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Abstract In this chapter we discuss the results of theoretical and experimental studies of
the structure and dynamics at solid–liquid interfaces employing the quartz crystal mi-
crobalance (QCM). Various models for the mechanical contact between the oscillating
quartz crystal and the liquid are described, and theoretical predictions are compared with
the experimental results. Special attention is paid to consideration of the influence of
slippage and surface roughness on the QCM response at the solid–liquid interface. The
main question, which we would like to answer in this chapter, is what information on
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the structure and dynamics at the solid–liquid interface can be extracted from the QCM
measurements. In particular, we demonstrate that the quartz crystal resonator acts as
a true microbalance only if, in the course of the process being studied, the nature of the
interface (its roughness, slippage, the density and viscosity of the solution adjacent to it,
and the structure of the solvent in contact with it) is maintained constant.

So far most of the QCM data were analyzed on a qualitative level only. The next step
in QCM studies requires a quantitative treatment of the experimental results. Theoretical
basis for the solution of this problem already exists, and has been discussed in this re-
view. Joint experimental and theoretical efforts to elevate the QCM technique to a new
level present a challenge for future investigators.

Keywords Quartz crystal microbalance · Roughness · Slippage · Thin films

Abbreviations
a Ratio of the slip length to the liquid decay length, bs/δ

AFM Atomic force microscope

Cm Mass sensitivity of the QCM,
2f 2

0√
µqρq

Cη Sensitivity of the QCM operating in contact with a liquid,
f 3/2
0√

πµqρq

d Thickness of the quartz crystal
EQCM Electrochemical quartz crystal microbalance
f Frequency
f0 Fundamental frequency of the resonator
g(K) Correlation function for surface roughness
h Root mean square height of a roughness
k Wave vector of shear waves in quartz, ω

√
ρq/µq

l Correlation length of surface roughness
df Thickness of the liquid film
L Thickness of interfacial layer
MD Molecular dynamics
P(r, ω) Pressure in a liquid
QCM Quartz crystal microbalance
R Hydrodynamic roughness factor
R̃ Electrochemical roughness factor
r = (z, R) Coordinates (normal and lateral)
SFA Surface force apparatus
STM Scanning tunneling microscope
u(z, ω) Amplitude of the shear displacements of the quartz
uf(ω) Displacements of the homogeneous surface film
vf(t) Film velocity
vf0(ω) Amplitude of film velocity
vq(t) Velocity of the quartz surface
vq0(ω) Amplitude of the quartz surface velocity
va(ω) Velocity of absorbed later
vl(ω) Liquid velocity at the interface
ZL Mechanical impedance of the contacting medium
Zq Mechanical impedance of quartz crystal
∆Γ Half-width of the resonance
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∆Γl Half-width of the resonance for quartz crystal resonator contacting a semi-
infinite liquid

Γ a, Γ m Surface excess and maximum surface excess of adsorbate

δ Velocity decay length in a liquid, δ =
√

η/πρf0
∆γ Change of surface tension
∆f Resonant frequency shift
∆fm Mass-induced resonant frequency shift
∆fη Viscosity-induced resonant frequency shift
∆fP Pressure-induced resonant frequency shift
∆fR Roughness-induced resonant frequency shift
∆fsl Slippage-induced resonant frequency shift
∆fT Resonant frequency shift due to change of temperature
∆fl Frequency shift for quartz resonator contacting a semi-infinite liquid
∆mf Surface mass density of a film
∆ma Average surface density of the adsorbed atoms
∆mf Average surface mass density
∆m1 Root mean square deviation of the mass distribution
εls, εll Energy of liquid–substrate and liquid–liquid interactions
εla, εaa, εas Energy of adsorbate–liquid, adsorbate–adsorbate and adsorbate–substrate in-

teractions
η Viscosity of a liquid
ηf Viscosity of the liquid film
bs Slip length
beff

s Effective slip length
λq Wave length of shear-mode quartz oscillations
µq Shear modulus of the quartz crystal
ξ(R) Surface profile
ξH Permeability of interfacial layer
ρ Density of a liquid
ρq Density of the quartz crystal
ρf Density of the liquid film
ρs Density of solid
τs Slip time
φ Porosity of interfacial layer
χ Coefficient of sliding friction
ω Angular frequency
ω0 Fundamental angular frequency, ω0 = 2πf0

1
Introduction

The literature concerning the quartz crystal microbalance (QCM) and its elec-
trochemical analog, the electrochemical EQCM, is wide and diverse. Many
reviews are available in the literature, discussing the fundamental properties
of this device and its numerous applications, including its use in electrochem-
istry [1–7]. In this chapter we focus on the effect of interfacial properties on
the QCM response, specifically when the device is immersed in a liquid.
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When the quartz crystal microbalance was first introduced in 1959 [8],
it represented a major step forward in our ability to weigh matter. Un-
til then, routine measurements allowed a sensitivity of 0.1 mg, and highly
sensitive measurements could be made with an accuracy limit of 0.03 µg,
under well-controlled experimental conditions [9]. The QCM extended the
sensitivity by two or three orders of magnitude, into the sub-nanogram
regime.

Even when used in vacuum or in an inert gas at ambient pressure, the QCM
acts as a balance only under certain conditions, as discussed below. Under
these conditions the change of mass caused by adsorption or deposition of
a substance from the gas phase can be related directly to the change of fre-
quency, by the simple equation derived by Sauerbrey [8].

Generally this is not the case, and the frequency shift observed could more
appropriately be expressed by a sum of terms of the form:

∆f = ∆fm + ∆fη + ∆fP + ∆fR + ∆fsl + ∆fT , (1)

where the different terms on the right hand side of this equation represent
the effects of mass loading; viscosity and density of the medium in contact
with the vibrating crystal; the hydrostatic pressure; the surface roughness;
the slippage effect, and the temperature, respectively, and the different con-
tributions can be interdependent. These effects become of major importance
particularly when small changes of frequency, associated with sub-monolayer
phenomena, are considered. Some of these factors will be discussed in this
chapter.

1.1
Applications of the Quartz Crystal Microbalance

The most common commercial use of the QCM is as a thickness gauge
in thin-layer technology. When used to monitor the thickness of a metal
film during physical or chemical vapor deposition, it acts very closely as
a nanobalance, providing a real-time measurement of the thickness. Indeed,
devices sold for this purpose are usually calibrated in units of thickness (hav-
ing a different scale for each metal, of course), and claim a sensitivity of less
than 0.1 nm, which implies a sensitivity of less than a monolayer.

The other common application of the QCM is as a nanosensor proper,
made sensitive to one gas or another by suitable surface treatment. Selecting
the suitable coating on the electrodes of the QCM can determine selectiv-
ity and enhance sensitivity. It is not our purpose to discuss sensors in the
present review. It should only be pointed out that any such sensor would have
to be calibrated, since the Sauerbrey equation would not be expected to apply
quantitatively.
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1.2
Applications for Gas-Phase Adsorption

The high sensitivity of the QCM should make it an ideal tool for the study
of adsorption from the gas phase. We note that the number of sites on the
surface of a metal is typically of the order of 1015 cm–2, hence a monolayer
of a small adsorbate, occupying a single site, would be about 2 nmol cm–2.
A monolayer of water would therefore weigh about 40 ng cm–2, while a mono-
layer of pyridine would weigh 30–60 ng cm–2, depending on its orientation
on the surface. Comparing these numbers with the sensitivity of 2 ng cm–2

shows that adsorption isotherms could be measured in the gas phase, em-
ploying the QCM. This has not been done properly until relatively recently,
mainly because the device was treated as a microbalance, i.e., it was assumed
that the Sauerbrey equation could be applied, and several important terms
in Eq. 1 were ignored. Obtaining adsorption isotherm one has to change
the pressure over a wide range. Therefore the changes of properties of the
surrounding gas cannot be ignored. This shortcoming was overcome by the
present authors [10] who developed the supporting gas method. When this
method is employed, the overall pressure is maintained constant by a large
excess of an inert gas, and the frequency shift of the QCM is measured as
a function of the partial pressure of the material being investigated. In this
manner all terms in Eq. 1, other than ∆fm, are essentially zero and the device
acts as a true nanobalance.

1.3
Use of the QCM in Liquids

It was not initially obvious that the quartz crystal resonator would operate
in liquids, until this was proven experimentally [11, 12]. The term associated
with the influence of the viscosity, η, and density, ρ, of liquid in Eq. 1 can be
written [13] as:

∆fη = – Cη

(
ηρ
)1/2 . (2)

Since the product of
√

ηρ in liquids is about two orders of magnitude higher
than in gases at ambient pressure, the crystal is heavily loaded when trans-
ferred from the gas phase into a liquid.

Once the door had been opened to its use in liquids, the potential of the
QCM for interfacial electrochemistry was obvious, and the EQCM became
popular.

When a QCM, with fundamental frequencies 6–10 MHz, is placed in con-
tact with a dilute aqueous solution, the frequency should shift to lower values
by about 0.8–1.2 kHz according to Eq. 2. In practice the observed shift is
larger by 1–2 kHz, depending on the surface roughness. The effect of rough-
ness is also related indirectly to viscosity and density, since the hydrodynamic
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flow regime at the surface is altered as a result of roughness [14–16]. Rough-
ness is a major issue in the interpretation of the response of the QCM in
liquids, and it is discussed in some detail in the following sections.

1.4
Impedance Spectrum of the EQCM

In early studies of the QCM and the EQCM, only the resonance frequency
was determined, and conclusions were drawn, based on the shift of frequency.
Unfortunately, in many cases this shift was attributed to mass loading alone,
and it was used to calculate the weight added or removed from the surface,
disregarding other factors that affect the frequency. In the past decade more
and more laboratories expanded such studies to include measurements of the
impedance spectrum of the crystal [17–28]. This provides an additional ex-
perimental variable that can obviously yield further information and deeper
understanding of the structure of the interface. For instance, a variation of the
resonance width provides an unambiguous proof that mechanisms other than
mass loading are also involved.

The properties of the impedance spectrum are discussed in detail in
Chap. 2 in this volume. Here we present only a relation between the reso-
nant frequency and the mechanical impedance of the medium contacting the
quartz surface, ZL. The latter is defined as the ratio of the shear stress act-
ing on the contact medium to the surface velocity [6]. Under the experimental
conditions when the surface loading is relatively small, the shift of the reso-
nant frequency with respect to the resonant frequency of the unloaded quartz
crystal, f0, can be written as [14, 29]:

∆f̃ ≡ ∆f + i∆Γ = i
f0
π

ZL

Zq
, (3)

where Zq is the acoustic impedance of an AT-cut quartz.
It should be noted that the frequency shift ∆f̃ can be a complex num-

ber, and its imaginary part, ∆Γ , reflects the half-width of the resonance.
Equation 3 shows that the complex frequency shift ∆f̃ contains the same in-
formation as the mechanical impedance ZL.

In order to analyze the influence of the different loading mechanisms
on the QCM response one has to model a dependence of the mechanical
impedance ZL or the complex resonance frequency shift on the chemical and
physical properties of the contacting medium. Various models for the me-
chanical contact between the oscillating quartz crystal and the outer medium
are discussed below. The QCM is now so widely and extensively used that,
in the framework of this chapter, it is not possible to review all the available
literature. Hence we limited ourselves here to a review of the experimental
data and theoretical ideas concerning the studies of structure and interac-
tion at solid–liquid interface. Furthermore, we did not present here studies on
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adsorption, metal deposition, and kinetics with the help of the QCM. These
topics are well described in previous reviews ( [1, 2, 6], and in many articles
published in readily accessible journals). The problems of the interpretation
of the QCM response caused by changes taking place at the solid–liquid inter-
face are obviously of first priority, especially for studies in electrochemistry.

2
Effect of Thin Surface Films

2.1
Film Rigidly Attached to the Surface

First we consider the effect of a thin film, rigidly attached to an ideally flat
crystal surface, on the response of the quartz crystal resonator (Fig. 1).

For a homogeneous thin film with a thickness smaller than the wavelength
of the shear oscillations, the shift of the resonance frequency can be expressed
in terms of the change in surface mass density of the film, ∆mf, (in units
g cm–2). This was given by Sauerbrey [8] as:

∆f = – Cm∆mf , (4)

where Cm = 2f 2
0 /(µqρq)1/2 and ρq and µq are the density and shear modu-

lus of quartz. Equation 4 can be derived by supplementing the wave equation,
which describes displacements in the quartz crystal, with the Newtonian
equation of motion for the surface film [6]. Equation 4 shows that the addition
of mass rigidly attached to the surface of the quartz crystal resonator leads to
a decrease of the resonant frequency, but it does not influence the width of

Fig. 1 Schematic presentation of the quartz crystal resonator in contact with a liquid. The
contacting medium is a thin film rigidly attached to the crystal surface from one side, at
z = d. The opposite surface of the crystal (z = 0) is unconstrained. d is the thickness of the
quartz crystal
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the resonance. The constant Cm in Eq. 4 can differ from the theoretical value
given above due to effects of non-uniform mass distribution, roughness, etc.
Therefore one is well advised to calibrate the QCM.

It should be noted that Eq. 4 is valid only for thin films for which the thick-
ness is much smaller than the wave length of the shear mode oscillations. In
this case the frequency shift is determined by the inertial force of the film
acting on the quartz surface. For thicker films effects of elasticity or viscoelas-
ticity become important and Eq. 4 should be modified essentially [30].

A question arises whether an inhomogeneous mass distribution would
lead to an additional shift of frequency and/or to a broadening of the res-
onance, compared to the result given by the Sauerbrey equation? It was
shown [6] that in the case of inhomogeneous mass distribution splitting of
the resonant frequency can occur, and the frequency shift can be estimated
as:

∆f = –
2f 2

0√
ρqµq

[∆mf ±∆m1] , (5)

where ∆m1 is the root mean square deviation of the mass density from the
average value ∆mf. In contrast to the case of uniform mass loading, where
∆m1 = 0, two values of the resonance frequency are derived. This effect can be
simulated by a simple equivalent circuit consisting of two Butterworth–Van
Dyke [31–33] circuits in series with the inductances corresponding to the two
different values of the surface mass densities, ∆mf + ∆m1 and ∆mf – ∆m1.
Due to overlap of these two resonance states, splitting can lead to an appar-
ent broadening of the resonance, which will have an effective half-width of the
order of f 2

0 ∆m1/π(µqρq)1/2. For the 6 MHz quartz resonator this broadening
effect becomes important when the correlation length of the mass distribu-
tion is larger than 0.02 cm.

2.2
Slippage at the Interface Between a Thin Film and a Solid

The Sauerbrey equation shows that a thin uniform film rigidly attached to
the quartz surface does not influence the width of the mechanical resonance.
However, it was experimentally shown for a number of systems that adsorp-
tion on the quartz surface produced both a shifts of frequency and an increase
of the width of the resonance [34–38]. This phenomenon can be explained,
assuming slippage at the adsorbate–substrate interface.

Slippage occurs as a result of the force of inertia acting on the adsorbate
during the vibrational motion of the crystal. The force of inertia, F, is ex-
tremely weak (∼ 10–13 dyne per atom) [39] and cannot, by itself, move an
adsorbed species over the lateral energy barriers of the adsorbate–substrate
potential [39]. However, this force decreases the barriers in the direction of F
that leads to a thermally activated drift of the adsorbate in the direction oppo-
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site to the motion of the crystal surface. As a result, the instantaneous velocity
in the adsorbate layer can differ from the velocity of the surface of the quartz
crystal resonator.

The slippage at the interface between a thin film of density ∆mf and the
substrate is usually described in terms of an interfacial friction coefficient
(“coefficient of sliding friction”), χ. This coefficient determines the stress act-
ing between the film and the substrate, which move at different velocities. An
infinite value of χ implies that the non-slip (sticking) boundary condition is
applicable. When the interfacial friction coefficient equals zero, the film is free
to slide with no energy dissipation.

The motion of the adsorbed film on the oscillating quartz surface can be
described by Eq. 6:

∆mf
d
dt

vf(t) = – χ[vf(t) – vq(t)] , (6)

where vq(t) = vq0(ω) exp(iωt)) and vf(t) = vf0(ω) exp(iωt) are the velocities of
the crystal surface and of the film. Simultaneous solution of the wave equation
in the quartz crystal and the equation of motion (Eq. 6) for the adsorbed film
yields the following expressions for the changes of the frequency, ∆f , and the
half-width of the resonance,∆Γ :

∆f = –
2f 2

0 ∆mf√
ρqµq

[
χ2

χ2 + (2πf0∆mf)2

]
(7)

∆Γ =
2f 2

0 ∆mf√
ρqµq

[
2πf0∆mfχ

χ2 + (2πf0∆mf)2

]
. (8)

Note that:

∆Γ

∆f
= – 2πf0

∆mf

χ
. (9)

Thus, the interfacial friction can be evaluated from measurement of ∆Γ

and ∆f . This procedure has been applied to a number of systems in which
weak physical adsorption occurs, such as the adsorption of Xe, Kr, N2 on
Au, and of H2O and C6H12 on Ag [34–38]. In all the above cases slippage
was observed, and the ratio of the coefficient of sliding friction to the mass
density was of the order χ/∆mf = (108 – 109) s–1. As an example, the fric-
tional stress acting on the monolayer Xe film sliding on a Ag(111) surface
at a velocity ν = 1 cm s–1, F = χv, equals about 10 Nm–2 [40]. It is much
smaller than typical shear stresses involved in sliding of a steel block on
a steel surface under boundary lubrication condition (Eq. 6), which is of order
≈ 108 Nm–2 [39].
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The effect of slippage at a substrate–film interface can also be described in
terms of slip time [39]. To understand the physical meaning of the slip time,
one can consider an adsorbate film on a substrate, moving at constant vel-
ocity. If the substrate stops, the velocity and momentum of the film decay
exponentially, and the time constant of this process is the slip time. If this pro-
cess is very rapid, i.e., we have a rigidly adsorbed film, the time constant will
be close to zero, and there will be no noticeable slip. The slip time is related
to the interfacial friction coefficient through the equation [39]:

τs = ∆mf/χ . (10)

In a recent paper [41] the dependence of the slip time, τs, on the amplitude
of the crystal surface oscillations, A, and on the surface coverage was investi-
gated. The results refer to the absorption of krypton atoms on gold at 85 ◦K. It
was found that there is a step-like transition between a low-coverage region,
where slippage exists at the solid–film interface, and a high-coverage region
where the film is locked to the surface. The transition occurs at different cov-
erage depending on the amplitude, A. Independent of coverage, the film is
attached rigidly to the surface for A ≤ 0.18 nm and slides for A > 0.4 nm. In
the region of sliding at small coverages the values of the slip time are in the
interval 2–10 ns, for 0.18 nm < A < 0.4 nm.

3
Quartz Crystal Operating in Contact with a Liquid

3.1
General Considerations

When a quartz crystal resonator operates in contact with a liquid, the shear
motion of the surface generates motion in the liquid near the interface. The
velocity field, v(r, ω), related to this motion in a semi-infinite Newtonian li-
quid is described by the linearized Navier–Stokes equation:

iωρv(r, ω) = – ∇P(r, ω) + η∆v(r, ω) , (11)

where P(r, ω), η and ρ are pressure, viscosity, and density of the liquid. Under
the typical conditions of the QCM experiments, where the shear velocities are
much smaller than the sound velocity in the liquid, the displacement of the
crystal does not generate compressional waves and a liquid can be considered
to be incompressible. If the surface is sufficiently smooth, the quartz oscil-
lations generate plane-parallel laminar flow in the liquid, as shown in Fig. 2.
The velocity field obtained as the solution of Eq. 11 for a flat surface has the
form:

vx(z) = vq0(ω) exp[– (1 + i)z/δ] , (12)
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Fig. 2 System geometry and velocity profiles. Curves 1 and 2 represent the velocity distri-
butions at the liquid–adsorbate interface without and with slippage, respectively. Curve 3
is the velocity distribution in the quartz. The thickness of various layers is not drawn to
scale

where vq0(ω) is the velocity of the liquid at the surface, and δ =
√

2η/ω0ρ.
Equation 12 represents a damped shear wave radiating into the liquid from
the surface of the oscillating resonator. δ is the velocity decay length of this
shear wave, which lies between 250 and 177 nm for dilute aqueous solutions at
room temperature, for crystals having a fundamental frequency in the range
5–10 MHz. Damping of the shear wave has a number of important conse-
quences. First, it ensures that the quartz crystal can operate in liquids, the
losses in the liquid being limited by the finite depth of penetration. Secondly,
a small portion of the liquid is coupled to the crystal motion and a frequency
decrease is observed. Thirdly, the viscous nature of motion gives rise to en-
ergy losses, which are sensed by the resonator, both as a decrease in frequency
and as an increase in the width of the resonance.

3.2
Non-slip Boundary Condition

The response of the QCM at the solid–liquid interface can be found by match-
ing the stress and the velocity fields in the medium in contact. It is usu-
ally assumed that the relative velocity at the boundary between the liquid
and the solid is zero. This corresponds to the non-slip boundary condition.
Strong experimental evidence supports this assumption on the macroscopic
scales [42, 43]. In this case the frequency shift, ∆fl, and the half-width of the
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resonance, ∆Γl, can be written as follows [12, 13]:

∆fl = –
f 3/2
0

√
ρη√

πρqµq
(13)

∆Γl =
f 3/2
0

√
ρη√

πρqµq
. (14)

Equations 13 and 14 show that the generation of a damped laminar flow in the
liquid causes a decrease in the resonance frequency and an increase in the res-
onance width, which are both proportional to

√
ρη. In contrast to the case of

the mass loading where ∆f is proportional to f 2
0 , the liquid-induced response

of the QCM is proportional to f 3/2
0 .

It is interesting to note that for both a surface film rigidly attached to the
resonator and a liquid in contact with the surface of the quartz crystal, the
shift of the resonant frequency can be written in the same form, as:

∆f = – f0
ρ

ρq
kheff . (15)

Where k = ω0
√

ρq/µq, ρ is the bulk density of the medium in contact with the
vibrating surface of the solid, a film or a liquid, and heff is the thickness of the
layer that responds to the quartz oscillations. In the case of the film, heff co-
incides with the thickness. For a semi-infinite liquid, heff presents a thickness
of liquid involved in the motion and it should be taken as equal to δ/2. The
difference in the frequency dependence of the QCM response in the two cases
is a result of the frequency dependency of δ. However, in contrast to the case
of pure mass loading, the effect of a liquid results not only in a frequency shift
but also in a broadening of the resonance.

3.3
Effect of a Thin Liquid Film at the Interface

The properties (the effective viscosity and density) of the liquid layer in close
vicinity to the interface can differ from their bulk values. There are various
reasons for these phenomena. For example, the structuring of a liquid in-
duced by the substrate and a non-uniform distribution of species in the liquid
near the substrate can influence significantly the properties of the liquid at
the interface. The liquid properties change with distance from the interface,
until the values corresponding to the bulk of solution have been reached. In
order to simplify the description of this non-uniformity on the QCM, we as-
sume here that a thin film of liquid, having different values of ηf and ρf, exists
at the interface [44]. To calculate the effect of this film on the frequency shift,
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one has to solve the wave equation for the elastic displacements in the quartz
crystal simultaneously with the linearized Navier–Stokes equation for the vel-
ocities in the film and in the bulk liquid under standard non-slip boundary
conditions.

Then the shift of the resonant frequency and the half-width of the reson-
ance can be written as:

∆f = –
f 3/2
0

√
ρη√

πµqρq
–

2f 2
0√

µqρq

[
ρ(1 –

η

ηf
) + (ρf – ρ)

]
df (16)

∆Γ =
f 3/2
0

√
ρη√

πµqρq
+

2f 2
0√

µqρq

[
ρ(1 –

η

ηf
) + (ρf – ρ)

] d2
f

δ
. (17)

Here df and ρf are the thickness and the density of the film. These equations
are valid in a particular case, when df 	 δ. The general case for arbitrary df
was given in [44]. The first terms in Eqs. 16 and 17 yield the liquid-induced
frequency shift and half-width of the resonance in the absence of a film. The
terms in brackets describe the influence of the viscosity and density of a film
of thickness df. According to Eqs. 16 and 17, the ratio of the film-induced half-
width to the film-induced frequency shift is proportional to df/δ. Thus, for
df/δ 	 1, the contribution of the thin interfacial film to the width is much
smaller than its contribution to the frequency shift. For ηf 
 η the film acts
as though it were rigidly attached to the surface: it causes a shift in frequency
equal to that caused by its mass. The thin film model has been successfully
used to describe the QCM response in electrochemical systems, which arises
due to the effect of electrostatic adsorption of ions and the effect of electric
field on viscosity inside the diffuse layer [44].

3.4
Slip Boundary Conditions

3.5
Slippage at Solid–Liquid Interface

Although the non-slip boundary condition has been remarkably successful
in reproducing the characteristics of liquid flow on the macroscopic scale, its
application for a description of liquid dynamics in microscopic liquid layers
is questionable. A number of experimental [45–52] and theoretical [53, 54]
studies suggest the possibility of slippage at solid–liquid interfaces. Recent re-
views [55–57] summarize the results of these works. Here we focus on the
effect of slippage on the QCM response.

The boundary condition is controlled by the extent to which the liquid
“feels” a spatial corrugation in the surface energy of the solid. This depends
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on a number of interfacial parameters, including the strength of the liquid–
liquid and liquid–solid interactions, the commensurability of the substrate
and the liquid structures, substrate and liquid densities, and also the rough-
ness of the interface. In order to quantify the slippage effect, the slip length,
bs, is usually introduced [53, 58, 59]. The traditional non-slip boundary con-
dition is replaced by:

dv(z, ω)
dz

∣∣∣∣
z=0

=
1
bs

(v(0, ω) – vq0(ω)) , (18)

where v(z, ω)is the velocity in the liquid and vq0(ω) is the velocity of the
quartz crystal surface, z = 0. Equation 18 expresses the discontinuity of the
velocity across the interface. For bs = 0, Eq. 18 is reduced to the usual non-
slip boundary condition: v(d, ω) = vq0(ω). The physical meaning of the slip
length can be clarified by comparing velocity profiles for the non-slip and slip
boundary conditions. These two profiles coincide when the non-slip bound-
ary condition is imposed at the surface shifted inside the solid by the distance
bs with respect to the actual interface.

Basically two different types of experimental approaches have been used
to study the boundary slip: local (direct) [45, 60] and effective (indirect)
methods [49–52, 61]. The first group of methods is based on application of
optical techniques using tracer particles or molecules to determine the flow
field. These techniques have a resolution of less than 100 nm, so they cannot
distinguish small differences in slip lengths. The effective methods assume
the boundary conditions (Eq. 18) or similar ones to hold at the substrate sur-
face and infer the slip length by measuring macroscopic quantities. These
methods have been the most popular so far and they include atomic force
microscopy (AFM), surface force apparatus (SFA), capillary techniques, and
QCM.

The experimental studies involving different techniques report slip ef-
fects varying over more than two orders of magnitude, and with qualita-
tively different shear-rate dependence, for similar systems [55, 56]. Drastically
different behaviors are reported for liquids wetting atomically smooth sur-
faces [45, 49, 55, 56, 62], for the influence of surface roughness [63, 64], and
for the amplitude and rate dependence of boundary slip on hydrophobic sur-
faces [48–52]. There is no clear understanding why such large differences
are obtained. A possible reason for the disagreement between the results
obtained by different groups is a contamination of substrate surfaces by
nanoparticles [49, 65]. Another parameter of obvious importance, which may
explain such variability, is surface roughness. We discuss the effect of rough-
ness on slippage in Sect. 5 of this chapter.

Within the QCM measurements the slip boundary condition (Eq. 18) re-
sults in the following equations for the resonant frequency shift and the
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half-width of the resonance:

∆f = –
f 2
0 ρδ√
ρqµq

[
1

(1 + bs/δ)2 + (bs/δ)2

]
≈ –

f 2
0 ρδ√
ρqµq

[
1 –

2bs

δ

]
(19)

∆Γ =
f 2
0 ρδ√
ρqµq

[
1 + 2λ/δ

(1 + bs/δ)2 + (bs/δ)2

]
≈ f 2

0 ρδ√
ρqµq

[
1 –

2b2
s

δ2

]
, (20)

where the right hand side equalities are valid for small values of the slip
length, bs/δ 	 1. Equations 19 and 20 show that the influence of the slippage
on the response of the QCM in liquid is determined by the ratio of the slip
length bs to the velocity decay length, δ. Even for a small value of bs ≈ 1 nm
the slippage-induced correction to the frequency shift, ∆fsl, will be of the
order of 6.5 Hz for the fundamental frequency of f0 = 5 MHz. This value far
exceeds the resolution of the QCM, but it is difficult to separate it from the
overall QCM signal.

It should be noted that in QCM measurement interfacial properties are
determined by averaging over the length scale δ. As a result one cannot
distinguish between a true slip on the molecular level and an apparent hy-
drodynamic slip, which can arise from a shear thinning of the liquid near the
surface. The latter leads to a steep velocity profile at the surface that appears
as a slip, although the velocity is continuous at the surface. Indeed, a compar-
ison between Eqs. 19–20 and Eqs. 16–17, which describe the effects of slip and
surface film on the resonant frequency respectively, allow a relationship to be
established between the apparent slip length and the film properties that give
the same QCM response:

bs

δ
=
(

η

ηf
–

ρf

ρ

)
. (21)

According to Eq. 21 the apparent boundary slip can be observed if the vis-
cosity and/or density depends on the composition (η = ηf, ρ = ρf) and the
less viscous and less dense fraction of the liquid wets the substrate better
than the more viscous and the more dense one (η > ηf, ρ > ρf). It is also clear
that there are two ways to obtain a large slip length. The first is by having
a macroscopically thick boundary layer, since the slip length has the same
order of magnitude as the thickness of this layer. The second is by providing
large values of the viscosity and/or density contrast. Similar conclusions were
reached in [66] for the Couette flow of liquid.

There were attempts [39] to estimate the slip length at the solid–liquid in-
terface on the basis of QCM experiments for adsorbed liquid layers. The slip
length can be expressed in terms of the coefficient of sliding friction, χ, at the
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interface:

bs =
η

χ
. (22)

Using the sliding friction coefficient χ = 3 g cm–2 s–, which is obtained for
a monolayer of water on Ag in [35] and on Au in [67], a surprisingly high
slip length of bs = 6×104 nm is obtained. Using this value for the inter-
face between Au and bulk water, Eq. 19 yields for f0 = 5 MHz a value of
∆f ≈ 7×10–3 Hz, which turns out to be smaller than that observed exper-
imentally by a factor of 105. This inconsistency is most likely caused by
a roughness of the electrode surface that reduces the effective slip length. An-
other reason could be the difference between friction at the solid–adsorbed
layer and the solid–liquid interfaces. For example, a decrease of the slip length
with increasing film thickness has been observed recently in QCM studies of
Kr films on gold electrodes [41].

From a theoretical point of view, molecular dynamics simulations (MD)
have shown [53, 66, 68] that the slip length is mostly determined by the ratio
of characteristic energies of liquid–substrate, εls and liquid–liquid εll in-
teractions, bs = f (εls/εll). For the simple Lennard–Jones liquids wetting an
atomically smooth surface, εls/εll ≥ 1, slip length is negligible except at very
high shear rate when the hydrodynamic boundary condition becomes non-
linear [53, 68]. It grows with the decrease of the parameter εls/εll. Substantial
slip develops in non-wetting situations when the contact angle is larger than
90◦, with slip lengths reaching 10–50 molecular sizes, and it depends on the
pressure [59]. It should also be noted that, for a given value of εls/εll, the
slip length is minimal when substrate and liquid molecules are of the same
size, and increases with the increase of incommensurability of the sizes. For
smaller coupling between the liquid and the substrate or incommensurability
of their sizes, the spatial corrugation in the interfacial energy is weaker and
interfacial slip can develop.

MD simulations and mode-coupling calculations [59, 68, 69] have shown
that the magnitude of the hydrodynamic slippage can be correlated to the
wettability of surfaces, which is characterized by a contact angle θ [59]:

cos(θ) = – 1 + 2
ρs

ρ

εls

εll
, (23)

where ρs and ρ are the density of the solid and the liquid, respectively. Thus,
the contact angle may be interpreted as a measure of the strength of inter-
action between the liquid and the solid, εls. One expects a large value of
the slip length for a non-wetting situation (cos(θ) →– 1), when εls becomes
much smaller than εll. This conclusion is in agreement with several experi-
mental observations [45, 70] reporting large slip lengths for partially wetting
liquids.

An early model for molecular slip based on wetting properties has been
suggested by Tolstoi [71] and extended in later publications [72]. This model
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predicts a relation between the slip length and the contact angle in the form

bs/σ = exp
[
ασ2γ

(
1 – cos θ

)
/kBT

]
– 1 , (24)

where σ is the molecular size, γ is the surface tension at the substrate–liquid
interface and α is a geometric parameter of order one. According to Eq. 24 the
slip length increases with the contact angle and can be orders of magnitude
above the molecular length. However, the values predicted by Eq. 24 are usu-
ally much smaller than those measured experimentally. As well, Eq. 24 does
not account for surface roughness or other surface properties.

The authors of [16, 73, 74] showed that surface treatments affecting liquid
contact angle influence the response of quartz crystal resonator: resonant
frequency changes caused by liquid loading were consistently smaller for sur-
faces having large liquid contact angles. These results were interpreted as
arising from the onset of slippage at the solid–liquid interface: the solid–
liquid interaction becomes sufficiently weak on a hydrophobic surface and
shear displacement becomes discontinuous at the interface. However, this in-
terpretation was called into question by a series of experiments, in which
the effect of a hydrophobic monolayer was examined on devices with various
surface roughness [14].

3.6
Slippage at the Adsorbate–Electrolyte Interface

Slippage is very sensitive to the molecular structure of the interface, as we
have already discussed. Thus, adsorption can strongly influence this phe-
nomenon. In order to describe the effect of adsorption, let it be assumed that
the adsorbed layer is rigidly attached to the surface, and slippage occurs at
the adsorbate–liquid interface, see Fig. 2. Then the equation of motion of the
adsorbed layer can be written as [61]:

iω∆mava(ω) = – µq
du(z)

dz
– χ(va(ω) – vl(ω)) , at z = d , (25)

where va(ω) is the velocity of the adsorbed layer and ∆ma is its mass per unit
area, while vl(ω) is the velocity of the liquid at the interface, z = d. The first
term on the right hand side of Eq. 25 describes the driving force acting on the
adsorbed layer from the quartz crystal, while the second term accounts for the
friction at the adsorbate–liquid interface.

The velocity fields in the crystal and the liquid are given by the solutions of
the wave equation in the crystal and the linearized Navier–Stokes equation in
the liquid, respectively. The solution of these equations and Eq. 25, with the
boundary conditions for shear stresses and velocities, leads to the following
equation for the shift of the resonant frequency, ∆f , and the change of the
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half-width of the resonance, ∆Γ :

∆f = –
2f 2

0 ∆ma

(ρqµq)1/2 –
f 3/2
0 (ρη)1/2

(πρqµq)1/2

[
1

(1 + a)2 + a2

]
(26)

∆Γ =
f 3/2
0 (ρη)1/2

(πρqµq)1/2

[
(1 + 2a)

(1 + a)2 + a2

]
. (27)

Writing Eqs. 26 and 27 we introduced a dimensionless parameter a = η/χδ =
bs/δ, which is the ratio of the slip length, bs = η/χ, and the velocity decay
length in the liquid, δ. Equations 26 and 27 include both the interfacial (ad-
sorption) and the bulk solution contributions to the response of the QCM,
given by Eqs. 13 and 14. The latter remains constant in adsorption studies,
and can be subtracted from the overall change given by Eqs. 26 and 27. As
a result, the shift of the resonant frequency and the change of the half-width
due to adsorption, which are measured experimentally, are given by the equa-
tions:

∆f – ∆fl ≡ ∆fm + ∆fsl = –
2f 2

0 ∆ma

(ρqµq)1/2 +
f 3/2
0 (ρη)1/2

(πρqµq)1/2

[
a(a + 1)

(1 + a)2 + a2

]
(28)

∆Γ – ∆Γl = –
2f 3/2

0 (ρη)1/2

(πρqµq)1/2

a2

(1 + a)2 + a2 . (29)

Equation 28 shows that there are two different contributions to the frequency
shift, ∆fm and ∆fsl, which originate from: (i) a change of the mass of the ad-
sorbed layer rigidly coupled to the surface (first term on the right hand side
of Eq. 28), and (ii) partial decoupling between the quartz crystal oscillations
and the solution, caused by slippage at the adsorbate–liquid interface (sec-
ond term on the right hand side of Eq. 28). It should be stressed here that, in
contrast to adsorption from the gas phase, adsorption from liquid phase can
result in either a decrease or an increase of the resonant frequency, depend-
ing on its effect on the mass of the layer rigidly coupled to the surface and
on changes of the coefficient of sliding friction, χ, which determined the slip
length, according to Eq. 22.

Consider the effect of adsorption on the parameters ∆ma and χ. The
layer adsorbed at the electrode–electrolyte interface contains two types of
molecules: adsorbate and solvent. In the framework of mean field approxima-
tion, the effective interaction between the liquid and the adsorbed layer can
be characterized by the energy εls ≈ εlaΓ a/Γ m + εll(1 – Γ a/Γ m), where εla is
the characteristic energy of the adsorbate–liquid interaction Γ a and Γ m are
the surface excess and the maximum surface excess of the adsorbate, respec-
tively. As a result, the slip length at the adsorbed layer–liquid interface can be
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expressed as

bs = f [(εla/εll)Γ a/Γ m + (1 – Γ a/Γ m)] ≈ f (εla/εll)Γ a/Γ m , (30)

showing an increase of bs with Γ a for εla/εll < 1. Equation 30 is the interpola-
tion formula that describes correctly the behavior of bs for small Γ a/Γ m and
for Γ a/Γ m = 1. We note that, when the liquid and the adsorbate molecules are
of significantly different size, the incommensurability between the structures
of the adsorbed layer and the liquid grows with Γ a, which may lead to an ad-
ditional enhancement of the slip length. What is important here is a relation
between scales of corrugations of the potential energy in the solvent and the
adsorbate molecules, rather than their physical size.

The foregoing discussion shows that for εla/εll < 1 the parameter a = bs/δ,
in Eqs. 28 and 29, characterizing the effect of slippage on the response of the
QCM increases with Γ a. For instance, for εla/εll ≈ 0.5, it may reach values
as high as a ≈ 10–2, for Γ a ≈ Γ m. Correspondingly, the adsorption-induced
slippage leads to a positive frequency shift, which grows with Γ a. This con-
tribution can be larger than the effect of added weight. As a result, the overall
frequency shift due to adsorption can be positive and increases with Γ a [61].
It should be noted that, for small values of the parameter a, the effect of slip-
page on the resonance frequency shift is much larger than its effect on the
width of the resonance (Eqs. 28 and 29). Also, slippage will always cause a de-
crease in the width of the resonance. Thus, if a positive shift of frequency with
adsorption is to be associated with enhanced slippage, it should also be exhib-
ited as a reduction of the width of the resonance, although the latter may be
hard to detect experimentally.

The approach described above has been applied to treat experimental data
on adsorption of pyridine from the electrolyte solutions [61]. Using Eq. 28
made it possible to determine the slip length as a function of surface excesses
of pyridine. In agreement with the theoretical prediction, it was found that
bs grows with Γ a. The values of bs did not exceed 0.3 nm and 1.2 nm for
adsorption from butanol and water solutions, respectively. The dependence
of slip length on surface excess was essentially linear (Eq. 30) for pyridine
adsorption from butanol solution, but deviated from linearity for pyridine
adsorption from water. The deviation was attributed to a reorientation of ad-
sorbed pyridine molecules at the Au surface.

Above, we discussed the situation where the adsorbed layer is rigidly at-
tached to the oscillating crystal surface, and there is finite slippage at the
adsorbate–liquid interface. An alternative model, based on the assumption
that slippage occurs at the crystal-adsorbed interface and non-slip boundary
conditions apply to the adsorbate–liquid interface, can also be considered.
For a small slip length, bs 	 δ, this model leads to the same results for the
shift of the complex resonance frequency as the model discussed above and
measurements employing the QCM cannot distinguish between them. How-
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ever, in the case of specific adsorption, the assumption of slippage at the
crystal-adsorbed layer interface is hard to justify, since the characteristic en-
ergy of adsorbate–substrate interactions, εas, is larger than the energy of
adsorbate–adsorbate interactions, εaa, hence the corresponding slip length
bs = f (εas/εaa) is expected to be very small.

4
Quartz Crystals with Rough Surfaces Operating in Liquids

4.1
Theoretical Approaches

When the surface of a quartz crystal resonator is rough, the liquid mo-
tion generated by the oscillating surface becomes much more complicated
than for the smooth surface. A variety of additional mechanisms of coup-
ling between the acoustic waves in the solid and the motion in the liquid can
arise. These may include generation of non-laminar motion, the conversion
of in-plane surface motion to motion normal to the surface, and trapping of
liquid by cavities and pores. It has been experimentally demonstrated [14,
17, 75–79] that the roughness-induced response of the QCM includes both
the inertial and viscous contributions. Measurements of the complex shear
mechanical impedance [14] were used to analyze different contributions to
the roughness-induced response of the quartz resonator, and to correlate
the experimental results with the surface roughness of the quartz resonator.
Nevertheless, this subject is poorly developed, and the interpretation of ex-
perimental results can often be ambiguous.

The dependence of the QCM response on the morphology of the interface
is determined by the relation between the characteristic sizes of roughness
and the length scales of the shear modes in the liquid and the quartz res-
onator. The length scales in the liquid (the velocity decay length, δ) and
in the crystal (wave length of the shear-mode oscillations, λq) are defined
by the Navier–Stokes equation and by the wave equation for elastic dis-
placement, respectively. For typical frequencies used in QCM experiments,
f0 ≈ 5–10 MHz, the lengths δ = (η/πf0ρ)1/2 and λq = (µq/ρq)1/2f –1

0 are of the
order 0.177–0.25 µm and 0.03–0.1 cm, respectively.

The surface profile may be specified by a single valued function z = ξ(R)
of the lateral coordinates R that defines a local height of the surface with re-
spect to a reference plane (z = 0). The latter is chosen so that the average value
of ξ(R) will equal zero. Surfaces used in QCM experiments may have vari-
ous scales of roughness. In order to clarify this point, let us consider the two
limiting cases: slight and strong roughness structures, which are schemati-
cally shown in Fig. 3. For the slight roughness (Fig. 3a) the “amplitude” of
deviation from the reference plane z = 0 is much less than the lateral charac-



Probing the Solid/Liquid Interface with the Quartz Crystal Microbalance 131

Fig. 3 Schematic representation of a slight (a) and a strong (b) roughness. The profile of
slight roughness is described by the function z = ξ(R). L is the effective thickness of the
“porous” film that represents strong roughness. (From [27])

teristic length. In the case of strong roughness (Fig. 3b), the “amplitude” and
“period” of repetitions are of the same order of magnitude.

In order to stress the multiscale nature of roughness, the profile function
can be written as the sum of the functions that characterize the profile of the
specific scale i:

ξ(R) =
∑

i

ξi(R) . (31)

For the calculation of the response of the QCM, the height–height pair corre-
lation function is needed [80]. When rough structures having different scales
do not correlate, the total correlation function can be written in the form:

〈ξ(R′)ξ(R′ – R)〉 =
∑

i

〈ξi(R′)ξi(R′ – R)〉 , (32)

where 〈ξi(R′)ξi(R′ – R)〉 is the correlation function for the scale i and 〈 〉
means averaging over the lateral coordinates. Usually one assumes that the
correlation function 〈ξi(R′)ξi(R′ – R)〉 has a Gaussian form 〈ξi(R′)ξi(R′ – R)〉 =
h2

i exp(– |R|2 /l2i ), where hi is the root mean square height of the roughness
and li is the lateral correlation length, which represents the lateral scale.
Thus, the morphology of the rough surface can be characterized by a set of
lengths [81].

It is impossible at the present time to provide a unified description of the
response of the QCM for non-uniform solid–liquid interfaces with arbitrary
geometrical structure. Below we summarize results obtained for the limiting
cases of slight and strong roughness.
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4.1.1
Slight Roughness

For slightly rough surfaces, the problem was solved in the framework of per-
turbation theory with respect to the parameters |∇ξ(R)| 	 1 and h/δ 	 1,
where h is the root mean square height of the electrode surface [80, 82]. The
first condition means that the local slope of the interface is small, i.e., the
height, h, is less than the lateral characteristic length (i.e., the correlation
length, l) of the roughness.

For roughness described by a one-scale correlation function, the shift in
the resonant frequency and the half-width of the resonance can be written in
the following form [80, 82]:

∆f = –
f 2
0 ρδ

(ρqµq)1/2

[
1 +

h2

l2
F(l/δ)

]
(33)

∆Γ =
f 2
0 ρδ

(ρqµq)1/2

[
1 +

h2

l2
Φ(l/δ)

]
. (34)

The scaling functions F(l/δ) and Φ(l/δ) are expressed through the Fourier
components of the height–height correlation function of the roughness
g(K) [82], which can be defined as:

h2g(K) =
∫

dR exp(– iKR)〈ξ(R′)ξ(R′ – R)〉 . (35)

The correlation function provides the most detailed characterization of the
surface structure. Sometimes the surface roughness is described by an inte-
gral parameter, the roughness factor, R, which is the ratio between the true
and the apparent (geometrical) surface area. For slight roughness, the rough-
ness factor is expressed through the correlation function [82] as:

R = 1 +
h2

2

∫
dK

(2π)2 g(K)K2 . (36)

For the Gaussian random roughness g(K) = πl2 exp(– l2K2/4) and Eq. 36
yield R = 1 + 2h2/l2.

It should be noted that the roughness factor, R, relevant to the operation
of the QCM is not the same as the roughness factor commonly referred to
in studies of adsorption and interfacial electrochemistry, because of the dif-
ference in corresponding length scales. The QCM roughness factor is mostly
determined by the roughness on the scale of the velocity decay length in the
liquid, δ, which assumes values of hundreds of nanometers, depending on
the frequency of the crystal and the viscosity and density of the liquid. The
“interfacial” roughness factor is related to the structure of the molecular ad-
sorbed layer, or the double layer, or to the charge transfer at the interface, and
therefore its characteristic scale is about 1 nm.
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The first terms in braces in Eqs. 33 and 34 define the shift and the broad-
ening of the resonance at the interface between an ideally smooth crystal and
the liquid [13]. The surface roughness leads to an additional decrease of the
resonant frequency and a broadening of the half-width of the resonance, ex-
pressed by the second terms in this equation.

The particular form of the scaling functions F(l/δ) and Φ(l/δ) is deter-
mined by the morphology of the surface. However, the asymptotic behavior
of these functions for l/δ 
 1 and l/δ 	 1 is universal [82] and has the form:

F(l/δ) = (l/δ)[α1 + α2δ/l] at l/δ 
 1 (37)

F(l/δ) = (l/δ)[β1 + β2l/δ] at l/δ 	 1 (38)

Φ(l/δ) = γ1 at l/δ 
 1 (39)

Φ(l/δ) = (l/δ)2γ2 at l/δ 	 1 . (40)

For random Gaussian roughness, the parameters are:

α1 = π1/2, α2 = 2, β1 = 3π1/2, β2 = – 2 and γ1 = γ2 = 2 . (41)

It should be noted that for l/δ 
 1 the roughness-induced frequency shift in-
cludes a term that does not depend on the viscosity of the liquid, the first
term in Eqs. 37 and 33. It reflects the effect of the non-uniform pressure dis-
tribution, which is developed in the liquid under the influence of a rough
oscillating surface [80]. The corresponding contribution has the form of the
Sauerbrey equation. This effect does not exist for smooth interfaces. The sec-
ond term in Eq. 37 and Eq. 39 describe a viscous contribution to the QCM
response. Their contribution to ∆f has the form of the QCM response at
a smooth liquid–solid interface, but includes an additional factor R that is
a roughness factor of the surface. The latter is a consequence of the fact that
for l/δ 
 1 the liquid “sees” the interface as being locally flat, but with R times
its apparent surface area.

Results obtained in [80, 82] show that the influence of slight surface rough-
ness on the frequency shift cannot be explained in terms of the mass of liquid
“trapped” by surface cavities, as proposed in [76, 77]. This statement can be
illustrated by consideration of the sinusoidal roughness profile. The mass of
the liquid “trapped” by sinusoidal grooves does not depend on the slope of
the roughness, h/l, and is equal to S∗h, where S is the area of the crys-
tal. However, Eq. 33 demonstrates that the roughness-induced frequency shift
does increases with increasing slope.

Equation 34 and the asymptotic behavior of the scaling functions show
that in the regions where l/δ 
 1 and l/δ 	 1, the width is proportional to the
factors (ρη)1/2f 3/2

0 and ρ3/2η–1/2f 5/2
0 , respectively. In the high viscosity limit,

when η > l2πρf0, the roughness-induced frequency shift approaches a con-
stant value and the roughness-induced width tends to zero.
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The results obtained make it possible to estimate the effect of roughness on
the response of the QCM, if the surface profiles function ξ(R) can be found
from independent measurements.

4.1.2
Strong Roughness

Perturbation theory cannot be applied to describe the effect of the strong
roughness. An approach based on Brinkman’s equation has been used in-
stead to describe the hydrodynamics in the interfacial region [83]. The flow
of a liquid through a non-uniform surface layer has been treated as the
flow of a liquid through a porous medium [84–86]. The morphology of the
interfacial layer of thickness, L, has been characterized by a local permea-
bility, ξH, that depends on the effective porosity of the layer, φ. A number
of equations for the permeability have been suggested. For instance, the em-
pirical Kozeny–Carman equation [84] yields a relationship between ξ2

H and
the effective porosity ξ2

H ∼ r2φ3/(1 – φ)2, where r is the characteristic size of
inhomogeneities.

The flow of liquid through the interfacial layer can be described by the
following equation [83]:

iωρv(z, ω) = η
d2

dz2 v(z, ω) + ηξ–2
H [vq0 – v(z, ω)] , (42)

where vq0 is the amplitude of the quartz surface velocity and v(z, t) =
v(z, ω) exp(iωt) is the velocity of the liquid in the layer. In this equation the
effect of the solid phase on the flow of liquid is given by the resistive force,
which has a Darcy-like form, ηξ–2

H [vq0 – v(z, ω)]. In the case of high effective
porosity, the resistive force is small and Eq. 47 is reduced to the Navier–
Stokes equation, describing the motion of the liquid in contact with a smooth
quartz surface. For a given viscosity, the resistive force increases with decreas-
ing effective porosity and strongly influences the liquid motion. At very low
effective porosity all the liquid located in the layer is trapped by the rough-
ness and moves with a velocity equal to the velocity of the crystal surface
itself.

Brinkman’s equation represents a variant of the effective medium approx-
imation, which does not describe explicitly the generation of non-laminar
liquid motion and conversion of the in-plane surface motion into the normal-
to-interface liquid motion. These effects result in additional channels of
energy dissipation, which are effectively included in the model by introduc-
tion of the Darcy-like resistive force.
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The liquid-induced frequency shift and the half-width of the resonance
have the following form [83]

∆f = –
2f 2

0 ρ

(µqρq)1/2

×Re
{

1
q0

+
L

ξ2
Hq2

1

–
1
W

1

ξ2
Hq2

1

[
2q0

q1
[cosh(q1L) – 1] + sinh(q1L)

]}
(43)

∆Γ = –
2f 2

0 ρ

(µqρq)1/2

× Im
{

1
q0

+
L

ξ2
Hq2

1
–

1
W

1

ξ2
Hq2

1

[
2q0

q1
[cosh(q1L) – 1] + sinh(q1L)

]}
.

(44)

Here q0 = (i2πf0ρ/η)1/2, q2
1 = q2

0 + ξ–2
H , and W = q1 cosh(q1L) + q0 sinh(q1L).

The first terms on the right-hand sides of Eqs. 43 and 44 describe the response
of the QCM for the smooth quartz crystal–liquid interface [13]. The addi-
tional terms present the shift and the half-width of the QCM response caused
by the interaction of the liquid with a non-uniform interfacial layer.

When the permeability length scale is the shortest length of the problem,
ξH 	 δ and ξH 	 L, the layer-induced shift, ∆fL, is proportional to the dens-
ity of the liquid and does not depend on the viscosity. It has the form of
the Sauerbrey equation for mass loading. This effect results from the inertial
motion of the liquid trapped by the inhomogeneities in the interfacial layer.

∆fL = –
2f 2

0 ρ

(µqρq)1/2 (L – ξH) . (45)

The effective thickness of the liquid film rigidly attached to the oscillating
surface is equal to L – ξH, and is less than the thickness of the inhomoge-
neous layer, L. The increase of the permeability ξH leads to the enhancement
of the velocity gradient in the layer, which results in a decrease of the shift due
to mass loading, and an increase of the width caused by the energy dissipa-
tion. When the layer thickness is the shortest length of the problem, L 	 δ,
L 	 ξH, and ξH 	 δ, the frequency shift is also proportional to the density of
the liquid and does not depend on viscosity:

∆fL = –
2f 2

0 ρL

3(µqρq)1/2 (L/ξH)2 . (46)

However, in contrast to the previous case, it cannot be related to the mass of
trapped liquid. The correction to the width of the resonance depends on the
viscosity and is substantially less than the layer-induced shift.
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4.2
Experimental Studies

4.2.1
Non-conducting Liquids

Experimentally, correlation between the QCM signal and the surface morph-
ology, as determined by microprofilometry and STM techniques, has already
been established in the early experiments with the QCM in liquids [14, 16].
Measurements indicated that the mechanical impedance, ZL, increases with
increasing surface roughness. In contrast to smooth surfaces, interactions of
rough oscillating surfaces with liquids do not contribute equally to Re(ZL)
and Im(ZL) [14, 87, 88]. It was also found that the roughness leads to new
dependencies of the frequency shift on viscosity, which does not appear for
smooth surfaces. For instance, the experimental data obtained in methanol–
water mixtures and in alcohols [16] demonstrated that the effect of roughness
on the QCM is most pronounced for low viscosities, where the liquid-induced
shift of the resonance frequency is small. This conclusion agrees with the the-
oretical predictions discussed in Sect. 4.1 (see Eqs. 33 and 34). Theory shows
that, at low viscosities, the QCM response in liquids is mainly determined
by the contribution of the non-uniform pressure distribution, which is de-
veloped in the liquid under the influence of a rough oscillating surface [89].

In [27] experiments in liquids having a wide range of viscosity and dens-
ity were performed, and the response of the QCM was analyzed, using the
theoretical models described in Sect. 4.1. Both parameters characterizing the
resonator, the shift in fundamental frequency and the width of the resonance,
were measured simultaneously. The usual form of presenting the experimen-
tal data in liquids is to plot the real and the imaginary components of the
response of the QCM as a function of the density of the liquid or of the pa-
rameter

√
ρη. However, these parameters are the natural variables only for

ideally flat interfaces. Equations 33, 34, 43 and 44 show that for rough sur-
faces it is more convenient to consider the quantities ∆Γ/f 2ρ and ∆f /f 2ρ, as
a function of the velocity decay length in the liquid, δ, as shown in Fig. 4. The
dependence of these two parameters on δ is linear for the ideally smooth sur-
face of the quartz crystal resonator loaded on one side, (see line 1 in Fig. 4a,b).

Close points in these figures represent data measured on a relatively
smooth surface, (obtained by vacuum sputtering), while open points were
taken on a surface with strong roughness, prepared by electroplating. The de-
viation of the data from the straight line 1 calculated for an ideally smooth
surface increases with increasing roughness, as expected.

The experimental dependence of the quantity ∆Γ/f 2ρ on the velocity de-
cay length exhibits a sharp increase at low values of δ, followed by a gentle
growth at large values of δ. This effect becomes more pronounced with in-
creasing roughness (open circles).
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Fig. 4 Dependence a of the parameter ∆Γ/ρf 2 and b ∆f /ρf 2 on the velocity decay
length in different liquids, for an ideally smooth surface (lines 1), and experimental data
for two real surfaces: vacuum-sputtered gold (closed circles) and electrochemically de-
posited gold (open circles). Lines 2 and 3 represent results of parameter fitting, see text.
(From [27])

In Fig. 5a, the theoretical dependence of the function ∆Γ/f 2ρ on δ is given
(lines 2–4) for different values of the local permeability, ξH, and a fixed value
of the film thickness parameter, L, in the framework of the theory developed
for strong roughness (Sect. 4.1.2). At large values of δ, the calculated lines ap-
proach line 1 for an ideally smooth surface. This behavior can be understood
since it becomes difficult for the liquid to move inside pores in the surface
film when δ is much larger than the size of the pores. In the limiting case the
liquid moves in-phase with the solid surface, acting only as a mass loading,
but adding nothing to the width of the resonance.

Line 5 in Fig. 5 is calculated for a surface having slight roughness, accord-
ing to Eq. 34 and 39. The hydrodynamic roughness factor R is chosen so that
this line connects the origin with the experimental point for the highest value
of δ. This yielded a value of R = 1.3.

Curves 2–4 in Fig. 5b were calculated for different values of the film thick-
ness, L, and a constant value of the local permeability, ξH, according to Eq. 44.
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Fig. 5 Dependence of the parameter ∆Γ/ρf 2 on the velocity decay length: points ex-
perimental data, line 1 in both plots indicates an ideally smooth surface. a Influence of
strong roughness according to Eq. 44 for different values of ξH: 2 69, 3 172, 4 276 nm) and
L = 506 nm. b The same for different values of L: 2 460, 3 506, 4 690 nm and ξH = 172 nm.
Line 5 in both plots was calculated for slight roughness (roughness factor R = 1.3, Eqs. 34
and 39). (From [27])

Lines 1 and 5 are the same as in Fig. 5a. The width of the resonance is seen to
increase with increasing film thickness.

Figure 5 shows that there is no way to fit the experimental data assum-
ing that only one type of roughness is presented on the surface. We are thus
forced to conclude that, in these experiments the surface has a multiscale
roughness, shown schematically in Fig. 6. The structure of this rough surface
is a combination of a slight and a strong roughness shown in Fig. 3a,b. When
this is taken into account, it is possible to use Eqs. 33, 34, 43, and 44 to calcu-
late the shift in resonance frequency and shift in the width of the resonance,
and fit the experiments to the calculated curves with properly chosen values
of the parameters of strong roughness. The result of such a fit is shown in
Fig. 4, curves 2 and 3. For details of the fitting procedure, the limitations asso-
ciated with the use of a simplified model, and the comparison with STM data
see [27].
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Fig. 6 Schematic representation of multiscale roughness. This structure is a combination
of a slight and a strong roughness shown in Fig. 3a,b. (From [27])

Here we should emphasize only one point, of major importance for elec-
trochemical use of the QCM. The velocity decay length of most solvents
of interest for electrochemical and analytical purposes happen to be at the
lower end of the values of δ shown in Figs. 4 and 5. This is the region
where the interplay between the two types of roughness is the strongest, and
it is the most difficult to fit the data to either model. This inherent diffi-
culty should be borne in mind whenever an attempt is made to interpret the
impedance response of the QCM operating in typical solvents such as water,
alcohols, or many of the other non-aqueous solvents employed in electro-
chemistry.

The importance of measuring the imaginary component of the quartz
crystal in order to study metal deposition and dissolution processes has also
been noted by the authors of [26, 88]. In particularly, in this way they [26] suc-
ceeded in separating contributions of mass loading and roughness to QCM
response and to characterize the electrode roughness.

Recently it has been suggested that shear oscillations of rough surfaces can
generate acoustic compressional waves in the liquid at the second harmonic
frequency if the amplitude of oscillations is large enough [90, 91]. This effect
has been detected while electrochemically growing a rough metal surface on
the QCM device. It should be noted that mass loading, viscosity, and slippage
effect do not contribute to the second harmonic generation, and thus the sec-
ond harmonic generation would allow for an independent measurement of
the surface roughness with the QCM technique. Unfortunately under realistic
conditions, the acoustic signal at the second harmonic frequency is too small
to obtain quantitative results.

4.2.2
The Electrochemical Case

There are only few publications where the response of the QCM in electro-
chemical systems has been studied on intentionally roughened surfaces [25,
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26, 92–95]. Figure 7 shows how the response of the EQCM changes with the
change of surface roughness, induced by extensive cycling into the region of
surface oxide formation. When the surface was not roughened, the loops de-

Fig. 7 a Influence of the number of oxidation–reduction cycles on the frequency re-
sponse for platinum in 0.2 M H2SO4, at 100 mV/sec (curve 1 100, 2 2000, 3 10 000 cycles).
b Stabilized cycling voltammogram for Pt electrode. c Frequency shift and d width of res-
onance for gold electrodes in 0.1 M HClO4 at 10 mV/sec (curve 1 4, 2 100, 3 500 cycles).
(a and b from [93])
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scribing the shift in frequency with potential, associated with surface oxide
formation, have clockwise directions, (see curves 1 in Fig. 7a,c). On very
rough surfaces, (represented by curves 3), the loops are in the opposite di-
rection. The data for platinum electrode (Fig. 7a,b) were taken from [93], in
which only the shift of resonance frequency was measured. The data on the
gold electrode were obtained in our own laboratory, and both the shift of fre-
quency and the width of the resonance were measured (Fig. 7c,d). The latter
shows that when the surface is sufficiently smooth there are no changes in the
width of resonance with the potential. The corresponding curves for rough
surfaces, when the resonance is wide (∆Γ > 1.5 kHz), show strong potential
dependence and remarkable hysteresis. On the one hand the comparison of
voltammograms and dependence of the responses of the EQCM on potential
clearly shows that the hysteresis is associated with surface oxide formation.
On the other hand, the effect cannot be ascribed to mass loading because the
frequency shift on rough surfaces is not only larger than that on smooth sur-
faces – the effect has a reverse sign. Moreover, mass loading alone cannot lead
to changes in ∆Γ . The loop of frequency shift also changes its sign in the re-
gion of hydrogen adsorption on platinum. It should be noted that the surface
of Pt is much more resistant to roughening than that of gold. Thus, comparing
Figs. 7a,c it would seem that cycling 2000 and 10 000 times on Pt has an effect
comparable to that of cycling Au 100 and 500 times, respectively. However, the
experiments on Pt and Au shown they were performed under similar, but not
identical, conditions.

Comparison of Fig. 7c,d for a highly rough surface (curve 3) shows that
a decrease in width is associated with a positive shift in resonance frequency,
in the region of surface oxide formation. This is consistent with the notion
that both effects result from a weakening of the interactions between the vi-
brating surface and the liquid under surface oxidation. Similar results have
been obtained for gold surfaces having different degrees of roughness.

All the data obtained with rough surfaces and the discussion of these
data [25, 28, 92, 93, 95] lead to the following conclusions

1. The roughness of the electrode has a profound influence on the response
of the EQCM, see Figs. 7 and 8. This may explain the unusually large dis-
crepancies among data obtained with the EQCM in different laboratories
(not necessarily on intentionally roughened surfaces). A good example is
the large discrepancy in data reported for the region of surface oxide for-
mation on gold [76, 96–100].

2. The response of the EQCM on rough surfaces cannot be treated in terms of
the electrochemically defined roughness factor R̃, which is obtained from
adsorption phenomena, e.g., from data such as presented in Fig. 9. This
quantity can be considered as representing all adsorption sites on the sur-
face, which is equivalent to the surface roughness on the atomic scale.
However, the response of the EQCM depends on roughness on a meso-
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scopic scale, which is comparable to the hydrodynamic velocity decay
length rather than to the double layer thickness.

3. The width of the resonance is an important characteristic of the surface, as
seen in Fig. 8b, and can serve as a semi-quantitative measure of its rough-
ness, on the scale relevant to the response of the EQCM. Unfortunately,
only very few publication so far contain this information.

In addition to the conclusions drawn above, one is still left with the need to
interpret the dependence of the response of the EQCM on potential on rough
surfaces (Figs. 7 and 8). Attempts to provide a qualitative interpretation were
made in [95, 101]. The authors ascribed the effects on rough surfaces to “for-
mation of a structured region of solvent which leads to increased viscosity
and consequent frequency changes” and agreed that “the exact nature of the
changes in the surface ... still has to be established” [95]. Thus, they assumed
that the properties of that “structured region of solvent” near the electrode
depend on adsorption and on potential.

Fig. 8 Dependence of the frequency shift (a) and the half-width of the resonance (b) of
the EQCM on potential, for different gold surfaces, S1–S4 [28]. (From [28])
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Fig. 9 Cycling voltammetry (5 mV/sec) for gold electrodes of different roughness [28]. S1
untreated (as received) surface. S2–S4 surfaces obtained by electrodeposition of gold at
currents densities close to the limiting current density. Inset: approximate values of the
half-width of resonance. Curves S2 and S3 lie between curves S1 and S4, in some parts
coinciding with them. Arrows P(S1) and P(S4), show the peak currents for reduction of
the surface oxide, measured for the surfaces S1 and S4, respectively. (From [28])

5
Slippage at Rough Surfaces

Mesoscopic roughness at the solid–liquid interface can greatly modify both
interfacial flow and static wetting properties leading to two behaviors, ei-
ther a decrease [45, 64, 102] or an increase [63, 103] of surface slippage with
roughness.

The calculations, which have been made for periodic and random sur-
faces [6, 104–106], demonstrated that if the liquid fully wets the solid surface,
the roughness reduces slip and shifts the position of the effective surface
plane (the plane where the liquid and substrate velocities are equal) in the
direction of the liquid phase [6, 107]. The authors of [39, 108] suggested intro-
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duction of an effective slip length, beff
s , which takes into account both slippage

and roughness, in order to describe an interplay between the slippage and
roughness. In this manner, liquid flow at a rough surface has been simulated
as a flow at a smooth surface with an effective slip length. Application of
this approach to the QCM problem [6] yields the following equation for the
effective slip length:

beff
s = bs

{
1 –
(

h0k0

2

)2 [3 + 4bsk0

1 + 2bsk0

]}
–

k0h2
0

2

[
2 + 3bsk0

(1 + bsk0)(1 + 2bsk0)

]
.

(47)

Equation 47 was derived for a sinusoidal profile of roughness, z(x) = d +
h0 sin(k0x), with an amplitude h0 and a period of 2π/k0, assuming that the de-
cay length, δ, is the largest characteristic length of the problem, δ/bs 
 1 and
δk0 
 1. Beyond these conditions the effective slip length is a complex func-
tion. Equation 47 shows that roughness diminishes the influence of slippage
on the QCM response, namely the effective slip length becomes smaller than
the corresponding length for the smooth interface. At rough interfaces, the ef-
fective slip length decreases with an increase of the amplitude of the surface
corrugation and with a decrease of its period.

It should be noted that an effective slip length is not an intrinsic prop-
erty of the surface. Its value depends also on the experimental configuration,
for instance, beff

s found for the Poiseuille flow between rough surfaces [108]
differs from the corresponding value obtained for QCM experiments (Eq. 47).

When the liquid partially wets the solid surface, roughness can lead to
the spontaneous dewetting of a surface and the appearance of a super-
hydrophobic state, resulting in large slip length [103, 109, 110], and possibly
in shear-rate-dependent effects [111]. It was also claimed that under these
conditions roughness favors the formation of vapor or gas pockets (nanobub-
bles) trapped at the solid surface, which could be an important factor in slip-
page phenomena [55, 56]. It was proposed to simulate the effect of nanobub-
bles on the QCM signal through the introduction of laterally heterogeneous
slip [112]. Over the last 5 years many groups have reported experimental ob-
servations of nanobubbles against hydrophobic surfaces in water [113–120].
The amount of slip has been observed experimentally to depend on the type
and quantity of dissolved gas. However, there is great variation in published
results and the observed behaviors are very sensitive to the surface prep-
aration. The formation and stability of nanobubbles, even on hydrophobic
surfaces, is not easily explained.

The formation of bubbles at solid surfaces has also been studied with
the QCM technique. In [121] a non-linear dependence of ∆f /ρ on (ηρ)0.5

was interpreted as the result of the presence of nanobubbles on the surface.
However, it should be noted that the observed dependencies could be also
explained using the concept of multiscale roughness discussed above (see
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Sects. 4.1.2 and 4.2.1). In order to check the hypothesis of bubble formation,
the authors of [122] immersed dry surfaces of the QCM of different roughness
and hydrophobicity into electrolytes saturated by oxygen (or hydrogen). In
all cases removing gases in situ by electrochemical reduction (or oxidation)
did not result in changes of either the resonant frequency or the width of res-
onance. This led to a conclusion that even on freshly formed metal/aqueous
solution contacts, the size and coverage of bubbles (if they exist) are so low
that they could not influence the QCM response.

The above discussion shows that existing literature contains arguments,
both theoretical and experimental, in favor as well as against the presence of
nanobubbles at the metal/liquid interface. Many more targeted experiments
and theoretical works are required to clarify this issue.

6
Conclusion

The quartz crystal resonator is a useful device for the study of thin-layer and
interfacial phenomena. The crystals commonly employed have a fundamental
resonance frequency of 5–10 MHz and a resolution of the order of 0.1–0.5 Hz.
This high resolution makes the device sensitive to a myriad of physical phe-
nomena, some of which are interrelated and some quite independent of each
other. It cannot be overemphasized that the quartz crystal resonator acts as
a true microbalance (more appropriately a nanobalance) only if in the course
of the process being studied, the nature of the interface (its roughness, slip-
page, the density and viscosity of the solution adjacent to it, and the structure
of the solvent in contact with it) is maintained constant.

In this chapter we have limited our discussion to the effects of interfacial
structure on the QCM response in liquids.

Some of the main conclusions are listed below:

• The shift in frequency observed experimentally cannot be interpreted in
terms of a change in mass loading alone, unless the conditions have been
carefully chosen to ensure that this is the only factor affecting the reson-
ance frequency.

• It seems to be essential to measure the admittance spectrum and de-
termine both the resonant frequency shift and the width of the reson-
ance simultaneously. This yields additional information not available from
measurement of the resonant frequency alone, and can hence provides
more detailed interpretation of processes occurring at the solid–liquid
interface.

• Surface roughness is of paramount importance in the use of the QCM in li-
quids. The existing theories provide a description of the QCM response for
rough surfaces in two limiting cases of slight and strong roughness. How-
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ever, much is left to be developed for a quantitative interpretation of data
obtained for real surfaces. In order to overcome the gap between exist-
ing theory and experiments, measurements on specially prepared surfaces
with well-defined roughness should be performed.

• Numerous experimental techniques employed to study solid–liquid inter-
faces (X-ray and neutron scattering, optical, AFM and STM, adsorption,
double layer capacitance, rotating disc electrode and QCM) are sensitive to
the roughness of substrate surfaces. It should be noted that each technique
probes roughness on the particular characteristic scale only, which is the
atomic scale for X-ray and neutron scattering, AFM, STM, adsorption and
double-layer capacitance measurements; a wave-length of light for opti-
cal measurements; the Nernst diffusion layer for rotating disc electrode
experiments; and the hydrodynamic velocity decay length for the QCM.
Thus, the impedance of the QCM would be expected to respond to rough-
ness of about 10 nm and above, ignoring most of the so-called atomic scale
roughness, but detecting roughness that can usually be ignored in experi-
ments conducted under mass transport limitations.

• The results obtained by the QCM contain information relevant to the un-
derstanding of phenomena in the area of nanotribology, where techniques
such as SFA and AFM are used. In both cases the results carry information
regarding the properties of a nanoscale layer of liquid at the interface.

• An important part of modern experimental surface science and electro-
chemistry has been performed on single-crystal electrodes. In contrast,
the metal deposited on the surface of the quartz resonator always has
a rough surface and at best a preferred crystal orientation. Studies with
a QCM having a true single crystal surface have not yet been reported.
Making a thin (about 1 µm) stable single-crystal metal layer on the surface
of quartz seems to be an insurmountable problem.

So far most of the QCM data were analyzed on a qualitative level only. The
next step in QCM studies requires a quantitative treatment of the experimen-
tal results. The theoretical basis for the solution of this problem already exists,
and has been discussed in this chapter. Joint experimental and theoretical
efforts to elevate the QCM technique to a new level present a challenge for
future investigators.

Finally it would seem that, in spite of some shortcomings, the potential ad-
vantages of the QCM far exceed its limitations. There are many challenges to
overcome and the QCM will undoubtedly continue to be one of the important
tools in studies of metal–solution interfaces in general.
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