θb], and let λi ≥ 0 be nonnegative reals.
Then Λ�n

i=1 λiΓ i =
∑n

i=1 λiΛΓ i . In consequence, if the interval I has length
θb − θa ≤ 2π, then

∑n
i=1 λiΓ

i is a closed piecewise convex curve and it holds
Φ�n

i=1 λiΓ i =
∑n

i=1 λiΦΓ i , where the right-hand side stands for the respective
Minkowski operation between convex sets.

Proof. We have
∑n

i=1 λiΓ
i = (

∑n
i=1 λia

i, I,
∑n

i=1 λis
+
i ). Applying the rep-

resentation (5) now for θ ∈ [θa, θb] we get
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Λ�n
i=1 λiΓ i(θ) = eθ · c+�n

i=1 λiΓ i(θ)

= eθ ·
(

n∑
i=1

λia
i + T+eθa

n∑
i=1

λis
+
i (θa) +

∫ θ

θa

T+eλ d
n∑

i=1

λis
+
i (λ)

)

=
n∑

i=1

λi eθ · c+i (θ) =
n∑

i=1

λi ΛΓ i(θ) .

If Γ i are closed piecewise convex curves we have according to (12)

T+eθa

n∑
i=1

λis
+
i (θa) +

∫ θb

θa

T+eλ d

n∑
i=1

λis
+
i (λ)

=
n∑

i=1

λi

(
T+eθa

s+i (θa) +
∫ θb

θa

T+eλ ds
+
i (λ)

)
= 0 ,

whence
∑n

i=1 λiΓ
i is also a closed piecewise convex curve. When I has length

θb − θa ≤ 2π according to Theorem 8 the sum
∑n

i=1 λiΓ
i can be identi-

fied with a simple closed curve being the boundary of the set Φ�n
i=1 λiΓ i =

co
∑n

i=1 λiΓ
i. Let Γ = (a, I, s+) be a closed piecewise convex curve with

interval I = [θa, θb] having length θb − θa ≤ 2π. Then according to the defini-
tions the support functions ΛΓ of the piecewise convex curve Γ and ΛΦΓ

of the
convex set ΦΓ = coΓ are equal. Now the equality Λ�n

i=1 λiΓ i =
∑n

i=1 λiΛΓ i

implies

ΛΦ�n
i=1 λiΓ i =

n∑
i=1

λi ΛΦΓ i = Λ�n
i=1 λi ΦΓ i

,

where the right-hand side equality represents a known relation between
Minkowski operations of convex sets and their support functions. Since
the support function determines uniquely the compact convex set, we have
Φ�n

i=1 λiΓ i =
∑n

i=1 λiΦΓ i . �

The Minkowski operations between sets define Minkowski operations between
convex curves. Theorem 9 shows that the introduced here linear combination
for piecewise convex curves

∑n
i=1 λiΓ

i, where λi ≥ 0, is a generalization of
the Minkowski operations from convex curves to piecewise convex curves.
The connection of the introduced operations with the Minkowski operations
of sets is illustrated on the following example.

Example 5. Let K0 = co {(0, 1), (0, −1)}, K1 = {r ∈ R2 | ‖r‖ ≤ 1} and
K = K0 +K1. Define the convex arc Γ to be the counter-clockwise oriented
part of the boundary of K from the point (1, 1) to the point (1, −1). We have
a = (1, 1), γ = 0, and s−, s+ : [0, 2π] → R are given by

s−(θ) =
{

θ , 0 ≤ θ ≤ π ,
2 + θ , π < θ ≤ 2π , s+(θ) =

{
θ , 0 ≤ θ < π ,

2 + θ , π ≤ θ ≤ 2π .

Formula (3) with θ0 = 0 gives
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c−(θ) =
{

(cos θ, 1 + sin θ), 0 ≤ θ ≤ π ,
(cos θ, −1 + sin θ), π < θ ≤ 2π ,

c+(θ) =
{

(cos θ, 1 + sin θ), 0 ≤ θ < π ,
(cos θ, −1 + sin θ), π ≤ θ ≤ 2π .

The convex arc Γ can be identified with the piecewise convex curve Γ =
Γ 1+Γ 2, where Γ i = (ai, I, s+i ), i = 1, 2, are given by I = [0, 2π], a1 = (1, 0),
s+1 (θ) = θ for 0 ≤ θ ≤ 2π, and a2 = (0, 1), s+2 (θ) = 0 for 0 ≤ θ < π, and
s+2 (θ) = 2 for π ≤ θ ≤ 2π.

4 Decomposition of the Measure

For two piecewise convex curves Γ i = (ai, I, s+), i = 1, 2, which differ only
with respect to the initial points, formulae (5) give c+2 (θ) − c+1 (θ) = a2 − a1

and c−2 (θ)−c−1 (θ) = a2−a1. Consequently, for the generated by Γ i parametric
curves γi : r = f i(s), 0 ≤ s ≤ Li, we have L1 = L2 and f2(s) = f1(s)+ (a2−
a1). Hence γ2 is obtained translating γ1 with the vector a2−a1. On this base
we can speak also that Γ 2 is obtained translating Γ 1 on the vector a2 − a1.
All the piecewise convex curves obtained one from the other by a translation
form a class of equivalence in the set of piecewise convex curves. Each class
of equivalence is determined by a piecewise convex curve Γ = (0, I, s+) with
initial point the origin. Wishing to study the properties of the piecewise convex
curves determined only by s+, we may confine to piecewise convex curves with
initial points at the origin, and to state that these properties are assigned to
each piecewise convex curve from the class of equivalence.
The function s+ for the piecewise convex curve Γ = (0, I, s+) with I = [θa, θb]
is called sometimes measure. Such a saying is used once that s+ measures the
length in the generated parametric curve, but mainly since s+ determines the
measure in the Riemann-Stieltjes integrals (5). The measure s+ is monotonely
increasing function. Each such function admits a decomposition

s+(θ) = s+j (θ) + s+a (θ) + s+σ (θ) , θ ∈ I = [θa, θb] , (13)

as a sum of a jump function s+j , an absolutely continuous function s+a , and a
singular function s+σ . For the role of this decomposition in integration theory
see for instance [8] or [4]. The decomposition (13) is unique, if we agree that
at the beginning of the interval it holds s+a (θa) = 0 and s+σ (θa) = 0. If s+ is
nonnegative, monotonely increasing and continuous from the right, the same
properties obey the functions s+j , s+a and s+σ . Therefore, together with the
piecewise convex curve Γ = (0, I, s+), we determine uniquely the piecewise
convex curves Γj = (0, I, s+j ), Γa = (0, I, s+a ) and Γσ = (0, I, s+σ ). Further,
the equality (13) implies Γ = Γj + Γa + Γσ. We call this representation a
decomposition of Γ into a sum of a jump, an absolutely continuous and a
singular components.
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The properties of Γ can be investigated on the base of its decomposition.
But first of all let us underline as the next example shows, that even if Γ
is a convex curve, its components need not be convex curves. Therefore, the
notion of a piecewise convex curve is important also when we wish to study
convex curves through their decomposition.

Example 6. Consider the piecewise convex curve Γ = (0, I, s+), I = [0, 2π],
given by

s+(θ) =
{

1 + θ 0 ≤ θ < 3π/2 ,
2 + 3π/2 , 3π/2 ≤ θ ≤ 2π .

Then Γ is a closed piecewise convex curve, hence it is also a convex curve. It
is decomposed into Γ = Γj + Γa with non-closed components given by

s+j (θ) =
{

1 , 0 ≤ θ < 3π/2 ,
2 , 3π/2 ≤ θ ≤ 2π , s+a (θ) =

{
θ , 0 ≤ θ < 3π/2 ,

3π/2 , 3π/2 ≤ θ ≤ 2π .

5 The Structure of Piecewise Convex Curves

Now we give some applications of the obtained in the previous section decom-
position.
Consider the piecewise convex curve Γ = (0, I, s+) with I = [θa, θb].
We say that Γ has a side for θ ∈ I if !(θ) = s+(θ)− s−(θ) > 0. The number
!(θ) is called then length of the side. Recall that s−(θ) = 0 for θ = θa and
s−(θ) = s+(θ − 0) for θa < θ ≤ θb. In fact Γ has a side for some θ if
c−(θ) �= c+(θ). Then we accept that the segment c−(θ) c+(θ) is this side. The
length of this segment is in fact !(θ). The direction eθ is considered then as
a normal for this side. Since s+a and s+σ are zero for θ = θa and they are
continuous for θa ≤ θ ≤ θb, we see that Γ has a side for θ if and only if the
jump component Γj has a side for θ and the lengths of these sides of Γ and
Γj coincide.
Given any θ ∈ I, we denote by I(θ) = [α(θ), β(θ)] the maximal interval I(θ) ⊂
I, such that θ ∈ I(θ) and s+ is a constant on I(θ) \ {β(θ)} = [α(θ), β(θ)). We
say that Γ has a vertex for θ ∈ I if the interval I(θ) is non-degenerate. Then
the point c+(λ) is the same for all λ ∈ I(θ) \ {β(θ)} and is called the vertex
for θ. The number m(θ) = β(θ)− α(θ) is called the measure of this angle. To
underline the dependence of I(θ) on Γ we write also IΓ (θ) = [αΓ (θ), βΓ (θ)).
Since the functions s+j , s+a and s+σ are monotonely increasing, we see that
I(θ) = IΓj

(θ)∩IΓa
(θ)∩IΓσ

(θ). Therefore Γ has a vertex for θ if this intersection
is a non-degenerate interval.
We call the piecewise convex curve Γ a broken line, if s+ = s+j and s+j is a
scale function. In other words Γ is a broken line if the interval I is a union of
finitely many intervals on which s+ is a constant. Sometimes the broken lines
are called polygonal curves, but we use here the notion of a polygonal curve
in a more general sense.
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Recall that s+ gives a measure on the interval I. In the case when Γ is
a broken line the support of this measure is a finite set (we say also that
the measure is concentrated on a finite set). This observation leads to the
following generalization of the notion of a broken line. We say that Γ is a
piecewise convex polygonal curve if the measure s+ is concentrated on a set
with Lebesgue measure zero. The following remarks concern polygonal curves.
The definition gives immediately that a curve is polygonal if and only if the
decomposition (13) does not contain absolutely continuous part, that is if
s+a = 0. Consequently Γ = Γj + Γσ is decomposed in only jump curve and
singular curve. The existence of an absolutely continuous component Γa of
Γ is connected with the notion of a curvature of the piecewise convex curve
and will be investigated in a separate paper. Now we confine to some notes
concerning polygonal curves.
If Γ is a broken line and s+ is not a constant, then Γ has both sides and
vertices. Asking, whether the same property is true for polygonal curves, we
discover, that there exist polygonal curves with infinitely many sides and no
vertices or with infinitely many vertices and no sides.

Example 7. Let I = [0, π/2] and {θn}∞n=1 be a dense sequence of different
numbers of the open interval (0, π/2) (say {θn}∞n=1 could be the set of all the
rational points of this interval). Let {εn}∞n=1 be a sequence of positive numbers
for which the series

∑∞
n=1 εn converges. Define the function s+ : I → R,

s+(θ) =
∑
{εn | θn ≤ θ}. Then s+ is nonnegative, monotonely increasing

and continuous from the right jump function, which is not a constant on any
interval. Then the piecewise convex curve Γ = (0, I, s+) has only a jump
component Γ = Γj having a side at each point θn, n = 1, 2, . . . , and having
no vertices at all.

Example 8. Let s+ be any singular function on the interval I = [0, π/2] and
let {In}∞n=1 be the subintervals of I on which s+ is constant. Recall that a
singular function has no points of discontinuity. Then the piecewise convex
curve Γ = (0, I, s+) has only a singular component Γ = Γσ having a vertex
at each θ ∈ Ii and no sides at all.

A natural question is whether there exist convex curves being polygonal curves
with the properties described in the previous two examples. The following
example gives an affirmative answer of this question.

Example 9. Let ŝ : [0, π/2] → R be any nonnegative, monotonely increasing
and continuous from the left function, such that ŝ+(0) = 0 and ŝ+(π/2−0) =
ŝ+(π/2). Put as usual ŝ−(0) = 0 and ŝ−(θ) = ŝ+(θ − 0) for 0 < θ ≤ π/2. Let
I = [0, 2π] and define the function s+ : I → R by

s+(θ) =

⎧⎪⎪⎨⎪⎪⎩
ŝ+(θ) , 0 ≤ θ < π/2 ,

2 ŝ+(π/2)− ŝ−(π − θ) , π/2 ≤ θ < π ,
2 ŝ+(π/2) + ŝ+(θ − π) , π ≤ θ < 3π/2 ,

4 ŝ+(π/2)− ŝ−(2π − θ) , 3π/2 ≤ θ ≤ 2π .
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The function s+ is nonnegative, monotonely increasing and continuous from
the right. Consider the piecewise convex curve Γ = (0, I, s+). Then condition
(12) is satisfied, whence Γ is closed and according to Theorem 8 it is a convex
curve. When for ŝ+ we take the function from Example 7 we get a convex
curve being a polygonal curve with infinitely many sides and no vertices, and
when we take for ŝ+ the function from Example 8 we get a convex curve being
a polygonal curve with infinitely many vertices and no sides.

To check condition (12) in the last example, we apply substitution in the
integrals getting

T+e0 s
+(0) +

∫ 2π

0

T+eλ ds
+(λ) =

∫ π/2

0

T+eλ dŝ
+(λ)

−
∫ π

π/2

T+eλ dŝ
−(π − λ) +

∫ 3π/2

π

T+eλ dŝ
+(λ− π)−

∫ 2π

3π/2

T+eλ dŝ
−(2π − λ)

=
∫ π/2

0

(
T+eλ + T+eπ−λ + T+eλ+π + T+e2π−λ

)
dŝ+(λ) = 0 .

The last integral is zero, since T+eλ + T+eπ−λ + T+eλ+π + T+e2π−λ = 0.

References

1. Blaschke W (1956) Kreis und Kugel. Walter de Gruyter & Co, Berlin
2. Kenderov PS (1983) Polygonal approximation of plane convex compacts. J.

Approx. Theory 38:221–239
3. Kenderov PS, Kirov N (1993) A dynamical systems approach to the polygonal

approximation of plane convex compacts. J. Approx. Theory 74:1–15
4. Kolmogorov AN, Fomin SV (1972) Elements of the theory of functions and of

functional analysis (In Russian). Nauka, Moscow
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1 Introduction

In the present paper we survey some generalized convexity properties of func-
tions and sets and we characterize them in terms of generalized monotonicity
properties. They are of a different nature than the generalized convexity prop-
erties considered up to now in the series of meetings devoted to the subject.
They are local (or rather infinitesimal) rather than global. Thus, one cannot
expect from them global optimality conditions or duality properties. However,
they can be combined with the usual generalized convexity and generalized
monotonicity properties and they are important from the point of view of
nonsmooth analysis. For the proofs, and a more detailed analysis, we refer to
[41], [42], [43], [44] and their references. We introduce here some new concepts
related to the two classes we study, in particular a notion of approximately
affine map and a variant of it and a notion of approximately multimapping.
We also raise some open problems.

Motivated by various problems, several authors have introduced some favor-
able classes of functions on normed vector spaces (in short, n.v.s.). Let us
mention a few, referring to the papers in the bibliography for precise defini-
tions.

• p-paraconvex functions introduced by Rolewicz [55]-[59] and studied by
Bougeard [9], Bougeard-Penot-Pommellet [10], Canino [11], Castellani-



380 H.V. Ngai, J.-P. Penot

Pappalardo [13], Jourani [30], Ngai-Penot [44], Penot [47], Penot-Volle
[49]...

• in the case p = 2 these functions are also called semiconvex (Lasry-Lions
[32], Attouch-Azé [1], Cannarsa-Sinestrari [12]...) or subsmooth (Aussel-
Daniilidis-Thibault [3]), property (ω) (Colombo-Goncharov [16]), weakly
convex (Vial [63]), lower-C2 (Rockafellar [53], Spingarn [62], Penot [47]...);

• (p, q)-convex functions introduced by De Giorgi-Marino-Tosques [20] and
studied by Canino [11], Degiovanni [21], Marino [34], [35] and their co-
authors;

• Lower-C1 functions introduced by Spingarn [62] and studied by Rockafellar
[53], Penot [47], Daniilidis-Georgiev-Penot [19];

• Lower-Ck functions and lower-T k functions (k ∈ N\{0, 1}) studied by
Rockafellar [53] and Penot [47];

• approximately convex functions introduced by Ngai-Luc-Théra [40] and
studied by Aussel-Daniilidis-Thibault [3], Colombo-Goncharov [16], Dani-
ilidis - Georgiev [18], Ngai-Penot [42];

• approximately starshaped functions introduced by Penot [48]
• semismooth functions introduced by Mifflin [38] in the locally Lipschitz

case and Ngai-Penot in the ower semicontinuous (l.s.c.) case [41].
• prox-regular functions considered in [6], [7], [8], [50], [51].

These concepts have directional versions which will not be considered here.
In the present survey, we will focus attention on the main streams of these
classes, referring to the quoted papers for more specialized properties. We will
also relate these classes of functions to some classes of sets which have some
regularity properties. It is one of the most remarkable achievements of non-
smooth analysis to enable easy (or at least natural) passages from functions to
sets and from sets to functions. Therefore, we hope that the present tentative
of synthesis will prove useful to the reader.

2 Some Concepts of Nonsmooth Analysis

Our study requires some knowledge of nonsmooth analysis. We gather these
elements in the present section for the reader’s convenience. Of course, the
limited setting of the present contribution imposes conciseness. The notation
we use (∂(·), N (·), f (·), T (·)) stresses the fact that several devices exist, each
of which being affected by some letter or symbol and the fact that for a given
device (·) one disposes of related constructions for subdifferentials, normal
cones and, sometimes, generalized derivatives of functions and tangent cones
to sets. Letters usually refer either to some author or to some characteristic
feature of the construction. Both denominations are debattable. For instance
both Severi and Bouligand worked on tangent cones, while Dini, Fréchet,
Hadamard have not touched subdifferentials. Here we distinguish directional
notions from firm notions which require stronger, uniform estimates; but other
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names exist with some evocative character (adjacent or incident cones, con-
tingent cones...). Symbols are less subject to such wanderings.
One of the key features of the studies concerning the two classes we deal with
consists in the observation that the different devices we mentioned yield the
same objects within these two classes. This fact explains why we do not look
for completeness. This remarkable fact also enables to combine the advantages
of the various devices.

2.1 Subdifferentials

Given a subset F(X) of the set S(X) of lower semicontinuous (lsc for short)
functions f : X → R∪{+∞} on a nvs X with topological dual X∗, we define
here a subdifferential as a correspondence ∂(·) : F(X)×X ⇒ X∗ satisfying:

• ∂(·)f(x) = ∅ when x /∈ dom f (i.e. when f(x) = +∞)
• 0 ∈ ∂(·)f(x) when x is a minimizer of a Lipschitzian function f ∈ F(X).

Such conditions are versatile, but loose requirements; they are often supple-
mented by other conditions:

• if ∂(·)f(x) �= ∅ for x in a dense subset of X for any f ∈ L(X) (the set of
Lipschitzian functions) X is said to be a ∂(·)-subdifferentiability space.

• (Exact mean value theorem) ∂(·) is said to be Lipschitz-valuable on X if
for any x, y ∈ X, any f ∈ L(X) one can find w ∈ [x, y] and w∗ ∈ ∂(·)f(w)
such that f(y)− f(x) = 〈w∗, y − x〉.

• (Fuzzy mean value theorem) ∂(·) is said to be valuable on X if for any
x ∈ X, y ∈ X\{x}, f ∈ F(X) finite at x ∈ X and for any r ∈ R such that
f(y) ≥ r, there exist u ∈ [x, y) and sequences (un) → u, (u∗n) such that
u∗n ∈ ∂(·)f(un), (f(un)) → f(u),

lim
n
‖u∗n‖ d(un, [x, y]) = 0,

lim inf
n

〈u∗n, y − x〉 ≥ r − f(x),

lim inf
n

〈u∗n, (x− un) / ‖x− u‖〉 ≥ (r − f(x)) / ‖y − x‖

for all x ∈ (x+ R+(y − x)) \[x, u).

The terms “valuable”, “Lipschitz-valuable” evoke the Mean Value theorem;
but, in view of the numerous applications of this theorem, it also qualifies a
subdifferential which may be useful for several purposes. In several cases, such
a property for a specific subdifferential is valid only in a restrictive class of
spaces (for instance Asplund spaces for subdifferentials larger then the Fréchet
subdifferential); the Clarke subdifferential is valuable in any Banach space, but
it is not as accurate as the Fréchet subdifferential. These two examples are
defined in the next subsection with few other ones.
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2.2 Some Subdifferentials

In this section we describe some examples of subdifferentials and some basic
constructions. Several subdifferentials are derived from a directional derivative
f (·) of some sort of the function f via the following relation

∂(·)f(x) := {x∗ ∈ X∗ : x∗(·) ≤ f (·)(x, ·)}.

• The (lower) directional derivative (or lower Hadamard derivative) of f

f ′(x, v) := lim inf
(t,w)→(0+,v)

f(x+ tw)− f(x)
t

.

• The Clarke–Rockafellar derivative [52] or circa-derivative:

f↑(x, v) := inf
r>0

lim sup
(t,y)→(0+,x)

f(y)→f(x)

inf
w∈B(v,r)

f(y + tw)− f(y)
t

.

• The dag derivative which majorizes both these two derivatives is given by

f†(x, v) := lim sup
(t,y)→(0+,x),f(y)→f(x)

f(y + t(v + x− y))− f(y)
t

.

Its interest seems to be limited to its role of upper bound; however, this
role could be played by f↑ which is already extremely large.

Other generalized derivatives exist, such as the adjacent (or incident or in-
termediate) derivative ([2]), the moderate (or Michel-Penot) derivative ([36],
[37]), but they will not be used here. The subdifferentials associated with f ′,
f↑, f�, f† are denoted by ∂, ∂↑, ∂�, ∂† respectively.
Several subdifferentials are not derived from directional derivatives:

• The firm (or Fréchet) subdifferential :

x∗ ∈ ∂−f(x) ⇔ ∀ε > 0 ∃δ > 0,∀u ∈ δBX : f(x+u) ≥ f(x)+〈x∗, u〉−ε ‖u‖ .

• The p-proximal subdifferential, with p ∈ (1, 2]:

x∗ ∈ ∂pf(x) ⇔ ∃c > 0, ρ > 0,∀u ∈ ρBX : f(x+u) ≥ f(x)+〈x∗, u〉−c ‖u‖p
.

• The approximate subdifferential or Ioffe subdifferential ([25], [26], [27],
[28]).

• The limiting subdifferential associated with a subdifferential ∂(·) :

∂(·)f(x) := w∗ − lim sup
(u,f(u))→(x,f(x))

∂(·)f(u),

where the w∗-limsup is the set of cluster points of bounded nets (u∗i )i∈I

with u∗i ∈ ∂(·)f(ui), (ui)i∈I → x, (f(ui))i∈I → f(x).



Rambling Through Local Versions 383

2.3 Normal Cones

Since we will consider some generalized convexity properties of sets, we need to
introduce some geometric concepts. With any subdifferential ∂(·) is associated
a notion of normal cone to E ⊂ X at e ∈ E:

N (·)(E, e) := R+∂
(·)ιE(e),

where ιE is the indicator function of E (ιE(x) = 0 if x ∈ E, +∞ otherwise).
Conversely, a normal cone notion N (·) yields a notion of subdifferential ∂(·) :

∂(·)f(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N (·)(Ef , xf )}

where Ef := {(x, r) ∈ X × R : r ≥ f(x)} is the epigraph of f and xf :=
(x, f(x)).
Given a normal cone notion N (·) one defines the associated coderivative of a
multimapping F : X ⇒ Y between two normed vector spaces by

D(·)F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N (·)(F, (x, y))},

F being identified with its graph. In particular, for a function f on X, one
has ∂(·)f(x) = D(·)f(x, f(x))(1).
Examples:

• The (usual or contingent or directional) normal cone N(E, x) to a subset
E of X at x ∈ cl(E) is the polar cone of the tangent cone T (E, x) to E
at x which is the set of vectors v ∈ X such that there exist sequences
(tn) → 0+, (xn) E→ x for which (t−1

n (xn − x)) → v.
• The firm normal cone (or Fréchet normal cone) to E at x is given by

x∗ ∈ N−(E, x) ⇔ ∀ε > 0∃δ > 0,∀u ∈ E∩B(x, δ) : 〈x∗, u−x〉 ≤ ε ‖u− x‖ .

• The Clarke normal cone N↑(E, x) to a subset E of X at x ∈ cl(E) is the
polar cone of the Clarke tangent cone T ↑(E, x) to E at x which is the set of
vectors v ∈ X such that for any sequence (xn) E→ x there exist sequences
(tn) → 0+ and (yn) in E for which (t−1

n (yn − xn)) → v.
• The limiting normal cone associated with a normal cone N (·) :

N (·)(E, x) := w∗ − lim sup
(u,f(u))→(x,f(x))

N (·)(E, u),

where the w∗-limsup is the set of cluster points of bounded nets (u∗i )i∈I

with u∗i ∈ ∂(·)N(E, ui), (ui)i∈I
E→ x, i.e. (ui)i∈I → x with ui ∈ E for each

i ∈ I.
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3 Approximately Convex Functions and Paraconvex
Functions

The following class of functions has been introduced by Ngai-Luc-Théra [40].

Definition 1. A function f : X → R ∪ {+∞} is said to be approximately
convex around x ∈ X if for any ε > 0 there exists δ > 0 such that for any
x, x′ ∈ B(x, δ) and any t ∈ [0, 1] one has

f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′) + εt(1− t) ‖x− x′‖ .

It is a rather general class: obviously, any convex function and any function
which is strictly differentiable at x is approximately convex around x ∈ X.
In view of Proposition 1 below, various combinations of such functions are
approximately convex around x. It can be shown that approximately convex
functions retain some of the nice properties of convex functions. In particular
they are continuous on segments contained in their domains and have radial
derivatives (c.f. Ngai-Luc-Théra [40]). We show elsewhere ([45]) that approx-
imately convex functions on Asplund spaces are densely differentiable as are
convex functions.
An important subclass of the class of approximately convex functions is the
class of p-paraconvex functions when p > 1.

Definition 2. Given some p > 1, a function f : X → R∪{+∞} on a n.v.s. X
is said to be p-paraconvex around x ∈ dom f := f−1(R) if there exist c, δ > 0
such that for any x, x′ ∈ B(x, δ) and any t ∈ [0, 1] one has

f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′) + ct(1− t) ‖x− x′‖p
. (1)

These two classes have interesting stability properties, as shown in Ngai-Luc-
Théra [40] in the case of approximately convex functions.

Proposition 1. The set of approximately convex (resp. p-paraconvex) func-
tions around x ∈ X is stable (i.e. invariant) under addition, multiplication by
positive numbers and finite suprema.

The proofs of these assertions are simple. As an example, we give the proof for
the supremum f of a finite family (fi)i∈I of p-paraconvex around x functions.
For i ∈ I, let ci, δi > 0 be such that for any x, x′ ∈ B(x, δ) and any t ∈ [0, 1]
one has

fi(tx+ (1− t)x′) ≤ tfi(x) + (1− t)fi(x′) + cit(1− t) ‖x− x′‖p
.

Set c := maxi∈I ci, δ := mini∈I δi. Given x, x′ ∈ B(x, δ), t ∈ [0, 1], we pick
i ∈ I such that fi(tx+(1− t)x′) = f(tx+(1− t)x′). Then, replacing fi(x) and
fi(x′) by their respective majorants f(x) and f(x′) in the preceding inequality,
we get relation (1).
A stability result by composition with strictly differentiable mappings in [40]
can be extended by using the following new concept.
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Definition 3. Given normed vector spaces X, Y, a mapping g : X → Y is
said to be approximately affine around x ∈ X if for any ε > 0 there exists
δ > 0 such that for any x, x′ ∈ B(x, δ) and any t ∈ [0, 1] one has

‖g(tx+ (1− t)x′)− tg(x)− (1− t)g(x′)‖ ≤ εt(1− t) ‖x− x′‖ .

It is p-para-affine around x if there exist c, ρ > 0 such that for any x, x′ ∈
B(x, δ) and any t ∈ [0, 1] one has

‖g(tx+ (1− t)x′)− tg(x)− (1− t)g(x′)‖ ≤ ct(1− t) ‖x− x′‖p
.

Clearly, a function f : X → R is approximately affine around x ∈ X if
and only if it is both approximately convex and approximately concave (i.e.
−f is approximately convex) around x. A similar assertion holds for p-para-
affine functions. Moreover, an easy use of the Hahn-Banach theorem yields a
chacterization of approximately affine maps in terms of approximately affine
functions.

Proposition 2. For a mapping g : X → Y between two normed vector spaces
X, Y, and x ∈ X, the following assertions are equivalent:
(a) g is approximately affine around x;
(b) for any continuous linear form f on Y , f ◦g is approximately affine around
x;
(c) for any continuous linear form f on Y , f ◦ g is approximately convex
around x.

A similar statement holds for a p-para-affine around x map g.

Proposition 3. (a) A mapping g : X → Y which is strictly differentiable at
x is approximately affine around x.
(b) A mapping g : X → Y of class C2 around x is 2-para-affine around x.

Proof. (a) Given ε > 0, let δ > 0 be such that for every x, x′ ∈ B(x, δ) one
has

‖g(x)− g(x′)−Dg(x)(x− x′)‖ ≤ ε ‖x− x′‖ ;

taking x, x′ ∈ B(x, δ) and t ∈ [0, 1] one has xt := tx+ (1− t)x′ ∈ B(x, δ) and,
since xt − x = (1− t)(x′ − x), xt − x′ = t(x− x′),

‖g(xt)− tg(x)− (1− t)g(x′)‖ ≤ t ‖g(xt)− g(x)− (1− t)Dg(x)(x′ − x)‖
+(1− t) ‖g(xt)− g(x′)− tDg(x)(x− x′)‖
≤ 2εt(1− t) ‖x− x′‖ .

(b) Let g : X → Y be of class C2 around x and let c >
∥∥D2g(x)

∥∥ . For
x, x′ ∈ B(x, δ) with δ > 0 small enough, one has a

∥∥D2g(x)
∥∥ ≤ c for all

x ∈ B(x, δ) and a Taylor’s expansion yields
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‖tg(x) + (1− t)g(x′)− g(xt)‖ ≤ t ‖g(x)− g(xt)− (1− t)Dg(xt)(x− x′)‖
+(1− t) ‖g(x′)− g(xt)− tDg(xt)(x′ − x)‖
≤ (1/2)t(1− t)2c ‖x− x′‖2 + (1/2)(1− t)t2c ‖x′ − x‖2

≤ (1/2)t(1− t)c ‖x− x′‖2 .

Proposition 4. Let f = h ◦ g, where g and h are Lipschitzian around x and
y := g(x) respectively.
(a) If g : X → Y is approximately affine around x ∈ X and h : Y → R is
approximately convex around y then f is approximately convex around x.
(b) If g and h are p-para-affine and p-paraconvex respectively around x and y
respectively, then f is p-paraconvex.

Proof. (a) Let κ, ρ > 0 be such that g is Lipschitzian with rate κ on B(x, ρ)
and let λ, σ > 0 be such that h is Lipschitzian with rate λ on B(y, σ). Given
ε > 0, let δ ∈ (0, σ) be such that for any y, y′ ∈ B(y, δ) and any t ∈ [0, 1] one
has

h(ty + (1− t)y′) ≤ th(y) + (1− t)h(y′) + (ε/2κ)t(1− t) ‖y − y′‖ .

Let γ ∈ (0, ρ) be such that g(B(x, γ)) ⊂ B(y, δ) and such that for every
x, x′ ∈ B(x, γ), t ∈ [0, 1]

‖g(tx+ (1− t)x′)− tg(x)− (1− t)g(x′)‖ ≤ (ε/2λ)t(1− t) ‖x− x′‖ .

Then, for x, x′ ∈ B(x, γ), t ∈ [0, 1], setting y := g(x), y′ := g(x′), one has

f(tx+ (1− t)x′) ≤ h(ty + (1− t)y′)
+ λ ‖g(tx+ (1− t)x′)− tg(x)− (1− t)g(x′)‖
≤ th(y) + (1− t)h(y′) + (ε/2κ)t(1− t) ‖y − y′‖
+ (ε/2)t(1− t) ‖x− x′‖
≤ tf(x) + (1− t)f(x′) + εt(1− t) ‖x− x′‖ .

(b) The proof of the second assertion is analogous and left to the reader.

4 Generalized Convexity Versus Generalized
Monotonicity

We devote this section to characterizations of approximate convexity and
paraconvexity. Previous results of this kind have been obtained in Aussel-
Daniilidis-Thibault [3], [16], Daniilidis-Georgiev [18] under some restrictive
assumptions on the space or on the functions (a local Lipschitz property, for
instance). They use concepts introduced by Spingarn (under the names of
strict submonotonicity and hypomonotonicity respectively).
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Definition 4. A multimapping M : X ⇒ X∗ is approximately monotone
around x ∈ dom(M) provided that for each ε > 0 there exists ρ > 0 such that

∀xi ∈ B(x, ρ), x∗i ∈M(xi), i = 1, 2 〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖

Definition 5. A multimapping M : X ⇒ X∗ is said to be p-paramonotone
around x on a subset E of X if there exist some m, δ > 0 such that for any
x1, x2 ∈ E ∩B(x, δ), x∗1 ∈M(x1), x∗2 ∈M(x2) one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −m ‖x1 − x2‖p
.

For E = X one simply says that M is p-paramonotone around x.

In the characterization which follows we denote by SX the unit sphere of X
and by B(x, ρ) the open ball with center x and radius ρ.

Theorem 1. Let x ∈ dom f, f l.s.c. and let ∂(·) be a subdifferential. Suppose
∂(·)f ⊂ ∂†f. Then, among the following assertions, one has the implications
(a)⇒(b)⇒(c)⇔(c’)⇒(d).
If moreover ∂(·) is valuable on X, all these assertions are equivalent.
(a) f is approximately convex around x;
(b) ∀ε > 0 ∃ρ > 0 such that ∀x ∈ B(x, ρ), ∀v ∈ B(0, ρ) one has

f†(x, v) ≤ f(x+ v)− f(x) + ε ‖v‖ ;

(c) ∀ε > 0, ∃ρ > 0 such that ∀x ∈ B(x, ρ), x∗ ∈ ∂(·)f(x), (u, t) ∈ SX × (0, ρ)
one has

〈x∗, u〉 ≤ f(x+ tu)− f(x)
t

+ ε;

(c’) ∀ε > 0 ∃ρ > 0 such that ∀x ∈ B(x, ρ), ∀x∗ ∈ ∂(·)f(x), ∀v ∈ B(0, ρ) one
has

〈x∗, v〉 ≤ f(x+ v)− f(x) + ε ‖v‖ ;

(d) ∂(·)f is approximately monotone around x.

The implications are easy consequences of the definitions, except the impli-
cation (d)⇒(a); for f locally Lipschitzian it suffices to use the exact mean
value theorem (see [3]). In the case of a l.s.c. function, the fuzzy mean value
theorem is required ([42]).

Corollary 1. The preceding assertions (a), (b), (c), (d) are equivalent when
(i) X is an arbitrary Banach space and ∂ is the Clarke or the Ioffe subdiffer-
ential;
(ii) X is an Asplund space and ∂ is the Fréchet subdifferential or the
Hadamard subdifferential.
Moreover, they are equivalent to the variant of assertion (b) obtained by re-
placing f† by f↑ (and, if X is an Asplund space, by f !).
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Now let us turn to characterizations of paraconvexity.

Theorem 2. Let p ∈ [1,∞), f ∈ F(X), x ∈ dom f . Suppose ∂(·)f ⊂ ∂†f.
Then, among the following assertions, one has the implications
(a)⇒(b)⇒(c)⇒(d).
If moreover ∂(·) is valuable, all these assertions are equivalent.
(a) f is p-paraconvex around x;
(b) ∃ρ > 0, c ∈ R, s. t. ∀x ∈ B(x, ρ) ∩ dom f, ∀v ∈ B(0, ρ) one has

f†(x, v) ≤ f(x+ v)− f(x) + c ‖v‖p ;

(c) ∃ρ > 0, c ∈ R, such that ∀x ∈ B(x, ρ), x∗ ∈ ∂(·)f(x), v ∈ B(0, ρ) one has

〈x∗, v〉 ≤ f(x+ v)− f(x) + c ‖v‖p ;

(d) ∂(·)f is p-paramonotone around x.

Corollary 2. Suppose f ∈ F(X) is finite at x ∈ X and p-paraconvex around
x. Then for any subdifferential ∂(·) such that ∂pf ⊂ ∂(·)f ⊂ ∂†f one has
∂(·)f(x) = ∂pf(x) = ∂†f(x). In particular, ∂−f(x) = ∂↑f(x) for x near x.

For the following supplement, let us recall that X is said to be superreflexive
if it admits an equivalent uniformly convex norm.

Corollary 3. Suppose X is uniformly smooth and ∂(·) is a valuable subdiffer-
ential on X contained in ∂†. Then, for p > 1, the assertions (a)-(d) of the
preceding theorem are consequences of the following one:
(e) ∃ρ, σ > 0 such that f + σ ‖·‖p is convex on B(x, ρ).
If the norm is uniformly convex, assertions (a)-(d) imply (e).
In particular, if X is superreflexive, conditions (a) and (e) are equivalent.

Corollary 4. Suppose f : U → R is a differentiable function on some open
subset U of X with a locally (p−1)-Hölderian derivative, with p ∈ (1, 2]. Then
f is p-paraconvex on U.

Other results about p-paraconvex functions and approximate convex func-
tions can be found in [3], [42] and [44]. In particular, representations of such
functions as marginal functions are presented there.

5 Approximate Convexity and Paraconvexity of Sets

We observe that using the notions of approximate convexity and p- paracon-
vexity for the indicator function ιE of a subset E of X would lead to convexity
of E and not to a relaxed form of convexity. Therefore, we rather use the dis-
tance function dE(·) := infe∈E d(·, e). In the sequel x is a point of E and
p ∈ (1,+∞).
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Definition 6. A subset E of X is said to be approximately convex (respec-
tively p-paraconvex) around x if its associated distance function dE is approx-
imately convex (respectively p-paraconvex) around x.

Example. E := {(r, s) ∈ R2 : s ≥ |r| − r2} is p-paraconvex but nonconvex.
The following result is an easy consequence of Theorem 1; when ∂(·) = ∂↑ it
can be deduced from [18].

Theorem 3. Let ∂(·) be a subdifferential on the family L(X) of Lipschitz
functions on X such that ∂(·)f ⊂ ∂↑f for any f ∈ L(X) and let x be an
element of a subset E of X. Then, among the following assertions, one has
the implications (a)⇒(b)⇒(c)⇒(d). If moreover ∂(·) is Lipschitz-valuable on
X, in particular if ∂(·) := ∂↑, ∂�, all these assertions are equivalent.
(a) E is approximately convex around x in the sense that dE is approximately
convex around x;
(b) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ) and any
v ∈ B(0, ρ) one has

d↑E(x, v) ≤ dE(x+ v)− dE(x) + ε ‖v‖ ; (2)

(c) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ), any
x∗ ∈ ∂(·)dE(x) and any (u, t) ∈ SX × (0, ρ) one has

〈x∗, u〉 ≤ dE(x+ tu)− dE(x)
t

+ ε; (3)

(c’) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ), any
x∗ ∈ ∂(·)dE(x) and any v ∈ ρBX one has

〈x∗, v〉 ≤ dE(x+ v)− dE(x) + ε ‖v‖ ; (4)

(d) ∂(·)dE is approximately monotone around x;

Corollary 5. If E is approximately convex around x then, for any subdiffer-
ential ∂(·) such that ∂− ⊂ ∂(·) ⊂ ∂↑ one has ∂−dE(x) = ∂(·)dE(x) = ∂↑dE(x).

Theorem 4. Let ∂(·) be a subdifferential on the family L(X) of Lipschitz
functions on X such that ∂(·)f ⊂ ∂↑f for any f ∈ L(X). Then, among the
following assertions, one has the implications (a)⇒(b)⇒(c)⇒(d).
If moreover ∂(·) is Lipschitz-valuable on X all these assertions are equivalent.
(a) E is p-paraconvex around x ;
(b) ∃c, ρ > 0 such that ∀x ∈ B(x, ρ), ∀v ∈ B(0, ρ) one has

d↑E(x, v) ≤ dE(x+ v)− dE(x) + c ‖v‖p ; (5)

(c) ∃c, ρ > 0 such that ∀x ∈ B(x, ρ), ∀x∗ ∈ ∂(·)dE(x), ∀(u, t) ∈ SX × (0, ρ)
one has
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〈x∗, u〉 ≤ dE(x+ tu)− dE(x)
t

+ ctp−1; (6)

(c’) ∃c, ρ > 0 such that ∀x ∈ B(x, ρ), ∀x∗ ∈ ∂(·)dE(x), ∀v ∈ ρBX one has

〈x∗, v〉 ≤ dE(x+ v)− dE(x) + c ‖v‖p ; (7)

(d) ∂(·)dE is p-paramonotone around x.

The following immediate consequence is stronger than the conclusion of Corol-
lary 5 since it holds for points around x and not just for x.

Corollary 6. If E is p-paraconvex around x for some p > 1, then, for any
subdifferential ∂(·) such that ∂pf ⊂ ∂(·)f ⊂ ∂↑f for any Lipschitz function f,
one has ∂pdE(x) = ∂−dE(x) = ∂(·)dE(x) = ∂↑dE(x) for x close to x.

Proof. Relation (5) shows that for any x ∈ B(x, ρ), v ∈ B(0, ρ) and any
x∗ ∈ ∂↑f(x) one has

〈x∗, v〉 ≤ d↑E(x, v) ≤ dE(x+ v)− dE(x) + c ‖v‖p
,

hence x∗ ∈ ∂−f(x) since p > 1.

6 Intrinsic Approximate Convexity and p-Paraconvexity

In the present section we deal with two variants of the classes of sets studied
in the preceding section. We raise the problem: are these classes different from
the preceding ones?

Definition 7. A subset E of X is said to be intrinsically approximately convex
around x ∈ E if for any ε > 0 there exists ρ > 0 such that for any x1, x2 ∈
E ∩B(x, ρ), t ∈ [0, 1], one has

dE((1− t)x1 + tx2) ≤ εt(1− t) ‖x1 − x2‖ . (8)

It is intrinsically approximately convex if it is intrinsically approximately con-
vex around each of its points.

Definition 8. Given p ∈ (1,+∞), a subset E of X is said to be intrinsically
p-paraconvex around x ∈ E if there exist c, ρ > 0 such that for any x1, x2 ∈
E ∩B(x, ρ), t ∈ [0, 1], one has

dE((1− t)x1 + tx2) ≤ ct(1− t) ‖x1 − x2‖p
. (9)

It is intrinsically p-paraconvex if it is intrinsically p-paraconvex around each
of its points.

Characterizations can be given as follows. When one of the assertions (b)-(d)
holds, we say that E is ∂(·)-intrinsically p-paraconvex around x.
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Theorem 5. Suppose ∂(·)f ⊂ ∂↑f for any Lipschitz function f on X.
Then, among the following assertions one has the implications
(a)⇒(b)⇒(c)⇔(d)⇐(e).
For ∂(·) = ∂↑ one has (b)⇔(c).
When X is a ∂(·)-subdifferentiability space one has (e)⇒(a). If X is an As-
plund space and ∂− ⊂ ∂(·) ⊂ ∂↑, then assertions (a)-(e) are equivalent.
(a) E is intrinsically p-paraconvex around x;
(b) ∃c, δ > 0 such that ∀x, x′ ∈ E ∩B(x, δ), one has

d↑E(x, x′ − x) ≤ c ‖x− x′‖p ; (10)

(c) ∃c, δ > 0 such that ∀x, x′ ∈ E ∩B(x, δ), x∗ ∈ ∂(·)dE(x), one has

〈x∗, x′ − x〉 ≤ c ‖x− x′‖p ; (11)

(d) ∂(·)dE(·) is p-paramonotone around x on E : there exist c, δ > 0 such that
for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈ ∂(·)dE(x1), x∗2 ∈ ∂(·)dE(x2) one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −c ‖x1 − x2‖p ; (12)

(e) there exist c, ρ > 0 such that ∀w ∈ B(x, ρ), x ∈ E∩B(x, ρ), w∗ ∈ ∂(·)dE(w)
one has

dE(w) + 〈w∗, x− w〉 ≤ c ‖x− w‖p
. (13)

Now let us give some specializations to some specific subdifferentials and nor-
mal cones.

Corollary 7. If E is intrinsically p-paraconvex around x then there exists
δ > 0 such that for x ∈ E ∩B(x, δ) one has N↑(E, x) = N−(E, x) and
(f) ∃c, δ > 0 such that for any ∀x, x′ ∈ E ∩B(x, δ), x∗ ∈ N−(E, x) one has

〈x∗, x′ − x〉 ≤ c ‖x∗‖ ‖x− x′‖p
. (14)

The preceding property can be related to a global one as in the works of Canino
[11], Colombo-Goncharov [16], De Giorgi-Marino-Tosques [20], Degiovani-
Marino-Tosques [21], Federer [23] for X a Hilbert space.

Definition 9. Given a subset E of X, p ∈ (1,+∞) and a continuous function
ϕ : E×E → R+, the subset E of X is said to be ϕ−p-convex if for any x, y ∈ E
and x∗ ∈ N−(E, x) one has

〈x∗, y − x〉 ≤ ϕ(x, y) ‖x∗‖ ‖x− y‖p
. (15)

The choice of the firm normal cone is natural since if this definition holds for
some other normal cone N (·)(E, x) one has N (·)(E, x) ⊂ N−(E, x).
The following result clarifies the links between ϕ− p-convexity and p - para-
convexity.
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Proposition 5. Let p ∈ (1,+∞), a subset E of a Banach space X, a con-
tinuous function ϕ : E × E → R+ be such that E is ϕ − p-convex. Then E
is intrinsically firmly p-paraconvex around each point of E in the sense that
assertion (c) of Theorem 5 is satisfied with ∂(·) = ∂−.
Conversely, if E is intrinsically firmly p-paraconvex around each point of E,
then E is ϕ− p-convex for some continuous function ϕ : E × E → R+.

Let us introduce the following concept.

Definition 10. A multimapping F : X ⇒ Y between two n.v.s. is said to be
approximately convex (resp. intrinsically approximately convex) around (x, y)
if its graph is an approximately convex (resp. intrinsically approximately con-
vex) subset of X × Y around (x, y).

Let us give some properties. We start with intersection of subsets.

Proposition 6. Let E1, E2, · · · , En be intrinsically p−paraconvex sets around
x ∈ E := E1 ∩ · · · ∩ En. Suppose that the following standard qualification
condition is satisfied: there exist b, δ > 0 such that

‖x∗1 + · · ·+ x∗n‖ ≥ b ∀x ∈ B(x, δ) \ E, ∀x∗i ∈ ∂↑dEi
(x).

Then E is intrinsically p−paraconvex around x.

Proposition 7. Let E ⊂ X be an intrinsically p−paraconvex set around x ∈
E and let f : X → Y be a nonexpansive mapping onto another n.v.s. Y . Then
F := f(E) is intrinsically p−paraconvex around y := f(x).
If f is open around x and if E is intrinsically approximately convex around
x, then F := f(E) is intrinsically approximately convex around y := f(x).

Corollary 8. If F : X ⇒ Y is an intrinsically approximately convex mul-
timapping around (x, y), then its domain and its image are intrinsically ap-
proximately convex around x and y respectively.

7 Links Between p-Paraconvex Sets and Functions

In the sequel, we endeavour to relate paraconvexity of sets and paraconvexity
of functions. We start with epigraphs. We endow the product space X :=
W × R of a n.v.s. W with R with a product norm, i.e. a norm such that the
projections and the insertions w �→ (w, 0) and r �→ (0, r) are nonexpansive.
Then, for each (w, r) ∈W × R we have

max (‖w‖ , |r|) ≤ ‖(w, r)‖ ≤ ‖w‖+ |r| .

Proposition 8. Let W be a normed vector space and let f : W → R∪{+∞}
be a l.s.c. function which is approximately convex (resp. p-paraconvex) around
w ∈W. Then, for any r ≥ f(w), the epigraph E of f is intrinsically approxi-
mately convex (resp. p-paraconvex) around x := (w, r).
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Let us complete the preceding result with the following one.

Proposition 9. Let f : W → R be a function which is Lipschitzian with rate
! > 0 on some ball B(w, ρ). Suppose X := W × R is endowed with the norm
given by ‖(w, r)‖ = ! ‖w‖+ |r| . If f is p-paraconvex around w, then, for any
r ≥ f(w), the epigraph E of f is p-paraconvex around x := (w, r).

Let us give a kind of converse to the preceding propositions.

Theorem 6. Let W be a Banach space and let f : W → R be a function
which is locally Lipschitzian around w ∈ W and such that the epigraph E of
f is an intrinsically approximately convex (resp. intrinsically p-paraconvex)
subset of X := W × R around x := (w, f(w)). Then f is an approximately
convex (resp. p-paraconvex) function around w.

Let us say that a function f : X → R ∪ {+∞} is an approximately quasi-
convex function if its sublevel sets are approximately convex. The following
result shows that under some qualification condition an approximately convex
function is approximately quasi-convex.

Proposition 10. Let X be a Banach space with a norm which is Fréchet
differentiable off 0 and let f : X → R be a continuous function. Suppose f is
approximately convex around x ∈ S := {x ∈ X : f(x) ≤ 0} and there exist
c > 0, r > 0 such that ‖x∗‖ ≥ c for each x ∈ (X\S) ∩ B(x, r) and each
x∗ ∈ ∂−f(x). Then S is intrinsically approximately convex around x.

8 Paraconvex Sets and Projections

The following result is reminiscent of [15, Thm 4.1] which takes place in a
Hilbert space. However, here U is not a uniform entourage of E; it may be
small (or large) and far from E.

Theorem 7. Suppose that the norm of X is Fréchet differentiable on X\{0}.
Let E be a closed subset of X and let U be an open subset of X. Consider the
following assertions
(a) Each w ∈ U has a unique metric projection PE(w) in E and the mapping
PE(·) is continuous on U \ E.
(b) dE(·) is continuously differentiable on U \ E.
(c) dE(·) is approximately convex on U \ E.
Then, one has (a) ⇒ (b) ⇒ (c). If X is uniformly Fréchet smooth, then (a)
⇒ (b) ⇐⇒ (c).
If, in addition, X is strictly convex and the norm of X has the Kadec-Klee
property, then (a) ⇐⇒ (b) ⇐⇒ (c).
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Theorem 8. Let X be a super-reflexive Banach space, let E be a closed subset
of X and let U be an open subset of X. The following assertions relative to
some choices of p ∈ (1, 2] and of an equivalent norm on X are equivalent:
(a) Each w ∈ U has a unique metric projection PE(w) in E and the mapping
w �→ PE(w) is locally Hölderian on U \ E.
(b) dE(·) is differentiable with a locally Hölderian derivative on U \ E.
(c) For each w ∈ U \ E, dE(·) is p-paraconvex around w for some p > 1.
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Monotonicity and Dualities
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Appliquées, CNRS UMR 5142 Av. de l’Université 64000 PAU, France.

Summary. There is a recent surge of interest for the representation of monotone
operators by convex functions. It can explained by the success of convex analysis
in obtaining the fundamental results about maximal monotone operators. Convex
analysis can also be combined with variational analysis to get new convergence
results. Here we take another direction and connect such a stream with the concept
of duality in a general framework, heavily using order methods.

Key words: Conjugacy, convexity, duality, generalized convexity, generalized
monotonicity, monotonicity, polarity.

1 Introduction

It is one of the purposes of mathematics to clarify a question by putting it
in general, abstract terms which avoid the complexity of real-world problems
and thus make them tractable. Of course, the gain lies in the balance between
simplication (i.e. abandon of contingent peculiarities) and abstraction.
In [45] we proposed a topological approach to the question of extension of usual
operations for monotone operators. Another vein is the use of order, another
fundamental tool in mathematics (see for instance [5], [33]). What follows is
an attempt to introduce explicit order methods and abstract convexity and
duality in the representation of monotone operators; see also [41].
Representations of monotone operators have been known since the pioneering
works of Krauss ([22]-[24]), and Fitzpatrick ([15]). Since it has been shown
that such representations are not just aesthetic, but have some usefulness
([40], [44], [46]- [7], [55]...), the subject is experiencing a great expansion ([4],
[6], [8], [9]-[11], [29], [30], [47], [56], [62]...).
The concept of duality is a convenient framework ([2], [5], [14], [19], [21], [25]-
[28], [31]-[43], [49]-[53], [57], [48]); it has shown to be effective in a number of
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situations. Recall that a duality between two ordered spaces L and M is an
antitone (i.e. order reversing) mapping D : L →M such that

D(
∧
i∈I

!i) =
∨
i∈I

D(!i)

for any family (!i)i∈I in L for which
∧

i∈I !i := infi∈I !i exists. Dualities are
often used in the case L and M are lattices or complete lattices. Conjugacies
are much studied examples of duality ([31]): given two sets W,Z and a map
b : W × Z → R, taking L := R

W
, M := R

Z
the conjugacy associated with

the coupling function b is the map D : L →M given by

f b(z) := − inf
w∈W

(f(w)− b(w, z)) f ∈ L, z ∈ Z.

Conjugacies have been characterized among dualities as the dualities D for
which the relation D(f + r) = −(r −D(f)) for every f ∈ R

W
, r ∈ R holds,

where the addition of R is extended to R by setting r + (+∞) = +∞ for
each r ∈ R and (−∞) + (−∞) = −∞ and where r − s := r + (−s). Here, for
the sake of simplicity we avoid the use of the opposite convention; the price
to be paid is a certain awkwardness in some formulae such as the preceding
one. One also has to be careful enough in cancelling terms or reorganizing
inequalities or equalities; see [31] and Lemma 1 below.
When the ordered sets L and M are subsets of the power sets 2W , 2Z of some
spaces W,Z ,the orders in L and M being the opposite of the inclusion, and
when P : L →M is a duality, i.e. satisfies

P (
⋃
i∈I

Ai) =
⋂
i∈I

P (Ai),

one says that P is a polarity. Here we will deal with the mixed case in which
one of the spaces is a power set and the other one is a function space, with its
pointwise order. The passage from sets to functions and the reverse passage
have proved to be fruitful in various areas of mathematics. Among many
instances, let us mention the passage from a closed subset A of a metric space
to its distance function dA := infa∈A d(a, ·), the passage from a subset A of a
set W to its indicator function ιA given by ιA(w) = 0 if w ∈ A, ιA(w) = +∞
if w ∈ W\A and, in the reverse direction, the passage from a function to
its graph or its epigraph. In particular, given a polarity P : L → M, let us
observe that considering the injections A �→ ιA and B �→ ιB of L and M into
R

W
and R

Z
respectively as identifications, any polarity can be considered as

a special duality.
The aim of the present note consists in trying to take advantage of the nu-
merous dualities which have been defined in function spaces (see examples
and references in [34], [36], [43], [51], [57], [60]) in order to construct new
polarities. As a byproduct, we obtain a means to represent certain general-
ized monotone operators by functions. Much more remains to be done in this
second direction.
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2 A General Framework

In the sequel, it will be convenient to say that a map M : L → M between
two ordered sets is a coduality if it is a duality for the reverse orders in L and
M, i.e. if it satisfies

M(sup
i∈I

!i) = inf
i∈I

M(!i)

for any family (!i)i∈I in L for which supi∈I !i exists. Taking the reverse order
inM, one gets a familiar notion. In particular, if L andM are sup-lattices (in
the sense that for any family of elements the supremum of the family exists)
and if

M(sup
i∈I

!i) = sup
i∈I

M(!i)

for any family (!i)i∈I in L, we say that M is a morphism of sup-lattices. A
similar definition can be given for morphisms of inf-lattices; note that here
we use the expression inf-lattice or sup-lattice for complete inf-sublattice or
sup-sublattice respectively.
The following result is probably the transcription to codualities of a classical
fact for dualities; but we are not aware of a precise statement under such
general assumptions. The notation we choose takes into account the fact that
in the sequel P will be a power set.

Proposition 1. Given a sup-lattice P, an inf-lattice F and an antitone map
J : P → F , there is a smallest antitone map J† : F → P such that J†(J(S)) ≥
S for every S ∈ P. It is given by

J†(f) =
∨
{S ∈ P : J(S) ≥ f}. (1)

Moreover, if J is a coduality, one has J(J†(f)) ≥ f for every f ∈ F and J†

is a coduality.

When J is a coduality, J† will be called the reverse coduality of J.
Proof. Let J† be defined by (1). Clearly J† is antitone and J† is such that
J†(J(S)) ≥ S for every S ∈ P. Let N : F → P be an antitone map such
that N(J(S)) ≥ S for every S ∈ P. Given f ∈ F , for every S ∈ P such that
J(S) ≥ f, we have N(f) ≥ N(J(S)) ≥ S, hence N(f) ≥ J†(f).
If J is a coduality, for every f ∈ F , one has J(J†(f)) = inf{J(S) : S ∈
P, J(S) ≥ f} ≥ f . Let us show that J† is a coduality. Let (fi)i∈I be any
family in F for which f := supi∈I fi exists. Since J† is antitone, we have
J†(f) ≤ J†(fi) for every i ∈ I. On the other hand, if S ∈ P is such that
S ≤ J†(fi) for every i ∈ I, then we have J(S) ≥ J(J†(fi)) ≥ fi for every
i ∈ I, hence J(S) ≥ f and J†(f) ≥ S by (1); that shows that J†(f) is the
greatest lower bound of (J†(fi))i∈I and that J† is a coduality. �

Given a set Z we consider a sub-sup-lattice (in the sense of complete sub-
lattices, i.e. a subset stable by arbitrary suprema) L of the set F := R

Z
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of functions from Z to R := R ∪ {−∞,+∞} for the pointwise order and a
sub-inf-lattice (i.e. a subset stable by arbitrary infima) M of the power set
P := P(Z) of Z (the set of subsets of Z, ordered by inclusion). The following
easy observation is the basis of our study.

Proposition 2. Given a coduality J : P → F , a duality C : F → F and a
coduality M : F → P, the map P := M ◦C ◦ J : P → P is a polarity. If M is
a sub-inf-lattice of P such that M(C(J(S))) ∈M for every S ∈M, then the
restriction of P to M is a polarity from M to M.

Proof. Given a family (Si)i∈I of subsets of Z one has

P (
⋃
i∈I

Si) = M

(
C

(
inf
i∈I

J(Si)
))

= M

(
sup
i∈I

C (J(Si))
)

=
⋂
i∈I

M (C (J(Si)))

=
⋂
i∈I

P (Si).

The second assertion is obvious. �

Under the assumptions of the preceding proposition, the map L := C ◦ J :
P → F is a morphism of sup-lattices. We will study it in more detail in the
following sections, assuming a more structured framework.

3 A Useful Construction

Now we suppose that a canonical function c : Z → R−∞ := R∪{−∞} is given
on Z. In the sequel c will be a coupling function; here we take into account
that many coupling functions take the value −∞ but not the value +∞ (see
[36, section 4]). As mentioned above, we use the familiar extension to R of the
addition given by +∞+ s = +∞ for every s ∈ R, (−∞) + (−∞) = −∞ and
we set r− s := r+ (−s) for r, s ∈ R. The following equivalence will be useful.

Lemma 1. For any r, s, t ∈ R−∞ one has the implications

−s ≤ r − t⇒ t ≤ r + s, (2)
t ≤ r + s⇒ −s ≤ r − t. (3)

Proof. In (2) the second inequality is obvious for t = −∞ and satisfied when
t ∈ R since then r, s, t are finite. The same argument applies for the proof of
(3). �

We consider the map J : P := P(Z) → F := R
Z

given by

J(S) := cS := ιS + c,

where ιS is the indicator function of S. This mapping satisfies
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J(
⋂
i∈I

Si) = sup
i∈I

J(Si), J(
⋃
i∈I

Si) = inf
i∈I

J(Si) (4)

for any family (Si)i∈I in P; thus it is an injective duality and coduality for the
usual orders in P (the inclusion) and F (the pointwise order). In the reverse
direction, for f ∈ F := R

Z
, we set

M(f) := {z ∈ Z : f(z) ≤ c(z)}. (5)

The following lemma is obvious.

Lemma 2. The relation M defines a coduality from F := R
Z

into the power
set P = 2Z of Z, i.e. an antitone mapping which satisfies the following relation
for any family (fi)i∈I in F :

M(sup
i∈I

fi) =
⋂
i∈I

M(fi).

The following lemma gives the hint that M might be a more special coduality.

Lemma 3. One has M(J(S)) = S for any S ∈ P and J(M(f)) ≥ f for any
f ∈ F .

Proof. The first assertion is immediate: for z ∈ S one has J(S)(z) = c(z) and
for z ∈ Z\S one has J(S)(z) = +∞ > c(z). Given f ∈ F , let S := M(f). For
z ∈ S one has J(S)(z) = c(z) ≥ f(z) by definition of M(f); for z ∈ Z\S one
has J(S)(z) = +∞ ≥ f(z). Thus J(S) ≥ f. �

The following observation confirms the preceding hint and provides an inter-
pretation of M showing its status in terms of codualities.

Proposition 3. The reverse coduality J† of J is M.

Proof. This follows from the fact that for any f ∈ F one has

J†(f) =
⋃
{S ∈ P : J(S) ≥ f} = {z ∈ Z : ι{z} + c ≥ f} = M(f).

4 A General Monotone Polarity

In the sequel we suppose Z := X×Y, where X,Y are two sets and c : X×Y →
R−∞ is considered as a coupling function. We provide Z×Z with the coupling
b given by

b(w, z) := b ((u, v), (x, y)) := c(u, y) + c(x, v)
w := (u, v), z := (x, y) ∈ X × Y, (6)

so that, for every z := (x, y) ∈ X × Y, one has

c(x, y) =
1
2
b (z, z) =

1
2
b ((x, y), (x, y)) .
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In the classical case, X,Y are two normed vector spaces in duality and c :
(x, y) �→ 〈x, y〉 is the given pairing. Even in the classical case, b is not the
usual coupling on Z, but it enables us to consider Z as paired with itself,
a decisive advantage. As mentioned above, the Fenchel-Moreau conjugate of
f ∈ F with respect to this coupling is given by

f b(x, y) := − inf{f(u, v)− b ((u, v), (x, y)) : (u, v) ∈ X × Y }. (7)

The following fact is noteworthy.

Lemma 4. One has cb ≥ c.

Proof. We note that for any r ∈ R−∞ we have r − 2r = −r. Given (x, y) ∈
X × Y , taking f = c and (u, v) = (x, y) in relation (7), we get −cb(x, y) ≤
c(x, y)− 2c(x, y) = −c(x, y). �

A similar proof for an arbitrary subset S of Z (not just S = Z) yields the
following result by taking (x, y) ∈ S and by plugging (u, v) := (x, y) in relation
(7).

Proposition 4. For any S in P := P(Z) the function fS := J(S)b := cbS
satisfies fS ≥ c on S.

The following concept has been introduced by S. Rolewicz [49], [50].

Definition 1. A multimapping S : X ⇒ Y (identified with its graph in X×Y )
is said to be c-monotone if for any u, x ∈ X, v ∈ S(u), y ∈ S(x) one has

c(u, y) + c(x, v) ≤ c(u, v) + c(x, y). (8)

In the classical case, we just say that S is monotone and the preceding relation
can be written

〈u− x, v − y〉 ≥ 0.

Let us note that S is c-monotone if, and only if, fS(z) ≤ c(z) for every z ∈ S,
or, equivalently, in view of Proposition 4 if, and only if, fS(z) = c(z) for
every z ∈ S. Other characterizations generalizing [44, Prop. 4] and using the
function gS := cbb

S introduced there in the special case just mentioned.

Proposition 5. For any multimapping S the following assertions are equiv-
alent:
(a) S is c-monotone;
(b) fS ≤ cS ;
(c) fS ≤ gS ;
(d) gS(w) + gS(z) ≥ b(w, z) for every w, z ∈ Z.

Proof. The implication (a)⇒(b) is a reformulation of the observation preceding
the statement since fS ≤ cS means that fS(z) ≤ c(z) for every z ∈ S. The
implication (b)⇒(c) stems from the fact that the conjugacy is antitone. For
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(c)⇒(d) we observe that since fS = cbS = cbbb
S = gb

S for any z ∈ Z the relation
gS(z) ≥ fS(s) can be written gS(z) ≥ b(w, z) − gS(w) for every w ∈ Z.
To prove (d)⇒(a) we note that since cS ≥ cbb

S = gS , for w := (u, v) ∈ S,
z := (x, y) ∈ S, we have

c(u, v)+ c(x, y) = cS(w)+ cS(z) ≥ gS(w)+ gS(z) ≥ b(w, z) = c(u, y)+ c(x, v),

so that S is monotone.
Using (c) and taking w = z in (d) one gets 2gS(z) ≥ b(z, z) = 2c(z) and the
next corollary.

Corollary 1. For any monotone multimapping S : X ⇒ Y one has gS ≥
fS ≥ c.

Before describing a polarity associated with this notion, let us present some
examples.
Example 1. Let f : X → R∪{+∞} be an arbitrary function with nonempty
domain dom f. The c-subdifferential of f is the multimapping ∂cf : X ⇒ Y
with domain included in dom f given for u ∈ dom f by

v ∈ ∂cf(u) ⇔ ∀x ∈ X f(x) + c(u, v) ≥ f(u) + c(x, v). (9)

Then ∂cf is c-monotone: given v ∈ ∂cf(u), y ∈ ∂cf(x), writing the analogous
relation

f(u) + c(x, y) ≥ f(x) + c(u, y)

and adding sides by sides with the inequality in (9), we obtain (8) after sim-
plification, noting that f(u) and f(x) are finite.
Example 2. Let X be a Banach space, let Z := X ×X and let c : Z → R be
the (upper) semi-scalar product given by

c(x, y) := (x, y)+ := lim
t→0+

1
2t

(
‖x+ ty‖2 − ‖x‖2

)
= sup

xb∈JX(x)

〈xb, y〉,

where JX := (1/2)∂ ‖·‖2 is the duality mapping. A c-monotone multimapping
S : X ⇒ X is a multimapping satisfying, for any u, x ∈ X, v ∈ S(u), y ∈ S(x),

(u, v)+ + (x, y)+ ≥ (u, y)+ + (x, v)+.

In view of the sublinearity of the function (·, ·)+ with respect to its second
variable, such a multimapping satisfies

(u, v − y)+ + (x, y − v)+ ≥ 0.

Such a condition is close to the definition of accretivity ([3], [12], [61]) which
is

(u− x, v − y)+ ≥ 0
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for any u, x ∈ X, v ∈ S(u), y ∈ S(x). For that reason we say that a c-
monotone multimapping is pseudo-accretif. Note that when the norm of X
is Gâteaux-differentiable, the three preceding relations coincide and can be
written

〈j(u)− j(x), v − y〉 ≥ 0,

where j : X → Xb is the derivative of (1/2) ‖·‖2 , so that j ◦ S−1 : X ⇒ Xb

is monotone and pseudo-accretivity coincides with accretivity. Such a fact
indicates that a number of results about maximal monotone operators may
be extended to maximal pseudo-accretive operators.
Example 3. Let X be a lattice and let Y be the space of modular functions
on X, a function f : X → R being called modular if it satisfies

∀u, x ∈ X f(u ∧ x) + f(u ∨ x) = f(u) + f(x).

Let c : X × Y → R be the evaluation mapping given by c(x, y) := y(x).
When X has a smallest element, another choice consists in taking for Y the
space of modular functions which are null at that element. In both cases,
it seems of interest to study c-monotone operators from X to Y. The case
of the subdifferential of a function ϕ : X → R is studied in [18] when X
is a distributive sublattice of P(E), where E is a finite set. See also [32],
[43], [59] for some relationships with duality. The fact that one disposes of
the Frank’s discrete separation theorem ([32, p. 17, 111]), an analogue of the
convex sandwich theorem and of studies of the relationships between such
results and Fenchel-like duality is encouraging.
Example 4. Suppose X and Y are m-convex sets in the sense that X and
Y are provided with maps mX : X2 → X, mY : Y 2 → Y. These maps can be
considered as operations inX and Y respectively, as in the preceding example.
When the spaces are metric spaces, such a notion has been widely studied in
connection with metric convexity and geodesics (see [20] and its references):
the space (X, d) is said to be mid-convex if for any (x, x′) ∈ X2 there exists
a point m := m(x,x′) ∈ X such that d(m,x) = d(m,x′) = (1/2)d(x, x′). Let
f : Z → R be m-convex in the sense that for z = (x, y), z′ = (x′, y′) ∈ Z and
mZ(z, z′) := (mX(x, x′),mY (y, y′)) one has

f(mZ(z, z′)) ≤ 1
2
f(z) +

1
2
f(z′).

When Z is a normed vector space, when mZ(z, z′) := (1/2)(z + z′) and when
f is continuous, then such a map is convex in the usual sense. If f ≥ c
and if c is m-concave (i.e. −c is m-convex) in each of its two variables, then
S := {z : f(z) = c(z)} is c-monotone. In fact, for z = (x, y), z′ = (x′, y′) ∈ S
one has
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1
2
c(x, y) +

1
2
c(x′, y′) =

1
2
f(x, y) +

1
2
f(x′, y′)

≥ f(mZ(z, z′)) ≥ c(mZ(z, z′))

≥ 1
4
c(x, y) +

1
4
c(x, y′) +

1
4
c(x′, y) +

1
4
c(x′, y′),

so that c(x, y) + c(x′, y′) ≥ c(x′, y) + c(x, y′) : S is c-monotone. This example
slightly generalizes an argument in [29] and [41, Lemma 3], X and Y having
no linear structure here. We refer to [41, Examples 1-4] for particular cases of
this example.
Example 5. Let X and Y be arbitrary sets, and let F : X ⇒ Y be a relation.
A number of duality schemes, in particular the radiant and shady dualities
([36, Example 4.2]), the sublevel duality ([36, Example 4.3]), are obtained by
taking the coupling c : X × Y → R−∞ given by

c(x, y) := −ιF (x)(y) := −ιF (x, y).

In such a case, the conjugate of a function f ∈ R
X

is given by

fc(y) := − inf{f(x) : x ∈ F−1(y)}.

The simplicity of this conjugacy justifies its interest (see [37], [42], [58]...). In
particular, introducing the polarity Pc : P(X) → P(Y ) given by

Pc(A) := {y ∈ Y : A ∩ F−1(y) = ∅},

the conjugate fc of f can be simply described by its sublevel sets given by

[fc ≤ r] = Pc([f < −r]) r ∈ R.

A multimapping S : X ⇒ Y is c-monotone iff the following equivalent impli-
cations hold:

u, x ∈ X, (S(u) ∩ F (x)) \F (u) �= ∅ ⇒ S(x) ∩ F (u) = ∅,

u, x ∈ X, S(u) ∩ F (x) �= ∅ ⇒ S(x) ∩ F (u) ⊂ F (x).

In several cases of interest F is defined by the way of a function a : X×Y → R

by
F (x) := {y ∈ Y : a(x, y) > 0};

then the preceding implications amount to

u, x ∈ X, v ∈ S(u), y ∈ S(x), a(u, y) > 0, a(x, v) > 0
⇒ a(u, v) > 0, a(x, y) > 0.

When X is a n.v.s. and Y is its dual space, with a(x, y) := 〈x, y〉− 1, one gets
a condition in terms of half-spaces.
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Example 6. Let W, X and Y be arbitrary sets, and let p : X × Y → W be
a map considered as an operation (x, y) �→ xby := p(x, y). Given a function
d : W → R−∞ one may consider the coupling function c : X × Y → R−∞
given by

c(x, y) := d(p(x, y)) (x, y) ∈ X × Y.

Two important cases have been considered (P denoting the set of positive
numbers) in [26] and [53] respectively (see also [1]):
(a) for W = X = Y = Rn, p(x, y) := x + y, d(v) := inf1≤i≤n vi for v :=
(v1, ..., vn) ∈ Rn;
(b) for W = X = Y = Pn, p(x, y) := xy, d(v) := inf1≤i≤n vi for v :=
(v1, ..., vn) ∈ Rn, the product xy being the vector with components xiyi for
x = (xi), y = (yi) in Rn.
Both cases correspond to separation properties (for closed downward sets and
closed normal sets respectively) and have fruitful applications in mathematical
economics.
Another example is provided by the following proposition in which c : Z →
R−∞ is an arbitrary function and b is given by relation (6).

Proposition 6. For any f ∈ F := R
Z

the set S := {z ∈ Z : f(z) ≤
c(z), f b(z) ≤ c(z)} is c-monotone.

Proof. Given w := (u, v), z := (x, y) ∈ S, we have f(u, v) ≤ c(u, v), hence

−c(x, y) ≤ −f b(x, y) ≤ c(u, v)− [c(u, y) + c(x, v)] .

Taking in (2) r := c(u, v), s := c(x, y), t := c(u, y) + c(x, v), we get c(u, y) +
c(x, v) ≤ c(u, u) + c(x, y). �

Let us compare the polarity described in Proposition 2 with the polarity
S �→ Sµ introduced to us by J.-E. Mart́ınez-Legaz ([29]); it is given by

Sµ := {(x, y) ∈ Z : ∀(u, v) ∈ S, c(u, y) + c(x, v) ≤ c(u, v) + c(x, y)} (10)

for S ∈ P.
The map S �→ Sµ is a polarity since for any family (Si)i∈I in P it clearly
satisfies

(
⋃
i∈I

Si)µ =
⋂
i∈I

Sµ
i .

Since S ⊂ Sµµ, the following properties ensue:

S ⊂ T ⇒ Tµ ⊂ Sµ,

Sµµµ = Sµ.

Moreover, S �→ Sµ is designed in such a way that

S ⊂ Sµ ⇔ S is c-monotone.
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Let us denote by M the class of c-monotone multimappings and by M′ the
class of comonotone multimappings defined by

S ∈M′ ⇔ Sµ ⊂ S.

We say that a multimapping S is maximal c-monotone if any c-monotone
multimapping T ⊃ S coincides with S. Observing that for a c-monotone
operator S, one has

(x, y) ∈ Sµ ⇔ S ∪ {(x, y)} is c-monotone,

one gets, for a c-monotone operator S :

S is maximal c-monotone ⇔ S = Sµ ⇔ S ∈M′ ∩M.

It will be convenient to introduce the Fitzpatrick map L : S �→ fS := (ιS +c)b.

Definition 2. The Fitzpatrick map L : P → F is given by L(S) = C(J(S)),
where C : F → F is the conjugacy (or Legendre-Fenchel transform) C : f �→
f b := f b.

In view of (4), it is a morphism of sup-lattices when, as usual, P is ordered
by the inclusion and F is endowed with the pointwise order.

Proposition 7. Taking for C : F → F the conjugacy f �→ f b, the polarity
P := M ◦L := M ◦C◦J on P coincides with the “monotone polarity” S �→ Sµ:
for any S ∈ P one has

M(L(S)) = Sµ. (11)

Proof. For S = ∅, relation (11) is obvious, both sides being Z. Let fS := L(S)
with S �= ∅. Then, for any (x, y) ∈ Sµ, (u, v) ∈ S, using (10) and taking
r := c(u, u), s := c(x, y), t := c(u, y) + c(x, v) in (3), we get

c(u, v)− [c(u, y) + c(x, v)] ≥ −c(x, y),

so that we have

−fS(x, y) := inf{c(u, v)− [c(u, y) + c(x, v)] : (u, v) ∈ S} ≥ −c(x, y).

Thus (x, y) ∈M(fS) by definition of M in (5).
Conversely, if (x, y) /∈ Sµ there exists (u, v) ∈ S such that

c(u, v) + c(x, y) < c(u, y) + c(x, v). (12)

Then c(u, y) + c(x, v) is finite and either c(x, y) = −∞ and the relation

−c(x, y) > c(u, v)− [c(u, y) + c(x, v)]

is trivial, else c(x, y) is finite and this relation follows from (12). In both cases
one gets fS(x, y) > c(x, y) and (x, y) /∈M(fS). Thus M(fS) = Sµ. �

Replacing S by Sµ, we get the next consequence.
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Corollary 2. For any S ∈ P one has

M(L(Sµ)) = Sµµ.

Corollary 3. (a) For any c-monotone operator S one has S ⊂ Sµµ ⊂
M(L(S)).
(b) For any S ∈ P one has M(L(S)) = S if, and only if, S is maximal
c-monotone.

Proof. (a) For S ∈ M we have seen that S ⊂ Sµµ and S ⊂ Sµ, so that
Sµµ = M(L(Sµ)) ⊂M(L(S)).
(b) For any S ∈ P one has M(L(S)) = S if, and only if, Sµ = S if, and only
if, S is maximal c-monotone.

5 Representations

Let us study more closely the Fitzpatrick map and some classes of b-convex
functions, a function f on Z being called a b-convex function if f bb = f. Then
we write f ∈ Γb(Z).

Proposition 8. For any S in P, the function fS := L(S) satisfies fS |Sµ=
c |Sµ . If S belongs to the family M of nonempty c-monotone subsets of Z,
then fS := L(S) belongs to the set

FS := {f ∈ Γb(Z) : f ≥ c, f |S= c |S}.

Moreover, S is maximal c-monotone, if, and only if, fS := L(S) belongs to
the set

HS := {f ∈ Γb(Z) : f ≥ c, S = M(f)}.

Proof. The first part of the proof of Proposition 7 has shown that fS(x, y) ≤
c(x, y) for any (x, y) ∈ Sµ. Since fS ≥ c by Proposition 4, we get fS |Sµ=
c |Sµ . When S is c-monotone, the relation fS ∈ FS is a consequence of the
inclusion S ⊂ Sµ.
Finally, the last corollary has shown that if S is maximal c-monotone then
S = M(fS) and that conversely, if fS ∈ HS then S is maximal monotone. �

When computing the c-regularization of a function is easier than computing
its c-conjugate, one may introduce the c-regularized function gS := (c+ ιS)bb

of cS := c+ ιS .

Proposition 9. For any c-monotone operator S the function gS satisfies fS ≤
gS ≤ cS and one has fS = gS = c on S so that gS belongs to FS .
If S is maximal c-monotone one has S = M(gS) = {z ∈ Z : gZ(z) = c(z)}.
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Proof. The inequality gS := cbb
S ≤ cS is a general fact for any conjugacy. Since

for a c-monotone operator S we observed that fS |S= c |S , we have fS ≤ cS
hence gS = f b

S ≥ cbS = fS . It follows that fS = gS = cS = c on S.
Now suppose S is maximal c-monotone. Then, since fS ≤ gS we haveM(gS) ⊂
M(fS) = S; but since gS = c on S, we also have M(gS) = S. �

It follows that any function f such that

fS ≤ f ≤ gS

belongs to the class HS when S is maximal monotone. Examples show that
it may be more convenient to deal with such a representative function than
with the particular representatives function fS and gS . For instance, when S
is the subdifferential of a closed convex function ϕ, one may take f(x, y) :=
ϕ(x) + ϕb(y), since fS and gS may be difficult to compute (see [4], [9])

6 Questions and Observations

Let us conclude with some questions which may stimulate further research
(since answers are not always available).
1) What is the image of the polarity S �→ Sµ? An answer can be provided in
the general framework of polarities: this image is the family T := {T ∈ P :
Tµµ = T} of µµ-closed subsets since Sµµµ = Sµ for any S ∈ P and since any
T ∈ T is of the form T = Sµ for S := Tµ

2) What is the image of M by L?
3) What is the image L(∂cf) of the c-subdifferential of a function f by L?
The recent papers [4], [9] deal with such a question in the case of the classical
coupling; even in that case the question is not trivial!
4) Is the relationship between the polarity P and the conjugacy C : f �→ f b

richer than what is described above?
5) What is the operation obtained from an operation in M (such as sum,
parallel addition...) by transporting it into F? What is the operation obtained
from an operation in F (such as sum, infimal convolution...) by transporting
it into P? Partial answers are provided in [44], [56] and [7].
6) If f ∈ Γ (Z), then M(f) is closed for the convergence which is the product
of the bounded weak convergence with the strong convergence. What more
can be said from a topological viewpoint?)
7) What are the generating functions of the preceding dualities?
8) What can be said about the corresponding subdifferentials?
9) Can one get special properties of the representations corresponding to the
existence of operations such as ∩ and ∪ in P or convexification in F?
10) What is the image of Γb(Z) by M?
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47. J.-P. Penot, C. Zălinescu, Some problems about the representation of monotone
operators by convex functions, ANZIAM J. 47 (2005), 1-20.

48. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin,
1997.

49. S. Rolewicz, Convex analysis without linearity, Control and Cybern. 23 (1994),
247-256.

50. S. Rolewicz, Duality and convex analysis in the absence of linear structure,
Math. Jap. 44, No.1, 165-182 (1996).

51. A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer, Dordrecht
(2000).

52. A.M. Rubinov, Radiant sets and their gauges, in Quasidifferentiability and Re-
lated Topics, V. Demyanov and A.M. Rubinov, eds. Kluwer, Dordrecht (2000).

53. A.M. Rubinov, B.M. Glover and V. Jeyakumar, A general approach to dual
characterizations of solvability of inequality systems and applications, J. Convex
Anal. 2(1995), 309-344.

54. A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Algorithms
and Combinatorics 24. Springer, Berlin (2003).

55. S. Simons, C. Zalinescu, A new proof for Rockafellar’s characterization of and
maximal monotone operators, Proc. Amer. Math. Soc. 132 (2004), 2969-2972.

56. S. Simons, C. Zalinescu, Fenchel duality, Fitzpatrick functions and maximal
monotonicity, J. Nonlinear Convex Anal. 6 (1), (2005), 1-22.

57. I. Singer, Abstract Convex Analysis, Canadian Math. Soc. Series of Monographs
and Advanced Texts. Wiley, New York, New York (1997).

58. P.T. Thach, A nonconvex duality with zero gap and applications, SIAM J.
Optim. 4 (1) (1994), 44-64.

59. D.M. Topkis, Supermodularity and Complementarity, Princeton Univ. Press,
Princeton (1998).

60. M. Volle, Conjugaison par tranches, Annali Mat. Pura Appl. 139, pp. 279-312
(1985).

61. I.I. Vrabie, Compactness methods for nonlinear evolutions, Pitman Monographs
and Surveys in Pure and Applied Mathematics, 32, Longman, Harlow (1987).

62. C. Zalinescu, A new proof of the maximal monotonicity of the sum using the
Fitzpatrick function, in Variational Analysis and Applications, F. Giannessi and
A. Maugeri, eds., Springer, New York, 2005, 1159-1172 .



On Variational-like Inequalities with
Generalized Monotone Mappings∗

Vasile Preda1, Miruna Beldiman2, and Anton Bătătorescu3
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1 Introduction

The monotonicity property of a map, together with continuity, convexity and
coercivity, has a very important role in many fields like optimization and math-
ematical programming problems (Luc [19]), equilibrium problems (Ansari,
Konnov, Yao [2]), game theory and variational inequality theory (Glowinski,
Lions, Tremolieres [8]). Many authors obtained interesting generalizations of
this notion and used them for establish the existence conditions for some types
of variational inequalities (Hadjisavvas, Schaible [10], Hartman, Stampacchia
[11], Giannessi [6], Giannessi, Maugeri [7], Kassay, Kolumban [13], Schaible
[24]).
In 1995, Konnov and Yao proved in [14] some results about the existence
of solutions for vector variational inequalities with Cx-pseudomonotone set-
valued mappings, which were been extended later by Ansari, Siddiqi and Yao
in [1]. Also, Konnov [15, 16, 17] obtained some combined relaxation methods
for solving variational inequalities which involve different classes of generalized
monotone functions.

∗This research was partially supported by Grant CNCSIS no. 27694/2005
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In 1997, Verma [25], studied a class of nonlinear variational inequalities with
p-monotone and p-Lipschitz maps in reflexive Banach spaces. In 1999, Chen [4]
obtained the existence of solution for a class of variational inequalities with
semi-monotone single-valued maps in nonreflexive Banach spaces. In 2003,
Fang and Huang [5], considered two classes of variational-like inequalities
with generalized monotone and semi-monotone mappings. Using the KKM
technique, they proved the existence of the solutions for these variational-like
inequalities with relaxed η−α monotone mappings in reflexive Banach spaces.
In this case, the following problems were considered:

Find x ∈ K such that 〈Tx, η (y, x)〉+ f (y)− f (x) ≥ 0, ∀ y ∈ K,

and

Find x ∈ K such that 〈Tx, η (y, x)〉+ f (y)− f (x) ≥ α (y − x) , ∀ y ∈ K,

where T, η, f and α will be defined later in section 3.
The solvability of variational-like inequalities with relaxed η−α semimonotone
mappings in arbitrary Banach spaces were also studied by means of the
Kakutani-Fan-Glicksberg fixed-point theorem. In this case, the following prob-
lems were considered:

Find u ∈ K such that 〈A (u, u) , η (v, u)〉+ f (v)− f (u) ≥ 0, ∀ v ∈ K,

and

Find u ∈ K such that 〈A (u, u) , η (v, u)〉+f (v)−f (u) ≥ α (v − u) , ∀ v ∈ K,

where A, η, f, and α will also be defined later in section 4.
In this way, some previous results concerning variational inequalities were
extended, among such references we mention Chang, Lee, Chen, [3], Chen [4],
Goeleven, Motreanu [9], Hartman, Stampacchia [11], Siddiqi, Ansari, Kazmi
[22], and Verma [25, 26].
Kang, Huang and Lee extended in 2003 [12] these notions for the case of
set-valued mappings.
In this paper, we define two classes of generalized relaxed α-monotone and
semi-monotone mappings and show by several examples the importance of
these types of functions.
Using the KKM technique, we state the existence theorems for variational-like
inequalities with generalized relaxed α-monotone mappings in reflexive Ba-
nach spaces. Further, by employing the Kakutani-Fan-Glicksberg fixed-point
theorem, we establish also the solvability of variational-like inequalities with
generalized relaxed αsemimonotone mappings in arbitrary Banach spaces.
Our paper extends and improves, at least, some known results relative to:

– more general variational inequality classes as presented before;
– more general classes of monotone, respectively semimonotone mappings;
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– the convexity and the lower semicontinuity assumptions for the mappings
y �−→ 〈Tz, η (y, x)〉 , y �−→ 〈A (z, w) , η (y, x)〉 and f are replaced by more
general one, which extend even the usual convexity and semicontinuity
assumptions of the mappings y �−→ 〈Tz, η (y, x)〉 + f (y) − f (x) , and
y �−→ 〈A (z, w) , η (y, x)〉+f (y)−f (x) . Our results are sustained by some
significant examples given in sections 2 and 5.

2 Definitions and Some Preliminaries

We consider in the sections 2 and 3 the real reflexive Banach space E and its
dual space E∗, and letK be a nonempty subset of E.We consider the mapping
T : K → E∗ and the functions Ψ : K ×K ×K → R and α : E × E → R.

Definition 1. Ψ is general relaxed α-monotone if for any x, y ∈ K we have

Ψ (y, x; y)− Ψ (y, x;x) ≥ α (x, y)

where lim
t↘0

α(x,x+t(y−x))
t = 0.

Definition 2. If Ψ (x, y; z) = 〈Tz, η (x, y)〉 , where η : K × K → E, we say
that the mapping T is general η − α monotone.

Remark 1.

(i1) If Ψ (y, x; z) = 〈Tz, η (y, x)〉 with α (x, y) = β (y − x) , where β : K → R

with β (tz) = tpβ (z) for t > 0, p > 1 and η : K ×K → E, the Definition
1 reduces to relaxed η − α monotonicity of mapping T (see [5]).

(i2) In the case of (i1), if η (x, y) = x − y for all x, y ∈ K, the Definition 1
reduces to

〈Ty − Tx, y − x〉 ≥ β (y − x) , ∀ x, y ∈ K,

and T is said to be relaxed α monotone (see also [5]).
(i3) In the case of (i2), if β (z) = k ‖z‖p

, where k > 0 is a constant, then
Definition 1 reduces to

〈Ty − Tx, y − x〉 ≥ k ‖x− y‖p
, ∀ x, y ∈ K,

and T is said to be p -monotone (see [4, 25]).
(i4) We see that every monotone mapping is relaxed η − α monotone with

η (x, y) = x− y for all x, y ∈ K and α ≡ 0.

Example 1. If we consider E = E∗ = R, K = (−∞,+∞) ,

Ψ (x, y; z) = 〈Tz, η (x, y)〉 = −zη (x, y)

η (y, x) =
{
c (y − x) , x ≤ y
−c (y − x) , x > y
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where c > 0 is a constant, then Ψ is general relaxed α-monotone with
α (x, y) = β (y − x) ,

β (z) =
{
−cz2, z < 0
cz2, z ≥ 0

i.e., the mapping T is relaxed η − α monotone.

Example 2. If we consider E = E∗ = R, K = (−∞,+∞) ,

Ψ (x, y; z) = 〈Tz, η (x, y)〉 = −z2η (x, y)

η (y, x) =
{
−c

(
y2 − x2

)
, y2 ≥ x2

c
(
y2 − x2

)
, y2 < x2

where c > 0 is a constant, then Ψ is general relaxed α-monotone with

α (x, y) =

{
−c

(
y2 − x2

)2
, y2 < x2

c
(
y2 − x2

)2
, y2 ≥ x2

i.e., the mapping T is relaxed η − α monotone.

We see that in this case T is not relaxed η − α monotone with α (x, y) given
by α (x, y) = β (y − x) . Hence, the class of general relaxed η − α monotone
mappings is more large than the class of relaxed η − α monotone mappings
defined by Fang, Huang [5].

Example 3. For K = (0, π) and α (x, y) =
[(

sin2 x
)x −

(
sin2 y

)y
]τ

where τ >

1 is a constant, we have lim
t↘0

α(x,x+t(y−x))
t = 0. In this case we see that α (x, y)

has not the form β (γ (y)− γ (x)) , where γ : K → K.

Definition 3. Ψ (y, x; ·) is hemicontinuous if for any fixed x, y ∈ K, the map-
ping µ : [0, 1] → (−∞,+∞) defined by µ (t) = Ψ (y, x;x+ t (y − x)) is contin-
uous at 0+.

Definition 4. We say that Ψ is coercive if there exists y0 ∈ K such that

lim
‖x‖→+∞

Ψ (x, y0;x)− Ψ (x, y0; y0)
|Ψ (y0, x; y0)|

= +∞

Remark 2.

(i1) We see that for Ψ (y, x; z) = 〈Tz, η (y, x)〉 such that Ψ (y0, x; y0) =
cη (y0, x) , where c is a non-zero real constant, then Definition 4 reduces
to η -coercivity of the mapping T (see Schaible [23]).

(i2) For Ψ (y, x; z) = 〈Tz, η (y, x)〉 + f (z) , where f : K → R ∪ {+∞} is a
proper function such that Ψ (y0, x; y0) = cη (y0, x) , c is a non-zero real
constant, then Definition 4 reduces to η -coercivity of the mapping T
with respect to f, defined in [5]. In this case, if f = δK , where δK is the
indicator function of K, then Definition 4 coincides with the definition of
η -coercivity in the sense of Schaible [23].
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(i3) For Ψ (y, x; z) = 〈Tz, η (y, x)〉+ϕ (y, x) where ϕ : K×K → R∪{+∞} is a
proper function such that Ψ (y0, x; y0) = cη (y0, x) , with c a non-zero real
constant, then Definition 4 reduces also to η -coercivity of the mapping T
(see Schaible [23]).

Definition 5. (Ky Fan [18]) A mapping F : K → 2E is said to be a KKM

mapping if for any {x1, . . . , xn} ⊂ K, we have co {x1, . . . , xn} ⊂
n⋃

i=1

F (xi) ,

where 2E denotes the family of all the nonempty subsets of E.

Lemma 1. (Ky Fan [18]) Let K be a nonempty subset of a Hausdorff topolog-
ical vector space X and let F : K → 2X be a KKM mapping. If F (x) is closed
in X for every x ∈ K and compact for some x ∈ K, then

⋂
x∈K

F (x) �= ∅.

3 Variational-like Inequalities with General Relaxed
α-Monotone Mappings

In this section we suppose that K is a nonempty closed convex subset of E
and now we consider the following problems:

Find x ∈ K such that Ψ (y, x;x) ≥ 0, ∀ y ∈ K (1)

and
Find x ∈ K such that Ψ (y, x; y) ≥ α (x, y) , ∀ y ∈ K. (2)

Relative to problems (1) and (2) we have the following results.

Theorem 1. We suppose:

(i1) Ψ (y, x; ·) is hemicontinuous for any fixed x, y ∈ K;
(i2) Ψ (·, x; z) is a convex function on K, for any fixed x, z ∈ K;
(i3) Ψ (x, x; z) = 0 for any x, z ∈ K;
(i4) Ψ is general relaxed α-monotone.

Then the problems (1) and (2) are equivalent.

Proof. Let x be a solution for (1). Then

Ψ (y, x;x) ≥ 0, for any y ∈ K. (3)

According to (i4) Ψ (y, x; ·) is α-monotone and then

Ψ (y, x; y)− Ψ (y, x;x) ≥ α (x, y) for any y ∈ K,

and from (3) we get

Ψ (y, x; y) ≥ α (x, y) for any y ∈ K,
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i.e. x is a solution for problem (2).
Conversely, let x ∈ K be a solution of problem (2) and let y ∈ K. We denote

yt = (1− t)x+ ty , t ∈ (0, 1)

and by convexity of K we have yt ∈ K. Since x is a solution of (2) we have

Ψ (y, x; y) ≥ α (x, y) for any y ∈ K.

Hence, for y = yt, t ∈ (0, 1) , we get

Ψ (yt, x; yt) ≥ α (x, yt) . (4)

By (i2) we have that Ψ (·, x; yt) is a convex function. Hence

Ψ (yt, x; yt) ≤ tΨ (y, x; yt) + (1− t)Ψ (x, x; yt) . (5)

Using (4), (5) and (i3) we obtain

Ψ (y, x; yt) ≥
α (x, yt)

t
, for any t ∈ (0, 1) . (6)

Since Ψ (y, x; ·) is hemicontinuous (according to (i1)) and lim
t↘0

α(x,x+t(y−x))
t = 0

(according to (i4)), letting t→ 0 in (6) we get Ψ (y, x;x) ≥ 0, for all y ∈ K.

Remark 3. We notice that Theorem 2.1 of Fang, Huang [5], as well as Theorem
2.1 of Verma [25] are particular cases of Theorem 1.

Theorem 2. Let K be a nonempty bounded closed convex subset of a real
reflexive Banach space E; let E∗ be the dual space of E. We assume that:

(j1) Ψ (y, x; ·) is hemicontinuous for any fixed x, y ∈ K;
(j2) Ψ (·, x; z) is a convex and lower semicontinuous function on K, for any

fixed x, z ∈ K;
(j3) Ψ (x, y; z) + Ψ (y, x; z) = 0 for all x, y, z ∈ K;
(j4) Ψ (y, x; ·) is α-monotone with lim

t↘0

α(x,x+t(y−x))
t = 0;

(j5) α (·, y) is weakly lower semicontinuous for any fixed y ∈ K, i.e., for any
sequence {xν}ν that converges to x in σ (E,E∗) we have

α (x, y) ≤ lim
ν→∞ inf α (xν , y) , for any y ∈ K.

Then, problem (1) is solvable.

Proof. We define two set-valued mappings F,G : K → 2E as follows:

F (y) = {x ∈ K | Ψ (y, x;x) ≥ 0} , ∀ y ∈ K,
G (y) = {x ∈ K | Ψ (y, x; y) ≥ α (x, y)} , ∀ y ∈ K.
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According to Theorem 1 we have⋂
y∈K

F (y) =
⋂

y∈K

G (y) . (7)

We shall prove that ⋂
y∈K

G (y) �= ∅. (8)

We claim first that F is a KKM mapping. We proceed by contradiction and

suppose that there exist {y1, . . . , yn} ⊂ K and ti > 0, i = 1, 2, ..., n,
n∑

i=1

ti = 1,

such that y0 =
n∑

i=1

tiyi /∈
n⋃

i=1

F (yi) . It follows y0 /∈ F (yi) for any i = 1, 2, ..., n,

i.e.
Ψ
(
yi, y

0; y0
)
< 0 , for i = 1, 2, ..., n. (9)

Using (j3) we obtain

Ψ (y, y; z) = 0 for any y, z ∈ K.

Now, by (j2) and (9) it follows

0 = Ψ
(
y0, y0; y0

)
= Ψ

(
n∑

i=1

tiyi, y
0; y0

)
≤

≤
n∑

i=1

tiΨ
(
yi, y

0; y0
)
< 0

which is a contradiction. Hence, F is a KKM mapping.
We prove now that G is also a KKM mapping. It is sufficient to prove that
for any y ∈ K we have

F (y) ⊂ G (y) .

Let y ∈ K. For x ∈ F (y) we have Ψ (y, x;x) ≥ 0. Since Ψ is general relaxed
α-monotone, we have

Ψ (y, x; y) ≥ Ψ (y, x;x) + α (x, y) ≥ α (x, y)

i.e. x ∈ G (y) , hence F (y) ⊂ G (y) for all y ∈ K and therefore G is a KKM
mapping.
We prove now that G (y) is weakly compact in K for each y ∈ K. Indeed,
according to the definition of G (y) and by (j2) we have that the mapping
x �→ Ψ (x, y; y) is weakly lower semicontinuous. Using the definition of G and
the weakly lower semicontinuity of α (·, y) for all y ∈ K, we conclude that
G (y) is weakly closed for all y ∈ K. Since K is a bounded closed and convex
set, it follows that K is weakly compact, and so G (y) is weakly compact in
K for all y ∈ K. Using now Lemma 1 we get (9). Hence, by (7) and (8) we
get
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y∈K

F (y) �= ∅,

and therefore, there exists x ∈ K such that

Ψ (y, x;x) ≥ 0 , for all y ∈ K,

i.e., problem (1) is solvable and the theorem is proved.

Remark 4. Theorem 2 includes as particular cases, for example, the Theorem
2.2 of Fang and Huang [5] and Theorem 2.2 of Verma [25].

We consider now the case of unbounded closed convex sets.

Theorem 3. Let K be a nonempty unbounded closed convex subset of a real
Banach space E and let E∗ be the dual space of E. We assume that (j1), (j2),
(j3) and (j5) of Theorem 2 are fulfilled together with

(j6) Ψ is coercive.

Then, problem (1) is solvable.

Proof. For a positive real number r, we define

Br = {y ∈ E | ‖y‖ ≤ r} ,

and we consider the following problem:

Find xr ∈ K ∩Br such that Ψ (y, xr;xr) ≥ 0, for all y ∈ K ∩Br. (10)

According to Theorem 2 we have that the problem (10) has a solution xr ∈
K ∩ Br. We show that there exists r′ > 0 such that ‖xr′‖ < r′. If ‖xr‖ = r
for any r > 0, then we chose r0 such that r0 > ‖y0‖ , where y0 is given by the
coercivity condition. In this case we have

Ψ (y0, xr0 ;xr0) ≥ 0 (11)

On the other hand, by (j3) we can write

Ψ (y0, xr0 ;xr0) = −Ψ (xr0 , y0;xr0) =

= − [Ψ (xr0 , y0;xr0)− Ψ (xr0 , y0; y0)]− Ψ (xr0 , y0; y0) =

= − [Ψ (xr0 , y0;xr0)− Ψ (xr0 , y0; y0)] + Ψ (y0, xr0 ; y0) =

≤ − [Ψ (xr0 , y0;xr0)− Ψ (xr0 , y0; y0)] + |Ψ (y0, xr0 ; y0)| =

= − |Ψ (y0, xr0 ; y0)|
[
Ψ (xr0 , y0;xr0)− Ψ (xr0 , y0; y0)

|Ψ (y0, xr0 ; y0)|
− 1

]
Now, we can choose r large enough so that the last inequality and the coer-
civity of Ψ imply Ψ (y0,xr0 ;xr0) < 0, which contradicts (11).
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Thus we conclude that there exists r′ such that ‖xr′‖ < r′. It follows easily
that for any y ∈ K we can choose ε such that 0 < ε < 1 and xr′ +ε (y − xr′) ∈
K ∩Br′ . Using now (10), (j2) and (j3), we obtain for any y ∈ K,

0 ≤ Ψ (xr′ + ε (y − xr′) , xr′ ;xr′) = Ψ (εy + (1− ε)xr′ , xr′ ;xr′) ≤

≤ εΨ (y, xr′ ;xr′) + (1− ε)Ψ (xr′ , xr′ ;xr′) = εΨ (y, xr′ ;xr′)

i.e., Ψ (y, xr′ ;xr′) ≥ 0, for all y ∈ K.

Remark 5. We note that the above results remain also true in the case when
we consider Ψ : K ×K ×K → R∪{+∞} and we suppose that the mapping
x �−→ Ψ (x, y, z) is properly convex instead of convex on K, for any fixed
y, z ∈ K.

Remark 6. Theorem 3 includes as particular cases the Theorem 2.3 of Fang
and Huang [5] and Theorem 2.3 of Verma [25].

4 Variational-like Inequalities with General-Relaxed
α∗-Semimonotone Mappings

In this section we consider an arbitrary Banach space E. We denote by E∗

the dual space of E and by E∗∗ the dual space of E∗. Let K be a nonempty
closed convex subset of E∗∗, and Ψ∗ : K ×K ×K ×K → R.
We consider the following problem:

Find u ∈ K such that
Ψ∗ (v, u;u, u) ≥ 0 for all v ∈ K. (12)

Definition 6. Let α∗ : E∗∗ × E∗∗ → R be a mapping such that

lim
t↘0

α∗ (u, u+ t (v − u))
t

= 0.

We say that Ψ∗ is general relaxed α∗-semimonotone if the following conditions
hold:

(a) for each fixed u ∈ K, Ψ∗ ( · , · ;u, · ) is general relaxed α∗-monotone,
i.e.

Ψ∗ (v, w;u, v)− Ψ∗ (v, w;u,w) ≥ α∗ (v, w) , for all v, w ∈ K;

(b) for each fixed u, v, w ∈ K, Ψ∗ (v, u; · , w) is completely continuous, i.e.,
for any sequence {zn}n that converges to z0 in σ (E∗∗, E∗) , the sequence
{Ψ∗ (v, u; zn, w)}n converges to Ψ∗ (v, u; z0, w) .
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Let A : K × K → E∗, η∗ : K × K → E∗∗ and β∗ : E∗∗ → R, such that
β∗ (tz) = tpβ∗ (z) for all t > 0, z ∈ E∗∗, where the real number p > 1 is a
constant.
If Ψ∗ (x, y; z, w) = 〈A (z, w) , η∗ (x, y)〉 , then the Definition 6 reduces to the
following

Definition 7. (Fang, Huang [5, Definition 3.1]) The mapping A is said to be
relaxed η∗ − β∗ semimonotone if the following conditions hold:

• for each fixed u ∈ K, the mapping A (u, · ) is relaxed η∗ − β∗ monotone,
i.e.,

〈A (u, v)−A (u,w) , η∗ (u, v)〉 ≥ β∗ (v − w) , for all v, w ∈ K;

• for each fixed v ∈ K, the mapping A ( · , v) is completely continuous, i.e.
for any sequence {un}n that converges to u0 in σ (E∗∗, E∗) implies that
{A (un, v)}n converges to A (u0, v) in the norm topology of E∗.

If f : K → R is convex and lower semicontinuous and

Ψ∗ (x, y; z, w) = 〈A (z, w) , η∗ (x, y)〉+ f (x)− f (y) ,

then the problem (12) reduces to the problem (9) of Fang, Huang [5].

Theorem 4. Let E be a real Banach space and let K ⊂ E∗∗ be a nonempty
bounded closed convex set. We assume that:

(i1) Ψ∗ is general relaxed α∗-semimonotone mapping;
(i2) x �−→ Ψ∗ (x, y; z, w) is a convex and lower semicontinuous mapping, for

any fixed y, z, w ∈ K;
(i3) Ψ∗ (x, y; z, · ) : K → R is finite dimensional continuous for any fixed

x, y, z ∈ K, i.e., Ψ∗ (x, y; z, · ) : K ∩ F → R is continuous for any finite
dimensional subspace F ⊂ E∗∗;

(i4) α∗ (v, · ) is convex and lower semicontinuous for any fixed v ∈ K;
(i5) Ψ∗ (x, y; z, w) + Ψ∗ (y, x; z, w) = 0 for any x, y, z, w ∈ K.

Then, the problem (12) is solvable.

Proof. Let F ⊂ E∗∗ be a finite dimensional subspace with KF = F ∩K �= ∅.
For each w ∈ K we consider the following problem:

Find u0 ∈ KF such that
Ψ∗ (v, u0;w, u0) ≥ 0 for all v ∈ K. (13)

By (i2) - (i4) and Theorem 2 it follows that there exists a solution u0 ∈ KF

of the problem (13).
Let T : KF → 2KF be a set valued mapping defined by

Tw = {u ∈ KF | Ψ∗ (v, u;w, u) ≥ 0 for all v ∈ KF } .
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By Theorem 1 we have that, for each fixed w ∈ KF ,

Tw = {u ∈ KF | Ψ∗ (v, u;w, v) ≥ α∗ (v, u) for all v ∈ KF } .

From (i2) follows that x �−→ Ψ∗ (x, y; z, w) is also weakly lower semicontinu-
ous, hence T has nonempty bounded closed and convex set values.
Since T is upper semicontinuous by (i1), using the Kakutani-Fan-Glicksberg
fixed point theorem, we obtain that T has a fixed point w0 ∈ KF , i.e.

Ψ∗ (v, w0;w0, w0) ≥ 0 for all v ∈ KF . (14)

Now, we define

F = {F ⊂ E∗∗ | F is a finite dimensional subspace, F ∩K �= ∅}

and for each F ∈ F ,

WF = {u ∈ K | Ψ∗ (v, u;u, v) ≥ α∗ (v, u) for all v ∈ KF } .

By (14) and Theorem 1, we have that WF is nonempty and bounded. Now,
if we denote by WF the σ (E∗∗, E∗)-closure of WF in E∗, then WF is
σ (E∗∗, E∗)-compact in E∗∗.
We know that W�

i

Fi
⊂

⋂
i

WFi
for Fi ∈ F , i ∈ {1, . . . , N} . Therefore{

WF | F ∈ F
}

has the finite intersection property and
⋂

F∈F
WF �= ∅.

Let u ∈
⋂

F∈F
WF . For each v ∈ K, we consider F ∈ F such that v ∈ KF and

u ∈ KF . Then, there exists a sequence {un}n ⊂ WF which converges to u in
σ (E∗∗, E∗) . From the definition of WF , we have

Ψ∗ (v, un;un, v) ≥ α∗ (v, un) .

It follows that
Ψ∗ (v, u;u, v) ≥ α∗ (v, u) for all v ∈ K.

Using (i1) through condition (b) of the definition, (i4), and the technique used
in Theorem 1 we obtain

Ψ∗ (v, u;u, u) ≥ 0 for all v ∈ K,

i.e., u is a solution of problem (12) and the theorem is proved.

Remark 7. We notice that Theorem 3.1 of Fang, Huang [5] and Theorems 2.1
- 2.3 of Chen [4] can now be obtained as corollaries from Theorem 4.

Theorem 5. Let E be a real Banach space and let K ⊂ E∗∗ be a nonempty
unbounded closed convex set. We assume that conditions (i1) - (i5) of Theorem
4 are fulfilled together with
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(i6) there exists a point y0 ∈ K such that

lim
‖x‖→∞

Ψ∗ (x, y0;x, x) > 0.

Then, the problem (12) is solvable.

Proof. From Theorem 4 we know that the problem

Ψ∗ (v, u;u, u) ≥ 0 for all v ∈ K ∩Br (15)

has a solution ur ∈ K ∩ Br, where Br ⊂ E∗∗ is the closed ball centered in 0
with radius r. We choose r large enough such that y0 ∈ Br. By (15) we obtain
that for v = y0 and u = ur,

Ψ∗ (y0, ur;ur, ur) ≥ 0.

It follows from (i1) and (i6) that {ur} is bounded. Now, using the technique
of Theorem 1 we get

Ψ∗ (v, ur;ur, v) ≥ α∗ (v, ur) for all v ∈ K,

and, for ur → u in σ (E∗∗, E∗) when r →∞,

Ψ∗ (v, u;u, v) ≥ α∗ (v, u) for all v ∈ K.

We apply again the technique used in Theorem 1 and obtain that u is a
solution of problem (12).

Remark 8. The above results remain also true in the case when we consider
Ψ∗ : K ×K ×K ×K → R∪{+∞} and we suppose that the mapping x �−→
Ψ∗ (x, y; z, w) is properly convex on K, for any fixed y, z, w ∈ K.

Remark 9. We observe that Theorem 3.2 of Fang, Huang [5] and Theorems
2.4 - 2.6 of Chen [4] become corollaries of Theorem 5.

5 Some Examples

In this section we consider some examples that justify the extensions presented
in sections 4 and 5. We recall that in the examples of section 2 different forms
of the function α were emphasized. In the next examples new forms of the
functions α and α∗ are given.
In the first three examples we consider the case of the reflexive Banach space
E = R for which we show that, according to section 3, the following can
happen:

• the mapping y �−→ 〈Tz, η (y, x)〉 is convex for any y, z ∈ K whereas y �−→
ϕ (y, x) = f (y) − f (x) is not convex with respect to y, but the mapping
y �−→ Ψ (y, x; z) = 〈Tz, η (y, x)〉+ ϕ (y, x) is convex;
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• the mapping y �−→ 〈Tz, η (y, x)〉 is not convex for any y, z ∈ K whereas
y �−→ ϕ (y, x) = f (y)− f (x) is convex with respect to y, but the mapping
y �−→ Ψ (y, x; z) = 〈Tz, η (y, x)〉+ ϕ (y, x) is convex;

• the mapping y �−→ Ψ (y, x; z) is convex but Ψ has not the above form.

In all these instances the mapping y �−→ Ψ (y, x; z) verifies the hypotheses of
theorems 1 - 3. We notice that, for example, the results of the corresponding
theorems of Fang, Huang [5] do not apply for the cases of our examples.
In the last two examples we consider other Banach spaces than R.

Example 4. Let us consider E = E∗ = R, the closed bounded convex set
K = [−1, 1] , and the mappings

T : K → E, Tz = − |z| ,
η : K ×K → E, η (y, x) = y2 − x2,

ϕ : K ×K → E, ϕ (y, x) = y4 + y2 − x4 − x2.

We have: 〈Tz, η (y, x)〉 = − |z|
(
y2 − x2

)
, which is not convex with respect to

y, ϕ is convex, but Ψ (y, x; z) = − |z|
(
y2 − x2

)
+ y4 + y2 − x4 − x2 is convex

with respect to y on K for any x, z ∈ K.
If we take α (x, y) =

(
y2 − x2

)
(|x| − |y|) then Ψ verifies the assumptions (i1)−

(i4) of Theorem 1 and (j1)− (j5) of Theorem 2.

Example 5. We consider again E = E∗ = R, the closed unbounded convex set
K = [1,∞), and the mappings

Tz = z, η (y, x) = y2 − x2, ϕ (y, x) = x2 − y2.

We have: 〈Tz, η (y, x)〉 = z
(
y2 − x2

)
, which is convex on K with respect to y,

ϕ is not convex onK with respect to y, but Ψ (y, x; z) = 〈Tz, η (y, x)〉+ϕ (y, x)
is convex on K with respect to y.
For α (x, y) =

(
y2 − x2

)
(|y| − |x|) the hypotheses of Theorem 3 are fulfilled,

which also suppose a coercivity assumption.

Example 6. Let E = E∗ = R, K = [1, 4] or K = [1,∞). We consider
Ψ (y, x; z) =

(
y2 − x2

)
exp (z) + z (y − x), which has not the form

〈Tz, η(y, x)〉+ ϕ(y, x).

If we define α (x, y) =
(
y2 − x2

)
(exp (y)− exp (x))+ (y − x)2 , then the map-

ping Ψ verifies the hypotheses of Theorems 1 and 2 for K = [1, 4] , and the
coercivity hypothesis of Theorem 3 for K = [1,∞).

Example 7. Let us consider

E = !2 =

⎧⎪⎨⎪⎩x = (xn)n≥1

∣∣∣∣∣∣∣ ‖x‖ =

⎛⎝∑
n≥1

x2
n

⎞⎠1/2

<∞, xn ∈ R, n ≥ 1

⎫⎪⎬⎪⎭ ,
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which is a reflexive Banach space [21]. We consider

K =
{
x ∈ !2

∣∣ |xn| ≤ 3−n, ∀ n ≥ 1
}
,

which is a closed, convex and bounded set in !2. Since u : K → R, u (x) =∑
n≥1 2nxn is a continuous and affine mapping on K [21], the mapping Ψ :

K ×K ×K → R defined by

Ψ (y, x; z) = ‖z‖
∑
n≥1

2n (yn − xn) +
∑
n≥1

(yn − xn) exp (‖z‖)

is hemicontinuous and convex as required in the Theorems 1 and 2. It is
also easy to show that the other assumptions of the mentioned theorems are
fulfilled for

α (x, y) = (‖y‖ − ‖x‖)
∑
n≥1

2n (yn − xn) +

+ (exp (‖y‖)− exp (‖x‖))
∑
n≥1

(yn − xn) .

Example 8. Let E be the space of square-integrable random variables defined
on some fixed probability space. Hence, if X ∈ E then EX2 < ∞, where
EX2 is the usual expectation of the random variable X2. Almost surely equal
random variables are regarded as identical. Considering the scalar product

〈X,Y 〉 = E (XY ) , for X,Y ∈ E,

the space E becomes a Hilbert space (see, for example, Neveu [20]). The
induced norm will be ‖X‖ =

(
EX2

)1/2
. According to [21] E is a reflexive

Banach space, i.e., E = E∗. We take K = {X ∈ E | 1 ≤ EX ≤ 2} which is
a nonempty convex, closed and nonempty set in E. For X,Y, Z ∈ E let us
define

Ψ (Y,X;Z) =
[
E
(
Y 2 − Y

)
− E

(
X2 −X

)]
sin2 ‖Z‖+

+ (EY − EX) ln (‖Z‖+ 1)

and

α (X,Y ) =
[
E
(
Y 2 − Y

)
− E

(
X2 −X

)] (
sin2 ‖Y ‖ − sin2 ‖X‖

)
+

+ (EY − EX) ln
‖Y ‖+ 1
‖X‖+ 1

.

Since for Y1, Y2 ∈ E and 0 ≤ λ ≤ 1 we have EY 2
1 + EY 2

2 ≥ 2E (Y1Y2) and

E (λY1 + (1− λ)Y2)
2 = E

(
λ2Y 2

1 + (1− λ)2 Y 2
2 + 2λ (1− λ)Y1Y2

)
≤

≤ λ2EY 2
1 + (1− λ)2 EY 2

2 + λ (1− λ)
(
EY 2

1 + EY 2
2

)
=

= λEY 2
1 + (1− λ) EY 2

2
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We see that Ψ ( · , X, Z) is a convex mapping on K for any fixed X,Z ∈ K.
Also, it is easy to show that the other assumptions of the Theorems 1 and 2
are fulfilled.
We notice that if K = {X ∈ E | EX ≥ 1} the above defined mappings Ψ and
α satisfy the conditions of Theorem 3.

Example 9. Let C be the set of complex numbers and

E = c0 =
{
x = (xn)n≥1

∣∣∣ xn ∈ C, lim
n→∞xn = 0

}
.

We have

E∗ = c∗0 = !1 =

⎧⎨⎩x = (xn)n≥1

∣∣∣∣∣∣ xn ∈ C, |x|1 ≡
∑
n≥1

|xn| <∞

⎫⎬⎭
and

E∗∗ = !∗1 = c∗∗0 = !∞ =
{
x = (xn)n≥1

∣∣∣∣ xn ∈ C, ‖x‖∞ ≡ sup
n≥1

|xn| <∞
}

(see [21]). We note that !∗∞ �= !1.
Let a > 0 be a real number and we define the set

K = {x ∈ E | xn ∈ R, 0 ≤ xn ≤ a, ∀ n ≥ 1} ,

which is a convex, closed and bounded set in E∗∗. For x, y, z, w ∈ E∗∗ we
define

Ψ (x, y; z, w) =

⎛⎝∑
n≥1

xn

2n
−

∑
n≥1

yn

2n

⎞⎠ (‖z‖+ ‖w‖+ exp ‖w‖)

and

α (x, y) =

⎛⎝∑
n≥1

xn

2n
−

∑
n≥1

yn

2n

⎞⎠ (‖x‖ − ‖y‖+ exp ‖x‖ − exp ‖y‖)

We remark that Ψ and α satisfy the assumptions of Theorem 4. The assump-
tions of Theorem 5 will also be satisfied if we define the set

K = {x ∈ E | xn ∈ R, xn ≥ 0, ∀ n ≥ 1} .

As final remarks we notice that, by using the spaces E = c0 and E∗∗ = !∞,
we can construct similar examples like the Examples 4 and 5. Also, one can
use the Banach spaces !p and Lp, with 1 < p <∞, for further examples.

Acknowledgment. The authors are thankfully to the referees for their valuable
remarks, especially for the suggestion to include some examples, which confirm
the significance of the proposed extensions.
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Summary. This paper considers n-person non-coalitional games with finite players’
strategy spaces and payoff functions having some concavity or convexity properties.
For such games it is shown that there are two-point Nash equilibria in them, that is
equilibria in players’ strategies with support consisting of at most two points. The
structure of such simple equilibria is discussed in different cases. The results obtained
in the paper can be seen as a discrete counterpart of Glicksberg’s theorem and other
known results about the existence of pure (or ”almost pure”) Nash equilibria in
continuous concave (convex) games with compact convex spaces of players’ pure
strategies.

Key words: Noncooperative games, matrix games, Nash equilibrium, convex
payoffs, two-point strategies.

1 Introduction

The assumption of concavity/convexity of payoff functions is very often used,
both in theoretical considerations and practical applications of noncoopera-
tive games. This kind of properties allow to look for players’ strategies with a
very simple structure (unrandomized) and creating equilibria of games. One of
the most important concepts of optimal solution for noncooperative games is
a Nash equilibrium. In particular, a Nash equilibrium realized in pure (unran-
domized) strategies is very convenient for the players. Classical result in this
field (Glicksberg[4]) says about the existence of a Nash equilibrium in pure
strategies in n-person non-zero-sum games with continuous quasi-concave pay-
offs. There are other similar results on the existence of pure Nash equilibria
in games ([12], [1], [8], [6]). However the basic parts in assumptions of those

∗This paper was supported by Grant No. 342209, Wroc�law University of Tech-
nology.
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models are different types of convexity of players’ payoff functions. The sec-
ond feature of games considered in those models is that the spaces of players’
strategies are uncountable. In many situations, however, goods have a discrete
structure and are nondivisible, (e.g. people, cars), and therefore we cannot al-
ways consider continuous strategy spaces for the players. In such cases finite
games arise and thereby the payoff functions are defined on finite sets. In this
connection two fundamental questions arise:
(1) How to define convexity of payoff functions in finite games?
(2) Will such convex/concave finite game still possess pure or approximately
pure Nash equilibria?
Just this kind of problems are discussed in this paper.
The organization of the paper is as follows. In Section 2 we present background
results which are an inspiration for our further considerations. In Section 3
we give a rich review of recent results for convex finite two-person games. In
Section 4 we discuss the case of n-person non-zero-sum finite games. There
we give a theorem which is a discrete counterpart of Glicksberg theorem for
infinite convex games.

2 Background Results

In this section we recall four background theorems, essential for our further
considerations. First we need to fix some notation. We will start with the
definition of an n-person non-zero-sum game Gn in the following normal form,

Gn = 〈N, {Xi}i∈N , {Fi}i∈N 〉, (1)

where

1. N = {1, 2, . . . , n} is a finite set of players;
2. for each i ∈ N , Xi is a space of pure strategies xi of i-th Player;
3. for each i ∈ N and x = (x1, x2, . . . , xn) ∈ Πi∈NXi, Fi(x) is the payoff

function of Player i, in the situation when players use pure strategies
x1, x2, . . . , xn, respectively.

One of the most important concepts of optimal solution for such games is a
pure Nash equilibrium or equivalently, a Nash equilibrium in pure strategies.
It is defined as any strategy profile x∗ consisting of players’ pure strategies of
the form x∗ = (x∗1, x

∗
2, . . . , x

∗
n) ∈

∏
i∈N Xi satisfying the inequalities

Fi(x∗) ≥ Fi(x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n) for i ∈ N and xi ∈ Xi. (2)

When all these inequalities hold up to an ε > 0, we say about pure ε-Nash equi-
librium. Such solutions in pure strategies have possibly the simplest structure
and thereby, they are very desirable in practical applications.
A mixed strategy of player i ∈ N in the game Gn is any probability distribution
µi over the space Xi. It happens very often that there is no Nash equilibrium
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in pure strategies. In such situations one can look for a Nash equilibrium in
mixed strategies. Then for each i ∈ N , Player i’s spaceXi of his pure strategies
is extended to the space Xi of his mixed strategies, and domain

∏
i∈N Xi of

his payoff function Fi is extended (as expected values with respect to the
product distribution) to richer domain

∏
i∈N Xi. Then, when each player i ∈

N acts according to his mixed strategy µi, the mixed strategy profile is µ =
(µ1, µ2, . . . , µn) and the payoff functions Fi are treated as defined on the space
of the players’ mixed strategy profiles and for each i ∈ N equal to

Fi(µ1, µ2, . . . , µn) =
∫
�

i∈N Xi

Fi(x1, x2, . . . , xn)dµ1(x1)dµ2(x2) . . . dµn(xn) .

Now a mixed Nash equilibrium (or a Nash equilibrium in mixed strategies) is
any mixed strategy profile µ∗ = (µ∗1, µ

∗
2, . . . , µ

∗
n) ∈

∏
i∈N Xi satisfying analo-

gous inequalities to (2). It is known that any n-person game with all spaces
Xi finite always has a mixed Nash equilibrium (Nash[5]).
To begin with, we will quote the most important result for infinite games.
A first background theorem is basic for n-person non-zero-sum games. We
recall here that by definition, a real-valued function f(x) on a convex set X
is quasi-concave, when for each real c, the set {x : f(x) ≥ c} is convex. Of
course, every concave function is quasi-concave.

Theorem 1. (Debreu[2], Glicksberg[4], Fan[3]) Let Xi, i ∈ N , be convex and
compact subsets of some euclidean spaces Rmi , mi ≥ 1. If every function
Fi(x1, . . . , xn) is continuous on

∏
i∈N Xi and quasi-concave in xi, then the

n-person non-zero-sum game Gn = 〈N, {Xi}i∈N , {Fi}i∈N 〉 possesses a pure
strategy Nash equilibrium.

The next two results we recall (Theorems 2–3) concern two-person zero-sum
games. Such games are defined by the normal form

Gz
2 = 〈{1, 2}, {X,Y }, {F1,−F1}〉, (3)

where X and Y are strategy spaces of Players 1 and 2, and F1(x, y) and
−F1(x, y) are payoff functions of Players 1 and 2, respectively. It appears
that for two-person zero-sum games we can say much more (in comparison to
Theorem 1) about the situations when Nash equilibria exist. We assume for
the next two theorems that X ⊂ Rm and Y ⊂ Rn, m,n ≥ 1.

Theorem 2. (Sion[12]) Let X,Y be convex sets with X compact. Assume that
F1(x, y) is an upper semicontinuous function in x and quasi-concave in x for
each y, and quasi-convex in y for each x. Then for any ε > 0 the two-person
zero-sum game Gz

2 possesses a pure ε-Nash equilibrium.

Theorem 3. (Bohnenblust, Karlin and Shapley[1]) Let X,Y be compact sets
with X convex. Assume that F1(x, y) is a continuous function on X × Y and
concave in x for each y. Then the two-person zero-sum game Gz

2 possesses
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a Nash equilibrium (µ∗, ν∗) with a pure strategy µ∗ for Player 1, and with a
mixed strategy ν∗ for Player 2, being a probability measure concentrated in at
most n points of Y .

In the last two theorems, a two-person non-zero-sum game with the strategy
spaces X = Y = [0, 1] is considered. Let us denote such a game by

Gnz
2 = 〈{1, 2}, {[0, 1], [0, 1]}, {F1, F2}〉, (4)

where F1(x, y) and F2(x, y) are payoff functions of Players 1 and 2, respec-
tively. It appears that such a special form of the players’ strategy spaces as the
unit intervals, ensures the existence of a pure ε-Nash equilibrium under much
weaker assumptions (on the payoff functions) in comparison to the ones of the
previous theorems. Practically, the only restriction on the payoff functions is
the convexity (concavity) of Player 1’s payoff function F1(x, y) in variable x
for each y ∈ [0, 1], while the second payoff function can be quite arbitrary
(without any ”continuity” assumptions). This is described below in Theorems
4 and 5. The payoff functions F1(x, y) and F2(x, y) are assumed there to be
bounded and bounded from above on [0, 1] × [0, 1], respectively. Throughout
the paper we shall often use the symbol δt as

δt − a degenerate probability distribution concentrated at point t.

Theorem 4. (Radzik[9]) Let F1(x, y) be concave in x for each y. Then for
any ε > 0, the two-person non-zero-sum game Gnz

2 has an ε-Nash equilibrium
of the form (µ∗1, µ

∗
2) = (αδa + (1 − α)δb, βδc + (1 − β)δd), for some 0 ≤

α, β, a, b, c, d ≤ 1 with |a− b| < ε.

Theorem 5. (Radzik[9]) Let F1(x, y) be convex in x for each y. Then for any
ε > 0, the two-person non-zero-sum game Gnz

2 has an ε-Nash equilibrium of
the form (µ∗1, µ

∗
2) = (αδ0+(1−α)δ1, βδc+(1−β)δd), for some 0 ≤ α, β, c, d ≤ 1,

where α is independent of ε.

In all the theorems given above, the convexity and/or concavity of the play-
ers’ payoff functions play a remarkable role in their assumptions, and, besides,
the players’ strategy spaces are infinite (uncountable). However, in many sit-
uations, the players’ strategy spaces are finite and thereby, those theorems
say nothing about possible existence of Nash equilibria and the above theo-
rems cannot be applied. Hence, a very essential question is whether there are
possible ”discrete” counterparts of Theorems 1–5, that is, analogs of those
theorems with the players’ finite strategy spaces. How to define the convex-
ity/concavity of payoff functions on finite sets? Do such discrete counterparts
preserve the propositions about the existence of Nash equilibria of similar
”simple” form? In the next sections we just study these problems both for
zero-sum and non-zero-sum games.
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3 Two-person Finite Games

In this section we discuss two-person finite games, both in zero-sum and non-
zero-sum version. According to (1), any two-person non-zero-sum game can
be described by the triplet G2 = 〈{1, 2}, {X,Y }, {F1, F2}〉, where X and Y
are pure strategy spaces for Players 1 and 2, respectively, and F1(x, y) and
F2(x, y) are their payoff functions. A game Γ is called finite when the spaces
X and Y are finite sets.
This section consists of two parts. The first subsection contains all the needed
definitions and notions. The second subsection is devoted to a review of our
most interesting results (see papers of Radzik and Po�lowczuk: [8], [10], [6] and
[7]) for two-person zero-sum and non-zero-sum finite games. In the literature
such games are generally called matrix and bimatrix games, respectively.

3.1 Definitions and Preliminary Results

For the rest of this section we will consider two-person non-zero-sum finite
games Γ = 〈{1, 2}, {X,Y }, {F1, F2}〉 with strategy spaces of the form

X = {1, 2, . . . ,m} and Y = {1, 2, . . . , n}

for two naturals m and n, and with payoff functions F1 and F2 for Players 1
and 2, respectively.
Let A = [aij ] and B = [bij ] denote two matrices of size (m × n) such that
aij = F1(i, j) and bij = F2(i, j) for all i and j. We will denote such a bimatrix
game by Γ (A,B) with A and B as the players’ payoff matrices. We will also
use the notation (m × n)–game Γ (A,B) to emphasize the dimension of the
payoff matrices A and B in the game.
Therefore, the game Γ (A,B) is played in such a way that Player 1 chooses
any row i, 1 ≤ i ≤ m and simultaneously, Player 2 chooses any column j, 1 ≤
j ≤ m, and then the players payoffs are equal to aij and bij , respectively.
Of course, any pair (i, j) of players’ pure strategies in game Γ (A,B) can be
identified with the pair (δi, δj).
One can easily see that the pair (i, j) is a pure Nash equilibrium in bimatrix
game Γ (A,B) if aij and bij are the biggest elements in the j-th column of
matrix A and in the i-th row of matrix B, respectively.
When Γ (A,B) is a zero-sum game, that is, when B = −A, then the game
Γ (A,−A) is called a matrix game and shortly denoted by Γ (A).
It is clear that the pair (i, j) is a pure Nash equilibrium in matrix game Γ (A)
if aij is the smallest element in the i-th row and the biggest in the j-th column
of matrix A. Then such a pair (i, j) is also called a saddle point of matrix A.
Now we will define two special types of players’ mixed strategies with a very
simple structure. Such strategies play an important role in our paper.

Definition 1. A (mixed) strategy µ1 of Player 1 in game Γ (A,B) is a two-
point strategy if it is of the form µ1 = αδa + (1 − α)δb with some 0 ≤ α ≤ 1
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and 1 ≤ a, b ≤ m.
If b = a+ 1, then µ1 is a two-adjoining-point strategy. Strategies for Player 2
are defined analogously.

Now we give the definitions of several types of concavity/convexity for finite
games, which are basic for our paper.

Definition 2. A bimatrix game Γ (A,B) is concave if there exist two functions
F1(x, y) and F2(x, y) on the unit square, concave in x for each y and concave
in y for each x, respectively, and if there are two strictly increasing sequences
{xi}m

i=1 and {yj}n
j=1 in [0, 1], such that F1(xi, yj) = aij and F2(xi, yj) = bij

for all i and j.
If game Γ (A,B) satisfies this definition only with respect to the function
F1(x, y), then it is a column-concave game.
The properties of quasi-concavity, and convexity of game Γ (A,B) are defined
analogously.

Remark 1. One can easily see that the two-person non-zero-sum game Gnz
2

of the form (4), under the assumptions of Theorem 4, can be ”discretized”
to an (m × n)–bimatrix game Γ (A,B) with column-concavity property. On
the other hand, the same game Gnz

2 under the assumptions of Theorem 5
leads, after discretization, to a bimatrix game with column-convexity property.
Similarly, the two-person case of a game from Theorem 1 leads to a quasi-
concave bimatrix game. On the other hand, after discretization of games from
Theorems 2 and 3 we get matrix games which are quasi-concave and column-
concave, respectively.

Remark 2. All Theorems 1–5 say about the existence (in some infinite games)
of a pure Nash equilibria or two-point Nash equilibria. Hence, a very natural
supposition is that the corresponding bimatrix or matrix games, should also
have Nash equilibria with a similar simple structure, that is, in pure or two-
point strategies. This will be discussed in our further considerations.

For a given game Γ (A,B) it is rather difficult to check directly whether it is
concave or not. It appears, however, that there exists an alternative (equiv-
alent) characterization of concavity for bimatrix games, which allows us to
check without difficulty, if a game has this property. The proof of this result
is identical with the one for two-person zero-sum games, given in [10]. It can
be written in the following form.

Proposition 1. A game Γ (A,B) is concave, if and only if there exist positive
numbers θ1, θ2, . . . , θm−1 and τ1, τ2, . . . τn−1 such that

θ1(a2j − a1j) ≥ θ2(a3j − a2j) ≥ · · · ≥ θm−1(amj − am−1,j) for all j (5)

and

τ1(bi2 − bi1) ≥ τ2(bi3 − bi2) ≥ · · · ≥ τn−1(bin − bi,n−1) for all i. (6)
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When all the inequalities in (5) and in (6) are reverse, game Γ (A,B) is a con-
vex game. When only inequalities (5) hold, game Γ (A,B) is column-concave
(or column-convex when inequalities in (5) are reverse).

Remark 3. Note that (5) and (6) hold with positive θ1, . . . , θm−1 and τ1, . . . ,
τn−1 if and only if for each k and l, 1 ≤ k ≤ m − 2, 1 ≤ l ≤ n − 2 there are
αk > 0 and βl > 0 such that αk(ak+1,j − akj) ≥ ak+2,j − ak+1,j for all j and
βl(bi,l+1 − bil) ≥ bi,l+2 − bi,l+1 for all i. These two conditions are easily veri-
fiable, allowing to check whether a game is concave. An analogous algorithm
can be used in the ”convex” case.

We now formulate a theorem allowing to check directly whether a bimatrix
game is quasi-concave. It follows from the proof of Theorem 3.2 in [10].

Proposition 2. A bimatrix game Γ (A,B) is quasi-concave if and only if for
each i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exist natural k and l, 1 ≤ k ≤ n,
1 ≤ l ≤ m, such that{

a1j ≤ a2j ≤ · · · ≤ alj ≥ al+1,j ≥ · · · ≥ amj

bi1 ≤ bi2 ≤ · · · ≤ bik ≥ bi,k+1 ≥ · · · ≥ bin .

When Γ (A,B) is a zero-sum game satisfying these inequalities, the functions
F1 and F2 (in Def. 2) can be chosen with F2 = −F1.

The structure of inequalities in the above Proposition 2 encourages to define
two other types of quasi-concavity of a bimatrix game. They will be basic for
our further results.

Definition 3. A bimatrix game Γ (A,B) is strongly quasi-concave if for each
i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exist k, l, r and s, 1 ≤ k ≤ l ≤ n,
1 ≤ r ≤ s ≤ m, such that{

a1j < a2j < · · · < arj = ar+1,j = · · · = asj > as+1,j > · · · > amj

bi1 < bi2 < · · · < bik = bi,k+1 = · · · = bil > bi,l+1 > · · · > bin .

Definition 4. A bimatrix game Γ (A,B) is strictly quasi-concave if for each
i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exist k and r, 1 ≤ k ≤ n, 1 ≤ r ≤ m,
such that {

a1j < a2j < · · · < arj > ar+1,j > · · · > amj

bi1 < bi2 < · · · < bik > bi,k+1 > · · · > bin .

At the end we give a theorem about concavity of a bimatrix game, analogous
to Proposition 2.

Proposition 3. Any concave bimatrix game Γ (A,B) is strongly quasi - con-
cave.
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Proof. Fix j, 1 ≤ j ≤ n, and let us put ci = θi(ai+1,j−aij), i = 1, 2, . . . ,m−1.
Therefore, by (5), the sequence (c1, c2, . . . , cm−1) is nonincreasing. Further,
let r = max{i : ci > 0} (we put r = 1 if {i : ci > 0} = ∅), and let
s = min{i : ci < 0} (we put s = m− 1 if {i : ci < 0} = ∅). Now, it is easily
seen that for such r and s, the first line of inequalities in Definition 3 hold.
Inequalities in the second line of Definition 3 can be shown analogously.

3.2 Equilibria in Two-person Finite Games

The four possible properties of bimatrix games Γ (A,B) introduced in the
previous subsection, that is, concavity, quasi-concavity, strong quasi-concavity
and strict quasi-concavity, are basic for our subsequent considerations. They
play an essential role in assumptions of the presented theorems about the
existence of pure and two-point Nash equilibria in both zero-sum and non-
zero-sum games.
We begin with the first group of three theorems about sufficient conditions
for the existence of pure Nash equilibria in a bimatrix game Γ (A,B) (their
proofs and several counterexamples related to them one can find in [6]).
To express the theorems we need one more notation. Namely for any (m×n)-
matrix W = [wrs], let W ij

kl , 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n, be its submatrix
of the form:

W ij
kl :=

⎡⎢⎢⎢⎣
wij wi,j+1 . . . wi,l

wi+1,j wi+1,j+1 . . . wi+1,l

...
...

...
wkj wk,j+1 . . . wkl

⎤⎥⎥⎥⎦ .
Let Γ (A,B) be a bimatrix game, where A = [ars] and B = [brs] are (m× n)-
matrices. By the subgame Γ ij

kl of game Γ (A,B), where 1 ≤ i < k ≤ m and
1 ≤ j < l ≤ n, we mean the game Γ (Aij

kl, B
ij
kl).

Theorem 6. Assume that Γ (A,B) is a strongly quasi-concave game and that
every (2 × 2)-subgame (obtained by removing m − 2 rows and n − 2 columns
of A and B) has a pure Nash equilibrium. Then the game Γ has a pure Nash
equilibrium as well.

Theorem 7. Assume that Γ (A,B) is a strongly quasi-concave game. If all
(2× l)-subgames Γ ij

i+1,j+l−1 and all (k × 2)-subgames Γ ij
i+k−1,j+1 of the game

Γ (1 ≤ i < m, 1 ≤ j < n, k = 2, . . . ,m− i+1, l = 2, . . . , n− j+1) have pure
Nash equilibria, then the game Γ also has a pure Nash equilibrium.

The third theorem deals with strictly quasi-concave bimatrix games. It says
that if such a game can be divided (”vertically” or ”horizontally”) into two
subgames having pure Nash equilibria, then it also has a pure Nash equilib-
rium.

Theorem 8. Let Γ (A,B) be a strictly quasi-concave game. Assume that one
of the following statements holds:
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1. there exists k, 1 < k < m such that both subgames Γ1 = Γ 11
kn and Γ2 = Γ k1

mn

have pure Nash equilibria;
2. there exists l, 1 < l < n such that both subgames Γ1 = Γ 11

ml and Γ2 = Γ 1l
mn

have pure Nash equilibria.

Then the game Γ has also a pure Nash equilibrium.

Theorem 8 has an interesting corollary.

Corollary 1. Assume that the game Γ (A,B) is strictly quasi-concave. If all
(2×2)-subgames of the form Γ ij

i+1,j+1 of the game Γ have pure Nash equilibria,
then also the game Γ has a pure Nash equilibrium.

Remark 4. It is worth to mention that the zero-sum version of Theorem 6
is much stronger. Then the assumption about the strong quasi-concavity is
not needed ([11]). The zero-sum version of Theorem 7 one can find in [8]
(Theorem 2.2 there). It was shown there that the assumption of that theorem
can be remarkably weakened, by taking k ≤ 3 and l ≤ 3. However in the
non-zero-sum case it does not suffice, which is shown in the next example.

Example 1. According to what we said in the last remark, it is enough to
assume that all (2 × 2), (2 × 3) and (3 × 2)-subgames of a strongly quasi-
concave zero-sum game have pure Nash equilibria, and the consequence is
that the entire game has a solution of the same type. But consider the two-
person non-zero-sum strongly quasi-concave game with the payoff matrices:

A =

⎡⎢⎢⎣
4 1 1 1
3 1 1 2
2 1 1 3
1 1 1 4

⎤⎥⎥⎦ B =

⎡⎢⎢⎣
1 2 3 4
4 3 2 1
1 2 3 4
4 3 2 1

⎤⎥⎥⎦ .
Note that all (2× 2), (3× 2) and (2× 3)-subgames have pure Nash equilibria
but the entire game does not. It shows that the assumptions of Theorem 7
cannot be weakened.

Remark 5. The strong quasi-concavity in Theorem 6 cannot be replaced by
quasi-concavity. Moreover, strict quasi-concavity in Theorem 8 cannot be re-
placed by the weaker property, strong quasi-concavity. This is widely discussed
in Remark 2.2 of [8].

At the end of this section we give four theorems about the existence of two-
point Nash equilibria in bimatrix games. Their proofs one can find in a recent
paper of Po�lowczuk [7]. The zero-sum version of these results were earlier
obtained by Radzik [10]. The theorems are described in terms of two-point
and two-adjoining point strategies (see Definition 1).

Theorem 9. Let Γ (A,B) be a concave bimatrix game. Then, there exist a
Nash equilibrium (µ1, µ2) in this game such that µ1 and µ2 are two-adjoining-
point strategies.
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Theorem 10. Let Γ (A,B) be a column-concave bimatrix game. Then, there
exist a Nash equilibrium (µ1, µ2) in this game such that µ1 is a two-adjoining-
point strategy and µ2 is a two-point strategy.

Theorem 11. Let Γ (A,B) be a convex bimatrix game. Then, there exist a
Nash equilibrium (µ1, µ2) in this game such that µ1 and µ2 are two-point
strategies of the form µ1 = λδ1 + (1 − λ)δm and µ2 = γδ1 + (1 − γ)δn, for
some 0 ≤ λ ≤ 1 and 0 ≤ γ ≤ 1.

Theorem 12. Let Γ (A,B) be a column-convex bimatrix game. Then, there
exist a Nash equilibrium (µ1, µ2) in this game such that µ1 and µ2 are two-
point strategies with µ1 = λδ1 + (1− λ)δm for some 0 ≤ λ ≤ 1.

Remark 6. One could ask about the procedure allowing to simply find a Nash
equilibrium determined by Theorems 9–12. In [7] and [10] one can find such
procedures for matrix and bimatrix games, respectively. It appears that for
matrix games these procedures are much simpler than for bimatrix games.

Remark 7. One could see Theorem 9 as a discrete counterpart of a two-person
”concave” version of Theorem 1. Similarly, Theorem 10 is a ”discrete” coun-
terpart of Theorem 4. As far as the last two theorems are concerned, they can
be seen as discrete counterparts of Theorem 5.

Remark 8. Theorem 1 would suggest that the assumption of Theorem 9 on
concavity of a bimatrix game Γ (A,B) could be weakened to quasi-concavity
of Γ (A,B). However, it is rather a big surprise that Theorem 9 is not longer
true when we replace concavity by quasi-concavity. Then a Nash equilibrium
in two-adjoining-point strategies may not exist. This is shown in the next
example.

Example 2. Consider a bimatrix game Γ (A,B) with payoff matrices of the
form:

A =

⎡⎣ 5 3 −1
−1 1 3
−3 −1 5

⎤⎦ and B =

⎡⎣−1 0 2
2 1 0
3 2 −1

⎤⎦ .
It is easily seen (by Proposition 2) that this game is quasi-concave. However,
the only Nash equilibrium in this game consists of the following three-point
strategies: µ∗ = (1/2)δ1 + (1/4)δ2 + (1/4)δ3 and ν∗ = (1/4)δ1 + (1/4)δ2 +
(1/2)δ3, which contradicts our earlier supposition expressed in Remark 8.
Therefore, in fact, the assumption on concavity cannot be replaced by quasi-
concavity.

4 Concave n-Person Finite Games

In this section we discuss the question if there is a discrete n-person counter-
part of Theorem 1. By Theorem 9 we know that such a discrete counterpart
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exists in a two-person concave version, and concavity cannot be weakened to
quasiconcavity (Remark 8). This strongly suggests that the answer for that
question is positive in the ”concave case”. Just this fact will be shown in our
main theorem of this section (Theorem 13).

4.1 Main Theorem

Before expressing the theorem, we need to introduce some new definitions and
notation.
An n-person non-zero-sum finite game ΓN will be denoted in the sequel by
the following normal form

ΓN = 〈N, {Ei}i∈N , {Hi}i∈N 〉 , (7)

where (1) N = {1, 2, . . . , n} is the set of players;
(2) for each i ∈ N , Ei = {1, 2, . . . , ki} is a finite space of Player’s i pure
strategies ei, with ki a natural number;
(3) for each vector e = (e1, e2, . . . , en) of the players’ pure strategies and for
each i, Hi(e) is the payoff function of Player i in situation e.
For simplicity we will use the notation

E−i =
i−1∏
j=1

Ej ×
n∏

j=i+1

Ej , e−i = (e1, . . . , ei−1, ei+1, . . . , en)

and
(e−i, t) = (e1, . . . , ei−1, t, ei+1, . . . , en) .

We now give a basic definition of convexity of payoff functions Hi in their vari-
ables which change over finite sets Ei, i ∈ N . It is consistent with Definition
2 and considers the properties being a discrete counterpart of the concavity
of functions Fi assumed in Theorem 1.

Definition 5. A payoff function Hi of player i in game ΓN , i ∈ N , is con-
cave (quasi-concave) in its variable if for j = 1, 2, . . . , n there are strictly
increasing sequences xj = (xj

1, x
j
2, . . . , x

j
kj

) in [0, 1], and if there exists a con-
tinuous function F (x1, . . . , xn) on [0, 1]n, concave (quasi-concave) in variable
xi, such that for all (e1, e2, . . . , en) ∈ E1×E2× . . . En, F (x1

e1
, x2

e2
, . . . , xn

en
) =

Hi(e1, e2, . . . , en).

Remark 9. One could think that the above definition would be more natural
if the set [0, 1]n was replaced by conv(E1 × · · · × En) and the sequences xj

were taken as constant ones of the form xj = (1, 2, . . . , kj), for j = 1, . . . , n.
However this second approach is less general than given in Definition 5 and
leads to much smaller classes of payoff functions Hi concave in their variables.
As far as quasi-concave functions Hi are concerned, both approaches lead to
the same class.



444 T. Radzik, W. Po�lowczuk

It is easily seen that for convexity properties expressed by Definition 5, we
can, practically, repeat Propositions 1 and 2 for payoff function Hi of game
ΓN as follows.

Proposition 4. A payoff function Hi of player i in game ΓN , i ∈ N , is
concave if and only if there exist positive numbers λ1, λ2, . . . , λki−1 such that
for each e−i ∈ E−i,

λ1[Hi(e−i, 2)−Hi(e−i, 1)] ≥ λ2[Hi(e−i, 3)−Hi(e−i, 2)] ≥ . . .
≥ λki−1[Hi(e−i, ki)−Hi(e−i, ki − 1)] .

Proposition 5. A payoff function Hi of player i in game ΓN , i ∈ N , is quasi-
concave if and only if for each e−i ∈ E−i, there exists natural l, 1 ≤ l ≤ ki

such that

Hi(e−i, 1) ≤ · · · ≤ Hi(e−i, l) ≥ Hi(e−i, l + 1) ≥ · · · ≥ Hi(e−i, ki) . (8)

Now we are ready to formulate the main theorem of this section which is a
discrete counterpart of Glicksberg Theorem 1. Let ΓN be an n-person non-
zero-sum finite game of the form (7).

Theorem 13. If each of the payoff functions H1, . . . , Hn is concave in its
variable then there exists a mixed Nash equilibrium (µ∗1, . . . , µ

∗
n) in the game

ΓN such that µ∗1, . . . , µ
∗
n are two-adjoining-point strategies.

Remark 10. Theorem 1 would suggest that the assumption of Theorem 13 on
concavity of payoff functions in their variables could be weakened to quasi-
concavity. However in its discrete counterpart it is not true, it is shown in
Example 2 for the simplest case n = 2.

4.2 Proof

Before we start proving Theorem 13, we must introduce some new notation.
For the sets N of integers and real x we define

%x& = max{z ∈ N| z ≤ x}, 'x( = min{z ∈ N| z ≥ x}.

Let us define the following auxiliary game G of the form

G =
〈
N, {EG

i }i∈N , {HG
i }i∈N

〉
,

where the strategy spaces EG
i and payoff functions HG

i in the game G are
defined by the following:

EG
i = [1, ki] for i = 1, 2, . . . , n

and for x ∈ EG =
∏n

i=1E
G
i ,
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HG
i (x) =

∑
I⊂N

(∏
i∈I

αxi

)⎛⎝∏
j �∈I

(1− αxj
)

⎞⎠H(xI
1, x

I
2, . . . , x

I
n)

where

xI
i =

{
%xi& if i ∈ I
'xi( if i �∈ I, and αxi

= 'xi( − xi.

Assume for a moment that in the game ΓN , the players use any of their pure
strategies described by e. One can easily check that for such a strategy profile,
the values of the payoff functions in both games ΓN and G are equal, that is,
Hi(e) = HG

i (e) for all i ∈ N . On the other hand, the set of pure strategies
in game G is much richer than the same in the game ΓN . However, as it
will appear (the next lemma) any profile of pure strategies in the game G is
”equivalent” to some profile of two-adjoining-point strategies in ΓN . Just this
is formulated by the next lemma.

Lemma 1. There exists a 1–1 correspondence between the set of pure strate-
gies in game G and the set of two-adjoining-point strategies in game ΓN such
that, for every pure strategy profile of the form x = (x1, x2, . . . , xn) in game
G, the corresponding two-adjoining-point strategy profile π = (π1, π2, . . . , πn)
in game ΓN satisfies: HG

i (x) = Hi(π) for every i ∈ N .

Proof. For any i ∈ N and any xi ∈ EG
i , let

a(xi) = αxi
δ�xi� + (1− αxi

)δ�xi�,

where αxi
is described in (9). We define the correspondence:

T (x1, x2, . . . , xn) = (a(x1), a(x2), . . . , a(xn)).

One can easily check that for any j ∈ N

HG
j (x1, x2, . . . , xn) = Hj(T (x1, x2, . . . , xn)).

On the other hand, if there exist two x1
i , x

2
i ∈ EG

i , such that x1
i �= x2

i , then
%x1

i & �= %x2
i & or αx1

i
�= αx2

i
, which implies that a(x1

i ) �= a(x2
i ), and consequently

the correspondence T gives different values for different arguments. Moreover,
the correspondence T is also of ”onto” type . Namely, for every two-adjoining-
point strategy πi = αδyi

+ (1 − α)δyi+1 of player i in game ΓN , there exists
a pure strategy xπ

i = αyi + (1− α)(yi + 1) in game G, such that a(xπ
i ) = πi.

Thereby the correspondence T is 1–1.
The next fact may be seen as a simple consequence of Lemma 1.

Lemma 2. If there exists a pure-strategy Nash equilibrium in game G, then
there also exists a two-adjoining-point Nash equilibrium in game ΓN .
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Now we are ready to come back to the proof of Theorem 13. In view of Lemma
2, to complete the proof we only need to show that game G has a pure-strategy
Nash equilibrium. First, note that the sets EG

i for i ∈ N are all nonempty,
convex and compact.
Now, in view of Theorem 1, we have to show only that each function HG

i

for i = 1, . . . , n is concave in its variable, that is in variable xi. Let us fix
i ∈ N and let x be variable in EG. By Lemma 1 we know that there is a
strategy profile π in game Γ consisting of only two-adjoining-point strategies,
equivalent to x. We have the following sequence of equalities:

HG
i (x) = HG

i (x−i, xi) = Hi(π−i, πi)

= αxi
Hi(π−i, %xi&) + (1− αxi

)Hi(π−i, 'xi(),

where αxi
is of the form (9). Denote the last convex combination byB(π−i, xi).

Now, one can easily see that the function B(π−i, xi) is a linear function of vari-
able xi in each interval [l, l+1], l = 1, 2, . . . , ki−1. On the other hand, we have
B(π−i, xi) = Hi(π−i, xi) for any integer xi ∈ Ei. By our concavity assumption
it follows that also the values Hi(π−i, 1),Hi(π−i, 2), . . . ,Hi(π−i, ki) satisfy the
inequalities (8). Hence, we easily deduce that the function B(π−i, xi) is quasi-
concave in variable xi, and thereby, also the function HG

i is quasi-concave in
variable xi. This means that game G satisfies the assumptions of the Glicks-
berg Theorem 1, and thereby there exists a pure-strategy Nash equilibrium
in this game, finally ending the proof of Theorem 13.
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Summary. This paper presents some first and second order conditions necessary
for the Pareto optimality of box-constrained multi-objective optimization problems.
These necessary conditions are related to the spectrum of a matrix defined via the
gradient vectors and the Hessian matrices of the objective functions. These necessary
conditions are used to develop two algorithms. The first one is built taking into
account the first order necessary conditions and determines some critical points for
the multi-objective problems considered. The second one is based on the second
order necessary conditions and discards the critical points that do not belong to the
local Pareto optimal front. Some numerical results are shown.

Key words: Multi-objective optimization problems, path following methods,
dynamical systems, spectral analysis.

1 Introduction

Let Rn be the n-dimensional real Euclidean space, x = (x1, x2, . . . , xn)T ∈
Rn be a generic vector, where the superscript T means transpose. Let x,
y ∈ Rn, we denote with yTx the Euclidean scalar product, ‖x‖ = (xTx)1/2

the Euclidean norm and we denote with the symbols x < y, x ≤ y, x, y ∈ Rn

the inequalities componentwise, that is: xi < yi, xi ≤ yi, i = 1, 2, . . . , n.
Let us define the box-constrained multi-objective optimization problem.
Let B ⊂ Rn be the following box:

B = { x ∈ Rn | l ≤ x ≤ u } (1)

where l ∈ Rn, u ∈ Rn, l ≤ u are two given vectors, and let E ⊂ Rn be an
open set with B ⊂ E.
Let F = (F1, F2, . . . , Fs)

T , s ≤ n, be a vector valued function and let Fi :
E ⊆ Rn −→ R, i = 1, 2, . . . , s, be continuously differentiable functions in the
open set E, we consider the following problem:
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min
x∈B

F (x). (2)

The solution of problem (2) is represented by the global Pareto optimal points.

Definition 1. A point x∗ ∈ B is a “global” Pareto optimal point when it
satisfies the following condition:

� ∃x ∈ B with F (x) ≤ F (x∗) and F (x) �= F (x∗). (3)

Definition 2. A point x∗ is called a “local” Pareto optimal point if there exists
a neighbourhood U ⊆ Rn of x∗ such that the following condition is satisfied:

� ∃x ∈ B ∩ U with F (x) ≤ F (x∗) and F (x) �= F (x∗). (4)

In this paper we formulate some necessary conditions for Pareto optimality
via the spectrum of a suitable matrix related to the jacobian matrix of the
objective function F . The first order necessary conditions proposed allow us to
formulate a suitable computational method (we will refer to it as algorithm
A1) based on sequences of feasible points {xk }, k = 0, 1, . . ., x0 ∈ intB.
We will prove that these sequences have accumulation points that are crit-
ical points for problem (2). Remember that a point x̃ is an accumulation
point of the sequence {xk } if there exists a subsequence {xkj } such that
limj→+∞ xkj = x̃. Algorithm A1 is a kind of interior point method for vec-
tor optimization problems that does not require any “a priori” scalarization
of the objectives Fi, i = 1, 2, . . . , s and that determines some critical points
for the multi-objective optimization problem. Finally, using the second order
conditions we develop an algorithm (we will refer to it as algorithm A2) that
is able to establish when a critical point determined by algorithm A1 is not a
Pareto minimal point.
The numerical experiments proposed in Section 4 suggest to us that the joint
use of algorithm A1 and algorithm A2 allows us to approximate the entire
local Pareto front of the vector optimization problems considered when the
accumulation points of a sufficiently large number of sequences starting from
initial points suitably distributed on the box are computed. This is only an
empirical result.
We note that when we choose an “a priori” scalarization of the vector objective
function without having some convexity property on Fi, i = 1, 2, . . . , s, we
cannot approximate the entire Pareto front minimizing the scalar function.
To overcome this difficulty we should minimize several weighted sums of the
objective functions trying to choose the weights in order to get the entire
local Pareto front. This choice of the weights is not easy in practice since the
dependence of the Pareto front on these weights is not obvious.
Recently, several papers have been devoted to formulate well known methods
of the scalar optimization for vector optimization, such as steepest descent
methods [1], [2], [3], proximal methods [4], differential inclusion techniques
[5], genetic algorithms [6], [7], tabu search [8].
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The results presented in this paper are based on some ideas introduced in
[3] in the context of the vector optimization problems and in [9], [10], [11],
[12] in the context of scalar optimization problems. We must remember that
several scalarization procedures have been introduced to solve multi-objective
optimization problems, see for example [13], [14], [15], [16], and, more recently,
[17]. Only in the last years can we find papers that propose computational
methods to solve vector optimization problems without using any “a priori”
scalarization of the original vector function, see for example [1], [18], [19], [4],
[5], [8], [20], [21].
In Section 2 we give the necessary conditions for Pareto minimal points of
problem (2). In Section 3 we derive the computational method from the nec-
essary conditions formulated in Section 2. In Section 4 we show some numerical
results obtained applying the computational method introduced in Section 3
to solve some test problems.

2 Necessary Conditions for Pareto Optimal Fronts

Let F = (F1, F2, . . . , Fs)T be a vector valued function, whose components Fi,
Fi : E ⊆ Rn −→ R, i = 1, 2, . . . , s, s ≤ n, are assumed to be continuously
differentiable in the open set E (see Lemmas 1-4) and to be twice continuously
differentiable in the open set E (see Lemma 5).
We denote with ∇Fi, i = 1, 2, . . . , s, the gradient vector of Fi, that is:

∇Fi(x) =

⎛⎜⎝
∂Fi

∂x1
(x)
...

∂Fi

∂xn
(x)

⎞⎟⎠ , i = 1, 2 . . . , s, (5)

with JF (x)T = (∇F1(x)|∇F2(x)| · · · |∇Fs(x)) ∈ Rn×s the transposed matrix
of the Jacobian matrix JF (x) ∈ Rs×n of F at the point x and with HFi

(x) ∈
Rn×n the Hessian matrix associated with the function Fi, i = 1, 2, . . . , s.
Let l ∈ Rn and u ∈ Rn be the vector given in (1), we denote with D(x) ∈
Rn×n the diagonal matrix defined by:

(D(x))i,j =
{

(xi − li)2(ui − xi)2 i = j
0 i �= j

, l ≤ x ≤ u, (6)

and with MF (x) ∈ Rs×s, x ∈ B the following matrix:

MF (x) = JF (x)D(x)JF (x)T , x ∈ B. (7)

Remark 1. We note that when xi = ui or xi = li for any v ∈ Rn the i-
th component of the vector h = D(x)v is equal to zero. That is the vector
x+D(x)v belongs to the affine space generated by the face of B that contains
x.
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Lemma 1. Let Fi, i = 1, 2, . . . , s, be continuously differentiable functions in
E, then the matrix MF (x), x ∈ B given in (7) is a positive semi-definite
matrix.

Proof. See [3] Lemma 2.3.

Let 0 ≤ λ1(x) ≤ λ2(x) ≤ . . . ≤ λs(x), x ∈ B be the eigenvalues of the
matrix MF (x) and v1(x), v2(x), . . . , vs(x) be a corresponding orthonormal
basis of eigenvectors. Let us denote with λmin,F (x) = λ1(x) and λmax,F (x) =
λs(x) the smallest and the largest eigenvalues of the matrix MF (x), x ∈ B
respectively and with vmin,F (x) = v1(x) and vmax,F (x) = vs(x), x ∈ B the
corresponding orthonormal eigenvectors.

Lemma 2. Let Fi : E ⊂ R→ R, i = 1, 2, . . . , s, be continuously differentiable
functions and let x∗ be a Pareto local optimal point for problem (2) then we
have:

λmin,F (x∗) = 0. (8)

Proof. The proof of (8) is a consequence of the fact that in a Pareto local
optimal point the matrix MF (x) must be singular (see [3] Lemma 2.4).

Let Pg, Pl be the sets of the global and local Pareto optimal points respectively
and finally let Vmin and Vmax be the following sets:

Vmin = { x ∈ B | λmin,F (x) = 0 }, (9)

Vmax = { x ∈ B | λmax,F (x) = 0 }. (10)

It is easy to see that we have Pg ⊆ Pl ⊆ Vmin while, in general, we can not
establish a relation between the global or local Pareto optimal fronts and the
set Vmax.
Let F(x), x ∈ B be the set of the feasible directions at x that is:

F(x) = {h ∈ Rn | ∃t > 0, x+ th ∈ B }, (11)

an obvious necessary condition for the local Pareto optimality of x ∈ B is:

ImageF(x)(JF (x)) ∩ (−Rs
+) = ∅, (12)

where ImageF(x)(JF (x)) is the image of F(x) by the linear operator JF (x).
Condition (12) is the analogous of the following necessary condition for un-
constrained optimization problems (see [23]):

Image(JF (x)) ∩ (−Rs
+) = ∅, (13)

where Image(JF (x)) is the image of Rn by the linear operator JF (x). In fact
when condition (13) is not satisfied there exists a vector h ∈ Rn satisfying
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JF (x)h < 0 and this implies that the direction h is a descent direction, that
is we can decrease all the objective functions at once.
Let us illustrate the results of Lemma 2 in the case of a bi-criteria uncon-
strained optimization problem. In this case the matrix MF (x) given in (7)
has the following form:

MF (x) =
(

‖∇F1(x)‖2 ∇F1(x)T∇F2(x)
∇F1(x)T∇F2(x) ‖∇F2(x)‖2

)
, (14)

Note that equation λmin,F (x) = 0 implies the following equation:

‖∇F1(x)‖2 ‖∇F1(x)‖2(1− cos2(θ(x))) = 0, (15)

where θ(x) is the angle between the two gradient vectors ∇F1(x), ∇F2(x).
Equation (15) implies that one of the following equations holds:

‖∇F1(x)‖ = 0,
‖∇F2(x)‖ = 0,
cos(θ(x)) = ±1.

(16)

The first two equations are trivially necessary conditions for Pareto optimality.
The third equation implies that θ(x) = π or θ(x) = 0. Obviously when θ(x) =
0 we can decrease all the objective functions, while when θ(x) = π the two
gradient vectors point in opposite directions so we cannot decrease one of the
objective functions without increasing the other one.
Note that when λmin,F (x) = 0 and λmax,F (x) > 0 if there exists an eigenvec-
tor vmax,F (x) associated with λmax(x) satisfying the condition vmax,F (x) > 0
then the direction h = −JF (x)T vmax,F (x) is a descent direction (i.e. JF (x)h =
−λmax,F (x)vmax,F < 0) so that the point x does not belong to the local Pareto
optimal front. The example shows that it is relevant to investigate the spec-
trum of the matrix MF (x) (see (7)) when the point x ∈ B is a critical point,
that is x ∈ Vmin. Hence we investigate the feasible singular points of the ma-
trix MF (x) in order to establish when a feasible singular point of the matrix
MF (x) surely does not belong to the local Pareto optimal front.
Let x ∈ Vmin and x /∈ Vmax, and let j, j = 2, 3, . . . , s be the index of the
first positive eigenvalue of MF (x), that is λj(x) > 0 and λi(x) = 0, i =
1, 2, . . . , j − 1. We introduce the following set:

Cj(x) =

⎧⎨⎩ v ∈ Rs | v =
s∑

i=j

civ
i(x), ci ∈ R, i = j, j + 1, . . . , s,

and

s∑
i=j

ciλ
i(x)vi(x) > 0

⎫⎬⎭ , x ∈ Vmin, (17)

we have:
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Lemma 3. Let Fi : E ⊂ Rn → R, i = 1, 2, . . . , s be continuously differen-
tiable functions in E with B ⊂ E, let x̃ ∈ B be a point such that λmin,F (x̃) = 0
and let us assume that there exists an integer j, 1 < j ≤ s such that we have
λj(x̃) > 0. Let x̃ ∈ B be a local Pareto optimal point then we have:

Cj(x̃) = ∅ (18)

Proof. We note that for x̃ ∈ Vmin the following set:

A(x̃) = {h ∈ Rn |h = −D(x̃)JF (x̃)T v, v ∈ Rs }, (19)

is a subset of the set F(x̃) of the feasible direction at x̃ defined in (11) (see
Remark 1). Hence if there exists v ∈ Cj(x̃) moving along the direction h =
−D(x̃)JF (x̃)T v ∈ A(x̃) we have:

Fk(x̃+ th) = Fk(x̃)− t
s∑

i=j

ciλ
i(x̃)vi

k(x̃) + o(t) < Fk(x̃), t→ 0+. (20)

This concludes the proof.

An easy consequence of Lemma 3 is the following lemma:

Lemma 4. Let Fi : E ⊂ Rn → R, i = 1, 2, . . . , s be continuously differ-
entiable functions in E, B ⊂ E, let x̃ ∈ B be a point such that the matrix
MF (x̃) is singular that is λmin,F (x̃) = 0, and λmax,F (x̃) > 0. If there exists
a one-sign eigenvector associated to some non-zero eigenvalues of the matrix
MF (x̃) then the point x̃ does not belong to the local Pareto optimal front.

We conclude this section introducing a necessary condition involving the sec-
ond order partial derivatives of the objective functions, so that we assume that
the objective functions Fi, i = 1, 2, . . . , s, are twice continuously differentiable
functions in the open set E.
For h ∈ Rn and x ∈ Vmin we define the matrix Dx(h) ∈ Rn×n as follows:

Dx(h)i,i =

⎧⎨⎩
1, xi ∈ (li, ui),
−hi, xi = ui,
hi, xi = li,

i = 1, 2, . . . , n, (21)

Dx(h)i,j = 0, i �= j, i, j = 1, 2, . . . , n . (22)

We note that for any h ∈ Rn the vector h̃ = Dx(h)h is a feasible direction at
x so that the set F(x) of the feasible direction at x (see (11)) can be rewritten
as follows:

F(x) = {h ∈ Rn |h = Dx(b)b, b ∈ Rn }, x ∈ B (23)

and we define a set that contains the set of descent directions at x, that is:
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D(x) = {h ∈ Rn | JF (x)Dx(h)h ≤ 0 } , x ∈ B . (24)

Now we can state the second order necessary condition.
Let gx(h) ∈ Rs, gi,x : Rn → R, i = 1, 2 . . . , s be the function defined as
follows:

gi,x(h) = ∇Fi(x)TDx(h)h+
1
2
hTDx(h)HFi

(x)Dx(h)h, i = 1, 2, . . . , s, (25)

we have:

Lemma 5. Let Fi : E ⊂ Rn → R, i = 1, 2, . . . , s be twice continuously
differentiable functions in E, B ⊂ E, let x̃ be a local Pareto optimal solution
of problem (2) then we have:

ImageD(x̃)(gx̃) ∩ (−Rs
+) = ∅ (26)

where ImageD(x̃)(gx̃) is the image of the set D(x̃) (see (24)) by the map gx̃.

Proof. Let us assume by contradiction that there exists h ∈ D(x̃) such that
we have gx̃(h) < 0. This allows us to see that we have gx̃(th) < 0, t ∈ (0, 1).
Hence using Taylor expansion with base point x̃ we obtain:

Fi(x̃+t h) = Fi(x̃)+gi,x̃(th)+o(t2‖h‖2) < Fi(x̃), t→ 0+, i = 1, 2, . . . , s, (27)

where o(·) is the Landau symbol. Equation (27) is absurd. This concludes the
proof.

As we will show in the next section, Lemma 5 allows us to formulate a compu-
tational method to test condition (26) and to discard a critical point x̃ when
we find h ∈ D(x̃) such that gx̃(h) < 0. Future work will be needed to study
how the class of functions satisfying (26) is related to well known kinds of
generalized convexity (see [23], [24], [25], [26] for further details).

3 A Computational Method to Find Local Pareto
Optimal Fronts

In this section we provide a practical tool to determine the local Pareto opti-
mal solutions of problem (2) thanks to the use of Lemma 2 and Lemma 5.
First of all we determine a set of critical points for problem (2) and later we
discard the points of this set that do not match condition (26) of Lemma 5.
In particular we determine a subset V ∗

min of the set Vmin (see (9)) defined as
follows:

V ∗
min = { x ∈ Vmin | x is not aParetomaximal point }. (28)

We show that the points of the set V ∗
min are the accumulation points of a

suitable infinite sequence of feasible points. That is we formulate a kind of
interior point steepest descent method for the box constrained multi-objective
optimization problem (2) and then we investigate the points of the set V ∗

min

using Lemma 5.
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Definition 3. Let x ∈ B we say that a feasible direction h ∈ F(x) is a “de-
scent direction” at x when we have JF (x)h < 0.

Definition 4. Let x ∈ B we say that a feasible direction h ∈ F(x) is a “scalar-
ization compatible” at x when there exists w ∈ Rs such that we have:

h = −D(x)JF (x)Tw. (29)

The set A(x), x ∈ B given in (19) is the set of the “scalarization compatible”
directions at x. Definition 4 is a modification of the definition proposed in
[2] for the unconstrained case. The meaning of the term “scalarization com-
patible” is a consequence of the fact that a scalarization compatible direction
can be interpreted as the projected gradient of a suitable scalarization of the
vector objective function, that is:

h = −D(x)JF (x)Tw = −D(x)∇xw
TF (x), (30)

where ∇x denotes the gradient vector with respect to the variable x and
the scalar product wTF (x) =

∑s
i=1 wiFi(x) is the scalarization of the vector

function F at the point x.
We look for a vector valued function h(x), x ∈ B satisfying the following
requirements:

(i) h(x) must be a scalarization compatible direction at x, i.e.: equation (29)
holds for some w;

(ii) h(x) must be a descent direction at x,
(iii) JF (x)h(x) must be a continuous function on B.

Let be x ∈ B and x /∈ Vmin, let MF (x) ∈ Rs×s be the matrix defined in (7)
and let

MF (x) = QF (x)Λ(x)QF (x)T , (31)

be its spectral decomposition, where:

Λ(x) = Diag
(
λmin,F (x), λ2(x), . . . , λs−1(x), λmax,F

)
∈ Rs×s,

QF (x) =
(
v1(x)|v2(x)| · · · |vs(x)

)
. (32)

Let e ∈ Rs be the vector whose components are equal to one (i.e. e =
(1, 1, . . . , 1)T ∈ Rs), we can define the vector valued function h(x)

h(x) = −λmin,F (x)D(x)JF (x)Tw(x), (33)

where w(x) ∈ Rs is given by:

w(x) = QF (x)Diag
(

1,
λmin,F (x)
λ2(x)

,
λmin,F (x)
λ3(x)

, . . . ,
λmin,F (x)
λmax,F (x)

)
QF (x)T e .

(34)
It is easy to see that h(x) is feasible direction at x satisfying the requirements
(i), (ii) and (iii).
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Using standard linear algebra we have:

JF (x)h = −λmin,F (x)JF (x)D(x)JF (x)Tw = −λmin,F (x)MF (x)w
= −λmin,F (x)QF (x)Λ(x)QF (x)TQF (x) ·

·Diag
(

1,
λmin,F (x)
λ2(x)

,
λmin,F (x)
λ3(x)

, . . . ,
λmin,F (x)
λmax,F (x)

)
QF (x)T e

= −λmin,F (x)2e, (35)

hence, roughly speaking, moving along the direction h(x) all the objective
functions at once decrease by a quantity λmin,F (x)2.
Now we are able to define the algorithm to determine the set V ∗

min (see (28))
and we refer to it as algorithm A1.

Algorithm A1

Step 1. Choose an initial point x0 ∈ intB, a positive constant ε, 0 < ε << 1,
a positive integer itmax and set k = 0.

Step 2. If λmin,F (xk) < ε (i.e.: xk ∈ V ∗
min) or k > itmax stop. Otherwise

compute:

wk = QF (xk)Diag
(

1,
λmin,F (xk)
λ2(xk)

,
λmin,F (xk)
λ3(xk)

, . . . ,
λmin,F (xk)
λmax,F (xk)

)
QF (xk)T e,

(36)
and hk = −λmin,F (xk)D(xk)JF (xk)Twk then proceed with Step 3.

Step 3. Compute xk+1 = xk + tkh
k, where tk is the step-size computed with

the usual backtracking procedure:
(1a) Set t = 1, β = 1

2
(2a) if F (xk + t hk) ≤ F (xk) + β tJF (xk)hk and l < xk + thk < u then
tk = t otherwise t = t/2 (end of backtracking)

Step 4. Set k = k + 1 and go to Step 2.

Lemma 6. Let Fi : E ⊆ Rn → R, i = 1, 2, . . . , s be continuously differen-
tiable functions in E, B ⊂ E, let {xk}, k = 0, 1, . . . be an infinite sequence
generated by algorithm A1. We have:

(a) {F (xk) }, k = 0, 1, . . . is a monotonically not increasing sequence;
(b) the points xk, k = 0, 1, . . . belong to the interior of B;
(c) the sequence {xk } has at least one feasible accumulation point x̃, further-

more each accumulation point of {xk } belongs to V ∗
min;

(d) each accumulation point x̃ of {xk } satisfies the following inequality:

F (x̃) ≤ F (xk), k = 0, 1, 2, . . . . (37)

Proof. Let us prove (a). By virtue of Step 3 of algorithm A1 we have (see the
backtracking procedure (2a)):

F (xk+1) = F (xk + tkh
k) ≤ F (xk) + β tkJF (xk)hk, k = 0, 1, . . . . (38)
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Equation (38) and the fact that hk is a descent direction at xk (see equation
(35)) imply assertion (a).
Let us prove (b). Note that xk belongs to the interior of the feasible region
since x0 belongs to intB, hk is a feasible direction at xk and the step-size tk
satisfies condition (2a).
Let us prove (c) and (d). Since B is a compact set then there exists at least
an accumulation point x̃ of the sequence {xk} and it belongs to B by virtue
of assertion (b). That is part of assertion (c) is proved.
Now we prove assertion (d). Let {xkj} be the subsequence of {xk} such that:

lim
j→+∞

xkj = x̃. (39)

From equation (35) since Fi, i = 1, 2, . . . , s are continuously differentiable
functions in the open set E containing B we have that λmin,F (x) is a contin-
uous function of x ∈ B (see [22]) and we have:

lim
j→+∞

JF (xkj )hkj = − lim
j→+∞

λmin,F (xkj )2e = −λmin,F (x̃)2e. (40)

Furthermore for any k there exists j such that k < kj so that we have:

F (xkj ) ≤ F (xk), k = 0, 1, . . . . (41)

Assertion (d) that is formula (37) follows from (41) taking the limits j → +∞.
Now we are able to conclude the proof of (c). Since the sequence {F (xk)} is
bounded below, from Step 3 of algorithm A1 we obtain:

F (xk+1) ≤ F (x0)− β
(

k∑
i=0

ti λmin,F (xi)2
)
e , k = 0, 1, . . . . (42)

Equation (42) and the fact that the sequence {F (xk)} is bounded below imply
the following inequality:

β
+∞∑
i=0

ti λmin,F (xi)2 < +∞ (43)

and as a consequence we have:

lim
j→+∞

tkj
λmin,F (xkj ) = 0 . (44)

Let us show that λmin,F (x̃) = 0. Let us assume by contradiction that we
have λmin,F (x̃) > 0 and that j0 exists such that for any j > j0 we have that
λmin,F (xkj ) > 0 with xkj ∈ intB. Moreover the following equation holds:

F (xkj + thkj ) ≤ F (xkj )+ tβJF (xkj )hkj , xkj + t hkj ∈ intB, ∀t ∈ [0, t̃ ), (45)

where t̃ is a positive constant sufficiently small. Now we prove that for j > j0
we have:
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2tkj
> min{ 1 , t̃ }. (46)

Let us remember the backtracking procedure described in steps (1a), (2a). If
tkj

= 1, formula (46) holds. If tkj
< 1, then 2tkj

is not an acceptable step-size
since condition (2a) is not satisfied or xkj + 2tkj

hkj is not a feasible point.
Hence equation (46) must hold. The assumption λmin,F (x̃) > 0 and equation
(44) imply the following equation:

lim
j→+∞

2tkj
= 0. (47)

Equation (47) contradicts (46), hence we have λmin,F (x̃) = 0.
We conclude noting that x̃ is not a local Pareto maximal point since it is the
accumulation point of a sequence of points where the vector function F is
decreasing that is x̃ ∈ V ∗

min.

We conclude this section investigating the accumulation points of the se-
quences generated by algorithm A1 when we choose several initial points x0

in the interior of the box B.
Let x̃ ∈ V ∗

min we consider the following multi-objective optimization problem:

min
h∈Rn

gx̃(h) (48)

where the function gx̃ is given in (25). We look for the Pareto optimal solutions
of problem (48) using the path following method proposed in [3]. We discard
the point x̃ if there exists h such that gx̃(h) < 0 and

JF (x̃)Dx̃(h)h ≤ 0. (49)

In the next section we call algorithm A2 the procedure that solves problem
(48) and that computes gx̃(h) < 0 for each h solution of problem (48).

Lemma 7. Let Fi : E ⊆ Rn → R, i = 1, 2, . . . , s be twice continuously
differentiable functions in E, B ⊂ E, let Jg x̃

(h) be the Jacobian matrix of
g x̃ at the point h, then a necessary condition for h∗ to be a local Pareto
optimal solution of problem (48) is that the matrix Jg x̃

(h)Jg x̃
(h)T is singular

at h = h∗.

Proof. It follows using Lemma 4 in [3].

We conclude this section describing the basic steps of algorithm A2. Let A be
the set of the accumulation points determined by algorithm A1, let [−1, 1]n ⊂
Rn be the cartesian product of n copies of the interval [−1, 1], let M ∈ Rs×s

be a matrix and let det(M) ∈ R and adj(M) ∈ Rs×s denote the determinant
of M and the adjoint matrix of M respectively. Algorithm A2 is defined by
the following steps:
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Algorithm A2

Step 0 Select a point x̃ ∈ A;
Step 1. Choose an initial direction h0 ∈ int [−1, 1]n, a positive constant ε,

0 < ε << 1, a positive integer itmax and set k = 0.
Step 2. If det

(
Jg x̃

(hk)Jg x̃
(hk)T

)
< ε or k > itmax go to Step 5. Otherwise

compute:
pk = −Jg x̃

(hk)T adj
(
Jg x̃

(hk)Jg x̃
(hk)T

)
e , (50)

and proceed with Step 3.
Step 3. Compute hk+1 = hk + skp

k, where sk is the step-size computed with
a standard backtracking procedure:
(1a) Set s = 0.5
(2a) if −e < hk + spk < e then sk = s otherwise s = s/2 (end of

backtracking)
Step 4. Set k = k + 1 and go to Step 2.
Step 5. If g x̃(hk) < 0 discard x̃, otherwise accept x̃. Go to Step 0.

Note that we choose the step-size sk in such a way the direction hk belongs
to [−1, 1]n. This is not a restrictive condition since the norm of the vector hk

is irrelevant for algorithm A2. In fact algorithm A2 exploits the existence of
directions h where g x̃(h) < 0.

4 Numerical Experiments

In this section we validate the numerical methods (i.e.: algorithm A1 and
algorithm A2) proposed in Section 3 on four bi-criteria optimization problems.
The numerical methods have been implemented in Matlab on a Pentium M
1.6GHz in double precision arithmetic. The computational time has been
measured using the “cputime” Matlab function. For each test problem we
consider Ntot sequences starting from Ntot initial guesses x0,i ∈ intB,
i = 1, 2, . . . , Ntot. In particular, the starting points x0,i, i = 1, 2 . . . , Ntot are
chosen equally spatially distributed or randomly uniformly distributed on the
box B. We note that algorithm A1 is well suited for parallel computing since
we can compute each of the Ntot sequences independently from the others.
Once determined the accumulation points of the Ntot sequences we apply
algorithm A2 to establish if some of the accumulation points determined by
algorithm A1 must be discarded.
We consider four test problems, the first one and the third one belong to a
class of two-objective optimization problems proposed by K. Deb in [6]. The
tests considered have an increasing degree of difficulty.

Test 1) We have two objective functions (i.e.: s = 2) and two spatial variables
(i.e.: n = 2). The objective functions are given by:
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f1(x) = x1 f2(x) = ψ(x2)/x1 , (51)

where
ψ(x2) = 2− 0.8 e−( x2−0.6

0.4 )2

− e−( x2−0.2
0.04 )2

, (52)

and the box constraint is given by:

B = { x = (x1, x2)T ∈ R2, | 0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 }. (53)

The function ψ has a global minimizer at x2 ≈ 0.2 and has a local minimizer
at x2 ≈ 0.6. The global minimizer of the function ψ has a narrow attraction
region when compared with the attraction region of its local minimizer. This
feature makes it a very interesting test problem.

Fig. 1. Starting points (a); Objective functions values (b)

We have a convex global Pareto optimal front (see Figure 2(a)) corresponding
to the global minimizer of the function ψ, that is the set given by:

Global : Pg = {(x1, x2)T ∈ R2 |x2 ≈ 0.2, 0.1 ≤ x1 ≤ 1} , (54)

and we have a convex local Pareto optimal front corresponding to the local
minimizer of the function ψ, that is the set given by (see Figure 2(a)):

Local : Pl = {(x1, x2)T ∈ R2 | x2 ≈ 0.6, 0.1 ≤ x1 ≤ 1} . (55)



462 M.C. Recchioni

Fig. 2. Accumulation points (a); Objective functions values (b)

Figure 2(a) shows the numerical approximations of the local and global Pareto
fronts determined by algorithm A1 starting fromNtot = 400 points distributed
in the interior of the box B as shown in Figure 1(a). Figures 1(b) and 2(b)
show the value of the objective functions in the f1-f2 plane. The computational
time required to compute the accumulation points of Ntot = 400 trajectories
fulfilling the stop criterion described in Step 2 of algorithm A1 when ε =
5 ·10−7 and itmax = 500 is of about 36.96 seconds. We do not apply algorithm
A2 to this test problem since the set of points generated by algorithm A1

consists only of the local Pareto optimal points.

Test 2) We consider two objective functions (i.e.: s = 2) and two spatial
variables (i.e.: n = 2). The objective functions are given by:

f1(x) = x3
1 f2(x) = (x2 − x1)3, (56)

and the box is given by:

B = { x = (x1, x2)T ∈ R2 | − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 }. (57)

This test problem is very difficult to deal with since there are two sets of
points where the gradient vectors of the objective functions are identically
null but these points do not belong to the local Pareto optimal front. In fact
we have the local and the global Pareto fronts given by:
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Global : Pg = {(−1, 1)T } , (58)

Local : Pl = {(−1,−1)T } , (59)

and we have the following two sets of points that belong to Vmin but do not
belong to the Pareto local front:

B = {(x1, x2)T ∈ B | x1 = x2, x1 �= −1} , (60)

Z = {(x1, x2)T ∈ B | x1 = 0 } . (61)

Figure 3 and Figure 4 show the numerical results obtained applying algo-
rithm A1 to solve Test 2. Figure 3 shows the starting points (Ntot = 100)
and Figure 4 shows the accumulation points of the sequence defined by algo-
rithm A1. Note that Figures 3(a) and 4(a) show the points in the x1-x2 plane
and Figure 3(b) and 4(b) show the values of the objective functions in the
plane f1-f2. The computational time required to compute the accumulation
points of Ntot = 100 trajectories fulfilling the stop criterion described in Step
2 of algorithm A1 when ε = 5 · 10−7 and itmax = 500 is of about 16 seconds.

Fig. 3. Starting points (a); Objective functions values (b)

Finally we apply algorithm A2 at each point determined by algorithm A1

(see Figure 4(a)) in order to establish the points to discard. Algorithm A2

shows that only three points are possible Pareto optimal points. Note that two
points are local optimal Pareto points while the point x1 = 0, x2 = 0 is not
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Fig. 4. Accumulation points (a); Objective functions values (b)

a local optimal Pareto point. Indeed algorithm A2 is not able to discard this
point since at this point all the gradient vectors and the Hessian matrices are
identically null. Figure 5 shows the result of the selection due to algorithm A2.

Test 3) We have s = 2, n = 2 and the following objective functions:

f1(x) = v1(x1) f2(x) = ψ(x2)r(x1, x2),

r(x1, x2) = 1−
(
v1(x1)
ψ(x2)

)α

− v1(x1)
ψ(x2)

sin(2πqv1(x1)),

where we choose v1(x1) = x1, ψ(x2) = 1 + 10x2, α = 2, q = 4. The box
constraints are given by:

B = { x = (x1, x2)T ∈ R2, | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 }.

The Pareto-optimal front is not a connected set. Figure 6 shows the part of the
graph r(x1, 0) versus x1, x1 ∈ [0, 1] where r(x1, 0) is a non-increasing function
of x1. This figure shows also the Pareto front. In fact a point (x1, 0) belongs
to the global Pareto optimal front when the point (x1, r(x1, 0)) belongs to
the dashed line shown in Figure 6 and a point (x1, 0) is a local (non global)
Pareto optimal point front when the point (x1, r(x1, 0)) belongs to the solid
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Fig. 5. Results of the selection due to algorithm A2

line shown in Figure 6. Furthermore note that the points (0, x2), x2 ∈ [0, 1]
are global minimizers of the function F1, but only the point (0, 0) belongs to
the global Pareto-optimal front. Figure 7 shows the numerical results obtained

Fig. 6. r(x1, 0) versus x1

applying algorithm A1 to solve Test 3. As in the previous numerical experi-
ments we choose the starting points (Ntot = 1600) equally distributed on a
rectangular grid of B. Figure 7 shows the accumulation points of the sequence
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defined by algorithm A1. As in the previous experiments Figure 7(a) shows
the points in the x1-x2 plane and Figure 7(b) shows the values of the objective
functions in the plane f1-f2. The computational time required to compute the
accumulation points of Ntot = 6400 trajectories fulfilling the stop criterion de-
scribed in Step 2 of algorithm A1 when ε = 5 · 10−7 and itmax = 250 is of
about 334.88 seconds.

Fig. 7. Accumulation points (a); Objective functions values (b)

We apply algorithm A2 starting from each point determined by algorithm A1

(see Figure 7(a)) in order to establish the points to discard. The points selected
by algorithm A2 are shown in Figure 8. Similar results have been obtained for
several choices of the parameters α and q.

Test 4) We have s = 2, n = 100 and the following objective functions (see [8]
p.442-443):

f1(x) =
(

1
n

∑n
i=1

[
x2

i − 10 cos(2π xi) + 10
])1/4

f2(x) =
(

1
n

∑n
i=1

[
(xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10

])1/4
.

The box constraints are given by:

B = { x = (x1, x2, . . . , xn)T ∈ Rn, | − 5 ≤ xi ≤ 5, i = 1, 2, . . . , n }.
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Fig. 8. Results of the selection due to algorithm A2

The Pareto front determined by several kinds of genetic algorithms and with
multi-start tabu search can be found in [8] Figure 13 pag. 443. Figure 9 shows
the values of f1 and f2 on the Pareto front achieved by algorithm A1. The
computational time required to compute the accumulation points of Ntot =
1000 trajectories fulfilling the stop criterion described in Step 2 of algorithm
A1 when ε = 5 · 10−12 and itmax = 1000 is of about 371.08 seconds.

Fig. 9. Objective functions valued at the accumulation points determined by algo-
rithm A1
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5 Conclusions

We conclude noting that algorithm A1 has a satisfactory behavior when ap-
plied to solve multi-objective optimization problems. In fact in almost all the
numerical experiments several trajectories converge to the local Pareto front.
Moreover starting from a sufficiently large number of points algorithm A1 is
able to approximate the entire Pareto front. Finally when algorithm A1 does
not work well we can use algorithm A2 to discard the points determined by
the algorithm A1 where it is possible to decrease all the objective functions.
The computational cost of algorithm A1 is essentially due to the computation
of the spectral decomposition of the matrix MF (xk) given in (31) made at
each iteration k. Obviously the computational cost of algorithm A1 increases
heavily when the number s of the objective functions increases so that some
techniques to avoid the computation of the spectral decomposition at each
iteration should be studied. Probably something like the rank one correc-
tions could be used when the number of the iterations becomes sufficiently
large. However algorithm A1 is well suited for parallel implementation since
each trajectory can be computed independently from the others so that using
a parallel machine we can reduce the computational cost required to follow
several trajectories. The computational cost of algorithm A2, when x̃ ∈ A
is fixed, is essentially imputable to the computation of the adjoint matrix
adj

(
Jg x̃

(hk)Jg x̃
(hk)T

)
made at each iteration k. Hence algorithm A2 can be

executed with affordable computing resources when the number of the objec-
tive functions is sufficiently small, that is s is a few hundreds, and the number
of points belonging to A to exploit is a few thousands. Future work is needed
to generate a computational method that fuses the basic features of algorithm
A1 and algorithm A2. In particular preliminary attempts should be made to
avoid the use of algorithm A2 on the entire set A.
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