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Abstract— Extracortical activity play important role in 
generation of EEG-signal. Neuronal system in the brain seems 
to be specially sensitive to sources belonging to the class of 
functions: [Acos( t)+Bsin( t),  exp(± t),  Bessel functions]. 
This representation could be reflect influence of external 
sources, for example electromagnetic fields, on the brain. In 
my previous papers I demonstrated the effect of 
electromagnetic field on the EEG-signal using nonlinear 
dynamics method - Higuchi’s fractal dimension.  

The extracortical input from inhibitory neurons destroys 
the oscillatory structure of signal generated by extracortical 
input from excitatory neurons but do not suppresses it 
completely. The additional component is needed. The long-
distance input from excitatory neurons take this role. 

The most important parameter in the model is 
postsynaptic neurotransmitter rate constants. It shows a 
biphasic effect changes for inhibitory postsynaptic potentials 
(IPSP) in the EEG-signals during anesthesia. The similar 
behavior is visible for postsynaptic rate constants but in case of 
excitatory postsynaptic potential (EPSP) in epileptic EEG-
signals.  There are two opposed processes occur. 

The average excitatory soma potential (he) depend on total 
number of excitatory and inhibitory intracortical connections. 
The increase of maximum value of the he occurs for bigger 
number of excitatory connections. The shape of the curve 
depend on number of inhibitory connections. 
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I. METHODS.
In this work I present some results obtained using 

electrocortical model of Liley [3,4]. The main 
computational observable in Liley’s model is the average 
excitatory soma membrane potential, he. It is expected to be 
linearly related to EEG voltage. The model assumes 
existence of two distinct cortical subpopulations of neurons 
(macrocolumns): excitatory and inhibitory. Three sources 
give input to excitatory and inhibitory synapses: locally in 
the same macrocolumn of cortex, long-range but within the 
cortex and extracortical input, for example from the 
thalamus. The local interactions within the macrocolumns 
are proportional to the number of their connections (Nlk )
and their mean firing rates (Sk), k,l=e (excitatory), i 

(inhibitory). They are estimated using a sigmoidal 
dependence on the local mean membrane potential. The 
long-range connections to other macrocolumns are formed 
only by the excitatory subpopulations. The model is 
formulated as a set of eight nonlinear ordinary differential 
equations (ODE): two first order ODE  and six second order 
ODE. Each of second order ODE can be rewrite as a system 
of two first order ODE. Thus, the whole model is composed 
by 14 first order equations with 29 physiological and 
anatomical parameters. The set is solved numerically using 
MATLAB procedures (ode45) in the time range from 0 to 
400 [ms]. The initial values of variables are zero. In the base 
model I assumed the standard set of parameters values 
proposed by Steyn-Ross et all. [1] and I tested the average 
excitatory soma potential change on different parameters 
within known physiological bounds [3,4].

II. RESULTS.

A. Dependence of the average excitatory soma potential on 
parameters values. 

The most spectacular changes are observed for 
postsynaptic rate constants for inhibitory postsynaptic 
potentials (IPSP). It shows a biphasic effect for the 
parameter value changes value from 0.1 to 0.2 (Fig.1b). The 
biphasic behavior is not observed for amplitude of 
inhibitory postsynaptic potential (Fig.1a). 

Steyn-Ross et all. [1] suggest that this effect could be 
explained as a phase transition in the cortex between the 
activated and quiescent states at a critical value of 
anesthetic.

The average excitatory soma potential for different 
excitatory postsynaptic neurotransmitter rate constants 
(EPSP) demonstrate the similar behavior for epileptic 
signals.  Wendling et all. [2] show that the model switches 
from spiking activity to sinusoidal alpha-like activity for 
specific parameter value. In my previous works I analyzed 
EEG-signals during sleep, anesthesia and epileptic seizure 
using fractal dimension method. The nonlinear character of 
signals is clearly visible in these cases.  
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Fig.1 The average excitatory soma potential: a) for different amplitude of inhibitory postsynaptic potentials (IPSP) in the range: [0.2, 0.4, 0.6, 0.8, 1, 1.5, 2]; 
b) for different postsynaptic neurotransmitter rate constants IPSP in the range: [0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5]. 

The sharp decrease of fractal dimension can be noticed at 
the beginning of anesthesia [10,12-13]. The change of 
complexity of system could be explain by the biphasic 
behavior caused by the phase transition in cortex between 
two brain states (activated and quiescent) in moment of 
anesthetic induction. Such behavior is not visible in whole-
night sleep EEG-signal where fractal dimension decreases 
slowly from waking state to the deep sleep passing 
smoothly through consecutive sleep stages [8-10].  

The phase transition between two types of EEG activity 
during epileptic seizure (spiking activity and sinusoidal 
alpha-like activity) is reflected also in fractal dimension of 
such signals. The fractal dimension decrease sharply when 
the seizure occur [10,11]. 

The average excitatory soma potential, he depend on total 
number of excitatory and inhibitory intracortical 

connections. The increase of maximum value of the he
occurs for bigger number of excitatory connections (Fig. 
2a). The shape of the curve depend on number of inhibitory 
connections (Fig. 2b). 

B. Influence of extracortical input to excitory/inhibitory 
synapses and influence of long-distance effects. 

One of three inputs to synapses is the extracortical input, 
for example from the thalamus. The primary role of 
thalamus is to relay sensory information from other parts of   
the brain to the cerebral cortex filtering out important 
messages from the mass of signals entering the brain. It 
plays role in arousal, attention, memory, pain, alertness, 
consciousness and expression of emotion. 
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Fig.2 The average excitatory soma potential for different total number of intracortical connections. a) for excitatory (ee,ei) connections in the range: [2000, 
3000, 4000, 5000]; b) for inhibitory (ie,ii) connections in the range: [100, 200, 500, 1000]. 
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In the Liley’s model extracortical activity is represented 
by physiologically shaped brown noise [4]. In my system 
this activity change in time as a sinusoid or exponentially 
suppresses  sinusoid. This representation could be reflect 
influence of external sources, for example electromagnetic 
fields, on the brain. In the previous papers the effect of 
electromagnetic field on the EEG-signal using Higuchi’s 
fractal dimension method was demonstrated [5-7] .  

The average excitatory soma potential in function of 
extracortical input pee rate for three cases was analyzed: pee
= 0; pee = 10000 * sin(t); pee = exp(-t/100) * 10000 * sin(t). 
I assumed pei = pie = pii =0 and absence of long-distance 
cortico-cortical effects ( =0). The structure of extracortical 
input function is well reflected in observed EEG-signal. 

In addition to sigmoid-modulated synaptic input from the 
sources placed locally in the same macrocolumn of cortex, 
there could be present also long-range cortico-cortical 
contributions from distant excitatory assemblies. The effect 
of he oscillations suppression is observed in this case 
(Fig.3).

The long-distance input is described in the model by two 
additional second order ODE depending on time and spatial 
variables. These equations are kind of telegraph equations: 
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Some of particular solutions of the Klein-Gordon 
equation are: 
1.  u(x,t)=sin( x) [Acos( t)+Bsin( t)];
2.  u(x,t)=exp(± t) [Acos( x)+Bsin( x)];
3. u(x,t)= AJ0( )+BK0( ), where J0, K0 – the modified 
Bessel functions. 

When complete spatial homogeneity over the region 
sampled by the EEG electrode is assumed, the one-
dimensional Laplasian 2/ x2 is eliminated, and only time is 
variable in the set of ODE. All partial derivatives with time 
become total derivatives with time. 

In this case the long-distance input belong to the class of 
functions: [Acos( t)+Bsin( t),  exp(± t),  Bessel functions 
looking roughly like oscillating sine or cosine functions that 
decay proportionally to 1/ x]. The same class of functions 
was used to describe the extracortical input pee. Neuronal 
system in the brain seems to be especially sensitive to 
sources described by such functions. 

0 1 0 0 2 0 0 3 0 0 4 0 0
- 1 4 0

- 1 2 0

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

h_
e 

[m
V]

t i m e  [ m s ]

a )

0 1 0 0 2 0 0 3 0 0 4 0 0
- 1 4 0

- 1 2 0

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

h_
e 

[m
V]

t i m e  [ m s ]

b )

Fig.3 The average excitatory soma potential in function of extracortical input pee = 10000 * sin(t) without and in presence of long-distance input. 

C. Influence of pee/pie ratio. 

The role of extracortical input from excitatory (pee) and 
inhibitory (pie) neurons to excitatory synapses was studied. 
The signal is described by function Asin(t).  

For the extracortical input from excitatory neurons value  
of amplitude is A=10000 and from inhibitory neurons 
 amplitude change from 2000 to 10000.  

The play between three sources (extracortical input from 
excitatory neurons, extracortical input from inhibitory 
neurons and input from distant excitatory neurons) carry on. 
The input from inhibitory neurons destroys the oscillatory 
structure of signal but do not suppresses it completely. The 
long-distance input from excitatory neurons take this role. 
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III. CONCLUSIONS.

Modeling of processes occurred in the brain at the 
cellular level permits to explain phenomena observed at the 
macroscopic level in EEG-signal. My previous studies of 
EEG-signal using nonlinear dynamics method like Higuchi’s 
fractal dimension revealed existence of interesting behaviour 
of neuronal system during sleep, anesthesia and epileptic 
seizure. The effect of electromagnetic field on the EEG-signal 
was demonstrated also. The sharp decrease of fractal 
dimension can be noticed at the beginning of anesthesia. The 
change of complexity of system could be explain by the 
biphasic behavior caused by the phase transition in cortex 
between two brain states (activated and quiescent) in moment 
of anesthetic induction. Such behavior is not visible in whole-
night sleep EEG-signal where fractal dimension decreases 
slowly from waking state to the deep sleep passing smoothly 
through consecutive sleep stages. The phase transition 
between two types of EEG activity during epileptic seizure 
(spiking activity and sinusoidal alpha-like activity) is 
reflected also in fractal dimension of such signals. The fractal 
dimension decrease sharply when the seizure occur. One of 
parameters in the model, postsynaptic neurotransmitter rate 
constants, shows a biphasic effect changes for inhibitory 
postsynaptic potentials (IPSP) in the EEG-signals during 
anesthesia. The similar behavior is visible for postsynaptic 
rate constants but in case of excitatory postsynaptic potential 
(EPSP) in epileptic EEG-signals.  There are two opposed 
processes occur. The model shows an interesting play 
between three sources: extracortical input from excitatory 
neurons, extracortical input from inhibitory neurons and input 
from distant excitatory neurons. Extracortical activity play 
important role in generation of EEG-signal. Neuronal system 
in the brain seems to be specially sensitive to sources with 
characteristics belonging to the class of functions: 
[Acos( t)+Bsin( t),  exp(± t),  Bessel functions]. This 
representation could be reflect influence of external sources, 
for example electromagnetic fields, on the brain. The 
extracortical input from inhibitory neurons destroys the 
oscillatory structure of signal generated by extracortical input 
from excitatory neurons but do not suppresses it completely. 
The additional component is needed. The long-distance input 
from excitatory neurons take this role. Thalamus is a very 
important part of the brain. It is not only filtering out useful 
information from other parts of the brain to the cerebral 
cortex, but it protects the cerebral cortex from dangerous 
signals. It seems to have a role of specific “firewall”. 
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