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Abstract The quartz crystal microbalance can serve as high-frequency probe of the
microcontacts formed between the crystal surface and a solid object touching it. On
a simplistic level, the load can be approximated by an assembly of point masses, springs,
and dashpots. The Sauerbrey model, leading to a decrease in frequency, is recovered if
small particles are rigidly attached to the crystal. In another limiting case, the particles
are so heavy that inertia holds them in place in the laboratory frame. The spheres exert
a restoring force onto the crystal, thereby increasing the stiffness of the composite res-
onator. The resonance frequency increases in proportion to the lateral spring constant
of the sphere–plate contacts. A third limiting case is represented by particles attached
to the crystal via a dashpot. Within this model (extensively used in nanotribology) the
dashpot increases the bandwidth. The momentum relaxation time τS (“slip time”) is
calculated from the ratio of the increase in bandwidth and the decrease in frequency,
∆Γ/(– ∆f ).

The force–displacement relations in contact mechanics are often nonlinear. A promi-
nent example is the transition from stick to slip. Even for nonlinear interactions, there is
a strictly quantitative relationship between the shifts of frequency and bandwidth, ∆f and
∆Γ , on the one hand, and the force acting on the crystal, F(t), on the other. ∆f and ∆Γ

are proportional to the in-phase and the out-of-phase component of F(t), respectively. Ev-
idently, F(t) cannot be explicitly derived from ∆f and ∆Γ . Still, any contact-mechanical
model (like the Mindlin model of partial slip) can be tested by comparing the predicted
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and the measured values of ∆f and ∆Γ . Further experimental constraints stem from the
measurement of the amplitude dependence of the resonance parameters.

Contacts mechanics in the MHz range is much different from its low-frequency coun-
terpart. For instance, static friction coefficients probed with MHz excitation are often
much above 1. Contact mechanics at short time scales should be of substantial practical
relevance.

Keywords Contact mechanics · Contact stiffness · Fretting wear · Mindlin model ·
Nonlinear mechanics · Quartz crystal resonator · Quartz crystal microbalance ·
Partial slip · Stick-slip

1
Introduction

Contact mechanics is both an old and a modern field. Its classical domains of
application are adhesion, friction, and fracture. Clearly, the relevance of the
field for technical devices is enormous. Systematic strategies to control fric-
tion and adhesion between solid surfaces have been known since the stone
age [1]. In modern times, the ground for systematic studies was laid in 1881
by Hertz in his seminal paper on the contact between solid elastic bodies [2].
Hertz considers a sphere–plate contact. Solving the equations of continuum
elasticity, he finds that the vertical force, F⊥, is proportional to δ3/2, where δ is
the indentation. The sphere–plate contact forms a nonlinear spring with a dif-
ferential spring constant κ = dF/dδ ∝ δ1/2. The nonlinearity occurs because
there is a concentration of stress at the point of contact. Such stress concen-
trations – and the ensuing mechanical nonlinearities – are typical of contact
mechanics.

Clean, dry single-asperity contacts have intensely been studied both the-
oretically [3–5] and experimentally [6]. The development of the atomic force
microscope (AFM) [7–9] and the surface forces apparatus (SFA) [10–12]
have certainly been influential. Both instruments allow for experiments under
a control of geometry on the molecular level. Multi-asperity contacts evi-
dently are more difficult to study than clean sphere–plate contacts [13, 14],
but are much closer to the real world, as well. Currently, there is quite some
activity carrying the knowledge gained on single-asperity contacts to the field
of dry and wet granular media [15, 16]. The mechanics of a sand pile (such as
its critical angle of sliding, its compactification with time or pressure, or its
strengthening upon exposure to water vapor) all depend on the forces (nor-
mal and lateral) exerted at the contacts between the individual grains.

Given that nonlinearities are ubiquitous, testing with oscillatory excitation
is of less practical importance in contact mechanics than in other fields of ma-
terial science. For instance, stick-slip motion is most easily studied by steadily
pulling the object of interest across the supporting substrate. Oscillatory test-
ing will result in complicated trajectories [17]. Sinusoidal excitation mostly
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makes sense in the small-amplitude limit, where force and displacement are
linearly (or almost linearly) related. In the linear domain, superposition holds
and a system’s response is fully specified by its complex, frequency-dependent
stiffness. Small nonlinearities can be dealt with in the frame of the two-timing
approximation (cf. Sect. 3). Linear behavior, generally speaking, is always
found in the limit of small stress [5]. This is true for both elastic interactions
and sliding. A sliding motion, where the speed is proportional to the force,
is termed “creep” in the context of rheology. Linear creep occurs whenever
the external force is comparable in magnitude to the random forces related
to Brownian motion. The external force then only adds a small bias to the
random movement of the sample, and this bias is proportional to the force.

The use of the QCM for contact mechanics has been pioneered by Dyb-
wad [18]. Dybwad placed a sphere onto a quartz resonator and found an
increase in frequency. He explains this increase by the fact that the sphere
rests in place in the laboratory frame due to inertia. It exerts a restoring force
onto the crystal, thereby increasing its resonance frequency. He points out
that the frequency shift can be exploited to measure the strength of the con-
tact between the sphere and the quartz plate.

Nanotribology has also gained much from the QCM, where the early work
has been done by J. Krim [19, 20]. The Krim group studied adsorbed mono-
layers of noble gas atoms onto the electrode and observed an increase in
dissipation. Describing these experiments in the frame of continuum models,
where the monolayer would correspond to a film with a viscosity η (Eq. 71 in
Chap. 2 of this volume, replace Zf by (iωρη)1/2), cannot explain these findings.
The viscosity would have to be orders of magnitude smaller than the viscosity
of the corresponding bulk liquid, and it is hard to see why this should be the
case. The Krim group models the atoms as discrete objects sliding across the
surface. The motion of the atom is coupled to the motion of the surface via
a dashpot with a drag coefficient ξS. The ratio of mass and drag coefficient has
the dimension of a time, called “slip time”, τS. τS is a momentum relaxation
time. When the motion of substrate stops abruptly, the speed of the sphere
exponentially slows down with a decay time τS. There is now experimental ev-
idence that this kind of sliding – at least in certain cases – is not a creep in the
sense of biased diffusion. Mistura and coworkers determined the amplitude
dependence of the slip time and found a critical minimum amplitude, below
which the molecules slick [21]. This finding contradicts liquid-like sliding. In
liquid-like sliding, the slip time would be independent of amplitude.

2
Modeling with Discrete Mechanical Elements

In contact mechanics experiments with the QCM, the sample usually does
not consist of a planar layer system, but rather of one or more discrete ob-
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Fig. 1 Equivalent circuit representation of the quartz crystal including a load. Piezo-
electric stiffening (described by the element 4Zk in Fig. 13, Chap. 2 in this volume) was
neglected. The sample is represented by the load ZL

jects touching the crystal surface. One can – on a purely heuristic level –
describe the sample by an equivalent mechanical model containing elements
like a mass, a spring, or a dashpot. The effect, which these elements have on
the frequency shift, is readily calculated starting from the small-load approx-
imation (Eq. 51 in Chap. 2 in this volume). We assume that the stress–speed
ratio may be replaced by an average stress–speed ratio, where the average
stress is just the lateral force divided by the active area of the crystal. Replac-
ing the stress by an average stress certainly is an approximation1. It can to
some extent be justified by an argument based on the scattering of acoustic
waves [22]. Once one has accepted this simple picture, the change of res-
onance frequency can be easily predicted by means of the Butterworth–van
Dyke (BvD) equivalent circuit (Sect. 6 in Chap. 2 in this volume). In the fol-
lowing, we use the version of the BvD circuit, where electrical and mechanical
elements are separated as shown in Fig. 1.

2.1
Loading with a Mass

Consider a small sphere rigidly attached to the crystal (Fig. 2). Let the mass
of the sphere be mS. Figure 2a shows a single sphere. Real crystals might
be in contact with many such spheres, which is accounted for by including
the number density of these spheres, NS/A, as a prefactor into the equa-
tions below. NS is the number of spheres and A is the active area of the
crystal.

If the spheres are small enough, they can be treated like a Sauerbrey film
with an areal mass density mf = NSmS/A. Let κp be the spring constant of
the crystal in the BvD sense, mp the equivalent mass of the crystal in BvD
sense (Eq. 116 in Chap. 2 in this volume), and mq the areal mass density of the

1 For instance, energy trapping may be affected by a load applied at the center of the disk.
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Fig. 2 Different circuits to be inserted for the load in Fig. 1. The conversion from the
physical situation (right) to the equivalent circuits (left) entails a complication because
networks are depicted such that the electrical Kirchhoff rules apply. Elements which are
placed in series, physically, are represented as parallel circuit elements and vice versa (cf.
Fig. 5 in Chap. 2 in this volume). For instance, the forces exerted by the spring and the
dashpot in e are additive. In order to let the corresponding voltages in the electrical cir-
cuit also be additive, the circuit elements have to be placed in series. In the literature on
polymer rheology, networks of springs and dashpots are drawn according to the physical
situation (right-hand-side in this figure), which comes down to a different set of Kirchhoff
rules

crystal. The frequency shift of the composite resonator then is:
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where fr is the resonant frequency, f0 is the resonant frequency of the bare
crystal, and ω0 = (κp/mp)1/2 is the radial resonant frequency of the bare crys-
tal. The relation mp = Amq/2 (Eq. 116 in Chap. 2 in this volume) was used.
Equation 1 reproduces the Sauerbrey equation (Eq. 28 in Chap. 2).

The same result is found by use of the small-load approximation (cf. Eq. 51
in Chap. 2) Using the stress σ = – ω2(NS/A)mSa = – ω2mfa (a is the amplitude
of motion) and the speed u̇ = iωa exp(iωt), one finds:

∆f
ff

=
i

πZq

σ
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i
πZq

ZL =
i

πZq

– ω2mfa exp(iωt)
iωa exp(iωt)

=
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πZq
= – n

mf

mq
, (2)

where the relation mq = Zq/(2 ff) has been used (Eq. 26 in Chap. 2). ZL = σ/u̇
is the load impedance.

2.2
Loading with a Spring

In analogy to Eq. 1, one can add a spring (with a spring constant κS) into the
BvD circuit, rather than a mass (Fig. 2b). Such a spring would represent the
stiffness of a contact between the crystal and an object touching it. The object
would have to be so heavy that it does not take part in the movement of the
crystal. The analog of Eq. 1 is:
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where the relation (κpmp)1/2 = κp/ω0 ≈ κp/ω ≈ AZqnπ/2 (Eq. 115 in Chap. 2)
has been used. In this context the resonance frequency of the unloaded crys-
tal, ω0, and the loaded crystal, ω, can be considered to be about equal. The
same result is found by application of the small-load approximation if one as-
sumes that the average stress is given by the spring constant multiplied the
number density, NS/A [23]:
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In the following, the small-load approximation is always used to calculate the
frequency shift.

The frequency shift in Eq. 4 is positive. If the spring constant is indepen-
dent of frequency, ∆f scales as ω–1, that is, as the inverse overtone order, n–1.
Damping and frequency dependent interactions can be introduced into Eq. 4
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by replacing κS with a complex spring constant κS(ω) + iωξS(ω), leading to:

∆f̃
ff

=
NS

πZAq

1
ω

(
κS(ω) + iωξS(ω)

)
. (5)

The parameter ∆f̃ = ∆f + i∆Γ is a complex resonance frequency. Γ is the
half-band-half-width (cf. Sect. 2 in Chap. 2 in this volume). The drag coeffi-
cient may describe interfacial drag, but also the withdrawal of energy from
the crystal via radiation of sound. Equation 5 can be inverted, leading to ex-
plicit formulas for κS(ω) and ξS(ω):

κS(ω) = 2π2Zqn
A
NS

∆f (ω) (6)

ξS(ω) =
πZq

ff

A
NS
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In order to emphasize the generality of the model, the frequency dependence
of κS(ω) and ξS(ω) was explicitly included in Eqs. 5, 6, and 7. More detailed
models (cf. Sects. 2.4 and 2.5) predict the frequency dependence of κS(ω) and
ξS(ω). For the time being, no such statement is made. The only assumption
made here is the absence of inertial effects: Clearly, some of the material close
to the contact must move with the crystal. The total mass of this co-moving
material was neglected.

2.3
Loading with a Mass in Series with a Spring

In the simple-spring model, the crystal is in contact with an immobile ob-
ject. The model can be extended to cover situations where the object takes
part in the oscillation to some extent. A typical object of this kind would be
a small (< 10 µm) sphere [40]. Figure 2c depicts the physical situation and the
equivalent circuit representation. Note that the motion occurs into the lateral
direction even though the spring is drawn vertically. In the following, we as-
sume a spring constant independent of frequency, labeled κ̄S. From Fig. 2c, we
infer the load to be:
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where the parameter ωS = (κ̄S/mS)1/2 denotes the resonance frequency of the
mass-spring system. Using the small-load approximation, we find:

∆f
ff

=
i

πZq
ZL = –
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A
ωmS

πZq

1

1 – ω2

ω2
S

. (9)

Since the spring constant is complex due to dissipalion, the denominator
never becomes zero. Equation 9 was first proposed by Dybwad [19]. In the
limits of ω2

S � ω and ω2
S � ω, Eq. 9 reproduces the Sauerbrey equation (Eq. 2)

and the simple-spring model (Eq. 4), respectively. Equation 9 can also be de-
rived from Eq. 91 in Chap. 2 in this volume by expanding all tangents to first
order. This amounts to a continuum model of the same experimental situ-
ation, where the contacts and the spheres correspond to a “soft”, first layer
and a “hard”, second layer, respectively.

2.4
Loading with a Mass in Series with a Dashpot

The connection between the sphere and the crystal can also be made across
a dashpot (Fig. 2d). This model is extensively used for the interpretation of
nanotribological experiments with the QCM [20]. We consider the drag coef-
ficient of the dashpot, ξ̄S, to be a fixed parameter independent of frequency.
Within this model, the sphere slides on the surface in a liquid-like sense
(creep). This liquid-like friction is very different from interfacial sliding in the
Coulomb sense. For Coulomb sliding, the friction force is proportional to the
vertical load with a dimensionless dynamic friction coefficient, µD. In par-
ticular, the friction force is independent of the sliding speed. Sliding in the
Coulomb sense implies a strongly nonlinear force–speed relation. The drag
force in creep, on the other hand, depends linearly on sliding speed.

From Fig. 2d one reads:
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, (10)

where the slip time τS = mS/ξ̄S was used. Using the small-load approximation,
we find [19, 24]:

∆f̃
ff

= –
NS

AπZq
ωmS

1 – iωτS

1 + ω2τ2
S

. (11)

The tilde denotes a complex frequency shift. We write ∆f̃ = ∆f + i∆Γ . The
imaginary part, ∆Γ , is the shift of the half bandwidth at half maximum. The
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slip time is inferred from the ratio of ∆Γ and (– ∆f ) as:

τS =
1
ω

∆Γ

(– ∆f )
. (12)

The mass-dashpot model predicts that the ratio ∆Γ/(– ∆f ) scales as the over-
tone order (unless the slip time itself depends on frequency).

2.5
Loading with a Spring and a Dashpot

The extension of the previous models to a sphere coupled to the plate via
a spring and a dashpot is straightforward. The coupling can be achieved ei-
ther via a Voigt-type circuit (viscoelastic solid, Fig. 2e) or via a Maxwell-type
circuit (viscoelastic liquid, Fig. 2f). Below, we assume that the object is so
heavy that it does not take part in the motion. When the mass is infinite, the
inertial term drops out of the load impedance. An infinite mass is graphically
depicted as a wall. For Voigt-type coupling we find:

ZL =
NS

A

(
Zspring + Zdashpot

) ≈ NS

A

(
κ̄S

iω
+ ξ̄S

)
(13)

leading to a frequency shift of:

∆f̃
ff

=
1

πZq

NS

Aω

(
κ̄S + iωξ̄S

)
. (14)

Voigt-type coupling makes sense for multi-asperity contacts. The load-
bearing asperities correspond to springs, but there will also be interfacial
drag (for instance across capillary bridges) acting in parallel to the elastic
contacts. The model predicts a positive frequency shift, which scales as the
inversely overtone order, n–1. Both the positive frequency shift and the n–1-
scaling are rather characteristic experimental features. Checking for the n–1-
scaling, one can easily determine whether or not Voigt-type coupling applies.

Figure 3 shows an example [25]. A monolayer of glass spheres with a diam-
eter of 200 µm was deposited onto the crystal at t = 0 (state I). The initial
deposition had virtually no effect on the frequency of resonance. Even though
the spheres did touch the crystal, the dry contacts only transmitted a minute
amount of stress. After about 10 min, the chamber was filled with saturated
water vapor, leading to a substantial frequency increase (state II). Capillary
forces strengthen the contacts, as known from the sand-castle effect. A fur-
ther strong increase in frequency was achieved by ramping the humidity back
down to a low value (state III). After having been exposed to water vapor,
the spheres form a cake. The latter transition is reversible: once the assembly
of spheres has been soaked in humid air, one can go back and forth be-
tween the states II and III. Comparing the frequency shifts on the different
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Fig. 3 Shifts of frequency (a) and bandwidth (b) experienced by a quartz crystal covered
with a monolayer of glass spheres (diameter d = 200 µm) exposed to humid air. States I,
II, and III correspond to the initial state right after deposition, to humid air, and to
a dry state reached after soaking the sample in humid air for a while and then returning
to the dry state, respectively. Full line 5 MHz, dashed line 15 MHz, dotted line 25 MHz,
dash-dotted line 35 MHz (adapted from [28])

overtones, one confirms n–1 scaling. This experiment proves the QCM to be
a non-destructive monitoring device for capillary aging [26].

For Maxwell-type coupling, the situation is more complicated. From
Fig. 2f, one reads:

ZL ≈ NS
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. (15)

A retardation time τR = ξ̄S/κ̄S was introduced. For the frequency shift, we
find:

∆f̃
ff

=
NS

A
i

πZq
ξ̄S

1 – iωτR

1 + iω2τ2
R

=
NSξ̄S

AπZq

ωτR + i

1 + ω2τ2
R

. (16)

The frequency shift is positive. The n-scaling depends on the value of ωτR. In
the limit of ωτR � 1, n–1 scaling is found. In this case, the relaxation time is
much longer than the period of oscillation and the Maxwell element behaves
elastically. The Maxwell model reduces to the simple-spring model (Sect. 2.2).
If, on the other hand, the retardation time is short (ωτR � 1), the frequency
shift is still positive, but it scales linearly with n. If a positive frequency shift
in conjunction with linear n-scaling is found, this in indicative of fast relax-
ation processes in the contact zone. If this is the case, the damping must also
be large.



Studies of Contact Mechanics with the QCM 161

Two caveats are worth mentioning: Firstly, inertial effects can only be neg-
lected if the contact area is small enough. Otherwise, the co-moving mass
needs to be included into the model. The co-moving volume is much smaller
than the volume of the entire sphere but it may be nonzero. Secondly, there
usually is some increase in bandwidth originating from the radiation of
acoustic waves into the sphere. Acoustic radiation can be accounted for by
adding a dashpot with a drag coefficient ξac as a parallel element into the
circuits shown in Fig. 2. The magnitude of the dashpot is of the order of
ξac ∼ (krc)κS/ω, where k is the wave number of sound and rc is the contact
radius [24, 27].

3
Nonlinear Mechanics and Memory Effects

The standard model for analyzing QCM data is based on linear mechanics.
All forces and stresses are assumed to be proportional to displacement or
speed. Such a linear behavior is a prerequisite for equivalent circuits to apply.
Nonlinear behavior, generally speaking, is often found in contact mechanics
because of the sharp peaks in the stress distribution.

Importantly, the analysis of QCM data is not limited to situations, where
stress and strain at the crystal surface are linearly related. In the presence
of nonlinear interactions, the movement of the crystal becomes slightly an-
harmonic, meaning that it weakly deviates from a pure cosine. It is essential
that the deviation from the purely harmonic motion is small. The two-timing
approximation used below only holds for weakly nonlinear oscillators. How-
ever, since the perturbation of the crystal by the sample is small in any case,
the nonlinear term in the dynamical equations governing the crystal’s re-
sponse are always small, as well. They are by far outweighted by the strong,
linear stress-strain relation intrinsic to the crystal, even if the interaction be-
tween the crystal surface and the sample is strongly nonlinear. Assume that
the crystal is in contact with a tip, which undergoes a transition from stick to
slip: This would usually be considered a complicated situation. The interac-
tion is so strongly nonlinear that the trajectory of the tip is highly hysteretic.
Still: the tip only weakly perturbs the motion of the crystal and the analysis
described below therefore holds.

The following section describes the use of the two-timing approxima-
tion for the analysis of QCM data. The same formalism is also used in
the field of non-contact atomic force microscopy [28, 29]. In the latter con-
text, the tip–sample interaction perturbs the oscillation of the cantilever.
As long as the tip–sample force is weak compared to the force needed to
bend the cantilever, the interaction potential can be reconstructed from the
frequency of the cantilever as a function of amplitude and mean vertical
distance.
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The behavior of weakly nonlinear oscillators is discussed in the text-
books [30]. For a small external force F(t), the two-timing approximation
holds. The motion of the crystal is almost sinusoidal and the consequences
of the external force are captured by a slowly varying amplitude a(t) and
a slowly varying phase Φ(t):

u(t) = a(t) cos
(
ω0t + Φ(t)

)
. (17)

u(t) is the lateral displacement of the crystal surface and ω0 is the resonance
frequency of the unperturbed oscillator. The shift in bandwidth, ∆Γ , is pro-
portional to the time derivative of the amplitude, whereas the frequency shift,
∆f , is proportional to the time derivative of the phase [31, 32]:

2π∆Γ = –
1
a

da
dt

2π∆f =
dΦ

dt
. (18)

Here, the time increment dt is meant to be larger than the period of oscilla-
tion. This is the essence of the two-timing approximation. With regard to the
details of the two-timing approximation, the reader is referred to [32]. The
outcome of the calculation is [31, 32]:

∆f
ff

=
2
a

1
πAZq

1
ω

〈
F(t) cos(ωt)

〉
(19)

and
∆Γ

ff
=

2
a

1
πAZq

1
ω

〈F(t) sin(ωt)〉 . (20)

The angular brackets denote the average over an entire period of oscillation.
The parameter ω is the frequency of the loaded oscillator (as opposed to ω0).
The difference between ω and ω0 is small.

Note that the quantities in angular brackets are the exact same weighted
averages which a lock-in amplifier (referenced to ω) would produce. Although
the angular brackets look clumsy at first sight, they represent quantities which
are very familiar to the experimentalist. They are the in-phase and the out-of-
phase components of the force.

Equation 20 can be made plausible by noting that the term 〈F(t) sin(ωt)〉 is
proportional to the energy dissipated per cycle:

〈F(t) sin(ωt)〉 =
1

aωa

1
Tp

Tp∫
0

F(t)
du(t)

dt
dt =

1
2πa

∮
F(u)du =

1
2πa

∆W ,

(21)

where Tp is the period of oscillation and
∮

F(u)du = ∆W is the area inside the
hysteresis loop (see, for example, Fig. 4). The connection to the bandwidth is
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Fig. 4 Force–displacement relation as predicted by the Mindlin model. Since the central
area, where the contact sticks, decreases with increasing tangential load, the force in-
creases sub-linearly with displacement. The area under the hysteresis loop is the energy
dissipated per cycle, ∆W

made by noting that the Q-factor of a resonance obeys the relation:

∆(Q–1) =
2∆Γ

f
=

∆W
2πEosc

=
∆W

2π 1
2κpa2

, (22)

where ∆(Q–1) is the shift of the inverse Q-factor and Eosc = κpa2/2 is the
energy contained in the oscillation. Using the relation (κpmp)1/2 = κp/ω =
AZqnπ/2 (Eq. 115 in Chap. 2), we find:

∆Γ

ff
=

1
ff

f
2
∆(Q–1) = n

1
2πκpa2 ∆W

= n
1

2πκpa2 2πa〈F(t) sin(ωt)〉

=
2

AZqπ

1
a

1
ω

〈F(t) sin(ωt)〉 , (23)

which reproduces Eq. 20. With regard to the frequency shift (Eq. 19), the ar-
gument is less intuitive and we leave it with the formal proof as given in [30].

When linear force laws hold, one has F(t) = κSu(t) + ξSu̇(t), which leads to:

∆f
ff

=
1

πZq

1
ω

2
A

〈κS cos2(ωt)〉 =
1

πZq

1
ω

1
A

κS

∆Γ

ff
=

1
πZq

1
ω

2
A

〈ωξS sin2(ωt)〉 =
1

πZq

1
A

ξS . (24)

Equations 19 and 20 then reduce to Eqs. 4 and 5. If memory effects are absent,
a nonlinear stress–strain relation (quantified by a nonlinear spring constant
κS(u)) and a nonlinear stress–speed relation (quantified by a nonlinear drag
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coefficient ξS(u̇)) can be explicitly reconstructed from the amplitude depen-
dence of the ∆f and ∆Γ [31, 32]. A unique solution is obtained. If, on the
other hand, memory and hysteresis may not be neglected, no such explicit
inversion of the equations is possible. Still, any assumption on the time-
dependent force F(t) can be inserted into Eqs. 19 and 20 in order to predict
the frequency shift. The prediction can be compared with the experimentally
determined frequency shift and the model can be refined until the prediction
matches the experiment. By means of Eqs. 19 and 20, any given hypothesis
about the force F(t) (including stick-slip and memory effects) can be checked
against the experiment.

4
Continuum Models

The circuits discussed in Sect. 2 contain discrete mechanical elements. They
predict the sign, the n-dependence, and the relative magnitude of ∆f and
∆Γ , but they make no suggestion of how to assign a physical meaning to the
model parameters, once they have been determined from experiment. Con-
tinuum models evidently are more complicated. On the other hand, they are
not only more realistic, they also provide quantitative guidelines for the in-
terpretation of experimentally derived parameters. Two situations have been
analyzed, which are the sphere–plate contact and the sheet contact.

4.1
The Mindlin Model

The analysis of the sphere–plate contact under tangential oscillatory load
goes back to Mindlin [12]. We refer the reader to [3] with regard to the deriva-
tion. Oscillatory tangential load is also discussed in the context for fretting
wear [41, 42]. When a Hertzian sphere–plate contact is subjected to a tangen-
tial load, there is a stress concentration at the rim of the contact area. Within
the continuum treatment, the stress goes to infinity at r = rc, where rc is the
radius of contact. As a consequence, there is a ring-shaped area close to the
rim of the contact, inside which the two surfaces slide against each other. The
phenomenon is termed “partial slip”. As the stress increases, the sliding part
of the contact zone increases in size, until it finally covers the entire contact.
At this point, partial slip turns into gross slip.

If roughness plays a role, the Mindlin model does not apply. Still, the
Mindlin model is a good example of a broader class of models of partial slip.
Bureau et al. have proposed a quantitative extension of the microslip model
accounting for multi-contact interfaces [34]. Partial slip also occurs in multi-
asperity contacts because the microcontacts located at the rim are expected to
rupture first. These contacts experience the largest lateral stress and the low-
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est vertical load. While the details will certainly differ when comparing the
Hertzian contact and the multi-asperity contact, the generic features should
be similar.

Figure 4 shows the force–displacement relation for oscillatory tangential
loading. The force–displacement curves bend downward because the part of
the contact which sticks becomes smaller and smaller as the lateral force
increases. The Hertzian contact is nonlinear under tangential load. (It is
nonlinear under vertical load, as well.) The energy dissipated per cycle cor-
responds to the area inside the loop in Fig. 4. The dissipated energy does not
depend on frequency. The Mindlin model describes a quasi-static motion. In
particular, the energy dissipation entirely originates from the hysteretic be-
havior. Energy dissipated during sliding in the outer ring is neglected, which
certainly is a shortcoming of the model.

For oscillatory loading, the lateral displacement, u(t), is given by [3]:

u(t) =
3µSF⊥
8rcGeff

[
2
(

1 –
F||,max – F||(t)

2µSF⊥

) 2
3

–
(

1 –
Fmax

µSF⊥

) 2
3

– 1

]

=
3
2
λS

[
2
(

1 –
F||,max – F||(t)

2µSF⊥

) 2
3

–
(

1 –
Fmax

µSF⊥

) 2
3

– 1

]
, (25)

where µS is the static friction coefficient, rc is the radius of contact, F⊥ is
the vertiacl force, F|| is the tangential force, and F||,max is the maximum tan-
gential force. Geff = 2× ((2 – ν1)/G1 + (2 – ν2)/G2)–1 is an effective modulus.
G is the shear modulus, ν is Poisson’s number, and the indices 1 and 2 la-
bel the contacting materials. We will show below that the quantity 4rcGeff is
the lateral spring constant of the contact in the low amplitude limit, κ0,M. The
characteristic length λS = µSF⊥/(4rcGeff) = µSF⊥/κ0,M, termed “partial slip
length”, was introduced for notational convenience. λS is defined in analogy
to the elastic length λe = F⊥/κ (κ the lateral spring constant) used by the Paris
group to describe multi-asperity contacts [35]. In macroscopic experiments,
λe is a measure of roughness. λS differs from λe in that it contains the static
friction coefficient µS as a prefactor. From the ratio of λS and λe, one obtains
an estimate of the static friction coefficient.

Since the force across the contact only weakly perturbs the motion of the
crystal surface, the displacement, u(t), is mainly governed by the dynamics of
the quartz crystal. u(t) is sinusoidal with time, and the force F(t) is a func-
tion of the displacement and the direction of motion. F(t) can be calculated
by inversion of Eq. 25 as:

F||(t)
µSF⊥

=

⎡
⎣F||,max

µSF⊥
– 2 +

1√
2

(
1 +

2u(t)
3λS

+
(

1 –
F||,max

µSF⊥

) 2
3
) 3

2
⎤
⎦ . (26)
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Inserting Eq. 26 into Eq. 24 and performing the integration leads to a predic-
tion for ∆f and ∆Γ . In the small amplitude limit (u(t) � λS) one finds:

∆f
ff

≈ 1
AZqπ

4rcGeff

ω

(
1 – 0.20

a
λS

)
=

1
AZqπ

κ0,M

ω

(
1 – 0.20

a
λS

)
(27)

∆Γ

ff
≈ 1

AZqπ

κ0,M

ω

2
9π

a
λS

. (28)

In the case of Eq. 27, the integration was carried out numerically. For the
bandwidth (Eq. 28), analytical integration is possible because the integral is
proportional to the area inside the hysteresis loop in Fig. 4 [3].

Comparing Eqs. 4 and 27, one sees that the term 4rcGeff can be identified
with the spring constant in the small amplitude limit, κ0,M. The dissipation is
small, because the sliding portion of the contact is small. It is proportional to
amplitude. This type of interfacial friction may therefore not be represented
by a dashpot. However, there always is an additional source of dissipation
given by radiation of sound into the sphere. This component can be modeled
with a dashpot. The acoustic contribution to dissipation may mask interfacial
friction at small amplitudes.

Figure 5 shows an example. A quartz crystal was covered with a mono-
layer of glass spheres (diameter d = 200 µm) and exposed to humid air.
In this case, the frequency shift and bandwidth were determined by ring-
down [31, 32, 36]. The dependence of frequency and bandwidth on amplitude
is substantial, indicative of a nonlinear interaction. From the slopes in the
plots of ∆f and ∆Γ vs a one infers a partial slip length λS of the order of

Fig. 5 Shift of frequency a and bandwidth b as a function of amplitude for a quartz plate
covered with a monolayer of glass spheres (d = 200 µm) at a various humidities. The data
were acquired via ring-down [32]. From the slopes, one infers the partial slip length, λS
and the coefficient of static friction, µs



Studies of Contact Mechanics with the QCM 167

a nanometer. The slips lengths derived from ∆f and ∆Γ differ, indicating
that the Mindlin model is not quantitatively applicable.

The sources of discrepancy are sliding friction, capillary interactions, and
the fact that we have a multiasperity contact. Rolling (simultaneous release of
contacts on one side and formation of new ones at the other) may also be part
of the picture.

The elastic length λe = F⊥/κS is explicitly available: The spring constant,
κS, can be derived from the frequency shift (Eqs. 4 and 27). The vertical
force, F⊥, is known from the weight of the spheres2. The static friction co-
efficient µS = λS/λe is significantly above one. High coefficients of static
friction have also been found with colloidal probe experiments on quartz
crystals (Gubaidullin and Johannsmann, in preparation). The reason for the
increased static friction is subject to interpretation. Presumably, slip takes
time: the MHz oscillation is just too fast for slip to set in [37]. This finding
highlights, how much different the contact mechanics at high frequencies is
from the corresponding behavior at low frequencies.

4.2
The Sheet-Contact Model

The Mindlin model describes the sphere–plate contact, assuming a contact
radius much smaller than the radius of the sphere. The opposing limit, where
the contact area is much larger than the wavelength of sound has been treated
by the Shull group [38]. Such a geometry is established when a soft object like
a hemisphere of a rubbery material touches the crystal. The JKR tester uses
this arrangement [39]. The JKR model – underlying the JKR tester – is an ex-
tension of the Hertz model, accounting for a finite interfacial energy of the
contacting materials. The interfacial interaction must be short-ranged. The
model predicts the radius of contact as function of vertical load, stiffness of
the material, and surface energy. The radius of contact usually is measured by
imaging the contact from a above or below with a microscope. The JKR model
and the JKR tester are frequently used in the study of polymer adhesion.

Clearly, combining the JKR tester with the QCM is attractive [38]. The ma-
terial of interest is molded into the shape of a hemisphere and pushed against
the top electrode of the QCM. From the shift in frequency shift and band-
width one obtains the viscoelastic parameters of the material in the contact
zone.

In passing, we note that this approach, in fact, is the only way to determine
the viscoelastic parameters of rubbery polymers with the QCM. In princi-
ple, one might of course also coat the entire crystal with a thick layer of the
respective material. If the thickness of the layer is larger than the penetra-
tion depth, the sample is acoustically semi-infinite. The Kanazawa equation

2 This assumes that the external force is much larger than the force of adhesion.
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applies and G′ and G′′ can be determined from Eq. 62 in Chap. 2 in this
volume (using G = iωη). Unfortunately, the QCM does not work well with
semi-infinite media when the viscosity, η, is larger than about 50 cP. The shift
of frequency and bandwidth in this case is too large. Most polymers exceed
this limit. If, however, the contact area can be confined to a small spot in the
center of the crystal, the bandwidth decreases accordingly and, the measure-
ment becomes feasible.

Evidently, the contact established by the JKR-tester is laterally heteroge-
neous. Experiment shows that the finite contact area can reasonably well be
accounted for by modifying the Kanazawa relation as:

∆f
ff

=
i

πZq
KA

Ac

A
ZL , (29)

where Ac is the contact area and KA is a “sensitivity factor” [38]. Equation 29
assumes a contact area much larger than the decay length of the shear wave.
Also, energy trapping is assumed to be unaffected by the contact (which may
be unrealistic in some situations).

The sensitivity factor, KA, accounts for the non-trivial amplitude distribu-
tion over the area of the crystal. For small contact areas, KA is about constant
and equal to two [38]. Since the efficiency of energy trapping depends on
overtone order, the parameter KA depends on overtone order, as well. The
KA-factor can be determined by placing drops of water with known contact
radius onto the center of the crystal. Equation 29 has been tested in that way
and found to be a good approximation to the data for a large range of experi-
mental conditions [38].

5
Concluding Remarks

The study of contact mechanics is just emerging as an application of the
QCM. Clearly, there are limitations: the QCM probes the contacts at a fre-
quency in the megaHertz range3, it can only provide oscillatory excitation,
and the amplitude of excitation is in the namometer range. Comparing the
QCM to other devices of mechanical and micromechanical testing, there are
following advantages and disadvantages:

• Due to the small amplitude of excitation, the contacts are not usually
broken. The QCM is a device for non-destructive testing of interfacial
contacts. The evolution of the contact strength with time, temperature,
exposure to solvent vapor, or vertical pressure can be monitored without
ever breaking a bond.

3 Analogous studies can be done with torsional resonators in the kHz range. These have a lower
sensitivity, but can bridge the frequency gap.
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• Because the frequency is so high, inertia comes into play rather strongly.
Balancing the force of interest (such as the force transmitted through
the sphere–plate contact) against the force of inertia (holding the sphere
in place), one gets around the often cumbersome problem of calibrating
springs. In low frequency measurements, for example performed with the
atomic force microscope, determination of the spring constant is a steady
practical challenge. In a way, the situation is reminiscent of astronomy
a few hundred years ago, where the force of gravity was analyzed based on
a measurement of the orbital frequency of the planets (which admittedly
is in a vastly different range).

• It is not true that the QCM is blind to nonlinear interactions. The QCM
measures a peculiarly weighted average of the force, but it certainly can ac-
cess nonlinear phenomena via the amplitude dependence of ∆f and ∆Γ .

• The QCM probes elastic and dissipative interactions at high frequencies.
How relevant these high-frequency interactions are for real world devices,
needs to be seen. We know today that things are much different at the MHz
scale. We also know that fast processes are important in contact mechan-
ics. Typical phenomena, where high-frequency events are crucial, are the
sudden impact of a slider onto a substrate or the advancement of a crack
tip in fracture events. At this point, the contact mechanics experiments
with the QCM are part of fundamental research, but that may change.

Acknowledgements The author is indebted to Dr. Binyang Du for numerous fruitful dis-
cussions and making results available previous to publication.
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