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Summary. The present paper deals with the issues related to collision-free, time­
optimal navigation of an autonomous car-like robot, in the presence of some moving
obstacles. Two different approaches are developed for this purpose. In the first ap­
proach, the motion planner is developed by using a conventional potential field
method and a fuzzy logic-based navigator is proposed in Approach 2. In the present
work, an attempt is made to develop a good knowledge base (KB) of an FLC auto­
matically, by using a genetic algorithm (GA). During training, an optimal rule base
of the FLC is determined by considering the importance of each rule. The effective­
ness and computational complexity of both the approaches are compared through
computer simulations.
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1 Introduction

To meet the increasing demand of robots, design and development of an au­
tonomous robot has become a thrust area in robotic research. An autonomous
robot should be able to plan its collision-free path on-line, in varying situa­
tions. The problems of collision-free navigation in a known terrain have been
extensively studied by several investigators. Both graph-based as well as ana­
lytical techniques have been developed. However, all these techniques may not
perform effectively in dynamic environments, where the motion of the robot
is to be planned in a partially-known environment. Thus, building a complete
mathematical model is not possible. Moreover, a car-like robot is subjected to
both nonholonomic as well as dynamic constraints [1]. Therefore, it can only
move forward or backward in a direction tangent to its trajectory.
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Latombe [2] provides an extensive survey on different conventional motion
planning schemes of car-like robots. Potential field method [3] has come out
to be the most popular of all conventional approaches. But, its performance
depends on the chosen potential functions, a proper selection of which is a
tough task. Therefore, it may provide some feasible solutions to the present
problem, which may not be optimal in any sense. Moreover, most of the tra­
ditional methods are unable to deal with uncertain and imprecise sensory
informations. Thus, there is a need for an approach that can handle uncer­
tainties at all levels and deal with various situations, those are not known a
priori.

Fuzzy set theory had been introduced by Zadeh [4] in the year 1965, to deal
with vague, uncertain and imprecise data related to the real-world problems.
Recently, some researchers [5, 6] have started thinking, whether they should
switch over to a fuzzy logic-based motion planner. However, the performance
of an FLC depends on its KB, design of which is not an easy task. Several
methods, such as least squares [8], gradient descent [9], back-propagation al­
gorithm of neural network [10] and others, had been proposed by various
investigators, to develop an optimal KB of an FLC. But, all such methods
failed to give optimal solutions, due to the fact that they might have local
minima problem. Moreover, the problem of knowledge acquisition of an FLC
is a tough task, due to the fact that a human expert often finds it difficult
to express his or her control actions. Several trials had been made by quite a
few researchers, for the development of a suitable KB of an FLC, by using a
GA [11]. Optimization of both the data base as well as rule base of an FLC
had been carried out simultaneously using a GA by a few investigators [12,6].
In this regard, there are three basic approaches, namely Michigan, Pittsburgh
and iterative rule learning. Interested readers may refer to [7], for a detail
study of the same. However, in some of these methods, a considerable amount
of time was spent on manual design of rule base and a GA was used to further
tune it. To overcome this difficulty, some investigators [13, 14] tried to design
the FLC automatically by giving the complete task of designing a suitable KB
to the GA. It is important to mention that the GA-Iearned rule base of an
FLC may contain some redundant rules, but no effort was made to identify
and remove them in the above earlier work. It happens due to the iterative
nature of the GA. Realizing all such problems, an attempt is made in the
present study, to design the FLC automatically, in such a manner that the
redundant rules (if any) will be removed from the rule base. The effectiveness
of both these approaches are tested through computer simulations, for solving
the navigation problems of a car-like robot moving in a dynamic environment.
It is to be noted that the present work differs from the earlier work [6] in the
sense that a car-like robot has been considered including its kinematic and
dynamic constraints, in place of a point robot. Thus, it is a more realistic
problem compared to the earlier.

The rest of the paper is structured as follows: Dynamic motion plan­
ning problem of a car-like robot is stated and the motion planning scheme
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is explained in Section 2. The developed motion planning algorithms are dis­
cussed in Section 3. Results of computer simulations are presented and dis­
cussed in Section 4 and some concluding remarks are made in Section 5.

2 Dynamic Motion Planning of a Car-Like Robot

Motion planning problem of a car-like robot navigating in the presence of
some moving obstacles, is considered in this paper.

2.1 Statement of the Problem

During navigation, a car-like robot has to find its collision-free, time-optimal
paths, after starting from a fixed point and to reach a target point situated in
an unknown environment populated with some moving obstacles. Moreover,
motion planning problem of a car-like robot is a complicated one, due to the
fact that it should satisfy both nonholonomic as well as dynamic constraints
during its navigation. In the present work, both the nonholonomic as well as
dynamic constraints (such as motor torque constraint, curvature constraint,
sliding constraint) of the car-like robot [15] have been considered. To meet
these requirements, a suitable motion planning technique has to be developed,
which can plan and control the motion of a car-like robot, on-line, in an
optimal sense. For simplicity, all the moving obstacles are represented by their
bounding circles and the robot is assumed to move due to pure rolling action
only. The developed motion planning scheme is discussed below.

2.2 Motion Planning Scheme

The complete path of the robot is considered as a series of small segments,
either curved or straight or a combination of them. Each segment is assumed
to be traversed during a fixed time ~T and the robot's path is planned based
on the position of the most critical obstacle, which is identified by considering
the relative velocity of the robot with respect to the obstacle and the direction
of movement of the obstacle. It is important to mention that only one obstacle
is considered to be the most critical at a time and no two obstacles are allowed
to overlap each other. If the robot finds any critical obstacle ahead of it, in the
predicted time step, the motion planner is activated. Otherwise, it moves with
the maximum possible velocity by following a straight path, directed towards
the goal. The task of the motion planner is to determine the acceleration
and deviation required by the robot to avoid collision with the most critical
obstacle. This process continues till the robot reaches the target and the total
traveling time is calculated by adding all the intermediate time steps.

Our aim is to design the motion planner in such a manner that the robot
reaches the goal with a minimum possible traveling time. Thus, the present
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problem can be treated as a constrained traveling time minimization problem.
It is important to note that a robot will reach the target with the minimum
possible time, only when it moves with the maximum possible velocity and
takes less deviation to avoid collision with the obstacles. Thus, the problem
under this study, is solved by minimizing the error due to both acceleration
as well as deviation required by the robot simultaneously, to avoid collisions
with the most critical obstacle after satisfying the constraints.

3 Developed Motion Planning Algorithms

Two different approaches of robot motion planning are developed, in the
present work, which are discussed below.

3.1 Approach 1: Potential Field Method

Potential field method, introduced by Khatib [16], is widely used for real time
collision-free path planning of both manipulators as well as mobile robots. In
this approach, the robot is modeled as a particle moving under the influence
of an artificial potential field, which is determined by the set of obstacles and
the target destination. The target is assumed to have attractive potential and
the obstacles generate the repulsive potential. The movement of the robot
is then achieved by determining the resultant force due to these two poten­
tial fields. However, the performance of the potential field method depends
on the chosen artificial potential functions. Several potential functions, such
as parabolic-well, conic-well, hyperbolic function, rotational field function,
quadratic, exponential function, are tried by various investigators [3, 1], out
of which, parabolic and hyperbolic functions are widely used for solving the
similar problem [17], due to their nonlinear approximation capability about
the system. The attractive Uatt(X) and repulsive Urep(X) potential fields,
used in this study, can be expressed as follows.

(1)

where ~att is a positive scaling factor of attractive potential and dgoal(X)
denotes the Euclidean distance of the robot from its goal.

(2)

where ~rep is a positive scaling factor of repulsive potential and dobs(X) in­
dicates the Euclidean distance of the robot from the obstacle and dobs(O)
represents the distance of influence of the obstacle and it is made equal to the
center distance between the robot's bounding circle and that of the obstacle.
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The attractive and repulsive potential forces are then calculated by differ­
entiating the respective potential fields with respect to the goal distance and
obstacle distance, respectively. It is important to mention that in the present
study, acceleration of the robot is taken to be proportional to the magnitude
of the resultant force and deviation is considered as the angle made between
the direction of the resultant potential force and the new reference line joining
the CG of the robot at the present time step and the goal position.

3.2 Approach 2: Genetic-Fuzzy System

An FLC may also provide some feasible solutions to the said problem. Two
condition variables, such as (i) distance of the robot from the most critical
obstacle and (ii) angle between the line joining the robot and the most critical
obstacle and the reference line (joining the robot and its goal) are fed as in­
puts to the controller. The outputs of the controller are taken to be deviation
and acceleration required by the robot to avoid collision with the most crit­
ical obstacle. In the present study, the range of distance is divided into four
linguistic terms: very near (VN), near (NR), far (FR), very far (VF). Five
linguistic terms have been considered for both the angle as well as deviation:
left (LT), ahead left (AL), ahead (AH), ahead right (AR) and right (RT) and
acceleration is considered to have four terms: very low (VL), low (L), high (H),
very high (VH). Therefore, there will be a maximum of twenty input condi­
tions, and for each input condition, there is a maximum of twenty output
combinations. Thus, there is a maximum of 400 (Le., 20 x 20) rules present in
the rule base and a particular rule will look like the following.

IF distance is VF AND angle is LT, THEN deviation is AH and acceleration
is VH.

For ease of implementations, membership function distributions of both
the input as well as output variables are assumed to be symmetric triangles.
Thus, the data base of the FLC may be represented by providing the four
continuous variables representing the half base-widths of the triangular mem­
bership function distributions. The performance of an FLC depends on its
both data base as well as rule base, which are to be optimized simultaneously.
In the present work, an attempt is made to develop a good KB of an FLC
automatically by using a binary-coded GA. A GA-string consisting of 440-bits
is considered to indicate the KB of the FLC as shown below.

10 ... 1 01··· 1 10···0 01··· 0 10 .. ·01
'-v---" '-v---" '-v---" '-v---" ~

v I nput combinations
Data base

10101 ... 0101 ... 11001, ~

v
Consequent of the rules

The first 40-bits in this string represent the half base-widths of the four tri­
angles (10 bits for each variable) and the next 20-bits are used to indicate the
presence or absence of the input combinations in the rule base (1 for presence
and 0 for absence). Out of the remaining 380-bits of the string, every 19­
bits will carry the information regarding the combination of the consequents,
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for a particular input condition. We count the number of Is present in each
19-bits long sub-string. If it comes out to be zero, it will represent the first
output combination, i.e., deviation is LT and acceleration is VL, and so on.
The fitness of a GA-string is then calculated, as follows.

1 N 1 S 2

Fitness = N L SLL(Tn sv - Onsv),
n=l s=l v=l

where S denotes the total number of time steps in a planned path and the
total number of training scenarios is indicated by N. Onsv and Tn sv are rep­
resenting the values of actual output and target output, respectively, of an
output variable (say,v). The target output for deviation is considered to be
equal to zero and that for acceleration is taken as the maximum permissible
acceleration of the robot. A fixed penalty equals to 200 is added to the said
fitness value, when the robot collides with the most critical obstacle during its
movement from the present position to the predicted location. Moreover, an­
other fixed penalty equals to 2000 is given to the string, if the FLC represented
by it, is unable to provide any solution particularly in case of non-firing situa­
tion or the generated motion of the robot fails to satisfy the dynamic and/or
kinematic constraints.

During optimization, an optimal rule base of the FLC is determinedJ>y

considering the importance of each rule, which is calculated as I i j == Pij Cj,

where Pij denotes the probability of occurrence of jth output combination
corresponding to it h input condition of the rule, where i, j == 1,2, ... ,20 and

Cj == ! (Cq + Cr ), where Cq and Cr are the average worth of qth linguistic
term of the first output (i.e., deviation) and r t h term of acceleration output,
respectively. It is important to note that the worth, corresponding to a linguis­
tic term of an output, is determined by following the Gaussian distribution
pattern, maximum being occurred for deviation output AH and acceleration
output VH.

4 Results and Discussion

In the present study, a car-like robot is allowed to navigate among sixteen
obstacles moving in a 2-D environment of size equal to 19.95 x 19.95m 2 . To
provide training to the FLC, two hundred training scenarios are generated at
random. A particular training scenario is different from the other, in terms
of the initial position of the moving obstacles, their size, speed and direction
of movement. During optimization, half-base width of four triangular mem­
bership function distributions are varied in the ranges of (0.8,1.0), (20,40),
(20,40) and (0.005,0.015), respectively. The ranges of variation for the differ­
ent variables are selected through a careful study. Moreover, it is to be noted
that the time interval (i1T) is taken to be equal to sixteen seconds and the
maximum and minimum accelerations of the robot are set equal to 0.05m/S2
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and 0.005mj82, respectively. During training, the best results are obtained
with the following GA-parameters: crossover probability Pc == 0.84, mutation
probability Pm == 0.00166, population size Y == 140, maximum number of
generation M axgen == 98.

Twelve good rules have been identified by the GA, out of which, two rules
are found to be redundant (refer to Fig. 1). A rule is said to be redundant
and may be eliminated, if the importance factor of that rule comes out to be
smaller than a pre-specified value and the removal of which does not lead to
any non-firing situation. It is observed that the number of non-firing incidences
increases with the reduction of number of rules present in the rule base, as
shown in Fig. 1.
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Fig. 1. Number of rules absent in
rule base vs. number of non-firing
incidences.

Fig. 2. Optimized membership
function distributions of the FLe.

The optimized rule base along with the importance factors of the rules are
shown in Table 1. In case of first and third rules of the optimized rule base

Table 1. Optimized rule base of the FLe.

Distance Angle Deviation Acceleration Worth Probability of Importance

(OJ) occurrences factor

VN AL AL VH 0.792484 0.038017 0.030128
VN AH AH VH 1.000000 0.067505 0.067505
VN AR AR VH 0.792731 0.046960 0.037227
NR AH AH VH 1.000000 0.153483 0.153483
FR LT AH VL 0.515048 0.052486 0.027033
FR RT AH VL 0.515048 0.045074 0.023215
VF LT AH VH 1.000000 0.029633 0.029633
VF AL AH H 0.918319 0.105903 0.097253
VF AH AH H 0.918319 0.157644 0.144767
VF RT AH L 0.630077 0.040236 0.025351
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(refer to Table 1), both the angle as well as deviation are coming out to be the
same with respect to the linguistic terms, namely AL and AR, respectively.
It is important to note that although the linguistic terms are the same, their
numerical values are coming out to be the different during optimization. It
happens because the membership function distributions of deviation will try to
squeeze, to ensure a minimum traveling time. On the other hand, the optimizer
may choose a wider membership function distributions for the angle input,
just to increase the view angle of the robot. For example, the crisp values
corresponding to AL are coming to be equal to -38.0° and -24.5° for angle
and deviation, respectively (refer to Fig. 2). Thus an AL, angle may not be
exactly equal to a deviation expressed by the same linguistic term - AL.

A close watch on the 2nd and 4t h rules of the optimized rule base as shown
in Table 1, reveals the fact that the linguistic terms for both angle as well as
deviation are coming to be the same as AH. It may be due to the reason that
during training, if there is a chance of the robot, in a particular step, that
it collides with the most critical obstacle, a penalty equal to 200 is added to
the fitness of the GA-string, to come out of this situation. It occurs, when the
direction of movement of the most critical obstacle, in that particular step,
intersects the direction of movement of the robot as planned by the motion
planner. However, this penalty helps the robot to cross the predicted position
of the obstacle as early as possible. Moreover, a VH acceleration as planned
by the motion planner helps the robot to ensure this.

For FR and VF distances (irrespective of the angle input), the robot tries
to navigate towards the AH direction, to achieve a time-optimal path. The
optimized half base-widths of the membership function distributions are found
to be as follows: b1 == 0.877 (for distance), b2 == 37.947 (for angle), b3 ==
24.496 (for deviation) and b4 == 0.0149 (for acceleration) (refer to Fig. 2).
The performances of both the approaches are tested for twenty test scenarios,
created at random. Results of computer simulations are shown in Fig. 3 and
it is observed that Approach 2 has outperformed Approach 1 in all the test
scenarios. It could be due to the fact that in potential field method, the robot
often may get stuck in the local minima. Moreover, it does not have any
in-built optimization module. The movement of the obstacles as well as the
robot in a particular test scenario (say, 4t h ) , is shown in Fig. 4, in detail. It
has been observed that Approach 1 is unable to provide good solutions, when
any obstacle comes near to the line joining the robot and the goal or it moves
perpendicular to the direction of movement of the robot. However, the GA­
learned FLC has understood these situations well and behaved optimally. The
CPU time of both the approaches are found to be small, making them suitable
for solving the navigation problems of a car-like robot in a partially-known
environment, on-line.
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Fig. 3. Comparison of two ap­
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5 Concluding Remarks

Fig. 4. Collision-free paths ob­
tained by the robot using two dif­
ferent approaches.

Potenti al field method is a widely used approach for robot motion planning,
although it has a number of drawbacks. However, fuzzy logic-based motion
planners are drawing interest , nowadays, due to its ease of implementation
and ability to deal with imprecise and uncertain sensory readings. Several
methods have been developed to find a suitable KB of an FLC, but each of
these approaches has its inherent limitations. A method for automatic design
of FLC is undertaken in the present study, in which a binary-coded GA is
used to develop a good KB of an FLC . During training, an optimal rule base
of the FLC is determined by the GA and it is further modified by considering
the importance of each rule.

The effectiveness of these two approaches are studied, to solve the naviga­
tion problems of a car-like robot , in the presence of sixteen moving obstacles,
t hrough computer simulations. Approach 2 has proved its supremacy over
Approach 1, for twenty randomly-generated test scenarios. It may be due to
the fact that there is no in-built optimization module in the potential field
method and it may have local minima problem also. It is interesting to note
that importance of each rule present in the GA-designed rule base is det er­
mined to identify the redundant rules (which may be eliminated), if it does
not lead to any non-firing incidence. Therefore, the present genetic-fuzzy ap­
proach may be utilized to develop an optimal KB of an FLC , which will
contain only the significant rules. Moreover, as optimiz ation of the FLC is
carr ied out off-line, it might be suitable for solving the motion planning prob­
lems of a car-like robot , on-line . The performances of the present approaches
are tested on computer simulat ions only. However, it will be more interesting
to see their performances on a real robot .
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