
6

Data Fusion of Multimodal Cardiovascular
Signals

Kannathal N, Rajendra Acharya U, E.Y.K. Ng, Lim Choo Min, Jasjit S
Suri, Jos A E Spaan

Computer technology has an important role in structuring biological systems.
The explosive growth on high performance computing techniques in recent
years with regard to the development of good and accurate models of bio-
logical systems has contributed significantly to the new approaches on the
modeling transient behavior of biological system. Data Fusion is the process
of combining data from several sources, inputs from sensors with information
from other sensors, information processing blocks, data bases or knowledge
bases into unified representational format [1, 2]. A data fusion system must
identify when data represents different views of the same object, when data is
redundant, and when mismatch occurs between data items. Data fusion deals
with the synergistic combination of information made available by different
measurement sensors, information sources and decision makers. Thus, sensor
fusion is concerned with distributed detection, sensor registration, data asso-
ciation, state estimation, target identification, decision fusion, user interface
and database management [3]. Various techniques involved in fusion are least
square method, Bayesian method, fuzzy logic, neural network and so on, but
they lack information on how they are applied [4,5]. Attempts have been made
to relate these fusion techniques with fusion tasks in the fusion architecture
framework. Data fusion [3, 6] architecture has gone through various develop-
mental phases and gradually has evolved into two techniques, the rule-based
decision-making and fuzzy logic decision-making [7].

Multiple sensor systems were originally motivated by their applications in
military surveillance but are now being employed in a wide range of applica-
tions [8–11]. Location of a moving object (such as an aircraft) using radar can
be taken as an example [12]. Even tough data fusion methods were developed
primarily for military applications, many non-military applications including
in the area of biomedical engineering are emerging. They include applications
to condition monitoring, monitor of machines, robotics and medicine [13–20].
A typical application in medicine is the detection of patient status based on the
data obtained from the recording of multi channel electrocardiogram (ECG),
arterial blood pressure (ABP) and respiration. Using of multimodal data can
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improve disease detection in various ways. In the past, multisensor fusion for
arterial and ventricular activity detection in coronary care monitoring was
carried out. Alfredo et al [21] have presented multisensor and multisource
data fusion skills to improve atrial and ventricular activity detection in criti-
cal care environments. Fracisco et al [22] proposed a framework for fusion of
structured and unstructured data based on case based reasoning concept. A
novel approach for robust cardiac rhythm tracking based on data fusion has
been described by Thoraval et al [13]. They have reported that their approach
gives better detection of abnormal ventricular contractions. Hence, one can
expect better results with regard to diagnosis by fusion of biological signals
from various sources.

6.1 Approaches for Fusion

Patient monitoring systems are used in critical-care units (CCU) to detect,
characterize, and automatically generate alarms for each potential life-
threatening event. Data acquired about the patient consists of one or more
measurements from different types of data gathering devices, such as elec-
trocardiogram, blood pressure meters, transthoracic impedance and plethys-
mograph. After processing, this raw data is turned into information streams
containing multiple measurements of heart rate, respiratory rate, systolic
and diastolic blood pressure and SpO2 [23–29]. These measurements can be
fused to yield more accurate estimates of the actual patient parameters and
status information such as the detection of sensor failures [13]. This can aid
in the elimination of false-positive cases [4]. Fusion of multimodal data can
be modelled as multi-dimensional process.

Y(k) = [E(k)R(k)B(k)P(k)] (6.1)

where k denotes the discrete time index, while E(k), R(k), B(k), P(k) refer,
respectively to ECG, Respiratory, ABP, and PLETH channels in Eq. (6.1).

E(k) = (e(k), e(k + 1), e(k + 2), . . .. . .. . .) (6.2)
R(k) = (r(k), r(k + 1), r(k + 2), . . .. . .. . ..) (6.3)
B(k) = (b(k),b(k + 1),b(k + 2), . . .. . .. . .) (6.4)
P(k) = (p(k),p(k + 1),p(k + 2), . . .. . .. . .) (6.5)

In Eq. (6.2) e(k) refers to ECG data, at (k)th instant of time, r(k) refers
to respiratory data, b(k) refers to blood pressure data and p(k) refers to
plethysmograph data at kth instant of time respectively in Eqs. (6.3,6.4,6.5).

E(k) = [(e1(k), e1(k+1), e1(k+2), . . .. . .. . .), e2(k), e2(k+1), e2(k+2), . . .. . .. . .)]
(6.6)
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where e1(k), e2(k) are two parameters heart rate and change in heart rate
extracted from ECG signal E(k) at kth instant given in Eq. (6.6).

R(k) = [(r1(k), r1(k+1), r1(k+2), . . .. . .. . .), (r2(k), r2(k+1), r2(k+2), . . .. . .. . .)]
(6.7)

where r1(k), r2(k) are two parameters respiratory rate and change in respi-
ratory rate extracted from respiratory signal R(k) at kth instant given in
Eq. (6.7).

B(k) = [(b1(k),b1(k + 1),b1(k + 2), . . .. . .. . .),
(b2(k),b2(k + 1),b2(k + 2), . . .. . .. . .)
(b3(k),b3(k + 1),b3(k + 2), . . .. . .. . .)]

(6.8)

where b1(k),b2(k),b3(k) are three parameters systolic pressure, diastolic
and mean pressures extracted from blood pressure signal B(k) at kth instant
given in Eq. (6.8).

P(k) = [(p1(k),p1(k + 1),p1(k + 2), . . .. . .. . .)] (6.9)

where p1(k) is the parameter oxygen saturation extracted from plethysmo-
graph signal P(k) at kth instant and is given in Eq. (6.9)

Multiple measurements of the same data are considered competitive data.
For example, three measurements of heart rate must be fused to yield one
estimate of the actual heart rate of the patient. If one sensor fails or is erratic,
while the other two are very close, then the average of those two should be
used as the correct estimate. Thus competitive integration yields two outputs.
The first is the integrated data, in this case the heart rate. The second is status
information, such as information about an erratic or failed sensor.

When multi-modal data is fused, it is considered complementary integra-
tion, which is defined as the integration of overlapping (partial) data. The data
is partial because it only covers a certain aspect of the patient state. However,
it is overlapping because the different types of data change together, as patient
state changes. Complementary integration does not produce better estimates
of the patient parameters as competitive data does. However, it does yield
status information. The most obvious example is, if one type of sensor fails,
the others continue to function normally.

In the model developed (Fig. 6.1), there are two heart rate measurements,
one respiratory rate, blood pressure systolic, diastolic and mean pressures
and one SpO2 measurement. The relation between the two heart rate mea-
surements is competitive, and can thus be used to yield a more accurate
measurement and status information about the two sensors. The relationship
between the heart rate, respiratory rate and respiratory volume measurements
are complementary. Each of them partially cover the patient state, and can
be fused to yield status information about the sensors. For example, if heart
rate from lead 1, indicates zero but heart rate from lead 2 indicates some valid



170 N. Kannathal et al.

Data 
Fusion

Rule 
Based 
Overall 
Status 

Fuzzy 
Based
Overall
Status

Parameter
Extraction

Heart rate 1

Heart rate 2

Respiratory 
Rate

Systolic

Mean 
Pressure 

Diastolic

SpO2

Heart Rate 
Status 

Overall
Sensor Status

Overall
Patient 
condition

Blood  
Pressure 
Status

ECG

RESP

ABP

PLETH

Fig. 6.1. Data Fusion Model of multi-modal signals

value, the ECG lead1 sensor has most likely failed. Similarly, the heart rate
may indicate that the patient’s heart has stopped beating, but the respiratory
rate may show normal breathing.

It is unlikely that the patient’s heart has stopped, and the heart rate sensor
has failed [13]. These are the ways in which data fusion can provide better
information to eliminate false-positive detections.

The rules used to create the heart rate status are as follows. If there is a
difference of more than 5% between the two heart rate measurements, or if the
status of the heart rate sensors differs, a “Heart rate discrepancy” is flagged.
Otherwise, the heart rate is set to the average of the two values. To create the
overall status, a tally is taken of the number of sensors that report a status of
OK. If they do not indicate OK, they may indicate SENSOR ERROR, which
indicates a hardware failure, NO DATA, which indicates that not enough
data has yet been acquired to calculate patient parameters, or STALE DATA
which indicates no new data has been received within a certain time period.
All of these results can be indicative of patient deterioration or sensor failures.
However, if the problems are consistent between sensors, they are more likely
to flag a problem with the patient rather than the sensors. The table on
sensor discrepancy and the sensors reporting OK is shown in the Table 6.1.
Parameters extracted from the multi-modal data are combined using rule
based approach and fuzzy reasoning methods.
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Table 6.1. Sensor discrepancies

Sensors reporting OK Message Returned

Four (all sensors OK) No sensor abnormalities detected
Three Sensor discrepancy (one sensor)
Two Sensor discrepancy (two sensors)
One Possible acute patient deterioration; Sensor dis-

crepancy (three sensor)
Zero (no sensors OK) Highly likely acute patient deterioration

6.2 Rule Based Approach

Set theory has been found to be at the center of universe for the modern
computing world. Every element in the world either belongs or doesn’t belong
to a set; either member or not a member of a set; either true or false. New rules
can be derived from existing knowledge by using the true or false statements.
Utilizing the information obtained from analyzing multimodal data, new rules
can be formulated for detecting critical conditions of the patient. Rules can be
developed such as: “If heart rate exceed 90 bpm” or “If respiratory rate exceeds
20” or “If mean Pressure has dropped by 20 bpm” and “Spo2 has decreased
below 95%” then patient is diagnosed with left ventricular failure. A rule-
based decision making system employs a series of Boolean result parameter
tests, combined together with a series of Boolean operators such as AND, OR
to indicate whether a particular condition is present or not.

There are many different categories of problems that could be detected by
the rule-based approach, such as:

• A drop in heart rate over time is indicative of cardiac problem
• A drop in blood pressure combined with a rise in heart rate indicates that

the heart is not pumping forcefully or low preload. The rise in heart rate
occurs as the body attempts to increase blood flow.

• A drop in SpO2 % indicates that oxygen content is reduced.
• Ventricular failures could be detected by a sudden change in heart rate to

a very high rate.

The percentage mentioned above are just approximate test values and the
clinician has choice of providing the accurate conditions and limits to the
Table 6.3 based upon his clinical experience and clinical literature.

Some life-threatening episodes can be detected by using the rules
documented in Table 6.2. These rules are not easily available in literature
and are assigned based on the discussions with experienced cardiac surgeons.
ECG, respiratory, blood pressure and plethysmograph signals were considered
for fusion in Table 6.2, however if more parameters such as pressure signals
from individual chamber of heart such as left atrium, pulmonary artery, right
atrium if fused along with oxygen saturation, a more specific diagnosis can
be made. Table 6.3 gives a general idea for fuzzification of parameters.
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Table 6.2. Fusion Rules for Cardiovascular Condition Diagnosis

Condition Constraints Typical Test Values

Left Ventricular
Failure

High Heart Rate HR > 90BPM and
High Respiratory Rate RR > 20 RPM/minute
Drop in Blood Pressure SBP < 80 mm/HG
Low Oxygen Saturation SpO2 < 95%

Right
Ventricular
Failure

High Heart Rate HR > 95BPM and
Very high Respiratory Rate RR > 25 RPM/minute
Less drop in Blood Pressure SBP < 110 mm/HG
Very Low Oxygen Saturation SpO2 < 90%

Pulmonary
Oedema

Very high Heart Rate HR > 120 BPM and
Very high Respiratory Rate RR > 25 RPM/minute
Large drop in Blood Pressure SBP < 80 mm/HG
Very Low Oxygen Saturation SpO2 < 90%

Tachycardia Very high Heart Rate HR > 120 BPM
Bradycardia Very low Heart Rate HR < 60 BPM

Table 6.3. Probabilistic rules assigned by the physician

(HR) (RR) (SBP) (SpO2) Failure

Single Constraint

1–1 HR > 150 ∈ all RR ∈ all SBP ∈ all SpO2 80%
1–2 110 < HR < 130 ∈ all RR ∈ all SBP ∈ all SpO2 50%
1–3 90 < HR < 110 ∈ all RR ∈ all SBP ∈ all SpO2 30%
1–4 80 < HR < 90 ∈ all RR ∈ all SBP ∈ all SpO2 10%

Double Constraints

2–1 110 < HR < 130 RR > 20 ∈ all SBP ∈ all SpO2 80%
2–2 90 < HR < 110 15 < RR < 20 ∈ all SBP ∈ all SpO2 50%
2–3 80 < HR < 90 10 < RR < 15 ∈ all SBP ∈ all SpO2 15%

. . . . . . . . . . . . . . . . . .
Triple Constraints

3–1 110 < HR < 130 RR > 20 SBP < 70 ∈ all SpO2 80%
3–2 90 < HR < 110 15 < RR < 20 70 < SBP < 80 ∈ all SpO2 60%
3–3 80 < HR < 90 10 < RR < 15 80 < SBP < 100 ∈ all SpO2 20%

. . . . . . . . . . . . . . . . . .
Four Constraints

4–1 110 < HR < 130 RR > 20 SBP < 70 SpO2 < 90% 85%
4–2 90 < HR < 110 15 < RR < 20 70 < SBP < 80 95% < SpO2 < 90% 70%
4–3 80 < HR < 90 10 < RR < 15 80 < SBP < 100 90% < SpO2 < 99% 25%

. . . . . . . . . . . . . . . . . .

6.3 Introduction to Fuzzy Based Decision Making

The world around us is very uncertain and unpredictable. No bivalent logic
(also called Boolean or binary logic or law of excluded middle) can possi-
bly solve real world problems without oversimplification. Many approximate



6 Data Fusion of Multimodal Cardiovascular Signals 173

120 bpm

100 bpm 80 bpm

70 bpm

Fig. 6.2. Heart rates defined exactly by 72 bpm

120 bpm

100 bpm

72 bpm

80 bpm

Fig. 6.3. Fuzzy Set of patients with high heart rates

reasoning (also called multi-valued, or continuous or fuzzy logic) methods have
been proposed and applied to real world problems [4]. Fuzzy logic allows the
representation of human decision and evaluation processes. In reality a crisp
rule for certain case cannot be defined. These rules are discrete points in the
continuum of possible cases and approximation is done between them. The
full scope of human thinking, creativity cannot be mimicked by fuzzy logic.
Solution can be derived for a given case by applying fuzzy logic techniques to
the rules that have been defined for similar cases.

Most of the medical books describe that normal heart rate is 72 beats
per minute, which doesn’t mean that a patient with 71 bpm has abnormally
low heart rate and a patient with 73 bpm has abnormally high heart rate.
Figure 6.2 gives an example of the ‘patients with high heart rate’ (dark area),
where the indicator function defines high heart rate as rates higher than
72 bpm. Figure 6.3 gives an example of a set, where certain elements can also
be “more-or-less” members. The shades of grey indicate the degree to which
the heart rate belongs to the set of high heart rate. This shades of grey which
makes the dark grey area in Fig. 6.2 look “fuzzy” and gave Fuzzy Logic its
name.
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In Fig. 6.3, each heart rate is associated with a certain degree to which it
matches the prototype for high heart rate. This degree is called the “degree of
membership” µHR(x) of the element x e X to the set high heart rate, where
X is set of all high heart rates and heart rate is called a base variable ‘x’ with
universe X. Different classes of events are specified, along with a membership
function.

Fuzzy set is an extension of regular set in which for each element there
is also a degree of membership associated with it. The degree of membership
can be any value between 0 and 1. An element, whose degree of membership
in a set is 0, doesn’t belong to that set at all. An element whose degree of
membership in a set is 1, belongs one hundred percent to that set. An element
whose degree of membership in a set is 0.8, belongs eighty percent to that
set and so on. Also an element can belong to more than one set to various
degrees of membership. This provides a powerful scheme for representation
of uncertainity. Thus this continuous or fuzzy logic includes conventional or
binary logic as a special case and extends beyond that.

6.4 Fuzzy Logic Approach

In a rule-based system, a Boolean response is assigned to a condition. Thus a
patient either has or does not have a certain condition. In contrast, a fuzzy-
logic system attempts to assign a probability that a patient has a certain
condition. Thus, a fuzzy-logic system may produce the response that a patient
is 70% likely to have a Left Ventricular Failure, but only 8% likely to be
having Pulmonary edema. This type of system has some advantages. Firstly,
it rids the system of rigid thresholds, such as HR > 90 bpm. A patient with
high respiratory rate may be having respiratory troubles without crossing
this threshold. In the rule-based system, this case would not be triggered. In
contrast, the fuzzy-logic system would assign it a probability almost as high
as for a patient with RR > 20. It is for this reason the system is denoted
fuzzy, as the boundaries become fuzzy rather than rigid. A second advantage
of fuzzy-logic is it can be used to prioritize tasks. If one patient has a high
probability of a serious state, while another patient has a lower probability of
a less serious state, limited resources can tend to the highest risk group first.
Fuzzy-logic is implemented using a decision function, as modeled in Fig. 6.4.

The inputs to the function are a set of patient parameters. The outputs are
the probabilities that different conditions are occurring. For example, condi-
tion 1, Left Ventricular Failure may have a severity or probability of 70% while
condition 2, Pulmonary edema, may have a probability of 5%. The challenge
in fuzzy-logic is to create the decision function, as it may be a complex mathe-
matical function. To partially automate the task, the method used is, for each
condition, to create a closed object in n-space based on the Boolean rules for
that condition, to fuzzify its boundaries, and finally to create a mathematical
function to correspond to the fuzzified object.
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6.4.1 Fuzzy-Logic Decision Function Created by Fuzzifying
Boolean Rules

This method performs a transformation of the Boolean rules to smoothen
their boundaries, creating a probabilistic region. The algorithm consists of
the following steps. (i) Quantize the patient parameters. For example, heart
rate is broken down into 18 steps of 10 BPM/step, blood pressure is broken
down into 10 steps of 10 mm/hg /step, oxygen saturation is broken down into
10 steps of 5% per step and respiratory rate is broken down into 10 steps
of 10/step. (ii) A 4-dimensional matrix is created with one quantized patient
parameter on each dimension. Each element in matrix is assigned a probability
Pr of either 100% or 0% based on the Boolean rules. (iii)A new 4-dimensional
matrix is created with the same axis as the first. Each element of matrix Pr

is fuzzified over window of size ‘w’ and assigned a probability Pf using the
Eq. 6.10

Pf [i][j][k][l] =
w∑

p=−w

w∑

q=−w

w∑

r=−w

w∑

s=−w

Pr[p][q][r][s]/d (6.10)

where d is given by Eq. 6.11, and p, q, r, s indicate the four patient parameters
and i, j, k, l indicate the dimension of first, second, third and fourth parameters
respectively.

d = [1 +
√

(p2 + q2 + r2 + s2)] (6.11)



176 N. Kannathal et al.

Pf (max) is the maximum value in Eq. (6.12)

PfI [i][j][k][l] = (Pf [i][j][k][l]/Pf (max))x100% (6.12)

Eq. 6.12 is used to normalize the probabilities Pf so that the highest proba-
bility is 100%.
Pf (max) is obtained after calculating all of the probabilities, Pf .

Currently, the algorithm is implemented in 4-space with four patient pa-
rameters and the fuzzification is based on the distances between parameters
over a four dimensional window of size ‘w’. It can be extended to more di-
mensions by considering ‘n’ parameters and fuzzification can be done over a
‘n’ dimensional window. In implementation, the fuzzification of probabilities
is not done over entire matrix but only over elements in the neighborhood of
window ‘w’. This is done to reduce computational time. Also, by reducing the
size of the neighborhood, the fuzzified boundaries become sharper.

6.4.2 Fuzzy-Logic Patient Deterioration Index

Life threatening events like Left Ventricular Failure, Pulmonary edema, and
Right Ventricular Failure are assigned with weights based on the risk factor.
Patient Deterioration Index is modeled as shown in the Fig. 6.5. Weights as-
signed to risk factors are given in Table 6.4. Patient deterioration index is
formulated to assess the criticality of the condition of the patient. It is based
on the fuzzy logic probabilities of three different critical conditions of the
heart. Patient Deterioration Index (µdi) is given by the Eq. 6.13.

Fuzzy probability

W1

P�2j
W2

P�3j
W3

Patient 
Deterioration 
Index

P�1j

Σ

Fig. 6.5. Patient Deterioration Index Function Structure

Table 6.4. Weights assigned to Cardiovascular Problems

Condition Risk Factor(Wk)

Left Ventricular Failure 0.40
Right Ventricular Failure 0.10
Pulmonary edema 0.50
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µdi(j) =
∑

k

WkP ′
kj (6.13)

Where k refers to the different life threatening problems (left ventricular fail-
ure, right ventricular failure and pulmonary edema) and P ′

kj is the corre-
sponding fuzzy logic probability. Patient deterioration index ranges between
0 and 1 where 0 indicates that patient has no deterioration and 1 indicates
maximum deterioration.

The weights (Wk) are assigned depending on the seriousness of the disease.
Among the four cardiac abnormalities, Pulmonary edema is considered to be
most critical and hence assigned a higher weight. Patient Deterioration Index
(µdi) value depends on the weights assigned in Table 6.4. Normal subjects
do not have any risk factors, so the weight assigned is 0. Fuzzy probability
(P ′

kj) will yield the percentage of the disorders in the subject considered. The
weighted sum of these probabilities will yield a single index, which indicates
the cardiac health state.

6.5 Patient States Diagnosis System Implementing Data
Fusion

Overview of the patient state diagnosis system using data fusion is shown in
Fig. 6.6. Data from specific coronary (CCU) events is required. Acquired data
undergoes signal processing and parameters are extracted. These parameters
are fused and patient’s condition is diagnosed. Patient data is acquired from
the Physiobank’s MIMIC database. Figure 6.7 shows the multi-modal data
from MIMIC Database.

The acquired data undergoes preliminary signal processing to extract pa-
tient parameters. Tompkins algorithm is used to detect ECG QRS complexes.
The signal is digitally bandpass filtered using cascaded integer high-pass and
low-pass filters. Differentiation is done to detect the slope of the ECG and to
exaggerate the QRS-complex. Then differentiated signal is squared to make
all data points positive and non-linear amplification of the output of the
derivative to emphasize the higher frequencies. QRS complexes are detected
using an upward and downward threshold called adaptive threshold. These
are calculated using running estimates of signal peak and noise peak. Thus
the thresholds are dynamically adjusted to improve detection.

Function used to calculate respiratory rate detects global peak, global
trough, local peak and local trough. The global peak and trough are defined
as the largest and smallest values over the range of the entire data. The
local peak and trough are the values of the largest and smallest pieces of data
until the respective local maximum or minimum is left. The respiratory rate is
extracted based on the number of respirations divided by time period between
local peaks in which the breaths occur. The respiratory volume is calculated
based on the assumption that the patient’s vital capacity (VC), that is, the
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Fig. 6.6. Overview of the Patient state diagnosis system using data fusion

difference between their total lung capacity and residual volume, is 5 litres.
It is further assumed that the difference between the global peak and trough
corresponds to the vital capacity.

ABP Peaks and troughs are detected based on the local maxima and local
minima. Lowest value is stored in the local trough and it is compared with the
next data. Minimum value of the data before a peak arrives gives the diastolic
and maximum value of the data before a trough arrives gives systolic pressures.
Systolic and diastolic pressures are calculated based on the calibrations given
in the header file of the data file. Plethysmograph signal is not calibrated and
cannot be used in isolation to determine O2 saturation. The text file found
in the same data directory contains the SpO2 measurements provided by the
pleth module.
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6.6 Results and Discussion

The parameters extracted from the multi-modal signals are used for decision-
making using data fusion techniques. The signal information is fused to yield
more accurate estimates of the actual patient status information such as the
detection of sensor failures, if it has occurred. Status information is based on
the fact that “if heart rate indicates the patient’s heart has stopped beating
but blood pressure signal shows the pressure signal, it is unlikely that the
patient’s heart has stopped, and more likely that the heart rate sensor (ECG)
has failed.” This can aid in the elimination of false-positive cases. Status
information can be found in lowest part of the Figs. 6.8 and 6.9. Figure. 6.8
indicates the sensor abnormalities as respiratory data is not available and
Fig. 6.9 shows that there are no sensor abnormalities detected.

Fuzzy-logic decision function created by fuzzifying Boolean rules is applied
to ECG, ABP, PLETH and respiratory signals derived from MIT-MIMIC
database. Parameters extracted from the signals are, heart rate, respiratory
rate, systolic blood pressure, diastolic blood pressure, mean blood pressure
and oxygen saturation. Four-dimensional matrix is formed based on the rule
based decision function using the parameters extracted from the signals for
each of the three abnormalities discussed below. Elements of the matrix are
fuzzified based on the fuzzy-logic decision function.

A program was written in Matlab to graph the rule-based and fuzzy-
logic distribution files. It reads the three-dimensional probabilities and graphs
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Fig. 6.8. Snapshot of the system showing the sensor discrepancy
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Fig. 6.9. Snapshot of the system showing the patient’s deteriorated state
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them in slices of a three-dimensional Cartesian graph. It is customized for
Left Ventricular Failure, Pulmonary edema and Right Ventricular Failure.
Based on the parameter values given in Table 6.1, three dimensional graphs
for rule-based and fuzzyfied distributions are shown in Fig. 6.10 and Fig. 6.11
respectively.

Figure 6.10 shows three dimensional graph for left ventricular failure.
Three main parameters mean pressure, respiratory rate and heart rate are
used to form a three dimensional matrix. Three dimensional graph is formed
based on the values of the rule-based matrix. Respiratory axis is divided into
10 slices of 5 respirations per minute each, heart rate axis is divided into 18
slices of 10 beats per minute and mean blood pressure axis is divided into
10 slices of 10 mm/hg. Red colored region indicates that patient has deterio-
rated based on the rules given in Table 6.1. Patient having heart rate higher
than 90 beats per minute and respiratory rate higher than 20 respirations per
minute and mean blood pressure lower than 80 mm/hg is diagnosed with left
ventricular failure. Figure 6.10 clearly shows the above three conditions and
patient’s state.

In a rule-based system, a Boolean response is assigned to a condition.
Thus a patient either has or does not have a certain condition. In contrast,
a fuzzy-logic system attempts to assign a probability that a patient has a
certain condition. Diagnosis made by physicians is not based only on crisp
rules. Patient having heart rate 89 beats per minute and respiratory rate
higher than 19 respirations per minute and mean blood pressure 85 mm/hg is
not considered as healthy condition by physician.
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Fig. 6.11. Fuzzy based probability distribution for Left Ventricular Failure# (color
image)
# [Reprinted with permission from Kannathal N, Rajendra Acharya U, Ng, E. Y. K,
Lim Choo Min, Swamy Laxminarayan, “Cardiac health diagnosis using data fusion
of Cardiovascular and haemodynamic signals”, Computer methods and Programs
in Biomedicine, Sweden, 82(2), 2006, 87–96]

The proposed system performance in recognition and classification is eval-
uated by means of three performance indices viz. classification accuracy, sen-
sitivity, and specificity. The results are given in Table 6.5 and Table 6.6. From
the Table 6.6, it can be seen that the proposed system produces promising
results with more than 93% diagnostic accuracy. The system is evaluated to
have a sensitivity of more than 90% and specificity of more than 91%. The pro-
posed system is intended to aid physicians in ICU environment, where multi-
modal signals are monitored for long hours. It is not possible for the physician
to be attending the patient when the patients are subjected to long term con-
tinuous monitoring. The proposed system can give preliminary diagnostics in
monitoring the patient.

It has been shown that by combining data sources, better results can be
obtained with reduction in the number of false-positive cases. More important,
the introduction of fuzzy logic based decision-making improves the likelihood
of catching false negative cases that are close to the boundaries of the rule
based reasoning. An index called patient deterioration index has been calcu-
lated. Testing with limited data has been done and the system is found to
perform satisfactorily.
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Table 6.5. Results of correct classifications for different clinical classes

Record
No

Clinical Class Correct Classifications
Total TP TN

211 Respiratory Failure 1705 539 1166
212 CHF / Pulmonary edema 3065 831 2234
213 CHF / Pulmonary edema 4541 2048 2493
214 CHF / Pulmonary edema 2415 1351 1064
215 CHF / Pulmonary edema 2382 1466 916
216 Respiratory Failure 3017 1495 1522
218 Respiratory Failure 1723 782 941
219 Respiratory Failure 1942 797 1145

Table 6.6. Results of accuracy, sensitivity and specificity for different clinical classes

Record No Accuracy Sensitivity Specificity

211 94.41 93.74 94.72
212 93.33 94.22 93.01
213 95.22 90.74 99.24
214 93.42 91.35 96.20
215 94.11 92.26 97.24
216 93.38 93.50 93.26
218 93.19 91.14 94.95
219 95.57 91.71 98.45

6.7 Conclusion

This chapter presents a novel fusion system involving heterogeneous electro-
physiological and haemodynamic data for detection of patient states in CCU.
Accurate diagnosis of cardiac health using ECG alone is difficult. Hence we
have shown that by combining data sources, better results can be obtained
with reduction in the number of false-positive cases. And also, to evaluate the
severity of the cardiac abnormality, a parameter called patient deterioration
index has been proposed. Testing with limited data has been done and the
system is found to perform satisfactorily with a diagnostic accuracy of more
than 93%.
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