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During normal sinus rhythm, the heart rate (HR) varies from beat to beat.
Heart rate variability (HRV) results from the dynamic interplay between the
multiple physiologic mechanisms that regulate the instantaneous HR. It is
believed that Heart Rate Variability (HRV) will become as common as pulse,
blood pressure or temperature in patient charts in the near future. In the last
ten years more than 2000 published articles have been written about HRV.
HRV has been used as a screening tool in many disease processes. Various
medical disciplines are looking at HRV. In diabetes and heart disease it has
been proven to be predictive of the likelihood of future events.

5.1 Physiological Phenomenon of HRV

The origin of heartbeat is located in a sino-atrial (SA) node of the heart,
where a group of specialized cells continuously generates an electrical impulse
spreading all over the heart muscle through specialized pathways and creating
process of heart muscle contraction well synchronized between both atriums
and ventricles. The SA node generates such impulses about 100–120 times per
minute at rest. However in healthy individual resting heart rate (HR) would
never be that high. This is due to continuous control of the autonomic nervous
system (ANS) over the output of SA node activity. Its net regulatory effect
gives real HR. In healthy subject at rest it is ranging between 50 and 70 beats
per minute.

The autonomic nervous system is a part of the nervous system that non-
voluntarily controls all organs and systems of the body. As the other part
of nervous system ANS has its central (nuclei located in brain stem) and
peripheral components (afferent and efferent fibers and peripheral ganglia)
accessing all internal organs. There are two branches of the autonomic ner-
vous system – sympathetic and parasympathetic (vagal) nervous systems that
always work as antagonists in their effect on target organs.
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For most organs including heart the sympathetic nervous system stim-
ulates organ’s functioning. An increase in sympathetic stimulation causes
increase in HR, stroke volume, systemic vasoconstriction, etc. The heart
response time to sympathetic stimulation is relatively slow.

In contrast, the parasympathetic nervous system inhibits functioning of
those organs. An increase in parasympathetic stimulation causes decrease in
HR, stroke volume, systemic vasodilatation, etc. The heart’s response time to
parasympathetic stimulation is almost instantaneous.

At rest both sympathetic and parasympathetic systems are active with
parasympathetic dominance. The actual balance between them is constantly
changing in an attempt to achieve optimum considering all internal and ex-
ternal stimuli.

There are various factors affecting autonomic regulation of the heart, inc-
luding but not limited to respiration, thermoregulation, humoral regulation
(renin-angiotensin system), blood pressure, cardiac output, diabetes, sleep,
age, alcoholism, nervous system, drugs, smoking, renal failure etc. This re-
view focuses on different factors affecting the heart rate, methodology and
interpretation of HRV measures.

5.2 Introduction

Heart rate variability (HRV), the variation over time of the period between
consecutive heartbeats, is predominantly dependent on the extrinsic regula-
tion of the heart rate. HRV is thought to reflect the heart’s ability to adapt to
changing circumstances by detecting and quickly responding to unpredictable
stimuli. HRV analysis is the ability to assess overall cardiac health and the
state of the autonomic nervous system (ANS) responsible for regulating car-
diac activity.

HRV is a useful signal for understanding the status of the autonomic
nervous system (ANS). HRV refers to the variations in the beat intervals or
correspondingly in the instantaneous heart rate (HR). The normal variability
in HR is due to autonomic neural regulation of the heart and the circulatory
system [1]. The balancing action of the sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS) branches of the autonomic nervous
system (ANS) controls the HR. Increased SNS or diminished PNS activity
results in cardio-acceleration. Conversely, a low SNS activity or a high PNS
activity causes cardio-deceleration. The degree of variability in the HR pro-
vides information about the functioning of the nervous control on the HR and
the heart’s ability to respond.

Past 20 years have witnessed the recognition of the significant relationship
between autonomic nervous system and cardiovascular mortality including
sudden death due to cardiac arrest [2–4]. Numerous papers in connection
with HRV related cardiological issues [5–7] reiterated the significance of HRV
in assessing the cardiac health. The interest in the analysis of heart rate
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variability (HRV), (that is, the fluctuations of the heart beating in time),
is not new. Furthermore, much progress was achieved in this field with the
advent of low cost computers with massive computational power, which paved
the way for many recent advances.

Spectral analysis of beat-to-beat variations of heart rate (HR) and blood
pressure (BP) was applied in order to obtain non-invasive indices of sympa-
thetic and parasympathetic regulation [8]. HR, diastolic BP, mid-frequency
band power (0.07–0.14 Hz) of HR and systolic BP, and plasma adrenaline
and noradrenaline concentrations showed significant increases when chang-
ing from supine to sitting to standing posture, whereas high-frequency band
power (0.15–0.50 Hz) of HR decreased in a posture-dependent fashion. Viktor
et al have studied the variation of heart rate spectrogram and breathing rates
in lateral and supine body positions [9]. Recently, new dynamic methods of
HRV quantification have been used to uncover nonlinear fluctuations in heart
rate, that are not otherwise apparent. Several methods have been proposed:
Lyapunov exponents [10], 1/f slope [7], approximate entropy (ApEn) [11] and
detrended fluctuation analysis [12].

Heart rate variability, that is, the amount of heart rate fluctuations around
the mean heart rate, can be used as a mirror of the cardiorespiratory control
system. It is a valuable tool to investigate the sympathetic and parasym-
pathetic function of the autonomic nervous system. The most important
application of heart rate variability analysis is in the surveillance of postinfarc-
tion and diabetic patients. Heart rate variability gives information about the
sympathetic-parasympathetic autonomic balance and thus about the risk for
sudden cardiac death in these patients. Heart rate variability measurements
are easy to perform, noninvasive, and have good reproducibility, if used under
standardized conditions [13,14].

Boris et al have introduced the sample asymmetry analysis (SAA) and il-
lustrated its utility for assessment of heart rate characteristics occurring early
in the course of neonatal sepsis and systemic inflammatory response syndrome
(SIRS) [15]. Compared with healthy infants, infants who experienced sepsis
had similar sample asymmetry in health, and elevated values before sepsis and
SIRS (p = 0.002). Cysarz et al have demonstrated that the binary symboliza-
tion of R-R interval dynamics, which at first glance seems to be an enormous
waste of information, gives an important key to a better understanding of nor-
mal heart rate regularity [16]. Furthermore, differential binary symbolization
still enables the identification of nonlinear dynamical properties.

Recently, Verlinde et al have compared the heart rate variability of aerobic
athletes with the controls and showed that the aerobic athletes have an in-
creased power in all frequency bands [17]. These results are in accordance
with values obtained by spectral analysis using the Fourier transform, sug-
gesting that wavelet analysis could be an appropriate tool to evaluate os-
cillating components in HRV. But, in addition to classic methods, it also
gives a time resolution. Time-dependent spectral analysis of HRV using the
wavelet transform was found to be valuable for explaining the patterns of
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cardiac rate control during reperfusion. In addition, examination of the entire
record revealed epochs of markedly diminished HRV in two patients, which
attribute to vagal saturation [18]. A method for analyzing HRV signals us-
ing the wavelet transform was applied to obtain a time-scale representation
for very low-frequency (VLF), low-frequency (LF) and high-frequency (HF)
bands using the orthogonal multiresolution pyramidal algorithm [19]. Results
suggest that wavelet analysis provides useful information for the assessment
of dynamic changes and patterns of HRV during myocardial ischemia. Time-
frequency parameters calculated using wavelet transform and extracted from
the nocturnal heart period analysis appeared as powerful tools for obstructive
sleep apnoea syndrome diagnosis [20]. Time-frequency domain analysis of the
nocturnal heart rate variability using wavelet decomposition could represent
an efficient marker of obstructive sleep apnoea syndrome [20]. Schumacher
et al have explained the use of linear and non-linear analysis in the analy-
sis of the heart rate signals [21]. The effect of autonomic nervous system
(ANS), blood pressure, myocardial infarction (MI), nervous system, age, gen-
der, drugs, diabetes, renal failure, smoking, alcohol, sleep on the heart rate
variability are discussed in detail in the following sections.

5.2.1 The Autonomic Nervous System (ANS)

The ANS has sympathetic and parasympathetic components. Sympathetic
stimulation, occurring in response to stress, exercise and heart disease, causes
an increase in heart rate by increasing the firing rate of pacemaker cells in the
heart’s sino-atrial node. Parasympathetic activity, primarily resulting from
the function of internal organs, trauma, allergic reactions and the inhala-
tion of irritants, decreases the firing rate of pacemaker cells and the heart
rate, providing a regulatory balance in physiological autonomic function. The
separate rhythmic contributions from sympathetic and parasympathetic au-
tonomic activity modulate the heart rate (RR) intervals of the QRS complex
in the electrocardiogram (ECG), at distinct frequencies. Sympathetic activity
is associated with the low frequency range (0.04–0.15 Hz) while parasympa-
thetic activity is associated with the higher frequency range (0.15–0.4 Hz) of
modulation frequencies of the heart rate. This difference in frequency ranges
allows HRV analysis to separate sympathetic and parasympathetic contribu-
tions. This should enable preventive intervention at an early stage when it is
most beneficial.

5.2.2 HRV and Blood Pressure

Some studies using non-pharmacological approaches to hypertension have
shown that a reduction in respiration rate is associated with decreased blood
pressure. Decrease in respiration rate to less than 10 breaths per minute with
elongated expiration have been achieved with musical tone breath control
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and demonstrated a reduction in the blood pressure [22, 23]. Various breath-
ing exercises including yoga breathing have demonstrated reduction in breath
rate associated with a reduction in blood pressure in hypertensives [24, 25].
Guyton (1992) points out that body fluid volumes that are regulated by the
kidney determine long-term control of BP [26]. This in turn is significantly
influenced by salt and its excretion.

A method to describe relationships between short-term blood pressure
fluctuations and heart-rate variability in resting subjects was analyzed in
the frequency domain [27]. The European Society of Hypertension working
group on baroreflex and cardiovascular variability has produced a compre-
hensive database for testing and comparison of methods [28]. Westerhof et al
have proposed a cross-correlation baro-reflex sensitivity (xBRS) technique for
the computation of time-domain baroreflex sensitivity on spontaneous blood
pressure and heart rate variability using EUROBAVAR data set [29]. They
proved that, the xBRS method may be considered for experimental and clini-
cal use, because the values yielded were correlated strongly with and was close
to the EUROBAVAR averages.

5.2.3 HRV and Myocardial Infarction

A predominance of sympathetic activity and reduction in parasympathetic
cardiac control has been found in patients with acute myocardial infarction
(MI) [30]. It was shown that, the HRV decreases with the recent myocardial
infarction [31, 32]. Despite the beneficial effects on clinical variables, exercise
training did not markedly alter HRV indexes in subjects after MI [33]. A sig-
nificant decrease in SDRR and high-frequency power in the control group
suggested an ongoing process of sympathovagal imbalance in favor of sym-
pathetic dominance in untrained patients after MI with new-onset left ven-
tricular dysfunction. Although previous studies demonstrated an association
between depressive symptoms and cardiac mortality after acute myocardial
infarction (AMI) little is known about the possible mechanisms of this associa-
tion. Patients with post-AMI depression have a cardiac autonomic dysfunction
as reflected by decreased HRV and increased HR. This autonomic dysfunction
seems not to be an independent mediator of the increased mortality observed
in depressed patients during a 5-year follow-up [34]. Decreased vagal activ-
ity after myocardial infarction results in reduced heart-rate variability and
increased risk of death. Impaired heart rate deceleration capacity is a pow-
erful predictor of mortality after myocardial infarction and is more accurate
than ventricular ejection fraction (LVEF) and the conventional measures of
heart-rate variability [35]. Several studies showed that thrombolysis reduces
ventricular arrhythmias and improves heart rate variability (HRV) in patients
with acute myocardial infarction (AMI). Larosa et al have failed to show any
significant benefit of primary percutaneous coronary intervention (PCI) com-
pared to thrombolysis on ventricular arrhythmias and HRV in patients with
ST-segment elevation AMI [36].
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5.2.4 HRV and Nervous System

Disorders of the central and peripheral nervous system have effects on heart
rate variability. The vagally and sympathetically mediated fluctuations in
heart rate may be independently affected by some disorders. All normal cyclic
changes in heart rate are reduced in the presence of severe brain damage [37]
and depression [31, 32]. The instantaneous heart rate pattern was studied in
102 patients admitted to a neurosurgical intensive care unit. Short-term (STV)
and long-term (LTV) heart rate variability were compared to the Glasgow
coma scale as a method for patient assessment. LTV seems to be the most
useful heart rate parameter in the clinical setting, and both STV and LTV
performed better in the serial evaluation of patients [38]. In serial determi-
nations, the rate of return of normal heart rate variability may reflect the
subsequent state of neuronal function.

The significance of HRV analysis in psychiatric disorders arises from the
fact that one can easily detect a sympathovagal imbalance (relative cholinergic
and adrenergic modulation of HRV), if it exists in such pathologies. There
are conflicting reports about HRV and major depression. It is proved that,
in physically healthy depressed adults the HRV does not vary from healthy
subjects [39].

5.2.5 HRV and Cardiac Arrhythmia

A complex system like cardiovascular system cannot be linear in nature and
by considering it as a nonlinear system, can lead to better understanding of
the system dynamics. Recent studies have also stressed the importance of non-
linear techniques to study HRV in issues related to both health and disease.
The progress made in the field using measures of chaos has attracted the sci-
entific community to apply these tools in studying physiological systems, and
HRV is no exception. There have been several methods of estimating invari-
ants from nonlinear dynamical systems being reported in the literature. Fell
et al and Radhakrishna et al have tried the nonlinear analysis of ECG and
HRV signals, respectively [40, 41]. Also, Paul et al showed that coordinated
mechanical activity in the heart during ventricular fibrillation may be made
visible in the surface ECG using wavelet transform [42]. Mohamed et al [43]
have used nonlinear dynamical modeling in ECG arrhythmia detection and
classification. Acharya et al have classified the HRV signals using non-linear
techniques, and artificial intelligence into different groups [44–46]. Dingfie
et al have classified cardiac arrhythmia into six classes using autoregressive
modeling [47].

5.2.6 HRV in Diabetes

Effects of hypoglycemia on cardiac autonomic regulation may contribute to
the occurrence of adverse cardiac events. Koivikko et al have concluded that
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hypoglycemia results in the reduction of cardiac vagal outflow in both diabetic
and nondiabetic subjects [48]. Altered autonomic regulation may contribute
to the occurrence of cardiac events during hypoglycemia. The spectral compo-
nents of short-term HRV calculated by using the FFT and AR methods were
not interchangeable and FFT analysis was preferred in diabetic patients [49].
In frequency domain, the analysis of sympathetic (LF) and parasympathetic
(HF) component evidenced an association between the offspring of type 2 di-
abetic subjects and a sympathetic over activity [50]. A global reduction and
alteration of circadian rhythm of autonomic activity are present in offspring of
type 2 diabetic patients with and without insulin resistance. Diabetes patients
had lower values for time-domain and frequency-domain parameters than con-
trols [51]. Most heart rate variability parameters were lower in diabetes pa-
tients with chronic complications than in those without chronic complications.
Type 2 diabetic patients with microalbuminuria have diminished heart rate
variability in response to deep breathing, change of position and the Valsalva
maneuver, but they preserve BP response to postural change [52]. Therefore,
microalbuminuria seems to be associated with early diabetic autonomic neu-
ropathy (DAN), but not with advanced DAN.

It was concluded that cardiac (parasympathetic) autonomic activity
was diminished in diabetic patients before clinical symptoms of neuropathy
become evident [53–55].

5.2.7 HRV and Respiration

HRV has been shown to increase with decreasing respiration frequency [56,57].
Even though respiration is known to greatly affect the heart rate variability,
it is often not measured when assessing heart rate variability [25,58–60]. The
respiration has a variable phase relationship with the cardiac cycle. The dif-
ferent influences of the respiratory inspiration and expiration cycle phases on
heart rate are usually not considered. Voluntary cardiovascular respiratory
synchronization (VCRS) uses a signal to guide an individual to inspire and
expire phase locked with a certain pattern of heart beats. Not only is the
phase of inspiration recorded, this phase locking allows for an analysis of the
influence of respiration on heart rate variability. An advantage of VCRS is
the ability to know the respiration rate, when respiration is occurring, and
the respiration phase in relation to the beat-by-beat heart rate and how it
may influence it.

Baselli et al (1995) noted that respiration effects on cardiovascular vari-
ability are not exogenous and emphasize a model where there is ‘a common
central drive that modulates both breathing and cardiovascular control, such
as during periodic breathing and synchronous slow Mayer waves [61]. Sleight
et al showed that there is no major difference in autonomic control as sug-
gested by comparisons of spontaneous free breathing and controlled breathing
at the same rate and depth [62]. It was found that the timing of inspiration
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as well as the timing of expiration in relationship to subsequent heart beats
affected heart rate variability [63,64].

5.2.8 HRV and Renal Failure

In patients with renal failure, autonomic function tests have been done [65],
followed by heart rate variability indices [66] and spectral analysis of heart
rate [67]. Although autonomic function tests revealed predominant impair-
ment of the parasympathetic nervous system [65], spectral analysis exhibited
a strong reduction in the heart rate power spectrum at all frequency ranges,
both sympathetically and parasympathetically [67]. The relationship between
heart rate variability (HRV) parameters and electrolyte ion concentrations in
both pre- and post-dialysis were studied [68]. 5-minute HRV of 20 chronic re-
nal failure patients were analyzed. Results revealed that calcium is negatively
correlated to the mean of RR intervals and normalized high-frequency (HF)
power after hemodialysis. A model of baroreflex control of blood pressure (BP)
was proposed in terms of a delay differential equation and was used to predict
the adaptation of short-term cardiovascular control in chronic renal failure
(CRF) patients [69]. They showed that in CRF patients, the mean power in
the LF band was higher and lower in the HF bands than the corresponding
values in the healthy subjects.

5.2.9 HRV and Gender, Age

It is proved that, the heart rate variability depends on the age and sex also.
The heart rate variability was more in the physically active young and old
women [70, 71]. It was proved by Emese et al that the alert new borns have
lower heart rate variation in the boys than in the case of girls [72]. The Heart
rate variation for healthy subjects from 20–70 yrs was studied by Hendrik et al
and found that the HRV decreases with age and variation is more in the case
of female than male [73].

Previous studies have assessed gender and age-related differences in time
and frequency domain indices [74] and some nonlinear component of HRV.
There also seemed to be a significant difference between day and night hours
when studying HRV indices using spectral and time domain methods [74,75].

The amount of heart rate variability is influenced by physiologic and mat-
urational factors. Maturation of the sympathetic and vagal divisions of the
autonomic nervous system results in an increase in heart rate variability with
gestational age [76] and during early postnatal life [76]. Heart rate variability
decreases with age [47]. This decline starts in childhood [77]. Infants have
a high sympathetic activity that decreases quickly between ages 5 and 10
years [78]. The influence of provocation on heart rate variability (that is,
standing and fixed breathing) is more pronounced at younger ages [77]. In
adults, an attenuation of respiratory sinus arrhythmia with advancing age
usually predominates [79, 80]. It was shown that compared to men, women
are at lower risk of coronary heart disease [81].
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5.2.10 HRV and Drugs

Heart rate variability can be significantly influenced by various groups of
drugs. The influence of medication should be considered, while interpreting
heart rate variability. On the other hand, heart rate variability can be used
to quantify the effects of certain drugs on the autonomic nervous system.

The effects of beta-blockers and calcium channel blockers on the heart
rate variability have been studied in postinfarction and hypertensive pa-
tients [82–84]. With spectral analysis it is possible to unravel the sympathetic
and parasympathetic activities of these drugs and thus explain their protec-
tive effects in cardiac diseases. In normotensive adults, the beta-adrenergic
blocker atenolol appears to augment vagally mediated fast fluctuations in
heart rate [85]. Guzzetti and colleagues [83] studied the effect of atenolol
in patients with essential hypertension. They found not only an increase in
high-frequency fluctuations, but also a decrease in the sympathetically me-
diated low-frequency oscillations. This decrease in sympathetic activity was
also noticed in postinfarction patients using metoprolol [82] and in patients
with heart failure using acebutolol [84]. Thus beta-blockers are able to restore
the sympathetic-parasympathetic balance in cardiovascular disease. Effect of
Omacor on HRV parameters in patients with recent uncomplicated myocar-
dial infarction was studied [86]. And the study, quantified the improvement in
time domain HRV indices and can assess the safety of administering Omacor
to optimally treated post-infarction patients. Eryonucu et al have investigated
the effects of ß2-adrenergic agonist therapy on heart rate variability (HRV) in
adult asthmatic patients by using frequency domain measures of HRV [87].
The LF and LF/HF ratio increased and total power (TP) decreased at 5, 10,
15 and 20 min after the salbutamol and the terbutaline inhalation, HF will
not change significantly after the salbutamol and terbutaline inhalation.

5.2.11 HRV and Smoking

Studies have shown that smokers have increased sympathetic and reduced
vagal activity as measured by HRV analysis. Smoking reduces the heart rate
variability. One of the mechanisms by which smoking impairs the cardiovascu-
lar function is its effect on autonomic nervous system (ANS) control [88–90].
Altered cardiac autonomic function, assessed by decrements in HRV, is associ-
ated with acute exposure to environmental tobacco smoke (ETS) and may be
part of the pathophysiologic mechanisms linking ETS exposure and increased
cardiac vulnerability [91]. Philip et al have shown that cigarette exposed fe-
tuses have lower HRV and disrupted temporal organization of autonomic regu-
lation before effects of parturition, postnatal adaptation, and possible nicotine
withdrawal contributed to differences in infant neurobehavioral function [92].
Also, it was proved that, the vagal modulation of the heart had blunted in
heavy smokers, particularly during a parasympathetic maneuver. Blunted au-
tonomic control of the heart may partly be associated with adverse event
attributed to cigarette smoking [93].
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5.2.12 HRV and Alcohol

HRV reduces with the acute ingestion of alcohol, suggesting sympathetic acti-
vation and/or parasympathetic withdrawal. Malpas et al have demonstrated
vagal neuropathy in men with chronic alcohol dependence using 24 hour HRV
analysis [94].

Ryan et al have previously reported a strong positive association between
average day time and night time heart rate measured during 24 hour ambu-
latory blood pressure monitoring and usual alcohol intake [95]. ECG indices
of vagal activity have been reported to have significantly lower indices of
cardiac vagal nerve activity than normal volunteers, in acute alcoholic sub-
jects [94,96,97].

5.2.13 HRV and Sleep

The results from Fumiharu et al suggest that mechanisms involving electroen-
cephalographic desynchronization and/or conscious states of the brain are re-
flected in the fractal component of HRV [98]. Compared to stage 2 and stage
4 non-REM sleep, the total spectrum power was significantly higher in REM
sleep and its value gradually increased in the course of each REM cycle [99].
The value of the VLF component (reflects slow regulatory mechanisms, e.g.
the renin-angiotensin system, thermoregulation) was significantly higher in
REM sleep than in stage 2 and stage 4 of non-REM sleep. The LF spectral
component (linked to the sympathetic modulation) was significantly higher in
REM sleep than in stage 2 and stage 4 non-REM sleep. Patients with sleep
apnoea tend to have a spectral peak lying between 0.01 and 0.05 cycles/beat,
with the width of the peak indicating variability in the recurrence rate of the
apnoea. In most of the subjects, the frequency spectrum immediately below
the apnoea peak was relatively flat. The first visual analysis of the single com-
puted spectrum from each subject led to a correct classification score of 28/30
(93%) [100]. Gregory et al suggested that long-lasting alterations existed in
autonomic function in snoring subjects [101].

5.2.14 HRV and Fatigue

Night shift work has often been associated with increasing degree and fre-
quency of various psychologic complaints. Munakata et al have showed that
the, psychologic disturbances after night work were associated with altered
cardiovascular and endocrine responses in healthy nurses [102]. Some of the
psychologic complaints may be attributable to lower waking blood pressure.
Spectral analysis could be a means of demonstrating impairment of auto-
nomic balance for the purpose of detecting a state of fatigue that could result
in overtraining with a decrease in sympathetic vasomotor control (−18%) and
a reduction in diastolic pressure (−3.2%) [103]. Smoking and overwork such as
frequent business trips may amplify the autonomic dysfunction in relation to
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Fig. 5.1. Heart rate variation of a normal subject

vital exhaustion (VE) among workers with a pronounced feeling of VE [104].
It was found that a modulating effect of magnitopuncture on sympathetic
and parasympathetic nerve activities in healthy subjects was associated with
the acupuncture points. The findings represent physiological evidence that
magnitopuncture may reduce mental fatigue in healthy drivers [105]. Jouanin
et al have studied the effects of prolonged physical activities on resting heart
rate variability (HRV) during a training session attended by 23 cadets of the
French military academy [106]. These results as a whole suggest that parasym-
pathetic nervous system activity increases with fatigue. It was shown that the
modulating effect of acupuncture on heart rate variability not only depended
on the points of stimulation such as acupuncture or non-acupuncture points
but also on the functional state of the subject, namely whether the subjects
are in a state of fatigue or not [107]. Alcohol dependence compromises vagal
output measured before sleep onset, which correlates with loss of delta sleep
and with morning reports of sleep impairments. Testing of interventions that
target sympathovagal balance might identify new strategies for partial ame-
lioration of the sleep disturbances and impairments in daytime functioning
observed in persons with alcohol dependence [108].

Heart rate variability (HRV) is a measure of variations in the heart rate.
Figure 5.1 shows the variation of the heart rate of a normal subject. It is
usually calculated by analyzing the time series of beat-to-beat intervals from
ECG or arterial pressure tracings. Various measures of heart rate variabil-
ity have been proposed, which can roughly be subdivided into time domain,
frequency domain and non-linear domain measures.

5.3 Methods

5.3.1 Time Domain Analysis

Two types of heart rate variability indices are distinguished in time domain
analysis. Beat-to-beat or short-term variability (STV) indices represent fast
changes in heart rate. Long-term variability (LTV) indices are slower fluc-
tuations (fewer than 6 per minute). Both types of indices are calculated
from the R-R intervals occurring in a chosen time window (usually between
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0.5 and 5 minutes). From the original RR intervals, a number of parameters
can be calculated: SDNN, the standard deviation of the NN intervals, SENN
is the Standard Error, or Standard Error of the Mean, is an estimate of the
standard deviation of the sampling distribution of means, based on the data,
SDSD is the standard deviation of differences between adjacent NN intervals.
RMSSD, the root mean square successive difference of intervals, pNN50%,
the number of successive difference of intervals which differ by more than
50 msec expressed as a percentage of the total number of ECG cycles ana-
lyzed. The statistical parameters SDNN, SENN, SDSD, RMSSD, NN50(%),
and pNN50% [4] can be used as time domain parameters.

5.3.2 Analysis by Geometrical Method

Geometrical methods present RR intervals in geometric patterns and various
approaches have been used to derive measures of heart rate variability from
them. The triangular index is a measure, where the length of RR intervals
serves as the x-axis of the plot and the number of each RR interval length
serves as the y-axis. The length of the base of the triangle is used and approx-
imated by the main peak of the RR interval frequency distribution diagram.
The triangular interpolation of NN interval histogram (TINN) is the baseline
width of the distribution measured as a base of a triangle, approximating the
NN interval distribution (the minimum of HRV). Triangular interpolation ap-
proximates the RR interval distribution by a linear function and the baseline
width of this approximation triangle is used as a measure of the heart rate
variability index [109,110]. This triangular index had a high correlation with
the standard deviation of all RR intervals. But it is highly insensitive to arti-
facts and ectopic beats, because they are left outside the triangle. This reduces
the need for preprocessing of the recorded data [109]. The major advantage of
geometric methods lies in their relative insensitivity to the analytical quality
of the series of NN intervals.

5.3.3 Poincare Geometry

The Poincare plot (or Return Map), a technique taken from nonlinear dyn-
amics, portrays the nature of R-R interval fluctuations. It is a graph of each
R-R interval plotted against the next interval. Poincare plot analysis is an
emerging quantitative-visual technique whereby the shape of the plot is cat-
egorized into functional classes that indicate the degree of the heart failure
in a subject [111]. The plot provides summary information as well as detailed
beat-to-beat information on the behavior of the heart [112].

The geometry of the Poincare plot is essential. A common way to describe
the geometry is to fit an ellipse to the graph [113]. The ellipse is fitted onto
the so called line-of-identity at 450 to the normal axis. The standard deviation
of the points perpendicular to the line-of-identity denoted by SD1 describes
short-term variability which is mainly caused by respiratory sinus arrhythmia
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(RSA). The standard deviation along the line-of-identity denoted by SD2
describes long-term variability.

Statistically, the plot displays the correlation between consecutive intervals
in a graphical manner. Nonlinear dynamics considers the Poincare plot as
the two dimensional (2-D) reconstructed R-R interval phase-space, which is
a projection of the reconstructed attractor describing the dynamics of the
cardiac system [114]. The R-R interval Poincare plot typically appears as an
elongated cloud of points oriented along the line-of-identity. The dispersion
of points perpendicular to the line-of-identity reflects the level of short term
variability. The dispersion of points along the line-of-identity is thought to
indicate the level of long-term variability.

To characterize the shape of the plot mathematically, most researchers
have adopted the technique of fitting an ellipse to the plot. A set of axis
oriented with the line-of-identity is defined [115]. The axis of the Poincare
plot is related to the new set of axis by rotation of θ = π/4 rad.

[
x1

x2

]
=
[
cos θ − sin θ
sin θ cos θ

] [
RRn

RRn+1

]
(5.1)

In the reference system of the new axis, the dispersion of the points around
the x1 axis is measured by the standard deviation denoted by SD1. The
quantity measures the width of the Poincare cloud and, length of the cloud
and therefore indicates the level of short term HRV [116], Hausdorff et al.,
1996. The length of the cloud along the line-of-identity measures the long-
term HRV and is measured by SD2 which is the standard deviation around
the x2 axis [Kamen et al., 1996]. These measures are related to the standard
HRV measures in the following manner:

SD12 = V ar (x1) = V ar

(
1√
2
RRn − 1√

2
RRn+1

)
(5.2)

SD12 =
1
2
V ar (RRn − RRn+1) =

1
2
SDSD2 (5.3)

Thus, the SD1 measures of Poincare width is equivalent to the standard
deviation of the successive intervals, except that is scaled by 1√

2
. This means

that one can relate SD1 and SD2 to the autocovariance function

SD12 = φRR (0) − φRR (1) (5.4)
SD22 = φRR (0) + φRR (1) (5.5)

By adding the above two equations (5.4) and (5.5), we get

SD12 + SD22 = 2SDRR2 (5.6)

Finally,

SD22 = 2SDRR2 − 1√
2
SDRR2 (5.7)
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Fig. 5.2. Poincare plot of a normal subject

Where SDRR =
√

E [RR2
n] − RR is the square root of the variance of the

RR intervals. The standard deviation of the successive differences of the RR
intervals, denoted by SDSD.

SDSD =
√

E
[
(RRn − RRn+1)

2
]
. (5.8)

The plots of the HRV changes can be envisioned as values distributed over
an area defined by four quadrants. If the changes from one heart rate value to
the next occur randomly and independently, then all the four quadrants will
have equal number of points. Also, if the heart rate tends to increase quickly
and decrease slowly, then there would be more number of points in the 1st
and 3rd quadrants. The opposite would be true, if the heart rate is decreased
more quickly than it increased. Figure 5.2 shows the Poincare plot of normal
heart rate.

5.4 Frequency Domain Analysis

Frequency-domain measures pertain to HR variability at certain frequency
ranges associated with specific physiological processes. Before frequency-
domain analysis is performed, all abnormal heartbeats and artifacts must be
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detected and removed, then cardiotachogram (sequence of RR intervals) must
be resampled to make it as if it is a regularly sampled signal. A standard
spectral analysis routine is applied to such modified recording and the fol-
lowing parameters evaluated on 5-min time interval: Total Power (TP), High
Frequency (HF), Low Frequency (LF) and Very Low Frequency (VLF). When
long-term data is evaluated an additional frequency band is derived – Ultra
Low Frequency.

The HF power spectrum is evaluated in the range from 0.15 to 0.4 Hz.
This band reflects parasympathetic (vagal) tone and fluctuations caused by
spontaneous respiration known as respiratory sinus arrhythmia.

The LF power spectrum is evaluated in the range from 0.04 to 0.15 Hz.
This band can reflect both sympathetic and parasympathetic tone.

The VLF power spectrum is evaluated in the range from 0.0033 to 0.04 Hz.
The physiological meaning of this band is most disputable. With longer
recordings it is considered representing sympathetic tone as well as slower
humoral and thermoregulatory effects. There are some findings that in shorter
recordings VLF has fair representation of various negative emotions, worries,
rumination, etc.

The TP is a net effect of all possible physiological mechanisms contributing
in HR variability that can be detected in 5-min recordings, however sympa-
thetic tone is considered as a primary contributor.

The LF/HF ratio is used to indicate balance between sympathetic and
parasympathetic tone. A decrease in this score might indicate either increase
in parasympathetic or decrease in sympathetic tone. It must be considered
together with absolute values of both LF and HF to determine what factor
contributes in autonomic imbalance.

The frequency domain analysis is traditionally performed by means of Fast
Fourier Transformation (FFT). This method is simple in calculation but for
fair representation of all frequency-domain HRV scores at least 5-min data
should be collected. FFT assumes that time series represents a steady-state
process. Because of that all data recordings should be conducted at highly
stable standardized conditions, when no other factors other than current auto-
nomic tone contributes in HRV. One of the most serious disadvantages is, its
insensitivity to rapid transitory processes, which often possess very valuable
information about how physiology or certain pathological processes behave
dynamically.

Some most recent studies implemented an alternative way to estimate
power spectrum of HRV. It is based on autoregression methods. One of its
major advantages is that it doesn’t require to have analyzed data series to be
in steady state. Thus any HRV data can be analyzed and fair HRV information
still derived. Such analysis can be also performed at relatively shorter time
intervals (less than 5 minutes) without missing meaningful HRV information.
Finally this method is sensitive to rapid changes in HR properly showing tiny
changes in autonomic balance. The drawback of this approach is a necessity
to perform massive calculations to find best order of autoregression model.
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In AR method, the estimation of AR parameters can be done easily by
solving linear equations. In AR method, data can be modeled as output of a
causal, all pole, discrete filter whose input is white noise. AR method of order
p is expressed by the following equation:

x(n) = −
p∑

k=1

a(k)x(n − k) + w(n) (5.9)

where a(k) are AR coefficients and w(n) is white noise of variance equal to σ2.
AR (p) model can be characterized by AR parameters

{
a[1], a[2], . . . , a[p], σ2

}
.

The important aspect of the use of AR method, is the selection of the
order p. Much work has been done by various researchers on this problem and
many experimental results have been given in literature such as the papers
presented by Akaike [117–119]. The order of the AR model p = 16 can be
taken [119].

An autoregressive process, x(n), may be represented as the output of an
all-pole filter that is driven by unit variance white noise. The Burg method
is used to get the AR model parameter. The power spectrum of a pth order
autoregressive process is

PBU
xx (f) =

�
⇀

Ep∣∣∣∣1 +
p∑

k=1

�
a p(k)e−j2πfk

∣∣∣∣
2 (5.10)

where
�
⇀

E is total least square error. The Burg method results in high resolution
and yields a stable AR model.

Spectral analysis of heart rate variability can be a powerful tool to assess
autonomic nervous system function. It is not only useful when studying the
pathophysiologic processes in certain diseases but also may be used in daily
clinical practice. Figure 5.3 indicates the AR spectrum of a normal subject.

5.4.1 Limitations of Fourier Analysis

Conventional signal methods of analysis based on Fourier transform tech-
nique are not very suitable for analyzing non-stationary signals. The Fourier
transform technique resolves the time domain signal into complex exponential
functions, along with information of their phase shift measured with respect
to a specific reference instant. Here the frequency components extend from
−∞ to +∞ in the time scale. That is, even finite length signals are expressed
as the sum of frequency components of infinite duration. Besides, the phase
angle being a modular measure, it fails to provide the exact location of an
‘event’ along the time scale. This is a major limitation of the Fourier transform
approach.
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Fig. 5.3. AR spectrum of normal subject

5.4.2 Higher Order Spectra (HOS)

The HRV signal can be analyzed using different higher order spectra (also
known as polyspectra) that are spectral representations of higher order mo-
ments or cumulants of a signal. The Bispectrum is the Fourier transform of
the third order correlation of the signal and is given by

B(f1, f2) = E[X(f1)X(f2)X∗(f1 + f2)] (5.11)

where X(f) is the Fourier transform of the signal x(nT) and E[.] stands for the
expectation operation. In practice, the expectation operation is replaced by an
estimate that is an average over an ensemble of realizations of a random sig-
nal. For deterministic signals, the relationship holds without an expectation
operation with the third order correlation being a time-average. For deter-
ministic sampled signals, X(f) is the discrete-time Fourier transform and in
practice is computed as the discrete Fourier transform (DFT) at frequency
samples using the FFT algorithm. The frequency f may be normalized by the
Nyquist frequency to be between 0 and 1.

The bispectrum may be normalized (by power spectra at component fre-
quencies) such that it has a value between 0 and 1, and indicates the degree
of phase coupling between frequency components [120]. The normalized bis-
pectrum or bicoherence is given by

Bco(f1, f2) =
E[(X(f1)X(f2)X∗(f1 + f2))]√

P (f1)P (f2)P (f1 + f2)
(5.12)

where P (f) is the power spectrum.

Higher Order Spectral Features

One set of features are based on the phases of the integrated bispectrum
derived by Chandran et al [121] and is described briefly below:
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Fig. 5.4. Non-redundant region of computation of the bispectrum for real signals.
Features are calculated by integrating the bispectrum along the dashed line with
slope = a. Frequencies are shown normalized by the Nyquist frequency

Assuming that there is no bispectral aliasing, the bispectrum of a real sig-
nal is uniquely defined with the triangle 0 ≤ f2 ≤ f1 ≤ f1 +f2 ≤ 1. Parameters
are obtained by integrating along the straight lines passing through the origin
in bifrequency space. The region of computation and the line of integration
are depicted in Fig. 5.4. The bispectral invariant, P (a), is the phase of the
integrated bispectrum along the radial line with the slope equal to a. This is
defined by

P (a) = arctan
(

Ii(a)
Ir(a)

)
(5.13)

where

I(a) = Ir(a) + jIi(a)

=
∫ 1

1+a

f1=0+
B(f1, af1)df1

(5.14)

for 0 < a ≤ 1, and j =
√
−1. The variables Ir and Ii refer to the real and

imaginary part of the integrated bispectrum, respectively.
These bispectral invariants contain information about the shape of the

waveform within the window and are invariant to shift and amplification and
robust to time-scale changes. They are particularly sensitive to changes in
the left-right asymmetry of the waveform. For windowed segments of a white
Gaussian random process, these features will tend to be distributed symmet-
rically and uniformly about zero in the interval [−π,+π]. If the process is
chaotic and exhibits a colored spectrum with third order time-correlations or
phase coupling between Fourier components, the mean value and the distrib-
ution of the invariant feature may be used to identify the process.
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Another set of features are based on the work of Ng et al [122]. These
features are the mean magnitude and the phase entropy. However, unlike
their work, we calculated these features within the region defined in Fig. 5.4.
The formulae of these features are

Mean of Magnitude : Mave =
1
L

∑

Ω

|b(f1, f2)| (5.15)

Phase Entropy : Pe =
∑

n
p(ψn) log p(ψn) (5.16)

where

Ω = {(f1, f2)|f1, f2 in the region in Fig. 5.4}
ψn = {φ| − π + 2πn/N ≤ φ < −π + 2π(n + 1)/N, n = 0, 1, . . . , N − 1

p(ψn) =
1
L

∑
Ω 1(φ(b(f1, f2)) ∈ ψn), 1(.) = indicator function

L is the no. of point within the region in Fig. 5.4,
φ refers to the phase angle of the bispectrum.

The formulae for these bispectral entropies are given as:

Normalized Bispectral Entropy (BE1) : P1 = −
∑

n
pn log pn (5.17)

where pn = |B(f1,f2)|∑
Ω
|B(f1,f2)|

, Ω = the region as in Fig. 5.4.

Normalized Bispectral Squared Entropy (BE2) : P2 = −
∑

n
pn log pn

(5.18)
where pn = |B(f1,f2)|2∑

Ω
|B(f1,f2)|2

, Ω = the region as in Fig. 5.4.

Bispectrum and bicoherence plots, mean amplitude of bispectrum, bispec-
tral entropies, invariant features can be used to find different cardiac abnor-
malities.

5.4.3 Short Time Fourier Transform (STFT)

In order to locate a particular event along the time scale, a finite length
window is used at that point. This window may, then be moved along the
signal in time producing a succession of estimates of the spectral components
of the signal. This works well for signals composed of stationary components
and for slowly varying signals. However, for the signal containing, both slowly
varying components and rapidly changing transient events, STFT fails. If we
use a window of infinite length, we get the FT, which gives perfect frequency
resolution, but no time information. Furthermore, in order to obtain the sta-
tionarity, we have to have a short enough window, in which the signal is
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stationary. The narrower we make the window, the better the time resolution,
and better the assumption of stationarity, but poorer the frequency resolution.

Wavelet transform [123] overcomes this problem. It uses small windows at
the high frequency and longer windows at low frequency. The wavelet can be
classified into two types: (1) Discrete Wavelet transform (DWT), (2) Contin-
uous Wavelet transform (CWT).

5.4.4 Continuous Time Wavelet Transform (CWT) Analysis

A ‘wavelet’ implies a small wave of finite duration and finite energy, which is
correlated with the signal to obtain the wavelet coefficients [124]. The reference
wavelet is known as the mother wavelet, and the coefficients are evaluated for
the entire range of dilation and translation factors [123]. Initially the mother
wavelet is shifted (translated) continually along the time scale for evaluating
the set of coefficients at all instants of time. In the next phase, the wavelet
is dilated for a different width – also normalized to contain the same amount
of energy as the mother wavelet – and the process is repeated for the entire
signal. The wavelet coefficients are real numbers usually shown by the intensity
of a chosen color, against a two dimensional plane with y-axis representing
the dilation (scaling factor) of the wavelet, and the x-axis, its translation
(shift along the time axis). Thus the wavelet transform plot (scalogram) can
be seen as a color pattern against a two dimensional plane. In the CWT the
wavelet coefficients are evaluated for infinitesimally small shifts of translation
as well as scale factors. That is, the color intensity distribution in the scalogram
pattern contains information about the location of the ‘event’ occurring in the
time domain [125–127]. Thus the color patterns in the scalogram can be useful
in highlighting the abnormalities and is specific to different types of diseases.

For a given wavelet ψa,b (t), the coefficients are evaluated using Eq. given
below.

W (a, b) ≡
∞∫

−∞

f(t)
1√
|a|

ψ∗
(

t − b

a

)
dt (5.19)

where ψ∗
(

t − b

a

)
= ψ∗

a,b (t); a → scale factor; b → translation factor

The scalogram patterns thus obtained also depend on the wavelet chosen
for analysis. Bio-signals usually exhibit self similarity patterns in their distri-
bution, and a wavelet which is akin to its fractal shape would yield the best
results in terms of clarity and distinction of patterns.

5.5 Nonlinear Methods of Analysis

Recent developments in the theory of nonlinear dynamics have paved the way
for analyzing signals generated from nonlinear living systems [128, 129]. It is
now generally recognized that these nonlinear techniques are able to describe
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the processes generated by biological systems in a more effective way. The tech-
nique has been extended here to study various cardiac arrhythmias. The pa-
rameters like correlation dimension (CD), largest Lyapunov exponent (LLE),
SD1/SD2 of Poincare plot, approximate entropy (ApEn), Hurst exponent,
fractal dimension, α slope of detrended fluctuation analysis and recurrence
plots.

5.5.1 Capacity Dimension

The simplest method for measuring the dimension of a data set is to measure
its capacity dimension or box counting dimension [128]. In this method, the set
is covered with smaller elements of size e. The number of elements required
to cover the segment is inversely proportionate to the size of the element.
Thus for one-dimensional objects, N(e) = k

e , where e is the size of the square,
N(e) is the number of squares of that size required to cover the set, and k is
a constant. For an arbitrary set it is given by, N(e) = k

eD . where D is the
dimension of the set. We can solve the formula for D, by taking the limit as
e → 0. This is the capacity method of estimating D. Then D will be given by

Dcap = lim
e→0

log (N (e))
log (1/e)

(5.20)

5.5.2 Correlation Dimension

The phase space plot is a plot, in which, X-axis represents the heart-rate X[n]
and the Y-axis represents the heart-rate after a delay X[n+delay]. The choice
of an appropriate delay is calculated using the minimal mutual information
technique [130, 131]. Figure 5.6 shows the typical phase space plot of a nor-
mal subject. The phase space plot shows unique spread for various cardiac
disorders [46].

Correlation Dimension is one of the most widely used measures of Frac-
tal Dimension. Here we adapt the algorithm proposed by Grassberger and
Procaccia [132]. The idea is to construct a function C(r) that is the probabil-
ity that two arbitrary points on the orbit are closer together than r. This is
done by calculating the separation between every pair of N data points and
sorting them into bins of width dr proportionate to r. A correlation dimension
can be calculated using the distances between each pair of points in the set
of N number of points, s(i, j) = |Xi − Xj |

A correlation function, C(r), is then calculated using, C(r) = 1
N2 × (Num-

ber of pairs of (i, j) with s(i, j)〈r). C(r) has been found to follow a power law
similar to the one seen in the capacity dimension: C(r) = krD. Therefore, we
can find Dcorr with estimation techniques derived from the formula:

Dcorr = lim
r→0

log (C (r))
log (r)

(5.21)
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5.5.3 Lyapunov Exponent

To discriminate between chaotic dynamics and periodic signals Lyapunov
exponent (λ) are often used. It is a measure of the rate at which the tra-
jectories separate one from other [129,133]. The trajectories of chaotic signals
in phase space follow typical patterns. Closely spaced trajectories converge
and diverge exponentially, relative to each other. For dynamical systems, sen-
sitivity to initial conditions is quantified by the Lyapunov exponent (λ). They
characterize the average rate of divergence of these neighboring trajectories.
A negative exponent implies that the orbits approach a common fixed point.
A zero exponent means the orbits maintain their relative positions; they are
on a stable attractor. Finally, a positive exponent implies the orbits are on a
chaotic attractor.

For two points in a space X0 and X0 + ∆x0, that are function of time and
each of which will generate an orbit in that space using some equations or
system of equations, then the separation between the two orbits ∆x will also
be a function of time. This separation is also a function of the location of the
initial value and has the form ∆x(X0, t). For chaotic data set, the function
∆x(X0, t) will behave erratically. The mean exponential rate of divergence of
two initially close orbits is characterized by:

λ = lim
1
t

t→α

ln
|∆x(X0,t)|
|∆X0|

(5.22)

The Lyapunov exponent “λ” is useful for distinguishing various orbits.
Largest Lyapunov Exponent (LLE) quantifies sensitivity of the system to

initial conditions and gives a measure of predictability. Presence of positive
Lyapunov exponent indicates chaos. Even though a m dimensional system
has m Lyapunov exponents, in most applications it is sufficient to compute
only the largest Lyapunov exponent (LLE). For heart rate variability analysis,
the method proposed by Rosenstien et al [10], can be used, which is robust
with data length. This method looks for nearest neighbor of each point in
phase-space and tracks their separation over certain time evolution. The LLE
is estimated using a least squares fit to “average” line and is defined by:

y(n) =
1

∆t
〈ln (di (n))〉 (5.23)

where di (n) is the distance between ith phase-space point and its nearest
neighbor at nth time step, and 〈.〉 denotes the average overall phase space
points. This last averaging step is the main feature that allows an accurate
evaluation of LLE even when we have a short and noisy data.

5.5.4 Hurst Exponent

The Hurst exponent is a measure that has been widely used to evaluate the
self-similarity and correlation properties of fractional Brownian noise, the time
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series produced by a fractional (fractal) Gaussian process. Hurst exponent is
used to evaluate the presence or absence of long-range dependence and its
degree in a time series. However, local trends (nonstationarities) are often
present in physiological data and may compromise the ability of some methods
to measure self-similarity. Hurst Exponent is the measure of the smoothness
of a fractal time series based on the asymptotic behavior of the rescaled range
of the process. In time series analysis of EEG, Hurst Exponent H is used by
Dangel et al [134] to characterize the non-stationary behavior of the sleep
EEG episodes. The Hurst exponent H is defined as,

H = log(R/S)/ log(T ), (5.24)

where T is the duration of the sample of data and R/S the corresponding
value of rescaled range. The above expression is obtained from the Hurst’s
generalized equation of time series that is also valid for Brownian motion.
If H = 0.5, the behavior of the time-series is similar to a random walk. If
H < 0.5, the time-series cover less “distance” than a random walk. But if
H > 0.5, the time-series covers more “distance” than a random walk. H is
related to the dimension D2 given by,

H = E + 1 − D2 (5.25)

Here, E is the Euclidean dimension.

5.5.5 Detrended Fluctuation Analysis

The concept of a fractal is most associated with geometrical objects satisfying
two criteria: self-similarity and fractal dimensionality. Self-similarity means
that an object is composed of sub-units and sub-sub-units on multiple levels
that statistically resemble the structure of the whole object. The second crite-
ria for fractal object is that it has a fractional dimension, also called fractal,
that can be defined to be any curve or surface that is independent of scale.
This concept of fractal structure can be extended to the analysis of heart rate
signals.

The Detrended Fluctuation Analysis (DFA) is used to quantify the fractal
scaling properties of short interval RR signals. This technique is a modification
of root-mean-square analysis of random walks applied to nonstationary sig-
nals [135]. The root-mean-square fluctuation of an integrated and detrended
time series is measured at different observation windows and plotted against
the size of the observation window on a log-log scale.

First, the R-R time series (of total length N) is integrated using the equa-
tion:

y(k) =
k∑

i=1

[RR(i) − RRavg] (5.26)
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where y(k) is the k th value of the integrated series, RR(i) is the ith inter
beat interval, and the RRavg is the average inter beat interval over the entire
series.

Then, the integrated time series is divided into windows of equal length, n.
In each window of length n, a least-squares line is fitted to the RR interval data
(representing the trend in that window). The y coordinate of the straight line
segments are denoted by yn(k). Next, we detrend the integrated time series,
yn(k), in each window. The root-mean-square fluctuation of this integrated
and detrended series is calculated using the equation:

F (n) =

√√√√1/N
N∑

k=1

[y(k) − yn(k)]2 (5.27)

This computation is repeated over all time scales (window sizes) to obtain
the relationship between F (n) and the window size n (i.e., the number of beats
in a window that is the size of the window of observation). In this study, the
box size is ranged from 4 to ∼ 300 beats. A box size larger than 300 beats
would give a less accurate fluctuation value because of finite length effects of
data [136].

Typically, F (n) will increase with window size. The fluctuation in small
windows are characterized by a scaling exponent (self-similarity factor), ∝,
representing the slope of the line relating log F (n) to log(n). Figure 5.5 shows
the DFA plot for the normal heart rate signal. In this method, a fractal like
signal results in a scaling exponent value of 1 (∝= 1). This value for white
Gaussian noise (totally random signal) will be 0.5, and a Brownian noise signal
with spectrum rapidly decreasing power in the higher frequencies results in
an exponent value of 1.5 [135]. The ∝ can be viewed as an indicator of the
“roughness” of the original time series: the larger the value of the ∝ the
smoother the time series. A good linear fit of the log F (n) to log(n) plot (DFA
plot) indicates F (n) is proportional to nα, where α is the single exponent
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Fig. 5.5. F (n) plotted against several box sizes, n, on a log-log scale
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describing the correlation properties of the entire range of heart rate data.
However in some cases, we found that the DFA plot was not strictly linear
but rather consisted of two distinct regions of different slopes separated at a
break point nbp [133]. This observation suggests there is a short range scaling
exponent, αs, over periods of 3 to nbp beats, and a long-range exponent, αl,
over long periods [133].

5.5.6 Entropies

Entropy is a thermodynamic quantity describing the amount of disorder in
the system. From an information theory perspective, the above concept of
entropy is generalized as the amount of information stored in a more general
probability distribution. First Shannon applied the concept of information or
logical entropy to the science of information theory and data communications.
Recently a number of different entropy estimators [137] have been applied to
quantify the complexity of the signal. Entropy estimators are broadly classified
into two categories-spectral entropies and embedding entropies. The spectral
entropies use the amplitude components of the power spectrum of the signal as
the probabilities in entropy calculations. In this topic the spectral entropies –
Shannon entropy, Renyi’s entropy are discussed. The embedding entropies use
the time series directly to estimate the entropy. Kolmogorov-Sinai entropy, ap-
proximate entropy and sample entropy are the embedding entropies discussed
here.

Spectral Entropy (SEN)

Spectral entropy (SEN) [138, 139] is the normalized form of Shannon’s
entropy. It quantifies the spectral complexity of the time series. A variety
of spectral transformations exist. Of these the Fourier transformation (FT) is
most probably the well-known transformation method from which the power
spectral density (PSD) can be obtained. The PSD is a function that repre-
sents the distribution of power as function of frequency. For each frequency,
the power level Pf obtained from Fourier Transform is summed and the total
power,

∑
Pf is calculated. Normalization of PSD with respect to the total

spectral power will yield a probability density function. Each frequency’s
power level is divided by the total power [pf = Pf

PT
;PT = Total Power],

yielding in the end the total;
∑

pf = 1. Entropy is computed by multiplying
the power in each frequency by the logarithm of the same power, pf × log(pf )
and multiplying the result by −1. Total entropy is the sum of entropy com-
puted over entire frequency range. Thus the spectral entropy is given by

SEN =
∑

f

pf log
(

1
pf

)
(5.28)

Heuristically the entropy has been interpreted as a measure of uncertainty
about the event at f . Thus entropy H may be used as a measure of system
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complexity. It measures the spread of data. Data with broad, flat probability
distribution have high entropy. Data with narrow, peaked distribution will
have low entropy. SEN is also a special case of a series of entropies termed
Renyi entropies REN(α).

Renyi’s Entropy

Renyi’s entropy [137,140] is given by

REN(α) = − α

1 − α

∑
log pα

k (α �= 1) (5.29)

Embedding Entropies

The embedding entropies use the time series directly to estimate the entropy.
Kolmogorov-Sinai entropy, approximate entropy and sample entropy are the
embedding entropies discussed below.

Kolmogorov Sinai Entropy (K)

Entropy is determined from the embedded time series data by finding points
on the trajectory that are close together in phase space but which occurred
at different times (i.e., are not time correlated). These two points are then
followed into the future to observe how rapidly they move apart from one
another. The time it takes for point pairs to move apart is related to the
so-called Kolmogorov entropy [141], K, by

〈tdiv〉 = 2−Kt (5.30)

where 〈tdiv〉 is the average time for the pair to diverge apart and K is expressed
in bits per second.

The calculation of K from a time series typically starts from reconstruct-
ing the system’s trajectory in an embedding space. According to Grassberger
and Procaccia [132], K can be determined from the correlation function.
Cm(r,Nm) as

K = lim
r→0

lim
m→∞

1
τ

Cm(r,Nm)
Cm+1(r,Nm+1)

(5.31)

The correlation function Cm(r,Nm) indicates the probability that two
arbitrary points on the orbit are closer together than r. This is done by cal-
culating the separation between every pair of N data points and sorting them
into bins of width dr proportionate to r.

A correlation function, C(r), for the embedding dimension m is then
calculated using,

Cm(r,Nm) =
2

Nm(Nm − 1)

Nm∑

i=1

Nm∑

j=1
j �=i

Θ (r − ‖xi − xj‖) (5.32)
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where xi and xj are the points of the trajectory in the phase space, r is the
radial distance around each reference point xi, Θ → is the Heaviside function
and Nm = N −(m−1)τ is the number of points in the multidimensional state
space.

τ is called the delay time and m is the embedding dimension.
Entropy reflects how well one can predict the behavior of each respective

part of the trajectory from the other. Higher entropy indicates less predictabil-
ity and a closer approach to stochasticity.

Approximate Entropy (ApEn)

K-S entropy measure diverges to a value of infinity when the signal is con-
taminated by the slightest noise. Pincus [11] proposed Approximate Entropy
(ApEn) as a solution to these problems and successfully applied it to rela-
tively short and noisy data. ApEn is scale invariant and model independent
and discriminates time series for which clear future recognition is difficult.
ApEn detects the changes in underlying episodic behavior not reflected in
peak occurrences or amplitudes [142]. ApEn assigns a nonnegative number
to a time series, with larger values corresponding to more complexity or ir-
regularity in the data [11]. For N data points x(1), x(2), . . . , x(N), with an
embedding space of �m, the ApEn measure is given by

ApEn(m, r,N) =
1

N − m + 1

∑N−m+1

i=1
log Cm

i (r)

− 1
N − m

∑N−m

i=1
log Cm+1

i (r) (5.33)

where Cm
i (r) =

1
N − m + 1

N−m+1∑
j=1

Θ (r − ‖xi − xj‖) is the correlation inte-

gral. The values of m and r may be chosen based on the results of previous
studies by Pincus indicating good statistical validity for ApEn [143].

Sample Entropy (SampEn)

SampEn agreed with theory much more closely than ApEn over a broad range
of conditions. The improved accuracy of SampEn statistics make them useful
in the study of experimental clinical cardiovascular and other biological time
series [144]. Abnormal heart rate characteristics of reduced variability and
transient decelerations are present early in the course of neonatal sepsis. To
investigate the dynamics, SampEn, which is of less biased measure than the
popular ApEn was calculated [145]. They proposed more information on the
selection of parameters of the SampEn.

The basic idea of the SampEn is very similar to the ApEn, but there is a
small computational difference [145]. For the calculation of SampEn we first
take the original time series x[i], i = 1, . . . , N , and construct vector sequences
of size m, u[1] through u[N −m+1], defined by u[i] = {x[i], . . . , x[i+m−1]}.
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The vectors length m, is known as the embedded dimension. The constructed
vectors represent m consecutive x values commencing with the ith point. The
distance d(u[i],u[j]) between vectors u[i] and u[j] is defined as d(u[i],u[j]) =
max{|u(i + k) − u(j + k)|, 0 ≤ k ≤ m − 1} where k accounts for the vector
component index. The probability of finding another vector within distance
r from the template vector u[i] is estimated by

C ′m
i (r) = {the number of j, j �= i, j ≤ N − m + 1, such that d [u(i), u(j)]

≤ r} / (N − m + 1)

Now we can determine

φ′m(r) = (N − m + 1)−1
N−m+1∑

i=1

C ′m
i (r) (5.34)

and
SampEn(m, r,N) = − ln

[
φ′m(r)/φ′m+1(r)

]
(5.35)

SampEn measures complexity of the signal in the same manner as ApEn.
However, the dependence on the parameters N and r is different. SampEn
decreases monotonically when r increases. In theory, SampEn does not depend
on N . In analyzing time series including < 200 data points, however, the
confidence interval of the results is unacceptably large. When r and N are
large, SampEn and ApEn give the same results.

5.5.7 Fractal Dimension (FD)

The term “fractal” was first introduced by Mandelbrot in 1983 [146]. A fractal
is a set of points that when looked at smaller scales, resembles the whole
set. The concept of fractal dimension (FD) that refers to a non-integer or
fractional dimension originates from fractal geometry. In traditional geometry,
the topological or Euclidean dimension of an object is known as the number of
directions each differential of the object occupies in space. This definition of
dimension works well for geometrical objects whose level of detail, complexity
or “space-filling” is the same. However, when considering two fractals of the
same topological dimension, their level of “space-filling” is different, and that
information is not given by the topological dimension. The FD emerges to
provide a measure of how much space an object occupies between Euclidean
dimensions. The FD of a waveform represents a powerful tool for transient
detection. This feature has been used in the analysis of ECG and EEG to
identify and distinguish specific states of physiologic function [147]. Many
algorithms are available to determine the FD of the waveform. In this work,
algorithms proposed by Higuchi and Katz are implemented for analysis of
ECG and EEG signals. FD can be calculated by using (1) Higuchi’s Algorithm,
(2) Katz’s algorithm.
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Higuchi’s Algorithm

Let us consider x(1), x(2), . . . , x(N) the time sequence to be analyzed. We
construct k new time series xk

mas : xk
m = {x(m), x(m + k), x(m + 2k), . . . ,

x (m +
[

N−m
k

]
k),
}

for m = 1, 2, . . ., k, where m indicates the initial time
value, and k indicates the discrete time interval between points, and �a� means
the integer part of a. For each of the k time series or curves xk

m, the length
Lm(k) is computed by,

Lm(k) =

�a	∑
i=1

|x(m + ik) − x(m + (i − 1)k)| (N − 1)

�a� k
(5.36)

where N is the total length of the data sequence x, (N − 1)/�a�k is a normal-
ization factor and a = N−m

k . An average length is computed as the mean of
the k lengths Lm(k) for m = 1, 2, . . . , k. This procedure is repeated for each
k ranging from 1 to kmax, obtaining an average length for each k. In the curve
of ln(Lm(k)) versus ln(1/k), the slope of the least-squares linear best fit is the
estimate of the fractal dimension (DHiguchi) [148].

Katz’s Algorithm

Using Katz’s method [149] the FD of a curve can be defined as,

DKatz =
log10(L)
log10(d)

(5.37)

where L is the total length of the curve or sum of distances between successive
points, and d is the diameter estimated as the distance between the first
point of the sequence and the point of the sequence that provides the farthest
distance. Mathematically, d can be expressed as d = max (‖x(1), x(i)‖).

Considering the distance between each point of the sequence and the first,
point i is the one that maximizes the distance with respect to the first point.
The FD compares the actual number of units that compose a curve with
the minimum number of units required to reproduce a pattern of the same
spatial extent. FDs computed in this fashion depend upon the measurement
units used. If the units are different, then so are the FDs. Katz’s approach
solves this problem by creating a general unit or yardstick: the average step
or average distance between successive points, a. Normalizing the distances
DKatz is then given by,

DKatz =
log10(L/a)
log10(d/a)

(5.38)

5.5.8 Recurrence Plots (RP)

Recurrence plots are graphical devices specially suited to detect hidden
dynamical patterns and nonlinearities in data. It is a visualization technique
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to detect the recurrence or correlations in the data. It is a graph which shows
all those times at which a state of the dynamical system recurs. In other
words, the RP reveals all the times when the phase space trajectory visits
roughly the same area in the phase space.

In practice, one chooses ri such that the ball of radius ri centered at Xi

in �d contains reasonable number of points Xj of the trajectory. One dots a
point at each (i, j) for which Xj is in the ball of radius ri centered at Xi. This
plot is called the recurrence plot.

RP is usually symmetric because the distance measure is symmetric. But
complete symmetry is obtained because ri �= rj . The RP exhibits character-
istic large-scale and small-scale patterns.

As mentioned above, RPs provide a visual impression of the trajectory
of a dynamical system in phase space. Suppose that the time series {Xi}N

i=1

representing the trajectory of a system in phase space is given, with Xi ∈ �d.
The RP is based on the following matrix

�i,j = Θ (ε − ‖Xi − Xj‖) , i, j = 1, . . . , N (5.39)

where Θ (.) is the Heaviside function, ‖.‖ denotes a norm and ε is a predefined
threshold. We will use the maximum norm throughout this work. We obtain
a 2-dimensional NxN matrix, which is symmetric with respect to the main
diagonal i = j.

Structures in Recurrence Plots

The initial purpose of RPs is the visual inspection of higher dimensional phase
space trajectories. The view on RPs gives hints about the time evolution of
these trajectories. The advantage of RPs is that they can also be applied to
rather short and even nonstationary data.

The RPs exhibit characteristic large scale and small scale patterns. The
first patterns were denoted by Eckmann et al [150] as typology and the latter
as texture. The typology offers a global impression which can be characterized
as homogeneous, periodic, drift and disrupted.

Homogeneous RPs are typical of stationary and autonomous systems
in which relaxation times are short in comparison with the time spanned
by the RP. An example of such an RP is that of a random time series.

Oscillating systems have RPs with diagonal oriented, periodic recurrent
structures (diagonal lines, checkerboard structures). However, even for those
oscillating systems whose oscillations are not easily recognizable, the RPs can
be used in order to find their oscillations. The drift is caused by systems with
slowly varying parameters. Such slow (adiabatic) change brightens the RP’s
upper-left and lower-right corners. Abrupt changes in the dynamics as well
as extreme events cause white areas or bands in the RP. RPs offer an easy
possibility to find and to assess extreme and rare events by using the frequency
of their recurrences.
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Fig. 5.6. Recurrence plot of normal heart rate

The recurrence plot of normal heart rate is given in Fig. 5.6. For normal
cases, the RP has diagonal line and less squares indicating more variation
in the heart rate. Abnormalities like Complete Heart Block (CHB) and in
Ischemic/dilated cardiomyopathy cases, show more squares in the plot indi-
cating the inherent periodicity and the lower heart rate variation [151].

5.6 Requirements for Non-Linear Analysis

Specifics of the biological systems require modifications of standard nonlin-
ear dynamics algorithms. The main problems of the nonlinear analysis when
applying it to biological signals can be summarized as follows: (a) high level of
random noise in the biological data. The applied nonlinear dynamics methods
should be robust to the noise influence; (b) short experimental data sets due
to the low frequencies of the biological signals. Short realizations cause large
error bars in the estimation of the chaos parameters; (c) nonstationarity of the
biological systems, i.e., ECG have different modulations influenced by vari-
ous external factors with different characteristic times; (d) spatially extended
character of the system.
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5.6.1 Surrogate Data

It is necessary to check the data for the nonlinearity. One of the tests for
nonlinearity is the surrogate data test.

The method of using surrogate in nonlinear time series analysis was intro-
duced by Theiler et al [152] in 1992. Surrogate signal is produced by phase
randomizing the original data. It has similar spectral properties as of the given
data. The surrogate data sequence has the same mean, the same variance, the
same autocorrelation function and therefore the same power spectrum as the
original sequence, but phase relations are destroyed. In the case of data shuf-
fling the histograms of the surrogate sequence and the reference sequence are
identical. The random phase spectrum is generated by using any of the three
methods described below.

1. Random phase: here the complex phase values of the Fourier transformed
input signal are chosen randomly.

2. Phase shuffle: here the phase values of the original spectrum are used in
random order.

3. Data shuffle: here the phase values of the original spectrum are used in ran-
dom order and the sorted values of the surrogate sequence are substituted
by the corresponding sorted values of the reference sequence additionally.

The measured topological properties of the experimental time series are
then compared with that of the measured topological properties of the surro-
gate data sets. If both the experimental data and the surrogate data results
differ more than 50%, then it rejects the null hypothesis and indicates that
the experimental data contain nonlinear features.

5.7 Discussion

Statistical measures of variability are easy to compute and provide valuable
prognostic information about patients. Time domain measures are susceptible
to bias secondary to nonstationary signals. A potential confounding factor in
characterizing variability with standard deviation is the increase in baseline
heart rate that may accompany diminished HRV indices. The clinical sig-
nificance of this distinction is unclear, because the prognostic significance of
altered SDNN remains clinically useful. Another limitation of time domain
measures is that they do not reliably distinguish between distinct biological
signals. There are many potential examples of data series with identical means
and standard deviations but with very different underlying rhythms [153].
Therefore, additional, more sophisticated methods of variability analysis are
necessary to characterize and differentiate physiological signals. It is nonethe-
less encouraging that, using rather crude statistical measures of variability, it
is possible to derive clinically useful information.
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In order to derive a valid and meaningful analysis using a fast Fourier
transform and frequency domain analysis, the assumptions of stationarity
and periodicity are to be fulfilled. The signal must be periodic, namely it is
a signal that is comprised of oscillations repeating in time, with positive and
negative alterations [154]. In the interpretation of experimental data, periodic
behavior may or may not exist when evaluating alterations in spectral power
in response to intervention. The assumption of stationarity may also be vio-
lated with prolonged signal recording. Changes in posture, level of activity and
sleep patterns will alter the LF and HF components of spectral analysis [155].
Spectral analysis is more sensitive to the presence of artifact and/or ectopy
than time domain statistical methods. In addition, given that different types
of Holter monitors may yield altered LF signals [156], it is essential to ensure
that the sampling frequency of the monitor used to read QRS complexes does
not contribute to error in the variability analysis [157]. Thus, the performance
and interpretation of spectral analysis must incorporate these limitations. Rec-
ommendations based upon the stationarity assumption include the following:
short-term and long-term spectral analyses must be distinguished; long-term
spectral analyses are felt to represent averages of the alterations present in
shorter term recordings and may hide information; traditional statistical tests
should be used to test for stationarity when performing spectral analysis; and
physiological mechanisms that are known to influence HRV throughout the
period of recording must be controlled.

A nonlinear deterministic approach appears to be more appropriate to
describe more complex phenomena, showing that apparently erratic behav-
ior can be generated even by a simple deterministic system with nonlinear
structure [158, 159]. It is therefore not surprising that a specific subtype of
nonlinear dynamics, chaos theory and fractals, has recently been applied to
the study of HRV signal.

Approximate entropy is a measure and parameter that quantifies the reg-
ularity or predictability of time series data. This shows higher values for the
normal heart signals and will have smaller values for the cardiac abnormal
signals [46]. Detrended fluctuation analysis (DFA) quantifies fractal-like cor-
relation properties of the data [160]. The root-mean square fluctuation of the
integrated and detrended data are measured in observation box of various sizes
and then plotted against the size of the box [161]. The scaling exponent rep-
resents the slope of this line, which relates log(F(n)-fluctuation) to log(n-box
size). The short-term (F-fast) and long-term (S-slow) scaling exponents are
also calculated [162].

The CD is a measure of the complexity of the process being investigated.
It is calculated from the phase space plots and shows different range of values
for different cardiac diseases [46]. Another nonlinear dynamical parameter of
great importance is the Lyapunov exponent (LE), which quantifies the aver-
age growth of infinitesimally small errors in initial points. Chaotic processes
are characterized by one or more positive LEs, which means that the neigh-
boring points of trajectory in the phase space diverge. Converging processes
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are characterized by a Lyapunov spectrum of negative exponents. The LE is
a measure of predictability of the process, which quantifies the exponential
divergence of initially close state-space trajectories.

The Hurst scaling exponent (H) characterizes the shape of self-similar
signals and ranges from 0 to 1. A self-similar signal with H ≈ 0 resembles
white noise with spiky oscillations. A signal with H ≈ 0.5 shows brownian
noise-like oscillations, whereas signals with H ≈ 1 exhibit smooth oscillations.
Similarly, Fractal Dimension allows us to measure the degree of complexity
by evaluating how fast our measurements increase or decrease as our scale
becomes larger or smaller. These values will be higher for the normal subjects
and small for the abnormal subjects due to reduced or rhythmic variation.

Several investigators have stressed the importance of non-linear techniques
such as fractal dimension (FD) and approximate entropy (ApEn) to analyze
HR time series, as these series are essentially non-linear in nature [163, 164].
There are several ways to determine FD, which measures the space-filling
propensity and complexity of the time series [165]. Acharya et al have ex-
plained all the different types of linear and non-linear techniques, available
for the analysis of heart rate signals [166].

Slowly varying heart rate diseases like, CHB, Ischemic/dilated cardiomy-
opathy have more number of squares in the RP. This is due to the inher-
ent periodicity of the time series. The RP show more patches of colors in
cardiac diseases, where the heart rate signal is varying rapidly [151]. Censi
et al performed a quantitative study of coupling patterns between respiration
and spontaneous rhythms of heart rate and blood pressure variability signals
by using the Recurrence Quantification Analysis (RQA) [167]. They applied
RQA to both simulated and experimental data obtained in control breath-
ing at three different frequencies (0.25, 0.20, and 0.13 Hz) from ten normal
subjects. RP concept was used to detect the life threatening arrhythmias like
ventricular tachycardias [168].

Jamsek et al [169] used bispectral analysis to study the coupling between
cardiac and respiratory activity. Witte et al [170] too studied the coupling
between cardiac and respiratory activity but this research was on neonatal
subjects. Pinhas et al [171] have used the bispectrum to analyze the coupling
between blood pressure (BP) and HRV in heart transplant patients.

5.8 Conclusion

The science of analyzing biological signals has undergone tremendous growth
over the past decade, with the development of advanced computational meth-
ods that characterize the variation, oscillation, complexity and regularity of
signals. These methods were developed in response to theoretical limitations
of the others; however, all appear to have clinical significance. There is no
consensus that any single technique is the single best means of characterizing
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and differentiating biological signals; rather, investigators agree that multi-
ple techniques should be performed simultaneously to facilitate comparison
between methods, techniques and studies. Variability analysis represents a
novel means to evaluate and treat individual patients, suggesting a shift from
epidemiological analytical investigation to continuous individualized variabil-
ity analysis. The existing literatures show that, the nonlinear parameters are
more effective in analyzing the cardiac health of the subjects.
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