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Abstract. Computational tasks related to processing and recognition of natural signal
require identification of complex patterns and relationships in massive quantities of low
precision, ambiguous noisy data. While state-of-the-art techniques and architectures fail to
provide sufficient solutions, cortical neural networks have an inherent computational power
in this domain. A recently-introduced Liquid-State-Machine (LSM) paradigm provides a
computational framework for applying a model of cortical neural microcircuit as a core
computational unit in classification and recognition tasks of real-time temporal data. In this
study we apply the concept of "Neural Cliques" and extend the computational power of the
LSM framework by closing the loop. By incorporating functions of readout, reward and
feedback, we implement such a closed-loop framework of neural architecture in
classification and recognition tasks of real-time temporal data. This approach is inspired by
several neurobiological findings from ex-vivo multi-cellular electrical recordings and
injection of dopamine to the neural culture. Finally, we illustrate the performance of the
proposed architecture in word-recognition tasks.

1 Introduction

The lack of adequate interface between the natural environment and the
computing devices constitutes a significant barrier to computer application in
many real-world tasks. To incorporate computational means in the execution of
day-to-day tasks, the physical world must be instrumental in the process, so that
the computer systems will be exposed to, and linked with, the natural
environment. The latter involves the transformation of data across the boundary
between the real and the digital world, whenever a computer is sampling and/or
acting on real world data. Examples of these "boundary transformation" problems
include the computer recognition of human speech, computer vision, textual and
image content recognition, robot control, OCR, ATR, and more. These are
difficult problems to solve on conventional computers, since they require the
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computer to find complex structures and relationships in massive quantities of low
precision, ambiguous and noisy data.

It has been proposed and supported by empirical evidences [5] that large,
generic, random, massively connected cortical networks are not built specifically
for each computational task but, rather, are used as a basic computational unit for
diverse natural computational tasks in different cortical areas. Therefore, realistic
models of these networks are good candidates for a core of biologically-motivated
computational architectures. Moreover, even a relatively simple model composed
of r-.J 100 sparsely connected leaky-integrate-and-fire (LIF) neurons by dynamic
synapses, with stochastic heterogeneous parameters, depicts powerful
computational capabilities in a domain of parallel processing of temporal noisy
data in real-time.

A new computational paradigm, called Liquid-State-Machine (LSM), recently
introduced by Maass, Natschlager and Markram [1], provides a theoretical basis
for applying a model of neural microcircuit to generic computational tasks. The
LSM system is composed of two parts: (1) A liquid computational unit- a model
of neural microcircuit is used as a "reservoir" of complex dynamics to transform
the input time series u() into "liquid states" x(t) , and to (2) A readout - a
memoryless function which maps the liquid state x(t) at time t onto the output v(t).
Readout may be implemented by a simple one-layer network of perceptron,
trained by linear algorithm to build a function mapping liquid-states onto desired
outputs. It was shown by means of simulations [2] that such a system is
computationally effective in executing parallel tasks of recognition and
classification of temporal data.

In the framework of computational LSM, a neural microcircuit is used as an
efficient generic filter transforming different temporal inputs into significantly
different liquid states. The task-dependent part is executed by the readout after
being trained by supervised-learning algorithm to map these states onto predefined
output. Obviously, neural systems are not composed of these two different
components - liquid-states generators and readout layers. Thus the functions of
both, Readout and Liquid should be incorporated into co-sets of the same generic
neural ensemble. However, by this simplification and by emphasizing that
recurrent neural ensemble, rather than individual neurons, should be viewed as
basic computational units, the LSM computational framework suggests a radically
different paradigm for neural computation. Moreover, the LSM framework
enables the application of real cortical neural ensembles in real-world tasks by
embodiment of cortical neural culture in artificial environments [15].

In this study we extend such a non-Turing paradigm for neural computations by
incorporating biologically-motivated computational functions and components,
such as reward-based feedback, observed in experiments performed on ex-vivo
neural culture [10]. Several principles of computational neurobiology are
assumed: (1) Computational tasks are carried out by spatio-temporal patterns,
coined "Cliques", generated by generic neural ensembles which are vastly
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mutually communicated [16]. (2) Learning processes drive the generation of new
subsets of cliques dictated by the environment through reward and/or penalizing
signals. Reward signals are sent through a feedback from the environment and
allow the success in computational tasks.

2 Neural Microcircuit as a Generic Computational Unit

The neocortex is characterized by precise structure of columns and layers. Within
neocortical layers neurons are mapped into each other, where anatomical and
physiological properties are unique for each type of pre- and post-synaptic
combination. However remarkable morphological, electrophysiological and spatial
stereotypy exists in these networks, in addition to very stereotypical connectivity
and patterning of synaptic connections between neighboring cells. This clear
stereotypy exists across different regions of the brain, suggesting that there is a
generic template of microcircuit and that all neocortical microcircuits are merely
subtle variations of that common microcircuit template. Such templates could
subserve the apparent omnipotent functional capacity of the neocortical
microcircuitry [5]. A computational model of generic neural microcircuit is
inherently endowed with powerful and versatile information processing
capabilities. We used a similar model to [2], composed of a 3-dimentional
recurrent network of 150 Leaky-Integrate-and-Fire (LIF) neurons with random
connectivity, and similarity to generic cortical microcircuit, 20% of the neurons
are randomly chosen to be inhibitory and, accordingly, 80% excitatory. The
probability of connection between two neurons depends on the distance between
them according to,

Coexp(-D(i,j)/ A2
) , (2.1)

Where in A and C are parameters that determine the average number of
connections for a certain Euclidean distance D between the neuron i and neuron}.
This connectivity characterization by primary local connections and a few longer
connections is biologically realistic. Long range connections will be incorporated,
and their functional effects on the computational properties of the network will be
investigated within a context of a different study.

Random, heterogeneous parameters ofNM model fit neurobiological data from
rat somatosensory cortex [2]. Synaptic short-term plasticity of the NM is
implemented by dynamic synapses in which the amplitude of each post-synaptic
current depends on the spike train that is impinging on the synapse [6], and causes
facilitation and depression processes. The model was implemented using CSIM
simulator [7].
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3 Computing with Neural Cliques

Spatio-temporal firing patterns may be considered as basic information units of
neural ensemble's response; however it seems that there is no unique information
encoded in the dynamics characteristics of these firing patterns, but rather in the
timing and specificity of the firing/non-firing neurons [17]. These spatio-temporal
patterns are sensitive to input signals and are indicative of network states.
"Synfire-chains", a concept originally introduced by Abeles [18], [II], and
recently confirmed in neural culture activity by Yuste and associates [12], [19],
emphasize the importance of correlated spatio-temporal firing patterns generated
by neural ensembles with relevance to their connectivity characteristics. For this
reason , we introduce and define the concept spatio-temporal patterns produced by
neural ensembles' "Cliques". A clique does not directly depend on the
connectivity characteristics of the firing/non-firing neurons and therefore may be
composed of several synfirechains active in the same or even different brain loci
and structures. Figure I illustrates the meaning of a clique by means of a spatio
temporal cube with finite temporal length, determined by short-term dynamics of
the neural ensemble. The selection of subsets of neurons participating in the
"clique" is determined by subsequent neuronal layers through closed-loop
interaction with the environment and, thus, is a function of the defined
computational task.

space

Fig. 1. Spatio-temporal representation of neuralcliquedepicted as a slidingcube with finite
temporal length. Points indicateneural responses that do not participate in the clique, stars
indicate neural responses that participate in the clique.

Learning process drives a neural microcircuit to the desired cliques defined by
configuration of sets of associations between stimuli and responses. This
dynamical process begins with exploration of various network's cliques through
modification of neuronal correlations. Two mechanisms which may be responsible
for changing neuronal correlations are driving stimuli and neuromodulation by
dopamine. Experiments on ex-vivo culture have shown [8], [4] that both
mechanisms enhance changes in neuronal correlations by dispersing existing
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correlations, i.e. decorrelating previously acquired correlated activity. It is
assumed that both mechanisms that cause decorrelation (dispersion) are mediated
by a biophysical jittering of the synaptic strengths at polysynaptic level.

The second phase of learning, the recognition, is responsible for "freezing" the
NM state by stopping the exploration process after the desired cliques were
obtained. In recent years, a major effort has been devoted to mapping of the
behavioral concept of reward to neural mechanisms that change the functionality
of a given NM based on its past performance [9]. The regulation of exploration
process, driven by dopamine neuromodulation, is enabled by reward prediction
error (RPE) signals. Learning by reward can occur by associating a stimulus or an
action with a reward [3]. In this type of learning known as "Learning by
Dispersion" [4], [14], the synaptic efficacies are jittered according to the RPE
values, i.e. the higher the error in the computational task, the larger the amplitude
of jittering. The process continues until the error converges to zero and the system
"freezes". In other words, the mechanism of jittering the synaptic efficacies,
discovered by Eytan and Marom, is instrumental in avoiding trapping into a fixed
point. When the best clique dictated by the environment is found, the system
reaches the recognition phase, and by stopping the dopamine emission, network's
associations are "frozen".

A mathematical model of this process, in which the synaptic efficacies are
randomly jittered by 'regulation ofRPE is formulated by:

~w == fj/(~ ·K ·RPE), (3.1)

wherein ffJ is uniform distribution in the range of the argument, WO is the previous
value of the synaptic strength, K is a constant, and L1 W is the change in the
strength of the synapse. The model illustrates exploration and recognition
processes, by dispersion of the NM synaptic strengths, regulated by the success in
achieving the task of the overall system.

The overall framework is described in Fig. 2. Time-varying stimuli from the

environment excite NM with a continuous input stream(~(t)). At any time to'

the clique of the microcircuit (Ci (to)) holds a substantial amount of information

about recent inputs ~(t < to)' Memoryless function maps the cliques Ci(tO)

onto discrete predefined values (j). Discrete value j is a decision/action of the
system in its environment.

If the system succeeds in the task, i.e. i = j for classification task, reward
signal is sent by the environment to the system. Reward signals, injected by
the environment, are determined by system's performance and activate the
Decorrelator by setting the value of RPE. Decorrelation mechanism modifies the
NM synaptic strengths according to previously defined algorithm and drives
the exploration phase of learning. When system's performance is sufficient, RPE
is low, the recognition phase is reached and NM state is "frozen" by stopping the
dispersion of the synaptic strengths.
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Fig. 2. Closed-loop liquid architecture implemented in a classification task of time-varying
inputs. NM is composedof 135LIF neurons. Time-varyingstimuliPitt) are transformed by
NM onto cliques, C;(to)' definedas firing patternsofNM at time to' Memoryless function

maps the cliques Ci (to) onto discrete output to the environment (j). A feedback on

system's performance is sent by the environment in form of reward signalsto determine the
RPE. Decorrelation, regulated by RPE, enables the exploration process of the NM until a
desiredperformance is obtained.

4 Word Recognition Task

Closed-loop liquid architecture was applied in a well-studied computational
benchmark task - an isolated word recognition task. The dataset consists of 230
input files: 40 samples of the word "one", 40 samples of the word "zero" by
different speakers, and 150 samples of other words by 10 different speakers. The
task was to recognize the word "one" out of 190 other words. To verify that the
system can be extended to recognition of words other than "one", similar
experiment was done for recognition of the word "zero" .

The waveforms of the input sound were preprocessed by performing Fourier
transform. Each of the frequency bands was composed of one or more of the
following three events: onset (the start of the phase of significant energy), offset
(the end of this phase) , and peak (the first maximum of energy). The entire
waveform is normalized to have maximum amplitude of 0.7, the sampling rate
used in this case is 12000 samples/sec. The running average power and its second
derivative are subsequently used in identification of events in the sound's
spectrogram. This sound preprocessing converts the sound signal into a
spatiotemporal sequence of events, suitable for recognition. Monosyllabic words
are encoded into such sequences by retrieving features in different frequency
bands in their spectrogram. Finally, sound waveform is converted into a list of 40
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single events that are converted in tum into their respective times of occurrence
[13].

For recognition of the word "one" 20 signals were randomly chosen out of 40
as a training data and the other 20 as a testing data, in addition to other 150
samples of different words. A previously described, randomly generated NM was
implemented in a in a closed-loop setup. The mapping function from the NM
cliques onto the output of the system was implemented by a simple algorithm
identifying the stable neuronal spikes within the spatio-temporal firing pattern of
the NM, after each step of exploration process. The average error in this
classification task, achieved by this closed-loop system, was 0.065, as depicted in
Fig. 3.
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Fig. 3. Error-in-task of closed-loop liquid architecture vs. time.

5 Discussion

The liquid architecture paradigm, motivated by the cortical NM model, enhances
the computational and learning capabilities characteristic of neural networks. On
the one hand, the liquid architecture paradigm depicts a rich behavior that can be
tested experimentally on the ex-vivo tissue setup. These emerging architectures
are motivated by neurobiological findings obtained in experiments with neural
culture [4], [8], [10]. On the other hand, the liquid architecture paradigm inspires
the development of new computational hardware, suitable for processing and
mapping of natural signals. We selected speech as an example of physiologically
generated natural signal, and demonstrated that indeed such architecture is suitable
for accomplishing relatively complicated processing tasks. Lastly, and most
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interestingly, is the possibility of coupling a real NM tissue and a liquid
architecture. Such a hybrid computational system is likely to provide further
insight into the rules that govern the functioning of brain tissue and its
computational capacity. Such a hybrid system can also serve as a closed-loop
model of a brain interaction with its environment.
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