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Abstract. Machine learning tools, in particular support vector machines (SVM), Particle
Swarm Optimisation (PSO) and Genetic Programming (GP), are increasingly used in pharma
ceuticals research and development. They are inherently suitable for use with 'noisy', high di
mensional (many variables) data, as is commonly used in cheminformatic (i.e. In silico screen
ing), bioinformatic (i.e. bio-marker studies, using DNA chip data) and other types of drug
research studies. These aspects are demonstrated via review of their current usage and future
prospects in context with drug discovery activities.

1 Introduction

Pharmaceutical discovery and development is an evolving [Ratti & Trist, 2001] cas
cade of extremely complex and costly research, comprising many facets [Ng, 2004]
which create a vast diversity of data and sub-problems [Butte, 2002; Schrattenholtz,
2004; Watkins & German, 2002; Roses, 2002]. Drug design and optimisation increas
ingly uses computers [Hou and Xu, 2004; Schneider and Fechner, 2005] and more
commonly against vast 'integrated' research datasets constructed from large inhomo
geneous combinations of data (from disparate sources and disciplines) to answer
novel lines of inquiry, and for the generation of research hypotheses.

Conventional statistical methods are currently better known and understood by
Pharmaceuticals R&D scientists who benefit from the traditional statistical support
toward design of experiments, data assessment, etc. However statistical groups are
increasingly using other computational methods and recognising alternative ap
proaches [Hand, 1999; Breiman, 2001], as existing (usually hypothesis testing)
methods are found lacking. This is generally due to the increasing need for data
exploration and hypothesis generation in the face of growing data, problem complexi
ties, and ad hoc experimental design inadequacies from compromises due to cost and
lack of prior knowledge. As individual techniques may only partly cope with these
problems, multiple methods are often used for comparative analyses. Whilst
conventional multivariate statistical methods remain of great utility, most are
inherently linear lessening their suitability for a plethora of newer, more complex
problems. Consequently, evaluation and early uptake of novel computational
approaches continues within pharmaceuticals research, with scientists increasingly
turning to recursive partitioning, Artificial Neural Networks (ANNs) and other
methods. Whilst ANNs and genetic algorithms are established in traditional
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application areas [Jones, 1999; Solmajer and Zupan, 2004], tracking the uptake of
more recent machine learning approaches is difficult due to the diversity of new ap
plications and fragmented literature.

The newer predictive modeling approaches include Support Vector Machines
(SVM) and evolutionary computing paradigms such as Genetic programming and Par
ticle Swarm Optimisation (PSO). SVM algorithms arose [Boser et al., 1992] from
concepts of structural risk minimisation and statistical learning theory [Vapnik, 1995].
SVMs are commonly used for classification (SVC) and regression (SVR). They are a
sophisticated synthesis of ANN-like hyperplane methodology, backed by a sound the
ory of learning and convergence, applying robust linear methods (and within kernel
spaces for non-linear classifiers) to give excellent generalisation characteristics
[Shawe-Taylor and Cristianini, 2000]. In contrast to the rigorous mathematical ap
proach of SVMs, genetic programming [Banzhaf, et al., 1998] appeals to metaphor.
GP uses Darwins' natural selection to evolve a population of computer programs. The
better programs are selected to be parents for the next generation. Children are created
by crossover and mutation. Some are better and some are worse than their parents. Se
lection continually encourages better individuals to pass on their genes. Overtime and
successive generations the population improves until an individual with satisfactory
performance is found. Many drug discovery problems can be expressed as the prob
lem of finding a computer program, and GP is general purpose requiring minimal as
sumptions and capable of solving very difficult problems. Particle Swarm Optimiza
tion (PSO) was inspired by swarms of insects, shoals of fish, etc [Eberhart, Kennedy
and Shi, 2001]. In PSO's the creatures are abstracted to moving particles. These fly
over the problem space. If they find a good point they are randomly attracted back to
it. Fundamentally PSO also have a similar social force which attracts all the particles
to the best solution to the problem found by the whole swarm.

We here review the current status of pharmaceutically relevant applications of
Support Vector Machines (SVMs), Genetic Programming and Particle Swarm Opti
misation and assess briefly assess their future.

2 SVM Applications in Pharmaceuticals Research

2.1 SVM in Cheminformatics and Quantitative Structure-Activity Relationship
(QSAR) Modelling.

Cheminformatics in drug discovery has been reviewed by [Xu and Hagler, 2002]. An
early task is the creation of virtual respresentations of molecules and assessment of
their likely suitability for synthesis and viability for development for use in the body.
SVC predictions of 'drug-likeness' from virtually-represented molecules are report
edly more robust than those from ANNs [Byvatov et al. 2004], achieving success in
predicting chemists' intuitive assessments [Takaoka et aI., 2003]. Cheminformatics
combines chemical properties and high-throughput screening measurements, in large
scale QSAR. Trained SVM-QSAR classifiers now enable 'virtual screening' for dis
covering molecules with specific therapeutic target affinities from millions of virtual
representations [Jorissen and Gilson, 2005], reducing the scale of subsequent 'physi
cal' screening of synthesised molecules. SVC 'active learning' has been used to
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reduce the number of drug-optimising synthesis-biotesting cycles [Warmuth et al.,
2003]. Studying bio-active conformations of molecules aids understanding of mecha
nisms of action for improving specificity and selectivity and [Byvatov et al., 2005b]
have used SVM methodology to study molecular pharmacophore patterns. [Chen,
2004] reports on SVM uses in the wider field of chemistry.

Predicting activity toward specific therapeutic targets. G-protein coupled receptors
(GPCRs) are the major class of drug targets. [Suwa et aI., 2004] provided physico
chemical features of GPCRs and their ligands to a Radial Basis Function-SVC (RBF
SVC) to predict specific G-protein couplings. [Cheng et al., 2004] used an RBF-SVR
to predict antagonist compound metabolism and inhibitory activity toward human
glucagon receptor to select 3D QSAR features. [Byvatov, et al., 2005] used binary
SVC active learning to enrich dopamine receptor agonists, applying SVR to the en
riched set to predict D2/ D3 receptor selectivity. [Takahashi et al., 2005] used multi
class SVC to predict D1 receptor agonists, antagonists and inactives. [Burbidge, 2004]
applied SVM to a variety of monoamine QSAR problems, but good performance
could come with non-sparsity: a large number of training points as support vectors
can severely reduce prediction speed in virtual screening. [Burbidge et al., 2001a] de
vised an algorithm to counter this.

Predicting Absorption Distribution Metabolism Excretion Toxic (ADMET) effects.
[Burbidge, et al., 2001b] favourably compared SVC to ANNs, decision trees and K
nearest-neighbour (k-NN) classifiers for predicting human blood-brain barrier pene
tration, human oral bioavailability and protein-binding. [Brenemann et aI. 2003] ap
plied SVM to cell permeability prediction. Bacterial P-glycoprotein (P-gp) mediated
efflux of substrate antibiotics results in drug resistance. [Xue et al., 2004a] used
Gaussian SVC Recursive Feature Elimination (SVC-RFE) to predict P-gp substrates,
outperforming ANN and k-NN. [Xue et aI., 2004b] used similar approach for predict
ing human intestinal absorption and serum albumin binding. [Doniger et al., 2002]
demonstrated benefits of RBF-SVC over ANNs against a small dataset to predict cen
tral nervous system (Blood-Brain Barrier) permeability. [Norinder, 2003] had over
fitting problems with SVR, needing simplex optimization for parameter and feature
selection to achieve good predictors for BBB penetration and human intestinal absor
tion. [Liu et al., 2005] used Gaussian SVR for predicting human oral drug absorption.

[Yap et al., 2004] used Gaussian SVC to differentiate drugs that can cause torsade de
pointes (TdP), an adverse drug reaction which involves multiple mechanisms. Predic-
tion accuracy compared favourably with k-NN, ANN and C4.5. [Xue et al., 2004b]
also used SVC, but with RFE to predict TdP inhibition. [Tobita, et al., 2005] used
RBF-SVC to predict chemical inhibition of BERG potassium channel that is associ
ated with heart arrhymia which can trigger TdP. Non-Steroidal Anti-Inflammatory
Drugs reduce inflammation by blocking cyclo-oxygenase enzymes and selective
blocking of the COX-2 form reduces gastro-intestinal side effects. [Liu, et al., 2004]
employed RBF SVC/SVR to discriminate between COX inhibitors.

Cytochrome p450 (CYP) enzymes are important chemical (and drug substrate) me
tabolisers within the body, and significant drug inhibition of these is to be avoided.
Superior prediction of CYP3A4 inhibition has been reported with SVC compared to
other methods [Merkwirth et al., 2004; Arimoto & Gifford, 2005]. SVM methods
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have also been used to predict CYP2D6, CYP2C9 [Yap & Chen, 2005] and CYP1A2
inhibition [Kless & Eitrich, 2004].

2.2 SVM in Bioinformatics

SVM application in bioinfonnatics has been reviewed by [Byvatov and Schneider,
2003]. Here we present an update.

Gene Expression Micro-Array Data in the Prediction ofDisease Traits. As with SNPs
data, input dimensionality can be extremely large (10Ks of genes) whilst the number
of examples is relatively small (typically lOs to 100s). Whilst SVMs are relatively
well suited to this situation, [Malossini et al., 2004] showed significant performance
degradation with just a few incorrectly labelled training examples (as can occur in
complex disease diagnosis). Large numbers of correlated and irrelevant genes also
diminish performance, making feature selection essential. [Guyon et al., 2002] in
vented Recursive Feature Elimination (RFE), employing SVC within a wrapper-based
approach although [Ambroise and Mclachan, 2002] reported gene selection bias with
this. Related 'entropic' [Furlanello et al., 2003] and Recursive Feature Replacement
(RFR) [Fujarewicz and Wiench, 2003] followed outperforming earlier methods, with
RFR best for smaller gene subsets [Simek et al., 2004].[Fung and Mangasarian, 2004]
have achieved sparse models directly with fast linear programming SVC. SVCs are
regularly used to predict cancer cases using gene expression training data [Wang et
al., 2005], and chemo-genomic studies (of functional relationships between genes and
drugs) are also increasing [Bao and Sun, 2002; Thukral et al., 2005].

Receptor Classification and Protein Function Annotation. SVM methods are now of
ten employed to predict the functional classes of proteins from sequence data, i.e.
GPCR families or nuclear receptor sub-family [Bhasin and Raghava, 2004a,b] and
enzyme class [Dobson and Doig, 2005].

Gene Functional Classes and Annotation. [Brown et al., 2000] first employed SVC to
predict functional classes of genes, others have continued in this vein, i.e. [Vinayagam
et al., 2004] devised a large-scale gene annotation system exploiting the gene
ontology DAG structure using multiple SVCs for prediction correctness.

Proteomics/Protein Expression. [Jong et al., 2004] Studied predictability of prostate
and ovarian cancers using SELDI-TOF mass spectronomy (MS), achieving excellent
performance with linear SVC. [Seike et al., 2004] used SVC within a methodology to
rank protein spots (in expression profiles from 2D-gel electrophoresis) in terms of
their discrimatory ability for human cancers. [Prados et al., 2004] found linear-SVC
to out-perform k-NN, ANN and decision tree approaches in predicting ischemic and
haemorrhagic stroke from SELDI-MS data applying weight interrogation to identify
candidate biomarkers. [Bock and Gough, 2003] used SVC in a system generating pro
tein-protein interaction hypotheses for constructing protein interaction networks.

Other Bioinformatics Applications. [Schneider and Fechner, 2004] have reviewed
machine learning approaches (including SVMs) to protein sub-cellular localisation for
target identification in drug discovery. There is a growing use of SVC prediction of
functionally critical sites within proteins, i.e. sites of: phosphorylation [Kim et al.,
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2004], ATP-binding [Guo, et al., 2005], catalysis [Dubey et al., 2005] and cleaving
[Yang and Chou, 2004]. Specialist kernels have arisen here, i.e. for protein homology
[Saigo et al., 2004]) and siRNA design for 'gene-silencing' [Teramoto et al., 2005].

2.3 SVM in Clinical Diagnosis and Epidemiology

Molecular Genetic Epidemiology. Single-Nucleotide Polymorphisms (SNPs) are
common individual base changes within human DNA. Millions have been identified.
Unlike gene expression measures, SNPs represent unchanging patient-specific varia
tion that may relate to an individuals' prognosis. The feasibility of using SVC meth
odology to predict disease using multiple SNP variations has been demonstrated for
coronary heart disease [Yoon et al., 2003] and breast cancer [Listgarten et al., 2004].
[Barrett, 2005] used SVC to find SNPs associated with drug effect via iterative train
ing and SNP-removal using l-norm linear SVC weight-vector interrogation.

Epidemiology and Clinical Diagnostics. Apart from in the 'molecular-related' con
texts (as above) the use of SVM in epidemiology remains in its infancy. Observing
that variable interactions are often not considered in standard univariate analyses,
[Fradkin, 2005] discusses the potential of SVM models to provide an alternative to the
standard logistic regression method used to identify risk factors in cross-sectional
studies. In the only reported study of SVM modelling of large epidemiological obser
vational data, [Muchnik, 2001] used the SEER database, computing multiple SVC
models (using variable perturbation) to identify candidate epidemiological factors in
fluencing on breast cancer survival time.Hlardle and Moro, 2004] used SVM to
achieve breast cancer survival analysis. [Zhao et al., 2004] used SVC to differentiate
anorexic patients. There is a much wider use of SVC in clinical diagnostics with large
complex data from sophisticated equipment such as EEG (epilepsy: [Miwakeichi et
al., 2001]; CT (colon cancer: [Jerebko, et al., 2005]), MRI (brain glioma: [Li et al.,
2005]) and sonography (breast cancer: [Huang & Chen, 2005]).

3 Drug Research Applications of Genetic Programming

In most Pharmaceutical applications, GP evolves predictive models. Typically these
take data (i.e. number of positively charged ions, presence of aromatic rings, , etc.)
and predict whether a molecule inhibits an enzyme or not. There are now at least two
annual workshops on EC uses in Biology: BioGEC (2002-06) and EvoBIO (2003-06).

3.1 GP in Cheminformatics and QSAR.

GP has been used for combinatorial design [Nicolotti et aI., 2002], modelling drug
bioavailabity [Langdon et aI., 2002] and HERG inhibition [Bains et aI., 2004], whilst
ensembles of ANNs have been evolved to predict p450 inhibition [Langdon et aI.,
2002a].

3.2 GP in Bioinformatics.

Hot topics include: DNA and protein sequence alignment [Shyu et aI., 2004]; protein
localisation [Heddad et aI., 2004]; using genetic algorithms etc. to infer phylogenetics
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trees [Congdon and Septor, 2003]; classification and prediction [Hong and Cho,
2004]; recognising transmembrane regions of proteins [Koza and Andre, 1996]; and
finding DNA promoters [Howard and Benson, 2003] and gene regulatory sites. Infra
red spectroscopy, DNA chip and Single Nucleotide Polymorphisms (SNPs) [Reif et
aI., 2004] datasets have huge numbers of features. Often the immediate problem is to
discover which of the thousands are relevant. In [Johnson et al., 2003] isolation of the
relevant wave numbers using GP revealed new insights into commercial crops. GP
has also been used to sift thousands of inputs in DNA chip data to discover which
genes are important to a metabolic process [Langdon and Buxton, 2004; Moore et aI.,
2002] or to reduce the number of inputs required so a diagnostic test is practicable
[Deutsch, 2003]. While GAs can achieve high multi-class accuracy [Ooi and Tan,
2003] they are also commonly combined with other classifiers, e.g. linear [Smits et
aI., 2005], SVM [Li et aI., 2005], naive Bayes [Ando and Iba, 2004] and k-nearest
neighbour. It is no wonder that GP is increasingly being used in Bioinformatics data
mining [Kell, 2002]; modelling genetic interactions [Moore and Hahn, 2004] and or
ganisms; inferring metabolic pathways [Koza et aI., 2001; Tsai and Wang, 2005] and
gene regulatory networks.

3.3 GP in Clinical Diagnosis and Epidemiology Research.

So far, GP is not so used, although GP has been applied to diagnosing pulmonary em
bolism [Biesheuvel, 2005] and atherosclerosis risk [Sebag et al., 2004].

4 Biological Applications of Particle Swarm Optimisation

Unlike GP, the current use of PSOs in pharmaceutical research is relatively unex
plored. Commonly PSOs are used in hybrids with other approaches. PSOs naturally
search widely, making them suited to finding good regions. Exploitive local method is
then used to refine the good starting points found by PSOs into excellent solutions.

4.1 PSO in Cheminformatics and QSAR.

In QSAR a few teams have used a two stage approach. In the first stage a binary PSO
is used to select a few (typically 3-7) features as inputs to supervised learning method.
In [Lu et al., 2004] the BPSO selects 7 of 85 features. Then linear models of drug ac
tivity (IC50) with two enzymes, COX-l and COX-2, are constructed. (In [Lin et al.,
2005] they use a PSO to divide low dimensional, e.g. 5 features, chemical spaces into
pieces. A linear model is fitted to each sub-region.). To aid in silico design of drugs,
[Lu et al., 2004] produce models which may differentiate between binding to the two
enzymes by (virtual) chemicals.

[Wang et al., 2004] and [Shen et al., 2004] use feed-forward ANN to classify the
Bio-activity of chemicals using a few (3-6) features selected by a BPSO. They also
consider replacing the ANN by a k-nearest neighbour classifier in combination with
kernel regression. While they note some differences, many approaches tum out to be
equally good at predicting which chemicals will be carcinogenic. The datasets typi
cally only cover a few (31-256) chemicals but, for each one, a large number (27-428)
of features are computed from its chemical formula. One can reasonably argue that



Techniques in Drug Discovery, Design and Development 105

some form of "feature selection", i.e. choosing which attributes can be used by the
ANN, is essential. Even so, given the small number of chemicals involved, [Agrafiotis
and Cedeno, 2002; Cedeno and Agrafiotis, 2003; Wang et al., 2004] are still careful to
prevent over fitting, e.g. by the use of "leave-n-out" cross-validation.

4.2 PSO in Bioinformatics.

DNA chip experiments often mean under-constrained biomarker search problems
(many variables vs few examples). [Xiao et al., 2003] use self organising maps
(SOM) to pick clusters of similar genes from datasets with thousands. The PSO is
seeded with crude SOM results to refine the clusters.

4.3 PSO in Clinical Diagnosis and Epidemiology Research.

Two and three dimensional medical images, such as X-Rays and MRI, can contain
millions of data per subject. [Wachowiak et al., 2004] propose a hybrid PSO to match
images taken at different times and/or with different techniques (e.g. ultrasound, CT).
Best results came by combining expert medical knowledge to give an initial alignment
and a PSO. [Eberhart and Hu, 1999] used a PSO to train an ANN which, using wrist
accelerometer data, identifies essential tremor and Parkinson's disease sufferers.

5 Discussion

Whilst the above survey clearly demonstrates a wide coverage of relevant problem ar
eas, it remains unclear as to the underlying extent to which these approaches are actu
ally deployed across the pharmaceuticals industry so their overall importance there is
difficult to ascertain. Although becoming less sporadic, it seems that the use of ma
chine learning is still largely driven by individuals either with their own expertise
and/or external expert resources.

Machine learning has however proved its worth in many areas for fundamental rea
sons (for instance model transparency is a recognized benefit of evolutionary methods
and SVMs are well known for their generalization). For these newer technologies to
make further applications advances there is a need for ease-of-use; easier derivation of
problem-specific representations; adequate ways of handling missing data; more
widespread generation of reliable prediction confidence measures and attention to sta
tistical power of datasets in model selection. Encouragingly, the machine learning re
search community is responding to publicised need. Deficiencies in individual meth
ods are being countered by customizations, ensemble and hybrid approaches
[Langdon et al., 2003a; Runarsson and Sigurdsson, 2004; Li, et al.,2005b; Howley
and Madden, 2005; Igel, 2005]. These remain the domain of experts and ease of
blending of techniques incorporating multi-objective and constraint-based capabilities
is awaited with anticipation.
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