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Multivariate Analysis for Cardiovascular
and Respiratory Signals
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The previous chapters on analysis focused on individual signals like ECG,
ABP and HRV signals. It is important to analyse the relationship between
cardiovascular and respiratory signals to understand various abnormalities.
The current chapter looks at the interaction between cardiovascular and res-
piratory signals using multivariate analysis. Since the time of the earliest
measurements of arterial blood pressure (ABP) and of the electrical activity
of the heart (ECG) it was noticed that signals of cardiovascular origin,
though almost periodical, were characterized by slight cycle-by-cycle varia-
tions (oscillations) in both amplitude and time duration. With the develop-
ment of ABP recording techniques, it was noticed that wave amplitude
variations had different cyclical patterns not only synchronous with breath-
ing activity but also with longer periods of about 10–20 beat duration, which
are frequently referred to as Mayer waves [2]. Respiratory system influence
is either considered a source of ABP variability inducing a reflex respiratory
sinus arrhythmia [3] or a source of a direct modulation of the sinus node [4].
The contributions to cardiovascular variability may be various and change in
different experimental conditions [5].

The analysis of biological signals often requires the comparison of multiple
recordings which are differently affected by the same oscillation sources [6,7].
Parametric spectral analysis [8, 9] permits only the recognition and quantifi-
cation of the oscillatory components in the single signals [1]; on the contrary,
multivariate (MV) parametric identification [10–12], provides further infor-
mation about the casual interactions among the signals [13,14] and about the
cross-spectral patterns [15]. However, studies have been made mostly to the
analysis of single-channel signals. Therefore, in order to investigate the interac-
tions between the cardiopulmonary variable signals, a model of multi-channel
series that is able to consider multiple inputs simultaneously is needed.

There is a general class of multivariate dynamic adjustment (MDA) models,
which includes monovariate autoregressive (AR), multivariate autoregressive
(MAR)models.Kalli et al.used a black boxmethod to resolve the casual interac-
tions between the cardiovascular variability signals; multivariate autoregressive
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(MAR) modelling [16]. The MAR model describes the composition of the signals
from each other via linear relationship. As a black-box model, the MAR model
requires no presumptions of the system structure. In the model identification,
standard techniques, like the multivariate Levinson algorithm [17] can be used.

Spectral analysis which characterizes the frequency content of the mea-
sured signals had been performed on the heart rate (or equivalently of heart
period) variability [15], and on other cardiovascular signals (mainly arte-
rial pressure). It has revealed the presence of spectral peaks which carry
information about the sympathovagal interaction that governs autonomic
cardiovascular control [18,19].

The PSD analysis of the cardiovascular signals seems capable of contribut-
ing to the functional investigation into various pathophysiological states (e.g.,
hypertension, diabetes, etc) [20] or during patient treatment with drugs [15].
Furthermore, studies carried out on both animals and humans clearly indi-
cate the potential importance of this type of analysis for a quantitative eval-
uation of the role of the autonomic nervous system in the genesis of these
rhythms as clearly visible in the spectra (power and frequency of variability
components) [1, 9, 13]. Such an approach will improve knowledge of the com-
plex neural mechanisms which will provide an insight into the function of the
autonomic nervous system.

In the comprehension of the mechanisms involved in the regulation of the
cardiovascular function, the simultaneous observation of ABP and HR vari-
ability spectra reveals (under normal conditions) the presence of the 10-sec
rhythm(as well as respiratory rhythm) in both the signals [21–23]. Further-
more, animal experiments have indicated that they vary in power under par-
ticular experimental conditions, such as pharmacological neural blockade or
cardiac pacing, etc [24].

Parametric multivariate analysis of several cardiovascular variability sig-
nals is able not only to extract phase, coherence and gain relationships [25,26],
but also to assess the casual relationship between two or more signals [27].
The cross spectral analysis of ABP and HR variability signals and the study
of the relevant coherence and phase spectra could importantly contribute in
the description of the amount of power interchanged between the signals, of
the delays by which the rhythms propagate [3, 28, 29] and also of the role of
respiration.

The model developed in this chapter is based on the MAR model which is
driven by monovariate and uncorrelated autoregressive random inputs. The
MAR model is applied to clinical data. The parameters extracted from the
developed model are intended for the power spectral analysis and the spectral
parameters found may be sensitive enough to differentiate between normal
and pathological conditions, particularly for cardiac patients. Indices have
been proposed for the detection of cardiac abnormality.
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14.1 Method

The MAR model is a black-box method and thus requires no presumptions
of the system structure [27]. The model is able to describe the composition
of the signals from one another via linear relationships. A multichannel linear
system of m variables is represented as

X(k) = −
p∑

i=0

A(i)X(k − i) + E(k) (14.1)

The above equation represents the general MAR model of a stationary
discrete time m-variate process where X(k) ∈ Rm is the observed (multivari-
ate) measurement signal; and E(k) ∈ Rm is the (multivariate) disturbance
signal consisting of m white noise processes with Gaussian probability; k is
the sample number; and p is the order of the MAR model. Equation 14.1 may
be expressed in the matrix form:

A(q) X(k) = E(k) (14.2)

where A(q) ∈ Rmxm and q is the delay operator. A(q) can be represented as

A(q) = Im + A1q−1 + . . .. . .. . .. . . + Apq−p (14.3)

as well as in the matrix form:

A(q) =

⎡

⎢⎢⎢⎢⎢⎢⎣

a11(q) a12(q) · · · · · · a1m(q)
a21(q) a22(q) · · · · · · a2m(q)

...
...

. . .
...

...
...

. . .
...

am1(q) am2(q) · · · · · · amm(q)

⎤

⎥⎥⎥⎥⎥⎥⎦
(14.4)

where the entries akj are polynomials in the delay operator q−1. This poly-
nomial describes how old values of the output number j affect the output
number k.

Equation 14.1 shows that the MAR model can be considered as a one-step-
ahead prediction model, where the present value of the system output X(k)
is a linear combination of the p past values of X(k) and the prediction error
E(k). Thus, a MAR model describes a system where all the signals involved
explain themselves and each other via certain linear transfer functions defined
by A(q). The MAR model is very flexible as it enables interactions between
all the involved signals in any direction. Many criteria have been proposed as
objective functions for selection of the model order, p. An aid in the determi-
nation of the order of the multichannel AR model is the multichannel version
of the Akaike AIC criterion [27].
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14.2 Multichannel Spectral Analysis

The motivation for parametric models is the ability to achieve better PSD
estimators based upon the model than calculated by classical spectral estima-
tors. The goal of multichannel spectral analysis of m channels of data is the
estimation of the Hermitian PSD matrix. For a bivariate spectral estimation,
the Hermitian matrix P is given as

P (f) =
[
Pxx Pxy

Pyx Pyy

]
(14.5)

The diagonal elements are the single channel autospectral densities, Pxx

and the non-diagonal elements are the cross spectral densities, Pxy between
the two-channels. The complex dimensionless expression

ϕxy(f) =
Pxy(f)√

Pxx(f)Pyy(f)
(14.6)

is termed the coherence function which can be described in terms of the mag-
nitude squared coherence known as the k2 function

k2 = |φxy(f)|2 =
|Pxy(f)|2

Pxx(f)Pyy(f)
(14.7)

The magnitude of k2 function lies between 0 and 1 and the function may
be used to measure, as a function of frequency, the similarity between a pair
of signals.

The classical FFT-based methods for estimating the coherence function
suffer from an inherent bias towards an over-estimation of the k2 function.
The problem is more pronounced if the averaging process involved in these
methods is ignored. For signals of short duration, it is only possible to have
limited number of segments for averaging. Therefore, a bias in the k2 function
is inevitable, which results in an over estimation of the degree of coherence
between the two channels. As a result, the classical methods for multi-channel
spectral estimation are not capable of providing an efficient tool for this pur-
pose. In contrast, parametric methods are known to be capable of estimating
the coherence function without introducing bias into the resultant k2 function.

Indices for abnormality detection
New indices are proposed which are intended for the diagnosis of abnormal

state in cardiac patients. Early detection of signals of abnormality is crucial
in the assessment of a cardiac patient’s condition, as it may indicate the onset
of catastrophic physiologic events such as respiratory failure or even leading
to sudden cardiac death. Therefore, in such critical cases, a fast and accurate
analysis of the simultaneously recorded signals is required in order for prompt
action to be taken to save life. The indices proposed here are effective in
discriminating between normal and abnormal signals.
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These indices are obtained after spectral and cross-spectral analysis by
obtaining the fraction of power of the ECG, which is coherent (or not coher-
ent) with respiration (or ABP signal). The total power of the ECG which is
coherent with respiration is obtained by multiplying the autospectrum of the
ECG by the k2 function and integrating on the frequency axis. This first index
is termed as the ρ.

ρ = Σ
(

P11
∗ |P12(f)|2
P11(f)P22(f)

)
(14.8)

where P11 represents the autospectrum of the ECG, P22 represents the auto-
spectrum of the respiratory signal and P12 is the cross spectrum between the
two signals. ρ̄ is the power not coherent with respiratory signal obtained by
subtracting ρ from the autospectrum of the ECG.

ρ̄ = P11 − ρ (14.9)

Finally, the percentage of the ρ with respect to the total power of the ECG
is tabulated and defined as the Respiration Coherent Index (RCI).

RCI (%) = (ρ/P11)∗100 (14.10)

Similarly, the bivariate spectral analysis is also applied to the ECG-ABP
pair. The procedures stated above are repeated to obtain the total power of
the ECG which is coherent with ABP. This index is termed as the α

α = Σ
(

P11
∗ |P13(f)|2
P11(f)P33(f)

)
(14.11)

where P11 represents the autospectrum of the ECG, P33 represents the auto-
spectrum of the ABP and P12 is the cross spectrum between the two signals.
Then, ᾱ will be the power not coherent with ABP and is obtained as

ᾱ = P11 − α (14.12)

Lastly, the Pressure Coherent Index (PCI) is obtained as

PCI (%) = (α/P11)∗100 (14.13)

14.3 Results and Discussion

The three signals ECG, ABP and respiration, which are obtained from the
MIT-BIH database are used as inputs into the proposed MAR model. Cross
spectrum analysis is performed on the two selected signals via bivariate
spectral estimation. The various indices are obtained after spectral and cross
spectral analysis of the signals.
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14.3.1 ECG and ABP Signal Analysis

Normal Signals: Three consecutive peaks (equivalent to two R-R intervals) of
the ECG signal and the corresponding interval in the ABP signal is consid-
ered for analysis. Figure 14.1 shows the graph of the coherence (k2) function. It
can be seen that the relatively high values of the coherence function at higher
frequencies indicate a strong correlation between the two signals at higher
frequencies. However, at low frequencies, the coherence between the two sig-
nals is less. In other words, there is greater similarity between the two signals
at higher frequencies than at lower frequencies. The total ECG power coher-
ent with ABP is shown in Fig. 14.2. The total power of the ECG is highly
coherent to the ABP signal as indicated in Fig. 14.2, ρ and ρ values of 1800
and 48 are obtained with a PCI index value of 97.3%.
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Abnormal Signals: Similarly a three peaks interval of the abnormal ECG
signal and the corresponding ABP signal is extracted for the power spectrum
analysis. Figure 14.3 shows the coherence function after performing cross spec-
trum analysis between the two signals. Total ECG power coherent with ABP
under abnormal condition is shown in Fig. 14.4. The total power of the ECG
which is coherent with ABP is much lesser as indicated by the drop in ampli-
tude in the ρ graph.

In the normal signals, the total power coherent with ABP is very much
higher as indicated by the PCI index (97.3%). However, in the abnormal
signals the total power coherent with ABP is much lower, at only 46.9%.
Therefore, it can be concluded that the percentage of the autospectrum of the
ECG which is coherent with ABP decreases as the signals go into abnormality
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and increases during normal state. Hence the PCI index can also constitute
a quantitative mean for discriminating between normal and abnormal signals
in stable and unstable condition of the patient.

The above analysis is then performed on a range of data which is obtained
from a cardiac patient whose initial condition was stable but became unstable
at the end due to cardiac problem resulting in respiratory failure. The range
of PCI index for the signals under stable condition is between 90% and 97%.

The line graph is also obtained for the PCI index for transition period from
stable to unstable condition. There is a drop in the PCI index from above 90%
for normal stable signals to below 80% when the signals go into abnormality.
When the patient is in total unstable condition, the range of PCI index is
smaller than that of the RCI index for abnormal signals.

14.3.2 ECG and Respiratory Signal Analysis

Three consecutive peaks (equivalent to two R-R intervals) of the ECG sig-
nal and the corresponding interval in the respiratory signal is considered for
analysis each time. In this case also, the graph of the k2 function shows there
is greater similarity between the two signals at higher frequencies than at
lower frequencies.

Analysis similar to the one done previously for ABP signals has been
made and similar results have been obtained. In the normal signals, the total
power coherent with respiration is very much higher as indicated by the RCI
index (96%). However, in the abnormal signals the total power coherent with
respiration is very low, at only 35%. Therefore, it can be concluded that the
percentage of the autospectrum of the ECG which is coherent with respiration
decreases as the signals go into abnormality and increases during normal state.
Hence the RCI index can constitute a quantitative measure for discriminating
between normal and abnormal signals.

The above analysis is then performed on a range of data from a cardiac
patient whose initial condition was stable but became unstable towards the
end. The range of RCI index for the signals under stable condition is between
90% and 97%. In the transition period, there is a drop in the RCI index from
above 90% for normal stable signals to below 80% when the signals go into
abnormality. When the condition of the patient further deteriorates, the RCI
index falls from a high of 90% to a low of 2%.

14.4 Conclusion

ECG, blood pressure and respiratory signals can provide important infor-
mation on the pathophysiology of the cardiovascular regulatory mechanisms.
Spectral and cross-spectral analysis of these signals gives quantitative informa-
tion which can be of potential interest in clinical studies. This has been done
in this chapter using a methodology based upon multivariate autoregressive
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identification and parametric power spectral density estimation. Autospec-
tra and coherence, which completely characterize the physiological relations
between the signals in terms of exchanging powers and statistically consistent
phase relations, has been used to obtain useful indices. These indices, called
respiration coherence index and ABP coherence index, have been found very
useful in differentiating normal signals from abnormal ones and they act as a
fast and convenient tool for the purpose. The indices proposed have the advan-
tage of being automatically calculated on the PC in an ICU setup. Results on
a few test cases show that the multivariate autoregressive model developed is
able to differentiate accurately the condition of a patient in an ICU changing
from stable to unstable condition.

It is known that various systems involved in the generation of ECG, ABP
and respiration are interrelated and hence one can expect a good coherence
between these signals under normal conditions. The results obtained here
indicate that this coherence is somehow reduced when the condition of body
becomes abnormal. It will be interest to study the mechanisms leading to such
a decrease in coherence.
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